JP2000288368A - Composite reverse osmosis membrane - Google Patents

Composite reverse osmosis membrane

Info

Publication number
JP2000288368A
JP2000288368A JP9846699A JP9846699A JP2000288368A JP 2000288368 A JP2000288368 A JP 2000288368A JP 9846699 A JP9846699 A JP 9846699A JP 9846699 A JP9846699 A JP 9846699A JP 2000288368 A JP2000288368 A JP 2000288368A
Authority
JP
Japan
Prior art keywords
reverse osmosis
porous support
osmosis membrane
membrane
composite reverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9846699A
Other languages
Japanese (ja)
Inventor
Masahiko Hirose
雅彦 廣瀬
Hirotoshi Ishizuka
浩敏 石塚
Hisao Hachisuga
久雄 蜂須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP9846699A priority Critical patent/JP2000288368A/en
Publication of JP2000288368A publication Critical patent/JP2000288368A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make achievale a stable operation even under a high pressure above a specific numerical value, when a highly concentrated stock solution is treated, by forming a composite reverse osmosis membrane of a consolidated porous support and a film supported on the support. SOLUTION: The composite reverse osmosis membrane is formed of a consolidated porous support and a film supported on the porous support. The porous support is preferably treated by consolidation at 10 kgf/cm2 or more and is preferably thinner by 5 μm or more than before the consolidation treatment. In addition, the pure water permeation amount by the consolidated porous support is 1 m3/m2/day or more at 1 kgf/cm2 measured pressure and at 25 deg.C measured temperature and the structural part with a digital section of the porous support is preferably collapsed. Further, the active layer of the reverse osmosis membrane may be formed on the consolidated porous membrane. Thus it is possible to maintain the water permeation amount and the salt blocking performance at a high level without generating a consolidation phenomenon, when an operation is carried out under high pressure and consequently, stabilize the operation for a long time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の分野】本発明は、高圧下の使用による圧密化に
よっても充分な透過水量を有する多孔性支持膜を用いた
複合逆浸透膜に関する。本発明の複合逆浸透膜は高濃度
原液の処理に適し、高塩阻止率、高透水性及び耐圧性に
優れる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite reverse osmosis membrane using a porous support membrane having a sufficient amount of permeated water even when compacted by use under high pressure. The composite reverse osmosis membrane of the present invention is suitable for treating a high concentration stock solution, and is excellent in high salt rejection, high water permeability and pressure resistance.

【0002】[0002]

【従来の技術】現在、工業的に広く用いられている逆浸
透膜としては、酢酸セルロースの非対称膜があり、例え
ば米国特許第3133132号や米国特許第3133137号に記載の
ロブ型膜が知られている。また、これとは構造の異なる
逆浸透膜として、実質的に選択分離性を有する活性な薄
膜を微孔性支持膜上に形成した複合逆浸透膜も知られて
いる。
2. Description of the Related Art At present, as a reverse osmosis membrane widely used industrially, there is an asymmetric membrane of cellulose acetate. For example, a lob type membrane described in US Pat. No. 3,133,132 or US Pat. No. 3,133,137 is known. ing. Further, as a reverse osmosis membrane having a different structure from the above, a composite reverse osmosis membrane in which an active thin film having substantially selective separation properties is formed on a microporous support membrane is also known.

【0003】このような複合逆浸透膜としては、具体的
には多官能芳香族アミンと多官能芳香族酸ハロゲン化物
との界面重合によって得られるポリアミド薄膜を支持膜
上に形成したもの(例えば、特開昭55-l47l06号、特開昭
62-12l603号、特開昭63-2l8208号、特開平2-l87l35号
等)、あるいは多官能芳香族アミンと多官能脂環式酸ハ
ロゲン化物との界面重合によって得られるポリアミドか
らなる薄膜を支持膜上に形成したもの(例えば、特開昭6
l-42308号等)が知られている。通常、これらの逆浸透膜
はスパイラル状などの形態にエレメント化され各種用途
で使用されている。
[0003] As such a composite reverse osmosis membrane, specifically, a polyamide thin film obtained by interfacial polymerization of a polyfunctional aromatic amine and a polyfunctional aromatic acid halide formed on a support membrane (for example, JP-A-55-l47l06, JP-A-Showa
62-12l603, JP-A-63-2l8208, JP-A-2-l87l35, etc.) or a thin film made of polyamide obtained by interfacial polymerization of a polyfunctional aromatic amine and a polyfunctional alicyclic acid halide. What was formed on the film (for example,
No. l-42308) is known. Usually, these reverse osmosis membranes are formed into a spiral shape or the like and used for various purposes.

【0004】このような逆浸透膜を用いて分離を行うに
は、原液と透過液との浸透圧差以上の圧力を原液側に加
える必要がある。例えば、濃度3.5%の海水の浸透圧
は、25℃において約25kgf/cmである。この
ような海水を実際に複合逆浸透膜により処理して淡水を
得るには、通常、スパイラル状に巻き付けたスパイラル
型エレメント、又はこれを直列に2〜6本つなぎ合わせ
たエレメントを圧力容器内に装填し、各エレメントの回
収率が10%前後になるように海水に圧力を加えて全体
の回収率を向上させるよう処理を行う。
In order to perform separation using such a reverse osmosis membrane, it is necessary to apply a pressure higher than the osmotic pressure difference between the stock solution and the permeate to the stock solution. For example, the osmotic pressure of seawater having a concentration of 3.5% is about 25 kgf / cm 2 at 25 ° C. In order to obtain fresh water by actually treating such seawater with a composite reverse osmosis membrane, usually, a spiral type element wound in a spiral shape, or an element obtained by connecting two to six of these in series is placed in a pressure vessel. After loading, the seawater is pressurized so that the recovery rate of each element is about 10%, and the processing is performed to improve the overall recovery rate.

【0005】例えば全体の回収率(淡水生産率)が40%
となるよう海水の処理を行った場合、濃縮された海水濃
度は約6%であり、浸透圧は約45kgf/cmとな
る。しかしながら、実際上、充分な透過水量と水質とを
得るには浸透圧よりも約20kgf/cm程度高い圧
力を原液海水に加える必要があり、回収率40%を達成
するには、圧力60〜65kgf/cm程度での運転
が必要である。さらに高い回収率を必要とする場合、例
えば淡水回収率60%で海水の淡水化運転を行う場合に
は、得られた濃縮海水は濃度が約9%であり、浸透圧は
約70kgf/cmに達し、90kgf/cm程度
の圧力で操業する必要がある。
[0005] For example, the overall recovery rate (freshwater production rate) is 40%.
When the treatment of seawater is performed so that the concentration of the concentrated seawater is about 6%, the osmotic pressure becomes about 45 kgf / cm 2 . However, in practice, it is necessary to apply a pressure about 20 kgf / cm 2 higher than the osmotic pressure to the undiluted seawater in order to obtain a sufficient amount of permeated water and water quality. Operation at about 65 kgf / cm 2 is required. When a higher recovery rate is required, for example, when a seawater desalination operation is performed at a freshwater recovery rate of 60%, the obtained concentrated seawater has a concentration of about 9% and an osmotic pressure of about 70 kgf / cm 2. , And it is necessary to operate at a pressure of about 90 kgf / cm 2 .

【0006】従来の複合逆浸透膜は、前記のように多孔
性支持膜(例えば、ポリスルホンからなる限外濾過膜)と
合成高分子スキン層から形成されているが、高圧下に使
用すると圧密化を生じて透過水量が低下し、安定な運転
ができない。このような問題を解決するため、支持体の
構造を変更したもの(特開平8-168658号等)や透過流路材
の構造を変えたもの(特開平9-141060号、特開平9-14106
7号等)も提案されているが、いずれも操業にしたがい初
期の性能に変化が生じるなど安定な運転ができず、充分
な耐圧性はない。
Conventional composite reverse osmosis membranes are formed from a porous support membrane (for example, an ultrafiltration membrane made of polysulfone) and a synthetic polymer skin layer as described above. And the amount of permeated water decreases, and stable operation cannot be performed. In order to solve such a problem, the structure of the support is changed (Japanese Patent Laid-Open No. 8-168658 or the like) or the structure of the permeation channel material is changed (Japanese Patent Application Laid-Open No. 9-141060, Japanese Patent Application Laid-Open No. 9-14106).
No. 7, etc.) have also been proposed, but none of them have stable operation such as a change in initial performance according to the operation, and do not have sufficient pressure resistance.

【0007】[0007]

【発明の目的および概要】本発明の目的は、このような
従来技術の課題を解決するためになされたものであっ
て、高濃度原液の処理にあたり、高圧、特に70kgf
/cm以上の高圧下でも安定した運転が可能な複合逆
浸透膜を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art. In the treatment of a high-concentration stock solution, a high pressure, especially 70 kgf is used.
An object of the present invention is to provide a composite reverse osmosis membrane capable of stable operation even under a high pressure of / cm 2 or more.

【0008】一般に複合逆浸透膜において、表面の合成
高分子スキン層を安定かつ均一に形成し高い阻止性能を
得るには、多孔性支持膜の表面構造を比較的密に設計す
る必要がある。多孔性支持膜の製造には通常、湿式法が
用いられ、その孔径は膜表面から反対面に向け連続的に
大きくなる。したがって、膜の表面構造を比較的緻密
に、すなわち表面層の孔径を小さく設定すると、支持膜
全体が緻密になり透過水量は低下する。このような支持
膜が圧密化されると、孔が閉塞しやすく、これを基材と
する複合逆浸透膜の透過水量は顕著に低下する。
Generally, in a composite reverse osmosis membrane, in order to form a synthetic polymer skin layer on the surface stably and uniformly and to obtain high rejection performance, it is necessary to design the surface structure of the porous support membrane relatively densely. Usually, a wet method is used for producing a porous support membrane, and the pore size increases continuously from the membrane surface to the opposite surface. Therefore, when the surface structure of the membrane is relatively dense, that is, when the pore size of the surface layer is set small, the whole support membrane becomes dense and the amount of permeated water decreases. When such a support membrane is compacted, pores are likely to be clogged, and the amount of permeated water of the composite reverse osmosis membrane using this as a base material is significantly reduced.

【0009】一方、多孔性支持膜の表面層の孔径を大き
く設定した場合は、支持膜全体にわたって疎な構造を呈
し、孔の閉塞が抑制され透過水量の低下は小さくなる
が、表面層の孔径が大きいため合成高分子スキン層を安
定且つ均一に形成させることができず、結果として複合
逆浸透膜の阻止性能の低下をもたらす。
On the other hand, when the pore size of the surface layer of the porous support membrane is set to be large, a sparse structure is exhibited over the entire support membrane, and pore blockage is suppressed and the decrease in the amount of permeated water is reduced, but the pore size of the surface layer is reduced. Is large, the synthetic polymer skin layer cannot be formed stably and uniformly, and as a result, the blocking performance of the composite reverse osmosis membrane is lowered.

【0010】本発明は、圧密化された多孔性支持体及び
これに支持された薄膜からなる複合逆浸透膜を提供する
ものである。多孔性支持体に対する圧密処理は10kg
f/cm以上でなされているのが好ましく、該支持体
の厚みが圧密処理前に対して5μm以上薄くなっている
のが好ましい。また、圧密化された多孔性支持体の純水
透過水量は、測定圧力1kgf/cm、測定温度25
℃にて1m/m/日以上であり、多孔性支持体の断
面指状構造部が潰れているのが好ましい。また、本発明
は圧密化された多孔質膜を準備し、その上に逆浸透膜の
活性層を形成させることを特徴とする複合逆浸透膜の製
造方法を提供するものでもある。
The present invention provides a composite reverse osmosis membrane comprising a consolidated porous support and a thin film supported on the porous support. 10 kg compaction treatment for porous support
f / cm 2 or more, and the thickness of the support is preferably at least 5 μm thinner than before the consolidation treatment. The amount of pure water permeated by the consolidated porous support was measured at a measurement pressure of 1 kgf / cm 2 and a measurement temperature of 25 kg / cm 2 .
It is preferably at least 1 m 3 / m 2 / day at ° C., and it is preferable that the cross-sectional finger structure of the porous support is crushed. The present invention also provides a method for producing a composite reverse osmosis membrane, which comprises preparing a consolidated porous membrane and forming an active layer of the reverse osmosis membrane thereon.

【0011】本発明の複合逆浸透膜は、使用に先立つ圧
密化により高圧下における運転に際しても圧密化を生ぜ
ず高い透過水量及び塩阻止性能を有し、長時間安定して
運転することができる。
The composite reverse osmosis membrane of the present invention has a high amount of permeated water and a high salt rejection performance even when operated under high pressure due to consolidation prior to use, and can be operated stably for a long time. .

【0012】[0012]

【発明の詳細な開示】(多孔性支持体)本発明にて用い
られる多孔性支持体としては、従来、複合逆浸透膜の支
持体として用いられているものがいずれも採用されてよ
く、セルロース系有機重合体、ポリアミド系、ポリイミ
ド系、ポリスルホン系、ポリアクリロニトリル系、ポリ
ビニルアルコール系、エチレン−ビニルアルコール共重
合体系等が挙げられ、ポリスルホン、ポリエーテルスル
ホンのようなポリアリールエーテルスルホン、ポリイミ
ド、ポリフッ化ビニリデンが好ましい。
DETAILED DESCRIPTION OF THE INVENTION (Porous support) As the porous support used in the present invention, any of those conventionally used as a support for a composite reverse osmosis membrane may be used. Organic polymer, polyamide-based, polyimide-based, polysulfone-based, polyacrylonitrile-based, polyvinyl alcohol-based, ethylene-vinyl alcohol copolymer-based, and the like.Polysulfone, polyarylethersulfone such as polyethersulfone, polyimide, polyolefin Vinylidene chloride is preferred.

【0013】特に化学的、機械的、熱的に安定である点
から、ポリスルホン、ポリアリールエーテルスルホンか
らなる多孔性支持膜が好ましく用いられる。かかる多孔
性支持膜は通常25〜125μm、好ましくは、約40
〜75μmの厚みを有するが、必ずしもこれらに限定さ
れるものではない。
In particular, a porous support membrane made of polysulfone or polyarylethersulfone is preferably used because it is chemically, mechanically and thermally stable. Such a porous support membrane is usually 25 to 125 μm, preferably about 40 μm.
It has a thickness of 75 μm, but is not necessarily limited to these.

【0014】製膜溶液を調製するには、これらの膜素材
を溶解することができる溶媒、例えば、N−メチル−2
−ピロリドン、N,N−ジメチルアセトアミド、N,N−
ジメチルホルムアミド、ジメチルスルホキシド、ピリジ
ン等の含窒素化合物、ジエチレングリコール、ジエチレ
ングリコールジメチルエーテル、ジエチレングリコール
ジエチルエーテル、ジエチレングリコールジブチルエー
テル等の多価アルコール及びその誘導体、1,4−ジオ
キサン、テトラヒドロフラン、エチル-ブチルエーテル
等のエーテル・アセタール類などを用いることができ
る。これらの溶媒は単独で用いてもよく、また2種以上
を混合して用いてもよい。更に、貧溶媒である水やメタ
ノール、エタノール、イソプロパノール等のアルコール
類を10重量%を越えない範囲で添加してもよい。
To prepare a film forming solution, a solvent capable of dissolving these film materials, for example, N-methyl-2
-Pyrrolidone, N, N-dimethylacetamide, N, N-
Nitrogen-containing compounds such as dimethylformamide, dimethylsulfoxide, and pyridine; polyhydric alcohols such as diethylene glycol, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol dibutyl ether and derivatives thereof; and ether acetals such as 1,4-dioxane, tetrahydrofuran, and ethyl-butyl ether Can be used. These solvents may be used alone or as a mixture of two or more. Further, water, which is a poor solvent, or alcohols such as methanol, ethanol and isopropanol may be added in a range not exceeding 10% by weight.

【0015】これらの溶媒を用い、溶液濃度5〜20重
量%、好ましくは10〜18重量%、より好ましくは1
0〜16重量%の製膜溶液を調製する。溶液濃度がこれ
らの範囲より低いと粘度が低く均質に製膜することがで
きない。また、この範囲より濃度が高いと逆に製膜が困
難になると共に、膜が緻密になり目的とする膜構造が得
られず、透過水量が低下する。
Using these solvents, a solution concentration of 5 to 20% by weight, preferably 10 to 18% by weight, more preferably 1 to 18% by weight.
A film forming solution of 0 to 16% by weight is prepared. If the solution concentration is lower than these ranges, the viscosity is low and a uniform film cannot be formed. On the other hand, if the concentration is higher than this range, it becomes difficult to form a film, and the film becomes dense, the desired film structure cannot be obtained, and the amount of permeated water decreases.

【0016】本発明で用いられる製膜溶液は−20〜6
0℃、好ましくは、0〜40℃の温度範囲に調製され
る。この溶液を用いて湿式相転換製膜法により多孔性支
持体を製造する方法を以下に示す。
The film forming solution used in the present invention is -20 to 6
It is prepared in a temperature range of 0 ° C, preferably 0 to 40 ° C. A method for producing a porous support by a wet phase inversion film forming method using this solution will be described below.

【0017】本発明の複合逆浸透膜の膜形状としては、
平膜状、中空糸状、チューブ状の形態のいずれであって
もよく特に限定されない。平膜状の場合は例えば、織
布、不織布等の基材に上記溶液をキャスティングやディ
ッピングにより塗布した後、凝固液中に浸漬する。基材
への溶液の塗布厚は25〜400μm、好ましくは30
〜250μm、さらに好ましくは90〜200μmであ
る。塗布厚が前記の範囲より薄いと多孔性支持体に欠陥
が生じ、一方、厚すぎると透過水量の低下を招く。
The composite reverse osmosis membrane of the present invention has the following membrane shape.
The shape may be any of a flat membrane, a hollow fiber, and a tube, and is not particularly limited. In the case of a flat film, for example, the above solution is applied to a substrate such as a woven fabric or a nonwoven fabric by casting or dipping, and then immersed in a coagulation liquid. The coating thickness of the solution on the substrate is 25 to 400 μm, preferably 30
To 250 μm, more preferably 90 to 200 μm. If the coating thickness is smaller than the above range, defects occur in the porous support, while if too thick, the amount of permeated water decreases.

【0018】凝固液としては、水やメタノール、エタノ
ール、イソプロピルアルコール等のアルコール類及びこ
れらの少なくとも2種からなる混合溶液が用いられるが
これらに限定されるものではない。
As the coagulating liquid, water, alcohols such as methanol, ethanol, isopropyl alcohol and the like and a mixed solution comprising at least two of these are used, but not limited thereto.

【0019】凝固液の温度は0〜80℃、好ましくは5
〜50℃、さらに好ましくは10〜30℃である。凝固
液の温度が80℃を越えるとゲル化が急激に生じ、得ら
れる膜が疎な構造になり充分なPEG阻止率が得られ
ず、一方0℃より低いと凝固液が凍る場合が生じ製膜が
できない。また、凝固温度が前記範囲より低いと膜が緻
密化し透過水量の低下を招き、一方、これより高いと膜
が疎になりすぎ膜表面に安定した性能を有する合成高分
子スキン層を形成させることができない。
The temperature of the coagulating liquid is 0 to 80 ° C., preferably 5 to 80 ° C.
To 50 ° C, more preferably 10 to 30 ° C. If the temperature of the coagulating liquid exceeds 80 ° C., gelation occurs rapidly, and the resulting film has a sparse structure, and a sufficient PEG rejection cannot be obtained. No film. Further, if the solidification temperature is lower than the above range, the membrane becomes dense and the amount of permeated water decreases, while if it is higher than this, the membrane becomes too sparse to form a synthetic polymer skin layer having stable performance on the membrane surface. Can not.

【0020】製膜溶液を塗布した基材は、凝固過程にお
いて常に膜面に新しい凝固液が供給される必要がある。
膜面への新しい凝固液の供給が充分でないと、膜面の凝
固液中に多孔質膜を溶解する溶媒が存在し、固化が阻害
され膜面が疎な構造となる。かかる、固化過程にある膜
面に常に新しい凝固液を供給する方法は特に限定されな
いが、例えば、製膜溶液を塗布した織布、不織布等の基
材を連続的に凝固液中で移動させるか、あるいは凝固液
自体を循環させる方法などが採用できる。製膜溶液を塗
布した織布、不織布等の基材を連続的移動させる場合、
その速度は3〜100m/分、好ましくは5〜50m/分
である。このような条件により常に新しい凝固液が膜面
に供給され膜表面の構造をを密にすることができる。前
記範囲より製膜速度が遅いと膜面が疎になり目的とする
密な膜表面構造を形成させることができない。また、1
00m/分より早いと、製膜の際膜面に不均一部分が生
ずる。
The substrate coated with the film-forming solution needs to be supplied with a new coagulating liquid at all times during the coagulation process.
If the supply of the new coagulating liquid to the film surface is not sufficient, a solvent for dissolving the porous film is present in the coagulating liquid on the film surface, solidification is inhibited, and the film surface has a sparse structure. Such a method of constantly supplying a new coagulating liquid to the film surface in the solidification process is not particularly limited. For example, a method in which a substrate such as a woven fabric or a nonwoven fabric coated with a film forming solution is continuously moved in the coagulating solution. Alternatively, a method of circulating the coagulating liquid itself can be employed. When continuously moving a substrate such as a woven or non-woven fabric coated with a film forming solution,
Its speed is 3-100 m / min, preferably 5-50 m / min. Under these conditions, a new coagulating liquid is constantly supplied to the film surface, and the structure of the film surface can be made dense. If the film forming speed is lower than the above range, the film surface becomes sparse, and a desired dense film surface structure cannot be formed. Also, 1
If the speed is higher than 00 m / min, a non-uniform portion occurs on the film surface during film formation.

【0021】さらに、多孔性支持体の表面を緻密化させ
るため、30〜200℃、好ましくは50〜150℃に
て乾燥してもよい。この場合、後記逆浸透膜の形成に際
し、支持膜を湿潤化させることを目的に、水とアルコー
ル(例えば、メタノール、エタノール、イソプロピルア
ルコール)の混合溶媒(溶液濃度5〜70重量%)に浸漬
し、再度、水に置換する方法が用いられる。
Further, in order to densify the surface of the porous support, the support may be dried at 30 to 200 ° C., preferably 50 to 150 ° C. In this case, when forming a reverse osmosis membrane, which will be described later, the support membrane is immersed in a mixed solvent (solution concentration: 5 to 70% by weight) of water and alcohol (eg, methanol, ethanol, isopropyl alcohol) for the purpose of moistening the support membrane. Again, a method of replacing with water is used.

【0022】本発明において、多孔性支持膜の性能評価
法としては、ポリエチレングリコール(PEG;平均分
子量:20,000)溶液を用いた。評価セルは評価溶液の循環
が可能なものを用い、PEG濃度:0.5重量%、評価
圧力:1kgf/cm、温度:25℃、循環流量:1
L/分にて評価した。前記の製膜条件により得られた本
発明の多孔性支持体は、このような条件下でのPEGの
阻止率が10〜90%、好ましくは10〜50%であ
る。PEG阻止率がこの範囲より低いと膜面が疎であ
り、高阻止性能を有する合成高分子スキン層を形成でき
ない。また、前記の範囲より阻止率が高いと膜面が密に
なりすぎ、圧密化を生じた場合に表面孔の閉塞を助長す
る。
In the present invention, a polyethylene glycol (PEG; average molecular weight: 20,000) solution was used as a method for evaluating the performance of the porous support membrane. The evaluation cell used was one capable of circulating the evaluation solution, PEG concentration: 0.5% by weight, evaluation pressure: 1 kgf / cm 2 , temperature: 25 ° C., circulating flow rate: 1
It evaluated in L / min. The porous support of the present invention obtained under the above-mentioned film forming conditions has a PEG rejection under such conditions of 10 to 90%, preferably 10 to 50%. If the PEG rejection is lower than this range, the film surface is sparse and a synthetic polymer skin layer having high rejection cannot be formed. On the other hand, if the rejection is higher than the above range, the film surface becomes too dense, and when the consolidation occurs, the clogging of the surface holes is promoted.

【0023】多孔性支持体の純水透過水量は、5m
/日以上(評価圧力;1kgf/cm、温度:2
5℃)であり、好ましくは10m/m/日以上であ
る。透過水量がこれより低いと、圧密化により表面孔が
閉塞し透過水量が著しく低くなる。
The amount of permeated pure water of the porous support is 5 m 3 /
m 2 / day or more (evaluation pressure; 1 kgf / cm 2 , temperature: 2
5 ° C.), preferably 10 m 3 / m 2 / day or more. If the amount of permeated water is lower than this, the surface pores are closed due to consolidation, and the amount of permeated water is significantly reduced.

【0024】また、前記のPEGの阻止率を発現する分
離層は最表層にあることが好ましく、その層の厚さは多
孔性支持体(不織布等の基材を含まない)の厚みの20%
以下、好ましくは15%以下である。かかる層がこれよ
り厚いと抵抗が大きくなり、充分な透過水量が確保でき
ず、圧密化した場合に表面孔の閉塞が生じやすくなる。
It is preferable that the separation layer exhibiting the above-mentioned PEG rejection is located on the outermost layer, and the thickness of the layer is 20% of the thickness of the porous support (not including the base material such as a nonwoven fabric).
Or less, preferably 15% or less. If such a layer is thicker than this, the resistance is increased, a sufficient amount of permeated water cannot be secured, and the surface pores are likely to be clogged when compacted.

【0025】(圧密処理)このようにして製造した多孔
性支持体に対して圧密処理を行う。圧密化の方法は、多
孔性支持体に圧力がかかる方法であれば特に限定されな
い。例えば、多孔性支持体に圧縮ロールで圧力をかける
方法や、水などの液体を媒体として圧力をかける方法等
を行うことができる。また、平膜状で処理してもよく、
スパイラル状などにエレメント化した後、圧密処理して
もよい。平膜での圧密処理には圧縮ロールを用いるのが
好ましく、エレメント化後に圧密処理を行う場合は水な
どの液体を媒体として行うのが好ましい。多孔性支持体
に対する圧密処理の圧力は高い方が好ましいが、あまり
高いと多孔性支持体の孔がふさがり、透過水の抵抗とな
り好ましくない。エレメント状態での圧密処理は10k
gf/cm以上、通常は10〜200kgf/c
、好ましくは10〜100kgf/cmである。
また、平膜を用いて圧縮プレス等で圧密処理する場合、
そのプレス圧は2kgf/cm以上150kgf/c
以下であることが好ましい。プレス圧が2kgf/
cmより小さいと充分な圧密効果が得られず、100
kgf/cmを越えると圧密化により透過水量の低下
が大きくなりすぎる。
(Consolidation treatment) The porous support thus produced is subjected to a consolidation treatment. The method of compaction is not particularly limited as long as pressure is applied to the porous support. For example, a method of applying pressure to the porous support with a compression roll, a method of applying pressure using a liquid such as water as a medium, and the like can be used. Further, the treatment may be performed in a flat film form,
After elementalization into a spiral shape or the like, consolidation treatment may be performed. It is preferable to use a compression roll for the consolidation treatment with the flat membrane, and it is preferable to use a liquid such as water as a medium when performing the consolidation treatment after the element formation. It is preferable that the pressure of the consolidation treatment on the porous support is high. However, if the pressure is too high, the pores of the porous support are blocked, and the resistance of the permeated water is undesirably high. Consolidation processing in element state is 10k
gf / cm 2 or more, usually 10 to 200 kgf / c
m 2 , preferably 10 to 100 kgf / cm 2 .
In addition, when performing a consolidation process by a compression press or the like using a flat membrane,
The press pressure is 2 kgf / cm 2 or more and 150 kgf / c.
m 2 or less. Press pressure is 2kgf /
If it is smaller than 2 cm, a sufficient consolidation effect cannot be obtained.
If it exceeds kgf / cm 2 , the reduction in the amount of permeated water becomes too large due to the compaction.

【0026】圧密処理にあたり、多孔性支持体は水など
の液体を含んだ湿潤状態であってもよく、またグリセリ
ンなどの湿潤剤を含浸させた後に乾燥を行い乾燥した状
態であってもよい。また多孔性支持体の表面が圧密処理
により損傷しないよう保護フィルムやセパレーターなど
を多孔性支持体の上に載せた後、圧密処理を行ってもよ
い。
In the consolidation treatment, the porous support may be in a wet state containing a liquid such as water, or may be in a dried state after impregnating with a wetting agent such as glycerin. After placing a protective film, a separator, and the like on the porous support so that the surface of the porous support is not damaged by the consolidation, the consolidation may be performed.

【0027】また、多孔性支持体の厚みは、圧密処理に
より5μm以上薄くするのが好ましく、10μm以上薄
くするのがより好ましい。なお、圧密化は、処理後の支
持体の厚みが処理前の80%を上限とする。得られた多
孔性支持体は、電子顕微鏡で観察すると断面指状構造部
が潰れており、膜厚方向の径が1μm以下である。
The thickness of the porous support is preferably reduced by 5 μm or more, more preferably by 10 μm or more by a consolidation treatment. The consolidation has an upper limit of 80% of the thickness of the support after the treatment. When the obtained porous support is observed with an electron microscope, the cross-sectional finger-like structure is crushed, and the diameter in the film thickness direction is 1 μm or less.

【0028】このようにして圧密化された多孔性支持膜
は好適な耐圧性、即ち、圧密化時に充分な純水透過水量
を有することが必要である。例えば、該多孔性支持膜面
に不透フィルムを置き、120kgf/cmの水圧を
1時間かけた場合、その透過水量は1.0m/m
日以上(評価圧力;1kgf/cm、温度;25℃)で
あることが好適である。圧密化時の透過水量が1.0m
/m/日未満であると、該多孔性支持膜を用いて複
合逆浸透膜を製膜した場合、高圧運転に際し透過水量の
大きな低下をもたらす。
The porous support membrane thus compacted needs to have a suitable pressure resistance, that is, a sufficient amount of pure water permeated during the compaction. For example, when an impervious film is placed on the surface of the porous support membrane and a water pressure of 120 kgf / cm 2 is applied for 1 hour, the amount of permeated water is 1.0 m 3 / m 2 /
It is preferably at least one day (evaluation pressure; 1 kgf / cm 2 , temperature: 25 ° C.). The amount of permeated water during compaction is 1.0m
When it is less than 3 / m 2 / day, when a composite reverse osmosis membrane is formed using the porous support membrane, the amount of permeated water is greatly reduced during high-pressure operation.

【0029】(薄膜の形成)つぎに圧密処理した多孔性
支持体の上に薄膜を形成する。従来、複合逆浸透膜の形
成方法であればいずれも採用されてよい。
(Formation of a thin film) Next, a thin film is formed on the porous support which has been subjected to the consolidation treatment. Conventionally, any method for forming a composite reverse osmosis membrane may be employed.

【0030】多孔性支持体上に形成する皮膜(スキン層)
は、ポリアミド系、ポリウレア系等の界面重合法により
製膜することができ、従来の公知の方法により容易に製
造することができる。例えば、多孔性ポリスルホン支持
膜など、前記多孔性支持体を支持膜として用い、その少
なくとも片面にメタフェニレンジアミン、ピペラジン、
ポリエチレンイミン等の反応性アミノ基を有するモノマ
ー及び/又はポリマーの水溶液を塗布する。ついで、ト
リメシン酸クロライド、イソフタル酸クロライド等の多
官能酸クロライドまたはトリレンジイソシアネート等の
多官能イソシアネート、又はこれらの混合物のへキサン
等の溶媒を接触させ、多孔性支持体上において界面重合
を行い脱塩性能を有する皮膜を形成して複合逆浸透膜を
得る。
A film (skin layer) formed on a porous support
Can be formed by a polyamide-based or polyurea-based interfacial polymerization method, and can be easily produced by a conventionally known method. For example, using a porous support such as a porous polysulfone support membrane as a support membrane, at least one surface of which is metaphenylenediamine, piperazine,
An aqueous solution of a monomer and / or polymer having a reactive amino group such as polyethyleneimine is applied. Then, a solvent such as a polyfunctional acid chloride such as trimesic acid chloride or isophthalic acid chloride or a polyfunctional isocyanate such as tolylene diisocyanate, or a mixture thereof such as hexane is contacted, and interfacial polymerization is performed on the porous support to remove the polymer. A composite reverse osmosis membrane is obtained by forming a film having salt performance.

【0031】このような複合逆浸透膜面上に、有機物、
及び/又は有機重合体、好適には、非イオン系の親水性
基を有する有機物、及び/又は有機重合体の溶液を塗布
し、その後に乾燥させて複合逆浸透膜を得ることも、耐
汚染性等の改善に際し有効である。
On such a composite reverse osmosis membrane surface, an organic substance,
And / or an organic polymer, preferably an organic material having a nonionic hydrophilic group, and / or a solution of the organic polymer is applied and then dried to obtain a composite reverse osmosis membrane. It is effective in improving the properties.

【0032】このような有機物、及び/又は有機重合体
としては、シリコンゴム、ポリエチレンテレフタレート
等のフッ素系重合体、スルホン化ポリスルホン、スルホ
ン化ポリエーテルスルホン等のスルホン酸基含有有機重
合体、ポリエチレンイミン等のアミノ基含有有機重合
体、ポリイミド等が挙げられるが、コーティング後の透
水性を高く保持し、親水基を有する有機物、及び/又は
有機重合体、特に荷電的な吸着を抑制することを目的に
非イオン系の親水性基を有する有機物、及び/又は有機
重合体が好ましい。
Examples of such organic substances and / or organic polymers include fluorine-containing polymers such as silicone rubber and polyethylene terephthalate, sulfonic acid group-containing organic polymers such as sulfonated polysulfone and sulfonated polyether sulfone, and polyethyleneimine. Such as amino group-containing organic polymers, polyimides, etc., for the purpose of maintaining high water permeability after coating and suppressing organic substances having hydrophilic groups, and / or organic polymers, particularly, charged adsorption. An organic material having a nonionic hydrophilic group and / or an organic polymer are preferred.

【0033】かかる非イオン系親水性基を有する有機
物、及び/又は有機重合体としては、ポリビニルアルコ
ール、ケン化ポリエチレン−酢酸ビニル共重合体、ポリ
ビニルピロリドン、ヒドロキシプロピルセルロース、ポ
リエチレングリコール等の非イオン系の親水性基を持つ
ビニル系重合体、縮合系重合体、付加系重合体等が用い
られる。
Examples of the organic substance and / or organic polymer having a nonionic hydrophilic group include nonionic hydrophilic substances such as polyvinyl alcohol, saponified polyethylene-vinyl acetate copolymer, polyvinylpyrrolidone, hydroxypropylcellulose and polyethylene glycol. Vinyl polymers having a hydrophilic group, condensation polymers, addition polymers, etc. are used.

【0034】かかる有機物及び/又は有機重合体の溶媒
としては、活性皮膜層に損傷を与えることの少ない溶
媒、例えば水、低級アルコール、ハロゲン化炭化水素、
脂肪族炭化水素、アセトン、アセトニトリル、あるい
は、これらの混合溶媒などが挙げられる。これらのう
ち、特にメタノール、エタノール、プロパノール、ブタ
ノールなどの脂肪族アルコール、エチレンクロルヒドリ
ン等のハロゲン化脂肪族アルコール、メトキシメタノー
ル、メトキシエタノール及びこれら低級アルコールの少
なくとも1種と水との混合溶媒などを用いてよい。混合
溶媒の場合、水に対する低級アルコールの比率は特に限
定されないが、水の比率が0〜90%のであることが好
ましい。また、水を溶媒として用いる場合は膜との濡れ
性をよくすることを目的に界面活性剤を添加してもよ
い。
As the solvent for the organic substance and / or the organic polymer, a solvent which does not damage the active film layer, for example, water, lower alcohol, halogenated hydrocarbon,
Examples thereof include aliphatic hydrocarbon, acetone, acetonitrile, and a mixed solvent thereof. Among them, in particular, aliphatic alcohols such as methanol, ethanol, propanol and butanol, halogenated aliphatic alcohols such as ethylene chlorohydrin, methoxymethanol, methoxyethanol and a mixed solvent of at least one of these lower alcohols with water, etc. May be used. In the case of a mixed solvent, the ratio of the lower alcohol to water is not particularly limited, but the ratio of water is preferably 0 to 90%. When water is used as the solvent, a surfactant may be added for the purpose of improving the wettability with the film.

【0035】[0035]

【実施例】つぎに本発明を実施例、比較例によりさらに
具体的に説明するが、本発明はこれらにより限定される
ものではない。 [実施例1]多孔性支持体としてポリスルホン系限外ろ
過膜(ポリスルホン層、膜厚50μm)を用い、これに圧
縮ロール(圧力20kgf/cm)にてプレスした。プ
レス後のポリスルホン系限外ろ過膜のポリスルホン層の
膜厚を測定したところ40μmであり10μm圧縮され
ていることを確認した。該ポリスルホン系限外濾過膜上
にアミン成分としてメタフェニレンジアミンと、酸クロ
ライド成分としてトリメシン酸クロライドとイソフタル
酸クロライドからなる架橋全芳香族ポリアミドスキン層
からなる複合逆浸透膜を作成した。
EXAMPLES Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. Example 1 A polysulfone ultrafiltration membrane (polysulfone layer, film thickness 50 μm) was used as a porous support, and pressed with a compression roll (pressure 20 kgf / cm 2 ). When the thickness of the polysulfone layer of the polysulfone ultrafiltration membrane after pressing was measured, it was 40 μm, and it was confirmed that the polysulfone was compressed by 10 μm. A composite reverse osmosis membrane comprising a crosslinked wholly aromatic polyamide skin layer comprising metaphenylenediamine as an amine component and trimesic acid chloride and isophthalic acid chloride as acid chloride components was prepared on the polysulfone ultrafiltration membrane.

【0036】この逆浸透膜を用いて、食塩水(5.8%)
を逆浸透膜透過実験(圧力90kgf/cm、出口流
量5L/分、25℃、pH7)に付したところ、運転開
始60分後の逆浸透膜性能は阻止率99.7%、透過水
量0.90m/m/日であった。さらに100時間
にわたり同条件にて運転した後に性能を測定したとこ
ろ、阻止率99.7%、透過水量0.86m/m/日
で性能に大きな変化は見られなかった。
Using this reverse osmosis membrane, a saline solution (5.8%)
Was subjected to a reverse osmosis membrane permeation test (pressure 90 kgf / cm 2 , outlet flow rate 5 L / min, 25 ° C., pH 7). The reverse osmosis membrane performance 60 minutes after the start of operation was 99.7% rejection, and the amount of permeated water was 0. It was .90 m 3 / m 2 / day. When the performance was measured after further operating under the same conditions for 100 hours, no significant change was observed in the performance at a rejection rate of 99.7% and a permeated water amount of 0.86 m 3 / m 2 / day.

【0037】[比較例1]圧縮ロールで処理しないポリ
スルホン系限外ろ過膜を支持体とした以外は、実施例1
と同様にして複合逆浸透膜を製造した。この逆浸透膜の
性能を測定したところ、運転開始60分後の逆浸透膜性
能は塩の透過率0.30%、透過水量1.00m/m
/日であった。さらに100時間にわたり同条件で運転
した後に性能を測定したところ、塩の透過率の0.40
%、透過水量0.78m/m/日で塩の阻止率、透
過水量共に低下し、安定運転が困難であった。
Comparative Example 1 Example 1 was repeated except that a polysulfone ultrafiltration membrane not treated with a compression roll was used as a support.
A composite reverse osmosis membrane was produced in the same manner as described above. When the performance of the reverse osmosis membrane was measured, the performance of the reverse osmosis membrane 60 minutes after the start of the operation was 0.30% for salt permeability and 1.00 m 3 / m 2 for permeated water.
/ Day. After operating under the same conditions for an additional 100 hours, the performance was measured.
%, And the permeated water amount was 0.78 m 3 / m 2 / day, both the salt rejection and the permeated water amount were reduced, and stable operation was difficult.

【0038】[実施例2]ポリスルホンをジメチルホル
ミアミド(DMF)に溶解し15重量%の溶液を調製した
(溶液温度:25℃)。得られた溶液をロール状の不織布
上に厚さ130μmで連続塗布し、20℃の水に連続的
浸漬し、固化後連続的に巻き取りポリスルホン多孔性支
持膜を調製した。この際の速度(面速)は8/minと
した。
Example 2 Polysulfone was dissolved in dimethylformamide (DMF) to prepare a 15% by weight solution.
(Solution temperature: 25 ° C). The obtained solution was continuously applied on a roll-shaped nonwoven fabric at a thickness of 130 μm, continuously immersed in water at 20 ° C., solidified and continuously wound to prepare a polysulfone porous support membrane. The speed (surface speed) at this time was 8 / min.

【0039】得られた多孔性支持膜を供給液の循環が可
能なセルにセットし、ポリエチレングリコール(PEG)
(分子量:20,000)溶液を用いて評価した。この際PEG
濃度:0.5重量%、評価圧力:1kgf/cm、温
度:25℃、循環流量:1L/minとして行った。こ
の時のPEGの阻止率は23%であった。また、同膜の
純水透過水量は、15m/m/日(評価圧力:1k
gf/cm、温度:25℃)であった。得られた膜を
二つのロールの間を圧力で6kgf/cmで通し、多
孔性支持膜の厚密化処理を行った。得られた多孔性支持
膜の純水透過水量は、10m/m/日(評価圧力:
1kgf/cm、温度:25℃)であった。
The obtained porous support membrane was set in a cell capable of circulating the supply liquid, and polyethylene glycol (PEG) was used.
(Molecular weight: 20,000) was evaluated using a solution. At this time, PEG
The concentration was 0.5% by weight, the evaluation pressure was 1 kgf / cm 2 , the temperature was 25 ° C., and the circulation flow rate was 1 L / min. At this time, the rejection of PEG was 23%. The pure water permeated water amount of the membrane was 15 m 3 / m 2 / day (evaluation pressure: 1 k
gf / cm 2 , temperature: 25 ° C.). The obtained membrane was passed between two rolls at a pressure of 6 kgf / cm 2 to perform a thickening treatment of the porous support membrane. The amount of pure water permeated through the obtained porous support membrane was 10 m 3 / m 2 / day (evaluation pressure:
1 kgf / cm 2 , temperature: 25 ° C.).

【0040】膜上にm−フェニレンジアミン 3.0重量
%、ラウリル硫酸ナトリウム 0.15重量%を含む水溶
液にトリエチルアミンを2.0重量%、カンファースル
ホン酸を4.0重量%を含有した水溶液を多孔性ポリス
ルホン支持膜に数秒接触させた後、余分の水溶液を除去
して上記支持膜上に上記水溶液の層を形成した。
An aqueous solution containing 3.0% by weight of m-phenylenediamine, 0.15% by weight of sodium lauryl sulfate and 2.0% by weight of triethylamine and 4.0% by weight of camphorsulfonic acid was placed on the membrane. After contacting the porous polysulfone support membrane for a few seconds, excess aqueous solution was removed to form a layer of the aqueous solution on the support membrane.

【0041】次に、得られた膜表面にトリメシン酸クロ
ライドを0.25重量%を含むIP1016(出光化学
(株)製イソパラフィン系炭化水素油)溶液と接触させ
る。その後、120℃の熱風乾燥機の中で5分保持して
支持体上にスキン層を形成させ複合逆浸透膜を得た。
Next, IP1016 containing 0.25% by weight of trimesic acid chloride was applied to the surface of the obtained film (Idemitsu Chemical Co., Ltd.).
(Isoparaffin-based hydrocarbon oil). Then, it was kept in a hot air dryer at 120 ° C. for 5 minutes to form a skin layer on the support to obtain a composite reverse osmosis membrane.

【0042】得られた膜を3.5重量%の塩化ナトリウ
ム水溶液を用い、圧力56kgf/cmで評価した結
果、阻止性能は99.8%、透過水量は0.80(m
/日)であった。得られた膜を同水溶液で120k
gf/cmにて1時間加圧した後、再度、圧力56k
gf/cmで評価した結果、阻止性能は99.8%、
透過水量は0.77(m/m2/日)であり、性能の変化
は見られなかった。
The obtained membrane was evaluated using a 3.5% by weight aqueous solution of sodium chloride under a pressure of 56 kgf / cm 2. As a result, the blocking performance was 99.8%, and the permeated water amount was 0.80 (m 3 / m 3 ).
m 2 / day). The obtained membrane is treated with the same aqueous solution for 120 k.
After pressurizing for 1 hour at gf / cm 2 ,
As a result of evaluation in gf / cm 2 , the blocking performance was 99.8%,
The amount of permeated water was 0.77 (m 3 / m 2 / day), and no change in performance was observed.

【0043】[実施例3]実施例2において多孔性支持
膜を圧密化しなかった以外は同様の方法で逆浸透膜を形
成させた。膜性能は3.5重量%の塩化ナトリウム水溶
液を用い、圧力56kgf/cmで評価した結果、阻
止性能は99.8%、透過水量は0.78(m/m
日)であった。
Example 3 A reverse osmosis membrane was formed in the same manner as in Example 2, except that the porous support membrane was not compacted. The membrane performance was evaluated using a 3.5% by weight aqueous sodium chloride solution at a pressure of 56 kgf / cm 2. As a result, the inhibition performance was 99.8% and the permeated water amount was 0.78 (m 3 / m 2 /
Day).

【0044】得られた膜をエレメント化し、水圧100
kgf/cmにて0.5時間加圧した後、再度、圧力
56kgf/cmで評価した結果、阻止性能は99.
8%、透過水量は0.77(m/m/日)であった。
なお、電子顕微鏡にて、断面観察を行い、指状構造部の
膜厚方向の径を測定したところ0.7μmであった。こ
のエレメントを用い、海水淡水化の為に圧力90kgf
/cmにて1ケ月運転した後、エレメントを解体し、
再度圧力56kgf/cmで評価した結果、阻止性能
は99.8%、透過水量は0.75(m/m/日)であ
った。
The obtained membrane was made into an element, and the water pressure was 100
After pressurizing 0.5 hours kgf / cm 2, again, as a result of evaluating a pressure 56kgf / cm 2, rejection 99.
8%, and the amount of permeated water was 0.77 (m 3 / m 2 / day).
The cross-section was observed with an electron microscope, and the diameter of the finger-like structure in the film thickness direction was measured to be 0.7 μm. Using this element, pressure of 90kgf for desalination of seawater
After operating for one month at / cm 2 , the element is disassembled,
As a result of evaluation at a pressure of 56 kgf / cm 2 again, the blocking performance was 99.8%, and the amount of permeated water was 0.75 (m 3 / m 2 / day).

【0045】更に、該逆浸透膜のスキン層部分を次亜塩
素酸ナトリウム水溶液(1%)を用いて除去した多孔性
支持膜の純水透過水量を1.0kgf/cm、温度 2
5℃にて評価したところは5(m/m/日)であり支
持膜の圧密化に起因した透過水量の低下が抑制されてい
ることが確認された。
Further, the skin layer portion of the reverse osmosis membrane was removed using an aqueous solution of sodium hypochlorite (1%), and the amount of pure water permeated through the porous support membrane was 1.0 kgf / cm 2 and the temperature was 2
The evaluation at 5 ° C. was 5 (m 3 / m 2 / day), and it was confirmed that the decrease in the amount of permeated water due to the compaction of the support membrane was suppressed.

【0046】[0046]

【発明の効果】本発明の複合逆浸透膜は高圧(例えば7
0kgf/cm以上)で使用する場合にも耐圧性(複
合逆浸透膜の透過水量の低下の抑制)を有し、安定した
透過水量が得られる。かかる複合逆浸透膜は高濃度の原
液、例えばかん水、海水、濃縮海水の処理に適し安定し
た運転ができる。
The composite reverse osmosis membrane of the present invention has a high pressure (for example, 7
(0 kgf / cm 2 or more), it has pressure resistance (suppression of a decrease in the amount of permeated water of the composite reverse osmosis membrane), and a stable amount of permeated water can be obtained. Such a composite reverse osmosis membrane is suitable for treating a high-concentration stock solution, for example, brackish water, seawater, or concentrated seawater, and can be operated stably.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 蜂須賀 久雄 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 Fターム(参考) 4D006 GA03 HA41 KE03R KE06R KE30R MA07 MA09 MA10 MA22 MA31 MB06 MB18 MC54X MC62 MC63 NA46 NA49 NA54 NA65 PB03  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hisao Hachisuka 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation F-term (reference) 4D006 GA03 HA41 KE03R KE06R KE30R MA07 MA09 MA10 MA22 MA31 MB06 MB18 MC54X MC62 MC63 NA46 NA49 NA54 NA65 PB03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧密化された多孔性支持体及びこれに支
持された薄膜からなる複合逆浸透膜。
1. A composite reverse osmosis membrane comprising a consolidated porous support and a thin film supported thereon.
【請求項2】 圧密化が2kgf/cm以上の圧力で
なされた請求項1の複合逆浸透膜。
2. The composite reverse osmosis membrane according to claim 1, wherein the consolidation is performed at a pressure of 2 kgf / cm 2 or more.
【請求項3】 圧密化による多孔性支持体の厚みの減少
が5μm以上である請求項1の複合逆浸透膜。
3. The composite reverse osmosis membrane according to claim 1, wherein the reduction in thickness of the porous support due to the consolidation is 5 μm or more.
【請求項4】 圧密化された多孔性支持体の純水透過水
量が測定圧力1kgf/cm、測定温度25℃にて1
m/m/日以上である請求項1の複合逆浸透膜。
4. The consolidated porous support having a pure water permeated water amount of 1 kgf / cm 2 at a measurement pressure of 1 ° C. at a measurement temperature of 25 ° C.
The composite reverse osmosis membrane according to claim 1, which is at least m 3 / m 2 / day.
【請求項5】 圧密化された多孔性支持体の断面指状構
造部の膜厚方向の径が1μm以下である請求項1の複合
逆浸透膜。
5. The composite reverse osmosis membrane according to claim 1, wherein the diameter in the thickness direction of the finger-shaped cross section of the consolidated porous support is 1 μm or less.
【請求項6】 圧密化された多孔性支持体を準備し、そ
の上に逆浸透膜の活性薄膜を形成させることを特徴とす
る複合逆浸透膜の製造方法。
6. A method for producing a composite reverse osmosis membrane, comprising preparing a compacted porous support, and forming an active thin film of a reverse osmosis membrane thereon.
【請求項7】 複合逆浸透膜をスパイラル状にエレメン
ト化した後、液体を媒体として圧密化処理を行うことを
特徴とする処理方法。
7. A method for treating a composite reverse osmosis membrane, comprising forming the composite reverse osmosis membrane into a spiral element and performing a compaction treatment using a liquid as a medium.
JP9846699A 1999-04-06 1999-04-06 Composite reverse osmosis membrane Pending JP2000288368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9846699A JP2000288368A (en) 1999-04-06 1999-04-06 Composite reverse osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9846699A JP2000288368A (en) 1999-04-06 1999-04-06 Composite reverse osmosis membrane

Publications (1)

Publication Number Publication Date
JP2000288368A true JP2000288368A (en) 2000-10-17

Family

ID=14220465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9846699A Pending JP2000288368A (en) 1999-04-06 1999-04-06 Composite reverse osmosis membrane

Country Status (1)

Country Link
JP (1) JP2000288368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524520A (en) * 2002-05-02 2005-08-18 シティ、オブ、ロング、ビーチ Two-stage nanofiltration seawater desalination system
WO2014133101A1 (en) * 2013-02-28 2014-09-04 東レ株式会社 Method for producing desalinated water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524520A (en) * 2002-05-02 2005-08-18 シティ、オブ、ロング、ビーチ Two-stage nanofiltration seawater desalination system
JP4808399B2 (en) * 2002-05-02 2011-11-02 シティ、オブ、ロング、ビーチ Two-stage nanofiltration seawater desalination system
WO2014133101A1 (en) * 2013-02-28 2014-09-04 東レ株式会社 Method for producing desalinated water
JPWO2014133101A1 (en) * 2013-02-28 2017-02-02 東レ株式会社 Demineralized water production method

Similar Documents

Publication Publication Date Title
JP4656502B2 (en) Composite semipermeable membrane and method for producing the same
JP4656503B2 (en) Composite semipermeable membrane and method for producing the same
US20080277334A1 (en) Process for Producing Semipermeable Composite Membrane
KR101716007B1 (en) Polyamide watertreatment membranes of drying type having properies of high performance and manufacturing method thereof
Cho et al. Tailoring the porous structure of hollow fiber membranes for osmotic power generation applications via thermally assisted nonsolvent induced phase separation
JP4057217B2 (en) Method for producing solvent-resistant microporous polybenzimidazole thin film
JP2010082573A (en) Porous film and method for manufacturing the same
KR102113397B1 (en) Reverse osmosis membrane for osmotic backwashing process and method of manufacturing the same
JP3681219B2 (en) Polysulfone porous separation membrane
KR102302236B1 (en) Hollow fiber type Forward Osmosis filtration membrane and the manufacturing method thereby
WO2019240254A1 (en) Hydrophilic porous membrane, and method for producing hydrophilic porous membrane
JP2000288368A (en) Composite reverse osmosis membrane
JP2000153137A (en) Composite reverse osmosis membrane
JP2002126479A (en) Porous membrane, gas separating membrane and method of manufacturing for the same
JP2002095941A (en) Composite reverse osmosis membrane
JP7177016B2 (en) Porous membranes and filter cartridges
KR102230992B1 (en) Water treatment membrane and method for preparing thereof
KR101716045B1 (en) Manufacturing method for polyamide watertreatment membranes having properies of high flux and water-treatment membranes manufactured by using the same
JP2011194272A (en) Polysulfone film and composite membrane
JP2000084379A (en) Porous separation membrane and composite reverse osmosis membrane using the same
KR20150087579A (en) Manufacturing method for polyamide-based reverse osmosis membrane
JPS5857963B2 (en) Manufacturing method of composite permeable membrane
KR100418859B1 (en) Composition for producing polyethersulfone membrane and method for preparing microfilteration membrane using the same
WO2023276483A1 (en) Forward osmosis membrane and forward osmosis membrane module including same
KR102524361B1 (en) Method of manufacturing membrane, membrane and water treatment module