WO2014136082A1 - Plaquette de silicium monolithique presentant une alternance de zones dopees n et de zones dopees p - Google Patents

Plaquette de silicium monolithique presentant une alternance de zones dopees n et de zones dopees p Download PDF

Info

Publication number
WO2014136082A1
WO2014136082A1 PCT/IB2014/059497 IB2014059497W WO2014136082A1 WO 2014136082 A1 WO2014136082 A1 WO 2014136082A1 IB 2014059497 W IB2014059497 W IB 2014059497W WO 2014136082 A1 WO2014136082 A1 WO 2014136082A1
Authority
WO
WIPO (PCT)
Prior art keywords
zones
wafer
doped
type
areas
Prior art date
Application number
PCT/IB2014/059497
Other languages
English (en)
Inventor
Jean-Paul Garandet
Sébastien Dubois
Nicolas Enjalbert
Jordi Veirman
Yannick Veschetti
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to CN201480024908.4A priority Critical patent/CN105190863A/zh
Priority to EP14713263.3A priority patent/EP2965362A1/fr
Publication of WO2014136082A1 publication Critical patent/WO2014136082A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/047PV cell arrays including PV cells having multiple vertical junctions or multiple V-groove junctions formed in a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a new monolithic silicon wafer having, in a vertical sectional plane, an alternation of n-doped zones and p-doped zones, and to different process variants for its preparation.
  • Such a wafer is particularly advantageous in the context of the development of photovoltaic cells and modules.
  • PV photovoltaic modules
  • PV modules of reasonable size of the order of the m 2 , the size standard for the wafers (156 x 156 mm) makes the open circuit voltages (V oc in English terminology) of the PV modules are limited. a few tens of volts.
  • a first option could be to use materials other than crystalline silicon (Si), in particular semiconductors with band gap amplitudes exceeding 1, 1 eV (electronvolt).
  • silicon such as an amorphous Si type material on crystalline Si, resulting from the so-called heterojunction technology, or even CdTe type materials (cadmium telluride).
  • CdTe type materials cadmium telluride
  • Pozner et al. [1] have modeled the serialization of cells with vertical p / n junction planes, unlike the configuration of conventional wafers where the junction plane is horizontal.
  • the advantage of this approach is to be able to consider a collective type of treatment, monolithic substrate, for the realization of cells.
  • many technical questions remain open as to the practical realization of such a structure, the cost of which, moreover, may be very high.
  • Gatos et al. [2] propose to take advantage of the heterogeneous incorporation of oxygen during the growth of a silicon crystal by Czochralski directed solidification. The origin of these fluctuations in oxygen concentration is poorly known, but this principle is used by Gatos et al. to obtain structures of alternating conductivity n / p by thermal annealing.
  • thermal anneals at temperatures of 400-500 ° C, allow the formation of thermal donors (DT ), small agglomerates of oxygen (typically formed from the combination of 3 to 20 oxygen atoms) that behave as electron donors in silicon.
  • thermal donors typically formed from the combination of 3 to 20 oxygen atoms
  • these thermal donors can cause compensation of the material and its change in conductivity.
  • an annealing for example at a temperature of 450 ° C for 50 hours of a wafer cut into a Czochralski ingot parallel to the direction of solidification, thus provides structures p / n.
  • the size of the n and p zones typically of the order of one hundred microns [2] can not be controlled. It is therefore not possible to define the output voltage of such a structure, which represents a major obstacle for the integration of these structures in a complete solar system. Moreover, in a configuration where the sub-cells are connected in series to obtain high voltages, it is then impossible to balance the currents, which is a very strong limitation with respect to the energy conversion efficiency of the 'together.
  • the present invention aims to provide a new monolithic silicon wafer to overcome the aforementioned drawbacks, as well as methods for accessing such a wafer.
  • the present invention relates, according to a first of its aspects, to a monolithic silicon wafer, having, in at least one vertical section plane, an alternation of n-doped zones and of p-doped zones, each of the zones extending throughout the thickness of the wafer, characterized in that:
  • said p-doped and p-doped zones each have, in the plane of section, a width (Li, L 2 ) of at least 1 mm; the n-doped zones have a concentration of thermal donors based on interstitial oxygen (DT) distinct from that of the p-doped zones; and
  • n-doped zones and said p-doped zones are separated from one another by zones of electrical insulation.
  • the wafer is characterized when observed in its horizontal position.
  • the wafer is defined as having an alternation of n-doped zones and p-doped zones extending over the entire thickness of the wafer, in a vertical cutting plane of the wafer positioned horizontally.
  • thermal donors or more simply under the abbreviation "DT", the thermal donors based on interstitial oxygen.
  • electrical insulation zone is meant a zone having a high electrical resistivity, in particular greater than or equal to 2 k ⁇ cm and advantageously greater than or equal to 10 k ⁇ cm.
  • the electrical isolation zone may be a so-called intrinsic zone, namely a zone of the wafer in which the electron-type charge carrier and hole-type charge carrier concentrations are similar.
  • the present invention proposes methods making it possible to easily access such a wafer from a p-doped silicon wafer.
  • the present invention thus relates to a method of manufacturing a wafer as defined above, comprising at least the steps consisting in:
  • step (ii) subjecting said wafer of step (i) to an overall heat treatment, conducive to activation of interstitial oxygen-based heat donors and conversion of the entire wafer to n-type; (iii) subjecting areas of the wafer obtained at the end of step (ii), dedicated to forming the p-doped zones, to a localized heat treatment that is favorable for the annihilation of the thermal donors and to the conversion of said zones of type n in type p; and
  • the present invention relates to a method of manufacturing a wafer as defined above, comprising at least the steps consisting in:
  • step (c) subjecting said wafer of step (b) to an overall heat treatment conducive to the activation of the interstitial oxygen-based thermal donors at the hydrogen-doped regions, and to the conversion of said zones (1 1) p-type type n and said zones (13) in electrical isolation zones, to obtain the expected wafer.
  • these methods make it possible, by controlling the local concentrations of thermal donors, to control, with precision, the size of the n and p zones formed, as well as the conductivity and the size of the electrical insulation zones.
  • the present invention relates to a photovoltaic device, in particular a photovoltaic cell, comprising a silicon wafer as defined above.
  • the silicon wafers according to the invention divided into a plurality of sub-cells of controlled sizes, advantageously make it possible to produce PV modules having an increased open circuit voltage, while maintaining a reasonable standard size of the order of 2 m 2. .
  • Other characteristics, advantages and modes of application of the wafers according to the invention and processes for its preparation will become more apparent on reading the detailed description which will follow, examples of embodiments of the invention and the examination annexed drawings, in which:
  • FIG. 1 shows, schematically, in a vertical sectional plane, the structure of a silicon wafer according to the invention
  • FIG. 2 shows schematically the various steps of the method of manufacturing a wafer according to the invention, according to a first embodiment
  • FIG. 3 shows schematically the various steps of the method of manufacturing a wafer according to the invention, according to a second embodiment
  • FIG. 4 represents, in a view from above, for the method of example 1, the zones (12) irradiated with the laser of the wafer during step (iii) for the formation of the p-doped zones (FIG. 4a) and during step (iv) for the formation of the electrical insulation zones (FIG. 4b);
  • FIG. 5 represents, in a view from above, for the method of example 2, the masking in step (b) of the zones (12) of the wafer during the first ion implantation step (FIG. 5a) and the masking the zones (12) and (13) during the second ion implantation step (FIG. 5b); and the distribution of the zones formed at the end of step (c) (FIG. 5c).
  • a wafer according to the invention may have a thickness (e) ranging from 100 to 500 ⁇ , in particular from 150 to 300 ⁇ .
  • L may have a total length (L) ranging from 10 to 30 cm, in particular from 15 to 20 cm.
  • a wafer of the invention comprises an interstitial oxygen concentration of between 10 17 and 2.10 18 cm “3, in particular between 5.1017 and 1,5.1018 cm" 3. This concentration takes into account the content in interstitial oxygen, which are not in the form of agglomerates (thermal donors) in the silicon wafer.
  • the interstitial oxygen concentration may for example be obtained by Fourier Transformed InfraRed Spectroscopy (FTIR) analysis.
  • FTIR Fourier Transformed InfraRed Spectroscopy
  • a silicon wafer according to the invention has an alternation of n-doped zones (1 10) and p-doped zones (120), separated from each other by electrical isolation zones (130).
  • the doped regions n (110) of the wafer may be, independently of each other, an electron type of charge carrier density between 10 14 and 2.10 16 cm “3, in particular from 5.10 14 to 5.10 15 cm “3 .
  • the concentration of electron-type charge carriers can be determined, for example, by measuring the Hall effect (which makes it possible to determine the type of doping).
  • They may have, independently of each other, a width (Li) in the cutting plane ranging from 1 mm to 10 cm, in particular from 5 mm to 5 cm.
  • the p-doped areas (120) of the wafer may have, independently of one another, a hole-type charge carrier density ranging from 10 14 to 2.10 16 cm- 3 , in particular from 5.10 14 to 5.10 15 cm- 3. .
  • the concentration of charge carriers of the hole type can be deduced from a measurement of the resistivity, for example by the Hall effect measurement method.
  • They may have, independently of each other, a width (L 2 ) in the section plane ranging from 1 mm to 10 cm, in particular from 5 mm to 5 cm.
  • the expression "independently of one another” means that the width may differ from one n-doped zone to another n-doped zone, or from one p-doped zone to another p-doped zone.
  • these widths (Li, L 2 ) can be adjusted according to the knowledge of those skilled in the art.
  • the n-type materials are generally less sensitive to metallic impurities than the p-type materials, the photogenerated currents are generally higher in n-doped zones than in p-doped zones.
  • the widths (Li, L 2 ) of the p-doped and n-doped zones can be adapted during the preparation of the wafer, in particular with a view to optimally matching these currents in the final silicon wafer.
  • n-doped zones (110) of the wafer according to the invention have a concentration of oxygen-based thermal donors (DT) distinct from that of the p-doped zones (120).
  • control of the local DT concentration provides access to the alternating electrical conductivity n and p of the wafer.
  • an overall annealing of a wafer according to the invention for example at a temperature greater than or equal to 600 ° C, in particular between 600 and 700 ° C, allows dissolution (also called “annihilation”). ) of all the DTs and leads to finding a platelet of homogeneous conductivity.
  • This characteristic can advantageously be used to distinguish a wafer according to the invention from wafers which would not be obtained by a method according to the invention.
  • the electrical isolation zones (130), separating an n-doped zone (110) and a p-doped zone (120), preferably have a resistivity greater than or equal to 2 k ⁇ cm, in particular greater than or equal to 10 k ⁇ . cm.
  • the resistivity can be measured by any conventional method, such as, for example, by the so-called 4-point measurement method, or by measuring the effect of eddy currents induced by an alternating magnetic field.
  • each of the electrical isolation zones (130) advantageously has a width (L 3 ) in the section plane ranging from 50 ⁇ to 5 mm, in particular from 200 ⁇ to 1 mm.
  • a zone of electrical insulation too long in the final silicon wafer is likely to lead to an active loss and therefore a drop in energy efficiency at the module that will be formed from these wafers.
  • a zone of electrical insulation that is too short may be insufficient to ensure good isolation between the sub-cells (n-doped zones and p-doped zones), which can also lead to a drop in efficiency at the module level. resulting.
  • the zones n and p can be arranged so as to form a two-dimensional pattern.
  • the arrangement of the alternating zones n and p may form a checker pattern.
  • the side of a square (zones n and p) of the checkerboard may be between 1 mm and 10 cm, preferably between 5 mm and 5 cm.
  • the electrical insulation zones (130) then form the perimeter of each of the zones n and the zones p. This configuration is for example implemented in the examples which follow.
  • the invention is not limited to such an arrangement; different configurations, other than a checkerboard pattern, may be envisaged within the context of the present invention (for example rectangular, polygonal patterns, etc.).
  • a wafer (10) according to the invention can be produced, according to various alternative embodiments, from a wafer (1) made of p-doped silicon, comprising a concentration of charge carriers of the hole type (p 0 ) between 10 14 and 2.10 16 cm -3 and an interstitial oxygen concentration [Oi]
  • the p-doped silicon wafer (1) has a concentration of hole-type charge carriers (p 0 ) ranging from 5.10 14 to 10 16 , in particular from 5.10 14 to 5.10 15 cm -3 .
  • the p-doped silicon wafer (1) has an interstitial oxygen concentration [Oi] ranging from 5 ⁇ 10 17 to 1.5 ⁇ 10 18 cm -3 .
  • the relative variation of the interstitial oxygen concentration in the silicon wafer (1) is less than 40%, in particular less than
  • Such a p-doped silicon wafer (1) may for example be obtained by cutting a shaped silicon ingot, according to techniques known to those skilled in the art, by directed solidification of a molten bath, in particular by the technique gradient cooling (also known as "gradient freeze” in English) or by liquid or gaseous epitaxy.
  • the methods according to the invention implement one or more steps of activation or annihilation of DTs.
  • activation is meant the formation of these thermal donors based on interstitial oxygen. They are generally formed during annealing at a temperature of 300-500 ° C. Such annealing allows the association of oxygen atoms to form a species with more complex stoichiometry that has an electron donor behavior in silicon.
  • the thermal donors thus formed are stable at room temperature, but annealing at a temperature above 600 ° C. allows their dissociation, which cancels out the effects of the thermal activation previously carried out. This is called “annihilation” or “dissolution” of DTs.
  • Activation / annihilation treatments used according to the invention can be operated under air or under an inert atmosphere. 1st embodiment
  • a wafer (10) according to the invention can be obtained via a method comprising at least the following steps:
  • step (ii) subjecting said wafer of step (i) to an overall heat treatment, conducive to activation of interstitial oxygen-based heat donors and conversion of the entire wafer to n-type;
  • the overall heat treatment in step (ii) may for example be carried out by thermal annealing of the entire wafer, for example in an oven.
  • the annealing may for example be carried out at a temperature greater than or equal to 300 ° C and strictly less than 600 ° C, in particular ranging from 400 to 500 ° C and more particularly about 450 ° C.
  • the duration of the thermal anneal may be greater than or equal to 30 minutes, in particular be between 1 hour and 20 hours, in particular be approximately 4 hours.
  • the wafer () obtained, in n-doped silicon may have a content of electron-type charge carriers (n 0 ) ranging from 10 14 to 2.10 16 , in particular from 5.10 to 14 to 5.10 15 cm “3 .
  • step (iii) a person skilled in the art is able to adjust the conditions of the localized heat treatment in step (iii) suitable for the annihilation of the thermal donors in the zones (12) of the wafer dedicated to forming p-doped zones and the reconversion of these n-type zones into p-type.
  • localized is meant that the heat treatment affects only the determined areas (12) of the wafer, unlike a global heat treatment that affects the entire wafer.
  • these areas (12) of the wafer subjected to heat treatment, for example laser irradiation, are determined with respect to the architecture of the desired final wafer.
  • the areas (12) of the wafer which are desired to become p-type can be brought to a temperature greater than or equal to 600 ° C, in particular ranging from 600 to 1000 ° C, in particular for at least 10 seconds. It is up to those skilled in the art to use known means for channeling heat fluxes and limiting the lateral propagation of heat to keep n / p zones well defined.
  • the localized heat treatment can be advantageously operated by exposing the zones (12) to be treated to a laser beam, preferably a broad-spot laser if it is desired to irradiate large areas, for example with a spot size of 1. order of the cm.
  • the laser can for example operate at a wavelength greater than or equal to 500 nm, in particular ranging from 500 nm to 1100 nm, which allows a propagation of heat deep in the material.
  • step (iv) The adjustment of the heat treatment conditions in step (iv) to transform the portions (13) of each of the n-type zones contiguous to a p-type zone into electrical insulation zones is also within the competence of the skilled person.
  • Step (iv) can be advantageously carried out by exposure of each portion
  • this additional laser treatment must be more localized than that implemented in step (iii) to achieve the width (L 3 ) of the desired electrical insulation zones, and thus achieve a good compromise between quality insulation and limitation of the size of the compensated zone, inactive from the photovoltaic point of view.
  • the irradiation time and laser power parameters can be adjusted to annihilate a fraction of the thermal donors in the treated areas (13) and convert them into areas of high resistivity electrical insulation.
  • the wafer may be subjected, subsequent to step (iv), to a surface treatment, in particular by etching, to remove any hardened surface regions resulting from the laser treatment.
  • etching can be carried out using a solution formed of a mixture HN0 3 , HF and CH 3 COOH, also known as CP133. 2 ° embodiment
  • a wafer (10) according to the invention can be obtained via a method comprising at least the following steps:
  • step (c) subjecting said wafer of step (b) to an overall heat treatment conducive to the activation of the interstitial oxygen-based heat donors at the hydrogen-doped zones (1 1) and (13), and converting said n-type p-type zones (11) and said zones (13) into electrical isolation zones to obtain the expected wafer (10).
  • step (b) it is up to those skilled in the art to adjust the hydrogen doping levels of the zones (11) and (13) in step (b) to obtain the desired conversion of the zones in step (c), without affecting the zones (12). ) devoid of hydrogen and dedicated to form the areas p of the final wafer.
  • the doping is operated so as to allow a uniform volume distribution of hydrogen in the areas concerned and over the entire thickness of the wafer.
  • the doping in step (b) can be carried out via a first step (bl) of implantation of hydrogen on the surface or sub-surface of the zones to be doped, followed by a second step ( b2) of diffusion of hydrogen over the entire thickness (e) of the wafer.
  • substrate hydrogen implantation means implantation at depths ranging from a few nanometers to a few tens of nanometers.
  • the hydrogen implantation can be carried out by conventional techniques, for example by plasma treatment, in particular by chemical phase deposition.
  • PECVD Plasma assisted vapor
  • MIRHP microwave - induced remote hydrogen plasma
  • the plasma treatment is carried out on both sides of the wafer.
  • the hydrogen implantation zones may be defined using a mask (for example, a metal grid), leaving only the surfaces of the areas to be doped accessible, as illustrated in example 2 which follows, for example by PECVD.
  • a mask for example, a metal grid
  • the hydrogen may be uniformly deposited over the entire surface of the wafer, and the deposit may be etched, for example with hydrofluoric acid (HF), in the zones (12) which it is desired to remain type p.
  • HF hydrofluoric acid
  • the hydrogen doping rate is preferably increased at the zones (11) intended to form the n-doped zones.
  • the implantation of hydrogen at the zones (11) and (13) can thus comprise:
  • the volume doping rate of the zones (11) dedicated to form the doped zones n can be between 1 and 4.10 13 cm -3 .
  • the volume doping rate of the zones (13) dedicated to form the zones of isolation electrical can be between 1 and 4.10 11 cm “3 .
  • the diffusion of hydrogen into the zones to be doped (step (b2)) can be performed, for example, by exposing said zones to ultrasound, in particular using piezoelectric transducers.
  • piezoelectric transducers working between 20 kHz and 1 MHz, preferably between 50 and 500 kHz, acoustic deformations induced between 5.10 “6 and 2.10 " 5 , and treatment times between 5 and 120 minutes, preferentially between 10 and 60 minutes.
  • the diffusion of hydrogen in step (b2) can be carried out by thermal annealing of the wafer, in particular in an oven, in particular at a temperature ranging from 400 ° C. to 1000 ° C., and for a period ranging from 5 seconds to 5 hours.
  • doping with hydrogen will accelerate the activation kinetics of thermal donors in the doped zones.
  • An overall thermal treatment of the wafer can thus be operated under conditions conducive to the privileged activation of thermal donors in the zones provided with hydrogen, and without affecting the areas which are devoid of them.
  • the overall heat treatment in step (c) may for example be carried out by thermal annealing at a temperature greater than or equal to 300 ° C. and strictly less than 600 ° C., in particular from 400 ° to 500 ° C., and more particularly from approximately 450 ° C.
  • the annealing time may be greater than or equal to 30 minutes, in particular between 1 hour and 20 hours, and more particularly about 3 hours.
  • a low temperature technology of heterojunction type (amorphous silicon on crystalline silicon) is used, for the realization of the photovoltaic cell.
  • a first layer of intrinsic amorphous silicon typically of a thickness of the order of 5 nm
  • a p + or n + doped amorphous layer on each of the faces of the wafer
  • metallizations also called “conductive contacts”
  • Formation of one or more metallizations front and / or back of the wafer in particular by screen printing Ag or Ag / Al.
  • a step of annealing the metallizations is then carried out in a passage oven at 800 ° C for a few seconds.
  • the PV cells obtained according to the invention can then be assembled to produce a photovoltaic module of reasonable size, conventionally of dimension of the order of m 2 , and having an increased voltage compared to modules developed from conventional cells.
  • the invention thus relates to a photovoltaic module formed of a set of photovoltaic cells according to the invention.
  • a p-type silicon wafer 220 ⁇ in thickness is used, obtained by cutting an ingot developed by solidification directed by the gradient-freeze technique.
  • This wafer has a content type of charge carriers holes, determined via the measurement of the resistivity of 5.10 15 cm “3, and an interstitial oxygen concentration as determined by FTIR analysis, 1.5x10 18 cm" 3.
  • the wafer is annealed at 450 ° C for 4 hours to activate thermal donors. This annealing allows the conversion of the p-type wafer to n-type, with an electron content, determined by measurement of the Hall effect, of 2.10 15 cm -3 .
  • the wafer is then positioned under a laser beam, shaped according to the pattern shown in FIG. 4a.
  • the non-irradiated areas are those that we want to keep n-type, and the irradiated areas (12) are the areas that we want to re-switch p-type.
  • the reasons are of dimension 4x4 cm 2 .
  • the laser beam uses a wavelength in the red / infrared, in order to bring heat deep down.
  • the laser power is adjusted in order to raise the temperature of the substrate to at least 600 ° C, in order to dissolve the majority of the thermal donors in the presence and convert the zone back to type p, while limiting as much as possible the degradation of the surface of the sample.
  • a power of 30 W for a 100 ⁇ beam diameter is a good example of an operating point, with a zone scan.
  • the duration of the laser treatment is adjusted so as to allow the rise in temperature of all irradiated areas beyond the threshold of 600 ° C for at least 10 minutes. seconds, while limiting the lateral diffusion of heat, in order to obtain a mosaic of types as sharp as possible.
  • the wafer undergoes a second laser step, aiming at the development of highly resistive zones between the different regions of opposite types.
  • the beam is scanned around the perimeter (13) of each n-type sub-element, over a width of 1 mm (in black in FIG. 4b).
  • the parameters of irradiation duration and laser power are adjusted in order to obtain localized zones where only a fraction of the thermal donors has been dissolved, making it possible to obtain an electrical isolation zone, and therefore very resistive .
  • the wafer undergoes a chemical attack type CP133 (HF, HN0 3 , CH3COOH) in order to remove any hardened surface areas resulting from the laser steps.
  • CP133 chemical attack type
  • the surfaces of the wafer are previously polished by a chemical attack type CP133.
  • a first masking step, using a metal grid placed above the substrate, is performed in accordance with the patterns, shown in Figure 5a.
  • the masked areas (12) correspond to the areas of the wafer which will remain of type p.
  • the open areas correspond to the zones (11) and (13) of the wafer intended to form the n-type zones and the electrical insulation zones.
  • This first masking step is followed by an ion implantation of hydrogen, by plasma immersion using a standard equipment, at a surface dose Dl of 4.10 9 cm -2 , which will correspond for the wafer of 200 ⁇ of thickness at a volume dose of 2.10 11 cm -3 .
  • the implantation energy of the hydrogen used for this application is close to 135 keV.
  • This first ion implantation step is then followed by a new masking step, as shown in FIG. 5b.
  • the masked areas are then the areas of the wafer (12) which will remain p-type (non-implanted areas) as well as the areas (implanted at the dose Dl) of the wafer (13) intended to form the areas of electrical insulation.
  • This second masking step is followed by a second step of ion implantation under 135 keV energy at an implantation dose D 2 of 4.10 11 cm -2 , which, in a 200 ⁇ thick wafer, corresponds to at a volume dose of 2.10 13 cm -3 .
  • the wafer is thermally annealed at a temperature in the region of 450 ° C. for a period of 3 hours, in order to transform the p-doped zones comprising hydrogen into n-doped zones, as shown schematically in FIG. 5c.
  • the wafer has an alternation of n-doped zones and p-doped zones, each of the n and p zones being separated by an electrical insulation zone (130) of high resistivity.

Abstract

La présente invention concerne une plaquette (10) de silicium monolithique, présentant, dans au moins un plan vertical de coupe, une alternance de zones (110) dopées n et de zones (120) dopées p, chacune des zones s'étendant sur toute l'épaisseur (e) de la plaquette, caractérisée en ce que : - lesdites zones dopées n (110) et dopées p (120) présentent chacune, dans le plan de coupe, une largeur (L1, L2) d'au moins 1 mm; - les zones dopées n (110) présentent une concentration en donneurs thermiques à base d'oxygène distincte de celle des zones dopées p (120); et - lesdites zones dopées n (110) et lesdites zones dopées p (120) sont séparées entre elles par des zones d'isolation électrique (130). Elle concerne encore des procédés de fabrication d'une telle plaquette.

Description

PLAQUETTE DE SILICIUM MONOLITHIQUE PRESENTANT UNE ALTERNANCE DE ZONES DOPEES N ET DE ZONES DOPEES P
La présente invention se rapporte à une nouvelle plaquette de silicium monolithique présentant, dans un plan vertical de coupe, une alternance de zones dopées n et de zones dopées p, et à différentes variantes de procédé pour sa préparation.
Une telle plaquette est particulièrement avantageuse dans le cadre de l'élaboration de cellules et modules photovoltaïques.
Actuellement, les modules photovoltaïques (PV) sont majoritairement fabriqués à partir de l'assemblage de cellules en silicium mono- ou multi-cristallin, ces cellules étant généralement réalisées à partir de plaquettes, également appelées « wafers », de conductivité électrique p.
Dans des modules PV de taille raisonnable, de l'ordre du m2, le standard de taille pour les plaquettes (156 x 156 mm) fait que les tensions de circuit ouvert (Voc en terminologie anglo-saxonne) des modules PV sont limitées à quelques dizaines de Volts.
Différentes voies ont été explorées pour tenter d'augmenter la tension Voc des modules PV.
Une première option pourrait consister à utiliser des matériaux autres que le silicium (Si) cristallin, notamment des semi-conducteurs présentant des amplitudes de bande interdite (ou « band gap » en langue anglaise) supérieures au 1, 1 eV (électron- volt) du silicium, comme par exemple un matériau de type Si amorphe sur Si cristallin, issu de la technologie dite à hétéroj onction, ou encore des matériaux du type CdTe (tellurure de cadmium). Malheureusement, l'amélioration en termes de tensions de circuit ouvert est limitée, car l'utilisation de semi-conducteurs à bande interdite trop élevée (> 2 eV) conduit à une baisse significative de la quantité de photons absorbée et à une perte en rendement de conversion énergétique.
Une autre possibilité serait de réduire la taille des cellules par rapport au standard actuel de 156 x 156 mm, ce qui permettrait, par mise en série d'un plus grand nombre de cellules formant le module, d'accroître la valeur de la tension Voc. Cependant cette solution rendrait plus délicate les opérations de manutention pour l'élaboration des modules. Par ailleurs, la nécessité de garder un espace entre cellules formant le module PV pour la connectique conduit à une perte de surface utile (i.e. permettant la photogénération de porteurs électriques). Cette perte de surface est plus importante avec la mise en œuvre d'un plus grand nombre de cellules de taille réduite. Enfin, sauf à utiliser une technologie de cellule à contacts arrière (RCC, Rear Contact Cell en terminologie anglo saxonne), cette solution pose des problèmes délicats de métallisation et de connectique.
Pour tenter de réduire cette perte de surface utile, il pourrait être envisagé de réaliser une plaquette monolithique de taille standard 156 x 156 mm, et de graver a posteriori des tranchées, par exemple par ablation laser, ce qui aurait pour effet de créer effectivement une pluralité de cellules de plus petite taille. Cependant, le traitement de gravure est susceptible de conduire à une fragilisation de la plaquette, et donc à des problèmes de tenue mécanique. Par ailleurs, le problème de l'isolation entre les sous- cellules est complexe, surtout si une résistance d'isolement importante est nécessaire pour les applications visées. Enfin, comme évoqué ci-dessus, sauf à utiliser une technologie RCC, cette solution pose des problèmes délicats de métallisation et de connectique.
Plus récemment, Pozner et al. [1] ont envisagé par modélisation la mise en série de cellules à plans de jonction p/n verticaux, à la différence de la configuration des wafers classiques où le plan de jonction est horizontal. L'intérêt de cette approche est de pouvoir envisager un traitement de type collectif, sur substrat monolithique, pour la réalisation des cellules. Toutefois, de nombreuses questions techniques restent ouvertes quant à la réalisation en pratique d'une telle structure, dont le coût risque, par ailleurs, d'être très élevé.
Gatos et al. [2] proposent de tirer parti de l'incorporation hétérogène d'oxygène au cours de la croissance d'un cristal de silicium par solidification dirigée selon le procédé Czochralski. L'origine de ces fluctuations de concentration d'oxygène est mal connue, mais ce principe est utilisé par Gatos et al. pour obtenir des structures de conductivité alternée n/p par recuit thermique.
Il est en effet connu de l'état de l'art [3] que, dans des plaquettes de silicium contenant de l'oxygène, des recuits thermiques à des températures de 400-500 °C, permettent la formation de donneurs thermiques (DT), petits agglomérats d'oxygène (typiquement formés de l'association de 3 à 20 atomes d'oxygène) qui se comportent en donneurs d'électrons dans le silicium. Ainsi, lorsque ces donneurs thermiques sont générés dans le silicium de type p, ils peuvent entraîner une compensation du matériau et son changement de conductivité. La libération d'électrons étant fonction de la concentration locale en oxygène, un recuit, par exemple à une température de 450 °C pendant 50 heures d'une plaquette découpée dans un lingot Czochralski parallèlement à la direction de solidification, permet ainsi d'obtenir des structures p/n.
Malheureusement, les fluctuations de concentration n'étant pas maîtrisées, la taille des zones n et p, typiquement de l'ordre de la centaine de microns [2], ne peut être contrôlée. Il n'est donc pas possible de définir la tension de sortie d'une telle structure, ce qui représente un obstacle majeur pour l'intégration de ces structures dans un système solaire complet. Par ailleurs, dans une configuration où les sous-cellules sont connectées en série pour obtenir des tensions élevées, il est alors impossible d'équilibrer les courants, ce qui est une limitation très forte vis-à-vis du rendement de conversion énergétique de l'ensemble.
En outre, la variation de taille entre les différentes sous-cellules sur la surface d'une plaquette ([2], figure 1) induit une complexité, d'un point de vue technologique, qui représente un inconvénient majeur pour la réalisation des cellules photovoltaïques. Enfin, il n'est pas possible, dans la structure obtenue par Gatos et al. [2], de spécifier une résistance d'isolement entre les sous-cellules. Une telle limitation est préjudiciable au rendement de conversion énergétique de la cellule photovoltaïque.
Par conséquent, il demeure un besoin de disposer de plaquettes de silicium, appropriées pour la réalisation de modules PV à haute tension de circuit ouvert et minimisant les surfaces inactives (i.e. ne permettant pas la collecte des porteurs photogénérés).
La présente invention vise précisément à proposer une nouvelle plaquette de silicium monolithique permettant de pallier les inconvénients précités, ainsi que des procédés pour accéder à une telle plaquette.
Plus précisément, la présente invention concerne, selon un premier de ses aspects, une plaquette de silicium monolithique, présentant, dans au moins un plan vertical de coupe, une alternance de zones dopées n et de zones dopées p, chacune des zones s'étendant sur toute l'épaisseur de la plaquette, caractérisée en ce que :
- lesdites zones dopées n et dopées p présentent chacune, dans le plan de coupe, une largeur (Li, L2) d'au moins 1 mm ; - les zones dopées n présentent une concentration en donneurs thermiques à base d'oxygène interstitiel (DT) distincte de celle des zones dopées p ; et
- lesdites zones dopées n et lesdites zones dopées p sont séparées entre elles par des zones d'isolation électrique.
Dans la suite du texte, et sauf indication contraire, la plaquette est caractérisée lorsqu'elle observée dans sa position horizontale. Ainsi, en particulier, la plaquette est définie comme présentant une alternance de zones dopées n et de zones dopées p s' étendant sur toute l'épaisseur de la plaquette, dans un plan vertical de coupe de la plaquette positionnée horizontalement.
On parlera indifféremment dans la suite du texte de « plaquette » ou de
« wafer ».
On désignera par la suite par « donneurs thermiques », ou plus simplement sous l'abréviation « DT », les donneurs thermiques à base d'oxygène interstitiel.
Par « zone d'isolation électrique », on entend une zone présentent une forte résistivité électrique, en particulier supérieure ou égale à 2 kQ.cm et avantageusement supérieure ou égale à 10 kQ.cm. De manière idéale, la zone d'isolation électrique peut être une zone dite intrinsèque, à savoir une zone de la plaquette dans laquelle les concentrations de porteurs de charge de type électrons et de porteurs de charge de type trous sont similaires.
Selon un autre de ses aspects, la présente invention propose des procédés permettant d'accéder, de manière aisée, à une telle plaquette, à partir d'une plaquette en silicium dopé p.
Selon un premier mode de réalisation particulier, la présente invention concerne ainsi un procédé de fabrication d'une plaquette telle que définie précédemment, comprenant au moins les étapes consistant en :
(i) disposer d'une plaquette en silicium dopé p comprenant une concentration en porteurs de charge de type trous (p0) comprise entre 1014 et 2.1016 cm"3 et une concentration en oxygène interstitiel [Oi] comprise entre 1017 et 2.1018 cm"3 ;
(ii) soumettre ladite plaquette de l'étape (i) à un traitement thermique global, propice à l'activation des donneurs thermiques à base d'oxygène interstitiel et à la conversion de l'ensemble de la plaquette en type n ; (iii) soumettre des zones de la plaquette obtenue à l'issue de l'étape (ii), dédiées à former les zones dopées p, à un traitement thermique localisé propice à l'annihilation des donneurs thermiques et à la reconversion desdites zones de type n en type p ; et
(iv) transformer, par traitement thermique, la portion de chaque zone de type n, contigue à une zone de type p, en une zone d'isolation électrique, pour obtenir la plaquette
(10) attendue.
Selon un seconde mode de réalisation particulier, la présente invention concerne un procédé de fabrication d'une plaquette telle que définie précédemment, comprenant au moins les étapes consistant en :
(a) disposer d'une plaquette en silicium dopé p comprenant une concentration en porteurs de charge de type trous (p0) comprise entre 1014 et 2.1016 cm"3 et une concentration en oxygène interstitiel [Oi] comprise entre 1017 et 2.1018 cm"3 ;
(b) doper en hydrogène les zones, dites (1 1) et (13), de la plaquette dédiées à former les zones dopées n et les zones d'isolation électrique ; et
(c) soumettre ladite plaquette de l'étape (b) à un traitement thermique global propice à l'activation des donneurs thermiques à base d'oxygène interstitiel au niveau des zones dopées en hydrogène, et à la conversion desdites zones (1 1) de type p en type n et desdites zones (13) en zones d'isolation électrique, pour obtenir la plaquette attendue.
De manière avantageuse, ces procédés permettent, via le contrôle des concentrations locales en donneurs thermiques, de maîtriser, avec précision, la taille des zones n et p formées, ainsi que la conductivité et la taille des zones d'isolation électrique.
Egalement, il est possible selon l'invention, comme développé dans la suite du texte, de réaliser des structures bidimensionnelles, par exemple avec une disposition des zones n et p alternées en damier, ce qui permet avantageusement d'accroître encore le nombre de sous-cellules en série formées sur la plaquette.
Selon encore un autre de ses aspects, la présente invention concerne un dispositif photovoltaïque, en particulier une cellule photovoltaïque, comportant une plaquette de silicium telle que définie précédemment.
Les plaquettes de silicium selon l'invention, divisées en une pluralité de sous- cellules de tailles contrôlées, permettent avantageusement de produire des modules PV présentant une tension de circuit ouvert accrue, tout en conservant une taille raisonnable standard de l'ordre du m2. D'autres caractéristiques, avantages et modes d'application des plaquettes selon l'invention et des procédés pour sa préparation, ressortiront mieux à la lecture de la description détaillée qui va suivre, des exemples de réalisation de l'invention et à l'examen des dessins annexés, sur lesquels :
- la figure 1 représente, de manière schématique, dans un plan vertical de coupe, la structure d'une plaquette de silicium selon l'invention ;
- la figure 2 représente, de manière schématique, les différentes étapes du procédé de fabrication d'une plaquette selon l'invention, selon un premier mode de réalisation ;
- la figure 3 représente, de manière schématique, les différentes étapes du procédé de fabrication d'une plaquette selon l'invention, selon un second mode de réalisation ;
- la figure 4 représente, en vue de dessus, pour le procédé de l'exemple 1, les zones (12) irradiées au laser de la plaquette lors de l'étape (iii) pour la formation des zones dopées p (figure 4a) et lors de l'étape (iv) pour la formation des zones d'isolation électrique (figure 4b) ;
- la figure 5 représente, en vue de dessus, pour le procédé de l'exemple 2, le masquage en étape (b) des zones (12) de la plaquette lors de la première étape d'implantation ionique (figure 5a) et le masquage des zones (12) et (13) lors de la seconde étape d'implantation ionique (figure 5b) ; et la répartition des zones formées à l'issue de l'étape (c) (figure 5c).
Il convient de noter que, pour des raisons de clarté, les différents éléments sur les figures sont représentés en échelle libre, les dimensions réelles des différentes parties n'étant pas respectées.
Dans la suite du texte, les expressions « compris entre ... et ... », « allant de ... à ... » et « variant de ... à ... » sont équivalentes et entendent signifier que les bornes sont incluses, sauf mention contraire.
Sauf indication contraire, l'expression « comportant/comprenant un(e) » doit être comprise comme « comportant/comprenant au moins un(e) ». PLAQUETTE
Il est fait référence, dans la description qui suit, à la figure 1 annexée.
Une plaquette selon l'invention peut présenter une épaisseur (e) allant de 100 à 500 μηι, en particulier de 150 à 300 μιη.
Elle peut présenter une longueur totale (L), allant de 10 à 30 cm, en particulier de 15 à 20 cm.
Selon un mode de réalisation particulier, une plaquette selon l'invention comporte une concentration en oxygène interstitiel comprise entre 1017 et 2.1018 cm" 3 , en particulier comprise entre 5.1017 et 1,5.1018 cm" 3. Cette concentration prend en compte la teneur en oxygène interstitiel, qui ne sont pas sous forme d'agglomérats (donneurs thermiques) dans la plaquette de silicium.
La concentration en oxygène interstitiel peut être par exemple obtenue par analyse par spectroscopie infrarouge à transformée de Fourier (en langue anglaise « Fourier Transformed InfraRed Spectroscopy » (FTIR)).
Comme décrit précédemment, une plaquette de silicium selon l'invention présente une alternance de zones dopées n (1 10) et de zones dopées p (120), séparées entre elles par des zones d'isolation électrique (130).
En particulier, les zones dopées n (110) de la plaquette peuvent présenter, indépendamment les unes des autres, une densité de porteurs de charge de type électrons allant de 1014 à 2.1016 cm"3, en particulier de 5.1014 à 5.1015 cm"3.
La concentration en porteurs de charge de type électrons peut être par exemple déterminée par mesure de l'effet Hall (qui permet de déterminer le type de dopage).
Elles peuvent présenter, indépendamment les unes des autres, une largeur (Li) dans le plan de coupe allant de 1 mm à 10 cm, en particulier de 5 mm à 5 cm.
Les zones dopées p (120) de la plaquette peuvent présenter, indépendamment les unes des autres, une densité en porteurs de charge de type trous allant de 1014 à 2.1016 cm"3, en particulier de 5.1014 à 5.1015 cm"3.
La concentration en porteurs de charge de type trous peut être par exemple déduite d'une mesure de la résistivité, par exemple par la méthode de mesure d'effet Hall.
Elles peuvent présenter, indépendamment les unes des autres, une largeur (L2) dans le plan de coupe allant de 1 mm à 10 cm, en particulier de 5 mm à 5 cm. Par l'expression « indépendamment les unes des autres », on entend signifier que la largeur peut différer d'une zone dopée n à une autre zone dopée n, ou d'une zone dopé p à une autre zone dopée p.
De manière avantageuse, ces largeurs (Li, L2) peuvent être ajustées selon les connaissances de l'homme du métier. En particulier, les matériaux de type n étant généralement moins sensibles aux impuretés métalliques que les matériaux de type p, les courants photogénérés sont généralement plus élevés dans des zones dopées n que dans des zones dopées p. Ainsi, les largeurs (Li, L2) des zones dopées p et dopées n peuvent être adaptées lors de la préparation de la plaquette, en vue notamment d'égaler au mieux ces courants dans la plaquette de silicium finale.
Les zones dopées n (110) de la plaquette selon l'invention présentent une concentration en donneurs thermiques à base d'oxygène (DT) distincte de celle des zones dopées p (120).
Comme il ressort des procédés de réalisation de la plaquette décrits ci-dessous, le contrôle de la concentration locale en DT permet d'accéder à la conductivité électrique alternée n et p de la plaquette.
Il est à noter qu'un recuit global d'une plaquette conforme à l'invention, par exemple à une température supérieure ou égale à 600 °C, notamment comprise entre 600 et 700 °C, permet la dissolution (encore appelée « annihilation ») de l'ensemble des DT et conduit à retrouver une plaquette de conductivité homogène. Cette caractéristique peut être avantageusement utilisée pour distinguer une plaquette selon l'invention, de plaquettes qui ne seraient pas obtenues par un procédé conforme à l'invention.
Les zones d'isolation électrique (130), séparant une zone dopée n (110) et une zone dopée p (120), présentent de préférence une résistivité supérieure ou égale à 2 kQ.cm, en particulier supérieure ou égale à 10 kQ.cm.
La résistivité peut être mesurée par toute méthode conventionnelle, comme par exemple, par la méthode de mesure dite des 4 pointes, ou encore par mesure de l'effet des courants de Foucault induit par un champ magnétique alternatif.
Selon un mode de réalisation particulier, chacune des zones d'isolation électrique (130) présente avantageusement une largeur (L3) dans le plan de coupe allant de 50 μπι à 5 mm, en particulier de 200 μπι à 1 mm. En effet, une zone d'isolation électrique trop longue dans la plaquette de silicium finale est susceptible de conduire à une perte de manière active et donc une baisse du rendement énergétique au niveau du module qui sera formé à partir de ces plaquettes. En revanche, une zone d'isolation électrique trop courte peut s'avérer insuffisante pour assurer une bonne isolation entre les sous-cellules (zones dopées n et zones dopées p), ce qui peut également conduire à une baisse de rendement au niveau du module résultant.
Selon un mode de réalisation particulier, les zones n et p peuvent être agencées de manière à former un motif bidimensionnel.
Par exemple, dans une vue de dessus de la plaquette, la disposition des zones n et p alternées peut former un motif de type damier. Le côté d'un carré (zones n et p) du damier peut être compris entre 1 mm et 10 cm, de préférence entre 5 mm et 5 cm. Dans le cadre de ce mode de réalisation particulier, les zones d'isolation électrique (130) forment alors le pourtour de chacune des zones n et des zones p. Cette configuration est par exemple mise en œuvre dans les exemples qui suivent.
Bien entendu, l'invention n'est nullement limitée à une telle disposition ; différentes configurations, autres qu'un motif damier, peuvent être envisagées dans le cadre de la présente invention (par exemple motifs rectangulaires, polygonaux, etc.).
FABRICATION DE LA PLAQUETTE
Comme évoqué précédemment, une plaquette (10) selon l'invention peut être élaborée, suivant différentes variantes de réalisation, à partir d'une plaquette (1) en silicium dopée p, comprenant une concentration en porteurs de charge de type trous (p0) comprise entre 1014 et 2.1016 cm"3 et une concentration en oxygène interstitiel [Oi]
