JP2011194272A - Polysulfone film and composite membrane - Google Patents

Polysulfone film and composite membrane Download PDF

Info

Publication number
JP2011194272A
JP2011194272A JP2010060297A JP2010060297A JP2011194272A JP 2011194272 A JP2011194272 A JP 2011194272A JP 2010060297 A JP2010060297 A JP 2010060297A JP 2010060297 A JP2010060297 A JP 2010060297A JP 2011194272 A JP2011194272 A JP 2011194272A
Authority
JP
Japan
Prior art keywords
membrane
polysulfone
layer
separation
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010060297A
Other languages
Japanese (ja)
Inventor
Masakazu Koiwa
雅和 小岩
Shuji Furuno
修治 古野
Yoshiki Okamoto
宜記 岡本
Katsufumi One
勝文 大音
Haruki Shimura
晴季 志村
Yoshie Marutani
由恵 丸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010060297A priority Critical patent/JP2011194272A/en
Publication of JP2011194272A publication Critical patent/JP2011194272A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite reverse osmosis membrane which is made to have both of high water permeability and high solute removal properties without carrying out a modification step after the composite reverse osmosis membrane is made.SOLUTION: A polysulfone film is characterized in that a layer (A layer) having the depth of 1 μm from the surface has ≤200 nm average pore diameter, 40-75% average porosity and the diffused amount of meta-phenylenediamine of 1×10to 2×10mol/m.

Description

本発明は、液体混合物の選択的な分離に有用なポリスルホン膜、およびポリスルホン膜からなる複合膜に関するものである。   The present invention relates to a polysulfone membrane useful for selective separation of a liquid mixture and a composite membrane comprising a polysulfone membrane.

複合半透膜として、微多孔性支持膜上に実質的に選択分離性を有する分離機能膜を形成してなる複合逆浸透膜や複合ナノろ過膜が知られている。複合膜では分離機能膜と微多孔性支持膜の各々に最適な素材を選択することが可能であり、製膜技術も種々の方法を選択できる。微多孔性支持膜の素材としてポリスルホン、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン等が挙げられるが、これらの素材の中で化学的、機械的、熱的に安定性が高く、成型が容易なポリスルホンが一般的に使用されている。   Known composite semipermeable membranes include composite reverse osmosis membranes and composite nanofiltration membranes in which a separation functional membrane having substantially selective separation properties is formed on a microporous support membrane. In the composite membrane, it is possible to select an optimal material for each of the separation functional membrane and the microporous support membrane, and various methods can be selected for the membrane production technique. Examples of the material for the microporous support membrane include polysulfone, polyphenylene sulfide sulfone, and polyphenylene sulfone. Among these materials, polysulfone that has high chemical, mechanical, and thermal stability and is easy to mold is common. Is used.

複合半透膜を用いて分離を行う際は、供給液の浸透圧と透過液の浸透圧の差以上の圧力を供給液側にかけることが必要であり、特に供給液の濃度が高く、浸透圧が高い場合には高い圧力を操作圧力として必要とする。一般的に、海水淡水化では60から65atm程度の圧力をかけて運転されるが、この場合膜表面に強い圧力がかかるため、運転中に膜が圧密化し、微多孔性支持膜のボイドがつぶれたり、分離機能膜がさらに緻密化したりして膜形態、膜性能が変化してしまう。   When separation is performed using a composite semipermeable membrane, it is necessary to apply a pressure higher than the difference between the osmotic pressure of the supply liquid and the osmotic pressure of the permeate to the supply liquid side. When the pressure is high, a high pressure is required as the operation pressure. In general, seawater desalination is operated at a pressure of about 60 to 65 atm. In this case, since a strong pressure is applied to the membrane surface, the membrane is consolidated during operation, and voids in the microporous support membrane are crushed. Or the separation functional membrane is further densified to change the membrane form and membrane performance.

このような中、複合半透膜の微多孔性支持膜に用いるポリスルホン膜として、高圧運転時においても水透過性能、脱塩性能の変化が小さい耐圧性ポリスルホン支持膜が提案されている(特許文献1)。この耐圧性ポリスルホン支持膜は、膜中の空隙率と空孔径を制御することで得られるが、該支持膜から作製された複合半透膜の水透過性能、脱塩性能は従来と同等であり、従来以上に膜性能を向上させる耐圧性ポリスルホン膜は現在までのところ知られていない。   Under such circumstances, as a polysulfone membrane used for the microporous support membrane of the composite semipermeable membrane, a pressure-resistant polysulfone support membrane is proposed in which the change in water permeation performance and desalting performance is small even during high-pressure operation (Patent Literature). 1). This pressure-resistant polysulfone support membrane can be obtained by controlling the porosity and pore diameter in the membrane, but the water permeability and desalination performance of the composite semipermeable membrane made from the support membrane is the same as before. No pressure-resistant polysulfone membrane that improves the membrane performance more than before has been known so far.

複合半透膜としては、微多孔性支持膜上にゲル層とポリマーを架橋した活性層を有するものと、微多孔性支持膜上でモノマーを重縮合した活性層を有するものとの2種類がある。なかでも、多官能アミンと多官能酸ハロゲン化物との重縮合反応によって得られる架橋ポリアミドからなる分離機能膜を微多孔性支持膜上に被覆して得られる複合半透膜は、透過性や選択分離性の高い分離膜として広く用いられている。上記複合半透膜は、高い脱塩性能及び水透過性能を有するが、高い脱塩性能を維持したまま更に水透過性を向上させることが、運転コストや設備コストの低減や効率面などの点から望まれている。   There are two types of composite semipermeable membranes: those having an active layer obtained by crosslinking a gel layer and a polymer on a microporous support membrane, and those having an active layer obtained by polycondensing monomers on a microporous support membrane. is there. Among these, composite semipermeable membranes obtained by coating a separation function membrane made of a crosslinked polyamide obtained by polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide on a microporous support membrane are permeable and selective. It is widely used as a separation membrane with high separability. The composite semipermeable membrane has high desalting performance and water permeation performance, but further improving water permeability while maintaining high desalting performance can reduce operating costs, equipment costs, and efficiency. It is desired from.

これらの要求に対し、各種添加剤(特許文献2)が提案され、性能は改善されているものの、未だ不十分である。また、分離機能膜として架橋ポリアミド重合体を設けた複合半透膜について(i)塩素を含む水溶液に接触処理させる方法(特許文献3)、(ii)亜硝酸を含む水溶液に接触処理させる方法(特許文献4)が知られている。上記(i)(ii)のような処理方法を用いることで透水性能の向上を図れるが、経済面・地球環境等の観点から考えると未だ不十分で、高い脱塩性能を維持したまま更なる水透過性の向上が望まれている。さらに、これらの方法では、製膜に必要な薬剤の量が増大し、経済的な負担や廃液処理への負荷が増加するなどの問題があった。   In response to these requirements, various additives (Patent Document 2) have been proposed and improved in performance, but are still insufficient. Further, (i) a method of contact treatment with an aqueous solution containing chlorine (Patent Document 3) and (ii) a method of contact treatment with an aqueous solution containing nitrous acid for a composite semipermeable membrane provided with a crosslinked polyamide polymer as a separation functional membrane ( Patent document 4) is known. Although the water permeation performance can be improved by using the treatment method as described in (i) and (ii) above, it is still insufficient from the viewpoint of economic aspect and global environment, and further while maintaining high desalination performance. Improvement of water permeability is desired. Furthermore, these methods have problems such as an increase in the amount of chemicals required for film formation and an increase in economic burden and burden on waste liquid treatment.

特開平8−168658号公報JP-A-8-168658 特開昭63−12310号公報JP 63-12310 A 特開2005−246207号公報JP 2005-246207 A 特開2005−186059号公報JP 2005-186059 A

本発明の目的は、経済的な負担や廃液処理への負荷を軽減しつつ、高い塩阻止率を維持し、高い水透過性能を併せ有する複合半透膜を提供することにある。   An object of the present invention is to provide a composite semipermeable membrane that maintains a high salt rejection and reduces water load while reducing economic burden and waste liquid treatment.

上記目的を達成するための本発明は、次の(1)〜(2)の構成を特徴とするものである。
(1)表面から深さ1μmの層(A層)の平均細孔径が200nm以下であって、平均空隙率が40〜75%であり、かつメタフェニレンジアミン拡散量が1×10−3 mol/m以上2×10−3 mol/m以下であることを特徴とするポリスルホン膜。
(2)(1)に記載のポリスルホン膜上に分離機能膜が設けられていることを特徴とする複合膜。
The present invention for achieving the above object is characterized by the following configurations (1) to (2).
(1) The average pore diameter of the layer (A layer) having a depth of 1 μm from the surface is 200 nm or less, the average porosity is 40 to 75%, and the metaphenylenediamine diffusion amount is 1 × 10 −3 mol / m 2 or more and 2 × 10 −3 mol / m 2 or less.
(2) A composite membrane, wherein a separation functional membrane is provided on the polysulfone membrane according to (1).

本発明によれば、製膜後の改質処理工程を用いることなく高い水透過性と高い溶質除去性を併せ持つ複合半透膜を得ることができる。また、新たな薬剤の添加を必要としないため、経済的な負担や廃液処理の負荷を少なくし、より簡便に安全な方法によって達成することができる。   According to the present invention, a composite semipermeable membrane having both high water permeability and high solute removability can be obtained without using a modification treatment step after film formation. In addition, since it is not necessary to add a new chemical agent, it is possible to reduce the economic burden and the waste liquid treatment load, and to achieve this by a simpler and safer method.

複合逆浸透膜の一例を示す部分断面図である。It is a fragmentary sectional view showing an example of a composite reverse osmosis membrane. メタフェニレンジアミン拡散量測定方法を示す概略図である。It is the schematic which shows the metaphenylenediamine diffusion amount measuring method.

本発明でいうポリスルホン膜の平均空隙率は次のようにして測定された値のことをいう。図1で示した複合膜において、例えばピンセットを用いて基材から機械的に分離したポリスルホン膜に対して、水銀圧入法により細孔径を測定する。水銀圧入法では、前記ポリスルホン膜の連通孔に水銀が圧入されるように水銀に圧力pをかけ、圧力の増分dpに対するセル内の水銀の体積変化dVを測定することによって、次式から、細孔分布関数F(r)を求める。   The average porosity of the polysulfone membrane referred to in the present invention is a value measured as follows. In the composite membrane shown in FIG. 1, for example, the pore diameter is measured by a mercury intrusion method with respect to a polysulfone membrane mechanically separated from the substrate using tweezers. In the mercury intrusion method, a pressure p is applied to mercury so that mercury is intruded into the communication hole of the polysulfone membrane, and the volume change dV of mercury in the cell with respect to the pressure increment dp is measured. The pore distribution function F (r) is obtained.

Figure 2011194272
Figure 2011194272

(ここで、rは細孔半径,σは水銀の表面張力(0.480N/m),θは接触角(140°)を表す。)平均孔径は、次式によって求めることができる。 (Where r is the pore radius, σ is the surface tension of mercury (0.480 N / m), and θ is the contact angle (140 °).) The average pore diameter can be determined by the following equation.

Figure 2011194272
Figure 2011194272

一方、平均空隙率は、水銀圧入法によりポリスルホン膜について、連通孔に水銀が圧入される前の嵩密度Daを求め、次式によって求める。
Da=(m0−m1)/ρ …(3)
(ここで、m0は空の測定セル内に水銀を満たしたときの水銀の重量,m1は試料をセル内に入れ、水銀をセル内に導入したときの水銀の重量,ρは水銀の密度を表す。)
更に水銀が圧入されて連通孔が完全に水銀で置換される前と後の体積変化V1から、真密度Dtを次式によって求め、
Dt=W/(W/Da−V1) …(4)
(ここで、Wは試料重量を表す。)
平均空隙率は
平均空隙率=(Dt−Da)×100/Dt …(5)
をもって算出された値とする。
On the other hand, the average porosity is obtained from the following equation by determining the bulk density Da before mercury is press-fitted into the communication hole for the polysulfone membrane by the mercury intrusion method.
Da = (m0−m1) / ρ (3)
(Where m0 is the weight of mercury when the empty measurement cell is filled with mercury, m1 is the weight of mercury when the sample is placed in the cell and mercury is introduced into the cell, and ρ is the mercury density. To express.)
Further, from the volume change V1 before and after the communication hole is completely replaced with mercury by injecting mercury, the true density Dt is obtained by the following equation:
Dt = W / (W / Da-V1) (4)
(W represents the sample weight.)
The average porosity is: average porosity = (Dt−Da) × 100 / Dt (5)
Is the calculated value.

上記したパラメータ特性で特徴づけられる本発明のポリスルホン膜において、平均細孔径が同じ程度であると仮定した場合、平均空隙率が小さい場合ほど膜の骨格部分の占有割合は大きく膜自体の強度も大きいので、ポリスルホン膜を支持膜とする複合膜を海水淡水化に用いる際、運転圧力が高くなっても支持膜の圧密化は起こりにくい。しかし他方では、透過水の透過抵抗は高くなり、透水性能の低下が引き起こされる。このようなことから、平均空隙率の下限値は40%に設定される。一方、平均空隙率が大きくなるほど透過水に対する透過抵抗は小さくなって透水性能は向上する。しかしながら、膜の骨格部分の占有割合は少なく、その強度は低くなるので、運転圧力が高くなると圧密化を起こしやすい。このようなことから、平均空隙率の上限値は75%に設定される。   In the polysulfone membrane of the present invention characterized by the above-mentioned parameter characteristics, when the average pore diameter is assumed to be approximately the same, the smaller the average porosity, the larger the occupation ratio of the skeleton portion of the membrane and the greater the strength of the membrane itself Therefore, when a composite membrane having a polysulfone membrane as a supporting membrane is used for seawater desalination, consolidation of the supporting membrane hardly occurs even when the operating pressure increases. However, on the other hand, the permeation resistance of the permeated water is increased, causing a decrease in water permeation performance. For this reason, the lower limit value of the average porosity is set to 40%. On the other hand, as the average porosity increases, the permeation resistance with respect to the permeate decreases and the water permeation performance is improved. However, since the occupying ratio of the skeleton portion of the membrane is small and the strength thereof is low, consolidation tends to occur when the operating pressure is high. For this reason, the upper limit value of the average porosity is set to 75%.

本発明において、細孔とは中に存在する空孔(ボイド)およびポリマーの粒子状物あるいは円柱状物の隙間のことであり、細孔径および平均細孔径は以下に述べる方法により求めることができる。まず、凍結割断法で切断して走査型電子顕微鏡(SEM)用の断面観察サンプルとし、次に得られたサンプルの断面写真をSEMを用いて撮影する。観察倍率は、1,000〜50,000倍程度が好ましい。特に、細孔径と層の厚みを測定する場合には5,000〜20,000倍が好ましい。最後に、撮影した断面写真を画像解析ソフトに読み込み、解析を行うことで、細孔径および平均細孔径を求める。上記の方法で求めた本発明ポリスルホン膜のA層の平均細孔径は200nm以下であり、より好ましくは150nm以下である。   In the present invention, the term “pore” refers to a void (void) present in the inside and a gap between the polymer particulate matter or columnar matter, and the pore diameter and average pore diameter can be determined by the method described below. . First, it cut | disconnects by the freezing cleaving method and it is set as the cross-sectional observation sample for scanning electron microscopes (SEM), and the cross-sectional photograph of the obtained sample is image | photographed using SEM. The observation magnification is preferably about 1,000 to 50,000 times. In particular, when the pore diameter and the layer thickness are measured, 5,000 to 20,000 times is preferable. Finally, the photographed cross-sectional photograph is read into image analysis software and analyzed to obtain the pore diameter and average pore diameter. The average pore diameter of the A layer of the polysulfone membrane of the present invention obtained by the above method is 200 nm or less, more preferably 150 nm or less.

本発明のポリスルホン膜は非対称膜であることが好ましい。非対称構造とは片面に緻密な細孔を持ち、もう一方の面まで細孔が徐々に大きくなっていく構造であり、細孔径が片面からもう一方の面まで連続的に変化していることが好ましい。非対称なポリスルホン膜の場合、A層は緻密な細孔を有する側の層を表す。   The polysulfone membrane of the present invention is preferably an asymmetric membrane. An asymmetric structure is a structure that has fine pores on one side and the pores gradually increase from the other side, and the pore diameter continuously changes from one side to the other. preferable. In the case of an asymmetric polysulfone membrane, the A layer represents a layer on the side having dense pores.

本発明におけるポリスルホン膜の粒子状物あるいは円柱状物の平均径は5〜80nm、好ましくは10〜70nm、さらに好ましくは15〜50nmである。平均径が小さすぎると分離膜の透過性が小さくなり好ましくない。また、平均径が大きすぎると膜表面に凹凸ができやすくなり好ましくない。   In the present invention, the average particle diameter of the polysulfone membrane particulate or columnar is 5 to 80 nm, preferably 10 to 70 nm, and more preferably 15 to 50 nm. If the average diameter is too small, the permeability of the separation membrane decreases, which is not preferable. On the other hand, if the average diameter is too large, the film surface tends to be uneven, which is not preferable.

本発明におけるポリスルホン膜は通常ポリエステルまたは芳香族ポリアミドから選ばれる少なくとも一種を主成分とする布帛(基材)により強化され、ポリスルホン支持膜として用いられる。   The polysulfone membrane in the present invention is usually reinforced with a fabric (base material) mainly composed of at least one selected from polyester or aromatic polyamide, and used as a polysulfone support membrane.

本発明におけるポリスルホン層の厚みは10μm〜5mmであり、膜強度の面から10μm以上、扱い易さやモジュール加工のし易さの面で400μm以下が好ましい。   The thickness of the polysulfone layer in the present invention is 10 μm to 5 mm, preferably 10 μm or more from the viewpoint of membrane strength, and 400 μm or less from the viewpoint of ease of handling and module processing.

本発明におけるポリスルホン膜は、各パラメータを上記範囲に設定することにより、当該膜を支持膜とする複合逆浸透膜は、例えば海水淡水化のような高圧運転下においても圧密化を起こしにくく、かつ高い水透過性と高い溶質除去性を実現する支持膜として機能する。   In the polysulfone membrane according to the present invention, by setting each parameter in the above range, the composite reverse osmosis membrane using the membrane as a support membrane is less likely to cause consolidation even under high pressure operation such as seawater desalination, and It functions as a support membrane that achieves high water permeability and high solute removal.

本発明でいう「メタフェニレンジアミン拡散量」は以下のように測定された値のことをいう。すなわち、まずポリスルホン膜を5重量%メタフェニレンジアミン水溶液に10秒間浸漬し、表面から余分な該水溶液を取り除いた後、図2に示した装置にA層側を上にしてポリスルホン膜をセットする(図2の8)。次に該ポリスルホン膜のA層表面に25L/mの割合でイソオクタンを接触させ、イソオクタンを撹拌羽根で撹拌(回転数:100rpm)させた時の初期10秒間にA層からイソオクタンへ拡散する単位面積当たりのメタフェニレンジアミン量を拡散量(mol/m)として表す。なお、拡散実験を行う際のイソオクタン温度は25℃とし、イソオクタン中のメタフェニレンジアミン量の測定は紫外吸収可視スペクトル、クロマトグラフィー、質量分析などで求められる。 The “metaphenylenediamine diffusion amount” referred to in the present invention means a value measured as follows. That is, first, the polysulfone membrane was immersed in a 5 wt% aqueous solution of metaphenylenediamine for 10 seconds to remove excess aqueous solution from the surface, and then the polysulfone membrane was set in the apparatus shown in FIG. Fig. 2-8). Next, a unit that diffuses from layer A to isooctane in the initial 10 seconds when isooctane is brought into contact with the surface of layer A of the polysulfone membrane at a rate of 25 L / m 2 and isooctane is stirred with a stirring blade (rotation speed: 100 rpm). The amount of metaphenylenediamine per area is expressed as the diffusion amount (mol / m 2 ). In addition, the isooctane temperature at the time of performing a diffusion experiment shall be 25 degreeC, and the measurement of the amount of metaphenylenediamine in isooctane is calculated | required by an ultraviolet absorption visible spectrum, chromatography, mass spectrometry, etc.

当該拡散量を向上させることによってポリスルホン膜上に分離機能膜を設けた複合半透膜の透水性向上を図ることができる。通常、透水性と除去率はトレードオフの関係にあり、透水性が向上すると除去率の低下が懸念されるが、拡散量を向上させることで分離機能膜形成時の重縮合反応に関与するメタフェニレンジアミン量も向上し、除去率を決定する重要因子の1つである膜の緻密度を維持、または向上させることができる。それに伴い、除去率の低下を引き起こさない。しかしながら、該拡散量が大きすぎても分離機能膜の形成が上手くいかず、除去率の低下を招いたり、耐圧性に劣ったりする膜となってしまう。これらのことから、本発明におけるポリスルホン膜のメタフェニレンジアミン拡散量は1×10−3mol/m以上2×10−3mol/m以下に設定される。 By improving the diffusion amount, it is possible to improve the water permeability of the composite semipermeable membrane in which the separation functional membrane is provided on the polysulfone membrane. Normally, there is a trade-off between water permeability and removal rate. If water permeability improves, there is a concern that the removal rate will decrease. However, by increasing the diffusion amount, the metabolites involved in the polycondensation reaction during the formation of the separation functional membrane are concerned. The amount of phenylenediamine is also improved, and the density of the film, which is one of the important factors that determine the removal rate, can be maintained or improved. As a result, the removal rate is not reduced. However, even if the amount of diffusion is too large, the formation of the separation functional film is not successful, resulting in a film with a reduced removal rate or inferior pressure resistance. From these things, the metaphenylenediamine diffusion amount of the polysulfone membrane in the present invention is set to 1 × 10 −3 mol / m 2 or more and 2 × 10 −3 mol / m 2 or less.

本発明におけるポリスルホン膜は、その上に分離機能膜を有する複合膜を製造する支持膜として用いることもできる。このような支持膜は、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法を参考にして製造することができる。すなわち、所定量のポリスルホンをジメチルホルムアミド(以降、DMFと記載)に溶解し、所定濃度のポリスルホン樹脂溶液を調製する。次いで、このポリスルホン樹脂溶液をポリエステル布あるいは不織布からなる基材上に略一定の厚さに塗布した後、一定時間空気中で表面の溶媒を除去した後、凝固液中でポリスルホンを凝固させることによって得ることが出来る。この時、凝固液と接触する表面部分などは溶媒のDMFが迅速に揮散するとともにポリスルホンの凝固が急速に進行し、DMFの存在した部分を核とする微細な連通孔が生成される。   The polysulfone membrane in the present invention can also be used as a support membrane for producing a composite membrane having a separation functional membrane thereon. Such support membranes are described in “Office of Saleen Water Research and Development Progress Report” No. 359 (1968). That is, a predetermined amount of polysulfone is dissolved in dimethylformamide (hereinafter referred to as DMF) to prepare a polysulfone resin solution having a predetermined concentration. Next, this polysulfone resin solution is applied to a substrate made of polyester cloth or nonwoven fabric to a substantially constant thickness, and after removing the surface solvent in the air for a certain period of time, the polysulfone is coagulated in the coagulation liquid. Can be obtained. At this time, DMF as a solvent is rapidly volatilized on the surface portion that comes into contact with the coagulation liquid, and polysulfone coagulates rapidly, and fine communication holes having the portion where DMF is present as a core are generated.

また、上記の表面部分から基材側へ向かう内部においては、DMFの揮散とポリスルホンの凝固は表面に比べて緩慢に進行するので、DMFが凝集して大きな核を形成しやすく、したがって、生成する連通孔が大径化する。勿論、上記の核生成の条件は、膜表面からの距離によって徐々に変化するので、明確な境界のない、滑らかな孔径分布を有する支持膜が形成されることになる。本発明は、この形成工程において用いるポリスルホン樹脂溶液ポリスルホン樹脂溶液の温度やポリスルホンの濃度、塗布を行う雰囲気の相対湿度、塗布してから凝固液に浸漬するまでの時間、凝固液の温度や組成等を調節することにより平均空隙率と平均孔径を制御したポリスルホン膜を得ることができる。   Further, in the interior from the surface portion toward the base material, the volatilization of DMF and the solidification of polysulfone proceed more slowly than the surface, so that the DMF tends to aggregate and form large nuclei, and thus generate. The communication hole becomes larger in diameter. Of course, the above nucleation conditions gradually change depending on the distance from the film surface, so that a support film having a smooth pore size distribution without a clear boundary is formed. The present invention relates to the polysulfone resin solution used in this forming step, the temperature of the polysulfone resin solution, the concentration of polysulfone, the relative humidity of the atmosphere in which it is applied, the time from application to immersion in the coagulation liquid, the temperature and composition of the coagulation liquid, etc. By adjusting the ratio, it is possible to obtain a polysulfone membrane in which the average porosity and the average pore diameter are controlled.

具体的には、まずポリスルホン樹脂溶液の塗布において、ポリスルホン樹脂溶液の温度と高分子材料の濃度、塗布を行う雰囲気の相対湿度および凝固液に浸漬するまでの時間の制御が重要である。温度は、20〜30℃の範囲内にあるポリスルホン樹脂溶液を塗布するとよい。この温度が20℃を下回ると、樹脂と溶媒との相分離が充分に進行しないうちに凝固が始まるため、生成する連通孔の孔径が小さくなりやすい。また、30℃を超えると、相分離が進行して連通孔となる溶媒相が大きく成長し、連通孔が大きくなる傾向にあり、平均孔径の変化が所定の範囲内にある支持膜が得にくくなる。   Specifically, first, in the application of the polysulfone resin solution, it is important to control the temperature of the polysulfone resin solution, the concentration of the polymer material, the relative humidity of the atmosphere in which the application is performed, and the time until dipping in the coagulation liquid. The temperature is good to apply | coat the polysulfone resin solution which exists in the range of 20-30 degreeC. When this temperature is lower than 20 ° C., solidification starts before the phase separation between the resin and the solvent is sufficiently advanced, so that the pore diameter of the generated communication holes tends to be small. Further, when the temperature exceeds 30 ° C., the phase separation proceeds and the solvent phase that becomes communication holes grows large, and the communication holes tend to increase, and it is difficult to obtain a support membrane in which the change in average pore diameter is within a predetermined range. Become.

樹脂濃度については、12〜20重量%の範囲内にあるポリスルホン樹脂溶液を用いることが好ましい。12重量%を下回ると連通孔の孔径が大きくなる傾向があり、また、20重量%を超えると連通孔の孔径が小さくなる傾向があり、いずれにしても、平均孔径の変化が所定の範囲内にある支持膜を得にくくなる。   Regarding the resin concentration, it is preferable to use a polysulfone resin solution in the range of 12 to 20% by weight. If the amount is less than 12% by weight, the hole diameter of the communication hole tends to increase, and if the amount exceeds 20% by weight, the hole diameter of the communication hole tends to decrease. In any case, the change in the average hole diameter is within a predetermined range. It is difficult to obtain a support membrane in

さらに、上記のポリスルホン樹脂溶液を塗布する際の雰囲気の相対湿度を40〜70%の範囲内に制御しておくとよい。これは、相対湿度が70%を超えると、雰囲気に接する表面側のポリスルホン樹脂溶液の凝固が急速に進行し平均孔径が小さくなる傾向があり、また40%を下回ると、表面側のポリスルホン樹脂溶液の凝固の進行が遅れ、膜厚方向における凝固の進行が一様となりやすく、いずれにしても、平均孔径分布が所定の範囲内にある支持膜を得にくくなる。   Furthermore, it is good to control the relative humidity of the atmosphere at the time of apply | coating said polysulfone resin solution in the range of 40 to 70%. This is because when the relative humidity exceeds 70%, solidification of the polysulfone resin solution on the surface side in contact with the atmosphere proceeds rapidly and the average pore size tends to decrease, and when the relative humidity is less than 40%, the polysulfone resin solution on the surface side The progress of solidification is delayed, and the progress of solidification in the film thickness direction is likely to be uniform. In any case, it is difficult to obtain a support film having an average pore size distribution within a predetermined range.

ポリスルホン樹脂溶液を基材に塗布後、凝固液に浸漬するまでの時間は、1〜10秒間となるように制御することが好ましい。これも支持膜の平均空隙率や平均孔径に影響を与えるため、この時間が1秒間を下回ると、ポリスルホンと有機溶媒との相分離が充分に進まないうちに凝固が始まるため、平均孔径が小さくなりやすく、また、10秒間を超えると相分離が進んで、後に連通孔となる溶媒相が大きく成長し、平均孔径が大きくなりすぎるため、いずれにしても、平均孔径の変化率が所定の範囲内にある支持膜を得にくくなる。   It is preferable to control the time until the polysulfone resin solution is immersed in the coagulation liquid after being applied to the base material to be 1 to 10 seconds. Since this also affects the average porosity and average pore diameter of the support membrane, if this time is less than 1 second, solidification starts before the phase separation between the polysulfone and the organic solvent proceeds sufficiently, so the average pore diameter is small. In addition, the phase separation proceeds after 10 seconds, and the solvent phase that becomes the communication hole later grows large and the average pore diameter becomes too large. It becomes difficult to obtain the support film inside.

また、凝固液としては純水、もしくは純水と有機溶媒からなる混合溶液を凝固液を用いることで達成できる。有機溶媒としてはテトラヒドロフラン、1,4−ジオキサン、アセトニトリル、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、2−ピロリドン、DMF、ホルムアミド、ジメチルスルホキシド等が例示されるように、水に対して10重量%以上溶解し、かつポリスルホンを10重量%以上溶解する良溶媒が好ましい。有機溶媒の含有量としては15〜45重量%が好ましく、より好ましくは20〜35重量%である。   Further, as the coagulation liquid, pure water or a mixed solution composed of pure water and an organic solvent can be used by using the coagulation liquid. Examples of organic solvents include tetrahydrofuran, 1,4-dioxane, acetonitrile, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 2-pyrrolidone, DMF, formamide, dimethyl sulfoxide, and the like. A good solvent that dissolves 10% by weight or more and dissolves polysulfone by 10% by weight or more is preferable. As content of an organic solvent, 15 to 45 weight% is preferable, More preferably, it is 20 to 35 weight%.

ポリスルホンとしては、化学的、機械的、熱的に安定性の高く、さらに孔径が制御しやすく、寸法安定性の高い、次の化学式に示す繰返し単位からなるポリスルホンを用いるのが好ましい。   As the polysulfone, it is preferable to use a polysulfone composed of a repeating unit represented by the following chemical formula, which has high chemical, mechanical and thermal stability, can easily control the pore size, and has high dimensional stability.

Figure 2011194272
Figure 2011194272

上記のようにしてこのポリスルホン支持膜を形成した後、分離機能膜を被覆して複合膜を製造する。本発明において、分離機能膜とは分離膜において実質的に分離機能を有するごく薄い層のことで、分離機能層、活性層、超薄膜、超薄膜層と呼ぶこともある。分離機能膜の素材としては架橋あるいは線状の有機物のポリマーを使用することができる。分離膜が高い分離性能を発現するためには、ポリマーはポリアミド、ポリウレタン、ポリエーテル、ポリエステル、セルロースエステル、ポリイミド、ポリアミック酸、ビニルポリマーが好ましく、さらに好ましくはポリアミド、特に芳香族ポリアミドが好ましい。また、さらに分離膜全体の耐圧性を高くし、70atm以上の圧力でも高い排除率をさらに維持するためには、これらのポリマーが架橋ポリマーであることが好ましい。特に、架橋芳香族ポリアミドおよびその共重合体が好ましい。   After forming the polysulfone support membrane as described above, a composite membrane is produced by coating the separation functional membrane. In the present invention, the separation functional membrane is a very thin layer having a separation function substantially in the separation membrane, and may be called a separation functional layer, an active layer, an ultra thin film, or an ultra thin film layer. As a material for the separation functional membrane, a crosslinked or linear organic polymer can be used. In order for the separation membrane to exhibit high separation performance, the polymer is preferably a polyamide, polyurethane, polyether, polyester, cellulose ester, polyimide, polyamic acid, or vinyl polymer, more preferably a polyamide, particularly an aromatic polyamide. Further, in order to further increase the pressure resistance of the entire separation membrane and further maintain a high rejection rate even at a pressure of 70 atm or higher, these polymers are preferably crosslinked polymers. In particular, crosslinked aromatic polyamides and copolymers thereof are preferred.

「分離膜」とは限外濾過膜や逆浸透膜等の分離機能を有する膜のことであり、微細孔層を有する膜、あるいはそれを微多孔性支持膜として用いた複合膜のことを示すものとする。特に、海水淡水化用途などで逆浸透法に用いる分離膜は、微多孔性支持膜表面に異なる素材で実質的に分離性能を司る分離機能膜を被覆した複合膜とすることが好ましい。この時、分離機能膜は緻密層表面に形成されることが好ましく、緻密層表面の平均細孔径は100nm以下であることが好ましい。   “Separation membrane” refers to a membrane having a separation function such as an ultrafiltration membrane or a reverse osmosis membrane, and indicates a membrane having a microporous layer or a composite membrane using the membrane as a microporous support membrane. Shall. In particular, the separation membrane used in the reverse osmosis method for seawater desalination is preferably a composite membrane in which the surface of the microporous support membrane is coated with a separation functional membrane that substantially controls separation performance with different materials. At this time, the separation functional membrane is preferably formed on the dense layer surface, and the average pore diameter of the dense layer surface is preferably 100 nm or less.

本発明の複合膜における分離機能膜の厚みは1〜1,000nmであり、好ましくは5〜800nm、さらに好ましくは10〜500nmである。分離機能膜の厚みが小さすぎると製膜時の欠点の発生が多くなったり取り扱い時に傷つきやすくなったりし、圧力をかけた際にも欠点が発生したりして排除率の低下を招く。また分離機能膜の厚みが大きすぎると透過速度係数が極端に低下して充分な透過量が得られない。   The thickness of the separation functional membrane in the composite membrane of the present invention is 1 to 1,000 nm, preferably 5 to 800 nm, more preferably 10 to 500 nm. If the thickness of the separation functional membrane is too small, the occurrence of defects during film formation increases or the film is easily damaged during handling, and defects are also generated when pressure is applied, leading to a reduction in the rejection rate. On the other hand, if the thickness of the separation functional membrane is too large, the permeation rate coefficient is extremely lowered and a sufficient amount of permeation cannot be obtained.

本発明における分離機能膜の被覆はポリマーをコーティングする方法、コーティングしたポリマーをさらに架橋する方法、モノマーを微多孔性支持膜の膜面で重合する方法、あるいは微多孔性支持膜の膜面で界面重縮合する方法で行なうことができる。特に界面反応
法は薄く均一な分離機能膜が得られ、好ましい。
In the present invention, the separation functional membrane is coated by a method of coating a polymer, a method of further crosslinking the coated polymer, a method of polymerizing monomers on the membrane surface of the microporous support membrane, or an interface on the membrane surface of the microporous support membrane. It can be carried out by a polycondensation method. In particular, the interfacial reaction method is preferable because a thin and uniform separation functional membrane can be obtained.

分離膜の形態は平膜でも、中空糸でも構わない。平膜の場合、分離膜は、布、不織布、紙などで裏打ちされていても良い。また、得られた分離膜が平膜の場合は、スパイラル、チューブラー、プレート・アンド・フレームのモジュールに組み込み、また中空糸の場合は束ねた上でモジュールに組み込んで使用することができるが、本発明はこれらの膜の使用形態に左右されるものではない。   The form of the separation membrane may be a flat membrane or a hollow fiber. In the case of a flat membrane, the separation membrane may be lined with cloth, nonwoven fabric, paper or the like. In addition, when the obtained separation membrane is a flat membrane, it can be incorporated into a spiral, tubular, plate and frame module, and in the case of a hollow fiber, it can be bundled and incorporated into the module. The present invention does not depend on the usage pattern of these membranes.

以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものはない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

実施例、比較例におけるメタフェニレンジアミン拡散量、平均空隙率、A層の平均細孔径は以下のように測定した。   In Examples and Comparative Examples, the amount of metaphenylenediamine diffused, the average porosity, and the average pore size of the A layer were measured as follows.

(メタフェニレンジアミン拡散量)
基材とポリスルホン層からなる支持膜を5重量%メタフェニレンジアミン水溶液に10秒間浸漬し、表面から余分な該水溶液を取り除いた後、図2に示した装置にポリスルホン層側を上にして膜をセットした。次に該ポリスルホン膜の表面に25L/mの割合でイソオクタンを接触させ、撹拌羽根でイソオクタンを10秒間撹拌(回転数:100rpm)した後のイソオクタン溶液をあらかじめ検量線を得た紫外可視分光光度計(島津製作所製 UV−2450)で測定し、294.8nmにおける吸光度からメタフェニレンジアミン拡散量を算出した。なお、拡散実験は25℃で行った。
(Metaphenylenediamine diffusion amount)
A support membrane composed of a base material and a polysulfone layer is immersed in a 5% by weight aqueous solution of metaphenylenediamine for 10 seconds to remove excess aqueous solution from the surface, and then the membrane shown in FIG. 2 is placed with the polysulfone layer side up. I set it. Next, isooctane was brought into contact with the surface of the polysulfone membrane at a rate of 25 L / m 2 , and isooctane was stirred for 10 seconds with a stirring blade (rotation speed: 100 rpm). The amount of metaphenylenediamine diffusion was calculated from the absorbance at 294.8 nm. The diffusion experiment was conducted at 25 ° C.

(平均空隙率)
基材からはがしたポリスルホン膜から約12mm×20mm角の試料片3枚を切り出し、精秤の後、重ならないように測定用セルに入れ、減圧下に水銀を注入した。次に本試料をマイクロメリテック社製ポアサイザー9320で細孔径分布を測定した。測定回数は1回とした。
(Average porosity)
Three sample pieces of about 12 mm × 20 mm square were cut out from the polysulfone membrane peeled from the substrate, and after precise weighing, put into a measuring cell so as not to overlap, and mercury was injected under reduced pressure. Next, the pore size distribution of this sample was measured with a pore sizer 9320 manufactured by Micromeritec. The number of measurements was one.

(A層の平均細孔径)
ポリスルホン膜を凍結割断法で切断して断面観察サンプルを作成し、このサンプルに白金を薄くコーティング後、高分解能電界放射型走査電子顕微鏡(日立製S−900型電子顕微鏡)を用いて3〜6kVの加速電圧で断面写真を撮影した。SEMにより撮影した断面写真を画像解析ソフトImage Proに取り込み、解析を行い、A層の平均細孔径を求めた。
(Average pore diameter of layer A)
A polysulfone membrane is cut by a freeze cleaving method to prepare a cross-sectional observation sample, and this sample is thinly coated with platinum and then 3 to 6 kV using a high resolution field emission scanning electron microscope (Hitachi S-900 electron microscope). A cross-sectional photograph was taken at an acceleration voltage of. A cross-sectional photograph taken by SEM was taken into image analysis software Image Pro and analyzed, and the average pore diameter of layer A was determined.

実施例、比較例における複合半透膜の各種特性は、複合半透膜に、温度25℃、pH6.5に調整した海水(TDS(otal issolved olids)濃度約3.5%)を操作圧力5.5MPaで供給して膜ろ過処理を24時間行ない、その後の透過水、供給水の水質を測定することにより求めた。 Example, various characteristics of the composite semipermeable membrane in the comparative example, the composite semipermeable membrane, the temperature 25 ° C., seawater was adjusted to pH6.5 with (TDS (T otal D issolved S olids) concentration of about 3.5%) Membrane filtration was carried out for 24 hours while supplying at an operating pressure of 5.5 MPa, and the water quality was determined by measuring the quality of the permeated water and the supplied water.

(TDS除去率(脱塩率))
TDS除去率(%)=100×{1−(透過水中のTDS濃度/供給水中のTDS濃度)}
(膜透過流束)
供給水(海水)の膜透過水量を、膜面1平方メートルあたり、1日あたりの透水量(立方メートル)でもって膜透過流束(m/m/日)を表した。
(実施例1)
室温(25℃)下において、ポリエステル不織布(通気度0.5〜1cc/cm/sec)上にポリスルホンの15.7重量%DMF溶液を200μmの厚みでキャストし、ただちに20重量%のDMFを含有する水溶液中に浸漬して5分間放置することによってポリスルホン支持膜(厚さ210〜215μm)を作製した。次に、該支持膜をm−PDAの5重量%水溶液中に2分間浸漬し、垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.175重量%を含む25℃のn−デカン溶液を表面が完全に濡れるように塗布して1分間静置した。次に、膜から余分な溶液を除去するために膜を1分間垂直に保持して液切りした。その後、90℃の熱水で2分間洗浄して複合半透膜を得た。このようにして得られたポリスルホン支持膜のメタフェニレンジアミンの拡散量、平均空隙率、A層の平均細孔径、そして複合半透膜の膜透過流束、TDS除去率はそれぞれ表1に示す値であった。
(実施例2)
凝固浴のDMF濃度を26%に変更した以外は実施例1と同様にしてポリスルホン支持膜を作製し、さらに実施例1と同様の方法で該支持膜から複合半透膜を作製した。このようにして得られたポリスルホン支持膜のメタフェニレンジアミンの拡散量、平均空隙率、A層の平均細孔径、そして複合半透膜の膜透過流束、TDS除去率はそれぞれ表1に示す値であった。
(実施例3)
凝固浴のDMF濃度を35%に変更した以外は実施例1と同様にしてポリスルホン支持膜を作製し、さらに実施例1と同様の方法で該支持膜から複合半透膜を作製した。このようにして得られたポリスルホン支持膜のメタフェニレンジアミンの拡散量、平均空隙率、A層の平均細孔径、そして複合半透膜の膜透過流束、TDS除去率はそれぞれ表1に示す値であった。
(実施例4)
ポリスルホン濃度を17%に変更した以外は実施例2と同様にしてポリスルホン支持膜を作製し、さらに実施例1と同様の方法で該支持膜から複合半透膜を作製した。このようにして得られたポリスルホン支持膜のメタフェニレンジアミンの拡散量、平均空隙率、A層の平均細孔径、そして複合半透膜の膜透過流束、TDS除去率はそれぞれ表1に示す値であった。
(比較例1)
凝固浴を純水に変更した以外は実施例1と同様にしてポリスルホン支持膜を作製し、さらに実施例1と同様の方法で該支持膜から複合半透膜を作製した。このようにして得られたポリスルホン支持膜のメタフェニレンジアミンの拡散量、平均空隙率、A層の平均細孔径、そして複合半透膜の膜透過流束、TDS除去率はそれぞれ表1に示す値であった。
(TDS removal rate (desalting rate))
TDS removal rate (%) = 100 × {1− (TDS concentration in permeated water / TDS concentration in feed water)}
(Membrane permeation flux)
Membrane permeation flux (m 3 / m 2 / day) was expressed in terms of the permeation amount of the feed water (seawater) per square meter of the membrane surface with the permeation amount per day (cubic meter).
Example 1
At room temperature (25 ° C.), a 15.7 wt% DMF solution of polysulfone was cast to a thickness of 200 μm on a polyester nonwoven fabric (air permeability 0.5 to 1 cc / cm 2 / sec), and immediately 20 wt% DMF was added. A polysulfone supporting membrane (thickness: 210 to 215 μm) was prepared by immersing it in the aqueous solution containing it and allowing it to stand for 5 minutes. Next, the support membrane was immersed in a 5 wt% aqueous solution of m-PDA for 2 minutes, slowly pulled up in the vertical direction, nitrogen was blown from an air nozzle to remove excess aqueous solution from the surface of the support membrane, and then trimesic acid chloride. An n-decane solution at 25 ° C. containing 0.175% by weight was applied so that the surface was completely wetted and allowed to stand for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute and drained. Then, it wash | cleaned for 2 minutes with 90 degreeC hot water, and obtained the composite semipermeable membrane. The amount of metaphenylenediamine diffused in the polysulfone support membrane thus obtained, the average porosity, the average pore diameter of the layer A, the membrane permeation flux of the composite semipermeable membrane, and the TDS removal rate are the values shown in Table 1, respectively. Met.
(Example 2)
A polysulfone support membrane was prepared in the same manner as in Example 1 except that the DMF concentration in the coagulation bath was changed to 26%, and a composite semipermeable membrane was prepared from the support membrane in the same manner as in Example 1. The amount of metaphenylenediamine diffused in the polysulfone support membrane thus obtained, the average porosity, the average pore diameter of the layer A, the membrane permeation flux of the composite semipermeable membrane, and the TDS removal rate are the values shown in Table 1, respectively. Met.
(Example 3)
A polysulfone support membrane was prepared in the same manner as in Example 1 except that the DMF concentration in the coagulation bath was changed to 35%, and a composite semipermeable membrane was prepared from the support membrane in the same manner as in Example 1. The amount of metaphenylenediamine diffused in the polysulfone support membrane thus obtained, the average porosity, the average pore diameter of the layer A, the membrane permeation flux of the composite semipermeable membrane, and the TDS removal rate are the values shown in Table 1, respectively. Met.
Example 4
A polysulfone support membrane was prepared in the same manner as in Example 2 except that the polysulfone concentration was changed to 17%, and a composite semipermeable membrane was prepared from the support membrane in the same manner as in Example 1. The amount of metaphenylenediamine diffused in the polysulfone support membrane thus obtained, the average porosity, the average pore diameter of the layer A, the membrane permeation flux of the composite semipermeable membrane, and the TDS removal rate are the values shown in Table 1, respectively. Met.
(Comparative Example 1)
A polysulfone support membrane was prepared in the same manner as in Example 1 except that the coagulation bath was changed to pure water, and a composite semipermeable membrane was prepared from the support membrane in the same manner as in Example 1. The amount of metaphenylenediamine diffused in the polysulfone support membrane thus obtained, the average porosity, the average pore diameter of the layer A, the membrane permeation flux of the composite semipermeable membrane, and the TDS removal rate are the values shown in Table 1, respectively. Met.

Figure 2011194272
Figure 2011194272

表1の結果から明らかなように、イソオクタンへのメタフェニレンジアミン拡散量が1×10−3 mol/m以上2×10−3 mol/m以下であるポリスルホン膜を支持膜に用いることで、高い塩阻止性能を維持しつつ、従来のものより透過流束が向上した複合半透膜を得ることができる。 As is apparent from the results in Table 1, by using a polysulfone membrane having a metaphenylenediamine diffusion amount to isooctane of 1 × 10 −3 mol / m 2 or more and 2 × 10 −3 mol / m 2 or less as a support membrane. Thus, it is possible to obtain a composite semipermeable membrane having a higher permeation flux than the conventional one while maintaining high salt blocking performance.

本発明のポリスルホン膜、およびポリスルホン膜からなる複合膜は海水の淡水化、かん水の脱塩、排水の処理および有価物の濃縮、回収の際に好適に用いることができる。特に高塩阻止率と高透過流束を併せ有する複合半透膜を製造する際に本発明のポリスルホン膜を分離機能膜の支持膜として用いることは有効である。   The polysulfone membrane of the present invention and the composite membrane comprising a polysulfone membrane can be suitably used for desalination of seawater, desalination of brine, wastewater treatment, concentration of valuable materials, and recovery. In particular, when producing a composite semipermeable membrane having both a high salt rejection and a high permeation flux, it is effective to use the polysulfone membrane of the present invention as a support membrane for the separation functional membrane.

1 分離機能膜
2 微多孔性支持膜(ポリスルホン膜)
3 微細孔
4 A層
5 200nm以上のボイド
6 撹拌棒
7 イソオクタン
8 メタフェニレンジアミン含浸ポリスルホン膜
9 スターラー
1 Separation function membrane 2 Microporous support membrane (polysulfone membrane)
3 Micropore 4 A layer
5 Voids of 200 nm or more 6 Stirring bar 7 Isooctane 8 Metaphenylenediamine impregnated polysulfone membrane 9 Stirrer

Claims (2)

表面から深さ1μmの層(A層)の平均細孔径が200nm以下であって、平均空隙率が40〜75%であり、かつメタフェニレンジアミン拡散量が1×10−3 mol/m以上2×10−3 mol/m以下であることを特徴とするポリスルホン膜。 The layer (A layer) having a depth of 1 μm from the surface has an average pore diameter of 200 nm or less, an average porosity of 40 to 75%, and a metaphenylenediamine diffusion amount of 1 × 10 −3 mol / m 2 or more. A polysulfone membrane, which is 2 × 10 −3 mol / m 2 or less. 請求項1に記載のポリスルホン膜上に分離機能膜が設けられていることを特徴とする複合膜。   A composite membrane, wherein a separation functional membrane is provided on the polysulfone membrane according to claim 1.
JP2010060297A 2010-03-17 2010-03-17 Polysulfone film and composite membrane Pending JP2011194272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010060297A JP2011194272A (en) 2010-03-17 2010-03-17 Polysulfone film and composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010060297A JP2011194272A (en) 2010-03-17 2010-03-17 Polysulfone film and composite membrane

Publications (1)

Publication Number Publication Date
JP2011194272A true JP2011194272A (en) 2011-10-06

Family

ID=44873155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010060297A Pending JP2011194272A (en) 2010-03-17 2010-03-17 Polysulfone film and composite membrane

Country Status (1)

Country Link
JP (1) JP2011194272A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000533A (en) * 2012-06-19 2014-01-09 Mitsui Chemicals Inc Resin composition for fine porous support membrane, fine porous support membrane using the same, and composite semipermeable membrane
WO2023276614A1 (en) 2021-06-28 2023-01-05 旭化成株式会社 Forward osmosis membrane and forward osmosis membrane module including same
WO2023276642A1 (en) 2021-06-28 2023-01-05 旭化成株式会社 Forward osmosis membrane module and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000533A (en) * 2012-06-19 2014-01-09 Mitsui Chemicals Inc Resin composition for fine porous support membrane, fine porous support membrane using the same, and composite semipermeable membrane
WO2023276614A1 (en) 2021-06-28 2023-01-05 旭化成株式会社 Forward osmosis membrane and forward osmosis membrane module including same
WO2023276642A1 (en) 2021-06-28 2023-01-05 旭化成株式会社 Forward osmosis membrane module and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US10974206B2 (en) Composite semipermeable membrane
EP2805761B1 (en) Composite semipermeable membrane and method for manufacturing same
Ehsan Yakavalangi et al. Effect of surface properties of polysulfone support on the performance of thin film composite polyamide reverse osmosis membranes
EP2695670B1 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for manufacturing composite semipermeable membrane
Mohammadi et al. Effect of production conditions on morphology and permeability of asymmetric cellulose acetate membranes
KR101394167B1 (en) Method of manufacturing ultrafiltration using metal organic frameworks
EP2868366A1 (en) Composite semipermeable membrane
JP2018039003A (en) Composite semipermeable membrane and production method of the same
JP5716283B2 (en) Porous separation flat membrane and method for producing the same
Ho et al. Fabrication of high-flux asymmetric polyethersulfone (PES) ultrafiltration membranes by nonsolvent induced phase separation process: Effects of H2O contents in the dope
JP2019098330A (en) Composite semipermeable membrane and method for producing the same
WO2014133133A1 (en) Composite semipermeable membrane
CN107469650A (en) A kind of preparation method of hydrophobic macropore polyimide nano-fiber forward osmosis membrane
CN109647222B (en) Method for preparing high-flux high-rejection-rate aromatic polyamide composite reverse osmosis membrane by using tannic acid modified base membrane
JP2011194272A (en) Polysulfone film and composite membrane
JP6237233B2 (en) Composite semipermeable membrane and composite semipermeable membrane element
US20220226783A1 (en) Additive manufacturing of self-assembled polymer films
JP2010075851A (en) Porous film and method for manufacturing the same
WO2024117238A1 (en) Composite semipermeable membrane, composite semipermeable membrane element, and filter device
Li et al. Nanoporous thin films of hydrophobic block copolymers enabled by selective swelling for membrane distillation
JP7343075B1 (en) Composite semipermeable membrane and method for manufacturing composite semipermeable membrane
KR102524361B1 (en) Method of manufacturing membrane, membrane and water treatment module
JP2004050144A (en) Separation membrane for waste water treatment and its manufacturing method
KR100429355B1 (en) Composition including polyethylene glycol for preparing microporous polyethersulfone membrane and method for preparing microporous membrane using the same
KR20160038737A (en) Manufacturing method for polyamide watertreatment membranes having properies of high flux and water-treatment membranes manufactured by using the same