WO2014134871A1 - 一种用于植物照明的led - Google Patents

一种用于植物照明的led Download PDF

Info

Publication number
WO2014134871A1
WO2014134871A1 PCT/CN2013/075684 CN2013075684W WO2014134871A1 WO 2014134871 A1 WO2014134871 A1 WO 2014134871A1 CN 2013075684 W CN2013075684 W CN 2013075684W WO 2014134871 A1 WO2014134871 A1 WO 2014134871A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led
layer
strained
plant illumination
Prior art date
Application number
PCT/CN2013/075684
Other languages
English (en)
French (fr)
Inventor
林鸿亮
吴超瑜
黃苡叡
吴俊毅
陶青山
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Priority to US14/415,037 priority Critical patent/US20150171270A1/en
Publication of WO2014134871A1 publication Critical patent/WO2014134871A1/zh
Priority to US15/594,617 priority patent/US10154626B2/en
Priority to US16/194,287 priority patent/US10716262B2/en
Priority to US16/900,879 priority patent/US10874057B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the present invention relates to an LED, and more particularly to an LED for plant illumination.
  • Plant lighting mainly includes plant growth lamps and aquarium lamps.
  • Plant growth lamps supplement the light source in the absence of sufficient natural light, mainly to play the role of complementing sunlight and regulating the growth of agricultural products.
  • the aquarium lamp also plays an important role in lighting while promoting the growth of aquatic plants.
  • LED Plant lighting has the following advantages: energy saving, can directly produce the light that plants need, produce the same lumens of photons, consume less power; high efficiency, LED It is a monochromatic light that can be used to match the needs of plants to produce matching light waves that are not possible with traditional plant lights; Plant illumination wavelengths are rich in types that not only regulate crop flowering and fruiting, but also control plant height and plant nutrients; LED With the improvement of technology, the system lighting has less heat and takes up less space. It can be used in multi-layer cultivation three-dimensional combination system to achieve low heat load and miniaturization of production space.
  • the invention discloses an LED for plant illumination, which adopts a new luminescent material Ga X In (1-X) As Y P (1-Y) , and the luminous efficiency can be improved by 50 ⁇ 100%, and the benefit is obvious.
  • An LED for plant illumination characterized by having a substrate, a PN junction type light-emitting portion disposed on the substrate, the light-emitting portion having a composition formula of Ga X In (1-X) As Y P ( a strained luminescent layer of 1-Y) , wherein X and Y are values satisfying 0 ⁇ X ⁇ 1 and 0 ⁇ Y ⁇ 1, respectively.
  • the light emitting portion has a strained light emitting layer having a composition formula of Ga X In (1-X) As Y P (1-Y) , wherein X and Y satisfy 0 ⁇ X ⁇ 1 and 0 ⁇ Y, respectively. A value of ⁇ 0.2.
  • the light emitting portion has a composition formula of Ga X In (1-X) As Y P (1-Y) Strained luminescent layer, where X and Y Is a value that satisfies 0 ⁇ X ⁇ 1 and 0 ⁇ Y ⁇ 0.1, respectively.
  • the light emitting portion has a composition formula of Ga X In (1-X) As Y P (1-Y) Strained luminescent layer, where X and Y It is a value that satisfies 0 ⁇ X ⁇ 1 and 0 ⁇ Y ⁇ 0.05, respectively.
  • the light emitting portion further has a barrier layer, and the strained light emitting layer is formed with an alternate laminated structure of 2 to 40 pairs.
  • each pair of alternating laminated structures has a thickness of 5 to 100 nm.
  • composition formula of the barrier layer is (Al X Ga 1-X ) Y In (1-Y) P (wherein X and Y are values satisfying 0.3 ⁇ X ⁇ 1 and 0 ⁇ Y ⁇ 1, respectively, respectively) ).
  • the substrate material is selected from the group consisting of GaAs, GaP, or any combination of the foregoing.
  • a buffer layer disposed between the substrate and the light emitting portion is further included.
  • a window layer disposed on the light emitting portion is further included.
  • the material of the window layer is GaP.
  • the thickness of the window layer is in the range of 0.5 to 15 ⁇ m.
  • the peak light-emitting wavelength of the strained light-emitting layer is 650 ⁇ 750nm range.
  • the peak light-emitting wavelength of the strained light-emitting layer is Range of 700 ⁇ 750nm.
  • the LED for plant illumination of the present invention is provided with a composition on a substrate Ga X In (1-X) As Y P (1-Y) (where X and Y The light-emitting portions of the strained light-emitting layer satisfying the values of 0 ⁇ X ⁇ 1 and 0 ⁇ Y ⁇ 1, respectively.
  • the material of the strained luminescent layer is GaInAsP The luminous efficiency of the strained luminescent layer can be improved. In addition, since the material of the strained luminescent layer does not contain an Al component, it contributes to an improvement in life stability.
  • the illuminating wavelength from the strained luminescent layer can be 650-750 nm.
  • the LED for plant illumination of the present invention A window layer is provided on the light-emitting portion, and the window layer is transparent to the light-emitting wavelength, so that light emission from the light-emitting portion is not absorbed, and current spreading can be performed.
  • Figure 1 is a cross-sectional view showing the structure of an LED for plant illumination according to an embodiment of the present invention.
  • the wavelength of the light emitted from the light source suitable for plant cultivation illumination is 450 nm.
  • the luminescent layer material traditionally used in plant lighting products uses AlGaAsP or AlGaAs, however
  • the LED of the light-emitting layer composed of AlGaAsP or AlGaAs has a low light-emitting output. Lighting LED for plant breeding Since the light source is practical and is considered to be energy-saving and cost-effective, it is necessary to develop an LED capable of achieving high output power and/or high efficiency.
  • the following embodiments propose an LED with a wavelength of 650 ⁇ 750nm suitable for plant lighting. It has high output power and good product life stability.
  • GaInP emits light at around 640 nm and GaAs emits at 850 nm. In the vicinity, the following embodiments develop a suitable wavelength of 650-750 nm by adjusting the thickness and strain of the strained luminescent layer material while doping As on the luminescent layer GaInP material.
  • a light emitting diode includes: a substrate 11 divided into a first surface and a second surface; and a light emitting portion, which is a buffer layer from bottom to top. 12, the first confinement layer 13, the luminescent layer 14 and the second confinement layer 15 of the semiconductor material layer are stacked, formed on the first surface of the substrate 11; the window layer 16 Formed on a partial region of the second confinement layer 15 of the light-emitting portion; a second electrode 17 formed on the window layer 16; and a second electrode 18 formed on the second surface of the substrate 11.
  • the material of the substrate 11 may be selected from GaAs, GaP Or one of any combination of the foregoing.
  • the buffer layer 12 has the effect of alleviating lattice defects of the substrate for epitaxial growth, but it is not a film layer which is a necessary component of the device.
  • the light emitting portion includes a laminated structure in which the strained light emitting layer and the barrier layer are alternately included, and includes two or more pairs, preferably 2-40.
  • each pair of alternating laminated structures has a thickness of 5 to 100 nm. Scope, but not limited to, the use of multiple pairs of alternating stack structure can effectively improve the saturation current of the device.
  • the logarithm of the laminated structure in which the strained light-emitting layer and the barrier layer are alternated is 6
  • the thickness of each pair of alternating laminated structures is 40 nm and the total thickness is 240 nm.
  • the strain luminescent layer material is selected from GaInAsP without Al, and its composition formula is Ga X In (1-X) As Y P (1-Y) , where X and Y Is a value that satisfies 0 ⁇ X ⁇ 1 and 0 ⁇ Y ⁇ 1, respectively.
  • the above Y is preferably In the range of 0 ⁇ Y ⁇ 0.2, in this embodiment, X takes a value of 0.5 and Y takes a value of 0.01.
  • the material of the barrier layer is AlGaInP, and its composition is (Al X Ga 1-X ) Y In (1-Y) P , where X and Y It is a value satisfying 0.3 ⁇ X ⁇ 1 and 0 ⁇ Y ⁇ 1, respectively.
  • X takes a value of 0.5
  • Y takes a value of 0.5.
  • the material of the window layer is GaP and the thickness is 0.5 ⁇ 15 ⁇ m.
  • the range which has the function of current spreading, but it is not a necessary film layer of the device, and can be selected according to the needs of the process parameters.
  • the photoelectric characteristics of the quaternary light-emitting diode device structure with a size of 42 ⁇ 42 mil are listed in Table 1. . As shown in Table 1, as a result of the current flowing through the first electrode and the second electrode, a red light having an average peak wavelength of 685.6 nm is emitted, and a forward flow of 350 mA (mA) is performed. The average forward voltage at current is 2.25V and the output power is 250.3mW.
  • the same is the 42 ⁇ 42 mil quaternary light-emitting diode device structure in this embodiment, and the logarithm of the laminated structure of the strained light-emitting layer and the barrier layer is 6 pairs, and each pair is alternated.
  • the thickness of the laminated structure was 60 nm and the total thickness was 360 nm.
  • the material of the strain luminescent layer is Ga X In (1-X) As Y P (1-Y) , the value of X is 0.5, and the value of Y is 0.025.
  • a red light having an average wavelength of 680.2 nm and an average peak wavelength of 714.9 nm is emitted, and a current of 350 mA is applied in the forward direction.
  • the average forward voltage is 2.22V and the output power is 232.7mW.
  • the difference is that the strain luminescent layer material of the 42 ⁇ 42 mil quaternary light-emitting diode device structure in this embodiment is selected as Ga X In (1-X) As Y P (1-Y) , X The value is 0.5 and the value of Y is 0.04.
  • the photoelectric characteristics of the quaternary light-emitting diode device structure having a size of 42 ⁇ 42 mils are shown in Table 2. As shown in Table 2 As shown, as a result of the current flowing through the first electrode and the second electrode, a red light having an average peak wavelength of 722.0 nm is emitted, and a forward voltage average when a current of 350 mA is passed in the forward direction. Value 2.18V, the output power is 216.5mW.
  • the difference is: 42 ⁇ 42 mil quaternary light-emitting diode device structure in this embodiment, the material of the strain luminescent layer is Ga X In (1-X) As Y P (1-Y) , The value of X is 0.5 and the value of Y is further increased to 0.05.
  • a red light having an average wavelength of 712.3 nm and an average peak wavelength of 739.5 nm is emitted, and a current of 350 mA is applied in the forward direction.
  • the average forward voltage is 2.21V and the output power is 202.2mW.
  • the quaternary light-emitting diode device structure has a logarithm of a stack of alternating layers of strained light-emitting layer and barrier layer of 9 pairs, and the thickness of each pair of alternating stacked structures is 50 nm, and the total thickness is 450 nm. .
  • a red light having an average wavelength of 701.5 nm and an average peak wavelength of 733.5 nm was emitted, and the saturation current was 2000 mA ( Above mA), the average forward voltage when flowing through 350 mA current is 2.24 V and the output power is 223.9 mW.
  • the light-emitting diode device structure for promoting photosynthesis of the above-mentioned plant is adjusted by adjusting the composition of the strained light-emitting layer, the range of composition values, and the logarithm of the laminated structure of the strained light-emitting layer and the barrier layer.
  • the peak emission wavelength of the strained luminescent layer can be controlled in the range of 650 to 750 nm and achieve high output power.
  • the material of the strained luminescent layer does not contain an Al component, it contributes to an improvement in life stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Abstract

提供一种用于植物照明的LED,具有基板(11),设置在基板(11)上的PN结型的发光部,发光部具有组成式为GaXIn(1-X)AsYP(1-Y) 的应变发光层,其中X和Y是分别满足0<X<1和0<Y<1的数值。发光部还具有势垒层,与应变发光层形成具有2~40对的交替叠层结构。该结构采用新的发光材料GaXIn(1-X)AsYP(1-Y) ,发光效率可提升50~100% 。

Description

一种用于植物照明的 LED
本申请主张如下优先权:中国发明专利申请号 201310072627.3 ,题为 ' 一种用于植物照明的LED ' ,于 2013 年 3 月 7日 提交。 上述申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种 LED ,尤其是涉及一种用于植物照明的 LED 。
背景技术
近年来,一直在研究采用人工光源进行的植物培育。特别是使用采用单色性优异,能够节能、长寿命和小型化的发光二极管(英文缩写为 LED )进行的照明的栽培方法备受关注。
植物照明主要包括植物生长灯和水族灯,植物生长灯在自然光照不充足的情况下进行光源的补充,主要是扮演与太阳光互补、调节农产品生长的角色。水族灯在促进水生植物生长的同时也起到照明作用方便观赏。
与传统植物照明相比, LED 植物照明有以下优点:节能,可以直接制造植物需要的光,产生相同流明的光子,耗电量少;高效, LED 是单色光,可以贴合植物需要,制造相匹配的光波,而传统植物灯做不到; LED 植物照明波长类型丰富,不仅可以调节作物开花与结实,而且还能控制株高和植物的营养成分; LED 植物照明随着技术提升,系统发热少,占用空间小,可用于多层栽培立体组合系统,实现了低热负荷和生产空间小型化。
发明内容
本发明公开了一种用于植物照明的 LED ,其采用新的发光材料 GaXIn(1-X)AsYP(1-Y) ,发光效率可提升 50~100% ,效益明显。
一种用于植物照明的 LED ,其特征在于:具有基板,设置在所述基板上的 PN 结型的发光部,所述发光部具有组成式为 GaXIn(1-X)AsYP(1-Y) 的应变发光层,其中 X 和 Y 是分别满足 0<X<1 和 0<Y<1 的数值。
在一些实施中,所述发光部具有组成式为 GaXIn(1-X)AsYP(1-Y) 的应变发光层,其中 X 和 Y 是分别满足 0<X<1 和 0<Y<0.2 的数值。
进一步地,所述发光部具有组成式为 GaXIn(1-X)AsYP(1-Y) 的应变发光层,其中 X 和 Y 是分别满足 0<X<1 和 0<Y<0.1 的数值。
更进一步地,所述发光部具有组成式为 GaXIn(1-X)AsYP(1-Y) 的应变发光层,其中 X 和 Y 是分别满足 0<X<1 和 0<Y ≤ 0.05 的数值。
进一步地,所述发光部还具有势垒层,与所述应变发光层形成具有 2 ~ 40 对的交替叠层结构。
进一步地,所述每对交替叠层结构的厚度为 5~100nm 。
进一步地,所述势垒层的组成式为 (AlXGa1-X)YIn(1-Y)P ( 其中, X 和 Y 是分别满足 0.3 ≤ X ≤ 1 和 0<Y<1 的数值 ) 。
进一步地,所述基板材料选自 GaAs 、 GaP 或前述的任意组合之一。
进一步地,还包括设置在所述基板与发光部之间的缓冲层。
进一步地,还包括设置在所述发光部上的窗口层。
进一步地,所述窗口层的材质选用 GaP 。
进一步地,所述窗口层的厚度是 0.5 ~ 15 μ m 的范围。
进一步地,用于促进植物培育的光合作用的发光二极管,所述应变发光层的峰发光波长是 650~750nm 的范围。
进一步地,用于促进植物培育的光合作用的发光二极管,所述应变发光层的峰发光波长是 700~750nm 的范围。
本发明的用于植物照明的 LED ,在基板上设置具有组成式 GaXIn(1-X)AsYP(1-Y) ( 其中, X 和 Y 是分别满足 0<X<1 和 0<Y<1 的数值 ) 的应变发光层的发光部。通过应变发光层的材质采用 GaInAsP ,能够提高应变发光层的发光效率。此外,由于应变发光层的材质不含 Al 组分,因此有助于提升寿命稳定性。
另外,通过调整前述应变发光层的组成和厚度,能够使来自应变发光层的发光波长为 650~750nm 的范围。进一步地,本发明之用于植物照明的 LED 在发光部上设置有窗口层,该窗口层对于发光波长透明,因此不会吸收来自发光部的发光,还可以起电流扩展的作用。
因而,根据本发明,能够提供能够大量生产发光波长 650~750nm 范围的高输出功率和 / 或高效率的 LED 。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图 1 为根据本发明实施的一种用于植物照明的 LED 的结构剖视图。
具体实施方式
从迄今为止的研究结果来看,作为适合于植物培养照明用的光源的发光波长,确认了波长 450nm 附近的蓝色光和波长 600~750nm 区域的红色光的效果。
传统用于植物照明产品的发光层材料采用 AlGaAsP 或 AlGaAs ,然而由 AlGaAsP 或 AlGaAs 构成的发光层的 LED ,其发光输出功率偏低。为了推进植物培育用的照明 LED 光源实用化,从节能和成本方面考虑,因此有必要开发能够实现高输出功率化和 / 或高效率化的 LED 。
下面各实施例提出了一种适合植物照明用的波段为 650~750nm 的 LED ,其具有高输出功率、良好的产品寿命稳定性。
GaInP 发光波长在 640nm 附近, GaAs 发光波长在 850nm 附近,下面各实施例通过在发光层 GaInP 材料基础上掺杂 As 的同时调整应变发光层材料的厚度及应变量,从而开发出适合波长 650~750nm 区域植物照明产品生长的一种新外延结构构成的发光二极管。
下面结合附图和实施例对本发明的实施作详细说明。
实施例 1
如图 1 所示,一种发光二极管,包括:基板 11 ,分为第一表面和第二表面;发光部,由从下至上依次为缓冲层 12 、第一限制层 13 、发光层 14 和第二限制层 15 的半导体材料层堆叠而成,形成于基板 11 的第一表面之上;窗口层 16 ,形成于所述发光部第二限制层 15 的局部区域之上;第二电极 17 ,形成于窗口层 16 之上;第二电极 18 ,形成于基板 11 的第二表面之上。
在本器件结构中,基板 11 的材料可以选自 GaAs 、 GaP 或前述的任意组合之一。
缓冲层 12 具有缓和用于外延生长的基板的晶格缺陷的作用,但其并非器件必选的膜层。
发光部包括应变发光层与势垒层交替的叠层结构,包含 2 对以上,优选为 2-40 对,每对交替叠层结构的厚度为 5~100nm 范围,但不局限此于,采用多对交替的叠层结构可以有效提升器件的饱和电流。在本实施例中,应变发光层与势垒层交替的叠层结构的对数为 6 对,每对交替叠层结构的厚度选取 40nm ,总厚度为 240nm 。
应变发光层材料选用不含 Al 的 GaInAsP ,其具有组成式为 GaXIn(1-X)AsYP(1-Y) ,其中, X 和 Y 是分别满足 0<X<1 和 0<Y<1 的数值。进一步地,为了更好地将发光层的峰值波控制在 650~750nm ,上述 Y 优选为 0<Y<0.2 的范围,在本实施例中 X 取值为 0.5 , Y 取值为 0.01 。
势垒层材料选用 AlGaInP ,其组成式为 (AlXGa1-X)YIn(1-Y)P ,其中, X 和 Y 是分别满足 0.3 ≤ X ≤ 1 和 0<Y<1 的数值,在本实施例中, X 取值为 0.5 , Y 取值为 0.5 。
窗口层的材质选用 GaP ,厚度是 0.5 ~ 15 μ m 的范围,其具有电流扩展的作用,但其也并非器件必选的膜层,可以根据工艺参数的需要加以选择。
将评价尺寸为 42 × 42mil 大功率的四元系发光二极管器件结构的光电特性列于表 1 。如表 1 所示,在第一电极和第二电极通电后流过电流的结果,发射出了峰波长平均值为 685.6nm 的红色光,正向流过 350 毫安( mA )电流时的正向电压平均值为 2.25V ,输出功率为 250.3mW 。
表 1
  VF / V Po / mW WLD / nm WLP / nm
No.1 2.26 248.5 656.2 686.0
No.2 2.23 252.1 656.2 685.1
平均值 2.25 250.3 656.2 685.6
实施例 2
与实施例 1 相比,相同的是:本实施例中 42 × 42mil 的四元系发光二极管器件结构,其应变发光层与势垒层交替的叠层结构的对数为 6 对,每对交替叠层结构的厚度选取 60nm ,总厚度为 360nm 。不同的是:其应变发光层材料选用 GaXIn(1-X)AsYP(1-Y) , X 取值为 0.5 ,而 Y 取值为 0.025 。在第一电极和第二电极通电后流过电流的结果,发射出了主波长平均值为 680.2nm 、峰波长平均值为 714.9nm 的红色光,正向流过 350 毫安( mA )电流时的正向电压平均值为 2.22V ,输出功率为 232.7mW 。
实施例 3
与实施例 1 相比,不同的是:本实施例中 42 × 42mil 的四元系发光二极管器件结构的应变发光层材料选用 GaXIn(1-X)AsYP(1-Y) , X 取值为 0.5 ,而 Y 取值为 0.04 。
将评价尺寸为 42 × 42mil 的四元系发光二极管器件结构的光电特性列于表 2 。如表 2 所示,在第一电极和第二电极通电后流过电流的结果,发射出了峰波长平均值为 722.0nm 的红色光,正向流过 350 毫安( mA )电流时的正向电压平均值为 2.18V ,输出功率为 216.5mW 。
表 2
  VF / V Po / mW WLD / nm WLP / nm
No.1 2.19 215.7 693.7 721.7
No.2 2.20 222.7 697.4 723.5
No.3 2.16 220.1 701.7 723.5
No.4 2.19 207.6 691.5 719.3
平均值 2.19 216.5 696.1 722.0
实施例 4
与实施例 3 相比,不同的是:本实施例中 42 × 42mil 的四元系发光二极管器件结构,其应变发光层材料选用 GaXIn(1-X)AsYP(1-Y) , X 取值为 0.5 ,而 Y 取值进一步增加为 0.05 。在第一电极和第二电极通电后流过电流的结果,发射出了主波长平均值为 712.3nm 、峰波长平均值为 739.5nm 的红色光,正向流过 350 毫安( mA )电流时的正向电压平均值为 2.21V ,输出功率为 202.2mW 。
实施例 5
与实施例 3 相比,不同的是:本实施例中 42 × 42mil 的四元系发光二极管器件结构,其应变发光层与势垒层交替的叠层结构的对数为 9 对,每对交替叠层结构的厚度选取 50nm ,总厚度为 450nm 。在第一电极和第二电极通电后流过电流的结果,发射出了主波长平均值为 701.5nm 、峰波长平均值为 733.5nm 的红色光,饱和电流为 2000 毫安( mA )以上,正向流过 350 毫安( mA )电流时的正向电压平均值为 2.24V ,输出功率为 223.9mW 。
综上所述,上述用于促进植物培育的光合作用的发光二极管器件结构,通过调整应变发光层的组成、组分取值范围以及应变发光层与势垒层交替的叠层结构的对数和厚度范围,其应变发光层的峰发光波长可以控制在 650~750nm 的范围,并实现高输出功率。此外,由于应变发光层的材质不含 Al 组分,因此有助于提升寿命稳定性。

Claims (10)

  1. 一种用于植物照明的 LED ,其特征在于:具有基板,设置在所述基板上的 PN 结型的发光部,所述发光部具有组成式为 GaXIn(1-X)AsYP(1-Y) 的应变发光层,其中 X 和 Y 是分别满足 0<X<1 和 0<Y<1 的数值。
  2. 根据权利要求 1 所述的一种用于植物照明的 LED ,其特征在于: 0<Y<0.2 。
  3. 根据权利要求 1 所述的一种用于植物照明的 LED ,其特征在于: 0<Y<0.1 。
  4. 根据权利要求 1 所述的一种用于植物照明的 LED ,其特征在于: 0<Y ≤ 0.05 。
  5. 根据权利要求 1 或 2 或 3 或 4 所述的一种用于植物照明的 LED ,其特征在于:所述发光部还具有势垒层,与所述应变发光层形成具有 2 ~ 40 对的交替叠层结构。
  6. 根据权利要求 5 所述的一种用于植物照明的 LED ,其特征在于:所述每对交替叠层结构的厚度为 5~100nm 。
  7. 根据权利要求 1 或 2 或 3 或 4 所述的一种用于植物照明的 LED ,其特征在于:所述势垒层的组成式为 (AlXGa1-X)YIn(1-Y)P ,其中 X 和 Y 是分别满足 0.3 ≤ X ≤ 1 和 0<Y<1 的数值。
  8. 根据权利要求 1 或 2 或 3 或 4 所述的一种用于植物照明的 LED ,其特征在于:还包括设置在所述发光部之上的 GaP 窗口层。
  9. 根据权利要求 1 或 2 所述的一种用于植物照明的 LED ,其特征在于:所述应变发光层的峰发光波长是 650~750nm 的范围。
  10. 根据权利要求 1 或 2 所述的一种用于植物照明的 LED ,其特征在于:所述应变发光层的峰发光波长是 700~750nm 的范围。
PCT/CN2013/075684 2013-03-07 2013-05-16 一种用于植物照明的led WO2014134871A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/415,037 US20150171270A1 (en) 2013-03-07 2013-05-16 LED For Plant Illumination
US15/594,617 US10154626B2 (en) 2013-03-07 2017-05-14 LED for plant illumination
US16/194,287 US10716262B2 (en) 2013-03-07 2018-11-16 LED for plant illumination
US16/900,879 US10874057B2 (en) 2013-03-07 2020-06-13 LED for plant illumination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310072627.3A CN103137818B (zh) 2013-03-07 2013-03-07 一种用于植物照明的led
CN201310072627.3 2013-03-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/415,037 A-371-Of-International US20150171270A1 (en) 2013-03-07 2013-05-16 LED For Plant Illumination
US15/594,617 Continuation-In-Part US10154626B2 (en) 2013-03-07 2017-05-14 LED for plant illumination

Publications (1)

Publication Number Publication Date
WO2014134871A1 true WO2014134871A1 (zh) 2014-09-12

Family

ID=48497380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075684 WO2014134871A1 (zh) 2013-03-07 2013-05-16 一种用于植物照明的led

Country Status (3)

Country Link
US (1) US20150171270A1 (zh)
CN (1) CN103137818B (zh)
WO (1) WO2014134871A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11910762B2 (en) * 2020-01-03 2024-02-27 Industry-University Cooperation Foundation Of Chungbuk National University Light source module for plant cultivation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119373B2 (en) * 2004-01-23 2006-10-10 Exalos Ag Sled
CN101053129A (zh) * 2004-09-16 2007-10-10 康宁股份有限公司 制造一种InP基垂直腔面发射激光器的方法及由此方法制造的装置
CN101114682A (zh) * 2006-07-27 2008-01-30 中国科学院半导体研究所 AlGaInP基发光二极管

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19725809C2 (de) * 1997-06-18 1999-07-22 Laserspec Analytik Gmbh Lichtemittierendes Halbleiterbauelement und dessen Verwendung
WO2000033388A1 (en) * 1998-11-24 2000-06-08 Massachusetts Institute Of Technology METHOD OF PRODUCING DEVICE QUALITY (Al)InGaP ALLOYS ON LATTICE-MISMATCHED SUBSTRATES
JP3585817B2 (ja) * 2000-09-04 2004-11-04 ユーディナデバイス株式会社 レーザダイオードおよびその製造方法
JP2010118454A (ja) * 2008-11-12 2010-05-27 Sumitomo Electric Device Innovations Inc 半導体レーザ
US8853712B2 (en) * 2008-11-18 2014-10-07 Cree, Inc. High efficacy semiconductor light emitting devices employing remote phosphor configurations
US8217410B2 (en) * 2009-03-27 2012-07-10 Wisconsin Alumni Research Foundation Hybrid vertical cavity light emitting sources
KR101706915B1 (ko) * 2009-05-12 2017-02-15 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 변형가능 및 반투과 디스플레이를 위한 초박형, 미세구조 무기발광다이오드의 인쇄 어셈블리
JP5475398B2 (ja) * 2009-05-15 2014-04-16 日本オクラロ株式会社 半導体発光素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119373B2 (en) * 2004-01-23 2006-10-10 Exalos Ag Sled
CN101053129A (zh) * 2004-09-16 2007-10-10 康宁股份有限公司 制造一种InP基垂直腔面发射激光器的方法及由此方法制造的装置
CN101114682A (zh) * 2006-07-27 2008-01-30 中国科学院半导体研究所 AlGaInP基发光二极管

Also Published As

Publication number Publication date
US20150171270A1 (en) 2015-06-18
CN103137818A (zh) 2013-06-05
CN103137818B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
US20040056258A1 (en) Multi-wavelength luminous element
US20200305354A1 (en) Led for plant illumination
KR20120040011A (ko) 발광 다이오드
WO2016197650A1 (zh) 无掺杂剂的AlGaN基紫外发光二极管及制备方法
WO2014139338A1 (zh) 一种双面发光二极管结构及其制作方法
JP2010161371A (ja) 窒化物半導体発光素子
TWI389346B (zh) 光電元件
CN106129196A (zh) 一种用于倒装led芯片的外延片及其制备方法
TW201717424A (zh) 紫外光發光二極體
US20120313119A1 (en) Three dimensional light-emitting-diode (led) stack and method of manufacturing the same
US9257614B2 (en) Warm white LED with stacked wafers and fabrication method thereof
WO2006101158A1 (ja) 酸化亜鉛系化合物半導体発光素子
JP2875437B2 (ja) 半導体発光素子およびその製造方法
CN110649137A (zh) 一种紫外发光二极管外延结构及其制作方法
CN109599466A (zh) 一种双波长led外延结构及其制作方法
WO2014134871A1 (zh) 一种用于植物照明的led
CN206003801U (zh) 一种用于倒装led芯片的外延片
CN210156413U (zh) 一种紫外发光二极管外延结构
CN102148300A (zh) 一种紫外led的制作方法
JP2002222991A (ja) 半導体発光素子
KR20210039266A (ko) 색온도 조절이 가능한 고연색지수의 백색광 발광장치
KR101252556B1 (ko) 질화물계 발광 소자
US11876154B2 (en) Light emitting diode device and method for manufacturing the same
KR101651923B1 (ko) 고전압 구동 발광소자 및 그 제조 방법
JPH11145513A (ja) 半導体発光素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877001

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14415037

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877001

Country of ref document: EP

Kind code of ref document: A1