17 18 3
comprise entre 10 et 2.10 cm" .
Selon un mode de réalisation particulier, la plaquette (1) en silicium dopé p présente une concentration en porteurs de charge de type trous (p0) allant de 5.1014 à 1016, en particulier de 5.1014 à 5.1015 cm"3.
Selon un mode de réalisation particulier, la plaquette (1) en silicium dopé p présente une concentration en oxygène interstitiel [Oi] allant de 5.1017 à 1,5.1018 cm"3.
De manière avantageuse, la variation relative de la concentration en oxygène interstitiel dans la plaquette en silicium (1) est inférieure à 40 %, en particulier inférieure à
20 % et de préférence inférieure à 10 %. Une telle plaquette (1) en silicium dopé p peut être par exemple obtenue par découpe d'un lingot de silicium formé, selon des techniques connues de l'homme du métier, par solidification dirigée d'un bain fondu, en particulier par la technique de refroidissement sous gradient (encore connue sous l'appellation « gradient freeze » en langue anglaise) ou par épitaxie en voie liquide ou gazeuse.
Les procédés selon l'invention, décrits ci-dessous, mettent en œuvre une ou plusieurs étapes d'activation ou d'annihilation des DT.
On entend par « activation », la formation de ces donneurs thermiques à base d'oxygène interstitiel. Ils se forment généralement lors d'un recuit à une température de 300-500 °C. Un tel recuit permet l'association d'atomes d'oxygène pour former une espèce à la stœchiométrie plus complexe qui a un comportement donneur d'électrons dans le silicium.
Les donneurs thermiques ainsi formés sont stables à température ambiante, mais un recuit à une température supérieure à 600 °C permet leur dissociation, ce qui annule les effets de l'activation thermique précédemment réalisée. On parle alors d'« annihilation » ou « dissolution » des DTs.
Les traitements d'activation/annihilation mis en œuvre selon l'invention peuvent être opérés sous air ou sous atmosphère inerte. 1er mode de réalisation
Il est fait référence dans la description qui suit de ce premier mode de réalisation, à la figure 2 annexée.
Selon cette première variante, une plaquette (10) selon l'invention peut être obtenue via un procédé comprenant au moins les étapes suivantes :
(i) disposer d'une plaquette (1) en silicium dopé p telle que décrite précédemment ;
(ii) soumettre ladite plaquette de l'étape (i) à un traitement thermique global, propice à l'activation des donneurs thermiques à base d'oxygène interstitiel et à la conversion de l'ensemble de la plaquette en type n ;
(iii) soumettre des zones (12) de la plaquette ( ) obtenue à l'issue de l'étape
(ii), dédiées à former les zones dopées p, à un traitement thermique localisé propice à l'annihilation des donneurs thermiques et à la reconversion desdites zones (12) de type n en type p ; et
(iv) transformer, par traitement thermique, la portion (13) de chaque zone de type n, contigiie à une zone de type p, en une zone d'isolation électrique (130), pour obtenir la plaquette (10) attendue.
Le traitement thermique global en étape (ii) peut être par exemple réalisé par recuit thermique de la totalité de la plaquette, par exemple dans un four.
Il appartient à l'homme du métier d'ajuster les conditions de recuit pour la conversion de l'ensemble de la plaquette (1) de départ en type n.
Le recuit peut être par exemple opéré à une température supérieure ou égale à 300 °C et strictement inférieure à 600 °C, en particulier allant de 400 à 500 °C et plus particulièrement d'environ 450 °C.
La durée du recuit thermique peut être supérieure ou égale à 30 minutes, en particulier être comprise entre 1 heure et 20 heures, notamment être d'environ 4 heures.
A l'issue de l'étape (ii), la plaquette ( ) obtenue, en silicium dopé n, peut présenter une teneur en porteurs de charge de type électrons (n0) allant de 1014 à 2.1016, en particulier de 5.1014 à 5.1015 cm"3.
De même, l'homme du métier est à même d'ajuster les conditions du traitement thermique localisé en étape (iii) propices à l'annihilation des donneurs thermiques dans les zones (12) de la plaquette dédiées à former des zones dopées p et la reconversion de ces zones de type n en type p.
Par « localisé », on entend que le traitement thermique affecte uniquement les zones déterminées (12) de la plaquette, à la différence d'un traitement thermique global qui affecte la totalité de la plaquette. Bien entendu, ces zones (12) de la plaquette soumises au traitement thermique, par exemple à l'irradiation par laser, sont déterminées au regard de l'architecture de la plaquette finale souhaitée.
Les zones (12) de la plaquette dont on souhaite qu'elles deviennent de type p peuvent être portées à une température supérieure ou égale à 600 °C, notamment allant de 600 à 1000 °C, en particulier pendant au moins 10 secondes. Il appartient à l'homme du métier de mettre en œuvre des moyens connus pour canaliser les flux de chaleur et limiter la propagation latérale de la chaleur pour garder des zones n/p bien délimitées.
Le traitement thermique localisé peut être avantageusement opéré par exposition des zones (12) à traiter à un faisceau laser, de préférence un laser à large spot si l'on souhaite irradier des zones de taille importante, par exemple avec une taille de spot de l'ordre du cm.
Le laser peut par exemple fonctionner à une longueur d'onde supérieure ou égale à 500 nm, en particulier allant de 500 nm à 1 100 nm, ce qui permet une propagation de la chaleur en profondeur dans le matériau.
L'ajustement des conditions du traitement thermique en étape (iv) pour transformer les portions (13) de chacune des zones de type n, contigues à une zone de type p, en zones d'isolation électrique, relève également des compétences de l'homme du métier.
L'étape (iv) peut être avantageusement opérée par exposition de chaque portion
(13) à un faisceau laser, en particulier de faible taille de spot, par exemple de 20 à 100 μιη de largeur.
En effet, ce traitement laser additionnel doit être plus localisé que celui mis en œuvre en étape (iii) pour atteindre la largeur (L3) des zones d'isolation électrique souhaitée, et parvenir ainsi à un bon compromis entre qualité d'isolation et limitation de la taille de la zone compensée, inactive du point de vue photovoltaïque.
Les paramètres de durée d'irradiation et de puissance laser peuvent être ajustés pour obtenir l'annihilation d'une fraction des donneurs thermiques dans les zones traitées (13) et leur conversion en des zones d'isolation électrique de forte résistivité.
Selon un mode de réalisation particulier, la plaquette peut être soumise, ultérieurement à l'étape (iv), à un traitement de surface, en particulier par attaque chimique, pour supprimer les éventuelles régions surfaciques écrouies résultant du traitement par laser.
Tout type de techniques d'attaque chimique connues peuvent être utilisées. Par exemple, l'attaque chimique peut être effectuée à l'aide d'une solution formée d'un mélange HN03, HF et CH3COOH, également connu sous le nom de CP133. 2° mode de réalisation
Il est fait référence dans la description qui suit de ce second mode de réalisation, à la figure 3 annexée.
Selon cette seconde variante, une plaquette (10) selon l'invention peut être obtenue via un procédé comprenant au moins les étapes suivantes :
(a) disposer d'une plaquette (1) en silicium dopé p telle que décrite précédemment ;
(b) doper en hydrogène les zones, dites (11) et (13), de la plaquette dédiées à former les zones dopées n et les zones d'isolation électrique ; et
(c) soumettre ladite plaquette de l'étape (b) à un traitement thermique global propice à l'activation des donneurs thermiques à base d'oxygène interstitiel au niveau des zones (1 1) et (13) dopées en hydrogène, et à la conversion desdites zones (11) de type p en type n et desdites zones (13) en zones d'isolation électrique, pour obtenir la plaquette (10) attendue.
Il appartient à l'homme du métier d'ajuster les taux de dopage en hydrogène des zones (11) et (13) en étape (b) pour obtenir la conversion souhaitée des zones en étape (c), sans affecter les zones (12) dépourvues en hydrogène et dédiées à former les zones p de la plaquette finale.
De préférence, le dopage est opéré de manière à permettre une distribution volumique uniforme de l'hydrogène dans les zones concernées et sur toute l'épaisseur de la plaquette.
Selon un mode de réalisation particulier, le dopage en étape (b) peut être opéré via une première étape (bl) d'implantation d'hydrogène à la surface ou en sub-surface des zones à doper, suivie d'une seconde étape (b2) de diffusion de l'hydrogène sur toute l'épaisseur (e) de la plaquette.
On entend par l'implantation d'hydrogène en « sub-surface », une implantation à des profondeurs allant de quelques nanomètres à quelques dizaines de nanomètres.
L'implantation de l'hydrogène peut être effectuée par des techniques classiques, par exemple par traitement plasma, notamment par dépôt chimique en phase vapeur assisté par plasma (PECVD) ou par plasma d'hydrogène distant induit par microondes (MIRHP).
Elle peut encore être opérée par une technique d'implantation ionique, notamment par une technique de type SmartCut®.
Avantageusement, pour limiter le temps de diffusion de l'hydrogène et les risques d'exo-diffusion, le traitement plasma est réalisé sur les deux faces de la plaquette.
Les zones d'implantation d'hydrogène peuvent être définies à l'aide d'un masque (par exemple, une grille métallique), laissant accessibles uniquement les surfaces des zones à doper, comme illustré dans l'exemple 2 qui suit, par exemple par PECVD.
En alternative, on peut déposer l'hydrogène de façon uniforme sur toute la surface de la plaquette, et graver le dépôt, par exemple avec de l'acide fluorhydrique (HF), dans les zones (12) dont on souhaite qu'elles restent de type p.
Le taux de dopage en hydrogène est de préférence accru au niveau des zones (11) destinées à former les zones dopées n.
Selon un mode de réalisation particulier, l'implantation d'hydrogène au niveau des zones (11) et (13) peut ainsi comprendre :
- une première étape d'implantation d'hydrogène en surface ou sub-surface des zones (11) dédiées à former les zones dopées n et des zones (13) dédiées à former les zones d'isolation électrique, en masquant les zones (12) dédiées à former les zones dopées p ; et
- une seconde étape d'implantation d'hydrogène en surface ou sub-surface des zones (11) dédiées à former les zones dopées n, en masquant les zones (12) dédiées à former les zones dopées p et les zones (13) dédiées à former les zones d'isolation électrique.
Il appartient à l'homme du métier d'ajuster les taux surfaciques d'hydrogène implanté, notamment au regard de l'épaisseur de la plaquette (1), de manière à obtenir les taux de dopage volumique souhaités, à l'issue de la diffusion de l'hydrogène sur toute l'épaisseur de la plaquette.
Par exemple, le taux de dopage volumique des zones (11) dédiées à former les zones dopées n peut être compris entre 1 et 4.1013 cm"3, Le taux de dopage volumique des zones (13) dédiées à former les zones d'isolation électrique peut être compris entre 1 et 4.1011 cm"3. La diffusion de l'hydrogène dans les zones à doper (étape (b2)) peut être par exemple opérée par exposition desdites zones aux ultrasons, en particulier à l'aide de transducteurs piézoélectriques.
Par exemple, on peut utiliser des transducteurs piézoélectriques travaillant entre 20 kHz et 1 MHz, de préférence entre 50 et 500 kHz, des déformations acoustiques induites entre 5.10"6 et 2.10"5, et des durées de traitement entre 5 et 120 minutes, préférentiellement entre 10 et 60 minutes.
En alternative, la diffusion de l'hydrogène en étape (b2) peut être opérée par recuit thermique de la plaquette, notamment dans un four, en particulier à une température allant de 400 °C à 1000 °C, et pendant une durée allant de 5 secondes à 5 heures.
De fait, le dopage par l'hydrogène va permettre d'accélérer les cinétiques d'activation des donneurs thermiques dans les zones dopées. Un traitement thermique global de la plaquette peut ainsi être opéré dans des conditions propices à l'activation privilégiée des donneurs thermiques au niveau des zones pourvues en hydrogène, et sans affecter les zones qui en sont dépourvues.
Le traitement thermique global en étape (c) peut être par exemple opéré par recuit thermique à une température supérieure ou égale à 300°C et strictement inférieure à 600 °C, en particulier de 400 à 500 °C, et plus particulièrement d'environ 450 °C.
La durée du recuit peut être supérieure ou égale à 30 minutes, en particulier être comprise entre 1 heure et 20 heures, et plus particulièrement d'environ 3 heures.
DISPOSITIFS PHOTO VOLTAIOUES
L'homme du métier est à même de mettre en œuvre les traitements adéquats classiques, pour l'élaboration d'une cellule photovoltaïque (PV), à partir d'une plaquette (10) selon l'invention, par exemple des traitements appropriés à la formation des jonctions p/n au sein des zones n ou p, ou encore à la formation des contacts assurant la mise en série des sous-cellules.
De préférence, à l'issue du procédé de fabrication de la plaquette (10) selon l'invention, on utilise une technologie basse température de type hétéroj onction (silicium amorphe sur silicium cristallin), pour la réalisation de la cellule photovoltaïque. A titre d'exemples, peuvent être opérées, à l'issue de la fabrication de la plaquette (10) selon l'une ou l'autre des variantes de procédé décrites précédemment, une ou plusieurs étapes suivantes :
- dépôt d'une première couche de silicium amorphe intrinsèque (typiquement d'une épaisseur de l'ordre de 5 nm) et d'une couche amorphe dopée p+ ou n+, sur chacune des faces de la plaquette ;
- dépôt de couches d'oxyde transparent conducteur, notamment à base d'ITO, en surface desdites couches de silicium amorphe ;
- formation d'une ou plusieurs métallisations (également appelées « contacts conducteurs ») en face avant et/ou arrière de la plaquette, notamment par sérigraphie de pâte d'argent, à basse température.
Il est cependant également possible d'élaborer une cellule photovoltaïque en utilisant la technologie classique, à haute température. Dans le cadre de la mise en œuvre d'une telle technologie, il est nécessaire de réaliser les étapes à haute température (par exemple, de diffusion gazeuse), préalablement aux traitements thermiques d'activation/annihilation des donneurs thermiques.
A titre d'exemple, dans le cadre d'une technologie haute température, peuvent être opérées, préalablement aux traitements thermiques d'activation/annihilation des DT mis en œuvre dans l'une ou l'autre des variantes de procédé de préparation de la plaquette, un ou plusieurs étapes suivantes :
- dépôt d'une ou plusieurs couches de passivation et/ou anti-reflet ;
- formation d'une ou plusieurs métallisations en face avant et/ou arrière de la plaquette, notamment par sérigraphie Ag ou Ag/Al. Une étape de recuit des métallisations est réalisée ensuite dans un four à passage à 800 °C environ, pendant quelques secondes.
Les cellules PV obtenues selon l'invention peuvent alors être assemblées pour élaborer un module photovoltaïque de taille raisonnable, classiquement de dimension de l'ordre du m2, et présentant une tension accrue par rapport aux modules élaborés à partir de cellules classiques.
Selon encore un autre de ses aspects, l'invention concerne ainsi un module photovoltaïque formé d'un ensemble de cellules photovoltaïques selon l'invention. L'invention va maintenant être décrite au moyen des exemples suivants, donnés bien entendu à titre illustratif et non limitatif de l'invention.
EXEMPLES EXEMPLE 1
(i) Plaquette de silicium dopé p
On utilise une plaquette de silicium de type p de 220 μιη d'épaisseur, obtenue par découpe d'un lingot élaboré par solidification dirigée par la technique de refroidissement sous gradient (« gradient freeze »).
Cette plaquette présente une teneur en porteurs de charge de type trous, déterminée via la mesure de la résistivité, de 5.1015 cm"3, et une concentration en oxygène interstitiel, déterminée par analyse FTIR, de 1,5.1018 cm"3.
(ii) Conversion de la plaquette en type n
La plaquette subit un recuit à 450 °C pendant 4 heures afin d'activer des donneurs thermiques. Ce recuit permet la conversion de la plaquette de type p en type n, avec une teneur en électrons, déterminée par mesure de l'effet Hall, de 2.1015 cm"3.
(iii) Traitement thermique localisé
La plaquette est ensuite positionnée sous un faisceau laser, mis en forme selon le motif représenté en figure 4a. Les zones non irradiées sont celles que l'on veut conserver de type n, et les zones irradiées (12) sont les zones que l'on souhaite refaire basculer de type p. Les motifs sont de dimension 4x4 cm2.
Le faisceau laser utilise une longueur d'onde dans le rouge/infrarouge, afin d'apporter de la chaleur en profondeur. La puissance laser est réglée dans le but d'élever la température du substrat au moins à 600°C, afin de dissoudre la majorité des donneurs thermiques en présence et reconvertir la zone en type p, tout en limitant autant que possible la dégradation de la surface de l'échantillon.
Une puissance de 30 W pour un diamètre de faisceau de 100 μπι constitue un bon exemple de point de fonctionnement, avec un balayage de zone.
La durée du traitement laser est réglée de manière à permettre la montée en température de toutes les zones irradiées au-delà du seuil de 600 °C pendant au moins 10 secondes, tout en limitant la diffusion latérale de chaleur, afin d'obtenir une mosaïque de types aussi nette que possible.
(iv) Formation des zones d'isolation électrique
La plaquette subit une deuxième étape laser, visant à l'élaboration de zones très résistives entre les différentes régions de types opposés. Dans ce but, le faisceau est balayé sur le pourtour (13) de chaque sous élément de type n, sur une largeur de 1 mm (en noir sur la figure 4b).
Les paramètres de durée d'irradiation et de puissance laser sont ajustés dans le but d'obtenir des zones localisées où seule une fraction des donneurs thermiques a été dissoute, permettant l'obtention d'une zone d'isolation électrique, et donc très résistive.
Enfin, la plaquette subit une attaque chimique type CP133 (HF, HN03, CH3COOH) afin de supprimer les éventuelles zones surfaciques écrouies, résultant des étapes laser.
EXEMPLE 2
(a) Plaquette de silicium dopé p
On utilise une plaquette de silicium de type p de 200 μπι d'épaisseur, avec une teneur en porteurs trous de 1015 cm"3, et une concentration en oxygène de 7.1017 cm"3.
Les surfaces de la plaquette sont préalablement polies par une attaque chimique type CP133.
(b) Dopage en hydrogène
Implantation ionique d'hydrogène
• Une première étape de masquage, à l'aide d'une grille métallique posée au dessus du substrat, est effectuée conformément aux motifs, présentés sur la figure 5a. Les zones masquées (12) correspondent aux zones de la plaquette qui resteront de type p. Les zones découvertes correspondent aux zones (11) et (13) de la plaquette destinées à former les zones de type n et les zones d'isolation électrique.
Les motifs sont de dimension 4x4 cm2. Cette première étape de masquage est suivie d'une implantation ionique d'hydrogène, par immersion plasma à l'aide d'un équipement standard, à une dose surfacique Dl de 4.109 cm"2, ce qui correspondra pour la plaquette de 200 μιη d'épaisseur à une dose volumique de 2.1011 cm"3. L'énergie d'implantation de l'hydrogène utilisée pour cette application est voisine de 135 keV.
• Cette première étape d'implantation ionique est ensuite suivie d'une nouvelle étape de masquage, comme représenté en figure 5b. Les zones masquées sont alors les zones de la plaquette (12) qui resteront de type p (zones non implantées) ainsi que les zones (implantées à la dose Dl) de la plaquette (13) destinées à former les zones d'isolation électrique. Cette seconde étape de masquage est suivie d'une seconde étape d'implantation ionique sous l'énergie 135 keV à une dose d'implantation D2 de 4.1011 cm"2, ce qui, dans une plaquette de 200 μπι d'épaisseur, correspondra à une dose volumique de 2.1013 cm"3. Diffusion de l'hydrogène
Les masques sont ensuite enlevés, et la plaquette subit un recuit thermique en four à une température de 700 °C pendant 10 minutes, pour permettre à l'hydrogène issu des couches implantées de se répartir de façon homogène sur l'épaisseur de la plaquette. (c) Traitement thermique global
La plaquette subit un recuit thermique à une température voisine de 450 °C pendant une durée de 3 heures, afin de transformer les zones dopées p comprenant l'hydrogène en zones dopées n, comme représenté schématiquement en figure 5c.
A l'issue du traitement thermique, la plaquette présentent une alternance de zones dopées n et de zones dopées p, chacune des zones n et p étant séparées par une zone d'isolation électrique (130) de résistivité élevée. Références :
[1] Pozner et al, Progress in Photovoltaics 20 (2012), 197 ;
[2] US 4,320,247 ;
[3] Wijaranakula, Appl. Phys. Lett. 59 (1991), 1608.

Claims

REVENDICATIONS
1. Plaquette de silicium (10) monolithique, présentant, dans au moins un plan vertical de coupe, une alternance de zones (1 10) dopées n et de zones (120) dopées p, chacune des zones s'étendant sur toute l'épaisseur (e) de la plaquette, caractérisée en ce que :
- lesdites zones (1 10) et (120) présentent chacune, dans le plan de coupe, une largeur (Li, L2) d'au moins 1 mm ;
- les zones dopées n (1 10) présentent une concentration en donneurs thermiques à base d'oxygène interstitiel distincte de celle des zones dopées p (120) ; et
- lesdites zones dopées n (110) et lesdites zones dopées p (120) sont séparées entre elles par des zones d'isolation électrique (130).
2. Plaquette selon la revendication 1, ladite plaquette comprenant une concentration en oxygène interstitiel comprise entre 1017 et 2.1018 cm"3, en particulier comprise entre 5.10 17 et 1,5.1018 cm" 3,
3. Plaquette selon la revendication 1 ou 2, dans laquelle lesdites zones dopées n (110) présentent, indépendamment les unes des autres, une largeur (Li) allant de 1 mm à 10 cm, en particulier de 5 mm à 5 cm.
4. Plaquette selon l'une quelconque des revendications précédentes, dans laquelle lesdites zones dopées p (120) présentent, indépendamment les unes des autres, une largeur (L2) allant de 1 mm à 10 cm, en particulier de 5 mm à 5 cm.
5. Plaquette selon l'une quelconque des revendications précédentes, dans laquelle chacune desdites zones d'isolation électrique (130) présente une largeur (L3) allant de 50 μπι à 5 mm, en particulier de 200 μπι à 1 mm.
6. Plaquette selon l'une quelconque des revendications précédentes, dans laquelle la disposition desdites zones n et p alternées forme un motif bidimensionnel, en particulier de type damier, avec le côté d'un carré étant plus particulièrement compris entre 1 mm et 10 cm, lesdites zones d'isolation électrique formant un pourtour de chacune des zones n et p.
7. Procédé de fabrication d'une plaquette (10) selon l'une quelconque des revendications 1 à 6, comprenant au moins les étapes consistant en : (i) disposer d'une plaquette (1) en silicium dopé p comprenant une concentration en porteurs de charge de type trous (p0) comprise entre 1014 et 2.1016 cm"3 et une concentration en oxygène interstitiel [Oi] comprise entre 1017 et 2.1018 cm"3 ;
(ii) soumettre ladite plaquette de l'étape (i) à un traitement thermique global, propice à l'activation des donneurs thermiques à base d'oxygène interstitiel et à la conversion de l'ensemble de la plaquette en type n ;
(iii) soumettre des zones (12) de la plaquette ( ) obtenue à l'issue de l'étape (ii), dédiées à former les zones dopées p, à un traitement thermique localisé propice à l'annihilation des donneurs thermiques et à la reconversion desdites zones (12) de type n en type p ; et
(iv) transformer, par traitement thermique, la portion (13) de chaque zone de type n, contigiie à une zone de type p, en une zone d'isolation électrique (130), pour obtenir la plaquette (10) attendue.
8. Procédé selon la revendication 7, dans lequel ledit traitement thermique en étape (ii) est opéré par recuit à une température supérieure ou égale à 300°C et strictement inférieure à 600 °C, en particulier allant de 400 à 500°C et plus particulièrement d'environ 450 °C.
9. Procédé selon la revendication 7 ou 8, dans lequel lesdites zones (12) dédiées à former des zones dopées p sont portées en étape (iii) à une température supérieure ou égale à 600°C, notamment allant de 600 à 1000 °C, en particulier pendant au moins 10 secondes.
10. Procédé selon l'une quelconque des revendications 7 à 9, dans lequel ledit traitement thermique localisé en étape (iii) est opéré par exposition desdites zones (12) à un faisceau laser, en particulier avec une taille de spot de l'ordre du cm.
1 1. Procédé selon l'une quelconque des revendications 7 à 10, dans lequel l'étape (iv) est opérée par exposition de chaque portion (13) à un faisceau laser, en particulier de taille de spot allant de 20 à 100 μιη.
12. Procédé de fabrication d'une plaquette (10) selon l'une quelconque des revendications 1 à 6, comprenant au moins les étapes consistant en :
(a) disposer d'une plaquette (1) en silicium dopé p comprenant une concentration en porteurs de charge de type trous (p0) comprise entre 1014 et 2.1016 cm"3 et une concentration en oxygène interstitiel [Oi] comprise entre 1017 et 2.1018 cm"3 ; (b) doper en hydrogène les zones, dites (11) et (13), de la plaquette dédiées à former les zones dopées n et les zones d'isolation électrique ; et
(c) soumettre ladite plaquette de l'étape (b) à un traitement thermique global, propice à l'activation des donneurs thermiques à base d'oxygène interstitiel au niveau des zones dopées en hydrogène, et à la conversion desdites zones (11) de type p en type n et desdites zones (13) en zones d'isolation électrique, pour obtenir la plaquette (10) attendue.
13. Procédé selon la revendication 12, dans lequel le dopage en étape (b) comprend une étape (bl) d'implantation d'hydrogène à la surface ou en sub-surface des zones à doper, suivie d'une étape (b2) de diffusion de l'hydrogène sur toute l'épaisseur (e) de la plaquette.
14. Procédé selon la revendication précédente, dans lequel l'implantation d'hydrogène en étape (bl) est effectuée par traitement plasma, en particulier par dépôt chimique en phase vapeur assisté par plasma, par plasma d'hydrogène distant induit par micro-ondes, ou par une technique d'implantation ionique.
15. Procédé selon la revendication 13 ou 14, dans lequel l'étape (b2) de diffusion de l'hydrogène dans les zones à doper est opérée par exposition desdites zones aux ultrasons, en particulier à l'aide de transducteurs piézoélectriques ; ou par recuit thermique de la plaquette, en particulier à une température allant de 400 °C à 1000 °C et pendant une durée allant de 5 secondes à 5 heures.
16. Procédé selon l'une quelconque des revendications 12 à 15, dans lequel l'étape (c) est opérée par recuit à une température supérieure ou égale à 300 °C et strictement inférieure à 600 °C, en particulier de 400 à 500 °C et plus particulièrement d'environ 450 °C.
17. Dispositif photovoltaïque, en particulier cellule photovoltaïque, comportant une plaquette de silicium telle que définie selon l'une quelconque des revendications 1 à 6.
PCT/IB2014/059497 2013-03-08 2014-03-06 Plaquette de silicium monolithique presentant une alternance de zones dopees n et de zones dopees p WO2014136082A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480024908.4A CN105190863A (zh) 2013-03-08 2014-03-06 具有交替的n掺杂区域和p掺杂区域的单片硅晶圆
EP14713263.3A EP2965362A1 (fr) 2013-03-08 2014-03-06 Plaquette de silicium monolithique presentant une alternance de zones dopees n et de zones dopees p

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1352096 2013-03-08
FR1352096A FR3003089B1 (fr) 2013-03-08 2013-03-08 Plaquette de silicium monolithique a multi-jonctions p/n verticales.

Publications (1)

Publication Number Publication Date
WO2014136082A1 true WO2014136082A1 (fr) 2014-09-12

Family

ID=48521276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/059497 WO2014136082A1 (fr) 2013-03-08 2014-03-06 Plaquette de silicium monolithique presentant une alternance de zones dopees n et de zones dopees p

Country Status (4)

Country Link
EP (1) EP2965362A1 (fr)
CN (1) CN105190863A (fr)
FR (1) FR3003089B1 (fr)
WO (1) WO2014136082A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030888A1 (fr) * 2014-12-22 2016-06-24 Commissariat Energie Atomique Plaquette de silicium monolithique type p/type n

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473490A (zh) * 2018-11-08 2019-03-15 天津理工大学 一种垂直多结结构二硫化钼太阳能电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110122A (en) * 1976-05-26 1978-08-29 Massachusetts Institute Of Technology High-intensity, solid-state-solar cell device
US4320247A (en) 1980-08-06 1982-03-16 Massachusetts Institute Of Technology Solar cell having multiple p-n junctions and process for producing same
US20100258172A1 (en) * 2003-04-14 2010-10-14 S'tile Semiconductor structure
US20120049242A1 (en) * 2009-04-21 2012-03-01 The Silanna Group Pty Ltd Optoelectronic device with lateral pin or pin junction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110122A (en) * 1976-05-26 1978-08-29 Massachusetts Institute Of Technology High-intensity, solid-state-solar cell device
US4320247A (en) 1980-08-06 1982-03-16 Massachusetts Institute Of Technology Solar cell having multiple p-n junctions and process for producing same
US20100258172A1 (en) * 2003-04-14 2010-10-14 S'tile Semiconductor structure
US20120049242A1 (en) * 2009-04-21 2012-03-01 The Silanna Group Pty Ltd Optoelectronic device with lateral pin or pin junction

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUANG Y ET AL: "Hydrogen diffusion at moderate temperatures in p-type Czochralski silicon", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 96, no. 12, 1 January 2004 (2004-01-01), pages 7080 - 7086, XP012068421, ISSN: 0021-8979, DOI: 10.1063/1.1812379 *
JOB R ET AL: "Electronic device fabrication by simple hydrogen enhanced thermal donor formation processes in p-type Cz-silicon", MATERIALS SCIENCE AND ENGINEERING B, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 73, no. 1-3, 1 April 2000 (2000-04-01), pages 197 - 202, XP004192047, ISSN: 0921-5107, DOI: 10.1016/S0921-5107(99)00463-8 *
POZNER ET AL., PROGRESS IN PHOTOVOLTAICS, vol. 20, 2012, pages 197
WIJARANAKULA, APPL. PHYS. LETT., vol. 59, 1991, pages 1608

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3030888A1 (fr) * 2014-12-22 2016-06-24 Commissariat Energie Atomique Plaquette de silicium monolithique type p/type n
EP3038165A1 (fr) * 2014-12-22 2016-06-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Plaquette de silicium monolithique type p/type n

Also Published As

Publication number Publication date
CN105190863A (zh) 2015-12-23
EP2965362A1 (fr) 2016-01-13
FR3003089A1 (fr) 2014-09-12
FR3003089B1 (fr) 2015-04-10

Similar Documents

Publication Publication Date Title
EP2724385B1 (fr) Procede de traitement d'une cellule photovoltaïque a heterojonction
US7842585B2 (en) Method to form a photovoltaic cell comprising a thin lamina
EP2172981B1 (fr) Cellule photovoltaïque à hétérojonction à deux dopages et procédé de fabrication
WO1996002948A1 (fr) Procede de fabrication d'un materiau ou dispositif photovoltaique, materiau ou dispositif ainsi obtenu et photopile comprenant un tel materiau ou dispositif
JPH1093122A (ja) 薄膜太陽電池の製造方法
TW201349547A (zh) 具選擇性射極的太陽能電池製作方法
KR20130073350A (ko) 태양 전지의 제조 방법
CN112054086A (zh) 一种具有横向结硅基光电探测器的制备方法
WO2014136082A1 (fr) Plaquette de silicium monolithique presentant une alternance de zones dopees n et de zones dopees p
EP2965350A1 (fr) Substrat semi-conducteur monolithique à base de silicium, divisé en sous-cellules
KR20090085391A (ko) 실리콘 태양전지
EP2801118B1 (fr) Procédé de fabrication d'une cellule photovoltaïque
EP3347921A1 (fr) Procédé de fabrication d'un dispositif à jonction électronique et dispositif associé
EP3841618B1 (fr) Realisation de zones dopees n+ et n++ pour cellule solaire
EP3660928B1 (fr) Procédé de fabrication de cellules photovoltaiques
EP3242335B1 (fr) Procédé de fabrication d'une cellule photovoltaïque à hétérojonction
Neitzert et al. In-Situ Characterization of the Proton Irradiation Induced Degradation of Thin Film Liquid Phase Crystallized Silicon on Glass Based Heterojunction Solar Cells with Interdigitated Back Contacts
WO2015063689A1 (fr) Substrat composite a base de silicium presentant des zones actives separees par des zones d'isolation electrique comportant un feuillard en carbure de silicium
WO2010112782A2 (fr) Structure electronique a couche epitaxiee sur silicium fritte
FR3136112A3 (fr) cellule solaire et procédé de production de celle–ci, module photovoltaïque
FR2507822A1 (fr) Procede de fabrication de cellules solaires et cellules solaires correspondantes
EP3038165A1 (fr) Plaquette de silicium monolithique type p/type n
WO2015063688A1 (fr) Substrat composite a base de silicium presentant des zones actives separees par des zones d'isolation electrique a base d'oxyde de silicium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024908.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14713263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014713263

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE