WO2014134898A1 - 一种触摸屏的三维操作控制方法、装置及其移动终端 - Google Patents

一种触摸屏的三维操作控制方法、装置及其移动终端 Download PDF

Info

Publication number
WO2014134898A1
WO2014134898A1 PCT/CN2013/080176 CN2013080176W WO2014134898A1 WO 2014134898 A1 WO2014134898 A1 WO 2014134898A1 CN 2013080176 W CN2013080176 W CN 2013080176W WO 2014134898 A1 WO2014134898 A1 WO 2014134898A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch screen
axis
capacitance value
collection point
electrode
Prior art date
Application number
PCT/CN2013/080176
Other languages
English (en)
French (fr)
Inventor
魏金平
郭延顺
Original Assignee
惠州Tcl移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州Tcl移动通信有限公司 filed Critical 惠州Tcl移动通信有限公司
Priority to EP13877238.9A priority Critical patent/EP2966555B1/en
Priority to US14/403,290 priority patent/US9250741B2/en
Publication of WO2014134898A1 publication Critical patent/WO2014134898A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/041012.5D-digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface and also measures the distance of the input means within a short range in the Z direction, possibly with a separate measurement setup
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04108Touchless 2D- digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface without distance measurement in the Z direction

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a three-dimensional operation control method and apparatus for a touch screen, and a mobile terminal thereof.
  • touch-type mobile terminals have been used by more and more users.
  • the operation of the touch-type mobile terminal is implemented on a two-dimensional plane, that is, by touching different positions of the touch screen surface of the mobile terminal.
  • the existing touch screen manipulation mode can only achieve related operations when the user is touched to a certain position, so that the operation of the user is limited.
  • gesture-based gesture recognition captures the gesture image through the camera device, and through the image analysis processing, the gesture is recognized according to the existing gesture model. This gesture recognition is highly disrupted by environmental factors.
  • Sensor-based gesture recognition usually acquires acceleration information and uses acceleration information for gesture recognition. However, it is necessary to additionally set the sensor on the mobile terminal.
  • the technical problem to be solved by the present invention is to provide a three-dimensional operation control method and device for a touch screen and a mobile terminal thereof, which can recognize the three-dimensional gesture, enrich the operation of the mobile terminal, and do not need to additionally set the sensor.
  • a technical solution adopted by the present invention is: Providing a three-dimensional operation control method for a touch screen, such that an axis along a first direction is an X axis, a Y axis is perpendicular to an X axis, and a Z axis is perpendicular to X at the same time.
  • the C A is a capacitance value formed by a first type of triangular electrode in the area of the touch screen detected by the A channel detected by the A channel in the touch screen
  • the C B is the collection point detected by the B channel in the touch screen.
  • the G being a capacitance value formed by an electrode detected by one of the channels to be projected into a region of the touch screen
  • the K being The collection point is projected to a position coordinate defined by one of the electrodes in the area of the touch screen in the Y-axis direction, and each channel of the touch screen is respectively connected to a corresponding electrode, and can detect the formation of the corresponding electrode Capacitance value
  • the A channel refers to all channels connected to the first type of triangular electrode in the touch screen
  • the B channel refers to all channels connected to the second triangular electrode in the touch screen
  • A is the collection point
  • the area which is the dielectric constant
  • ⁇ C i3 ⁇ 4 is the capacitance change value between the capacitance value of the collection point and the initial capacitance value of the projection area, and the initial capacitance of the projection area
  • the value is a capacitance value of the electrode in the projection area when no finger and no conductor
  • the step of determining the gesture trajectory according to the three-dimensional coordinates of the at least two collection points and performing the corresponding operation comprises: respectively comparing the size of the X coordinate of the at least two collection points, the size of the ⁇ coordinate, and ⁇ The size of the coordinates, the gesture track is determined according to the comparison result, and the corresponding operation is performed.
  • the maximum sensing height of the touch screen surface in the touch screen sensing space is 50 mm.
  • the present invention adopts another technical solution to provide: a three-dimensional operation control device for a touch screen, which sets an axis along a first direction of the touch screen to an X axis, and a vertical axis of the same axis as the X axis and the x axis
  • the device includes a capacitor collection module, a calculation module, and a processing module.
  • the capacitor collection module is configured to collect at least two of the motion trajectories formed by the finger or the conductor in the touch screen sensing space.
  • the calculating module is configured to calculate, according to the capacitance value of the collection point, the collection point on the X axis and the ⁇ axis And coordinates of the x-axis, thereby obtaining three-dimensional coordinates of the collection point, and transmitting the three-dimensional coordinates of the collection point to the processing module
  • the processing module is configured to three-dimensional coordinates of at least two collection points, determining the gesture trajectory, and performs a corresponding operation.
  • the initial capacitance value is the capacitance value of the electrode projected into the area of the touch screen when no finger or conductor is in proximity.
  • the capacitance value formed by the two triangular electrodes wherein the G is a capacitance value formed by an electrode of one of the channels detected by the collection point projected into the area of the touch screen, and the K is a projection of the collection point onto the touch screen.
  • each channel of the touch screen being respectively connected to a corresponding electrode, and capable of detecting a capacitance value formed by the corresponding electrode, the A channel finger All channels connected to the first type of triangular electrode in the touch screen, which refers to all channels connected to the second triangular electrode in the touch screen.
  • the processing module is specifically configured to compare the size of the X coordinate, the size of the Y coordinate, and the size of the Z coordinate of the at least two collection points, determine the gesture track according to the comparison result, and perform a corresponding operation.
  • a mobile terminal comprising a three-dimensional operation control device and a capacitive touch screen, and setting an axis along a first direction of the capacitive touch screen to an X axis, a Y axis
  • the vertical axis is perpendicular to the X axis and the Z axis is perpendicular to the X axis and the Y axis.
  • the three-dimensional operation control device includes a capacitance collection module, a calculation module, and a processing module.
  • the capacitance collection module is configured to collect a finger or a conductor in a touch screen sensing space.
  • the capacitance value of at least two of the collected trajectories is sent to the calculation module, wherein the area projected by the collection point to the touch screen intersects at least two electrodes, and the capacitance value of the collection point a capacitance value of the capacitance formed by the finger or the conductor and the at least two electrodes in the projection area when the finger or the conductor approaches the touch screen;
  • the calculation module is configured to separately calculate the capacitance value according to the collection point Obtaining coordinates of the collection point on the X axis, the ⁇ axis, and the Z axis, thereby obtaining three-dimensional coordinates of the collection point, and collecting the
  • the three-dimensional coordinates of the point are sent to the processing module; the processing module is configured to use the three-dimensional coordinates of the at least two collection points,
  • the gesture track is determined and a corresponding operation is performed.
  • the initial capacitance value is the capacitance value of the electrode projected into the area of the touch screen when no finger and no conductor are in proximity.
  • the capacitance value formed by the first triangular electrode in the area of the touch screen is detected by the sampling point detected by the channel, and the second point in the area of the touch screen is detected by the collection point detected by the B channel in the touch screen.
  • a capacitance value formed by the triangular electrode wherein the capacitance value formed by the electrode detected by the one of the channels is projected to the electrode in the area of the touch screen, and the ⁇ is the area where the collection point is projected onto the touch screen.
  • each channel of the touch screen is respectively connected to a corresponding electrode, and can detect a capacitance value formed by the corresponding electrode, and the channel refers to Is all channels connected to the first type of triangular electrode in the touch screen, which refers to all channels connected to the second triangular electrode in the touch screen.
  • the processing module is specifically configured to compare the size of the coordinates of the at least two collection points on the X axis, the size of the coordinates on the Y axis, and the size of the coordinates on the Z axis, respectively, and determine the gesture track according to the comparison result. , and perform the appropriate action.
  • the maximum sensing height of the touch screen surface in the touch screen sensing space is 50 mm.
  • the present invention has the following advantages: The present invention obtains the gesture by acquiring the capacitance values of at least two collection points of the gesture track and calculating the capacitance values of the at least two collection points according to the prior art. The three-dimensional coordinates of the at least two collection points of the trajectory, thereby determining the gesture trajectory, to realize the recognition of the three-dimensional gesture, and implementing different operations according to different gestures, and enriching the operation of the mobile terminal. At the same time, the invention realizes the determination of the three-dimensional gesture through the capacitance value that can be obtained by the touch screen, and does not need to separately set the sensor, and also avoids interference by environmental factors.
  • FIG. 1 is a flow chart of an embodiment of a three-dimensional operation control method of a touch screen of the present invention
  • FIG. 2 is a schematic structural view of a capacitive touch screen
  • FIG. 3 is a schematic cross-sectional view of a finger performing a gesture operation
  • FIG. 4 is a schematic plan view showing a region in which a finger is projected on a touch screen at a certain moment in a gesture operation
  • FIG. 5 is a top plan view of a mobile terminal in an embodiment of a method for controlling a three-dimensional operation of a touch screen according to the present invention
  • FIG. 6 is a flow chart of another embodiment of a three-dimensional operation control method of the touch screen of the present invention.
  • FIG. 7 is a schematic diagram showing a change in capacitance generated when a finger is vertically displaced from the surface of the touch screen
  • FIG. 8 is a schematic structural view of an embodiment of a three-dimensional operation control device for a touch screen of the present invention.
  • FIG. 1 is a flow chart of an embodiment of a three-dimensional operation control method for a touch screen of the present invention.
  • the method of this embodiment includes the following steps:
  • Step S101 The mobile terminal collects a capacitance value of at least two of the motion trajectories formed by the finger in the touch screen sensing space, where the area projected by the collection point to the touch screen intersects at least two electrodes, the collection point
  • the capacitance value is for convenience of explanation when the finger or the conductor approaches the touch screen, and the entire embodiment performs a gesture operation with the finger as an object.
  • FIG. 2 is a schematic structural diagram of a capacitive touch screen.
  • the capacitive touch screen of the prior art includes a surface glass 211 and a sensing layer 212 disposed above and below, and a control chip 213.
  • the sensing layer 212 is composed of a plurality of electrodes (not shown), and the electrodes of the sensing layer 212 are electrically connected to the control chip 213, respectively.
  • the control chip 2113 acquires the capacitance value of the electrode whose capacitance value changes and performs corresponding processing.
  • FIG. 3 is a schematic cross-sectional view of a finger performing a gesture operation
  • FIG. 4 is a schematic plan view of a three-dimensional operation control method of the touch screen.
  • the mobile terminal is provided with a driving pulse signal, and the electrode in the sensing layer 312
  • the capacitance of the 3120 is monitored in real time.
  • each moment of the finger causes a change in the capacitance of the electrode 3120 in the corresponding region of the sensing layer 312 of the touch screen 310.
  • the mobile terminal When the mobile terminal detects that the capacitance value of the electrode 3120 in the sensing layer 312 changes, the user is considered to perform a gesture operation, and the finger position of at least two moments in the gesture track 320 is determined as the collection point 321 .
  • the finger approaches or touches the touch screen 310, since the finger has a certain area, the finger causes the capacitance of the at least two electrodes 3120 in the sensing layer 312 to change, that is, the collection point 321 is projected onto the area 322 of the touch screen 310. At least intersecting the two electrodes 3120 in the sensing layer 312.
  • the mobile terminal acquires the capacitance value of the capacitance formed by the electrode 3120 that is determined by the at least two collection points 321 respectively projected in the area 322 of the touch screen 310 as the electricity valley of the collection point 321 .
  • the mobile terminal determines the collection point and acquires the capacitance of the collection point by means of real-time scanning. That is, when the finger performs the gesture operation, the mobile terminal determines the finger at the current moment on the hand trajectory as the collection point according to the preset acquisition frequency, and acquires the capacitance value generated by the electrode of the collection point in the region projected on the touch screen in real time.
  • the mobile terminal does not have to be acquired only by real-time scanning.
  • the mobile terminal can also acquire the capacitance value of the collection point at all times when the finger performs the gesture operation, and record, and then select according to preset regulations.
  • the capacitance of at least two collection points for example, the capacitance value of the selection starting point and the end point, is not limited herein.
  • the sensing space of the touch screen of the mobile terminal is an area where the touch screen can sense the finger.
  • the capacitance value of the local electrode of the sensing layer in the touch screen changes due to the presence of the finger.
  • the maximum sensing height of the sensing space that is, under the premise of causing a change in the capacitance of the touch screen, the maximum height of the finger perpendicular to the touch screen is 50 mm. It can be understood that the maximum sensing height of the sensing space of the present invention is not limited to 50 mm.
  • the maximum sensing height of the sensing space can be a larger value, which is not limited herein.
  • the mobile terminal acquires at least two acquisition points of the gesture track to implement determination of the gesture track.
  • the number of acquisition points acquired by the mobile terminal can be set to a fixed value by the user in advance or directly to the system default value.
  • the number of collection points is not only a fixed value. In other application implementations, the number of collection points can also be set to any value greater than 2, and the mobile terminal selects different collection points according to different situations. Further, the mobile terminal does not have to acquire at least two collection points.
  • the mobile terminal may acquire only one collection point, and determine the three-dimensional coordinates of the collection point, and then according to the collection. The position of the point performs the corresponding operation.
  • Step S102 The mobile terminal separately calculates coordinates of the collection point on the X axis, the Y axis, and the Z axis according to the capacitance value of the collection point, thereby obtaining three-dimensional coordinates of the collection point.
  • FIG. 5 is a schematic top view of a mobile terminal in an embodiment of a three-dimensional operation control method for a touch screen according to the present invention.
  • the axis along the first direction of the touch screen 510 of the mobile terminal is the X axis 511
  • the Y axis 512 is perpendicular to the X axis 511
  • the plane formed by the X axis is parallel to the touch screen 510
  • the Z axis 513 is perpendicular to the X axis 511 and the Y axis simultaneously.
  • the setting of the three-dimensional coordinates of the mobile terminal is not limited to the above-mentioned manner. In a specific application, the three-dimensional coordinates may be set according to actual conditions, which is not limited herein.
  • each collection point on the gesture track causes a change in the capacitance value of the electrode projected in the area in the touch screen.
  • the change value of the capacitance value of the electrode of the area where the collection point is projected in the touch screen is related to the distance between the collection point and the touch screen, that is, the farther the distance between the collection point and the touch screen is, the capacitance of the electrode of the area where the collection point is projected in the touch screen.
  • the value of the change in value is smaller.
  • the mobile terminal obtains, in advance, the relationship between the distance between the collection point and the touch screen and the change value of the capacitance value of the electrode of the area where the collection point is projected on the touch screen, and the algorithm of the coordinate on the X and Y axes of the touch screen, according to the acquired capacitance value of the collection point, Calculate the coordinates of the acquisition point on the X, ⁇ , and ⁇ axes, that is, obtain the three-dimensional coordinates of the collection point.
  • the coordinates of the touch screen X and the axis of the mobile terminal are set to have a certain relationship with the capacitance values of the electrodes at the corresponding positions, and therefore, may vary according to the capacitance in the touch screen.
  • Data the coordinates corresponding to each acquisition point in the direction of the X-axis and the ⁇ -axis are obtained.
  • the electrode settings corresponding to different sensing layers, such as different electrode shapes the relationship between the coordinates on the touch screen X and the x-axis and the capacitance values of the electrodes at the corresponding positions are different, that is, the coordinates on the touch screen X and the x-axis.
  • the algorithm is different, but the algorithm must be based on the capacitance value of the electrode corresponding to the coordinate.
  • Step S103 The mobile terminal determines the gesture track according to the three-dimensional coordinates of the at least two collection points, and performs a corresponding operation.
  • the mobile terminal presets different gesture trajectories to perform different operations.
  • the mobile terminal acquires the three-dimensional coordinates of the collection point, the size of the X coordinate of the collection point, the size of the ⁇ coordinate, and the size of the ⁇ coordinate are respectively compared, and the gesture trajectory is determined according to the comparison result, and corresponding to the determined gesture trajectory. Perform different operations. If the determined gesture track is not a preset gesture track, the mobile terminal does not perform any operation.
  • the mobile terminal is set to perform an increase in volume when the gesture is up and to the right, and to decrease the volume when the gesture is to move downward and to the left.
  • the mobile terminal acquires the capacitance of two collection points Value, and determine the three-dimensional coordinates of the two collection points, wherein the first collection point is (XI, Yl, Z1), the second collection point is (X2, Y2, Z2), and the time at which the mobile terminal collects the first collection point It is earlier than the time of collecting the second collection point.
  • the mobile terminal compares the three-dimensional coordinates of the two collection points. If X1>X2, Z1>Z2, the gesture track is judged to be the finger up and to the right, and the volume is raised.
  • the gesture track is that the finger moves downward and to the left, and the volume is lowered. If the comparison of the three-dimensional coordinates is not the above two cases, the mobile terminal does not perform the operation.
  • the mobile terminal may set the operation corresponding to different gestures by default, or may provide the setting interface for the user to set.
  • the mobile terminal saves the information set by the user for performing the corresponding operation according to the saved information after determining the gesture track.
  • the operation performed by the mobile terminal according to the gesture trajectory may be any operation that can be performed by the mobile terminal, such as image rotation, image zooming, volume adjustment, or adjusting the focus during photographing, and the like, which is not limited herein.
  • FIG. 6 is a flow chart showing another embodiment of a three-dimensional operation control method of the touch screen of the present invention.
  • the method in this embodiment includes the following steps:
  • Step S601 The mobile terminal collects capacitance values of at least two of the motion trajectories formed by the finger in the touch screen sensing space.
  • the mobile terminal detects that the presence capacitance value of the touch screen changes, and the mobile terminal considers that the user performs a gesture operation, and collects a motion track formed by the finger or the conductor in the touch screen sensing space.
  • the area where the collection point is projected onto the touch screen intersects at least two electrodes, and the capacitance value of the collection point is that the finger or the conductor is adjacent to the touch screen and the at least two electrodes in the projection area are respectively The capacitance of the formed capacitor.
  • the sensing space of the touch screen of the mobile terminal is the area where the touch screen can sense the finger. In other words, in the sensing space, the capacitance value of the local electrode of the sensing layer in the touch screen changes due to the presence of the finger.
  • the finger since the finger has a certain area, when the finger approaches the touch screen 710, at least two electrodes projected by the finger and the finger on the touch screen 710 generate a coupling capacitance, thereby causing a change in the capacitance value of the at least two electrodes.
  • the change value of the capacitance value of the electrode of the region where the collection point is projected in the touch screen 710 is related to the distance between the collection point and the touch screen 710 and the area where the collection point is projected on the area of the touch screen 710.
  • the change value of the capacitance value of the electrode of the area projected on the touch screen 710 by the specific collection point is The distance d between the finger and the touch screen 710 is inversely proportional to the area A of the finger.
  • the mobile terminal obtains the capacitance value of the collection point, and obtains the initial value of the electrode projected on the touch screen 710 according to the collection point.
  • the dielectric constant ⁇ and the area ⁇ of the finger are set in advance.
  • the technician can determine the dielectric constant ⁇ by testing or directly according to the relevant factors of the touch screen, and set the value of A according to the size of the general finger.
  • the area A of the finger can also be set by the user according to his or her own situation, or the mobile terminal can obtain the area A of the finger in real time by performing related conversion on the obtained capacitance value.
  • the present invention determines the gesture trajectory according to the three-dimensional coordinates of the comparison point, and further realizes the operation, so the Z coordinate of the collection point does not need to be an accurate value, and only needs to ensure the Z coordinate between different collection points. The size relationship is sufficient, so the area A of the finger is not required to be an accurate area.
  • the collection point is projected on the touch screen as a certain area 322.
  • the center of the area 322 is often taken.
  • the coordinates of the points on the X-axis and the Y-axis are the coordinates of the acquisition point on the X-axis and the Y-axis, respectively.
  • the electrode 3120 in the touch screen sensing layer includes a first type of triangular electrode 3121 and a second type of triangular electrode 3122, and the first type of triangular electrode 3121 and the second type of triangular electrode 3122 are opposite to each other to form a rectangular shape.
  • Each of the electrodes 3120 is connected to one end of a channel 3123, and the other end of the channel 3123 is connected to the control chip 313.
  • the channel 3123 detects the capacitance value of the electrode 3120 connected thereto, and outputs the capacitance value to the control chip 313 to make the movement.
  • the terminal can calculate the coordinates of the collected points on the X and Y axes according to the capacitance values formed by the electrodes 3120 projected into the area 322 of the touch screen. All of the channels 3123 connected to the first triangular electrode 3121 are collectively referred to as an A channel 314, so the channel 3123 connected to the second triangular electrode 3122 is collectively referred to as a B channel 315.
  • the coordinates on the X-axis of the touch screen are the sum of the capacitance values of the second triangular electrodes 3122 projected into the region 322 of the touch screen by the collection point and the first triangle.
  • the collection point is projected onto the area of the touch exhibition 322
  • the ratio of the sum of the capacitance values of the second type of triangular electrodes 3122 to the sum of the capacitance values of the first type of triangular electrodes 3121 is calculated as the coordinates of the acquisition point on the X-axis.
  • the capacitance value formed by the first type of triangular electrode 3121 in the area 322 of the touch screen detected by the A-channel 314 detected by the A channel 314 in the touch screen is the detected by the B channel 315 in the touch screen.
  • the capacitance value formed by the second triangular electrode 3122 projected into the region 322 of the touch screen is collected.
  • the coordinate of the acquisition point on the Y axis is the weighted average of the position coordinates defined by the electrode 3120 projected in the touch screen area 322 in the Y-axis direction.
  • the mobile terminal calculates a capacitance value formed by the electrode 3120 projected into the area 322 of the touch screen according to the acquisition point, and the mobile terminal pre-pairs
  • the electrode 3120 in the touch screen defines a good position coordinate, and the coordinate of the collected point on the Y axis is calculated by the formula ⁇ G '.
  • the value of the capacitance formed by the electrode 3120 in the area 322 of the touch screen is detected by the one of the channels 3123 detected by the one of the channels 3123, and the K is the area of the touch screen projected in the area 322 of the touch screen.
  • the position coordinates of one electrode 3120 defined in the Y-axis direction.
  • the standard is the serial number of the electrode 3120 arranged along the positive direction of the Y axis. For example, the position coordinate of the electrode 3120 closest to the X axis is 1, the corresponding upper surface is 2, and so on, and the position coordinates of the upper electrode 3120 are below. Add 1 to the position coordinate.
  • the user performs a gesture operation using a finger.
  • the size of the finger is typically 15 mm (mm) in diameter, i.e., the area of the finger 322 projected into the touch screen is 15 mm.
  • the sensing layer of the touch panel is composed of an electrode 3120 of Indium Thin Oxide (ITO), and each electrode 3120 has a width of 5 mm in the x direction. Therefore, the area 322 in which the finger is projected on the touch screen occupies three electrodes 3120.
  • the finger sensing area that is, the capacitance value of the area 322 projected in the touch screen is three, respectively Cl, C2, C3, so the X coordinate of the center of the finger sensing area 322 is the area 322 where the collection point is projected onto the touch screen.
  • the mobile terminal obtains the pre-set dielectric constant ⁇ and the finger area ⁇ , according to Cl, C2, C3, and the initial capacitance of the electrode 3120 in the region 322 of the acquisition point projected in the touch screen
  • the value is calculated, and the change value of the capacitance of the electrode 3120 in the region 322 is calculated. According to L ah , the Z coordinate of the collected point can be calculated.
  • Step S603 The mobile terminal determines the gesture track according to the three-dimensional coordinates of the at least two collection points, and performs a corresponding operation.
  • the mobile terminal presets different gesture trajectories to perform different operations.
  • the mobile terminal acquires the three-dimensional coordinates of the collection point, the gesture trajectory is determined, and different operations are performed according to the determined gesture trajectory. If the determined gesture track is not a preset gesture track, the mobile terminal does not perform any operation. For example, the mobile terminal sets the rightward rotation of the sphere when the gesture is a motion that rises first and then falls, and performs a leftward rotation of the sphere when the gesture is a motion that rises first and then rises.
  • the mobile terminal acquires the capacitance values of the three collection points, and determines the three-dimensional coordinates of the three collection points, wherein the first collection point is (XI, Yl, Z1), and the second collection point is (X2, Y2) , Z2), the third collection point is (X3, Y3, Z3), the time for the mobile terminal to collect the second collection point is earlier than the time when the third collection point is collected, but later than the time when the first collection point is collected.
  • the mobile terminal compares the three-dimensional coordinates of the three collection points. If Z1>Z2 and Z2 ⁇ Z3, it is judged that the gesture track is the motion that first rises and then rises, and performs the rightward rotation of the sphere.
  • the embodiment of the present invention calculates the capacitance values of the at least two collection points of the gesture track, and calculates at least two of the gesture trajectories according to the acquired capacitance values of the at least two collection points. Collecting the three-dimensional coordinates of the points, and then determining the gesture trajectory, to realize the recognition of the three-dimensional gestures, and implementing different operations according to different gestures, and enriching the operation of the mobile terminal. At the same time, the invention realizes the determination of the three-dimensional gesture through the capacitance value obtainable by the touch screen, and does not need to separately set the sensor, and also avoids interference by environmental factors.
  • Fig. 8 is a schematic view showing the configuration of an embodiment of a three-dimensional operation control device for a touch panel of the present invention.
  • the three-dimensional operation control device of the touch screen includes a capacitance collection module 810, a calculation module 820, and a processing module 830.
  • the calculation module 820 is coupled to the capacitance collection module 810 and the processing module 830, respectively.
  • the three-dimensional operation control device of the touch screen is disposed in a mobile terminal including a capacitive touch screen.
  • the capacitance collecting module 810 is configured to collect capacitance values of at least two of the moving tracks formed by the finger or the conductor in the sensing space of the touch screen, wherein the collecting point is projected to the area of the touch screen to Less intersecting with the two electrodes, the capacitance value of the collection point is when the finger or the conductor is close to the touch screen. Specifically, when there is no finger approaching, there is a stable capacitance between the electrodes in the sensing layer.
  • the mobile terminal is provided with a driving pulse signal for real-time monitoring of the capacitance of the electrodes in the sensing layer of the touch screen.
  • the capacitance collecting module 810 When the mobile terminal detects that the capacitance value of the electrode in the sensing layer changes, the capacitance collecting module 810 considers that the user performs a gesture operation, and determines a finger position of at least two moments in the gesture track as a collection point. Generally, when a finger approaches or touches the touch screen, since the finger has a certain area, the finger causes the capacitance of the at least two electrodes in the sensing layer to change, that is, the area where the collection point is projected onto the touch screen is at least in the sensing layer. The two electrodes intersect.
  • the capacitance acquisition module 810 acquires the capacitance of the capacitance formed by the electrodes of the at least two collection points respectively projected in the area of the touch screen, as the capacitance of the collection point, and sends the capacitance value of the collection point to the calculation module 820.
  • the capacitor collection module 810 determines the collection point and obtains the capacitance of the collection point by means of real-time scanning. That is, when the finger performs the gesture operation, the capacitor collection module 810 determines the finger at the current moment on the gesture track as the collection point according to the preset acquisition frequency, and acquires the capacitance value generated by the electrode projected in the area of the touch screen in real time. Of course, the capacitor collection module 810 does not have to be acquired only by real-time scanning. In other embodiments, the capacitor collection module 810 can also acquire the capacitance value of the collection point at all times when the finger gesture operation is performed, and record, and then follow the preset.
  • the stipulations of selecting the capacitance of at least two collection points for example, selecting the capacitance values of the starting point and the end point, are not limited herein.
  • the sensing space of the touch screen of the mobile terminal is an area where the touch screen can sense the finger.
  • the capacitance value of the local electrode of the sensing layer in the touch screen changes due to the presence of the finger.
  • the maximum sensing height of the sensing space that is, under the premise of causing a change in the capacitance of the touch screen, the maximum height of the finger perpendicular to the touch screen is 50 mm. It can be understood that the maximum sensing height of the sensing space of the present invention is not limited to 50 mm.
  • the maximum sensing height of the sensing space can be a larger value, which is not limited herein.
  • the capacitor collection module 810 acquires at least two acquisition points of the gesture track to implement the determination of the gesture track by the three-dimensional operation control device of the touch screen.
  • the capacitor collection module 810 obtains the number of collection points. By default set by the user to a fixed value or directly to the system default. Of course, the number of collection points is not limited to a fixed value. In other application embodiments, the number of collection points may be set to any value greater than 2.
  • the capacitance collection module 810 selects different collection points according to different situations. Further, the capacitor collection module 810 does not have to acquire at least two collection points.
  • the capacitance collection module 810 can acquire only one collection point, and the three-dimensional operation control device of the touch screen determines The three-dimensional coordinates of the collection point, and then the corresponding operations are performed according to the position of the collection point.
  • the calculation module 820 is configured to separately calculate coordinates of the collection point on the X axis, the Y axis, and the Z axis according to the capacitance values of the collection point, thereby obtaining three-dimensional coordinates of the collection point.
  • FIG. 5 is a schematic top view of a mobile terminal in an embodiment of a three-dimensional operation control method for a touch screen according to the present invention.
  • the axis along the first direction of the touch screen 510 of the mobile terminal is the X axis 511
  • the Y axis 512 is perpendicular to the X axis 511
  • the plane formed by the X axis is parallel to the touch screen 510
  • the Z axis 513 is perpendicular to the X axis 511 and the Y axis simultaneously.
  • the setting of the three-dimensional coordinates of the mobile terminal is not limited to the above-mentioned manner. In a specific application, the three-dimensional coordinates may be set according to actual conditions, which is not limited herein.
  • each collection point on the gesture track causes a change in the capacitance value of the electrode projected in the area in the touch screen.
  • the change value of the capacitance value of the electrode of the area where the collection point is projected in the touch screen is related to the distance between the collection point and the touch screen, that is, the farther the distance between the collection point and the touch screen is, the capacitance of the electrode of the area where the collection point is projected in the touch screen.
  • the value of the change in value is smaller.
  • the calculation module 820 obtains, in advance, the relationship between the distance between the collection point and the touch screen and the change value of the capacitance value of the electrode of the region where the collection point is projected on the touch screen, and the algorithm of the coordinates on the X and Y axes of the touch screen, according to the acquired collection point capacitance value. Calculate the coordinates of the acquisition point on the X, ⁇ , and ⁇ axes, that is, obtain the three-dimensional coordinates of the collection point, and send the obtained three-dimensional coordinates of the collection point to the processing module 830.
  • the coordinates of the touch screen X and the axis of the mobile terminal are set to have a certain relationship with the capacitance values of the electrodes at the corresponding positions, and therefore, may be changed according to the capacitance in the touch screen.
  • Data obtain the coordinates corresponding to each acquisition point in the direction of the X-axis and the ⁇ -axis.
  • the electrode settings corresponding to different sensing layers, such as different electrode shapes the relationship between the coordinates on the touch screen X and the x-axis and the capacitance values of the electrodes at the corresponding positions are different, that is, the coordinates on the touch screen X and the x-axis.
  • the algorithm is different, but the algorithm must be based on the capacitance value of the electrode corresponding to the coordinate.
  • the processing module 830 is configured to determine the gesture track according to the three-dimensional coordinates of the at least two collection points, and perform a corresponding operation.
  • the processing module 830 presets different gesture trajectories correspondingly to be executed. The same operation.
  • receives the three-dimensional coordinates of the collection point respectively compares the size of the X coordinate of the collection point, the size of the Y coordinate, and the size of the Z coordinate, determines the gesture trajectory according to the comparison result, and according to the determined gesture trajectory Corresponding to perform different operations. If the determined gesture trajectory is not a pre-set gesture trajectory, the processing module 830 does not perform any operations.
  • the processing module 830 is configured to perform an increase in volume when the gesture is up and to the right, and to decrease the volume when the gesture is to move downward and to the left.
  • the X coordinate of the touch screen of the mobile terminal is positive to the right, and the vertical coordinate of the Z coordinate is upward.
  • the capacitance acquisition module 810 obtains the capacitance values of the two collection points, and the calculation module 820 determines the three-dimensional coordinates of the two collection points, wherein the first collection point is (XI, Yl, Z1), and the second collection point is (X2, Y2, Z2), the processing module 830 collects the first collection point for a time earlier than the second collection point.
  • the processing module 830 compares the three-dimensional coordinates of the two collection points.
  • the gesture track is judged to be the finger up and to the right, and the volume is raised. If X1 ⁇ X2, Z1 ⁇ Z2, The gesture trajectory is judged to be a downward movement of the finger and to the left, and the volume is lowered. If the comparison of the three-dimensional coordinates is not the above two cases, the processing module 830 does not perform the operation.
  • the processing module 830 can set the operation corresponding to different gestures by default, or provide the setting interface for the user to set.
  • the processing module 830 saves the information set by the user for performing the corresponding operation according to the saved information after determining the gesture track.
  • the operations performed by the processing module 830 according to the gesture trajectory may be any operations that can be performed by the mobile terminal, such as image rotation, image scaling, volume adjustment, or adjustment of the focal length when photographing, and the like, which is not limited herein.
  • the finger since the finger has a certain area, when the finger approaches the touch screen, at least two electrodes projected by the finger and the finger on the touch screen area generate a coupling capacitance, thereby causing a change in the capacitance value of the at least two electrodes.
  • the change value of the capacitance value of the electrode of the area where the collection point is projected in the touch screen is related to the distance between the collection point and the touch screen and the area of the collection point projected on the touch screen area.
  • the change value of the capacitance value of the electrode of the area in which the specific collection point is projected in the touch screen is inversely proportional to the distance d between the finger and the touch screen, and is proportional to the area A of the finger.
  • the calculation module obtains the capacitance value of the collection point from the capacitance acquisition module, and obtains the collection point projection in the touch screen area according to the initial value of the electrode projected on the touch screen area according to the collection point. 7 A
  • the area of the collection point, the dielectric constant, ⁇ is the capacitance change between the capacitance value of the collection point and the initial capacitance value of the projection area.
  • the initial capacitance value of the projection area is when no finger or conductor is close.
  • the capacitance value of the electrode in the projection area is when no finger or conductor is close.
  • the dielectric constant ⁇ and the area ⁇ of the finger are set in advance.
  • the technician can determine the dielectric coefficient s by testing or directly according to the relevant factors of the touch screen, and set the value of A according to the size of the general finger.
  • the area A of the finger can also be set by the user according to his or her own situation, or the mobile terminal can obtain the area A of the finger in real time by performing related conversion on the obtained capacitance value.
  • the present invention determines the gesture trajectory according to the three-dimensional coordinates of the comparison point, and further realizes the operation, so the Z coordinate of the collection point does not need to be an accurate value, and only needs to ensure the Z coordinate between different collection points. The size relationship is sufficient, so the area A of the finger is not required to be an accurate area.
  • the collection point is projected on the touch screen as a certain area 322.
  • the center of the area 322 is often taken.
  • the coordinates of the points on the X-axis and the Y-axis are the coordinates of the acquisition point on the X-axis and the Y-axis, respectively.
  • the electrode 3120 in the touch screen sensing layer in the embodiment includes a first type of triangular electrode 3121 and a second type of triangular electrode 3122, and the first type of triangular electrode 3121 and the second type of triangular electrode 3122 are opposite to each other to form a rectangular shape.
  • Each of the electrodes 3120 is connected to one end of a channel 3123, and the other end of the channel 3123 is connected to the control chip 313.
  • the channel 3123 detects the capacitance value of the electrode 3120 connected thereto, and outputs the capacitance value to the control chip 313 for calculation.
  • the module can calculate the coordinates of the collected points on the X and Y axes according to the capacitance values formed by the electrodes 3120 projected into the area 322 of the touch screen. All of the channels 3123 connected to the first triangular electrode 3121 are collectively referred to as an A channel 314, so the channel 3123 connected to the second triangular electrode 3122 is collectively referred to as a B channel 315.
  • the coordinates on the X-axis of the touch screen are the sum of the capacitance values of the second triangular electrodes 3122 projected into the region 322 of the touch screen by the collection point and the first triangle.
  • x f (C A , C B )
  • the ratio of the sum of the capacitance values of the second triangular electrodes 3122 projected in the touch-exposed region 322 to the sum of the capacitance values of the first triangular electrodes 3121 is calculated, and the coordinates of the collected points on the X-axis are calculated.
  • the ⁇ is the A channel in the touch screen 314.
  • the detected collection point is projected to a capacitance value formed by the first type of triangular electrode 3121 in the area 322 of the touch screen, and the collected point detected by the B channel 315 in the touch screen is projected into the area 322 of the touch screen.
  • the capacitance value formed by the second triangular electrode 3122 is projected to a capacitance value formed by the first type of triangular electrode 3121 in the area 322 of the touch screen, and the collected point detected by the B channel 315 in the touch screen is projected into the area 322 of the touch screen.
  • the coordinate of the acquisition point on the Y axis is the weighted average of the position coordinates defined by the electrode 3120 projected in the touch screen area 322 in the Y-axis direction.
  • the calculation module calculates the capacitance value formed by the electrode 3120 in the region 322 of the touch screen obtained by the acquisition point, and the position coordinates defined by the mobile terminal in advance on the electrode 3120 in the touch screen, and the collection point is calculated by the formula ⁇ G ' The coordinates on the Y axis.
  • the G is a capacitance value formed by the electrode 3120 in the area 322 of the touch screen detected by the one of the channels 3123 detected by one channel 3123
  • the K is the projection point projected into the area 322 of the touch screen.
  • the position coordinates of one of the electrodes 3120 defined in the Y-axis direction.
  • the standard is the serial number of the electrode 3120 arranged along the positive direction of the Y axis.
  • the position coordinate of the electrode 3120 closest to the X axis is 1, the corresponding upper surface is 2, and so on, and the position coordinates of the upper electrode 3120 are below. Add 1 to the position coordinate.
  • the user performs a gesture operation using a finger.
  • the size of the finger is typically 15 mm (mm) in diameter, i.e., the area of the finger 222 projected into the touch screen is 15 mm.
  • the sensing layer of the touch panel is composed of an electrode 3120 of Indium Thin Oxide (ITO), and each electrode 3120 has a width of 5 mm in the x direction. Therefore, the area 322 in which the finger is projected on the touch screen occupies three electrodes 3120.
  • the finger sensing area that is, the capacitance value of the area 322 projected in the touch screen is three, respectively Cl, C2, C3, so the X coordinate of the center of the finger sensing area 322 is the area 322 where the collection point is projected onto the touch screen.
  • the calculation module acquires a preset dielectric constant ⁇ and a finger area ⁇ according to Cl, C2, C3, and an initial capacitance of the electrode 3120 in the region 322 of the collection point projected in the touch screen. 7 A value, the change value of the capacitance of the electrode 3120 in the region 322 is calculated, and according to Qh , the Z coordinate of the collected point can be calculated.
  • the embodiment of the present invention calculates the capacitance values of the at least two collection points of the gesture track, and calculates at least two of the gesture trajectories according to the acquired capacitance values of the at least two collection points. Collecting the three-dimensional coordinates of the points, and then determining the gesture trajectory, to realize the recognition of the three-dimensional gestures, and implementing different operations according to different gestures, and enriching the operation of the mobile terminal. At the same time, the invention realizes the determination of the three-dimensional gesture through the capacitance value obtainable by the touch screen, and does not need to separately set the sensor, and also avoids interference by environmental factors.
  • the present invention also includes a mobile terminal comprising the above-described three-dimensional operation control device for a touch screen and a capacitive touch screen, wherein the three-dimensional operation control device of the touch screen is electrically connected to the capacitive touch screen.
  • a mobile terminal comprising the above-described three-dimensional operation control device for a touch screen and a capacitive touch screen, wherein the three-dimensional operation control device of the touch screen is electrically connected to the capacitive touch screen.
  • gesture trajectory is implemented by a finger in the full-text embodiment.
  • the gesture trajectory of the present invention can be implemented by using only a finger.
  • the gesture trajectory of the present invention can be implemented by any conductor, which is not limited herein.
  • the present invention can perform three-dimensional operational control based on a sensing layer of another structure, such as a sensing layer composed of a diamond-shaped electrode.
  • the principle is similar to that of the triangular electrode. According to the sensing capacitance in the sensing layer, the coordinates on the Z-axis of the acquisition point on the gesture track are calculated, and according to the different positions in the sensing layer and the sensing layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本发明公开了一种触摸屏的三维操作控制方法、装置及其移动终端,其中,所述方法包括以下步骤:采集手指或导体在触摸屏感应空间中所形成的运动轨迹中的至少两个采集点的电容值;根据所述采集点的电容值分别计算得到所述采集点在X轴、Y轴以及Z轴的坐标,从而获得所述采集点的三维坐标;根据所述至少两个采集点的三维坐标,确定所述运动轨迹,并执行相应的操作。通过上述方式,本发明能够实现对三维手势的识别,丰富的移动终端的操作。

Description

一种触摸屏的三維操作控制方法、 装置及其移动终端
【技术领域】
本发明涉及通信技术领域, 特别是涉及一种触摸屏的三维操作控制方法、 装置及其移动终端。
【背景技术】
如今, 触控式移动终端已被越来越多的用户使用, 通常, 对触控式移动终 端的操作都是在二维的平面上实现的, 即通过触碰移动终端的触摸屏表面的不 同位置, 以实现对移动终端及其应用的操控。 然而, 现有的触摸屏操控方式只 能在保证用户触碰到一定位置才能实现相关操作, 使得用户的操作受到限制。
现有技术中提供在移动终端上实现触摸屏的三维操作的方法通常是基于 视觉和基于传感器两种实现方式。 基于视觉的手势识别通过摄像装置拍摄手势 图片, 通过对图片分析处理, 根据已有的手势模型, 对手势进行识别。 这种手 势识别受环境因素的干扰较大。 基于传感器的手势识别通常是获取加速度信息, 运用加速度信息进行手势识别。 但是需要另外在移动终端设置传感器。
【发明内容】
本发明主要解决的技术问题是提供一种触摸屏的三维操作控制方法、 装置 及其移动终端, 能够实现对三维手势的识别, 丰富移动终端的操作, 且不需另 外设置传感器。
为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种触摸屏的 三维操作控制方法, 令沿着第一方向的轴为 X轴, Y轴垂直与 X轴, Z轴同时 垂直于 X轴以及 Y轴, 包括以下步骤: 采集手指或导体在触摸屏感应空间中所 形成的运动轨迹中的至少两个采集点的电容值, 其中, 所述采集点投影到触摸 屏的区域至少与两个电极相交, 所述采集点的电容值为所述手指或导体接近所 述触摸屏时所述手指或导体分别与投影区域中的至少两个电极所形成的电容的 容值; 根据公式 X = /(CA , )、 F = ¾^ , Ζ = ε χ ^ , 分别计算得到所述采
∑Ci ∑Cth
集点在 X轴、 Y轴以及 Z轴的坐标, 从而获得所述采集点的三维坐标, 其中, 所述 CA为触摸屏中 A通道检测到的所述采集点投影到触摸屏的区域中的第一种 三角形电极所形成的电容值, 所述 CB为触摸屏中 B通道检测到的所述采集点投 影到触摸屏的区域中的第二种三角形电极所形成的电容值, 所述 G为其中一个 通道检测到的所述采集点投影到触摸屏的区域中的电极所形成的电容值, 所述 K为所述采集点投影到触摸屏的区域中的其中一个电极在 Y轴方向定义的位置 坐标, 所述触摸屏中每个通道分别与一个相应的电极连接, 并能检测到所述相 应的电极所形成的电容值, 所述 A通道指的是与触摸屏中第一种三角形电极连 接的所有通道, 所述 B通道指的是与触摸屏中第二种三角形电极连接的所有通 道, A 为所述采集点的面积, 为介电系数, ∑C为所述采集点的电容值与投 影区域的初始电容值之间的电容变化值, 所述投影区域的初始电容值为在无手 指及无导体接近时, 所述投影区域中的电极的电容值; 根据所述至少两个采集 点的三维坐标, 确定所述运动轨迹, 并执行相应的操作。
其中, 所述根据至少两个采集点的三维坐标, 确定所述手势轨迹, 并执行 相应的操作的步骤包括: 分别比较所述至少两个采集点的 X坐标的大小、 Υ坐 标的大小及 Ζ坐标的大小, 根据比较结果确定所述手势轨迹, 并执行相应的操 作。
其中, 所述触摸屏感应空间中距离触摸屏表面的最大感应高度为 50毫米。 为解决上述技术问题, 本发明采用另一技术方案为: 提供一种触摸屏的三 维操作控制装置, 设定沿着触摸屏的第一方向的轴为 X轴, Υ轴垂直与 X轴, Ζ轴同时垂直于 X轴以及 Υ轴, 所述装置包括电容采集模块、 计算模块及处理 模块; 其中, 所述电容采集模块用于采集手指或导体在触摸屏感应空间中所形 成的运动轨迹中的至少两个采集点的电容值, 并向所述计算模块发送, 其中, 所述采集点投影到触摸屏的区域至少与两个电极相交, 所述采集点的电容值为 所述手指或导体接近所述触摸屏时所述手指或导体分别与投影区域中的至少两 个电极所形成的电容的容值; 所述计算模块用于根据所述采集点的电容值分别 计算得到所述采集点在 X轴、 Υ轴以及 Ζ轴的坐标, 从而获得所述采集点的三 维坐标, 并将所述采集点的三维坐标向处理模块发送; 所述处理模块用于根据 所述至少两个采集点的三维坐标, 确定所述手势轨迹, 并执行相应的操作。
其中, 所述计算模块进一步用于根据公式 Ζ = ^ , 计算得到所述采集 点在 Z轴的坐标, 其中, A为所述采集点的面积, 为介电系数, ∑C为所述
初始电容值为在无手指或导体接近时, 所述采集点投影到触摸屏的区域中的电 极的电容值。 其中, 所述计算模块进一步用于根据 X = /(CA, )、 7 = ¾^ , 计算得到 所述采集点在 X轴及 Y轴上的坐标, 其中, 所述 CA为触摸屏中 A通道检测到的 所述采集点投影到触摸屏的区域中的第一种三角形电极所形成的电容值, 所述 CB为触摸屏中 B通道检测到的所述采集点投影到触摸屏的区域中的第二种三角 形电极所形成的电容值, 所述 G为其中一个通道检测到的所述采集点投影到触 摸屏的区域中的电极所形成的电容值, 所述 K为所述采集点投影到触摸屏的区 域中的其中一个电极在 Y轴方向定义的位置坐标, 所述触摸屏中每个通道分别 与一个相应的电极连接, 并能检测到所述相应的电极所形成的电容值, 所述 A 通道指的是与触摸屏中第一种三角形电极连接的所有通道, 所述 B通道指的是 与触摸屏中第二种三角形电极连接的所有通道。
其中, 所述处理模块具体用于分别比较所述至少两个采集点的 X坐标的大 小、 Y坐标的大小及 Z坐标的大小, 根据比较结果确定所述手势轨迹, 并执行 相应的操作。
其中, 所述触摸屏感应空间中距离触摸屏表面的最大感应高度为 50毫米。 为解决上述技术问题, 本发明采用再一技术方案为: 提供一种移动终端, 包括三维操作控制装置及电容触摸屏, 设定沿着所述电容触摸屏的第一方向的 轴为 X轴, Y轴垂直与 X轴, Z轴同时垂直于 X轴以及 Y轴, 所述三维操作控 制装置包括电容采集模块、 计算模块及处理模块; 其中, 所述电容采集模块用 于采集手指或导体在触摸屏感应空间中所形成的运动轨迹中的至少两个采集点 的电容值, 并向所述计算模块发送, 其中, 所述采集点投影到触摸屏的区域至 少与两个电极相交, 所述采集点的电容值为所述手指或导体接近所述触摸屏时 所述手指或导体分别与投影区域中的至少两个电极所形成的电容的容值; 所述 计算模块用于根据所述采集点的电容值分别计算得到所述采集点在 X轴、 γ轴 以及 Z轴的坐标, 从而获得所述采集点的三维坐标, 并将所述采集点的三维坐 标向处理模块发送; 所述处理模块用于根据所述至少两个采集点的三维坐标, 确定所述手势轨迹, 并执行相应的操作。
其中, 所述计算模块进一步用于根据公式 Ζ = ^^, 计算得到所述采集 点在 z轴的坐标, 其中, A为所述采集点的面积, 为介电系数, ∑ς¾为所述 初始电容值为在无手指及无导体接近时, 所述采集点投影到触摸屏的区域中的 电极的电容值。 其中, 所述计算模块进一步用于根据公式 X = /(CA,CJ、 7 = ¾^ , 计算 得到所述采集点在 X轴及 Y轴上的坐标, 其中, 所述 CA为触摸屏中 Α通道检测 到的所述采集点投影到触摸屏的区域中的第一种三角形电极所形成的电容值, 所述 为触摸屏中 B通道检测到的所述采集点投影到触摸屏的区域中的第二种 三角形电极所形成的电容值, 所述 ·为其中一个通道检测到的所述采集点投影 到触摸屏的区域中的电极所形成的电容值, 所述 κ为所述采集点投影到触摸屏 的区域中的其中一个电极在 γ轴方向定义的位置坐标, 所述触摸屏中每个通道 分别与一个相应的电极连接, 并能检测到所述相应的电极所形成的电容值, 所 述 Α通道指的是与触摸屏中第一种三角形电极连接的所有通道, 所述 B通道指 的是与触摸屏中第二种三角形电极连接的所有通道。
其中, 所述处理模块具体用于分别比较所述至少两个采集点在 X轴上坐标 的大小、 在 Y轴上坐标的大小及在 Z轴上坐标的大小, 根据比较结果确定所述 手势轨迹, 并执行相应的操作。
其中, 所述触摸屏感应空间中距离触摸屏表面的最大感应高度为 50毫米。 本发明的有益效果是: 区别于现有技术的情况, 本发明通过获取手势轨迹 至少两个采集点的电容值, 并根据获取的所述至少两个采集点的电容值, 计算 得到所述手势轨迹的至少两个采集点的三维坐标, 进而确定手势轨迹, 以实现 对三维手势的识别, 并根据不同手势实现相应不同的操作, 丰富的移动终端的 操作。 同时, 本发明通过触摸屏可获取的电容值实现三维手势的确定, 无需另 外设置传感器, 也避免了受环境因素的干扰。
【附图说明】 图 1是本发明触摸屏的三维操作控制方法一实施方式的流程图;
图 2是电容触摸屏的结构示意图;
图 3是手指进行手势操作的截面示意图;
图 4是触摸屏的三维操作控制方法一实施方式中, 手势操作某一个时刻手指 投影在触摸屏的区域的平面示意图;
图 5是本发明触摸屏的三维操作控制方法一实施方式中移动终端的俯视示 意图;
图 6是本发明触摸屏的三维操作控制方法另一实施方式的流程图;
图 7是手指垂直距离触摸屏表面时产生电容变化示意图;
图 8是本发明触摸屏的三维操作控制装置一实施方式的结构示意图。
【具体实施方式】
下面结合附图和具体的实施方式进行说明。
请参阅图 1 , 图 1是本发明触摸屏的三维操作控制方法一实施方式的流程 图。 本实施方式的方法包括以下步骤:
步骤 S101 : 移动终端采集手指在触摸屏感应空间中所形成的运动轨迹中的 至少两个采集点的电容值, 其中, 所述采集点投影到触摸屏的区域至少与两个 电极相交, 所述采集点的电容值为所述手指或导体接近所述触摸屏时所述手指 为便于说明, 全文的实施方式以手指作为对象进行手势操作。 请参阅图 2, 图 2是电容触摸屏的结构示意图。 现有技术中的电容触摸屏包括上下设置的表 面玻璃 211和感应层 212, 以及控制芯片 213。感应层 212由多个电极(图未示) 构成, 感应层 212的电极分别与控制芯片 213电连接。 在无手指靠近时, 感应 层 212 中的电极间存在着稳定的电容。 当手指靠近或触碰触摸屏的时候, 由于 人体电场, 手指与触摸屏对应手指的区域中的电极间产生耦合电容, 进而使得 触摸屏对应手指的区域中的电极间的电容发生改变。 控制芯片 213 获取容值发 生变化的电极的电容值并进行相应的处理。
继续请参阅图 3和图 4, 图 3是手指进行手势操作的截面示意图, 图 4是触 摸屏的三维操作控制方法一实施方式中, 手势操作某一个时刻手指投影在触摸 屏的区域的平面示意图。 移动终端设置有驱动脉沖信号, 对感应层 312 中电极 3120的电容值进行实时监控。 在手指在触摸屏 310的感应空间中进行手势操作 的过程中, 每个瞬间的手指都会引起触摸屏 310的感应层 312对应区域中的电 极 3120的电容发生改变。 移动终端监测到感应层 312中的电极 3120的电容值 发生变化时, 则认为用户进行手势操作, 并确定该手势轨迹 320 中的至少两个 瞬间的手指位置作为采集点 321。 一般地, 当手指靠近或触碰触摸屏 310时, 由 于手指具有一定的面积, 手指引起感应层 312中至少两个电极 3120的电容的容 值发生改变, 即采集点 321投影到触摸屏 310的区域 322至少与感应层 312中 的两个电极 3120相交。 移动终端获取确定的至少两个采集点 321分别投影在触 摸屏 310的区域 322中的电极 3120所形成的电容的容值, 作为采集点 321的电 谷。
本实施方式中, 移动终端通过实时扫描的方式, 确定采集点并获取该采集 点的电容。 即在手指进行手势操作时, 移动终端按照预设的采集频率, 确定手 势轨迹上当前时刻的手指为采集点, 并实时获取采集点在投影在触摸屏的区域 中的电极产生的电容值。 当然, 移动终端未必仅以实时扫描的方式进行获取, 在其他实施方式中, 移动终端还可以获取手指进行手势操作时的所有时刻的采 集点的电容值并进行记录, 再按照预设的规定选择至少两个采集点的电容, 例 如, 选择起点和终点的电容值等, 在此不作限定。
需要进行说明的是, 移动终端触摸屏的感应空间为触摸屏能感应到手指的 区域。 换言之, 在感应空间中, 触摸屏中感应层的局部电极的电容值会因为手 指的存在而发生改变。 一般, 由于感应空间越大, 对功耗, 材料、 成本、 技术 要求则越高。 本实施方式中, 感应空间的最大感应高度, 即在保证引起触摸屏 电容发生变化的前提下, 手指垂直距离触摸屏的最大高度, 为 50毫米。 可以理 解的是, 本发明感应空间的最大感应高度并不仅限为 50毫米, 在得到硬件技术 的支持下, 感应空间的最大感应高度可为更大值, 在此不作限定。
另外, 移动终端获取手势轨迹的采集点为至少两个, 以实现对手势轨迹的 确定。 移动终端获取采集点数可通过预先由用户设置为一固定值或直接为系统 默认值。 当然, 采集点数并非只能为一固定值, 在其他应用实施方式中, 也可 将采集点数设置为大于 2 的任意值, 移动终端根据不同的情况选择不同的采集 点数。 进一步地, 移动终端也并非必须获取至少两个的采集点, 在一些根据手 指的位置执行操作的实施方式中, 移动终端可仅获取一个采集点, 通过确定该 采集点的三维坐标, 进而根据采集点的位置执行相应的操作。 步骤 S102: 移动终端根据所述采集点的电容值分别计算得到所述采集点在 X轴、 Y轴以及 Z轴的坐标, 从而获得所述采集点的三维坐标。
先对本发明中的三维坐标进行说明。请参阅图 5, 图 5是本发明触摸屏的三 维操作控制方法一实施方式中移动终端的俯视示意图。 令沿着移动终端触摸屏 510第一方向的轴为 X轴 511 , Y轴 512垂直于 X轴 511 , 并与 X轴组成的平面 平行于触摸屏 510, Z轴 513同时垂直于 X轴 511以及 Y轴 512, 并以触摸屏 510向上作为正方向。 可以理解的是, 移动终端的三维坐标的设定并不限为上述 方式, 具体应用中, 可根据实际情况, 对三维坐标进行设定, 在此不作限定。
具体地, 手指进行手势操作时, 手势轨迹上每个采集点都会引起投影在触 摸屏中的区域的电极的电容值发生变化。 而采集点投影在触摸屏中的区域的电 极的电容值的变化值与采集点和触摸屏间的距离有关, 即采集点与触摸屏间的 距离越远, 采集点投影在触摸屏中的区域的电极的电容值的变化值越小。 移动 终端预先获得采集点与触摸屏间距离与该采集点投影在触摸屏中的区域的电极 的电容值的变化值的关系, 以及触摸屏 X、 Y轴上坐标的算法, 根据获取的采 集点电容值, 计算出采集点在 X、 Υ、 Ζ轴上的坐标, 即获得所述采集点的三维 坐标。
可以理解的是, 对应触摸屏的感应层的电极设置, 移动终端触摸屏 X、 Υ 轴上的坐标与对应位置上的电极的电容值均设置有一定的关系, 因此, 可根据 触摸屏中的电容变化的数据,获得对应每个采集点在 X轴和 Υ轴方向上的坐标。 当然, 对应不同的感应层的电极设置, 如不同的电极形状, 触摸屏 X、 Υ轴上 的坐标于对应位置上的电极的电容值的关系是不同的, 即触摸屏 X、 Υ轴上的 坐标的算法不同, 但其算法必须是基于该坐标对应的电极的电容值的。
步骤 S103: 移动终端根据所述至少两个采集点的三维坐标, 确定所述手势 轨迹, 并执行相应的操作。
移动终端预先设置好不同的手势轨迹对应执行不同的操作。 当移动终端获 取到采集点的三维坐标时, 分别比较所述采集点的 X坐标的大小、 Υ坐标的大 小及 Ζ坐标的大小, 根据比较结果确定所述手势轨迹, 并根据确定的手势轨迹 对应执行不同的操作。 如果确定的手势轨迹不为预先设置好的手势轨迹, 则移 动终端不执行任何操作。
例如, 移动终端设置好当手势为向上且向右运动时, 执行音量的升高, 当 手势为向下且向左运动时, 执行音量的降低。 移动终端获取两个采集点的电容 值, 并确定两个采集点的三维坐标, 其中, 第一采集点为 (XI , Yl , Z1 ), 第 二采集点为 (X2, Y2, Z2 ), 移动终端采集到第一采集点的时间比采集到第二 采集点的时间早。 移动终端比较两个采集点的三维坐标, 如果 X1>X2, Z1>Z2, 即判断手势轨迹为手指向上且向右运动, 并执行音量的升高, 如果 X1<X2, Z1<Z2, 即判断手势轨迹为手指向下且向左运动, 并执行音量的降低, 如果三维 坐标的比较情况为非上述两种情况, 则移动终端不执行操作。
需要说明的是, 移动终端可通过系统默认设置不同手势对应的操作, 也可 通过提供设置界面, 以供用户进行设置。 移动终端将用户设置好的信息进行保 存, 以供在确定手势轨迹后, 根据保存的信息, 执行相应的操作。 另外, 移动 终端根据手势轨迹执行的操作可为移动终端可执行的任意操作, 例如图像旋转、 图像放缩、 音量调节或拍照时调整焦距等, 在此不作限定。
请参阅图 6,图 6是本发明触摸屏的三维操作控制方法另一实施方式的流程 图。 本实施方式中的方法包括以下步骤:
步骤 S601: 移动终端采集手指在触摸屏感应空间中所形成的运动轨迹中的 至少两个采集点的电容值。
用户在移动终端电容触摸屏的感应空间中作出手势时, 移动终端检测到触 摸屏的存在电容值发生改变, 移动终端则认为用户进行手势操作, 并采集手指 或导体在触摸屏感应空间中所形成的运动轨迹中的至少两个采集点的电容值。 其中, 采集点投影到触摸屏的区域至少与两个电极相交, 所述采集点的电容值 为所述手指或导体接近所述触摸屏时所述手指或导体分别与投影区域中的至少 两个电极所形成的电容的容值。 移动终端触摸屏的感应空间为触摸屏能感应到 手指的区域。 换言之, 在感应空间中, 触摸屏中感应层的局部电极的电容值会 因为手指的存在而发生改变。
ζ = ε χ ^ γ ∑Ci ' Yi 步骤 S602: 移动终端根据公式 ∑C x = f CA, CB、、 ∑Ci , 分 别计算得到所述采集点在 Ζ轴、 X轴、 Υ轴上的坐标。
请参阅图 7, 由于手指具有一定的面积, 故手指靠近触摸屏 710时, 手指与 手指投影在触摸屏 710 区域的至少两个电极产生耦合电容, 进而引起该至少两 个电极的电容值发生变化。 采集点投影在触摸屏 710 中的区域的电极的电容值 的变化值与采集点和触摸屏 710间的距离及采集点投影在触摸屏 710区域的面 积有关。 具体采集点投影在触摸屏 710中的区域的电极的电容值的变化值 与 手指和触摸屏 710间的距离 d成反比, 与手指的面积 A成正比。 移动终端获得 采集点的电容值, 并根据采集点投影在触摸屏 710 区域的电极的初始值, 获得
7 A
采集点投影在触摸屏 710区域的电极的电容变化值, 根据 计算得到 采集点在 Ζ轴上的坐标, 其中, Α为、 采集点的面积, 为介电系数, ∑^为 电容值为在无手指或导体接近时, 该投影区域中的电极的电容值。
本实施方式中, 介电系数 ^和手指的面积 Α为预先设置好的。 技术人员可 通过测试或直接根据触摸屏的相关因素确定介电系数 ^ ,并根据一般手指的大小 设定好 A的值。 当然, 手指的面积 A也可由用户根据自身情况进行设置, 或者 移动终端通过对获取的电容值进行相关的转换以实现实时获得手指的面积 A。 需要说明的是, 本发明是根据比较采集点的三维坐标来确定手势轨迹, 进而实 现操作的, 故采集点的 Z坐标无需为精确值, 只需能够保证不同的采集点之间 的 Z坐标的大小关系即可, 故手指的面积 A也不要求为精确的面积。
另外, 请参阅图 4, 由于手指具有一定的面积, 故采集点投影在触摸屏上为 一定面积的区域 322, 对于确定采集点的 X轴和 Y轴上的坐标, 往往会取该区 域 322的中心点在 X轴和 Y轴上的坐标分别作为采集点在 X轴和 Y轴上的坐标。, 实施方式中触摸屏感应层中的电极 3120包括第一种三角形电极 3121和第二种 三角形电极 3122, 第一种三角形电极 3121和第二种三角形电极 3122为两两相 对,以构成矩形形状。每个电极 3120均与一个通道 3123的一端连接,通道 3123 的另一端与控制芯片 313连接, 通道 3123检测与其相连的电极 3120的电容值, 并向控制芯片 313输出所述电容值, 以使移动终端能够根据采集点投影到触摸 屏的区域 322中的电极 3120所形成的电容值计算得到采集点在 X、 Y轴上的坐 标。 其中, 所有与第一种三角形电极 3121连接的通道 3123统称为 A通道 314, 所以与第二种三角形电极 3122连接的通道 3123统称为 B通道 315。
根据本实施方式中的触摸屏 X轴上的坐标的算法, 触摸屏 X轴上的坐标为 所述采集点投影到触摸屏的区域 322中的第二种三角形电极 3122的电容值之和 与第一种三角形电极 3121的电容值之和的比值。移动终端通过相应的通道 3123 分别获得采集点投影到触摸屏的区域 322 中的电极 3120所形成的电容值, 由 x = f (CA , CB ) , 即触摸展 X轴上的坐标等于所述采集点投影到触摸展的区域 322 中的第二种三角形电极 3122的电容值之和与第一种三角形电极 3121的电容值 之和的比值, 计算得到采集点在 X轴的坐标。 其中, 所述 ^为触摸屏中 A通道 314检测到的所述采集点投影到触摸屏的区域 322中的第一种三角形电极 3121 所形成的电容值, 所述 为触摸屏中 B通道 315检测到的所述采集点投影到触 摸屏的区域 322中的第二种三角形电极 3122所形成的电容值。
而采集点在 Y轴的坐标即为采集点投影在触摸屏区域 322 中的电极 3120 在 Y轴方向定义的位置坐标的加权平均值。 具体地, 移动终端根据获得采集点 投影到触摸屏的区域 322中的电极 3120所形成的电容值, 以及移动终端预先对
Yci - Yi
γ = ^
触摸屏中的电极 3120定义好的位置坐标, 由公式 ∑G' 计算得到采集点在 Y轴的坐标。 其中, 所述 为触摸屏其中一个通道 3123检测到的所述采集点投 影到触摸屏的区域 322中的电极 3120所形成的电容值, 所述 K为所述采集点投 影到触摸屏的区域 322中的其中一个电极 3120在 Y轴方向定义的位置坐标。本 标为该电极 3120沿 Y轴正方向排列的序号, 如最靠近 X轴的电极 3120的位置 坐标为 1 , 对应的其上面的为 2, 依次类推, 上面的电极 3120的位置坐标为下 面的位置坐标加 1。
进一步举例说明, 一般, 用户使用手指头进行手势操作。 手指头大小一般 为直径 15毫米(mm ), 即手指头投影在触摸屏中的区域 322的直径为 15mm。 本实施方式中, 触摸屏的感应层由铟锡氧化物 (Indium Thin Oxide, ITO ) 的电 极 3120构成, 而每个电极 3120在 Υ方向的宽度为 5mm。 故手指头投影在触摸 屏中的区域 322会占据三个电极 3120。 移动终端获取采集点的电容值 Cl=100 皮法(pF )、 C2=300pF、 C3=200pF。 同时, 移动终端获取到电容值为 CI的电极 3120的位置坐标 Yl=2、 电容值为 C2的电极 3120的位置坐标 Υ2=3、 电容值为 C3的电极 3120的位置坐标 Υ3=4。 在例子中, 手指感应区域, 即投影在触摸屏 中的区域 322的电容值有三个分别为 Cl、 C2、 C3, 故手指感应区域 322的中心 的 X坐标为所述采集点投影到触摸屏的区域 322中的第二种三角形电极 3122的 电容值之和与第一种三角形电极 3121 的电容值之和的比值, 即 X ( C1+C3 )
F _ 100x 2 + 300x 3 + 200x 4 ^ 3 χη
/C2=10, Y坐标为 ― ^ 100 + 200 + 300 ' , 即采集点的 X坐标为 10, Υ 坐标为 3.17。 另外, 移动终端获取预先设置好介电系数 ^和手指面积 Α, 根据 Cl、 C2、 C3, 及该采集点投影在触摸屏中的区域 322中电极 3120的初始电容
7 A
值, 计算出该区域 322中的电极 3120的电容的变化值, 根据 Lah , 即可 计算得到采集点的 Z坐标。
步骤 S603: 移动终端根据所述至少两个采集点的三维坐标, 确定所述手势 轨迹, 并执行相应的操作。
移动终端预先设置好不同的手势轨迹对应执行不同的操作。 当移动终端获 取到采集点的三维坐标时, 确定手势轨迹, 并根据确定的手势轨迹对应执行不 同的操作。 如果确定的手势轨迹不为预先设置好的手势轨迹, 则移动终端不执 行任何操作。 例如, 移动终端设置好当手势为先上升后下降的运动时, 执行球 体的向右旋转, 当手势为先下降后上升的运动时, 执行球体的向左旋转。 本实 施方式中, 移动终端获取三个采集点的电容值, 并确定三个采集点的三维坐标, 其中, 第一采集点为 (XI , Yl , Z1 ), 第二采集点为 (X2, Y2, Z2 ), 第三采 集点为 (X3 , Y3 , Z3 ), 移动终端采集到第二采集点的时间比采集到第三采集 点的时间早, 但比采集到第一采集点的时间晚。 移动终端比较三个采集点的三 维坐标, 如果 Z1>Z2且 Z2<Z3, 即判断手势轨迹为先下降后上升的运动, 并执 行球体的向右旋转, 如果 Z1<Z2且 Z2>Z3, 即判断手势轨迹为先上升后下降的 运动时, 并执行球体的向左旋转, 如果三维坐标的比较情况为非上述两种情况, 则移动终端不执行操作。
区别于现有技术的情况, 本发明实施方式通过获取手势轨迹至少两个采集 点的电容值, 并根据获取的所述至少两个采集点的电容值, 计算得到所述手势 轨迹的至少两个采集点的三维坐标, 进而确定手势轨迹, 以实现对三维手势的 识别, 并根据不同手势实现相应不同的操作, 丰富的移动终端的操作。 同时, 本发明通过触摸屏可获取的电容值实现三维手势的确定, 无需另外设置传感器, 也避免了受环境因素的干扰。
请参阅图 8,图 8是本发明触摸屏的三维操作控制装置一实施方式的结构示 意图。 在本实施方式中, 触摸屏的三维操作控制装置包括电容采集模块 810、 计 算模块 820及处理模块 830。计算模块 820分别耦接于电容采集模块 810和处理 模块 830。 本触摸屏的三维操作控制装置设置在包括电容触摸屏的移动终端中。
电容采集模块 810用于采集手指或导体在触摸屏感应空间中所形成的运动 轨迹中的至少两个采集点的电容值, 其中, 所述采集点投影到触摸屏的区域至 少与两个电极相交, 所述采集点的电容值为所述手指或导体接近所述触摸屏时 具体地, 在无手指靠近时, 感应层中的电极间存在着稳定的电容。 当手指 靠近或触碰触摸屏的时候, 由于人体电场, 手指与触摸屏对应手指的区域中的 电极间产生耦合电容, 进而使得触摸屏对应手指的区域中的电极间的电容发生 改变。 移动终端设置有驱动脉沖信号, 对触摸屏的感应层中电极的电容进行实 时监控。 在手指在触摸屏的感应空间中进行手势操作的过程中, 每个瞬间的手 指都会引起触摸屏的对应区域中的电极的电容发生改变。 移动终端监测到感应 层中的电极的电容值发生变化时, 电容采集模块 810则认为用户进行手势操作, 并确定该手势轨迹中的至少两个瞬间的手指位置作为采集点。 一般地, 当手指 靠近或触碰触摸屏时, 由于手指具有一定的面积, 手指引起感应层中至少两个 电极的电容的容值发生改变, 即采集点投影到触摸屏的区域至少与感应层中的 两个电极相交。 电容采集模块 810获取确定的至少两个采集点分别投影在触摸 屏的区域中的电极所形成的电容的容值, 作为采集点的电容, 并将采集点的电 容值向计算模块 820发送。
本实施方式中, 电容采集模块 810通过实时扫描的方式, 确定采集点并获 取该采集点的电容。 即在手指进行手势操作时, 电容采集模块 810按照预设的 采集频率, 确定手势轨迹上当前时刻的手指为采集点, 并实时获取采集点投影 在触摸屏的区域中的电极产生的电容值。 当然, 电容采集模块 810 未必仅以实 时扫描的方式进行获取, 在其他实施方式中, 电容采集模块 810还可以获取手 指手势操作时的所有时刻的采集点的电容值并进行记录, 再按照预设的规定选 择至少两个采集点的电容, 例如, 选择起点和终点的电容值等, 在此不作限定。
需要进行说明的是, 移动终端触摸屏的感应空间为触摸屏能感应到手指的 区域。 换言之, 在感应空间中, 触摸屏中感应层的局部电极的电容值会因为手 指的存在而发生改变。 一般, 由于感应空间越大, 对功耗, 材料、 成本、 技术 要求则越高。 本实施方式中, 感应空间的最大感应高度, 即在保证引起触摸屏 电容发生变化的前提下, 手指垂直距离触摸屏的最大高度, 为 50毫米。 可以理 解的是, 本发明感应空间的最大感应高度并不仅限为 50毫米, 在得到硬件技术 的支持下, 感应空间的最大感应高度可为更大值, 在此不作限定。
另外, 电容采集模块 810获取手势轨迹的采集点为至少两个, 以实现触摸 屏的三维操作控制装置对手势轨迹的确定。 电容采集模块 810获取采集点数可 通过预先由用户设置为一固定值或直接为系统默认值。 当然, 采集点数并非只 能为一固定值, 在其他应用实施方式中, 也可将采集点数设置为大于 2 的任意 值, 电容采集模块 810根据不同的情况选择不同的采集点数。 进一步地, 电容 采集模块 810也并非必须获取至少两个的采集点, 在一些根据手指的位置执行 操作的实施方式中, 电容采集模块 810可仅获取一个采集点, 触摸屏的三维操 作控制装置通过确定该采集点的三维坐标, 进而根据采集点的位置执行相应的 操作。
计算模块 820用于根据所述采集点的电容值分别计算得到所述采集点在 X 轴、 Y轴以及 Z轴的坐标, 从而获得所述采集点的三维坐标。
先对本发明中的三维坐标进行说明。请参阅图 5 , 图 5是本发明触摸屏的三 维操作控制方法一实施方式中移动终端的俯视示意图。 令沿着移动终端触摸屏 510第一方向的轴为 X轴 511 , Y轴 512垂直于 X轴 511 , 并与 X轴组成的平面 平行于触摸屏 510, Z轴 513同时垂直于 X轴 511以及 Y轴 512, 并以触摸屏 510向上作为正方向。 可以理解的是, 移动终端的三维坐标的设定并不限为上述 方式, 具体应用中, 可根据实际情况, 对三维坐标进行设定, 在此不作限定。
具体地, 手指进行手势操作时, 手势轨迹上每个采集点都会引起投影在触 摸屏中的区域的电极的电容值发生变化。 而采集点投影在触摸屏中的区域的电 极的电容值的变化值与采集点和触摸屏间的距离有关, 即采集点与触摸屏间的 距离越远, 采集点投影在触摸屏中的区域的电极的电容值的变化值越小。 计算 模块 820预先获得采集点与触摸屏间距离与该采集点投影在触摸屏中的区域的 电极的电容值的变化值的关系, 以及触摸屏 X、 Y轴上坐标的算法, 根据获取 的采集点电容值, 计算出采集点在 X、 Υ、 Ζ轴上的坐标, 即获得所述采集点的 三维坐标, 并将获得的采集点的三维坐标向处理模块 830发送。 可以理解的是, 对应触摸屏的感应层的电极设置, 移动终端触摸屏 X、 Υ轴上的坐标与对应位 置上的电极的电容值均设置有一定的关系, 因此, 可根据触摸屏中的电容变化 的数据, 获得对应每个采集点在 X轴和 Υ轴方向上的坐标。 当然, 对应不同的 感应层的电极设置, 如不同的电极形状, 触摸屏 X、 Υ轴上的坐标于对应位置 上的电极的电容值的关系是不同的, 即触摸屏 X、 Υ轴上的坐标的算法不同, 但其算法必须是基于该坐标对应的电极的电容值的。
处理模块 830用于根据所述至少两个采集点的三维坐标, 确定所述手势轨 迹, 并执行相应的操作。 处理模块 830预先设置好不同的手势轨迹对应执行不 同的操作。 当处理模块 830接收到采集点的三维坐标时, 分别比较所述采集点 的 X坐标的大小、 Y坐标的大小及 Z坐标的大小, 根据比较结果确定所述手势 轨迹, 并根据确定的手势轨迹对应执行不同的操作。 如果确定的手势轨迹不为 预先设置好的手势轨迹, 则处理模块 830不执行任何操作。
例如, 处理模块 830设置好当手势为向上且向右运动时, 执行音量的升高, 当手势为向下且向左运动时, 执行音量的降低。 一般, 移动终端触摸屏的 X坐 标向右为正方向, Z坐标垂直触摸屏向上为正方向。 电容采集模块 810获取两个 采集点的电容值, 并由计算模块 820确定两个采集点的三维坐标, 其中, 第一 采集点为 (XI , Yl , Z1 ), 第二采集点为 (X2, Y2, Z2 ), 处理模块 830采集 到第一采集点的时间比采集到第二采集点的时间早。 处理模块 830 比较两个采 集点的三维坐标, 如果 X1>X2, Z1>Z2, 即判断手势轨迹为手指向上且向右运 动, 并执行音量的升高, 如果 X1<X2, Z1<Z2, 即判断手势轨迹为手指向下且 向左运动, 并执行音量的降低, 如果三维坐标的比较情况为非上述两种情况, 则处理模块 830不执行操作。
需要说明的是, 处理模块 830可通过系统默认设置不同手势对应的操作, 也可通过提供设置界面, 以供用户进行设置。 处理模块 830将用户设置好的信 息进行保存, 以供在确定手势轨迹后, 根据保存的信息, 执行相应的操作。 另 外, 处理模块 830根据手势轨迹执行的操作可为移动终端可执行的任意操作, 例如图像旋转、 图像放缩、 音量调节或拍照时调整焦距等, 在此不作限定。
更为优化地, 基于上一实施方式, 在本发明触摸屏的三维操作控制装置另 一实施方式中,
A Y Ci - Yi - c x γ = =L 计算模块进一步用于根据公式 ∑c' x = f( A, cB) ^ ∑ , 分 别计算得到所述采集点在 Ζ轴、 X轴、 Υ轴上的坐标。
具体地, 由于手指具有一定的面积, 故手指靠近触摸屏时, 手指与手指投 影在触摸屏区域的至少两个电极产生耦合电容, 进而引起该至少两个电极的电 容值发生变化。 采集点投影在触摸屏中的区域的电极的电容值的变化值与采集 点和触摸屏间的距离及采集点投影在触摸屏区域的面积有关。 具体采集点投影 在触摸屏中的区域的电极的电容值的变化值 与手指和触摸屏间的距离 d成反 比, 与手指的面积 A成正比。 计算模块从电容采集模块中获得采集点的电容值, 并根据采集点投影在触摸屏区域的电极的初始值, 获得采集点投影在触摸屏区 7 A
域的电极的电容变化值, 根据 确定采集点在 Ζ轴上的坐标, 其中,
Α 为、 采集点的面积, 为介电系数, ∑^为采集点的电容值与投影区域的初 始电容值之间的电容变化值, 投影区域的初始电容值为在无手指或导体接近时, 该投影区域中的电极的电容值。
本实施方式中, 介电系数 ^和手指的面积 Α为预先设置好的。 技术人员可 通过测试或直接根据触摸屏的相关因素确定介电系数 s ,并根据一般手指的大小 设定好 A的值。 当然, 手指的面积 A也可由用户根据自身情况进行设置, 或者 移动终端通过对获取的电容值进行相关的转换以实现实时获得手指的面积 A。 需要说明的是, 本发明是根据比较采集点的三维坐标来确定手势轨迹, 进而实 现操作的, 故采集点的 Z坐标无需为精确值, 只需能够保证不同的采集点之间 的 Z坐标的大小关系即可, 故手指的面积 A也不要求为精确的面积。
另外, 请参阅图 4, 由于手指具有一定的面积, 故采集点投影在触摸屏上为 一定面积的区域 322, 对于确定采集点的 X轴和 Y轴上的坐标, 往往会取该区 域 322的中心点在 X轴和 Y轴上的坐标分别作为采集点在 X轴和 Y轴上的坐标。 实施方式中触摸屏感应层中的电极 3120包括第一种三角形电极 3121和第二种 三角形电极 3122, 第一种三角形电极 3121和第二种三角形电极 3122为两两相 对,以构成矩形形状。每个电极 3120均与一个通道 3123的一端连接,通道 3123 的另一端与控制芯片 313连接, 通道 3123检测与其相连的电极 3120的电容值, 并向控制芯片 313输出所述电容值, 以使计算模块能够根据采集点投影到触摸 屏的区域 322中的电极 3120所形成的电容值计算得到采集点在 X、 Y轴上的坐 标。 其中, 所有与第一种三角形电极 3121连接的通道 3123统称为 A通道 314, 所以与第二种三角形电极 3122连接的通道 3123统称为 B通道 315。
根据本实施方式中的触摸屏 X轴上的坐标的算法, 触摸屏 X轴上的坐标为 所述采集点投影到触摸屏的区域 322中的第二种三角形电极 3122的电容值之和 与第一种三角形电极 3121的电容值之和的比值。计算模块通过相应的通道 3123 分别获得采集点投影到触摸屏的区域 322 中的电极 3120所形成的电容值, 由 x = f (CA , CB ) , 即触摸展 X轴上的坐标等于所述采集点投影到触摸展的区域 322 中的第二种三角形电极 3122的电容值之和与第一种三角形电极 3121的电容值 之和的比值, 计算得到采集点在 X轴的坐标。 其中, 所述 ^为触摸屏中 A通道 314检测到的所述采集点投影到触摸屏的区域 322中的第一种三角形电极 3121 所形成的电容值, 所述 为触摸屏中 B通道 315检测到的所述采集点投影到触 摸屏的区域 322中的第二种三角形电极 3122所形成的电容值。
而采集点在 Y轴的坐标即为采集点投影在触摸屏区域 322 中的电极 3120 在 Y轴方向定义的位置坐标的加权平均值。 具体地, 计算模块根据获得采集点 投影到触摸屏的区域 322中的电极 3120所形成的电容值, 以及移动终端预先对 触摸屏中的电极 3120定义好的位置坐标, 由公式 ∑G' 计算得到采集点在 Y轴的坐标。 其中, 所述 G为触摸屏其中一个通道 3123检测到的所述采集点投 影到触摸屏的区域 322中的电极 3120所形成的电容值, 所述 K为所述采集点投 影到触摸屏的区域 322中的其中一个电极 3120在 Y轴方向定义的位置坐标。本 标为该电极 3120沿 Y轴正方向排列的序号, 如最靠近 X轴的电极 3120的位置 坐标为 1 , 对应的其上面的为 2, 依次类推, 上面的电极 3120的位置坐标为下 面的位置坐标加 1。
进一步举例说明, 一般, 用户使用手指头进行手势操作。 手指头大小一般 为直径 15毫米(mm ), 即手指头投影在触摸屏中的区域 222的直径为 15mm。 本实施方式中, 触摸屏的感应层由铟锡氧化物 (Indium Thin Oxide, ITO ) 的电 极 3120构成, 而每个电极 3120在 Υ方向的宽度为 5mm。 故手指头投影在触摸 屏中的区域 322 会占据三个电极 3120。 电容采集模块获取采集点的电容值 Cl=100pF、 C2=300pF、 C3=200pF。 同时, 计算模块获取到电容值为 CI的电极 3120的位置坐标 Yl=2、 电容值为 C2的电极 3120的位置坐标 Υ2=3、 电容值为 C3的电极 3120的位置坐标 Υ3=4。 在例子中, 手指感应区域, 即投影在触摸屏 中的区域 322的电容值有三个分别为 Cl、 C2、 C3, 故手指感应区域 322的中心 的 X坐标为所述采集点投影到触摸屏的区域 322中的第二种三角形电极 3122的 电容值之和与第一种三角形电极 3121 的电容值之和的比值, 即 X ( C1+C3 )
F _ 100x 2 + 300x 3 + 200x 4 ^ 3 χη
/C2=10, Y坐标为 ― ^ 100 + 200 + 300 · , 即采集点的 X坐标为 10, Υ 坐标为 3.17。 另外, 计算模块获取预先设置好介电系数 ^和手指面积 Α, 根据 Cl、 C2、 C3, 及该采集点投影在触摸屏中的区域 322中电极 3120的初始电容 7 A 值, 计算出该区域 322中的电极 3120的电容的变化值, 根据 Qh , 即可 计算得到采集点的 Z坐标。
区别于现有技术的情况, 本发明实施方式通过获取手势轨迹至少两个采集 点的电容值, 并根据获取的所述至少两个采集点的电容值, 计算得到所述手势 轨迹的至少两个采集点的三维坐标, 进而确定手势轨迹, 以实现对三维手势的 识别, 并根据不同手势实现相应不同的操作, 丰富的移动终端的操作。 同时, 本发明通过触摸屏可获取的电容值实现三维手势的确定, 无需另外设置传感器, 也避免了受环境因素的干扰。
本发明还包括一种移动终端, 包括上述的触摸屏的三维操作控制装置及电 容触摸屏, 其中, 触摸屏的三维操作控制装置与电容触摸屏电连接。 具体实施 方式请参照上述相关描述, 在此不再赘述。
需要说明的是, 全文实施方式中均以手指实现手势轨迹, 但并不能认为本 发明的手势轨迹仅可使用手指实现, 本发明的手势轨迹可由任意导体实现, 在 此不作限定。
另外, 可以理解的是, 全文的实施方式均基于由三角形电极构成的感应层 进行说明, 但是, 并不能认为本发明仅限基于由三角形电极构成的感应层。 在 具体应用实施方式中, 本发明可基于其他结构的感应层进行三维操作控制, 例 如, 由菱形电极构成的感应层。 其原理与三角形电极的类似, 根据感应层中的 感应电容, 计算出手势轨迹上的采集点的 Z轴上的坐标, 并根据对应该感应层 中不同位置与感应层中的
以上所述仅为本发明的实施方式, 并非因此限制本发明的专利范围, 凡是 利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接 运用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求
1.一种触摸屏的三维操作控制方法, 其中, 令沿着第一方向的轴为 X轴, Y 轴垂直与 X轴, Z轴同时垂直于 X轴以及 Y轴, 包括以下步骤:
采集手指或导体在触摸屏感应空间中所形成的运动轨迹中的至少两个采集 点的电容值, 其中, 所述采集点投影到触摸屏的区域至少与两个电极相交, 所 述采集点的电容值为所述手指或导体接近所述触摸屏时所述手指或导体分别与 投影区域中的至少两个电极所形成的电容的容值; 根据公式 X = /(CA , )、 7 = ¾^ , Ζ = ε χ ^ , 分别计算得到所述采集 点在 X轴、 Y轴以及 Z轴的坐标, 从而获得所述采集点的三维坐标, 其中, 所 述 CA为触摸屏中 A通道检测到的所述采集点投影到触摸屏的区域中的第一种三 角形电极所形成的电容值, 所述 为触摸屏中 B通道检测到的所述采集点投影 到触摸屏的区域中的第二种三角形电极所形成的电容值, 所述 α为其中一个通 道检测到的所述采集点投影到触摸屏的区域中的电极所形成的电容值, 所述 κ 为所述采集点投影到触摸屏的区域中的其中一个电极在 Υ轴方向定义的位置坐 标, 所述触摸屏中每个通道分别与一个相应的电极连接, 并能检测到所述相应 的电极所形成的电容值, 所述 Α通道指的是与触摸屏中第一种三角形电极连接 的所有通道,所述 B通道指的是与触摸屏中第二种三角形电极连接的所有通道,
A 为所述采集点的面积, 为介电系数, ∑ς¾为所述采集点的电容值与投影区 域的初始电容值之间的电容变化值, 所述投影区域的初始电容值为在无手指及 无导体接近时, 所述投影区域中的电极的电容值;
根据所述至少两个采集点的三维坐标, 确定所述运动轨迹, 并执行相应的 操作。
2.根据权利要求 1所述的方法,其中,所述根据至少两个采集点的三维坐标, 确定所述手势轨迹, 并执行相应的操作的步骤包括:
分别比较所述至少两个采集点在 X轴上坐标的大小、 在 Υ轴上坐标的大小 及在 Ζ轴上坐标的大小, 根据比较结果确定所述手势轨迹, 并执行相应的操作。
3.根据权利要求 1所述的方法, 其中, 所述触摸屏感应空间中距离触摸屏表 面的最大感应高度为 50毫米。
4.一种触摸屏的三维操作控制装置, 其中, 设定沿着触摸屏的第一方向的轴 为 X轴, Y轴垂直与 X轴, Z轴同时垂直于 X轴以及 Y轴, 所述装置包括电容 采集模块、 计算模块及处理模块; 其中,
所述电容采集模块用于采集手指或导体在触摸屏感应空间中所形成的运动 轨迹中的至少两个采集点的电容值, 并向所述计算模块发送, 其中, 所述采集 点投影到触摸屏的区域至少与两个电极相交, 所述采集点的电容值为所述手指 或导体接近所述触摸屏时所述手指或导体分别与投影区域中的至少两个电极所 形成的电容的容值;
所述计算模块用于根据所述采集点的电容值分别计算得到所述采集点在 X 轴、 Y轴以及 Z轴的坐标, 从而获得所述采集点的三维坐标, 并将所述采集点 的三维坐标向处理模块发送;
所述处理模块用于根据所述至少两个采集点的三维坐标, 确定所述手势轨 迹, 并执行相应的操作。
5.根据权利要求 4所述的装置, 其中,
所述计算模块进一步用于根据公式 Z = ^^ , 计算得到所述采集点在 Z 轴的坐标, 其中, A 为所述采集点的面积, 为介电系数, ∑C为所述采集点 容值为在无手指及无导体接近时, 所述采集点投影到触摸屏的区域中的电极的 电容值。
6.根据权利要求 4所述的装置, 其中, 所述计算模块进一步用于根据公式 X = /(CA, )、 7 = ¾^ , 计算得到所 述采集点在 X轴及 Y轴上的坐标, 其中, 所述 CA为触摸屏中 A通道检测到的所 述采集点投影到触摸屏的区域中的第一种三角形电极所形成的电容值, 所述 为触摸屏中 B通道检测到的所述采集点投影到触摸屏的区域中的第二种三角形 电极所形成的电容值, 所述 G为其中一个通道检测到的所述采集点投影到触摸 屏的区域中的电极所形成的电容值, 所述 K为所述采集点投影到触摸屏的区域 中的其中一个电极在 Y轴方向定义的位置坐标, 所述触摸屏中每个通道分别与 一个相应的电极连接, 并能检测到所述相应的电极所形成的电容值, 所述 A通 道指的是与触摸屏中第一种三角形电极连接的所有通道, 所述 B通道指的是与 触摸屏中第二种三角形电极连接的所有通道。
7.根据权利要求 4所述的装置, 其中, 所述处理模块具体用于分别比较所述 至少两个采集点在 X轴上坐标的大小、 在 Y轴上坐标的大小及在 Z轴上坐标的 大小, 根据比较结果确定所述手势轨迹, 并执行相应的操作。
8.根据权利要求 4所述的装置, 其中, 所述触摸屏感应空间中距离触摸屏表 面的最大感应高度为 50毫米。
9.一种移动终端,其中,所述移动终端包括三维操作控制装置及电容触摸屏, 设定沿着所述电容触摸屏的第一方向的轴为 X轴, Y轴垂直与 X轴, Z轴同时 垂直于 X轴以及 Y轴, 所述三维操作控制装置包括电容采集模块、 计算模块及 处理模块; 其中,
所述电容采集模块用于采集手指或导体在触摸屏感应空间中所形成的运动 轨迹中的至少两个采集点的电容值, 并向所述计算模块发送, 其中, 所述采集 点投影到触摸屏的区域至少与两个电极相交, 所述采集点的电容值为所述手指 或导体接近所述触摸屏时所述手指或导体分别与投影区域中的至少两个电极所 形成的电容的容值;
所述计算模块用于根据所述采集点的电容值分别计算得到所述采集点在 X 轴、 Y轴以及 Z轴的坐标, 从而获得所述采集点的三维坐标, 并将所述采集点 的三维坐标向处理模块发送;
所述处理模块用于根据所述至少两个采集点的三维坐标, 确定所述手势轨 迹, 并执行相应的操作。
10.根据权利要求 9所述的移动终端, 其中,
所述计算模块进一步用于根据公式 Z = ^^ , 计算得到所述采集点在 Z 轴的坐标, 其中, A 为所述采集点的面积, 为介电系数, ∑ς¾为所述采集点 容值为在无手指及无导体接近时, 所述采集点投影到触摸屏的区域中的电极的 电容值。
11.根据权利要求 9所述的移动终端, 其中, 所述计算模块进一步用于根据公式 X = /(CA, )、 7 , 计算得到所
Figure imgf000021_0001
述采集点在 X轴及 Y轴上的坐标, 其中, 所述 CA为触摸屏中 A通道检测到的所 述采集点投影到触摸屏的区域中的第一种三角形电极所形成的电容值, 所述 为触摸屏中 B通道检测到的所述采集点投影到触摸屏的区域中的第二种三角形 电极所形成的电容值, 所述 α为其中一个通道检测到的所述采集点投影到触摸 屏的区域中的电极所形成的电容值, 所述 κ为所述采集点投影到触摸屏的区域 中的其中一个电极在 Υ轴方向定义的位置坐标, 所述触摸屏中每个通道分别与 一个相应的电极连接, 并能检测到所述相应的电极所形成的电容值, 所述 Α通 道指的是与触摸屏中第一种三角形电极连接的所有通道, 所述 B通道指的是与 触摸屏中第二种三角形电极连接的所有通道。
12.根据权利要求 9所述的移动终端, 其中, 所述处理模块具体用于分别比 较所述至少两个采集点在 X轴上坐标的大小、 在 Y轴上坐标的大小及在 Z轴上 坐标的大小, 根据比较结果确定所述手势轨迹, 并执行相应的操作。
13.根据权利要求 9所述的移动终端, 其中, 所述触摸屏感应空间中距离触 摸屏表面的最大感应高度为 50毫米。
PCT/CN2013/080176 2013-03-04 2013-07-26 一种触摸屏的三维操作控制方法、装置及其移动终端 WO2014134898A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13877238.9A EP2966555B1 (en) 2013-03-04 2013-07-26 Three-dimensional operation control method and device for touchscreen, and mobile terminal thereof
US14/403,290 US9250741B2 (en) 2013-03-04 2013-07-26 Method, device and mobile terminal for three-dimensional operation control of a touch screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310068288.1A CN103116432B (zh) 2013-03-04 2013-03-04 一种触摸屏的三维操作控制方法、装置及其移动终端
CN201310068288.1 2013-03-04

Publications (1)

Publication Number Publication Date
WO2014134898A1 true WO2014134898A1 (zh) 2014-09-12

Family

ID=48414829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080176 WO2014134898A1 (zh) 2013-03-04 2013-07-26 一种触摸屏的三维操作控制方法、装置及其移动终端

Country Status (4)

Country Link
US (1) US9250741B2 (zh)
EP (1) EP2966555B1 (zh)
CN (1) CN103116432B (zh)
WO (1) WO2014134898A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105045481A (zh) * 2015-06-26 2015-11-11 深圳市金立通信设备有限公司 一种操作方法及终端

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5366051B2 (ja) * 2009-04-20 2013-12-11 株式会社ジャパンディスプレイ 情報入力装置、表示装置
CN103116432B (zh) * 2013-03-04 2016-08-31 惠州Tcl移动通信有限公司 一种触摸屏的三维操作控制方法、装置及其移动终端
JP5856995B2 (ja) * 2013-03-29 2016-02-10 株式会社ジャパンディスプレイ 電子機器および電子機器の制御方法
US9477314B2 (en) * 2013-07-16 2016-10-25 Google Technology Holdings LLC Method and apparatus for selecting between multiple gesture recognition systems
CN104345906B (zh) * 2013-08-06 2018-02-27 联想(北京)有限公司 一种三维定位装置及其定位方法
CN104344497A (zh) * 2013-08-07 2015-02-11 珠海格力电器股份有限公司 空调器及其控制方法、装置
US9506967B2 (en) 2013-09-16 2016-11-29 Intel Corporation Multi-dimensional electrodes for capacitive sensing
CN106775139A (zh) * 2015-11-24 2017-05-31 南昌欧菲光科技有限公司 触摸屏及具有该触摸屏的显示装置
WO2017197041A1 (en) * 2016-05-12 2017-11-16 The Regents Of The University Of California Touchscreen with group filtering
CN106249899A (zh) * 2016-08-15 2016-12-21 珠海格力电器股份有限公司 一种手势识别系统、电器及其控制方法
CN106547309A (zh) * 2016-10-06 2017-03-29 南昌与德通讯技术有限公司 终端设备及其操作方法
US10802644B2 (en) * 2017-04-05 2020-10-13 Wayne Rasanen Assistive text-entry system and method
TWI657352B (zh) * 2017-07-21 2019-04-21 中華電信股份有限公司 三維電容式穿戴人機互動裝置及方法
CN108304711A (zh) * 2018-02-02 2018-07-20 惠州Tcl移动通信有限公司 移动终端的触摸解锁方法、储存装置及移动终端
CN108469926B (zh) * 2018-03-09 2021-05-25 北京硬壳科技有限公司 设备控制方法、装置及设备
CN108595049A (zh) * 2018-04-24 2018-09-28 北京硬壳科技有限公司 一种触控方法及装置
US11416077B2 (en) * 2018-07-19 2022-08-16 Infineon Technologies Ag Gesture detection system and method using a radar sensor
CN110420463A (zh) * 2019-01-22 2019-11-08 网易(杭州)网络有限公司 游戏中虚拟对象的控制方法及装置、电子设备、存储介质
CN111625147B (zh) * 2020-05-28 2023-08-25 京东方科技集团股份有限公司 一种基于耦合电容的手势识别方法、装置及系统
CN113641270B (zh) * 2021-08-19 2024-04-09 深圳市汇春科技股份有限公司 一种触控面板控制方法和多媒体设备
CN114647362B (zh) * 2022-03-22 2024-04-12 天马微电子股份有限公司 显示面板的触控算法
US12050745B2 (en) 2022-07-20 2024-07-30 Novatek Microelectronics Corp. Control method for controller of interface device with multiple sensing functions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799733A (zh) * 2010-04-07 2010-08-11 苏州瀚瑞微电子有限公司 一种侦测多点触碰的方法及触摸屏
CN102081473A (zh) * 2009-11-27 2011-06-01 实盈光电股份有限公司 多媒体无线触控装置
CN103116432A (zh) * 2013-03-04 2013-05-22 惠州Tcl移动通信有限公司 一种触摸屏的三维操作控制方法、装置及其移动终端

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI240208B (en) * 2004-02-17 2005-09-21 Elan Microelectronics Corp Capacitance touch panel with simplified scanning lines and the detection method thereof
GB2437827B (en) * 2006-05-05 2008-03-26 Harald Philipp Touch screen element
DE102007016408A1 (de) * 2007-03-26 2008-10-02 Ident Technology Ag Mobiles Kommunikationsgerät und Eingabeeinrichtung hierfür
US8860683B2 (en) * 2007-04-05 2014-10-14 Cypress Semiconductor Corporation Integrated button activation sensing and proximity sensing
US9823784B2 (en) * 2008-04-10 2017-11-21 Atmel Corporation Capacitive touch screen with noise suppression
CN101561738A (zh) * 2009-06-05 2009-10-21 超级先锋有限公司 电容触摸屏/板的一维触点定位方法及电容触摸屏/板
CN101639743B (zh) * 2009-07-06 2011-04-27 友达光电股份有限公司 触控检测方法
FR2949007B1 (fr) * 2009-08-07 2012-06-08 Nanotec Solution Dispositif et procede d'interface de commande sensible a un mouvement d'un corps ou d'un objet et equipement de commande integrant ce dispositif.
KR101639383B1 (ko) * 2009-11-12 2016-07-22 삼성전자주식회사 근접 터치 동작 감지 장치 및 방법
KR101685902B1 (ko) * 2010-09-15 2016-12-13 삼성전자주식회사 터치 감지 장치 및 그의 접근 감지 방법
JP5625669B2 (ja) * 2010-09-17 2014-11-19 ソニー株式会社 センサ装置および情報処理装置
CN102446042B (zh) * 2010-10-12 2014-10-01 谊达光电科技股份有限公司 电容式近接感应暨触控侦测装置与方法
KR101646616B1 (ko) * 2010-11-30 2016-08-12 삼성전자주식회사 객체 제어 장치 및 방법
EP2711818A1 (en) * 2011-05-16 2014-03-26 Panasonic Corporation Display device, display control method and display control program, and input device, input assistance method and program
KR102134490B1 (ko) * 2012-01-12 2020-07-16 시냅틱스 인코포레이티드 단일층 용량성 이미징 센서들

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081473A (zh) * 2009-11-27 2011-06-01 实盈光电股份有限公司 多媒体无线触控装置
CN101799733A (zh) * 2010-04-07 2010-08-11 苏州瀚瑞微电子有限公司 一种侦测多点触碰的方法及触摸屏
CN103116432A (zh) * 2013-03-04 2013-05-22 惠州Tcl移动通信有限公司 一种触摸屏的三维操作控制方法、装置及其移动终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105045481A (zh) * 2015-06-26 2015-11-11 深圳市金立通信设备有限公司 一种操作方法及终端

Also Published As

Publication number Publication date
US20150109242A1 (en) 2015-04-23
EP2966555A1 (en) 2016-01-13
EP2966555B1 (en) 2021-05-19
EP2966555A4 (en) 2016-11-23
CN103116432B (zh) 2016-08-31
CN103116432A (zh) 2013-05-22
US9250741B2 (en) 2016-02-02

Similar Documents

Publication Publication Date Title
WO2014134898A1 (zh) 一种触摸屏的三维操作控制方法、装置及其移动终端
JP5561682B2 (ja) 電子システムのパラメータを調節するための入力デバイス及び方法
CN106462348B (zh) 设备的可调参数的调整方法和设备
RU2541852C2 (ru) Устройство и способ для управления пользовательским интерфейсом на основе движений
WO2013123738A1 (zh) 一种屏幕的解锁系统和方法
WO2016065712A1 (zh) 触摸屏控制方法和触摸屏装置
US20140189579A1 (en) System and method for controlling zooming and/or scrolling
US20140320420A1 (en) Method and apparatus for controlling a mobile device based on touch operations
US20160246383A1 (en) Floating or mid-air operation processing method and apparatus
KR20140114913A (ko) 사용자 기기의 센서 운용 방법 및 장치
CN103354581B (zh) 一种通过左右手来自动调整手机控件的方法及系统
CN108920066B (zh) 触摸屏滑动调整方法、调整装置及触控设备
CN101364160A (zh) 一种用于触摸屏的纠错方法
TW201426431A (zh) 觸感回饋系統及其提供觸感回饋的方法
TW201239702A (en) Method and device for identifying multipoint rotating movement
WO2014153953A1 (zh) 一种触控屏幕的触控监测方法及终端
CN104182132A (zh) 一种智能终端手势控制方法及智能终端
CN105335724B (zh) 基于指纹识别的窗口调整方法及装置和终端
US20190286245A1 (en) Display control device, display control method, and computer program
TW201416909A (zh) 適於接觸控制及懸浮控制的觸控系統及其運作方法
CN104951139A (zh) 触摸屏及其制造方法、触控响应方法、触摸装置
US9063567B2 (en) Display control apparatus and display control method
WO2016145827A1 (zh) 终端的控制方法及装置
US20120182260A1 (en) Input device
CN105320316B (zh) 一种触摸屏的去抖动方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877238

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013877238

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14403290

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE