WO2014133101A1 - Method for producing desalinated water - Google Patents

Method for producing desalinated water Download PDF

Info

Publication number
WO2014133101A1
WO2014133101A1 PCT/JP2014/054941 JP2014054941W WO2014133101A1 WO 2014133101 A1 WO2014133101 A1 WO 2014133101A1 JP 2014054941 W JP2014054941 W JP 2014054941W WO 2014133101 A1 WO2014133101 A1 WO 2014133101A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
semipermeable membrane
pressure
membrane unit
supply
Prior art date
Application number
PCT/JP2014/054941
Other languages
French (fr)
Japanese (ja)
Inventor
谷口 雅英
智宏 前田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014529360A priority Critical patent/JP6269486B2/en
Publication of WO2014133101A1 publication Critical patent/WO2014133101A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/36Energy sources
    • B01D2313/365Electrical sources
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/009Apparatus with independent power supply, e.g. solar cells, windpower, fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a method for producing demineralized water that obtains demineralized water using a water treatment process that removes impurities from the water to be treated using natural energy.
  • Separation membrane utilization technology has been mainly applied to purification of river water, lake water, etc. in order to obtain drinking water, industrial water, agricultural water, and the like.
  • seawater desalination has been promoted mainly by the evaporation method in the Middle East region where water resources are extremely small and heat resources from oil are very abundant.
  • Non-patent Document 1 seawater desalination by reverse osmosis membranes is not universal, and high-concentration seawater, such as in the Middle East, and when the temperature is high, the desalination capacity decreases and the salt concentration of treated water (freshwater) tends to increase (Non-patent Document 1), in order to obtain high-quality treated water, there are many methods called the permeated water two-stage method in which desalted water is treated again with a low-pressure reverse osmosis membrane. There is a need to further reduce energy requirements by improving osmotic membrane performance and improving process systems.
  • Patent Document 1 a method of combining a plurality of types of reverse osmosis membranes (Patent Document 1), a method of treating concentrated water of a reverse osmosis membrane again with a reverse osmosis membrane (Patent Document 2), a pretreatment with a nanofiltration membrane, and a hardness component That improves the recovery rate of reverse osmosis membranes (Patent Document 3), and a method of treating nanofiltration membranes with nanofiltration membranes again (Non-Patent Document 2) has been proposed and has been put to practical use. Not a few.
  • Non-Patent Document 3 and Patent Document 4 attempts have been made to utilize electric power generated by natural energy such as solar energy, wind power, and wave power. Stable supply. That is, almost no solar energy can be obtained at night, and no wind power can be obtained for the kite. Therefore, as described in Non-Patent Document 3, it is necessary to provide a large storage battery and absorb fluctuations in the amount of power generation. However, a high-cost storage battery has a significant impact on desalination costs and is a major obstacle to commercialization and dissemination. It has become.
  • An object of the present invention is to stably produce demineralized water while suppressing membrane deterioration and fouling during operation of a water treatment apparatus using a reverse osmosis membrane mainly using natural energy.
  • the present invention relates to the following embodiments (1) to (7).
  • the water to be treated is pressurized and supplied to the semipermeable membrane unit, separated into permeated water and concentrated water, and the permeated water is used as desalted water.
  • the minimum supply water pressure Pfmin is determined based on the osmotic pressure calculated based on the quality of the water to be treated supplied to the semipermeable membrane unit, and a preset minimum supply water flow rate Qfmin is flowed.
  • the recovery rate R obtained as the value of the ratio of the permeate flow rate Qp to the supply water flow rate Qf is set to 0, or
  • the semipermeable membrane unit is stably operated while suppressing membrane deterioration and fouling of the separation membrane while using unstable electric power obtained from natural energy as a power source.
  • Demineralized water can be produced.
  • FIG. 1 is a flowchart showing an example of an embodiment of a water treatment apparatus applicable to the method for producing desalted water of the present invention.
  • raw water 1 is supplied to a raw water tank 2, supplied to a pretreatment unit 4 by a pretreatment pump 3, processed, and stored in a pretreatment water tank 5.
  • the pretreated water discharged from the pretreated water tank 5 is pressurized by the high-pressure pump 6, supplied and processed to the semipermeable membrane unit 7, and separated into permeated water and concentrated water.
  • the permeated water (demineralized water) is stored in the permeated water tank 8.
  • the concentrated water discharged from the semipermeable membrane unit 7 is taken out from the concentrated water valve 13a through the concentrated water line 12a.
  • a natural energy power generation unit 15 as a power source using natural energy.
  • a small power storage unit 14 can be provided to absorb fluctuations in the amount of power supply for a short time.
  • the power stabilized by the power stable supply control unit 16 is supplied to each unit, for example, the pretreatment pump 3 and the high pressure pump 6 in FIG.
  • examples of the natural energy used by the natural energy power generation unit 15 include sunlight, wind power, wave power, and hydropower.
  • the present invention can be applied to sunlight and wind power, which are greatly affected by climate, and has a great effect.
  • the stable power supply control unit 16 is adjusted so that sudden power fluctuations from the power generation unit 15 can be absorbed to some extent by supplementing the power obtained from the natural energy power generation unit 15 mainly with the power storage unit 14.
  • the power storage unit 14 is not particularly limited, but is preferably a capacitor, a capacitor, a secondary battery, or the like suitable for high output.
  • a capacitor that is most suitable for a large output and less deteriorated due to charge / discharge is most preferable.
  • the usage status of the power storage unit repeats charging and discharging shallower than the repetition of full charge and complete discharge, so a nickel-cadmium battery or nickel metal hydride battery with a memory effect is not very suitable. Lithium ion batteries are preferred.
  • a semipermeable membrane unit flow rate control unit 21 may be installed to determine a threshold value for controlling the operation and to control the operation conditions.
  • the semipermeable membrane unit flow control unit 21 determines the minimum supply water pressure Pfmin based on the osmotic pressure ⁇ calculated based on the quality of the water to be treated measured by the concentration sensor 20, and the measured supply While detecting the water pressure Pf, the operating conditions of the high-pressure pump 6, the concentrated water valve 13a, and the permeated water valve 17 are controlled.
  • the supply water flow rate Qf Qp / Qf obtained as the value of the ratio of the permeated water flow rate Qp to is operated with 0, or the operation of the semipermeable membrane unit is stopped.
  • the permeate water is controlled while controlling the recovery rate R so that the concentrated water flow rate Qb is larger than the minimum supply water flow rate Qfmin. Operate to obtain stable (demineralized water).
  • the recovery rate R is controlled so that the concentrated water flow rate Qb does not fall below the supply water minimum flow rate Qfmin.
  • the minimum supply water flow rate Qfmin it is most common and safe to follow the instructions for the minimum concentrated water flow rate Qbmin based on the guidelines and technical data of the semipermeable membrane manufacturer. That is, when the permeate flow rate Qp is 0, the supply water minimum flow rate Qfmin is equal to the minimum concentrated water flow rate Qbmin, which is the smallest value.
  • the premise is that the permeated water maximum flow rate Qpmax or the permeated water maximum flux (maximum permeate flow rate per membrane area) Fpmax is included in the guideline. . That is, when the actual design permeate flow rate is smaller than the permeate maximum flux Qpmax of the instruction, the concentrated water minimum flow rate Qbmin can be set to a value smaller than the instruction.
  • Non-patent literature M.
  • Taniguchi et al. “Behavior of a reverse osmosis plant adopting a brine conversion two-stage process and its computer simulation,” Journal of Membrane Science 183, p249-257, 2001) It can also be obtained by performing a simulation calculation based on the concentration polarization model shown in FIG. Experimentally, a component having relatively low solubility under the conditions of the permeate maximum flow rate Qpmax and the permeate minimum flow rate Qpmin, that is, a component that easily precipitates (for example, soluble silica) is supplied water (treated water).
  • the concentration of the solute is increased and the solute begins to precipitate in the semipermeable membrane unit, that is, the solute concentration when the pressure loss starts to increase due to the precipitation is obtained.
  • the concentrated water flow rate Qb is lowered, and the pressure loss in the semipermeable membrane unit is a pressure loss corresponding to the concentrated water flow rate.
  • the concentrated water flow rate Qb when starting to become larger than this can be obtained, and this can be used as the concentrated water minimum flow rate Qbmin. That is, in the present invention, the concentrated water minimum flow rate Qbmin at this time is preset as the supply water minimum flow rate Qfmin.
  • the supply water flow rate Qf to the semipermeable membrane unit 7 can be adjusted according to the operating conditions of the high-pressure pump 6.
  • the minimum supply water pressure Pfmin in the semipermeable membrane unit 7 is determined based on the osmotic pressure ⁇ calculated based on the quality of the water to be treated supplied to the semipermeable membrane unit 7 measured by the concentration sensor 20.
  • Pfmin ⁇ + Pp + ⁇ .
  • is the osmotic pressure [atm] of the water to be treated
  • Pp is the permeated water pressure [atm]
  • is a pressure [atm] greater than zero.
  • the permeated water pressure Pp is a pressure when a slight pressure loss or the like on the permeated water side occurs, and is otherwise almost zero.
  • may be any number exceeding 0, but when ⁇ is close to 0, the quality of the permeate decreases when the supply water pressure Pf of the semipermeable membrane unit 7 is close to the minimum supply water pressure Pfmin, If ⁇ is too large, the operable pressure range in which the permeated water can be obtained becomes narrow, so care must be taken.
  • is preferably 2 to 5 atm.
  • the concentration CM [mg / l] of the water to be treated supplied to the semipermeable membrane unit 7 measured by the concentration sensor 20 is calculated.
  • the osmotic pressure ⁇ [atm] of the water to be treated is calculated.
  • CM ⁇ R ⁇ (T + 273.15)
  • osmotic pressure [atm]
  • CM Molar concentration [mol / l]
  • T Temperature [°C]
  • the osmotic pressure ⁇ can be obtained based on the approximate expression by measuring the component of the water to be treated and if the approximate expression based on the actual measurement value can be obtained. I can do it.
  • the permeate pressure is basically the same as the supply water pressure Pf. It is necessary to set the supply water pressure Pf so as not to exceed.
  • the pressure resistance on the supply water side is often about 70 to 80 atm and the pressure resistance on the permeate side is often about 10 atm, so the pressure on the permeate side of the device exceeds the pressure limit. It is preferable to provide safety measures such as providing a limiter for the supply water pressure Pf or installing a relief valve or pressure release plate on the permeate side.
  • the recovery rate R 0
  • the water to be treated supplied to the semipermeable membrane unit is directly discharged from the concentrated water discharge line. Therefore, in order to suppress the loss that the water to be treated flows out of the apparatus, it is also preferable to recirculate the water to be treated discharged from the concentrated water discharge line 12a to the pretreatment water tank 5 as it is.
  • the power consumption of the semipermeable membrane unit 7 is reduced. It is also a preferred embodiment to use the electric power obtained from the power source) by turning it to other units such as pretreatment, for example, increasing the pretreatment flow rate. As another example, as shown in FIG. 2, it is possible to equip the downstream side of the semipermeable membrane unit 7 with a post-processing unit 10, and in this case, the power saved by stopping the semipermeable membrane unit 7. Can be distributed to post-processing in addition to pre-processing. In FIG.
  • the desalinated water stored in the permeate tank 8 is processed by the low pressure semipermeable membrane unit which is the post-treatment unit 10 by the booster pump 9, and the permeate is used as product water (demineralized water). Sent to. Moreover, the concentrated water discharged
  • the amount of reflux can be increased.
  • the concentration sensor 20a it is also a preferred embodiment to include a concentration sensor 20b for the supply water to the semipermeable membrane unit 7 after the reflux water is mixed.
  • the concentration sensor 20b it is also a preferred embodiment to include a concentration sensor 20b for the supply water to the semipermeable membrane unit 7 after the reflux water is mixed.
  • the concentration sensor 20b it is preferable to control the reflux amount to reduce the concentration of water supplied to the semipermeable membrane unit 7 (the quality of the water to be treated), that is, the fluctuation of the osmotic pressure.
  • the maximum recovery rate Rmax is an upper limit value of the recovery rate R in the semipermeable membrane unit 7.
  • the maximum recovery rate Rmax can be determined based on the measured value of the quality of the supplied treated water or the concentration limit based on the component ratio of the supplied treated water that has been actually measured. Specifically, the concentration limit concentration based on the solubility product can be obtained by calculation, or the concentration at which the feed water is concentrated and precipitation starts is measured, so that the concentration does not exceed the maximum concentration at which precipitation does not occur. It is advisable to determine the maximum recovery rate Rmax.
  • the recovery rate R may exceed the concentration limit of the water to be treated simply by controlling the concentrated water flow rate Qb to be larger than the minimum supply water flow rate Qfmin. In this case, it becomes a problem that a component that cannot be completely dissolved becomes a scale. For this reason, it is necessary to determine the maximum recovery rate Rmax so as not to exceed this value.
  • the supply water flow rate Qf is increased, the concentrated water flow rate Qb is increased, that is, the permeate flow rate Qp is decreased, and the like.
  • the supply water pressure Pf can be controlled.
  • Rmax is a function of the scale inhibitor addition concentration.
  • the supply of the water to be treated to the semipermeable membrane unit is temporarily stopped and the water to be treated supplied in the semipermeable membrane unit is temporarily stopped.
  • the flow direction is set to the opposite direction and the supply of the water to be processed to the semipermeable membrane unit is resumed, the fouling substance adhered and deposited in the semipermeable membrane element or on the membrane surface can be removed. Therefore, it is preferable. That is, before and after stopping the supply of treated water to the semipermeable membrane unit, the inlet of treated water to the semipermeable membrane unit and the outlet for concentrated water from the semipermeable membrane unit are switched. Thus, it is preferable to operate the semipermeable membrane unit.
  • the concentrated water taken out from the semipermeable membrane unit 7 is drained, but this concentrated water causes a pressure loss at the concentrated water valve 13a in FIGS. Yes.
  • an energy recovery unit instead of the concentrated water valve 13a.
  • the energy recovery unit include a reverse pump, a Pelton turbine, a turbocharger, and a pressure exchange.
  • the supply water pressure Pf is varied in order to control the concentrated water flow rate Qb. It is preferable to use a pressure exchange type energy recovery unit suitable for such conditions.
  • the energy recovery efficiency of the pressure exchange type energy recovery unit is greatly influenced by the flow rate, but is not greatly affected by the pressure, so in the present invention where the flow rate range is narrow, by using the pressure exchange type energy recovery unit, High energy recovery efficiency can be achieved under any operating conditions.
  • Other energy recovery is not very suitable for the present invention because the efficiency is affected by pressure fluctuation and flow rate fluctuation and it is difficult to maintain high energy recovery efficiency.
  • An example of the apparatus provided with the pressure exchange type energy recovery unit 18 is shown in FIG.
  • examples of the pretreatment unit 4 include sand filtration and a separation membrane.
  • a separation membrane various separation membrane units can be used.
  • a wound filter, non-woven filter, microfiltration membrane, ultrafiltration membrane, etc. capable of high-precision solid-liquid separation of micrometer or less can be used. Can be used.
  • these pretreatment units, semipermeable membrane units and the like are contaminated by dirt components contained in the raw water, it is common to perform on-line or off-line cleaning as appropriate in order to restore performance.
  • the cleaning chemical is injected into the water to be treated.
  • examples include hypochlorous acid, chloramine, chlorine dioxide, potassium permanganate, sodium hyposulfite, 2,2-dibromo-3-nitrilopropionamide (which is continuously or intermittently injected into water intake and supply water to the unit, etc.
  • bactericides such as DBNPA
  • general acids such as sulfuric acid, hydrochloric acid and citric acid
  • alkalis such as sodium hydroxide.
  • the treated water or treated water is used as it is, or it is generally heated or added with the above-mentioned cleaning chemicals to increase the cleaning effect, supply to the contaminated part, flush, or dip Is.
  • the contaminated part here may be on either the treated water side or the treated water side, but it is preferably applied to the treated water side where contamination easily occurs.
  • the treated water (raw water) to which the present invention is applicable is not particularly limited, and various treated water such as river water, seawater, sewage treated water, rain water, industrial water, industrial waste water, or mixed water thereof. Although water can be mentioned, application to seawater or brackish water having osmotic pressure is particularly suitable.
  • the present invention prevents the contamination of the separation membrane unit and reduces the environmental load by operating the semipermeable membrane unit and other units efficiently while using electric power obtained from unstable natural energy as a power source. It is possible to provide a method for stably operating the semipermeable membrane unit.

Abstract

 Desalinated water is stably produced with minimal membrane degradation and fouling during operation of a water treatment apparatus based on a reverse osmosis membrane using natural energy as primary power. A method for pressurizing water to be treated, feeding the water to a semipermeable membrane unit (7), treating the water, and obtaining desalinated water by using as the primary power source electric power obtained from a natural energy generator unit (15), wherein a minimum feed water pressure (Pfmin) is determined on the basis of an osmotic pressure calculated from the quality of the water to be treated that is fed to the semipermeable membrane unit (7), and if the pressure cannot be raised to Pfmin when a preset minimum water flow volume (Qfmin) of feed water has been supplied, either an operation is carried out in which the recovery ratio (R), which is the value of the ratio of the passed water flow volume (Qp) to the fed water flow volume (Qf), is set to zero, or the operation of the semipermeable membrane unit (7) is stopped and the recovery ratio (R) is controlled so that the concentrated water flow volume does not exceed Qfmin when the pressure can be raised to Pfmin.

Description

脱塩水の製造方法Demineralized water production method
 本発明は、自然エネルギーを利用して被処理水中から不純物を除去する水処理プロセスを用いて脱塩水を得る脱塩水の製造方法に関するものである。 The present invention relates to a method for producing demineralized water that obtains demineralized water using a water treatment process that removes impurities from the water to be treated using natural energy.
 近年深刻化してきている水環境の悪化に伴い、これまで以上に水処理技術が重要になってきており、とくに分離膜利用技術が非常に幅広く適用されてきている。分離膜利用技術は、飲料水、工業用水、農業用水などを得るために河川水、湖沼水などの浄化に主に適用されてきた。一方、水資源が極端に少なく、かつ、石油による熱資源が非常に豊富である中東地域で蒸発法を中心に海水淡水化が進められてきた。しかし、中東以外の熱源が豊富でない地域でも、海水淡水化のニーズが高まり、とくに1990年以降、所要動力が小さい半透膜(とくに逆浸透膜)を用いた淡水化プロセスが採用され、カリブ諸島や地中海エリアなどで多数のプラントが建設され実用運転されている。逆浸透膜設備では、圧力エネルギーを有する濃縮海水が排出されるため、エネルギー回収ユニットによって圧力回収を行うのが一般的であり、これによってさらに、所要動力が低減できる仕組みになっている。最近では、逆浸透法の技術進歩による信頼性の向上やコストダウンに加え、エネルギー回収技術の著しい向上によって中東においても多くの逆浸透法海水淡水化プラントが建設されるに至っている。 With the worsening of the water environment that has become increasingly serious in recent years, water treatment technology has become more important than ever, and separation membrane utilization technology has been applied very widely. Separation membrane utilization technology has been mainly applied to purification of river water, lake water, etc. in order to obtain drinking water, industrial water, agricultural water, and the like. On the other hand, seawater desalination has been promoted mainly by the evaporation method in the Middle East region where water resources are extremely small and heat resources from oil are very abundant. However, there is a growing need for seawater desalination even in areas where heat sources other than the Middle East are abundant, especially since 1990, the desalination process using semipermeable membranes (especially reverse osmosis membranes) with low power requirements has been adopted, and the Caribbean Islands Many plants have been built and put into practical use in the Mediterranean and Mediterranean areas. In reverse osmosis membrane equipment, concentrated seawater having pressure energy is discharged, so that pressure recovery is generally performed by an energy recovery unit, which further reduces the required power. Recently, in addition to the improvement in reliability and cost reduction due to technological advancement of reverse osmosis, a significant improvement in energy recovery technology has led to the establishment of many reverse osmosis seawater desalination plants in the Middle East.
 しかしながら、逆浸透膜による海水淡水化が万能というわけではなく、中東のように高濃度海水、さらに温度が高い場合は、脱塩能力が低下し、処理水(淡水)の塩濃度が大きくなる傾向にある(非特許文献1)ため、高品質の処理水を得るために、脱塩水を再度低圧逆浸透膜で処理する、透過水二段法という方法が多く建設・稼働にいたっており、逆浸透膜性能の向上、プロセス・システムの改善による更なる所要エネルギー低減が求められている。そのための方法として、逆浸透膜を複数種類組み合わせる方法(特許文献1)、逆浸透膜の濃縮水を再度逆浸透膜で処理する方法(特許文献2)、ナノろ過膜で前処理して硬度成分を除去し、逆浸透膜の回収率を上げる方法(特許文献3)、ナノろ過膜の処理水を再度ナノろ過膜で処理する方法(非特許文献2)が提案され、実用化に至っているものも少なくない。 However, seawater desalination by reverse osmosis membranes is not universal, and high-concentration seawater, such as in the Middle East, and when the temperature is high, the desalination capacity decreases and the salt concentration of treated water (freshwater) tends to increase (Non-patent Document 1), in order to obtain high-quality treated water, there are many methods called the permeated water two-stage method in which desalted water is treated again with a low-pressure reverse osmosis membrane. There is a need to further reduce energy requirements by improving osmotic membrane performance and improving process systems. For this purpose, a method of combining a plurality of types of reverse osmosis membranes (Patent Document 1), a method of treating concentrated water of a reverse osmosis membrane again with a reverse osmosis membrane (Patent Document 2), a pretreatment with a nanofiltration membrane, and a hardness component That improves the recovery rate of reverse osmosis membranes (Patent Document 3), and a method of treating nanofiltration membranes with nanofiltration membranes again (Non-Patent Document 2) has been proposed and has been put to practical use. Not a few.
 さらに、エネルギー消費量が低減したといっても、分離膜による水処理には電力が必要とされ、その源は、石油や石炭による火力や原子力といった、必ずしも環境に優しい技術と言い難いエネルギーである。そのため、太陽エネルギー、風力、波力などの自然エネルギーによって産み出された電力を活用する試み(非特許文献3、特許文献4)がなされているが、自然エネルギーの大きな課題の一つとして、電力の安定供給が挙げられる。すなわち、太陽エネルギーは、夜間にはほとんど得られず、風力は凪には得られない。そのため、非特許文献3にもあるように大きな蓄電池を備え、発電量の変動を吸収する必要があるが、高コストな蓄電池が淡水化コストに大きな影響を与え、実用化、普及にとって大きな障害となっている。現在は、水力、火力、原子力といった従来発電技術による電力と併用する技術が実用化されているが、電力の安定供給のためには発電量を制御しやすい水力や火力が中心になっている必要があり、自然エネルギーのように状況によって変動する発電方法で得られる電力を主な動力源にした水処理プロセスの実用化・普及には至っていない。 Furthermore, even though energy consumption has been reduced, power is required for water treatment by separation membranes, and the source is energy that is not necessarily environmentally friendly, such as oil and coal thermal power and nuclear power. . For this reason, attempts have been made to utilize electric power generated by natural energy such as solar energy, wind power, and wave power (Non-Patent Document 3 and Patent Document 4). Stable supply. That is, almost no solar energy can be obtained at night, and no wind power can be obtained for the kite. Therefore, as described in Non-Patent Document 3, it is necessary to provide a large storage battery and absorb fluctuations in the amount of power generation. However, a high-cost storage battery has a significant impact on desalination costs and is a major obstacle to commercialization and dissemination. It has become. Currently, technologies that are combined with electric power from conventional power generation technologies such as hydropower, thermal power, and nuclear power have been put into practical use. However, for stable power supply, it is necessary to focus on hydropower and thermal power that make it easy to control power generation. However, the water treatment process using the power obtained by the power generation method that varies depending on the situation such as natural energy as the main power source has not been put into practical use and popularized.
 とくに、逆浸透膜を海水淡水化に適用する場合は、浸透圧以上の圧力がかからなければ、淡水を得ることができないため、特定期間、すなわち、太陽光であれば、昼間の日射が大きな時間しか淡水製造ができない。また、運転を開始した場合でも、自然エネルギーによる発電能力は、刻々変化するため、大容量の蓄電池を備えるか、従来の電力を併用しなければ、逆浸透膜を一定条件で安定運転することは出来ない。一方で、逆浸透膜の運転に当たっては、逆浸透膜エレメントに適した供給水流量、濃縮水流量、透過流束(膜面積あたりの透過水流量)を適正範囲に収めることが求められる。すなわち、例えば、供給水流量が適正範囲を超えると、逆浸透膜エレメントに過大な負荷がかかり、膜エレメントの変形をもたらしたり、また濃縮水流量が少なすぎたり、透過流束が大きすぎると、膜面への汚れの蓄積(ファウリング)を促進することになる。したがって、自然エネルギーを利用した発電量が変動して、ポンプ出力などが変動する場合、スタート時に設定した運転条件のまま、成り行きで運転すると、適正な運転条件範囲内で運転することが出来ない場合が出てくるため、逆浸透膜の寿命を縮めることとなっていた。 In particular, when applying reverse osmosis membranes to seawater desalination, fresh water cannot be obtained unless pressure higher than the osmotic pressure is applied. Only fresh water can be produced. In addition, even if the operation is started, the power generation capacity by natural energy changes every moment, so if you have a large-capacity storage battery or if you do not use conventional power in combination, it is not possible to operate the reverse osmosis membrane stably under certain conditions. I can't. On the other hand, in the operation of the reverse osmosis membrane, it is required to keep the supply water flow rate, the concentrated water flow rate, and the permeation flux (permeate flow rate per membrane area) suitable for the reverse osmosis membrane element in an appropriate range. That is, for example, if the supply water flow rate exceeds the appropriate range, an excessive load is applied to the reverse osmosis membrane element, causing deformation of the membrane element, if the concentrated water flow rate is too small, or if the permeation flux is too large, It will promote the accumulation (fouling) of dirt on the film surface. Therefore, if the amount of power generated using natural energy fluctuates, and the pump output fluctuates, operating in the normal operating condition range with the operating conditions set at the start cannot be performed. As a result, the lifetime of the reverse osmosis membrane was shortened.
日本国特許第3551127号公報Japanese Patent No. 3551127 日本国特開平8-108048号公報Japanese Laid-Open Patent Publication No. 8-108048 日本国特開平8-206460号公報Japanese Laid-Open Patent Publication No. 8-206460 日本国特開2000-202441号公報Japanese Unexamined Patent Publication No. 2000-202441
 本発明の課題は、自然エネルギーを主動力とした逆浸透膜による水処理装置の運転の際に、膜劣化やファウリングを抑制しながら、安定に脱塩水を製造することにある。 An object of the present invention is to stably produce demineralized water while suppressing membrane deterioration and fouling during operation of a water treatment apparatus using a reverse osmosis membrane mainly using natural energy.
 前記課題を解決するために、本発明は次の(1)-(7)の実施態様に関する。 In order to solve the above problems, the present invention relates to the following embodiments (1) to (7).
(1) 自然エネルギーを利用した発電ユニットから得られる電力を主な動力源として被処理水を昇圧して半透膜ユニットに供給し、透過水と濃縮水に分離し、透過水を脱塩水として得る方法において、前記半透膜ユニットへ供給する前記被処理水の水質に基づいて算出される浸透圧に基づいて、最低供給水圧力Pfminを決定し、予め設定した供給水最小流量Qfminを流したときに、供給水圧力Pfを最低供給水圧力Pfminまで昇圧出来ないときは、供給水流量Qfに対する透過水流量Qpの比の値として得られる回収率Rを0として運転するか、もしくは、前記半透膜ユニットの運転を停止するように制御し、供給水最小流量Qfminを流したときに、供給水圧力Pfを最低供給水圧力Pfminまで昇圧出来るときは、濃縮水流量Qbが前記供給水最小流量Qfminよりも大きくなるように回収率Rを制御する脱塩水の製造方法。 (1) Using the electric power obtained from the power generation unit using natural energy as the main power source, the water to be treated is pressurized and supplied to the semipermeable membrane unit, separated into permeated water and concentrated water, and the permeated water is used as desalted water. In the obtaining method, the minimum supply water pressure Pfmin is determined based on the osmotic pressure calculated based on the quality of the water to be treated supplied to the semipermeable membrane unit, and a preset minimum supply water flow rate Qfmin is flowed. When the supply water pressure Pf cannot be increased to the minimum supply water pressure Pfmin, the recovery rate R obtained as the value of the ratio of the permeate flow rate Qp to the supply water flow rate Qf is set to 0, or When the supply water pressure Pf can be increased to the minimum supply water pressure Pfmin when the supply water minimum flow rate Qfmin is controlled by controlling the operation of the permeable membrane unit to stop, Method for producing demineralized water flow rate Qb to control the recovery rate R to be larger than the feed water minimum flow Qfmin.
(2) (1)に記載の脱塩水の製造方法であって、前記回収率Rを0にして前記半透膜ユニットを運転するとき、(1)前記半透膜ユニットへの供給水流量Qfを供給水最小流量Qfminよりも小さくする、(2)前記供給水圧力Pfを最低供給水圧力Pfminよりも小さくする、(3)前記半透膜ユニットから排出される濃縮水を半透膜ユニットへ供給する被処理水として還流する、のうち少なくともひとつを実施する脱塩水の製造方法。 (2) The method for producing desalted water according to (1), wherein when the semipermeable membrane unit is operated with the recovery rate R set to 0, (1) the supply water flow rate Qf to the semipermeable membrane unit (2) Make the supply water pressure Pf smaller than the minimum supply water pressure Pfmin, (3) Concentrated water discharged from the semipermeable membrane unit to the semipermeable membrane unit A method for producing demineralized water, wherein at least one of refluxing as treated water to be supplied is performed.
(3) (1)または(2)に記載の脱塩水の製造方法であって、前記回収率Rの上限値として、最大回収率Rmaxを前記被処理水の水質に基づいて算出し、前記回収率Rが最大回収率Rmaxを上回らないように、前記供給水圧力Pfを制御する脱塩水の製造方法。 (3) The method for producing desalted water according to (1) or (2), wherein a maximum recovery rate Rmax is calculated as an upper limit value of the recovery rate R based on the quality of the water to be treated, and the recovery A method for producing demineralized water, wherein the feed water pressure Pf is controlled so that the rate R does not exceed the maximum recovery rate Rmax.
(4) (1)から(3)のいずれか1項に記載の脱塩水の製造方法であって、前記回収率Rを0として運転する期間に、一旦、被処理水の半透膜ユニットへの供給を停止し、半透膜ユニット内で被処理水の流入口と濃縮水の排出口とを入れ替えるように設定した後、被処理水の半透膜ユニットへの供給を再開する脱塩水の製造方法。 (4) The method for producing demineralized water according to any one of (1) to (3), wherein once the recovery rate R is set to 0, the semi-permeable membrane unit for water to be treated is operated. The desalinated water is set to be switched between the inlet of the treated water and the outlet of the concentrated water in the semipermeable membrane unit, and then the supply of the treated water to the semipermeable membrane unit is resumed. Production method.
(5) (1)から(4)のいずれか1項に記載の脱塩水の製造方法であって、前記半透膜ユニットから排出された濃縮水の圧力エネルギーを圧力交換式のエネルギー回収ユニットでエネルギー回収する脱塩水の製造方法。 (5) The method for producing desalted water according to any one of (1) to (4), wherein the pressure energy of the concentrated water discharged from the semipermeable membrane unit is converted into a pressure exchange type energy recovery unit. A method for producing demineralized water for energy recovery.
(6) (1)から(5)のいずれか1項に記載の脱塩水の製造方法であって、前記自然エネルギーが太陽光、風力のいずれかを含む脱塩水の製造方法。 (6) The method for producing desalted water according to any one of (1) to (5), wherein the natural energy includes either sunlight or wind power.
(7) (1)から(6)のいずれか1項に記載の脱塩水の製造方法であって、前記発電ユニットとともに、コンデンサー、キャパシタ、鉛蓄電池、リチウムイオン電池から選ばれる少なくともひとつを電力貯蔵手段として用いて、前記半透膜ユニットの運転時に供給する電力の変動を抑える脱塩水の製造方法。 (7) The method for producing desalted water according to any one of (1) to (6), wherein at least one selected from a capacitor, a capacitor, a lead storage battery, and a lithium ion battery is stored together with the power generation unit. A method for producing demineralized water, which is used as a means to suppress fluctuations in power supplied during operation of the semipermeable membrane unit.
 本発明の脱塩水の製造方法によれば、自然エネルギーから得られる不安定な電力を動力源としながら、分離膜の膜劣化やファウリングを抑制して、半透膜ユニットを安定的に運転し脱塩水を製造することが可能となる。 According to the method for producing desalted water of the present invention, the semipermeable membrane unit is stably operated while suppressing membrane deterioration and fouling of the separation membrane while using unstable electric power obtained from natural energy as a power source. Demineralized water can be produced.
本発明の脱塩水の製造方法で使用する水処理装置の一例を示すフロー図である。It is a flowchart which shows an example of the water treatment apparatus used with the manufacturing method of the desalted water of this invention. 図1の水処理装置に、後処理ユニットを加えた水処理装置の一例を示すフロー図である。It is a flowchart which shows an example of the water treatment apparatus which added the post-processing unit to the water treatment apparatus of FIG. 本発明の脱塩水の製造方法で使用する他の実施形態の水処理装置であって、圧力交換式エネルギー回収ユニットを備えた水処理装置の一例を示すフロー図である。It is a water treatment apparatus of other embodiment used with the manufacturing method of the desalted water of this invention, Comprising: It is a flowchart which shows an example of the water treatment apparatus provided with the pressure exchange type energy recovery unit.
 以下、本発明の実施の形態について、図面を参照しながら説明するが、本発明はこの図面に示す実施態様に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the embodiments shown in the drawings.
 図1は、本発明の脱塩水の製造方法に適用可能な水処理装置の実施形態の一例を示すフロー図である。 FIG. 1 is a flowchart showing an example of an embodiment of a water treatment apparatus applicable to the method for producing desalted water of the present invention.
 図1において、原水1は、原水タンク2に供給され、前処理ポンプ3で前処理ユニット4に供給、処理され、前処理水タンク5に貯留される。前処理水タンク5から排出された前処理水は、高圧ポンプ6によって昇圧され、半透膜ユニット7に供給・処理され、透過水と濃縮水に分離される。透過水(脱塩水)は透過水タンク8に貯留される。また半透膜ユニット7から排出される濃縮水は、濃縮水バルブ13aから濃縮水ライン12aを通って取出される。 1, raw water 1 is supplied to a raw water tank 2, supplied to a pretreatment unit 4 by a pretreatment pump 3, processed, and stored in a pretreatment water tank 5. The pretreated water discharged from the pretreated water tank 5 is pressurized by the high-pressure pump 6, supplied and processed to the semipermeable membrane unit 7, and separated into permeated water and concentrated water. The permeated water (demineralized water) is stored in the permeated water tank 8. The concentrated water discharged from the semipermeable membrane unit 7 is taken out from the concentrated water valve 13a through the concentrated water line 12a.
 図1のフローにおいて必要な動力は、自然エネルギーを用いた動力源としての自然エネルギー発電ユニット15によって電力が供給される。また短時間の電力供給量の変動を吸収するために小型の電力貯蔵ユニット14を備えることができる。さらに電力安定供給制御ユニット16によって安定化した電力を各ユニット、例えば図1では前処理ポンプ3および高圧ポンプ6に供給するようになっている。 1 is supplied with power by a natural energy power generation unit 15 as a power source using natural energy. A small power storage unit 14 can be provided to absorb fluctuations in the amount of power supply for a short time. Further, the power stabilized by the power stable supply control unit 16 is supplied to each unit, for example, the pretreatment pump 3 and the high pressure pump 6 in FIG.
 ここで、自然エネルギー発電ユニット15が利用する自然エネルギーについては、太陽光、風力、波力、水力などを挙げることができる。本発明は、気候による変動が大きな太陽光と風力に対して適用することができ、得られる効果が大きい。 Here, examples of the natural energy used by the natural energy power generation unit 15 include sunlight, wind power, wave power, and hydropower. The present invention can be applied to sunlight and wind power, which are greatly affected by climate, and has a great effect.
 電力安定供給制御ユニット16は、自然エネルギー発電ユニット15から得られる電力をメインに、電力貯蔵ユニット14で補うことによって、発電ユニット15からの急激な出力変動をある程度吸収できるように出力調整される。従って、電力貯蔵ユニット14は、特に制約はないが、コンデンサー、キャパシタ、二次電池など、高出力に適したものが好ましい。とくに、大出力に最も適しており、充放電による劣化が少ないキャパシタが最も好ましい。また、二次電池の場合は、電力貯蔵ユニットの使用状況が完全充電と完全放電の繰り返しよりも浅い充放電を繰り返すため、メモリー効果のあるニカド電池やニッケル水素電池はあまり適さず、鉛蓄電池やリチウムイオン電池が好ましい。 The stable power supply control unit 16 is adjusted so that sudden power fluctuations from the power generation unit 15 can be absorbed to some extent by supplementing the power obtained from the natural energy power generation unit 15 mainly with the power storage unit 14. Accordingly, the power storage unit 14 is not particularly limited, but is preferably a capacitor, a capacitor, a secondary battery, or the like suitable for high output. In particular, a capacitor that is most suitable for a large output and less deteriorated due to charge / discharge is most preferable. In addition, in the case of secondary batteries, the usage status of the power storage unit repeats charging and discharging shallower than the repetition of full charge and complete discharge, so a nickel-cadmium battery or nickel metal hydride battery with a memory effect is not very suitable. Lithium ion batteries are preferred.
 本発明を適用する水処理装置において、半透膜ユニット流量制御ユニット21を設置し、運転を制御する閾値を決めるとともに、運転条件を制御するとよい。図示の例では、半透膜ユニット流量制御ユニット21は、濃度センサー20で測定した被処理水の水質に基づいて算出される浸透圧πに基づき最低供給水圧力Pfminを決定し、測定された供給水圧力Pfを検知しながら、高圧ポンプ6、濃縮水バルブ13aおよび透過水バルブ17の運転条件を制御する。すなわち、被処理水を半透膜ユニット7へ供給水最小流量Qfminで流したときに、半透膜ユニット7の供給水圧力Pfを最低供給水圧力Pfminまで昇圧出来ないときは、供給水流量Qfに対する透過水流量Qpの比の値として得られる回収率R=Qp/Qfを0として運転するか、もしくは、半透膜ユニットの運転を停止する。一方、半透膜ユニット7の供給水圧力Pfを最低供給水圧力Pfminまで昇圧出来るときは、濃縮水流量Qbが供給水最小流量Qfminよりも大きくなるように回収率Rを制御しながら、透過水(脱塩水)を安定的に得る運転をする。 In the water treatment apparatus to which the present invention is applied, a semipermeable membrane unit flow rate control unit 21 may be installed to determine a threshold value for controlling the operation and to control the operation conditions. In the illustrated example, the semipermeable membrane unit flow control unit 21 determines the minimum supply water pressure Pfmin based on the osmotic pressure π calculated based on the quality of the water to be treated measured by the concentration sensor 20, and the measured supply While detecting the water pressure Pf, the operating conditions of the high-pressure pump 6, the concentrated water valve 13a, and the permeated water valve 17 are controlled. That is, when the water to be treated is supplied to the semipermeable membrane unit 7 at the minimum supply water flow rate Qfmin, and the supply water pressure Pf of the semipermeable membrane unit 7 cannot be increased to the minimum supply water pressure Pfmin, the supply water flow rate Qf The recovery rate R = Qp / Qf obtained as the value of the ratio of the permeated water flow rate Qp to is operated with 0, or the operation of the semipermeable membrane unit is stopped. On the other hand, when the supply water pressure Pf of the semipermeable membrane unit 7 can be increased to the minimum supply water pressure Pfmin, the permeate water is controlled while controlling the recovery rate R so that the concentrated water flow rate Qb is larger than the minimum supply water flow rate Qfmin. Operate to obtain stable (demineralized water).
 このとき、半透膜メーカーのガイドラインや技術資料に基づく場合が多いが、供給水流量Qfが供給水最大流量Qfmaxを超えないようにするとともに、供給水流量Qfが最小濃縮水流量Qbminを下回らない、すなわち、Qfmin=Qbmin、となるようにすべく注意が必要である。その結果、供給水流量Qfは、Qf≧Qfmin+Qp、となるように設定することが必要である。すなわち、回収率Rを、R=Qp/Qf、により求め、R≦1-Qfmin/Qf、となるように回収率Rを制御する。 At this time, it is often based on the guidelines and technical data of the semipermeable membrane manufacturer, but the supply water flow rate Qf does not exceed the maximum supply water flow rate Qfmax, and the supply water flow rate Qf does not fall below the minimum concentrated water flow rate Qbmin. That is, care must be taken so that Qfmin = Qbmin. As a result, the supply water flow rate Qf needs to be set so that Qf ≧ Qfmin + Qp. That is, the recovery rate R is obtained by R = Qp / Qf, and the recovery rate R is controlled so that R ≦ 1-Qfmin / Qf.
 また、被処理水を半透膜ユニット7へ供給・処理するとき、濃縮水流量Qbが供給水最小流量Qfminを下回らないように回収率Rを制御する。ここで、供給水最小流量Qfminを決定するにあたっては、半透膜メーカーのガイドラインや技術資料に基づく濃縮水最小流量Qbminのインストラクションに従うのが最も一般的かつ安全である。すなわち、透過水流量Qpが0の時に供給水最小流量Qfminがもっとも小さな値である最小濃縮水流量Qbminと等しくなる。 In addition, when supplying the treated water to the semipermeable membrane unit 7, the recovery rate R is controlled so that the concentrated water flow rate Qb does not fall below the supply water minimum flow rate Qfmin. Here, in determining the minimum supply water flow rate Qfmin, it is most common and safe to follow the instructions for the minimum concentrated water flow rate Qbmin based on the guidelines and technical data of the semipermeable membrane manufacturer. That is, when the permeate flow rate Qp is 0, the supply water minimum flow rate Qfmin is equal to the minimum concentrated water flow rate Qbmin, which is the smallest value.
 ただし、濃縮水最小流量Qbminのインストラクションでは、その前提が、ガイドラインに併記されている透過水最大流量Qpmaxもしくは透過水最大流束(膜面積あたりの最大透過流量)Fpmaxの範囲内であることとしている。すなわち、実際の設計透過流量がインストラクションの透過水最大流束Qpmaxよりも小さい場合は、濃縮水最小流量Qbminをインストラクションよりも小さな値とすることが出来る。どこまで減じることが出来るかは、非特許文献(M. Taniguchiら、”Behavior of a reverse osmosis plant adopting a brine conversion two-stage process and its computer simulation,” Journal of Membrane Science 183, p249-257, 2001)に示される濃度分極モデルに基づくシミュレーション計算を実施することによっても得ることが出来る。また、実験的には、透過水最大流量Qpmaxと透過水最小流量Qpminの条件下で、溶解度が比較的低い、すなわち、析出しやすい成分(例えば、溶解性シリカ)を供給水(被処理水)に添加して濃度を上げていき、半透膜ユニット内に溶質が析出しはじめる、すなわち、析出によって圧力損失が大きくなり始めたときの溶質濃度を求める。この溶質濃度の供給水(被処理水)を用い、透過水流量Qpを設計値にした時に濃縮水流量Qbを下げていき、半透膜ユニット内の圧力損失が濃縮水流量に応じた圧力損失よりも大きくなり始めたときの濃縮水流量Qbを求め、これを濃縮水最小流量Qbminとすることができる。すなわち、本発明においては、このときの濃縮水最小流量Qbminを供給水最小流量Qfminとして予め設定する。また半透膜ユニット7への供給水流量Qfは、高圧ポンプ6の運転条件により調節することができる。 However, in the instruction of the concentrated water minimum flow rate Qbmin, the premise is that the permeated water maximum flow rate Qpmax or the permeated water maximum flux (maximum permeate flow rate per membrane area) Fpmax is included in the guideline. . That is, when the actual design permeate flow rate is smaller than the permeate maximum flux Qpmax of the instruction, the concentrated water minimum flow rate Qbmin can be set to a value smaller than the instruction. Non-patent literature (M. Taniguchi et al., “Behavior of a reverse osmosis plant adopting a brine conversion two-stage process and its computer simulation,” Journal of Membrane Science 183, p249-257, 2001) It can also be obtained by performing a simulation calculation based on the concentration polarization model shown in FIG. Experimentally, a component having relatively low solubility under the conditions of the permeate maximum flow rate Qpmax and the permeate minimum flow rate Qpmin, that is, a component that easily precipitates (for example, soluble silica) is supplied water (treated water). The concentration of the solute is increased and the solute begins to precipitate in the semipermeable membrane unit, that is, the solute concentration when the pressure loss starts to increase due to the precipitation is obtained. Using the supply water (treated water) of this solute concentration, when the permeate flow rate Qp is set to the design value, the concentrated water flow rate Qb is lowered, and the pressure loss in the semipermeable membrane unit is a pressure loss corresponding to the concentrated water flow rate. The concentrated water flow rate Qb when starting to become larger than this can be obtained, and this can be used as the concentrated water minimum flow rate Qbmin. That is, in the present invention, the concentrated water minimum flow rate Qbmin at this time is preset as the supply water minimum flow rate Qfmin. The supply water flow rate Qf to the semipermeable membrane unit 7 can be adjusted according to the operating conditions of the high-pressure pump 6.
 本発明においては、濃度センサー20で測定した半透膜ユニット7へ供給する被処理水の水質に基づいて算出される浸透圧πに基づいて、半透膜ユニット7における最低供給水圧力Pfminを決定する。具体的には、Pfmin=π+Pp+α、とする。ここで、πは被処理水の浸透圧[atm]、Ppは透過水圧力[atm]、αは0より大きい圧[atm]である。透過水圧力Ppは、透過水側の配管圧損などが若干発生するときの圧力であり、それ以外は、通常ほとんど0である。αは0を超えた数であれば良いが、αが0に近いと、半透膜ユニット7の供給水圧力Pfが最低供給水圧力Pfminに近いときに透過水の水質が低下し、一方、αが大きすぎると、透過水を得られる運転可能な圧力範囲が狭くなるので、注意が必要である。具体的には、αを2~5atmにすると好ましい。 In the present invention, the minimum supply water pressure Pfmin in the semipermeable membrane unit 7 is determined based on the osmotic pressure π calculated based on the quality of the water to be treated supplied to the semipermeable membrane unit 7 measured by the concentration sensor 20. To do. Specifically, Pfmin = π + Pp + α. Here, π is the osmotic pressure [atm] of the water to be treated, Pp is the permeated water pressure [atm], and α is a pressure [atm] greater than zero. The permeated water pressure Pp is a pressure when a slight pressure loss or the like on the permeated water side occurs, and is otherwise almost zero. α may be any number exceeding 0, but when α is close to 0, the quality of the permeate decreases when the supply water pressure Pf of the semipermeable membrane unit 7 is close to the minimum supply water pressure Pfmin, If α is too large, the operable pressure range in which the permeated water can be obtained becomes narrow, so care must be taken. Specifically, α is preferably 2 to 5 atm.
 ここで、濃度センサー20で測定した半透膜ユニット7へ供給する被処理水の濃度CM[mg/l]に基づき、被処理水の浸透圧π[atm]を算出する。算出方法は、以下に示すファントホッフの式を用いるのが、代表的である。 Here, based on the concentration CM [mg / l] of the water to be treated supplied to the semipermeable membrane unit 7 measured by the concentration sensor 20, the osmotic pressure π [atm] of the water to be treated is calculated. As a calculation method, it is typical to use the following Phanto-Hoff equation.
  π=CM×R×(T+273.15)
式中、π:浸透圧[atm]
   CM:モル濃度[mol/l]
   R:気体定数=0.082[l・atm/(K・mol)]
   T:温度[℃]
π = CM × R × (T + 273.15)
In the formula, π: osmotic pressure [atm]
CM: Molar concentration [mol / l]
R: Gas constant = 0.082 [l · atm / (K · mol)]
T: Temperature [℃]
 上記ファントホッフの式を海水のような混合物に適用する場合、代表的な組成に基づいて、それぞれの成分の濃度に基づく浸透圧を算出し、合計することによって得ることが出来る。浸透圧πの算出は、その他、非特許文献「谷口雅英ら、”Estimation of Transport Parameters of RO Membranes for Seawater Desalination,” AIChE Journal Vol. 46, p1967-1973 (2000)」でも引用されているように、実測値に基づく、近似式を用いることも出来る。 When applying the above Phantohoff equation to a mixture such as seawater, it can be obtained by calculating and summing the osmotic pressure based on the concentration of each component based on a typical composition. The calculation of osmotic pressure π is also cited in other non-patent literatures such as Masahide Taniguchi, “Estimation of Transport Parameters of RO Membranes for Seawater Desalination,” AIChE Journal Vol. 46, p1967-1973 (2000) ”. An approximate expression based on actual measurement values can also be used.
 被処理水が海水以外のときでも、被処理水の成分を測定することにより、また、実測値に基づく近似式を得ることが出来れば、その近似式に基づいて、浸透圧πを得ることが出来る。 Even when the water to be treated is other than seawater, the osmotic pressure π can be obtained based on the approximate expression by measuring the component of the water to be treated and if the approximate expression based on the actual measurement value can be obtained. I can do it.
 半透膜ユニット7の回収率Rを0として運転する期間の、回収率R以外の他の運転条件については、特に制限はない。また回収率R=0にする最も簡単な方法としては、供給水流量Qfを供給水最小流量Qfminよりも小さくすることにより、供給水圧力Pfを浸透圧π近傍まで下げること、また、透過水バルブ17を全閉することが挙げられる。もちろん、これらの方法は同時に実施することが確実であるが、透過水バルブ17を全閉すると、透過水圧力が供給水圧力Pfと基本的に同じになるため、装置の透過水側の耐圧限界を超えないように供給水圧力Pfを設定することが必要である。また、通常、海水淡水化の場合は、供給水側の耐圧が、70~80atm程度、透過水側の耐圧が10atm程度であることが多いので、装置の透過水側の圧力が耐圧限界を超えないように、供給水圧力Pfのリミッターをつけたり、透過水側に逃がし弁や放圧板を装備したりするなどの安全策を備えることが好ましい。 There are no particular restrictions on the operating conditions other than the recovery rate R during the operation period when the recovery rate R of the semipermeable membrane unit 7 is 0. The simplest method for setting the recovery rate R = 0 is to reduce the supply water pressure Pf to near the osmotic pressure π by making the supply water flow rate Qf smaller than the minimum supply water flow rate Qfmin. 17 is fully closed. Of course, it is certain that these methods are carried out at the same time, but when the permeate valve 17 is fully closed, the permeate pressure is basically the same as the supply water pressure Pf. It is necessary to set the supply water pressure Pf so as not to exceed. Usually, in the case of seawater desalination, the pressure resistance on the supply water side is often about 70 to 80 atm and the pressure resistance on the permeate side is often about 10 atm, so the pressure on the permeate side of the device exceeds the pressure limit. It is preferable to provide safety measures such as providing a limiter for the supply water pressure Pf or installing a relief valve or pressure release plate on the permeate side.
 また、回収率R=0ということは、膜透過がないということを意味するので、膜面への汚れ(ファウリング)物質の吸い込みがない。このため、通常推奨される半透膜ユニットへの供給水流量Qfを予め設定された供給水最小流量Qfminよりも小さな値にしても問題ない。回収率R=0にする運転条件としては、透過水を得ないようにするので、供給水圧力Pfを最低供給水圧力Pfminよりも小さくすることも可能である。ただし、前述の浸透圧πよりも供給水圧力Pfを小さくすると、透過側から供給側への透過水の逆流が生じ、膜へのダメージを起こす可能性がある。このため、膜の強度などを考慮して、供給水圧力Pfを設定することが求められる。逆流する透過水の流量を抑えるためには、供給側の供給水圧力Pfや透過水バルブ17の絞り方を適切に実施することが重要である。 Moreover, since the recovery rate R = 0 means that there is no permeation of the membrane, there is no suction of dirt (fouling) substances to the membrane surface. For this reason, there is no problem even if the supply water flow rate Qf to the normally recommended semipermeable membrane unit is smaller than the preset minimum supply water flow rate Qfmin. As an operating condition for obtaining the recovery rate R = 0, it is possible to make the supply water pressure Pf smaller than the minimum supply water pressure Pfmin because permeate is not obtained. However, if the supply water pressure Pf is made smaller than the aforementioned osmotic pressure π, a reverse flow of the permeate from the permeate side to the supply side occurs, which may cause damage to the membrane. For this reason, it is required to set the supply water pressure Pf in consideration of the strength of the membrane. In order to suppress the flow rate of the permeated water flowing backward, it is important to appropriately implement the supply water pressure Pf on the supply side and the method of throttling the permeated water valve 17.
 さらに、回収率R=0にすると、半透膜ユニットへ供給する被処理水は、そのまま濃縮水排出ラインから排出されることになる。したがって、被処理水が装置外に流出してしまう損失を抑えるために、濃縮水排出ライン12aから排出された被処理水をそのまま、前処理水タンク5に還流させることも好ましい。 Further, when the recovery rate R = 0, the water to be treated supplied to the semipermeable membrane unit is directly discharged from the concentrated water discharge line. Therefore, in order to suppress the loss that the water to be treated flows out of the apparatus, it is also preferable to recirculate the water to be treated discharged from the concentrated water discharge line 12a to the pretreatment water tank 5 as it is.
 半透膜ユニット7の回収率Rを0にして運転する場合、もしくは、半透膜ユニット7を停止している場合は、半透膜ユニット7の消費電力が小さくなるので、自然エネルギー発電ユニット(動力源)から得られた電力を前処理などの他のユニットへ回して使用すること、例えば、前処理流量を上げることも好ましい実施態様である。他の例として、図2のように、半透膜ユニット7の下流側に、後処理ユニット10を装備することも可能であり、この場合は、半透膜ユニット7の停止により節約できた電力を、前処理に加えて、後処理にも振り分けることが出来る。図2では、透過水タンク8に貯留された脱塩水が、昇圧ポンプ9で後処理ユニット10である低圧半透膜ユニットで処理され、その透過水が生産水(脱塩水)として生産水タンク11に送られる。また後処理ユニット10から排出された濃縮水は、濃縮水バルブ13bから濃縮水ライン12bを通って取出される。この濃縮水は、半透膜ユニット7の透過水を濃縮した水であるため、非常に清澄であり、原水タンク2や前処理水タンク5などに還流させることも非常に好ましい実施態様である。後処理ユニット10から排出された濃縮水を還流させる場合、還流量は適宜決定することが出来る。とくに半透膜ユニット7の浸透圧を下げたい場合は、還流量を増やすことが出来る。この操作のために、濃度センサー20aに加え、還流水が混合された後の半透膜ユニット7への供給水に対する濃度センサー20bを備えることも好ましい実施態様である。濃度センサー20bを配置するとき、被処理水の浸透圧は濃度センサー20bで検出された水質に基づいて算出することができる。この場合、還流量を制御することによって半透膜ユニット7への供給水濃度(被処理水の水質)、すなわち、浸透圧の変動を低減することが出来るため好ましい。 When the semipermeable membrane unit 7 is operated with the recovery rate R set to 0, or when the semipermeable membrane unit 7 is stopped, the power consumption of the semipermeable membrane unit 7 is reduced. It is also a preferred embodiment to use the electric power obtained from the power source) by turning it to other units such as pretreatment, for example, increasing the pretreatment flow rate. As another example, as shown in FIG. 2, it is possible to equip the downstream side of the semipermeable membrane unit 7 with a post-processing unit 10, and in this case, the power saved by stopping the semipermeable membrane unit 7. Can be distributed to post-processing in addition to pre-processing. In FIG. 2, the desalinated water stored in the permeate tank 8 is processed by the low pressure semipermeable membrane unit which is the post-treatment unit 10 by the booster pump 9, and the permeate is used as product water (demineralized water). Sent to. Moreover, the concentrated water discharged | emitted from the post-processing unit 10 is taken out through the concentrated water line 12b from the concentrated water valve | bulb 13b. Since this concentrated water is water obtained by concentrating the permeated water of the semipermeable membrane unit 7, it is very clear, and it is also a very preferable embodiment to recirculate to the raw water tank 2, the pretreatment water tank 5, and the like. When the concentrated water discharged from the post-processing unit 10 is refluxed, the reflux amount can be appropriately determined. In particular, when it is desired to reduce the osmotic pressure of the semipermeable membrane unit 7, the amount of reflux can be increased. For this operation, in addition to the concentration sensor 20a, it is also a preferred embodiment to include a concentration sensor 20b for the supply water to the semipermeable membrane unit 7 after the reflux water is mixed. When the concentration sensor 20b is disposed, the osmotic pressure of the water to be treated can be calculated based on the water quality detected by the concentration sensor 20b. In this case, it is preferable to control the reflux amount to reduce the concentration of water supplied to the semipermeable membrane unit 7 (the quality of the water to be treated), that is, the fluctuation of the osmotic pressure.
 本発明を実施するに当たって留意すべき点として、半透膜ユニット7における回収率Rの上限値である最大回収率Rmaxが挙げられる。最大回収率Rmaxは、供給された被処理水の水質の測定値や、元々実測しておいた供給される被処理水の成分比率に基づく濃縮限界に基づき、決定することができる。具体的には、溶解度積に基づく濃縮限界濃度を計算によって求めることも出来るし、供給水を濃縮していって析出が始まる濃度を実測し、濃縮水に析出が生じない最大濃度以下になるように最大回収率Rmaxを決めるとよい。 As a point to be noted in carrying out the present invention, there is a maximum recovery rate Rmax that is an upper limit value of the recovery rate R in the semipermeable membrane unit 7. The maximum recovery rate Rmax can be determined based on the measured value of the quality of the supplied treated water or the concentration limit based on the component ratio of the supplied treated water that has been actually measured. Specifically, the concentration limit concentration based on the solubility product can be obtained by calculation, or the concentration at which the feed water is concentrated and precipitation starts is measured, so that the concentration does not exceed the maximum concentration at which precipitation does not occur. It is advisable to determine the maximum recovery rate Rmax.
 半透膜ユニット7へ供給する被処理水の水質が大きく変動する環境、例えば潮汐の影響を受ける場合や、浸透圧の異なる2種以上の原水を混合して被処理水を得る場合においては、濃縮水流量Qbが供給水最小流量Qfminよりも大きくなるように制御するだけでは、回収率Rが被処理水の濃縮限界を上回る可能性がある。この場合、溶解しきれない成分がスケールとなって析出することが問題となる。このため、最大回収率Rmaxを決めておいて、この値を上回らないようにすることが必要である。回収率Rを調節する方法としては、例えば回収率を下げたい場合は、供給水流量Qfを増やすこと、濃縮水流量Qbを増やす、すなわち、透過水流量Qpを減らすこと等に例示されるように、供給水圧力Pfを制御することができる。 In an environment where the quality of the water to be treated supplied to the semipermeable membrane unit 7 is greatly fluctuated, such as when affected by tides, or when mixing two or more raw waters having different osmotic pressures to obtain the treated water, The recovery rate R may exceed the concentration limit of the water to be treated simply by controlling the concentrated water flow rate Qb to be larger than the minimum supply water flow rate Qfmin. In this case, it becomes a problem that a component that cannot be completely dissolved becomes a scale. For this reason, it is necessary to determine the maximum recovery rate Rmax so as not to exceed this value. As a method for adjusting the recovery rate R, for example, when it is desired to reduce the recovery rate, the supply water flow rate Qf is increased, the concentrated water flow rate Qb is increased, that is, the permeate flow rate Qp is decreased, and the like. The supply water pressure Pf can be controlled.
 ただし、供給水に、スケール防止剤を添加すれば、最大回収率Rmaxの値を引き上げることが可能であるため、Rmaxをスケール防止剤添加濃度の関数にすることも好ましい実施態様である。 However, since the maximum recovery rate Rmax can be increased by adding a scale inhibitor to the feed water, it is also a preferred embodiment that Rmax is a function of the scale inhibitor addition concentration.
 ところで、本発明の実施にあたって、回収率Rを0に設定する運転期間に、一旦、被処理水の半透膜ユニットへの供給を停止し、半透膜ユニット内で供給される被処理水の流れる方向を反対向きに設定してから被処理水の半透膜ユニットへの供給を再開すると、半透膜エレメント内や膜面に付着、堆積した汚れ(ファウリング)物質を除去することができるため、好ましい。すなわち、被処理水の半透膜ユニットへの供給を停止する前後で、半透膜ユニットへの被処理水の流入口と、半透膜ユニットからの濃縮水の排出口とを入れ替えるように設定して半透膜ユニットを運転することが好ましい。 By the way, in carrying out the present invention, during the operation period in which the recovery rate R is set to 0, the supply of the water to be treated to the semipermeable membrane unit is temporarily stopped and the water to be treated supplied in the semipermeable membrane unit is temporarily stopped. When the flow direction is set to the opposite direction and the supply of the water to be processed to the semipermeable membrane unit is resumed, the fouling substance adhered and deposited in the semipermeable membrane element or on the membrane surface can be removed. Therefore, it is preferable. That is, before and after stopping the supply of treated water to the semipermeable membrane unit, the inlet of treated water to the semipermeable membrane unit and the outlet for concentrated water from the semipermeable membrane unit are switched. Thus, it is preferable to operate the semipermeable membrane unit.
 本発明では、半透膜ユニット7から取出した濃縮水を排水するが、この濃縮水は図1、2における濃縮水バルブ13aで、圧力損失を生じさせ、減圧してから排水するようになっている。この濃縮水が有する圧力エネルギーを回収するため、濃縮水バルブ13aの代わりに、エネルギー回収ユニットを備えることも好ましい。エネルギー回収ユニットとしては、逆転ポンプ、ペルトン水車、ターボチャージャー、圧力交換などを挙げることができる。本発明では、濃縮水流量Qbを制御するために、供給水圧力Pfを変動させる。このような条件に適している圧力交換方式のエネルギー回収ユニットを使用することが好ましい。すなわち、圧力交換式エネルギー回収ユニットのエネルギー回収効率は、流量の影響を大きく受けるが、圧力の影響はあまりないため、流量範囲が狭い本発明では、圧力交換式エネルギー回収ユニットを使用することにより、どのような運転条件であっても高いエネルギー回収効率を発現することができる。他のエネルギー回収では、効率が圧力変動、流量変動それぞれの影響を受け、高いエネルギー回収効率を維持することが難しいため、本発明にはあまり適していない。圧力交換式エネルギー回収ユニット18を備えた装置の一例を図3に示す。 In the present invention, the concentrated water taken out from the semipermeable membrane unit 7 is drained, but this concentrated water causes a pressure loss at the concentrated water valve 13a in FIGS. Yes. In order to recover the pressure energy of the concentrated water, it is preferable to provide an energy recovery unit instead of the concentrated water valve 13a. Examples of the energy recovery unit include a reverse pump, a Pelton turbine, a turbocharger, and a pressure exchange. In the present invention, the supply water pressure Pf is varied in order to control the concentrated water flow rate Qb. It is preferable to use a pressure exchange type energy recovery unit suitable for such conditions. That is, the energy recovery efficiency of the pressure exchange type energy recovery unit is greatly influenced by the flow rate, but is not greatly affected by the pressure, so in the present invention where the flow rate range is narrow, by using the pressure exchange type energy recovery unit, High energy recovery efficiency can be achieved under any operating conditions. Other energy recovery is not very suitable for the present invention because the efficiency is affected by pressure fluctuation and flow rate fluctuation and it is difficult to maintain high energy recovery efficiency. An example of the apparatus provided with the pressure exchange type energy recovery unit 18 is shown in FIG.
 図3において、前処理水タンク5に貯留された前処理水の少なくとも一部を、2台のブースターポンプ19により、圧力交換式エネルギー回収ユニット18に通し、半透膜ユニット7から排出された濃縮水との間で圧力交換して、半透膜ユニット7へ供給される。 In FIG. 3, at least a part of the pretreated water stored in the pretreated water tank 5 is passed through the pressure exchange type energy recovery unit 18 by the two booster pumps 19 and concentrated from the semipermeable membrane unit 7. The pressure is exchanged with water and supplied to the semipermeable membrane unit 7.
 本発明の脱塩水の製造方法では、前処理ユニット4としては、砂ろ過、分離膜などを挙げることが出来る。分離膜の場合、様々な分離膜ユニットを用いることが出来るが、マイクロメートル以下の高精度の固液分離が可能な糸巻きフィルター、不織布フィルター、精密濾過膜、限外ろ過膜などを原水水質に応じて用いることができる。 In the method for producing demineralized water of the present invention, examples of the pretreatment unit 4 include sand filtration and a separation membrane. In the case of a separation membrane, various separation membrane units can be used. Depending on the quality of raw water and water, a wound filter, non-woven filter, microfiltration membrane, ultrafiltration membrane, etc. capable of high-precision solid-liquid separation of micrometer or less can be used. Can be used.
 また、これらの前処理ユニット、半透膜ユニットなどは、原水に含有される汚れ成分によって汚染されていくので、性能回復させるために適宜、オンラインもしくはオフラインで洗浄が行われるのが一般的である。オンラインの場合は、洗浄薬品を被処理水側に注入する。例としては、取水やユニットへの供給水などに連続もしくは間欠注入される次亜塩素酸、クロラミン、二酸化塩素、過マンガン酸カリウム、次亜硫酸ナトリウム、2,2-ジブロモ―3-ニトリロプロピオンアミド(DBNPA)などの殺菌剤や硫酸、塩酸、クエン酸などの一般的な酸や、水酸化ナトリウムなどのアルカリを挙げることが出来る。オフラインの場合は、被処理水や処理水などをそのまま、もしくは、加温したり上述の洗浄薬品を添加して洗浄効果を上げて、汚染部分に供給し、フラッシングしたり、浸漬することが一般的である。ここでいう汚染部分は、被処理水側、処理水側、いずれでもかまわないが、汚染しやすい被処理水側に適用するのが好ましい。 In addition, since these pretreatment units, semipermeable membrane units and the like are contaminated by dirt components contained in the raw water, it is common to perform on-line or off-line cleaning as appropriate in order to restore performance. . In the case of online, the cleaning chemical is injected into the water to be treated. Examples include hypochlorous acid, chloramine, chlorine dioxide, potassium permanganate, sodium hyposulfite, 2,2-dibromo-3-nitrilopropionamide (which is continuously or intermittently injected into water intake and supply water to the unit, etc. And bactericides such as DBNPA), general acids such as sulfuric acid, hydrochloric acid and citric acid, and alkalis such as sodium hydroxide. In the case of off-line, the treated water or treated water is used as it is, or it is generally heated or added with the above-mentioned cleaning chemicals to increase the cleaning effect, supply to the contaminated part, flush, or dip Is. The contaminated part here may be on either the treated water side or the treated water side, but it is preferably applied to the treated water side where contamination easily occurs.
 本発明を適用可能な被処理水(原水)は特に、制限されるものではなく、河川水、海水、下水処理水、雨水、工業用水、工業廃水、またはそれらの混合水など、いろいろな被処理水を挙げることができるが、特に、浸透圧を有する海水やかん水に対しての適用が好適である。 The treated water (raw water) to which the present invention is applicable is not particularly limited, and various treated water such as river water, seawater, sewage treated water, rain water, industrial water, industrial waste water, or mixed water thereof. Although water can be mentioned, application to seawater or brackish water having osmotic pressure is particularly suitable.
 尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。 Note that the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like can be made as appropriate. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
 本出願は、2013年2月28日出願の日本特許出願、特願2013-038199に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2013-038199 filed on Feb. 28, 2013, the contents of which are incorporated herein by reference.
 本発明は、不安定な自然エネルギーから得られた電力を動力源としつつ、効率的に半透膜ユニットおよびその他のユニットを運転することによって、分離膜ユニットの汚染を防止し、環境負荷を抑えつつ半透膜ユニットを安定に運転する方法を提供することが可能となる。 The present invention prevents the contamination of the separation membrane unit and reduces the environmental load by operating the semipermeable membrane unit and other units efficiently while using electric power obtained from unstable natural energy as a power source. It is possible to provide a method for stably operating the semipermeable membrane unit.
1:原水
2:原水タンク
3:前処理ポンプ
4:前処理ユニット
5:前処理水タンク
6:高圧ポンプ
7:半透膜ユニット
8:透過水タンク
9:昇圧ポンプ
10:後処理ユニット
11:生産水タンク
12a,12b:濃縮水ライン
13a,13b:濃縮水バルブ
14:電力貯蔵ユニット
15:自然エネルギー発電ユニット(動力源)
16:電力安定供給制御ユニット
17:透過水バルブ
18:圧力交換式エネルギー回収ユニット
19:ブースターポンプ
20,20a,20b:濃度センサー
21:半透膜ユニット流量制御ユニット
1: Raw water 2: Raw water tank 3: Pretreatment pump 4: Pretreatment unit 5: Pretreatment water tank 6: High pressure pump 7: Semipermeable membrane unit 8: Permeate water tank 9: Booster pump 10: Posttreatment unit 11: Production Water tanks 12a, 12b: Concentrated water lines 13a, 13b: Concentrated water valve 14: Electric power storage unit 15: Natural energy power generation unit (power source)
16: Power stable supply control unit 17: Permeated water valve 18: Pressure exchange type energy recovery unit 19: Booster pumps 20, 20a, 20b: Concentration sensor 21: Semipermeable membrane unit flow control unit

Claims (7)

  1.  自然エネルギーを利用した発電ユニットから得られる電力を主な動力源として被処理水を昇圧して半透膜ユニットに供給し、透過水と濃縮水に分離し、透過水を脱塩水として得る方法において、前記半透膜ユニットへ供給する前記被処理水の水質に基づいて算出される浸透圧に基づいて、最低供給水圧力Pfminを決定し、予め設定した供給水最小流量Qfminを流したときに、供給水圧力Pfを最低供給水圧力Pfminまで昇圧出来ないときは、供給水流量Qfに対する透過水流量Qpの比の値として得られる回収率Rを0として運転するか、もしくは、前記半透膜ユニットの運転を停止するように制御し、供給水最小流量Qfminを流したときに、供給水圧力Pfを最低供給水圧力Pfminまで昇圧出来るときは、濃縮水流量Qbが前記供給水最小流量Qfminよりも大きくなるように回収率Rを制御する脱塩水の製造方法。 In a method of boosting the water to be treated using the electric power obtained from the power generation unit using natural energy as the main power source, supplying it to the semipermeable membrane unit, separating it into permeated water and concentrated water, and obtaining permeated water as desalted water The minimum supply water pressure Pfmin is determined based on the osmotic pressure calculated based on the quality of the water to be treated supplied to the semipermeable membrane unit, and when a preset supply water minimum flow rate Qfmin is flowed, When the supply water pressure Pf cannot be increased to the minimum supply water pressure Pfmin, the recovery rate R obtained as the value of the ratio of the permeate flow rate Qp to the supply water flow rate Qf is operated as 0, or the semipermeable membrane unit When the supply water pressure Pf can be increased to the minimum supply water pressure Pfmin when the supply water minimum flow rate Qfmin is flowed, Method for producing demineralized water Qb controls the recovery rate R to be larger than the feed water minimum flow Qfmin.
  2.  請求項1に記載の脱塩水の製造方法であって、
     前記回収率Rを0にして前記半透膜ユニットを運転するとき、(1)前記半透膜ユニットへの供給水流量Qfを供給水最小流量Qfminよりも小さくする、(2)前記供給水圧力Pfを最低供給水圧力Pfminよりも小さくする、(3)前記半透膜ユニットから排出される濃縮水を半透膜ユニットへ供給する被処理水として還流する、のうち少なくともひとつを実施する脱塩水の製造方法。
    A method for producing demineralized water according to claim 1,
    When operating the semipermeable membrane unit with the recovery rate R set to 0, (1) the supply water flow rate Qf to the semipermeable membrane unit is made smaller than the supply water minimum flow rate Qfmin, (2) the supply water pressure Desalinated water that performs at least one of reducing Pf to be lower than the minimum supply water pressure Pfmin, and (3) returning the concentrated water discharged from the semipermeable membrane unit as treated water to be supplied to the semipermeable membrane unit Manufacturing method.
  3.  請求項1または2に記載の脱塩水の製造方法であって、
     前記回収率Rの上限値として、最大回収率Rmaxを前記被処理水の水質に基づいて算出し、前記回収率Rが最大回収率Rmaxを上回らないように、前記供給水圧力Pfを制御する脱塩水の製造方法。
    A method for producing demineralized water according to claim 1 or 2,
    As an upper limit value of the recovery rate R, a maximum recovery rate Rmax is calculated based on the quality of the water to be treated, and the supply water pressure Pf is controlled so that the recovery rate R does not exceed the maximum recovery rate Rmax. A method for producing salt water.
  4.  請求項1から3のいずれか1項に記載の脱塩水の製造方法であって、
     前記回収率Rを0として運転する期間に、一旦、被処理水の半透膜ユニットへの供給を停止し、半透膜ユニット内で被処理水の流入口と濃縮水の排出口とを入れ替えるように設定した後、被処理水の半透膜ユニットへの供給を再開する脱塩水の製造方法。
    A method for producing demineralized water according to any one of claims 1 to 3,
    During the period when the recovery rate R is set to 0, the supply of the water to be treated to the semipermeable membrane unit is temporarily stopped, and the inlet of the water to be treated and the outlet of the concentrated water are exchanged in the semipermeable membrane unit. After setting so, the manufacturing method of the desalinated water which restarts supply to the semipermeable membrane unit of to-be-processed water.
  5.  請求項1から4のいずれか1項に記載の脱塩水の製造方法であって、
     前記半透膜ユニットから排出された濃縮水の圧力エネルギーを圧力交換式のエネルギー回収ユニットでエネルギー回収する脱塩水の製造方法。
    A method for producing demineralized water according to any one of claims 1 to 4,
    A method for producing demineralized water, wherein the pressure energy of the concentrated water discharged from the semipermeable membrane unit is recovered by a pressure exchange type energy recovery unit.
  6.  請求項1から5のいずれか1項に記載の脱塩水の製造方法であって、
     前記自然エネルギーが太陽光、風力のいずれかを含む脱塩水の製造方法。
    A method for producing demineralized water according to any one of claims 1 to 5,
    The manufacturing method of the desalinated water in which the said natural energy contains either sunlight or a wind power.
  7.  請求項1から6のいずれか1項に記載の脱塩水の製造方法であって、
     前記発電ユニットとともに、コンデンサー、キャパシタ、鉛蓄電池、リチウムイオン電池から選ばれる少なくともひとつを電力貯蔵手段として用いて、前記半透膜ユニットの運転時に供給する電力の変動を抑える脱塩水の製造方法。
    A method for producing demineralized water according to any one of claims 1 to 6,
    A method for producing desalted water that suppresses fluctuations in power supplied during operation of the semipermeable membrane unit by using at least one selected from a capacitor, a capacitor, a lead storage battery, and a lithium ion battery as a power storage unit together with the power generation unit.
PCT/JP2014/054941 2013-02-28 2014-02-27 Method for producing desalinated water WO2014133101A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014529360A JP6269486B2 (en) 2013-02-28 2014-02-27 Demineralized water production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013038199 2013-02-28
JP2013-038199 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014133101A1 true WO2014133101A1 (en) 2014-09-04

Family

ID=51428360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054941 WO2014133101A1 (en) 2013-02-28 2014-02-27 Method for producing desalinated water

Country Status (2)

Country Link
JP (1) JP6269486B2 (en)
WO (1) WO2014133101A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107879421A (en) * 2016-09-29 2018-04-06 东丽先端材料研究开发(中国)有限公司 A kind of operation method of purifier and purifier
JP2018519158A (en) * 2015-07-02 2018-07-19 マスカラ ヌーベル テクノロジー Method for controlling a desalination plant powered by a renewable energy source and associated plant
WO2023153325A1 (en) * 2022-02-10 2023-08-17 ウォーターポイント株式会社 Water purification system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614510A (en) * 1984-06-18 1986-01-10 Yamaha Motor Co Ltd Fresh water generator
JP2000288368A (en) * 1999-04-06 2000-10-17 Nitto Denko Corp Composite reverse osmosis membrane
JP2001252662A (en) * 2000-03-10 2001-09-18 Toray Ind Inc Fresh water generating method
JP2011020010A (en) * 2009-07-13 2011-02-03 Mitsubishi Heavy Ind Ltd Formation water producing apparatus
JP2012170841A (en) * 2011-02-17 2012-09-10 Hitachi Plant Technologies Ltd Compound desalination system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614510A (en) * 1984-06-18 1986-01-10 Yamaha Motor Co Ltd Fresh water generator
JP2000288368A (en) * 1999-04-06 2000-10-17 Nitto Denko Corp Composite reverse osmosis membrane
JP2001252662A (en) * 2000-03-10 2001-09-18 Toray Ind Inc Fresh water generating method
JP2011020010A (en) * 2009-07-13 2011-02-03 Mitsubishi Heavy Ind Ltd Formation water producing apparatus
JP2012170841A (en) * 2011-02-17 2012-09-10 Hitachi Plant Technologies Ltd Compound desalination system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519158A (en) * 2015-07-02 2018-07-19 マスカラ ヌーベル テクノロジー Method for controlling a desalination plant powered by a renewable energy source and associated plant
EP3317229B1 (en) 2015-07-02 2020-01-29 Mascara Nouvelles Technologies Method for controlling a desalination plant fed by a source of renewable energy and associated plant
CN107879421A (en) * 2016-09-29 2018-04-06 东丽先端材料研究开发(中国)有限公司 A kind of operation method of purifier and purifier
WO2023153325A1 (en) * 2022-02-10 2023-08-17 ウォーターポイント株式会社 Water purification system

Also Published As

Publication number Publication date
JPWO2014133101A1 (en) 2017-02-02
JP6269486B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
EP2693050B1 (en) Concentration difference power generation device and method for operating same
Peñate et al. Current trends and future prospects in the design of seawater reverse osmosis desalination technology
KR20200089223A (en) Pressure-reduced saline water treatment system
US20100212319A1 (en) Method and apparatus for generating power utilizing forward osmosis
KR101560698B1 (en) Membrane based desalination apparatus with osmotic energy recovery and membrane based desalination process with osmotic energy recovery
US20090152197A1 (en) System for Energy Recovery and Reduction of Deposits on the Membrane Surfaces in (Variable Power and Variable Production) Reverse Osmosis Desalination Systems
JP2008100219A (en) Desalination method and desalination apparatus
CN214400132U (en) System of clean energy sea water desalination coupling salt difference energy power generation facility
KR20140073312A (en) Apparatus for producing fresh water and electric power through forward osmosis, reverse osmosis and pressure retarded osmosis using treated sewage and seawater, and method for the same
JP2008100220A (en) Method for producing freshwater
JP2019072660A (en) Seawater desalination method and seawater desalination system
WO2014115769A1 (en) Method for operating freshwater production device
JP5867082B2 (en) Fresh water production method
JP6269486B2 (en) Demineralized water production method
CN112723640A (en) System and method for clean energy sea water desalination coupling salt difference energy power generation device
JP2018519158A (en) Method for controlling a desalination plant powered by a renewable energy source and associated plant
Chaudhry Unit cost of desalination
JP7085329B2 (en) Wastewater concentration method and wastewater concentrator
JP2002085941A (en) Fresh water making process and fresh water maker
Singh Sustainable fuel cell integrated membrane desalination systems
WO2014057892A1 (en) Method for generating fresh water
KR101806144B1 (en) Desalination system using controlled forward osmosis and reverse osmosis
US20150239752A1 (en) Reverse Osmosis System with Drain Water Recycle
JP6246994B2 (en) Water treatment system
JP2015163383A (en) Fresh water generation system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014529360

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757003

Country of ref document: EP

Kind code of ref document: A1