JP2012170841A - Compound desalination system - Google Patents

Compound desalination system Download PDF

Info

Publication number
JP2012170841A
JP2012170841A JP2011032635A JP2011032635A JP2012170841A JP 2012170841 A JP2012170841 A JP 2012170841A JP 2011032635 A JP2011032635 A JP 2011032635A JP 2011032635 A JP2011032635 A JP 2011032635A JP 2012170841 A JP2012170841 A JP 2012170841A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
flow rate
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011032635A
Other languages
Japanese (ja)
Other versions
JP5587223B2 (en
Inventor
Kotaro Kitamura
光太郎 北村
Yusuke Okawa
雄介 大川
Kazuhiko Noto
一彦 能登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2011032635A priority Critical patent/JP5587223B2/en
Priority to PCT/JP2012/053615 priority patent/WO2012111731A1/en
Priority to CN201280009139.1A priority patent/CN103370280B/en
Priority to SG2013062039A priority patent/SG192789A1/en
Publication of JP2012170841A publication Critical patent/JP2012170841A/en
Application granted granted Critical
Publication of JP5587223B2 publication Critical patent/JP5587223B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2661Addition of gas
    • B01D2311/2665Aeration other than for cleaning purposes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compound desalination system that can effectively utilize energy, having a relatively low hydraulic pressure, of non-permeate of a reverse osmosis membrane device in the compound desalination system.SOLUTION: The compound desalination system 100A includes a seawater desalination treatment system 3 that filters seawater D using a seawater reverse osmosis membrane device 38, and a wastewater treatment system 1 that filters wastewater A having a lower salt concentration than the seawater D using a low-pressure reverse osmosis membrane device 16. In the seawater desalination treatment system 3, fine foams are generated in and released from a fine foam generating part 19 in an intake chamber 32 that stores taken-in seawater D, by decompressing non-permeate C discharged from the low-pressure reverse osmosis membrane device 16 of the wastewater treatment system 1.

Description

本発明は、海水、汽水、かん水等の高塩分濃度の第1の原水を、逆浸透膜装置を用いてろ過処理する第1の水処理系と、第1の原水よりも低塩分濃度の第2の原水を、逆浸透膜装置を用いてろ過処理する第2の水処理系と、を備える複合淡水化システムに関し、特に、第2の水処理系の逆浸透膜装置から排出される非透過水の水圧エネルギを利用し、第1の水処理系の稼働率を向上する技術に関する。   The present invention provides a first water treatment system for filtering a first raw water having a high salinity concentration, such as seawater, brackish water, brine, etc., using a reverse osmosis membrane device, and a first salt treatment having a lower salinity concentration than the first raw water. And a second water treatment system for filtering the raw water of No. 2 using a reverse osmosis membrane device, and in particular, a non-permeate discharged from the reverse osmosis membrane device of the second water treatment system The present invention relates to a technique for improving the operating rate of a first water treatment system by utilizing the hydraulic energy of water.

特許文献1には、逆浸透膜装置を用いたろ過によって海水を淡水化する海水淡水化装置において、例えば、下水に代表される有機物を含有する排水(以下、「有機性排水」と称する)は、通常、生物処理されて、その処理された排水は海洋や河川に放出されていたものを、海水淡水化装置の取水した海水と混合して、海水淡水化装置の被処理水の塩分濃度を海水そのままよりも低下させ(希釈し)、海水淡水化装置の逆浸透膜装置に前記した塩分濃度の希釈された被処理水を圧送することで、圧送ポンプ(本明細書における「高圧ポンプ」に対応)の必要駆動力を低減させる技術が記載されている。   In Patent Document 1, in a seawater desalination apparatus that desalinates seawater by filtration using a reverse osmosis membrane apparatus, for example, wastewater containing organic substances represented by sewage (hereinafter referred to as “organic wastewater”) is disclosed. Normally, biological wastewater that has been biologically treated and discharged into the ocean or river is mixed with seawater taken by the seawater desalination unit, and the salinity of the treated water in the seawater desalination unit is mixed. By reducing (diluting) the seawater as it is, and feeding the treated water diluted with the above-mentioned salinity to the reverse osmosis membrane device of the seawater desalination unit, the pumping pump (in the “high pressure pump” in this specification) The technology for reducing the required driving force is described.

また、特許文献2には、水中に溶存した空気等を圧送して、減圧させることで微小気泡を発生させる技術が記載されている。
ちなみに、水処理において、被処理水中に微小気泡、例えば、マイクロバブル、ナノバブルを発生させ、微小気泡を比較的長く被処理水中に滞留させて、微小気泡が圧壊する過程で生じる衝撃波により被処理水中の有機物を分解したりすることができることは公知技術である。
Patent Document 2 describes a technique for generating microbubbles by pumping air dissolved in water and reducing the pressure.
By the way, in water treatment, micro bubbles such as micro bubbles and nano bubbles are generated in the water to be treated, and the micro bubbles stay in the water to be treated for a relatively long time. It is a well-known technique that the organic matter can be decomposed.

更に、特許文献3には、被処理水中にオゾンガスを注入して殺菌する技術が記載されている。   Furthermore, Patent Document 3 describes a technique for injecting ozone gas into the water to be treated for sterilization.

特許第4481345号公報Japanese Patent No. 4,481,345 特開2010−274243号公報JP 2010-274243 A 特開平09−290260号公報JP 09-290260 A

しかしながら、特許文献1に記載の技術において、有機性排水の水処理工程で逆浸透膜装置を用いる場合の圧力は、海水淡水化装置の水処理工程で逆浸透膜装置を用いる場合の圧力よりも低圧である。そして、有機性排水の水処理工程での逆浸透膜装置から排出される非透過水を直接取水した海水と混合することにより海水よりも塩分濃度を低下させているだけであり、前記した有機性排水の水処理工程の逆浸透膜装置からの非透過水の有するエネルギは比較的に低圧のものであることから何等利用されておらず無駄にされている。
また、有機性排水を海水の希釈に用いることにより被処理水中の有機物が増加するため、海水淡水化装置における逆浸透膜のファウリングの頻度が増大するという問題もある。
However, in the technique described in Patent Document 1, the pressure when the reverse osmosis membrane device is used in the water treatment process of organic wastewater is higher than the pressure when the reverse osmosis membrane device is used in the water treatment process of the seawater desalination device. Low pressure. And, the non-permeated water discharged from the reverse osmosis membrane device in the water treatment process of the organic wastewater is only mixed with the seawater taken directly, and the salinity concentration is lowered than the seawater. Since the energy of the non-permeated water from the reverse osmosis membrane device in the wastewater treatment process is relatively low pressure, it is not used at all and is wasted.
Moreover, since organic matter in the water to be treated is increased by using organic wastewater for dilution of seawater, there is a problem that the frequency of fouling of the reverse osmosis membrane in the seawater desalination apparatus increases.

本発明は、前記した従来の課題を解決するものであり、複合淡水化システムにおける逆浸透膜装置の非透過水のエネルギを有効利用でき、かつ、ファウリングの頻度を低減することが可能な複合淡水化システムを提供することを目的とする。   The present invention solves the above-described conventional problems, and can effectively use the energy of non-permeated water of a reverse osmosis membrane device in a complex desalination system and can reduce the frequency of fouling. The purpose is to provide a desalination system.

前記課題を解決するために、本発明の複合淡水化システムは、高塩分濃度の第1の原水を、第1の逆浸透膜装置を用いてろ過処理する第1の水処理系と、第1の原水よりも低塩分濃度の第2の原水を、第2の逆浸透膜装置を用いてろ過処理する第2の水処理系と、を備えるものであって、第1の水処理系において、取水された第1の原水内に、第2の水処理系の第2の逆浸透膜装置から排出される非透過水を減圧することによって微細気泡を発生して放出させる微細気泡発生手段を備えることを特徴とする。   In order to solve the above-mentioned problems, a combined desalination system of the present invention includes a first water treatment system for filtering a first raw water having a high salinity using a first reverse osmosis membrane device, A second water treatment system for filtering the second raw water having a salt concentration lower than that of the raw water using the second reverse osmosis membrane device, and in the first water treatment system, Fine bubble generating means for generating and releasing fine bubbles by reducing the pressure of non-permeated water discharged from the second reverse osmosis membrane device of the second water treatment system in the taken first raw water is provided. It is characterized by that.

そして、前記微細気泡発生手段は、第2の逆浸透膜装置の非透過水の出口と、前記取水された第1の原水を溜める第1原水槽と、を接続する第1の配管と、第1の配管の第1原水槽側に設けられた第1の弁と、第1の配管の第1の弁よりも下流側に設けられ、第2の逆浸透膜装置の非透過水を第1原水槽に急減圧させることにより、その中に溶存している気体を前記微細気泡として発生させて放出する微細気泡発生部と、を含んで構成されることが好ましい。
前記微細気泡発生手段は、更に、第1の弁よりも上流位置で第1の配管から分岐されて第1原水槽に接続する第2の配管と、第2の配管に設けられ、第2の逆浸透膜装置の非透過水の流量調整をするための第2の弁と、を含んで構成されることが好ましい。
The fine bubble generating means includes a first pipe connecting an outlet of non-permeated water of the second reverse osmosis membrane device and a first raw water tank for storing the taken first raw water, A first valve provided on the first raw water tank side of the first pipe and a first valve provided on the downstream side of the first valve of the first pipe, the first permeate of the second reverse osmosis membrane device It is preferable to include a fine bubble generating unit that rapidly decompresses the raw water tank to generate and discharge the gas dissolved therein as the fine bubbles.
The fine bubble generating means is further provided in a second pipe branched from the first pipe at a position upstream of the first valve and connected to the first raw water tank, and a second pipe. And a second valve for adjusting the flow rate of the non-permeate water of the reverse osmosis membrane device.

更に、オゾンガスを発生させるオゾン発生装置を備え、第1の弁と微細気泡発生部との間の第1の配管に、オゾン発生装置が発生したオゾンガスを注入するオゾン注入部を設けることが好ましい。   Furthermore, it is preferable to provide an ozone generator for generating ozone gas, and to provide an ozone injection section for injecting ozone gas generated by the ozone generator in the first pipe between the first valve and the fine bubble generation section.

従来、微細気泡を発生させるために、空気を圧縮して吹き込んだり、急減圧させて溶存ガスを微細気泡として発生させたりするために、別途動力を必要としていた。それに対し本発明によれば、第2の水処理系の第2の逆浸透膜装置から排出される非透過水の有する比較的に低圧の水圧でも十分に微細気泡を減圧により発生させることができるので、微細気泡を発生させるための新たな動力を必要とせず複合淡水化システムの運転に要する電力を節約することができる。   Conventionally, in order to generate fine bubbles, separate power has been required to compress and blow in air or to rapidly reduce pressure to generate dissolved gas as fine bubbles. On the other hand, according to the present invention, fine bubbles can be sufficiently generated by decompression even at a relatively low pressure of nonpermeate water discharged from the second reverse osmosis membrane device of the second water treatment system. Therefore, it is possible to save the electric power required for the operation of the composite desalination system without requiring new power for generating fine bubbles.

また、第2の水処理系の第2の逆浸透膜装置から排出される非透過水を微細気泡発生部に全量流すだけでは、第2の水処理系の第2の逆浸透膜装置から排出される非透過水の流量が調整できない可能性がある。それに対し、本発明では、第1の弁よりも上流位置で第1の配管から分岐されて第1原水槽に接続する第2の配管と、第2の配管に設けられ、第2の逆浸透膜装置の非透過水の流量調整をするための第2の弁と、を含んで構成することで、第2の逆浸透膜装置の非透過水の流量調整をも行うことができる。   Moreover, it is discharged from the second reverse osmosis membrane device of the second water treatment system only by flowing the entire amount of non-permeated water discharged from the second reverse osmosis membrane device of the second water treatment system to the fine bubble generating unit. There is a possibility that the flow rate of non-permeated water to be adjusted cannot be adjusted. In contrast, in the present invention, the second reverse osmosis is provided in the second pipe branched from the first pipe at a position upstream of the first valve and connected to the first raw water tank, and the second pipe. By including the second valve for adjusting the flow rate of the non-permeate water of the membrane device, the flow rate of the non-permeate water of the second reverse osmosis membrane device can also be adjusted.

更に、本発明では、オゾンガスを発生させるオゾン発生装置を備え、第1の弁と微細気泡発生部との間の第1の配管に、オゾン発生装置が発生したオゾンガスを注入するオゾン注入部を設けることにより、微細気泡発生部においてオゾンガスを含んだ微細気泡を発生させることができ、第1の原水を含んだ被処理水に対し、微細気泡の圧壊過程で生じる衝撃波による有機物の分解だけでなく、オゾンによる殺菌効果も得ることができる。   Furthermore, in the present invention, an ozone generator that generates ozone gas is provided, and an ozone injection unit that injects ozone gas generated by the ozone generator is provided in a first pipe between the first valve and the fine bubble generator. In this way, fine bubbles containing ozone gas can be generated in the fine bubble generating part, and not only the decomposition of organic matter due to shock waves generated in the process of crushing the fine bubbles with respect to the treated water containing the first raw water, A bactericidal effect by ozone can also be obtained.

本発明によれば、複合淡水化システムにおける逆浸透膜装置の非透過水のエネルギを有効利用できる複合淡水化システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the composite desalination system which can utilize effectively the energy of the non-permeated water of the reverse osmosis membrane apparatus in a composite desalination system can be provided.

基本実施形態の複合淡水化システムの概略ブロック図である。It is a schematic block diagram of the composite desalination system of basic embodiment. 第1の実施形態に係る複合淡水化システムの概略ブロック図である。It is a schematic block diagram of the composite desalination system which concerns on 1st Embodiment. 図2のX部の拡大説明図であり、第1の実施形態に係る複合淡水化システムにオゾン発生装置及びオゾン注入ポンプを更に組み合わせた第2の実施形態に係る複合淡水化システムの説明図である。FIG. 3 is an enlarged explanatory view of a part X in FIG. 2, and is an explanatory view of a combined desalination system according to a second embodiment in which an ozone generator and an ozone injection pump are further combined with the combined desalination system according to the first embodiment. is there. 図2のX部の拡大説明図であり、第1の実施形態に係る複合淡水化システムに反応槽を組み合わせた第3の実施形態に係る複合淡水化システム、更にオゾン発生装置及びオゾン注入ポンプを組み合わせた第4の実施形態に係る複合淡水化システムの説明図である。FIG. 3 is an enlarged explanatory view of a portion X in FIG. 2, including a combined desalination system according to a third embodiment in which a reaction tank is combined with the combined desalination system according to the first embodiment, an ozone generator, and an ozone injection pump. It is explanatory drawing of the composite desalination system which concerns on 4th Embodiment combined.

以下に、本発明の実施形態に係る複合淡水化システムについて図を参照しながら詳細に説明する。   Below, the composite desalination system which concerns on embodiment of this invention is demonstrated in detail, referring a figure.

《基本実施形態の複合淡水化システム》
先ず、図1を参照して本発明の基本実施形態とする複合淡水化システム100について説明する。図1は、基本実施形態の複合淡水化システムの概略ブロック図である。
この複合淡水化システム100は、臨海地帯、塩水湖近傍、汽水帯近傍等に設置されることを前提としている。
そして、複合淡水化システム100は、産業排水や都市排水等のように海水、汽水、かん水等と比較して塩分濃度の低い排水(第2の原水)A(以下、単に「排水A」と称する)を、工業用水等の飲料水以外の中水(「透過水B」又は「生産水B」と称する)として再利用可能に排水処理する排水処理系(第2の水処理系)1と、海水、汽水、かん水等の比較的塩分濃度の高い水(第1の原水)Dを工業用水等の飲料水以外の中水(「透過水E」又は「生産水E」と称する)として再利用可能に浄化処理をする海水淡水化処理系(第1の水処理系)3と、排水処理系1及び海水淡水化処理系3に含まれるポンプや弁の動作制御をする制御装置6を含んで構成されている。
なお、「海水、汽水、かん水等の比較的塩分濃度の高い水D」を、以下では、代表的に「海水D」と称し、代表的に「海水D」と表記した意味で前記したように「海水淡水化処理系3」と称する。
<< Compound desalination system of basic embodiment >>
First, a combined desalination system 100 according to a basic embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic block diagram of the composite desalination system of the basic embodiment.
This composite desalination system 100 is assumed to be installed in a coastal zone, in the vicinity of a saltwater lake, in the vicinity of a brackish water zone, and the like.
The combined desalination system 100 is a wastewater (second raw water) A (hereinafter simply referred to as “drainage A”) having a lower salinity than seawater, brackish water, brine, and the like, such as industrial wastewater and urban wastewater. A wastewater treatment system (second water treatment system) 1 for wastewater treatment so that it can be reused as middle water other than drinking water such as industrial water (referred to as “permeate water B” or “product water B”); Reuse water (first raw water) D with relatively high salinity, such as seawater, brackish water, brine, etc., as medium water (referred to as “permeate E” or “product water E”) other than drinking water such as industrial water A seawater desalination treatment system (first water treatment system) 3 that performs purification treatment as possible, and a control device 6 that controls the operation of pumps and valves included in the wastewater treatment system 1 and the seawater desalination treatment system 3. It is configured.
In the following, “water D having a relatively high salinity such as seawater, brackish water, brine, etc.” is hereinafter referred to as “seawater D” as representatively and as described above in the meaning of “seawater D”. This is referred to as “seawater desalination treatment system 3”.

(排水処理系1の構成)
先ず、排水処理系1の概略構成について図1を参照しながら説明する。排水Aは、有機物等を含んでおり、排水取水管51から、例えば、膜分離活性汚泥法(MBR)を用いた水処理装置(以下、「MBR水処理装置11」と称し、図1では、単に「MBR」と表示)に導かれ、一次処理される。MBR水処理装置11において一次処理された被処理水は、MBR水処理装置11から移送ポンプ12で配管52を介して、一旦、被処理水の流れのバッファの役目をする処理水水槽13に導かれて溜められる。更に、処理水水槽13に溜められた被処理水は、配管53を介して供給ポンプ14で吸引され高圧ポンプ15に供給され、高圧ポンプ15で昇圧されて、低圧逆浸透膜装置(第2の逆浸透膜装置)16の被処理水の供給口16aに供給される。
(Configuration of wastewater treatment system 1)
First, a schematic configuration of the wastewater treatment system 1 will be described with reference to FIG. The drainage A contains organic substances and is referred to as a water treatment device (hereinafter referred to as “MBR water treatment device 11”) using, for example, a membrane separation activated sludge method (MBR) from the drainage water intake pipe 51. Simply “MBR”) and primary processing. The treated water primarily treated in the MBR water treatment apparatus 11 is once introduced from the MBR water treatment apparatus 11 to the treated water tank 13 serving as a buffer for the flow of the treated water through the pipe 52 by the transfer pump 12. It is stored. Further, the water to be treated stored in the treated water tank 13 is sucked by the supply pump 14 through the pipe 53 and supplied to the high pressure pump 15, and the pressure is increased by the high pressure pump 15. The reverse osmosis membrane device) 16 is supplied to the supply port 16a of the water to be treated.

低圧逆浸透膜装置16は、例えば、特開2001−149932号公報の図3、図4に記載されたような膜モジュール・ユニットが複数並列に配置された構成である。
供給口16aから圧力を掛けて供給された被処理水は、低圧逆浸透膜装置16内で、逆浸透膜(RO膜:Reverse Osmosis Membrane)を透過して浄化された透過水Bと、逆浸透膜を透過しなかった被処理水である非透過水Cと、に分離される。透過水Bは、透過口16bから配管54を介して生産水Bとして外部のその水質レベルに応じた用途に供給される。
The low-pressure reverse osmosis membrane device 16 has a configuration in which, for example, a plurality of membrane module units as described in FIGS. 3 and 4 of JP 2001-149932 A are arranged in parallel.
The treated water supplied with pressure from the supply port 16a passes through the reverse osmosis membrane (RO membrane: Reverse Osmosis Membrane) in the low-pressure reverse osmosis membrane device 16 and purified water. It is separated into non-permeated water C which is treated water that has not permeated the membrane. The permeated water B is supplied from the permeation port 16b through the pipe 54 to the use according to the external water quality level as the produced water B.

非透過水Cは、低圧逆浸透膜装置16の排水口(第2の逆浸透膜装置の非透過水の出口)16cから配管56を介して途中に設けられた背圧弁18で流量を調整されて、後記する取水槽(第1原水槽)32に供給される。排水処理系1の濃縮された非透過水CのTDS(Total Dissolubed Solids:総溶解性蒸発残留物)は、1,200mg/リットル程度であり、海水DのTDSが30,000mg/リットル程度なのに比較して極めて低い濃度である。そのため、前記した低圧逆浸透膜装置16は、0.8〜1.5MPaの圧力で運転される。ちなみに、この運転圧の幅は、低圧逆浸透膜装置16の逆浸透膜の汚れが増加してくると、所要の透過水Bの流量を得るために運転圧を増加させるためである。
従って、非透過水Cの圧力は0.8〜1.5MPa程度である。そして、この圧力が前記した背圧弁18で開放される。
排水処理系1のMBR水処理装置11の代わりに限外ろ過装置を用いても良い。
なお、背圧弁18の下流側の配管56が取水槽内に低圧逆浸透膜装置16の非透過水Cを導入する段階で微細気泡を発生させる構成としても良く、その詳細な構成は、第1の実施形態から第4の実施形態の中で詳細に説明する。
The flow rate of the non-permeated water C is adjusted by a back pressure valve 18 provided in the middle from the drain port (the non-permeated water outlet of the second reverse osmosis membrane device) 16c of the low pressure reverse osmosis membrane device 16 through the pipe 56. Then, it is supplied to a water intake tank (first raw water tank) 32 to be described later. The TDS (Total Dissolubed Solids) of the concentrated non-permeated water C of the wastewater treatment system 1 is about 1,200 mg / liter, and the TDS of seawater D is about 30,000 mg / liter. Therefore, the concentration is extremely low. Therefore, the low-pressure reverse osmosis membrane device 16 described above is operated at a pressure of 0.8 to 1.5 MPa. Incidentally, the range of the operating pressure is to increase the operating pressure in order to obtain the required flow rate of the permeated water B when the contamination of the reverse osmosis membrane of the low pressure reverse osmosis membrane device 16 increases.
Therefore, the pressure of the non-permeate water C is about 0.8 to 1.5 MPa. Then, this pressure is released by the back pressure valve 18 described above.
An ultrafiltration device may be used instead of the MBR water treatment device 11 of the wastewater treatment system 1.
The pipe 56 on the downstream side of the back pressure valve 18 may be configured to generate fine bubbles at the stage of introducing the non-permeated water C of the low pressure reverse osmosis membrane device 16 into the water intake tank. The embodiments will be described in detail in the fourth to fourth embodiments.

(海水淡水化処理系3)
次に、海水淡水化処理系3の概略構成について図1を参照しながら説明する。海水Dは、取水ポンプ31で取水管81から吸込まれ、取水管82で取水槽32に供給され、溜められる。前記したように取水槽32には排水処理系1の非透過水Cが配管56で供給されるので、取水槽32内で海水Dと非透過水Cが混合され、海水よりも塩分濃度の低い被処理水となる。つまり、TDSの値も海水Dのものよりも低い値となる。
取水槽32内に溜まった被処理水は、配管83を介してろ過ポンプ33により前処理ろ過装置34に所定の圧力を掛けて供給される。
この前処理ろ過装置34としては、例えば、限外ろ過膜(UF(Ultra Filtration)膜)を用いたUF装置、精密ろ過膜(MF(Micro Filtration)膜)を用いたMF装置、砂ろ過装置のいずれでも良い。ちなみに、図1では、前処理ろ過装置34に代表的にUF装置を意味する「UF」と表示してある。
前処理ろ過装置34としてUF装置を例にすると、一般的に50〜150kPaで運転される。
(Seawater desalination treatment system 3)
Next, a schematic configuration of the seawater desalination treatment system 3 will be described with reference to FIG. Seawater D is sucked from the water intake pipe 81 by the water intake pump 31, supplied to the water intake tank 32 by the water intake pipe 82, and stored. As described above, since the non-permeate water C of the wastewater treatment system 1 is supplied to the water intake tank 32 through the pipe 56, the seawater D and the non-permeate water C are mixed in the water intake tank 32, and the salt concentration is lower than seawater. It becomes treated water. That is, the value of TDS is also lower than that of seawater D.
The treated water collected in the water intake tank 32 is supplied with a predetermined pressure to the pretreatment filtration device 34 by the filtration pump 33 through the pipe 83.
Examples of the pretreatment filtration device 34 include a UF device using an ultrafiltration membrane (UF (Ultra Filtration) membrane), an MF device using a microfiltration membrane (MF (Micro Filtration) membrane), and a sand filtration device. Either is fine. Incidentally, in FIG. 1, “UF” representing a UF device is typically displayed on the pretreatment filtration device 34.
When a UF device is taken as an example of the pretreatment filtration device 34, it is generally operated at 50 to 150 kPa.

前処理ろ過装置34でろ過された被処理水は、配管84を経て、一旦、被処理水の流れのバッファの役目をする処理水水槽35に溜められる。そして、処理水水槽35に溜められた被処理水は、配管85を介して供給ポンプ36で吸引され高圧ポンプ37に供給され、高圧ポンプ37で、例えば、3.5〜6MPa程度に昇圧されて、海水逆浸透膜装置(第1の逆浸透膜装置)38の被処理水の供給口38aに供給される。海水逆浸透膜装置38は、例えば、特開2001−149932号公報の図3、図4に記載されたような膜モジュール・ユニットが複数並列に配置された構成である。ただ、低圧逆浸透膜装置16よりも高圧で運転されることから海水逆浸透膜装置38の逆浸透膜の材質はより高圧に耐え得る性能のものである。
ちなみに、この運転圧は、海水逆浸透膜装置38の逆浸透膜に供給される被処理水のTDSの値や汚れが増加してくると、所要の透過水Eの流量を得るために運転圧を増加させる。
The treated water filtered by the pretreatment filtration device 34 is temporarily stored in the treated water tank 35 serving as a buffer for the flow of the treated water through the pipe 84. Then, the water to be treated stored in the treated water tank 35 is sucked by the supply pump 36 through the pipe 85 and supplied to the high pressure pump 37, and the pressure is increased to, for example, about 3.5 to 6 MPa by the high pressure pump 37. The seawater reverse osmosis membrane device (first reverse osmosis membrane device) 38 is supplied to the supply port 38a of the water to be treated. The seawater reverse osmosis membrane device 38 has, for example, a configuration in which a plurality of membrane module units as described in FIGS. 3 and 4 of JP-A-2001-149932 are arranged in parallel. However, since it is operated at a higher pressure than the low-pressure reverse osmosis membrane device 16, the material of the reverse osmosis membrane of the seawater reverse osmosis membrane device 38 has a performance capable of withstanding a higher pressure.
By the way, this operating pressure is obtained in order to obtain the required flow rate of the permeated water E when the TDS value of the treated water supplied to the reverse osmosis membrane of the seawater reverse osmosis membrane device 38 and the contamination increase. Increase.

供給口38aから圧力を掛けて供給された被処理水は、海水逆浸透膜装置38内で、逆浸透膜を透過して浄化された透過水Eと、逆浸透膜を透過しなかった被処理水である非透過水Gと、に分離される。透過水Eは、透過口38bから配管87を介して生産水Eとして外部のその水質レベルに応じた用途に供給される。   The treated water supplied with pressure from the supply port 38a is the permeated water E that has been purified by permeating the reverse osmosis membrane in the seawater reverse osmosis membrane device 38, and the treated water that has not permeated the reverse osmosis membrane. It is separated into non-permeated water G which is water. The permeated water E is supplied from the permeate port 38b through the pipe 87 to the use according to the external water quality level as the produced water E.

非透過水Gは、前記した海水逆浸透膜装置38の運転圧を有して排水口38cから配管89を介して、エネルギ回収装置39における後記する加圧側エンド部39bの高圧供給口39dに供給され、圧力を供給ポンプ36から供給される被処理水と直接交換した後、加圧側エンド部39bの排出口39eから配管90の途中に設けられた背圧弁40で流量を調整されて、放出される。
この非透過水Gは、塩分が濃縮された海水、汽水、又はかん水である。
エネルギ回収装置39は、この基本実施形態では、直接圧力交換方式のものであり、主に、図示しないモータで所定の回転速度に回転駆動されるロータ部39a、加圧側エンド部39b、被加圧側エンド部39cから構成されている公知の技術の装置である。
The non-permeated water G has the operating pressure of the seawater reverse osmosis membrane device 38 and is supplied from the drain port 38c to the high pressure supply port 39d of the pressurization side end portion 39b described later in the energy recovery device 39 through the pipe 89. After the pressure is directly exchanged with the water to be treated supplied from the supply pump 36, the flow rate is adjusted by the back pressure valve 40 provided in the middle of the pipe 90 from the discharge port 39e of the pressurization side end portion 39b and discharged. The
This non-permeated water G is seawater, brackish water, or brackish water in which salinity is concentrated.
In this basic embodiment, the energy recovery device 39 is of a direct pressure exchange type, and is mainly a rotor portion 39a, a pressure side end portion 39b, and a pressure side to be rotated at a predetermined rotational speed by a motor (not shown). This is an apparatus of a known technique that is configured by an end portion 39c.

供給ポンプ36と高圧ポンプ37との間の配管85の分岐点P1で配管85から配管91が分岐され、供給ポンプ36で供給された低圧の被処理水の一部がエネルギ回収装置39における被加圧側エンド部39cの供給口39gに供給される。そして、供給口39gへ供給された被処理水は、海水逆浸透膜装置38からの非透過水Gとの圧力の直接交換により加圧された後、被加圧側エンド部39cの排出口39fから配管92の途中に設けられたブースターポンプ41に更に供給される。ブースターポンプ41は、エネルギ回収装置39で加圧された被処理水を高圧ポンプ37と同じ圧力にまで昇圧し、高圧ポンプ37の下流側の配管86の合流点P2で高圧ポンプ37から供給される被処理水と配管92からの被処理水とを合流させ、海水逆浸透膜装置38の供給口38aに供給する。   A pipe 91 is branched from the pipe 85 at a branch point P1 of the pipe 85 between the supply pump 36 and the high-pressure pump 37, and a part of the low-pressure treated water supplied by the supply pump 36 is added to the energy recovery device 39. It is supplied to the supply port 39g of the compression side end portion 39c. And the to-be-processed water supplied to the supply port 39g is pressurized by the direct exchange of the pressure with the non-permeated water G from the seawater reverse osmosis membrane apparatus 38, Then, from the discharge port 39f of the to-be-pressurized side end part 39c It is further supplied to a booster pump 41 provided in the middle of the pipe 92. The booster pump 41 boosts the water to be treated which has been pressurized by the energy recovery device 39 to the same pressure as the high pressure pump 37, and is supplied from the high pressure pump 37 at the junction P <b> 2 of the pipe 86 on the downstream side of the high pressure pump 37. The treated water and the treated water from the pipe 92 are merged and supplied to the supply port 38a of the seawater reverse osmosis membrane device 38.

このように、海水逆浸透膜装置38の非透過水Gは極めて高い圧力を有しているので、そのエネルギを回収して、海水逆浸透膜装置38に被処理水を供給するエネルギに再利用し、高圧ポンプ37の容量を減じることによって動力費を節約できている。また、排水処理系1の非透過水Cを海水Dに混合することによって、塩分濃度を低減させることができ、高圧ポンプ37に必要な昇圧も、海水のみの場合は6MPa程度が必要なものが、非透過水Cと海水Dとを略同量にして薄めると3.5MPa程度まで下げることができる。その結果、その分も動力費が低減できる。つまり、低圧逆浸透膜装置16の運転圧に較べて海水逆浸透膜装置38の運転圧は高圧であり、海水逆浸透膜装置38の非透過水Gの有するエネルギが回収されるとともに海水逆浸透膜装置38の運転圧そのものも低減できる。   Thus, since the non-permeated water G of the seawater reverse osmosis membrane device 38 has an extremely high pressure, the energy is recovered and reused as energy for supplying the water to be treated to the seawater reverse osmosis membrane device 38. However, the power cost can be saved by reducing the capacity of the high-pressure pump 37. Moreover, the salt concentration can be reduced by mixing the non-permeated water C of the waste water treatment system 1 with the seawater D, and the pressure increase required for the high-pressure pump 37 is about 6 MPa in the case of only seawater. When the non-permeated water C and the seawater D are made substantially the same amount and diluted, it can be lowered to about 3.5 MPa. As a result, the power cost can be reduced accordingly. That is, the operating pressure of the seawater reverse osmosis membrane device 38 is higher than the operating pressure of the low pressure reverse osmosis membrane device 16, and the energy of the non-permeated water G of the seawater reverse osmosis membrane device 38 is recovered and the seawater reverse osmosis is recovered. The operating pressure itself of the membrane device 38 can also be reduced.

なお、前記した移送ポンプ12、供給ポンプ14、高圧ポンプ15、取水ポンプ31、ろ過ポンプ33、供給ポンプ36、高圧ポンプ37、ブースターポンプ41、エネルギ回収装置39のロータ部39a等は、図示しない駆動モータの回転軸と接続され一体的に構成され、その駆動モータに動力を供給するインバータ装置(図示せず)が現場盤として設置、又はその駆動モータに一体的に取り付けられている。そして、制御装置6がインバータを介して駆動モータの回転を制御する構成である。   The transfer pump 12, the supply pump 14, the high pressure pump 15, the intake pump 31, the filtration pump 33, the supply pump 36, the high pressure pump 37, the booster pump 41, the rotor 39a of the energy recovery device 39, and the like are not shown. An inverter device (not shown) that is connected to the rotating shaft of the motor and is configured integrally and supplies power to the drive motor is installed as a field board or is integrally attached to the drive motor. And the control apparatus 6 is a structure which controls rotation of a drive motor via an inverter.

(制御装置6)
次に、本基本実施形態における制御装置6の制御の概要について説明する。
制御装置6は、例えば、複数の制御ユニット60,61,63から構成され、それぞれの制御ユニット60,61,63は、図示しないCPU,ROM,RAM等を搭載したCPUボード、入出力インターフェースボード等を搭載している。制御ユニット60は、複合淡水化システム100全体を統括制御し、制御ユニット61は、排水処理系1を制御し、制御ユニット63は、海水淡水化処理系3を制御する構成である。そのため、制御ユニット60は、制御ユニット61,63と相互に通信可能に接続されている。
そして、制御ユニット61は、機能部として背圧弁18の開度を調整して非透過水Cの流量を調整する流量制御部(図示せず)を含んでいる。
(Control device 6)
Next, an outline of the control of the control device 6 in the basic embodiment will be described.
The control device 6 is composed of, for example, a plurality of control units 60, 61, 63, and each of the control units 60, 61, 63 has a CPU board, an input / output interface board, and the like on which a CPU, ROM, RAM, etc., not shown are mounted. It is equipped with. The control unit 60 controls the entire composite desalination system 100, the control unit 61 controls the wastewater treatment system 1, and the control unit 63 controls the seawater desalination treatment system 3. Therefore, the control unit 60 is connected to the control units 61 and 63 so as to communicate with each other.
And the control unit 61 contains the flow volume control part (not shown) which adjusts the opening degree of the back pressure valve 18 as a function part, and adjusts the flow volume of the non-permeate water C. FIG.

制御装置6の制御ユニット60には、複合淡水化システム100における生産水B及び生産水Eの要求流量指令C1,C2が外部から入力される。そして、制御ユニット60は、例えば、要求流量指令C1に応じて、排水処理系1に供給される排水流量(後記する流量センサS1で検出される流量)と、透過水Bの流量(後記する流量センサS6で検出される流量)とに基づいて、排水処理系1の透過水Bの目標流量を設定して制御ユニット61に排水処理系1を制御させるとともに、要求流量指令C2に応じて、海水淡水化処理系3の透過水Eの目標流量を算出し、制御ユニット63に海水淡水化処理系3を制御させる。   The required flow rate commands C1 and C2 of the production water B and the production water E in the combined desalination system 100 are input to the control unit 60 of the control device 6 from the outside. Then, the control unit 60, for example, according to the required flow rate command C1, the waste water flow rate supplied to the waste water treatment system 1 (flow rate detected by the flow rate sensor S1 described later) and the flow rate of the permeate B (flow rate described later). Based on the flow rate detected by the sensor S6), the target flow rate of the permeated water B of the wastewater treatment system 1 is set to cause the control unit 61 to control the wastewater treatment system 1, and in accordance with the required flow rate command C2, seawater A target flow rate of the permeated water E of the desalination treatment system 3 is calculated, and the control unit 63 controls the seawater desalination treatment system 3.

そのために排水取水管51には排水Aの流量を検出する流量センサS1が設けられ、配管54には透過水Bの流量を検出する流量センサS6が設けられ、制御ユニット61を介して排水Aの流量及び透過水Bの流量が制御ユニット60に入力される。また、配管87には透過水Eの流量を検出する流量センサS20が設けられ制御ユニット63を介して制御ユニット60に透過水Eの流量が入力される。   For this purpose, the drainage intake pipe 51 is provided with a flow rate sensor S1 for detecting the flow rate of the drainage A, and the pipe 54 is provided with a flow rate sensor S6 for detecting the flow rate of the permeated water B. The flow rate and the flow rate of the permeated water B are input to the control unit 60. The pipe 87 is provided with a flow rate sensor S20 that detects the flow rate of the permeated water E, and the flow rate of the permeated water E is input to the control unit 60 via the control unit 63.

MBR水処理装置11には、例えば、水位センサS2が設けられ、制御ユニット61は、水位センサS2からの水位信号に基づいて移送ポンプ12の起動、停止を制御する。処理水水槽13には、例えば、水位センサS3が設けられ、制御ユニット61は、水位センサS3からの水位信号及び高圧ポンプ15の吸込み側の配管53に設けられた圧力センサS4からの圧力信号に基づいて供給ポンプ14の起動、停止の制御、並びに供給ポンプ14の運転時の回転速度を制御する。この圧力センサS4からの圧力信号に基づく供給ポンプ14の回転速度の制御は、高圧ポンプ15に所定の吸込み圧を与えるためである。   For example, the MBR water treatment apparatus 11 is provided with a water level sensor S2, and the control unit 61 controls the start and stop of the transfer pump 12 based on the water level signal from the water level sensor S2. The treated water tank 13 is provided with, for example, a water level sensor S3, and the control unit 61 receives the water level signal from the water level sensor S3 and the pressure signal from the pressure sensor S4 provided in the pipe 53 on the suction side of the high-pressure pump 15. Based on this, the start and stop control of the supply pump 14 and the rotation speed during operation of the supply pump 14 are controlled. The control of the rotation speed of the supply pump 14 based on the pressure signal from the pressure sensor S4 is for giving a predetermined suction pressure to the high-pressure pump 15.

また、制御ユニット61は、配管54に設けられた流量センサS6からの透過水Bの流量信号に基づいて、その流量が制御ユニット60から入力された透過水Bの目標流量になるように、高圧ポンプ15の回転速度を調整する。そして、そのときの高圧ポンプ15の吐出側の配管53に設けられた流量センサS5からの流量信号に基づきその流量信号が一定になるように高圧ポンプ15の回転速度をフィードバック制御する。
なお、この制御ユニット61における高圧ポンプ15の回転速度のフィードバック制御は、透過水Bの流量信号と透過水Bの目標流量との偏差に基づいて適宜補正される。
Further, the control unit 61 has a high pressure so that the flow rate becomes the target flow rate of the permeated water B input from the control unit 60 based on the flow rate signal of the permeated water B from the flow rate sensor S6 provided in the pipe 54. The rotational speed of the pump 15 is adjusted. Then, the rotational speed of the high-pressure pump 15 is feedback-controlled so that the flow rate signal becomes constant based on the flow rate signal from the flow rate sensor S5 provided in the piping 53 on the discharge side of the high-pressure pump 15 at that time.
The feedback control of the rotational speed of the high-pressure pump 15 in the control unit 61 is appropriately corrected based on the deviation between the flow rate signal of the permeated water B and the target flow rate of the permeated water B.

配管56には、低圧逆浸透膜装置16の非透過水Cの流量を検出する流量センサS7が設けられており、制御ユニット61の前記した流量制御部は、非透過水Cの流量が被処理水の流量センサS5の示す流量に対し一定の割合の流量になるように流量センサS7からの流量信号に基づいて背圧弁18の開度を調整する。   The pipe 56 is provided with a flow rate sensor S7 for detecting the flow rate of the non-permeate water C of the low-pressure reverse osmosis membrane device 16, and the flow rate control unit of the control unit 61 controls the flow rate of the non-permeate water C. The opening degree of the back pressure valve 18 is adjusted based on the flow rate signal from the flow rate sensor S7 so that the flow rate becomes a constant rate with respect to the flow rate indicated by the water flow rate sensor S5.

取水管82には、流量センサS11が設けられ、また、取水槽32には水位センサS12が設けられている。制御ユニット63は、水位センサS12からの水位信号に基づいて取水ポンプ31の起動、停止を制御するとともに、排水処理系1から取水槽32へ排出される非透過水Cの流量に応じて海水Dの取水流量目標を設定し、流量センサS11からの流量信号に基づいて取水ポンプ31の回転速度を制御する。
例えば、非透過水Cの流量と海水Dの取水流量とを略同じとし、取水槽32の中で海水Dに非透過水Cを混合して塩分濃度を下げた場合、海水逆浸透膜装置38の運転圧は、例えば、3.5〜4MPa程度に維持できる。
The intake pipe 82 is provided with a flow rate sensor S11, and the intake tank 32 is provided with a water level sensor S12. The control unit 63 controls the start and stop of the water intake pump 31 based on the water level signal from the water level sensor S12, and the seawater D according to the flow rate of the non-permeated water C discharged from the waste water treatment system 1 to the water intake tank 32. Is set, and the rotational speed of the water intake pump 31 is controlled based on the flow rate signal from the flow rate sensor S11.
For example, when the flow rate of the non-permeate water C and the intake flow rate of the seawater D are substantially the same, and the non-permeate water C is mixed with the seawater D in the intake tank 32 to reduce the salinity, the seawater reverse osmosis membrane device 38 The operating pressure can be maintained at about 3.5 to 4 MPa, for example.

また、制御ユニット63は、処理水水槽35に設けられた水位センサS14からの水位信号に基づいてろ過ポンプ33の起動、停止を制御するとともに、配管84に設けられた流量センサS13からの流量信号に基づいて所定の回転速度にろ過ポンプ33の回転速度を制御し、取水槽32の被処理水を前処理ろ過装置34に所定の圧力で圧送し、一次処理させ、一次処理された被処理水を処理水水槽35に溜めさせる。   The control unit 63 controls the start and stop of the filtration pump 33 based on the water level signal from the water level sensor S14 provided in the treated water tank 35, and the flow rate signal from the flow rate sensor S13 provided in the pipe 84. Based on the above, the rotational speed of the filtration pump 33 is controlled to a predetermined rotational speed, the water to be treated in the water intake tank 32 is pumped to the pretreatment filtration device 34 at a predetermined pressure, subjected to a primary treatment, and the treated water subjected to the primary treatment Is stored in the treated water tank 35.

更に、制御ユニット63は、高圧ポンプ37の吸込み側の配管85に設けられた圧力センサS15からの圧力信号に基づいて供給ポンプ36の起動、停止の制御、並びに供給ポンプ36の運転時の回転速度を制御する。この圧力センサS15からの圧力信号に基づく供給ポンプ36の回転速度の制御は、高圧ポンプ37に所定の吸込み圧を与えるためである。   Further, the control unit 63 controls the start and stop of the supply pump 36 based on the pressure signal from the pressure sensor S15 provided in the suction-side pipe 85 of the high-pressure pump 37, and the rotation speed during operation of the supply pump 36. To control. The control of the rotation speed of the supply pump 36 based on the pressure signal from the pressure sensor S15 is to give a predetermined suction pressure to the high-pressure pump 37.

また、制御ユニット63は、配管87に設けられた流量センサS20からの透過水Eの流量信号に基づいて、その流量が制御ユニット60から入力された透過水Eの目標流量になるように、供給ポンプ36、高圧ポンプ37及びブースターポンプ41の回転速度を調整する。そして、そのときの高圧ポンプ37及びブースターポンプ41の吐出側の配管86に設けられた流量センサS16からの流量信号に基づきその流量信号が一定になるように高圧ポンプ37及びブースターポンプ41の回転速度をフィードバック制御する。
なお、この制御ユニット63における高圧ポンプ37及びブースターポンプ41の回転速度のフィードバック制御は、透過水Eの流量信号と透過水Eの目標流量との偏差に基づいて適宜補正される。
Further, the control unit 63 supplies the flow rate of the permeated water E input from the control unit 60 based on the flow rate signal of the permeated water E from the flow rate sensor S20 provided in the pipe 87. The rotational speeds of the pump 36, the high pressure pump 37, and the booster pump 41 are adjusted. Then, the rotational speeds of the high pressure pump 37 and the booster pump 41 so that the flow rate signals are constant based on the flow rate signal from the flow rate sensor S16 provided in the piping 86 on the discharge side of the high pressure pump 37 and the booster pump 41 at that time. Feedback control.
Note that the feedback control of the rotational speeds of the high-pressure pump 37 and the booster pump 41 in the control unit 63 is corrected as appropriate based on the deviation between the flow rate signal of the permeate E and the target flow rate of the permeate E.

配管89には、海水逆浸透膜装置38の非透過水Gの流量を検出する流量センサS19が設けられており、制御ユニット63は、非透過水Gの流量が被処理水の流量センサS16の示す流量に対し一定の割合の水量になるように背圧弁40の開度を調整する。   The pipe 89 is provided with a flow rate sensor S19 for detecting the flow rate of the non-permeate water G of the seawater reverse osmosis membrane device 38, and the control unit 63 determines that the flow rate of the non-permeate water G is the flow rate sensor S16 of the water to be treated. The opening degree of the back pressure valve 40 is adjusted so that the amount of water is a constant ratio with respect to the indicated flow rate.

このように基本実施形態の複合淡水化システム100では、排水処理系1から排出される低圧逆浸透膜装置16の非透過水Cを取水した海水Dと混ぜて、海水淡水化処理系3での被処理水とすることにより、海水淡水化処理系3における被処理水の塩分濃度が約半分程度にまで低減でき、海水逆浸透膜装置38を運転する運転圧を、100%海水だけを処理する場合に必要であった約6MPaに比べて大きく減圧でき、動力費を節減できる。   Thus, in the composite desalination system 100 of the basic embodiment, the non-permeated water C of the low-pressure reverse osmosis membrane device 16 discharged from the waste water treatment system 1 is mixed with the seawater D that has been taken in, and the seawater desalination treatment system 3 By using the water to be treated, the salinity of the water to be treated in the seawater desalination treatment system 3 can be reduced to about half, and the operating pressure for operating the seawater reverse osmosis membrane device 38 is treated only with 100% seawater. The pressure can be greatly reduced as compared with about 6 MPa required in some cases, and the power cost can be reduced.

《第1の実施形態》
次に、図2を参照しながら本発明の第1の実施形態に係る複合淡水化システム100Aについて説明する。図2は、第1の実施形態に係る複合淡水化システムの概略ブロック図である。本実施形態の複合淡水化システム100Aの基本的な構成は、図1に示した基本実施形態の複合淡水化システム100と略同じであるが、複合淡水化システム100とは、制御装置6の機能の追加がある点と、図2のX部に示したように、配管56の取水槽32側の分岐点P5で、配管56から配管57(第1の配管)と配管58(第2の配管)に分岐して、配管57には、減圧弁(第1の弁)17が設けられ、その下流側の配管57には圧力センサ(微細気泡発生圧力検出手段)S9が設けられ、配管57の取水槽32内の水面下に位置する出口部に微細気泡発生部19が設けられている点と、が異なる。ちなみに、配管58には背圧弁(第2の弁)18が設けられている。
微細気泡発生部19は、非透過水Cを所定の圧力から急減圧することで非透過水C中に溶存しているガスをマイクロバブルやナノバブルのサイズの微細気泡105として発生させ、取水槽32内の被処理水中に放出する。
<< First Embodiment >>
Next, the composite desalination system 100A according to the first embodiment of the present invention will be described with reference to FIG. FIG. 2 is a schematic block diagram of the composite desalination system according to the first embodiment. The basic configuration of the composite desalination system 100A of the present embodiment is substantially the same as the composite desalination system 100 of the basic embodiment shown in FIG. 1, but the composite desalination system 100 is the function of the control device 6. 2 and at the branch point P5 on the intake tank 32 side of the pipe 56 as shown in the X part of FIG. 2, the pipe 56 to the pipe 57 (first pipe) and the pipe 58 (second pipe) ), The pipe 57 is provided with a pressure reducing valve (first valve) 17, and the pipe 57 on the downstream side thereof is provided with a pressure sensor (fine bubble generation pressure detecting means) S9. The difference is that the fine bubble generating unit 19 is provided at the outlet located below the water surface in the water intake tank 32. Incidentally, a back pressure valve (second valve) 18 is provided in the pipe 58.
The micro-bubble generating unit 19 generates gas dissolved in the non-permeated water C as micro-bubbles 105 having the size of microbubbles or nanobubbles by rapidly depressurizing the non-permeated water C from a predetermined pressure. Released into the water to be treated.

ここで、配管57,58、減圧弁17、背圧弁18、微細気泡発生部19が、特許請求の範囲に記載の「微細気泡発生手段」に対応する。   Here, the pipes 57 and 58, the pressure reducing valve 17, the back pressure valve 18, and the fine bubble generating unit 19 correspond to “fine bubble generating means” described in the claims.

そして、本実施形態における制御装置6の制御ユニット60,63の機能は、基本実施形態の複合淡水化システム100における制御装置6の制御ユニット60,63の機能と同じである。本実施形態における制御装置6の制御ユニット61の機能は、複合淡水化システム100における制御装置6の制御ユニット61の機能と略同じであるが、その機能部としての流量制御部(図示せず)が、背圧弁18の開度を調整して非透過水Cの流量を調整するとともに、微細気泡発生部19における微細気泡発生の制御機能も有する点が異なる。
複合淡水化システム100と同じ構成については同じ符号を付し重複する説明を省略するとともに、基本実施形態の制御装置6における同じ制御機能についても重複する説明を省略する。
The functions of the control units 60 and 63 of the control device 6 in the present embodiment are the same as the functions of the control units 60 and 63 of the control device 6 in the composite desalination system 100 of the basic embodiment. The function of the control unit 61 of the control device 6 in the present embodiment is substantially the same as the function of the control unit 61 of the control device 6 in the combined desalination system 100, but a flow rate control unit (not shown) as its function unit. However, the difference is that the opening degree of the back pressure valve 18 is adjusted to adjust the flow rate of the non-permeated water C, and the fine bubble generating unit 19 has a control function for generating fine bubbles.
The same components as those of the composite desalination system 100 are denoted by the same reference numerals and redundant description is omitted, and redundant description of the same control function in the control device 6 of the basic embodiment is also omitted.

本実施形態における制御ユニット61の前記した機能部としての流量制御部は、圧力センサS9からの圧力信号に基づいて減圧弁17の開度を調節して、微細気泡105の発生に適する圧力、例えば、0.5MPaまで減圧した上で微細気泡発生部19へ非透過水Cを供給する。また、制御ユニット61の前記した流量制御部は、非透過水Cの流量が被処理水の流量センサS5の示す流量に対し一定の割合の流量になるように流量センサ(流量検出手段)S7の流量信号に基づいて背圧弁18の開度を調整する。   The flow rate control unit as the above-described functional unit of the control unit 61 in the present embodiment adjusts the opening of the pressure reducing valve 17 based on the pressure signal from the pressure sensor S9, and a pressure suitable for generation of the fine bubbles 105, for example, Then, after reducing the pressure to 0.5 MPa, the non-permeated water C is supplied to the fine bubble generating unit 19. In addition, the above-described flow rate control unit of the control unit 61 includes the flow rate sensor (flow rate detection means) S7 so that the flow rate of the non-permeated water C is a constant rate relative to the flow rate indicated by the flow rate sensor S5. The opening degree of the back pressure valve 18 is adjusted based on the flow signal.

本実施形態によれば、海水淡水化処理系3は、前処理ろ過装置34としてUF膜装置、MF膜装置又は砂ろ過装置を、海水逆浸透膜装置38の前段処理として用いているので、海水D、非透過水Cに含まれている有機物を処理して除去することができる。
特に、非透過水C中には海水D中の倍以上の有機物が含まれているのでそれを効率的に除去できる。また、取水した海水Dは、海域、季節により微生物や有機物が大量に流入することがあり、通常でも海水D中には微生物が代謝した有機物が含まれている。
According to the present embodiment, the seawater desalination treatment system 3 uses a UF membrane device, an MF membrane device or a sand filtration device as the pretreatment filtration device 34 as a pretreatment of the seawater reverse osmosis membrane device 38. D, the organic matter contained in the non-permeate water C can be treated and removed.
In particular, since the non-permeated water C contains more than double the amount of organic matter in the seawater D, it can be removed efficiently. In addition, a large amount of microorganisms and organic substances may flow into the taken seawater D depending on the sea area and season, and the seawater D usually contains organic substances metabolized by microorganisms.

そして、制御ユニット61の前記した流量制御部により減圧弁17の開度調整をして、取水槽32内に非透過水Cの有する0.8〜1.5MPaの圧力を、微細気泡発生部19で微細気泡105を発生することができる所要の圧力、例えば、0.5MPaにまで減圧してやることで、何等動力を必要とせず取水槽32内に微細気泡105を含んだ非透過水Cを放出させることができる。
また、非透過水Cの圧力は、低圧逆浸透膜装置16の運転圧によって変化するため、減圧弁17の開度調整のみでは、非透過水Cの所定の流量すべてを、配管57を経由して取水槽32に放出することはできない場合があるので、低圧逆浸透膜装置16の運転圧が高い場合には、制御ユニット61の前記した流量制御部は、流量センサS7の示す流量が、非透過水Cの目標流量に一致するように背圧弁18の開度をフィードバック制御する。その結果、制御ユニット61の前記した流量制御部での微細気泡105の発生制御が、排水処理系1の処理量に外乱を与えることが無い。
Then, the opening degree of the pressure reducing valve 17 is adjusted by the flow rate control unit of the control unit 61, and the pressure of 0.8 to 1.5 MPa of the non-permeated water C in the water intake tank 32 is changed to the fine bubble generating unit 19. By reducing the pressure to a required pressure capable of generating the fine bubbles 105, for example, 0.5 MPa, the non-permeated water C containing the fine bubbles 105 is released into the water intake tank 32 without requiring any power. be able to.
Further, since the pressure of the non-permeate water C changes depending on the operating pressure of the low-pressure reverse osmosis membrane device 16, all the predetermined flow rate of the non-permeate water C passes through the pipe 57 only by adjusting the opening of the pressure reducing valve 17. Therefore, when the operating pressure of the low-pressure reverse osmosis membrane device 16 is high, the flow rate control unit of the control unit 61 has a non-flow rate indicated by the flow rate sensor S7. The opening degree of the back pressure valve 18 is feedback-controlled so as to coincide with the target flow rate of the permeate C. As a result, the generation control of the fine bubbles 105 in the flow rate control unit of the control unit 61 does not disturb the processing amount of the wastewater treatment system 1.

更に、取水槽32内に微細気泡発生部19から微細気泡105、つまり、マイクロバブル又はナノバブルを放出させることによって、微細気泡105の圧壊時に生じる衝撃波で取水槽32内の有機物を分解することができ、又、ラジカルを生成して有機物の分解を促進するので前処理ろ過装置34の目詰まりが少なくなり、その逆洗に必要なまでに処理できる被処理水の量が多くなる。つまり、一定流量での被処理水の処理に対して前処理ろ過装置34の逆洗が必要になるまでの時間を長くでき、複合淡水化システム100Aの稼働率を向上できる。
また、有機性排水である排水Aを海水Dの希釈に用いることにより被処理水中の有機物が増加するが、微細気泡105により有機物の分解をするので、海水淡水化処理系3の海水逆浸透膜装置38における逆浸透膜のファウリングの頻度を低減することができる。
Furthermore, by releasing the fine bubbles 105, that is, microbubbles or nanobubbles, from the fine bubble generation unit 19 into the intake tank 32, the organic matter in the intake tank 32 can be decomposed by a shock wave generated when the fine bubbles 105 are crushed. In addition, since radicals are generated to promote the decomposition of organic substances, the pretreatment filtration device 34 is less clogged, and the amount of water to be treated that can be treated up to that required for backwashing is increased. That is, it is possible to lengthen the time required for backwashing the pretreatment filtration device 34 for the treatment of the water to be treated at a constant flow rate, and to improve the operating rate of the composite desalination system 100A.
Moreover, although the organic matter in to-be-processed water increases by using the waste water A which is organic waste water for dilution of the seawater D, since the organic matter is decomposed by the fine bubbles 105, the seawater reverse osmosis membrane of the seawater desalination system 3 The frequency of reverse osmosis membrane fouling in the device 38 can be reduced.

《第2の実施形態》
次に、図2、図3を参照しながら第2の実施形態に係る複合淡水化システム100Bについて説明する。図3は、図2のX部の拡大説明図であり、第1の実施形態に係る複合淡水化システムにオゾン発生装置及びオゾン注入ポンプを更に組み合わせた第2の実施形態に係る複合淡水化システムの説明図である。
第2の実施形態の複合淡水化システム100Bが、第1の実施形態の複合淡水化システム100Aと異なる点は、図2に示すX部が図3に示すように更に、オゾン発生装置45、オゾン注入ポンプ46が設けられ、オゾン発生装置45で発生させたオゾンガスをオゾン注入ポンプ46で配管57に設けた注入部P11から減圧弁17により前記した所定の圧力に減圧された非透過水C内に注入し溶け込ませる点である。
そして、第2の実施形態における制御装置6では、第1の実施形態における制御装置6の制御ユニット63においてオゾン発生装置45とオゾン注入ポンプ46を制御する機能が追加されている点である。
<< Second Embodiment >>
Next, the composite desalination system 100B which concerns on 2nd Embodiment is demonstrated, referring FIG. 2, FIG. FIG. 3 is an enlarged explanatory view of a portion X in FIG. 2, and the combined desalination system according to the second embodiment in which an ozone generator and an ozone injection pump are further combined with the combined desalination system according to the first embodiment. It is explanatory drawing of.
The composite desalination system 100B of the second embodiment is different from the composite desalination system 100A of the first embodiment in that the portion X shown in FIG. 2 further includes an ozone generator 45, ozone, as shown in FIG. An injection pump 46 is provided, and ozone gas generated by the ozone generator 45 is introduced into the non-permeated water C that has been reduced to the predetermined pressure by the pressure reducing valve 17 from the injection part P11 provided in the pipe 57 by the ozone injection pump 46. The point is to inject and melt.
And in the control apparatus 6 in 2nd Embodiment, the function which controls the ozone generator 45 and the ozone injection pump 46 in the control unit 63 of the control apparatus 6 in 1st Embodiment is added.

第2の実施形態における制御ユニット63の機能が第1の実施形態における制御ユニット63の機能と異なっている点は、基本実施形態の複合淡水化システム100における制御ユニット63の機能部として、新たにオゾン注入制御部(図示せず)を含んで構成されている点だけである。
そして、制御ユニット63の前記したオゾン注入制御部は、非透過水Cの目標流量に応じたオゾンガスを発生させるようにオゾン発生装置45を制御し、そのオゾンガス発生量に応じてオゾン注入ポンプ46の回転速度を制御して注入部P11から注入させる。
The point that the function of the control unit 63 in the second embodiment is different from the function of the control unit 63 in the first embodiment is that the function unit of the control unit 63 in the composite desalination system 100 of the basic embodiment is newly It is only the point comprised including the ozone injection | pouring control part (not shown).
The above-described ozone injection control unit of the control unit 63 controls the ozone generator 45 so as to generate ozone gas corresponding to the target flow rate of the non-permeated water C, and the ozone injection pump 46 according to the amount of generated ozone gas. The rotation speed is controlled to be injected from the injection part P11.

本実施形態によれば、微細気泡105は、オゾンを含んでいることから取水槽32内の被処理水を殺菌する効果がある。   According to this embodiment, since the microbubble 105 contains ozone, there exists an effect which sterilizes the to-be-processed water in the water intake tank 32. FIG.

《第3及び第4の実施形態》
次に、図2、図4を参照しながら第3及び第4の実施形態に係る複合淡水化システム100C,100Dについて説明する。図4は、図2のX部の拡大説明図であり、第1の実施形態に係る複合淡水化システムに反応槽を組み合わせた第3の実施形態に係る複合淡水化システム、更にオゾン発生装置及びオゾン注入ポンプを組み合わせた第4の実施形態に係る複合淡水化システムの説明図である。
(第3の実施形態)
先ず、第3の実施形態に係る複合淡水化システム100Cについて説明する。第3の実施形態の複合淡水化システム100Cが、第1の実施形態の複合淡水化システム100Aと異なる点は、図2に示すX部が図4に示すように、取水槽32の前段に反応槽(第1原水槽)47を設置し、反応槽47の第1区画室47cに、第1の実施形態と同様に取水管57の出口部の微細気泡発生部19、配管58の出口を設置する点である。そして、反応槽47の出口96がそのまま取水槽32に連通している。
そして、本実施形態における制御装置6としては、第1の実施形態における制御装置6を用いている。
本実施形態では、反応槽47が、特許請求の範囲に記載の「第1原水槽」に対応する。
<< Third and Fourth Embodiments >>
Next, composite desalination systems 100C and 100D according to the third and fourth embodiments will be described with reference to FIGS. FIG. 4 is an enlarged explanatory view of a portion X in FIG. 2, and the combined desalination system according to the third embodiment in which a reaction tank is combined with the combined desalination system according to the first embodiment, an ozone generator, and It is explanatory drawing of the composite desalination system which concerns on 4th Embodiment which combined the ozone injection pump.
(Third embodiment)
First, the composite desalination system 100C which concerns on 3rd Embodiment is demonstrated. The composite desalination system 100C of the third embodiment is different from the composite desalination system 100A of the first embodiment in that the part X shown in FIG. 2 reacts to the front stage of the water intake tank 32 as shown in FIG. A tank (first raw water tank) 47 is installed, and in the first compartment 47 c 1 of the reaction tank 47, the fine bubble generating part 19 at the outlet part of the intake pipe 57 and the outlet of the pipe 58 are provided as in the first embodiment. It is a point to install. The outlet 96 of the reaction tank 47 communicates with the water intake tank 32 as it is.
And as the control apparatus 6 in this embodiment, the control apparatus 6 in 1st Embodiment is used.
In the present embodiment, the reaction tank 47 corresponds to the “first raw water tank” described in the claims.

反応槽47は、複数の仕切板47a,47bによって複数の区画(仕切区画)47C,47C,47C,47Cに分割されている。仕切板47aは、反応槽47の底部との間に連通路を有し、仕切板47bは、下部が反応槽47の底部と接続されて上部を被処理水が乗り越えて連通するように構成されている。そして、仕切板47a,47bは、被処理水が、流れ方向を矢印Yで示すように上下方向に交互に変わるように配置されて構成されている。被処理水は、最後の区画47Cから矢印Zで示すように出口96を経由して取水槽32に流れる。 The reaction tank 47 is divided into a plurality of compartments (partition compartments) 47C 1 , 47C 2 , 47C 3 , 47C 4 by a plurality of partition plates 47a and 47b. The partition plate 47a has a communication path between the bottom of the reaction tank 47, and the partition plate 47b is configured such that the lower part is connected to the bottom of the reaction tank 47 and the treated water passes over the upper part and communicates. ing. The partition plates 47a and 47b are configured such that the water to be treated is alternately changed in the vertical direction as indicated by the arrow Y in the flow direction. The water to be treated flows from the last compartment 47C 4 aquarium 32 collected via an outlet 96 as indicated by arrow Z.

このように反応槽47を取水槽32の前段に設けることにより、被処理水と微細気泡105の混合が促進され、微細気泡105による有機物の分解が促進される。   By providing the reaction tank 47 in the preceding stage of the water tank 32 in this way, the mixing of the water to be treated and the fine bubbles 105 is promoted, and the decomposition of the organic matter by the fine bubbles 105 is promoted.

(第4の実施形態)
次に、第4の実施形態に係る複合淡水化システム100Dについて説明する。第4の実施形態の複合淡水化システム100Dは、第3の実施形態の複合淡水化システム100Cに図4において破線で示したオゾン発生装置45、オゾン注入ポンプ46を追加し、第2の実施形態における制御装置6の制御ユニット63の前記したオゾン注入制御部により制御させるものである。
本実施形態では、反応槽47が、特許請求の範囲に記載の「第1原水槽」に対応する。
(Fourth embodiment)
Next, the composite desalination system 100D which concerns on 4th Embodiment is demonstrated. The composite desalination system 100D of the fourth embodiment adds an ozone generator 45 and an ozone injection pump 46 indicated by broken lines in FIG. 4 to the composite desalination system 100C of the third embodiment, and the second embodiment. Is controlled by the above-described ozone injection control unit of the control unit 63 of the control device 6.
In the present embodiment, the reaction tank 47 corresponds to the “first raw water tank” described in the claims.

本実施形態によれば、反応槽47におけるオゾンガスと被処理水との混合が促進され、被処理水の殺菌効果が第2の実施形態の場合より高まる。
なお、本実施形態では、余剰のオゾンガスが被処理水の水面から離脱して大気中に放出される可能性があるので、反応槽47の上方に覆いをして離脱したオゾンガスを収集してその処理後に大気中に放出することが望ましい。
According to this embodiment, mixing of the ozone gas and the water to be treated in the reaction tank 47 is promoted, and the sterilizing effect of the water to be treated is enhanced as compared with the case of the second embodiment.
In the present embodiment, surplus ozone gas may be released from the surface of the water to be treated and released into the atmosphere. It is desirable to release it into the atmosphere after treatment.

以上、第1〜第4の実施形態によれば、排水処理系1の非透過水Cの有している比較的低圧の0.8〜1.5MPaの圧力を、微細気泡105の発生エネルギとして利用しているので、従来の、被処理水をモータポンプで加圧してその後急減圧して微細気泡を発生させたり、空気を加圧して微細孔から被処理水中に放出して微細気泡を発生させたりするような場合のように動力を必要とせず、動力費を低減した複合淡水化システム100A〜100Dを提供できる。
また、海水淡水化処理系3の海水逆浸透膜装置38における逆浸透膜のファウリングの頻度を低減することができる稼働率の向上した複合淡水化システム100A〜100Dを提供できる。
As described above, according to the first to fourth embodiments, the relatively low pressure of 0.8 to 1.5 MPa that the non-permeated water C of the wastewater treatment system 1 has is used as energy generated by the fine bubbles 105. Because it is used, conventional water to be treated is pressurized with a motor pump and then suddenly decompressed to generate fine bubbles, or air is pressurized and discharged from the fine holes into the treated water to generate fine bubbles. Thus, the composite desalination systems 100A to 100D can be provided that do not require power as in the case of causing them to be reduced and reduce the power cost.
Moreover, the composite desalination system 100A-100D with the improved operation rate which can reduce the fouling frequency of the reverse osmosis membrane in the seawater reverse osmosis membrane apparatus 38 of the seawater desalination processing system 3 can be provided.

なお、第1〜第4の実施形態では、図2にエネルギ回収装置39として直接圧力交換方式のものが記載され、その後段にブースターポンプ41が組み合わされているが、それに限定されたものではない。ターボチャージャポンプを非透過水Gで駆動するようにしても良い。その場合、配管89と配管90がターボチャージャポンプのタービン部(駆動部)入口と出口にそれぞれ接続され、配管86の下流側がターボチャージャポンプのポンプ部入口に接続され、ターボチャージャポンプのポンプ部出口が供給口38aに配管で接続される。このような形式でも非透過水Gの圧力を回収することができる。
ちなみに、その場合、配管91,92及びブースターポンプ41は不要となる。
In the first to fourth embodiments, the direct pressure exchange type is described as the energy recovery device 39 in FIG. 2 and the booster pump 41 is combined in the subsequent stage, but the invention is not limited thereto. . The turbocharger pump may be driven by non-permeate water G. In this case, the pipe 89 and the pipe 90 are connected to the turbine part (drive part) inlet and outlet of the turbocharger pump, respectively, and the downstream side of the pipe 86 is connected to the pump part inlet of the turbocharger pump. Is connected to the supply port 38a by piping. Even in such a format, the pressure of the non-permeated water G can be recovered.
Incidentally, in that case, the pipes 91 and 92 and the booster pump 41 are unnecessary.

また、第1〜第4の実施形態では、取水槽32内に微細気泡発生部19を設ける例を説明したが、減圧弁17の下流側の配管57の途中に微細気泡発生部19を設けて微細気泡105を発生させても良い。
更に、配管82と配管57の合流点を設けて、低圧逆浸透装置16の非透過水Cを海水Dと混合させる部位に微細気泡発生部19を設けて微細気泡105を発生させ、その後に取水槽32内に微細気泡105を含んだ海水Dと低圧逆浸透装置16の非透過水Cとの混合された被処理水を溜めるようにしても良い。
または、取水槽32には海水Dだけを導入して溜め、配管83のろ過ポンプ33の上流側に配管57との合流点を設けて、低圧逆浸透装置16の非透過水Cを海水Dと混合させる合流点の部位に微細気泡発生部19を設けて微細気泡105を発生させても良い。
Moreover, although the example which provides the fine bubble generation part 19 in the water intake tank 32 was demonstrated in the 1st-4th embodiment, the fine bubble generation part 19 was provided in the middle of the piping 57 of the downstream of the pressure-reduction valve 17. Fine bubbles 105 may be generated.
Further, a confluence of the pipe 82 and the pipe 57 is provided, and a fine bubble generating unit 19 is provided at a portion where the non-permeated water C of the low pressure reverse osmosis device 16 is mixed with the seawater D to generate the fine bubbles 105, and thereafter You may make it store the to-be-processed water with which the seawater D containing the fine bubble 105 and the non-permeated water C of the low pressure reverse osmosis apparatus 16 were mixed in the water tank 32. FIG.
Alternatively, only the seawater D is introduced and stored in the intake tank 32, and a confluence point with the pipe 57 is provided on the upstream side of the filtration pump 33 of the pipe 83, so that the non-permeate water C of the low pressure reverse osmosis device 16 is the seawater D. The fine bubble generation unit 19 may be provided at the confluence point to be mixed to generate the fine bubble 105.

前記した基本実施形態、第1〜第4の実施形態において、生産水Bと生産水Eは、それぞれの水質レベルに応じて外部へ供給されるとしたが、生産水Bと生産水Eを混合して外部に供給しても良い。   In the basic embodiment and the first to fourth embodiments described above, the production water B and the production water E are supplied to the outside according to the respective water quality levels, but the production water B and the production water E are mixed. Then, it may be supplied to the outside.

1 排水処理系(第2の水処理系)
3 海水淡水化処理系(第1の水処理系)
6 制御装置
11 MBR水処理装置
12 移送ポンプ
13 処理水水槽
14 供給ポンプ
15 高圧ポンプ
16 低圧逆浸透膜装置(第2の逆浸透膜装置)
16c 排水口(第2の逆浸透膜装置の非透過水の出口)
17 減圧弁(第1の弁、微細気泡発生手段)
18 背圧弁(第2の弁、微細気泡発生手段)
19 微細気泡発生部(微細気泡発生手段)
31 取水ポンプ
32 取水槽(第1原水槽)
33 ろ過ポンプ
34 前処理ろ過装置
35 処理水水槽
36 供給ポンプ
37 高圧ポンプ
38 海水逆浸透膜装置(第1の逆浸透膜装置)
39 圧力交換装置
40 背圧弁
41 ブースターポンプ
45 オゾン発生装置
46 オゾン注入ポンプ
47 反応槽(第1原水槽)
47a,47b 仕切り板
81 取水管
56 配管(第1の配管、微細気泡発生手段)
57 配管(第1の配管、微細気泡発生手段)
58 配管(第2の配管、微細気泡発生手段)
60 制御ユニット
61 制御ユニット(制御手段)
63 制御ユニット
100,100A,100B,100C,100D 複合淡水化システム
105 微細気泡
A 排水(第2の原水)
D 海水(第1の原水)
P5 分岐点
P11 オゾン注入部
S7 流量センサ(流量検出手段)
S9 圧力センサ(微細気泡発生圧力検出手段)
1 Wastewater treatment system (second water treatment system)
3 Seawater desalination treatment system (first water treatment system)
6 Control device 11 MBR water treatment device 12 Transfer pump 13 Treated water tank 14 Supply pump 15 High pressure pump 16 Low pressure reverse osmosis membrane device (second reverse osmosis membrane device)
16c Drainage port (outlet of non-permeated water of the second reverse osmosis membrane device)
17 Pressure reducing valve (first valve, fine bubble generating means)
18 Back pressure valve (second valve, means for generating fine bubbles)
19 Microbubble generator (microbubble generator)
31 Intake pump 32 Intake tank (first raw water tank)
33 Filtration pump 34 Pretreatment filtration device 35 Treated water tank 36 Supply pump 37 High pressure pump 38 Seawater reverse osmosis membrane device (first reverse osmosis membrane device)
39 Pressure Exchanger 40 Back Pressure Valve 41 Booster Pump 45 Ozone Generator 46 Ozone Injection Pump 47 Reaction Tank (First Raw Water Tank)
47a, 47b Partition plate 81 Intake pipe 56 Pipe (first pipe, fine bubble generating means)
57 Piping (first piping, fine bubble generating means)
58 Piping (second piping, fine bubble generating means)
60 control unit 61 control unit (control means)
63 Control unit 100,100A, 100B, 100C, 100D Combined desalination system 105 Fine bubbles A Drainage (second raw water)
D Seawater (first raw water)
P5 Branch point P11 Ozone injection part S7 Flow rate sensor (flow rate detection means)
S9 Pressure sensor (micro bubble generation pressure detection means)

Claims (6)

高塩分濃度の第1の原水を、第1の逆浸透膜装置を用いてろ過処理する第1の水処理系と、第1の原水よりも低塩分濃度の第2の原水を、第2の逆浸透膜装置を用いてろ過処理する第2の水処理系と、を備える複合淡水化システムであって、
前記第1の水処理系において、取水された前記第1の原水内に、前記第2の水処理系の第2の逆浸透膜装置から排出される非透過水を減圧することによって微細気泡を発生して放出させる微細気泡発生手段を備えることを特徴とする複合淡水化システム。
A first water treatment system that filters the first raw water having a high salinity concentration using the first reverse osmosis membrane device, and a second raw water having a lower salinity than the first raw water, A second desalination system that performs filtration using a reverse osmosis membrane device, and a composite desalination system comprising:
In the first water treatment system, fine bubbles are reduced by reducing the pressure of non-permeated water discharged from the second reverse osmosis membrane device of the second water treatment system into the first raw water taken. A composite desalination system comprising fine bubble generating means for generating and discharging.
前記微細気泡発生手段は、
前記第2の逆浸透膜装置の非透過水の出口と、前記取水された前記第1の原水を溜める第1原水槽と、を接続する第1の配管と、
前記第1の配管の前記第1原水槽側に設けられた第1の弁と、
前記第1の配管の前記第1の弁よりも下流側に設けられ、前記第2の逆浸透膜装置の非透過水を第1原水槽に急減圧させることにより、その中に溶存している気体を前記微細気泡として発生させて放出する微細気泡発生部と、
を含んで構成されることを特徴とする請求項1に記載の複合淡水化システム。
The fine bubble generating means includes
A first pipe connecting an outlet of non-permeated water of the second reverse osmosis membrane device and a first raw water tank for storing the taken first raw water;
A first valve provided on the first raw water tank side of the first pipe;
It is provided downstream of the first valve of the first pipe, and is dissolved in the first raw water tank by rapidly depressurizing the non-permeated water of the second reverse osmosis membrane device in the first raw water tank. A fine bubble generating section for generating and releasing gas as the fine bubbles;
The combined desalination system according to claim 1, comprising:
前記微細気泡発生手段は、更に、
前記第1の弁よりも上流位置で前記第1の配管から分岐されて前記第1原水槽に接続する第2の配管と、
前記第2の配管に設けられ、前記第2の逆浸透膜装置の非透過水の流量調整をするための第2の弁と、
を含んで構成されることを特徴とする請求項2に記載の複合淡水化システム。
The fine bubble generating means further includes:
A second pipe branched from the first pipe at a position upstream of the first valve and connected to the first raw water tank;
A second valve provided in the second pipe for adjusting the flow rate of the non-permeate water of the second reverse osmosis membrane device;
The combined desalination system according to claim 2, comprising:
前記第1の配管の前記第2の配管への分岐点よりも上流側に設けられ、前記第2の逆浸透膜装置の非透過水の流量を検出する流量検出手段と、
前記第1の弁と前記微細気泡発生部との間の前記第1の配管に設けられ、前記第1の弁により減圧された前記第2の逆浸透膜装置の非透過水の圧力を検出する微細気泡発生圧力検出手段と、
前記微細気泡発生圧力検出手段からの圧力信号に基づいて、前記第1の弁の減圧度合いを調整するとともに、前記流量検出手段からの流量信号に基づいて所定の流量に前記第2の逆浸透膜装置の非透過水の流量を調整するように前記第2の弁の開度を調整する制御手段と、
を備えることを特徴とする請求項3に記載の複合淡水化システム。
A flow rate detecting means provided upstream of a branch point of the first piping to the second piping, and detecting a flow rate of non-permeated water of the second reverse osmosis membrane device;
A pressure of non-permeated water of the second reverse osmosis membrane device, which is provided in the first pipe between the first valve and the fine bubble generation unit and is decompressed by the first valve, is detected. Fine bubble generation pressure detection means;
The second reverse osmosis membrane is adjusted to a predetermined flow rate based on the flow rate signal from the flow rate detection unit, while adjusting the degree of pressure reduction of the first valve based on the pressure signal from the fine bubble generation pressure detection unit. Control means for adjusting the opening of the second valve so as to adjust the flow rate of non-permeate water of the apparatus;
The composite desalination system according to claim 3, comprising:
前記第1原水槽は、複数の仕切板によって複数の区画に分割されており、前記微細気泡が放出された被処理水を交互に上下に流れ方向を変えさせ、前記微細気泡との混合を促進させるとともに、前記微細気泡の圧壊により有機物の分解と殺菌とを促進する反応槽であることを特徴とする請求項2から請求項4のいずれか1項に記載の複合淡水化システム。   The first raw water tank is divided into a plurality of compartments by a plurality of partition plates, and the water to be treated from which the fine bubbles are discharged is alternately changed in the flow direction up and down to promote mixing with the fine bubbles. The composite desalination system according to any one of claims 2 to 4, which is a reaction tank that promotes decomposition and sterilization of organic substances by crushing the fine bubbles. 更に、オゾンガスを発生させるオゾン発生装置を備え、
前記第1の弁と前記微細気泡発生部との間の前記第1の配管に、前記オゾン発生装置が発生した前記オゾンガスを注入するオゾン注入部を設けたことを特徴とする請求項2から請求項5のいずれか1項に記載の複合淡水化システム。
Furthermore, an ozone generator that generates ozone gas is provided,
3. An ozone injection part for injecting the ozone gas generated by the ozone generator is provided in the first pipe between the first valve and the fine bubble generating part. Item 6. The combined desalination system according to any one of items 5 to 6.
JP2011032635A 2011-02-17 2011-02-17 Combined desalination system Expired - Fee Related JP5587223B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011032635A JP5587223B2 (en) 2011-02-17 2011-02-17 Combined desalination system
PCT/JP2012/053615 WO2012111731A1 (en) 2011-02-17 2012-02-16 Compound desalination system
CN201280009139.1A CN103370280B (en) 2011-02-17 2012-02-16 Compound desalination system
SG2013062039A SG192789A1 (en) 2011-02-17 2012-02-16 Compound desalination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011032635A JP5587223B2 (en) 2011-02-17 2011-02-17 Combined desalination system

Publications (2)

Publication Number Publication Date
JP2012170841A true JP2012170841A (en) 2012-09-10
JP5587223B2 JP5587223B2 (en) 2014-09-10

Family

ID=46672643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032635A Expired - Fee Related JP5587223B2 (en) 2011-02-17 2011-02-17 Combined desalination system

Country Status (4)

Country Link
JP (1) JP5587223B2 (en)
CN (1) CN103370280B (en)
SG (1) SG192789A1 (en)
WO (1) WO2012111731A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079710A (en) * 2012-10-17 2014-05-08 Miura Co Ltd Water treatment system
JP2014083480A (en) * 2012-10-22 2014-05-12 Miura Co Ltd Water treatment system
WO2014133101A1 (en) * 2013-02-28 2014-09-04 東レ株式会社 Method for producing desalinated water
JP7500483B2 (en) 2021-03-19 2024-06-17 株式会社東芝 Water treatment system and water treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053700A1 (en) * 2006-10-30 2008-05-08 Sekisui Chemical Co., Ltd. Method of desalting, apparatus for desalting, and bubble generator
JP2009148673A (en) * 2007-12-19 2009-07-09 Sekisui Chem Co Ltd Membrane separation apparatus and desalination method
JP2009536878A (en) * 2006-05-12 2009-10-22 エナジー リカバリー インコーポレイテッド Hybrid RO / PRO system
JP4481345B1 (en) * 2008-11-28 2010-06-16 株式会社神鋼環境ソリューション Seawater desalination method and seawater desalination apparatus
JP2011088053A (en) * 2009-10-21 2011-05-06 Hitachi Ltd Equipment and method for desalination treatment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440933A (en) * 2002-02-26 2003-09-10 东丽株式会社 Desalting method and desalting device
JP2008100220A (en) * 2006-09-22 2008-05-01 Toray Ind Inc Method for producing freshwater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009536878A (en) * 2006-05-12 2009-10-22 エナジー リカバリー インコーポレイテッド Hybrid RO / PRO system
WO2008053700A1 (en) * 2006-10-30 2008-05-08 Sekisui Chemical Co., Ltd. Method of desalting, apparatus for desalting, and bubble generator
JP2009148673A (en) * 2007-12-19 2009-07-09 Sekisui Chem Co Ltd Membrane separation apparatus and desalination method
JP4481345B1 (en) * 2008-11-28 2010-06-16 株式会社神鋼環境ソリューション Seawater desalination method and seawater desalination apparatus
JP2011088053A (en) * 2009-10-21 2011-05-06 Hitachi Ltd Equipment and method for desalination treatment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079710A (en) * 2012-10-17 2014-05-08 Miura Co Ltd Water treatment system
JP2014083480A (en) * 2012-10-22 2014-05-12 Miura Co Ltd Water treatment system
WO2014133101A1 (en) * 2013-02-28 2014-09-04 東レ株式会社 Method for producing desalinated water
JPWO2014133101A1 (en) * 2013-02-28 2017-02-02 東レ株式会社 Demineralized water production method
JP7500483B2 (en) 2021-03-19 2024-06-17 株式会社東芝 Water treatment system and water treatment method

Also Published As

Publication number Publication date
CN103370280A (en) 2013-10-23
SG192789A1 (en) 2013-09-30
CN103370280B (en) 2015-04-01
JP5587223B2 (en) 2014-09-10
WO2012111731A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5549589B2 (en) Fresh water system
JP4903113B2 (en) Water treatment system and operation method thereof
TWI393678B (en) Desalination system
JP5488466B2 (en) Fresh water generator
WO2008053700A1 (en) Method of desalting, apparatus for desalting, and bubble generator
JP2018130679A (en) Reverse osmosis treatment apparatus and reverse osmosis treatment method
WO2015156242A1 (en) Water treatment method and water treatment apparatus each using membrane
JP4649529B1 (en) Membrane treatment equipment
JP2015077530A (en) Water production method and water production device
JP2011088053A (en) Equipment and method for desalination treatment
JP5587223B2 (en) Combined desalination system
JP3957081B1 (en) Water treatment system for drinking water production and operation method thereof
US20180297866A1 (en) Water treatment system and water treatment method
JP3957080B1 (en) Water treatment system for drinking water production and operation method thereof
EP1894612B1 (en) Method for purifying water by means of a membrane filtration unit
JP5762041B2 (en) Combined desalination system
JP2003200160A (en) Water making method and water making apparatus
JP4113568B1 (en) Water treatment system for drinking water production and operation method thereof
JP2014100627A (en) Membrane treatment apparatus and solid-liquid separation method
WO2022080035A1 (en) Fluid treatment apparatus, purified water production system, and fluid treatment method
KR101594226B1 (en) Device for desalination of water
JP4941613B1 (en) Seawater desalination system
JP2014117645A (en) Water treatment apparatus and water treatment method
JP2015182015A (en) Apparatus and method for treating water

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140723

R150 Certificate of patent or registration of utility model

Ref document number: 5587223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees