WO2014132895A1 - Spun yarn that contains polymethylpentene fiber, and fiber structure made of same - Google Patents

Spun yarn that contains polymethylpentene fiber, and fiber structure made of same Download PDF

Info

Publication number
WO2014132895A1
WO2014132895A1 PCT/JP2014/054195 JP2014054195W WO2014132895A1 WO 2014132895 A1 WO2014132895 A1 WO 2014132895A1 JP 2014054195 W JP2014054195 W JP 2014054195W WO 2014132895 A1 WO2014132895 A1 WO 2014132895A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
polymethylpentene
spun yarn
acid
yarn
Prior art date
Application number
PCT/JP2014/054195
Other languages
French (fr)
Japanese (ja)
Inventor
鹿野秀和
▲はま▼中省吾
荒西義高
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014512200A priority Critical patent/JP6308127B2/en
Publication of WO2014132895A1 publication Critical patent/WO2014132895A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made

Definitions

  • the present invention relates to a spun yarn comprising polymethylpentene fiber. More specifically, the present invention relates to a spun yarn excellent in heat retention, quick drying, and iron heat resistance as well as light weight.
  • Patent Document 1 proposes a spun yarn made of a hollow polyester fiber.
  • the hollow portion imparts lightness and heat retention to the spun yarn.
  • Patent Document 2 proposes a spun yarn made of a highly shrinkable polyolefin fiber.
  • the fiber is shrunk by heat treatment to form a gap between fibers, thereby imparting light weight to the spun yarn.
  • Patent Document 3 proposes a spun yarn using split composite fibers composed of two or more thermoplastic resins having low affinity.
  • a low-specific gravity polypropylene and polymethylpentene were combined at a ratio of 1: 1 and then divided to obtain a spun yarn having a single yarn fineness of about 0.2 denier (about 0.22 dtex). It is disclosed.
  • JP 2007-70768 A Japanese Patent Laid-Open No. 5-44108 JP-A-3-269126
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and is excellent in quick drying and iron heat resistance in addition to lightness and heat retention, and can be suitably used as a fiber structure such as woven or knitted fabric. Is to provide.
  • the problem of the present invention is that the composition component comprises polymethylpentene resin in which 60% by weight or more of the component is a polymethylpentene resin and the single yarn fineness is 2 to 20 dtex, and the number of twists is T (times). /25.4 mm), where N is the English cotton count, the problem can be solved by a spun yarn having a twist coefficient K calculated by the following formula (I) of 1.3 to 6.5.
  • (I) K T ⁇ N 1/2
  • the polymethylpentene fiber may contain a thermoplastic resin different from the polymethylpentene resin in the polymethylpentene resin, and the average fiber length of the polymethylpentene fiber is 10 to 100 mm. It can be suitably employed.
  • the polymethylpentene fiber is (A)
  • the chemical fiber or the natural fiber is (B )
  • the chemical fiber or the natural fiber has a melting point or decomposition temperature of 200 ° C. or higher.
  • the chemical fiber is a polyester fiber, a polyamide fiber, a polyacrylonitrile fiber, or a cellulose fiber, and that the natural fiber is cotton, silk, hemp, or wool.
  • the spun yarn containing the polymethylpentene fiber can be suitably used for at least a part of the fiber structure.
  • the present invention it is possible to provide a spun yarn excellent in heat retention, quick drying property, and iron heat resistance as well as lightness. Further, by using a polymethylpentene fiber containing a thermoplastic resin, it is possible to impart color developability to the spun yarn.
  • the spun yarn obtained by the present invention can be suitably used in a wide range of applications such as general clothing, sports clothing, bedding, interiors, and materials by using a fiber structure such as woven or knitted fabric.
  • the spun yarn of the present invention comprises polymethylpentene fiber in which 60% by weight or more of the constituent components is a polymethylpentene resin and the single yarn fineness is 2 to 20 dtex, and the number of twists is T (times / 25.4 mm), where the English cotton count is N, the twist coefficient K calculated by the following formula (I) is 1.3 to 6.5.
  • (I) K T ⁇ N 1/2
  • the spun yarn of the present invention contains polymethylpentene fiber.
  • a polymethylpentene resin which is a kind of polyolefin resin, is excellent in heat retention because of low thermal conductivity, as in the case of other polyolefin resins such as polyethylene and polypropylene, and is excellent in quick drying because of its high hydrophobicity.
  • the polymethylpentene resin has a lower specific gravity than polyethylene and polypropylene and is extremely lightweight. In addition, it has a higher melting point and softening point than other polyolefin-based resins and is excellent in heat resistance, so it can be used for iron and can be used for high-temperature applications in addition to general clothing applications. . Therefore, by including polymethylpentene fiber containing a polymethylpentene resin as a constituent component and satisfying each of the above requirements, a spun yarn excellent in heat retention, quick-drying, and iron heat resistance can be obtained as well as light weight. .
  • the polymethylpentene fiber in which 60% by weight or more of the constituent component is a polymethylpentene resin means a polymethylpentene fiber containing 60% by weight or more of the polymethylpentene resin in the fiber.
  • the polymethylpentene fiber may contain a thermoplastic resin different from the polymethylpentene resin and various additives in the polymethylpentene resin.
  • the polymethylpentene fiber contains a thermoplastic resin and various additives different from the polymethylpentene resin in the polymethylpentene resin. It shows that a thermoplastic resin different from polymethylpentene resin and various additives are included. Even in such a case, in order not to impair the excellent lightness of the polymethylpentene resin, the polymethylpentene fiber needs to contain 60% by weight or more of the polymethylpentene resin.
  • polymethylpentene resin in the present invention examples include a 4-methyl-1-pentene polymer, and even if it is a homopolymer of 4-methyl-1-pentene, 4-methyl-1-pentene and others It may be a copolymer with an ⁇ -olefin. These other ⁇ -olefins (hereinafter sometimes simply referred to as ⁇ -olefins) can be copolymerized with one or more.
  • ⁇ -olefins preferably have 2 to 20 carbon atoms, and the molecular chain of the ⁇ -olefin may be linear or branched.
  • Specific examples of these ⁇ -olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, -Eicosene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 3-ethyl-1-hexene and the like.
  • the copolymerization rate of the ⁇ -olefin is preferably 20 mol% or less with respect to the total number of moles of 4-methyl-1-pentene and ⁇ -olefin.
  • An ⁇ -olefin copolymerization rate of 20 mol% or less is preferred because a spun yarn having good mechanical properties and heat resistance can be obtained.
  • the copolymerization ratio of ⁇ -olefin is more preferably 15 mol% or less, and further preferably 10 mol% or less.
  • the melting point of the polymethylpentene resin in the present invention is preferably 200 to 250 ° C. If the melting point of the polymethylpentene resin is 200 ° C. or higher, the heat resistance of the spun yarn is improved, which is preferable. On the other hand, if the melting point of the polymethylpentene resin is 250 ° C. or lower, it is preferable because the spinning operability is improved when it is combined with the thermoplastic resin by melt spinning.
  • the melting point of the polymethylpentene resin is more preferably 210 to 245 ° C, and further preferably 220 to 240 ° C.
  • the polymethylpentene resin in the present invention may have been subjected to various modifications by adding secondary additives.
  • secondary additives include plasticizers, ultraviolet absorbers, infrared absorbers, fluorescent brighteners, mold release agents, antibacterial agents, nucleating agents, thermal stabilizers, antioxidants, antistatic agents, coloring Examples include, but are not limited to, inhibitors, modifiers, matting agents, antifoaming agents, preservatives, gelling agents, latexes, fillers, inks, colorants, dyes, pigments, and fragrances. These secondary additives may be used alone or in combination.
  • the polymethylpentene fiber used in the present invention may contain a thermoplastic resin (hereinafter sometimes simply referred to as a thermoplastic resin) different from the polymethylpentene resin. Since polymethylpentene resin is a resin having high transparency and low refractive index, coloring property can be imparted to the polymethylpentene fiber by dyeing the thermoplastic resin, which is preferable.
  • a thermoplastic resin hereinafter sometimes simply referred to as a thermoplastic resin
  • thermoplastic resin in the present invention is not particularly limited and can be suitably used as long as it can be combined with a polymethylpentene resin by melt spinning and dyed with a dye.
  • specific examples of the thermoplastic resin include, but are not limited to, polyester, polyamide, thermoplastic polyacrylonitrile, thermoplastic polyurethane, modified polyolefin, polyvinyl chloride, and cellulose derivatives. Of these, polyesters and polyamides can be suitably used because they have excellent mechanical properties and good color developability. In addition, only 1 type may be used for a thermoplastic resin and multiple may be used together.
  • polyester examples include aromatic polyesters such as polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, polylactic acid, polyglycolic acid, polyethylene adipate, polypropylene adipate, polybutylene adipate, polyethylene succinate, polypropylene succinate , Polybutylene succinate, polyethylene sebacate, polypropylene sebacate, polybutylene sebacate, polycaprolactone, and other aliphatic polyesters, copolymer polyesters obtained by copolymerizing these polyesters with copolymer components, and the like. It is not limited. Among them, polylactic acid can be suitably employed because it has a low refractive index and high color developability when dyed.
  • copolymerized components of polyester include phthalic acid, isophthalic acid, terephthalic acid, 5-sodium sulfoisophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,2′-biphenyldicarboxylic acid.
  • Aromatic dicarboxylic acids such as 3,3'-biphenyldicarboxylic acid, 4,4'-biphenyldicarboxylic acid, anthracene dicarboxylic acid, malonic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, Sebacic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, 1,14-tetradecanedicarboxylic acid, 1,18-octadecanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid 1,4-cyclohexanedicarboxylic acid Aliphatic dicarboxylic acids such as dimer acid, and aromatic diols such as catechol, naphthalenediol, bisphenol, ethylene glycol, trimethylene glycol, tet
  • polyamides include aromatic polyamides such as nylon 6T, nylon 9T, and nylon 10T, aliphatic polyamides such as nylon 4, nylon 6, nylon 11, nylon 12, nylon 46, nylon 410, nylon 66, and nylon 610, and the like. Examples thereof include, but are not limited to, a copolymerized polyamide obtained by copolymerizing a copolymer component with the polyamide.
  • copolymerization component of polyamide examples include aromatic diamines such as metaphenylenediamine, paraphenylenediamine, metaxylylenediamine, paraxylylenediamine, 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4 -Tetramethylenediamine, 1,5-pentamethylenediamine, 2-methyl-1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1 , 9-nonamethylenediamine, 2-methyl-1,8-octamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-trideca Methylene diamine, 1,16-hexadecamethylene diamine, , 18-octadecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, piperaz
  • thermoplastic polyacrylonitrile examples include a copolymer of acrylonitrile and a copolymer component.
  • copolymerization components of thermoplastic polyacrylonitrile include acrylic acid esters such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, etc.
  • Methacrylic acid esters, haloolefins such as vinyl chloride, vinyl fluoride, vinylidene chloride, vinylidene fluoride, vinyl amides such as acrylamide, methacrylamide, vinyl pyrrolidone, vinyl esters such as vinyl acetate and vinyl propionate, styrene, vinyl pyridine, etc.
  • Vinyl aromatic compounds vinyl carboxylic acids such as acrylic acid and methacrylic acid, vinyl sulfonic acids such as p-styrene sulfonic acid, allyl sulfonic acid and methallyl sulfonic acid, sodium acrylate , Sodium methacrylate, sodium p- styrenesulfonate, sodium allyl sulfonate, although vinyl carboxylic acid or salt of vinyl sulfonic acid, such as sodium methallyl sulfonic acid, and the like.
  • These copolymerization components may use only 1 type and may use 2 or more types together.
  • thermoplastic polyacrylonitrile examples include acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-vinyl chloride copolymer, acrylonitrile-acrylamide copolymer, acrylonitrile-vinyl acetate copolymer, Examples include, but are not limited to, acrylonitrile-styrene copolymer, acrylonitrile-acrylic acid copolymer, acrylonitrile-sodium methacrylate copolymer, and the like.
  • thermoplastic polyurethane examples include a polymer compound obtained by a three-component reaction of diisocyanate, polyol, and chain extender.
  • diisocyanate examples include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 1,3-bis (isocyanate methyl) cyclohexane, 1,4-bis (isocyanate methyl) cyclohexane, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene Examples include, but are not limited to, diisocyanate and diphenylmethane diisocyanate.
  • polystyrene resin examples include, but are not limited to, polyether polyol, polyester polyol, polycaprolactone polyol, and polycarbonate polyol.
  • the polyether polyol is obtained by ring-opening addition polymerization of a low molecular weight polyol or a low molecular weight polyamine and an alkylene oxide.
  • the polyester polyol is obtained by a condensation reaction or transesterification reaction between a low molecular weight polyol and a polyvalent carboxylic acid, a polyvalent carboxylic acid ester, a polyvalent carboxylic acid anhydride, or a polyvalent carboxylic acid halide.
  • the polycaprolactone polyol is obtained by ring-opening polymerization of a low molecular weight polyol and caprolactone.
  • the polycarbonate polyol is obtained by addition polymerization of a low molecular weight polyol and carbonate.
  • low molecular weight polyols include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, cyclohexanediol, cyclohexanedimethanol, bisphenol , Diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, pentaerythritol, diglycerin, xylitol, sorbitol, mannitol, dipentaerythritol sucrose, and the like.
  • the low molecular weight polyamine include, but are not limited to, ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,6-hexamethylenediamine, 1,4-cyclohexanediamine, and hydrazine.
  • Specific examples of the alkylene oxide include, but are not limited to, ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran.
  • Specific examples of polyvalent carboxylic acids include, but are not limited to, oxalic acid, malonic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, phthalic acid, isophthalic acid, terephthalic acid, and dimer acid. Not.
  • polycarboxylic acid ester examples include, but are not limited to, methyl ester and ethyl ester of polyvalent carboxylic acid.
  • polyvalent carboxylic acid anhydride examples include, but are not limited to, oxalic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride, and the like.
  • polyvalent carboxylic acid halide examples include, but are not limited to, oxalic acid dichloride and adipic acid dichloride.
  • caprolactone examples include, but are not limited to, ⁇ -caprolactone.
  • carbonate examples include, but are not limited to, ethylene carbonate and dimethyl carbonate.
  • chain extender examples include ethanediol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, dipropylene glycol and the like. It is not limited to these.
  • the modified polyolefin can suitably be a copolymer of an ⁇ -olefin and a copolymer component.
  • the copolymer type include, but are not limited to, a block copolymer and a graft copolymer.
  • the carbon number of the ⁇ -olefin is preferably 2 to 20, and the molecular chain of the ⁇ -olefin may be linear or branched.
  • Specific examples of the ⁇ -olefin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1- Examples include, but are not limited to, eicosene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3-ethyl-1-pentene, and 3-ethyl-1-hexene. Not. These ⁇ -olefins may be used alone or in combination of two or more.
  • an unsaturated compound containing a polar functional group having a high affinity for the dye can be suitably used as the copolymerization component of the modified polyolefin.
  • the polar functional group having a high affinity with the dye include a carboxylic acid group, a carboxylic anhydride group, a carboxylic acid group, a carboxylic acid ester group, and a carboxylic acid amide group.
  • copolymer components of the modified polyolefin include unsaturated carboxylic acids such as maleic acid, fumaric acid, itaconic acid, acrylic acid and methacrylic acid, unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride, methacrylic acid Unsaturated carboxylic acid salts such as sodium and sodium acrylate, vinyl acetate, vinyl propionate, methyl acrylate, ethyl acrylate, methyl methacrylate, maleic acid monoethyl ester and other unsaturated carboxylic acid esters, acrylamide and maleic acid monoamide Unsaturated amides such as, but not limited to.
  • These copolymerization components may use only 1 type and may use 2 or more types together.
  • modified polyolefins include ethylene-maleic acid copolymer, ethylene-fumaric acid copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-acrylic acid-sodium methacrylate copolymer.
  • the polyvinyl chloride may be a homopolymer of vinyl chloride or a copolymer of vinyl chloride and a copolymer component.
  • polyvinyl chloride copolymerization components include vinyl esters such as vinyl acetate and vinyl propionate, acrylic acid esters such as propyl acrylate and butyl acrylate, and olefins such as ethylene and propylene. It is not limited. These copolymerization components may use only 1 type and may use 2 or more types together.
  • a cellulose derivative is a compound in which at least a part of three hydroxyl groups present in glucose, which is a constituent unit of cellulose, is derivatized to another functional group.
  • cellulose single ester with one ester group bonded to cellulose cellulose mixed ester with two or more ester groups bonded
  • cellulose single ether with one ether group bonded two or more ether groups bonded
  • examples thereof include, but are not limited to, cellulose mixed ethers, cellulose ether esters in which one or two or more ether groups and ester groups are bonded.
  • a plasticizer may be added to the cellulose derivative for the purpose of improving thermal fluidity.
  • cellulose derivatives include cellulose acetate, cellulose propionate, cellulose butyrate, cellulose valerate, cellulose stearate, and other cellulose esters, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate valerate, and cellulose acetate.
  • Cellulose mixed esters such as caproate, cellulose propionate butyrate, cellulose acetate propionate butyrate, cellulose single ethers such as methyl cellulose, ethyl cellulose, propyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, methyl Ethyl cellulose, methyl propyl cellulose , Ethyl mixed cellulose such as ethylpropylcellulose, hydroxymethylmethylcellulose, hydroxymethylethylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, methylcellulose acetate, methylcellulose propionate, ethylcellulose acetate, ethylcellulose propionate, propylcellulose acetate, Propylcellulose propionate, hydroxymethylcellulose acetate, hydroxymethylcellulose propionate, hydroxyethylcellulose acetate, hydroxyethylcellulose propionate,
  • the composite ratio of the polymethylpentene resin and the thermoplastic resin in the polymethylpentene fiber used in the present invention can be appropriately selected according to the use and required characteristics, but the excellent lightness of the polymethylpentene resin is impaired. Therefore, the polymethylpentene resin in the polymethylpentene fiber needs to be combined within a range of 60% by weight or more.
  • the composite ratio (weight ratio) A / B of (A) to (B) is 80/20 to 99/1. It is more preferable.
  • the composite ratio of the polymethylpentene resin it is preferable for the composite ratio of the polymethylpentene resin to be in the above-mentioned range since color development by the thermoplastic resin can be imparted to the polymethylpentene fiber while maintaining particularly excellent lightness.
  • the composite ratio of the polymethylpentene resin is 99% by weight or less, that is, if the composite ratio of the thermoplastic resin is 1% by weight or more, a highly color-forming thermoplastic resin is a polymethylpentene resin having a low refractive index. It is preferable because it can be dispersed according to the composite ratio and a vivid and deep color can be realized.
  • the composite ratio is determined with the sum of them as the thermoplastic resin (B).
  • a thermoplastic resin in a part of the thermoplastic resin as necessary.
  • a compatibilizer in a part of the thermoplastic resin as necessary.
  • the compatibilizing agent can be appropriately selected according to the type of the thermoplastic resin.
  • a compatibilizing agent may be used independently and may use multiple together.
  • thermoplastic component in which both a hydrophobic component having high affinity for polymethylpentene resin having high hydrophobicity and a component having high affinity for thermoplastic resin are contained in the same molecule.
  • Resin can be used.
  • thermoplastic resin in which both a hydrophobic component having high affinity for the polymethylpentene resin and a functional group capable of reacting with the thermoplastic resin are contained in the same molecule can be used.
  • hydrophobic component constituting the compatibilizer examples include polyethylene, polypropylene, polymethylpentene, polystyrene, ethylene-propylene copolymer, ethylene-butylene copolymer, propylene-butylene copolymer, styrene-ethylene-butylene. -Styrene copolymers and the like may be mentioned, but not limited thereto.
  • components having high affinity for the thermoplastic resin constituting the compatibilizer or functional groups capable of reacting with the thermoplastic resin include carboxylic acid groups, carboxylic anhydride groups, carboxylic acid groups, carboxylic acid ester groups, Examples include, but are not limited to, acid amide groups, amino groups, imino groups, alkoxysilyl groups, silanol groups, silyl ether groups, hydroxyl groups, and epoxy groups.
  • compatibilizer examples include maleic acid-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified polymethylpentene, epoxy-modified polystyrene, maleic anhydride-modified styrene-ethylene-butylene-styrene copolymer, amino-modified styrene- Examples thereof include, but are not limited to, ethylene-butylene-styrene copolymers and imino-modified styrene-ethylene-butylene-styrene copolymers.
  • the amount used is preferably in the range where the ratio to the thermoplastic resin containing the compatibilizing agent is 0.1 to 30% by weight. If the use amount of the compatibilizing agent is 0.1% by weight or more, it is preferable because a compatibilizing effect between the polymethylpentene resin and the thermoplastic resin can be obtained and the yarn operability such as suppression of yarn breakage is improved. On the other hand, if the amount of the compatibilizer used is 30% by weight or less, the polymethylpentene fiber can maintain the fiber characteristics, appearance, and texture derived from the polymethylpentene resin and thermoplastic resin.
  • the amount of the compatibilizer used is more preferably 0.5 to 20% by weight, still more preferably 1 to 10% by weight.
  • the polymethylpentene fiber used in the present invention may be an original fiber in which a pigment or a colorant is added to a polymethylpentene-based resin as necessary for the purpose of imparting color developability.
  • the pigments and colorants may be used alone or in combination.
  • pigments and colorants in the present invention include inorganic pigments such as carbon black, cobalt blue, and chrome yellow, and organic pigments such as azo, phthalocyanine, quinacridone, anthraquinone, and dioxazine. However, it is not limited to these.
  • the amount of pigment or colorant added is preferably 0.2 to 10% by weight in the polymethylpentene fiber. If the amount of the pigment or colorant added is 0.2% by weight or more, it is preferable because sufficient color developability can be imparted to the polymethylpentene fiber. On the other hand, if the addition amount of the pigment or the colorant is 10% by weight or less, the occurrence of yarn breakage is small, the spinning operability is good, and the resulting polymethylpentene fiber has good fiber characteristics, which is preferable.
  • the amount of the pigment or colorant added is more preferably 0.5 to 8.5% by weight, and even more preferably 1.0 to 7.0% by weight.
  • a pigment or a colorant is added to a polymethylpentene-based resin
  • a master batch is prepared by melt kneading using a twin screw extruder, and then melt spinning is performed. It is done.
  • melt spinning a polymethylpentene resin and a pigment or colorant may be blended, but are not limited thereto.
  • the single yarn fineness of the polymethylpentene fiber used in the present invention is 2 to 20 dtex. If the single yarn fineness of the polymethylpentene fiber is 2 dtex or more, in addition to few yarn breaks and good process passability, there is little fluffing during use and excellent quality and durability. On the other hand, if the single yarn fineness of the polymethylpentene fiber is 20 dtex or less, the flexibility of the spun yarn and the fiber structure is not impaired.
  • the single yarn fineness of the polymethylpentene fiber is more preferably 2 to 15 dtex, and further preferably 2 to 10 dtex.
  • the average fiber length of the polymethylpentene fiber used in the present invention is preferably 10 to 100 mm. If the average fiber length of the polymethylpentene fiber is 10 mm or more, it is preferable because fibers can be sufficiently entangled and sufficient strength can be obtained when a spun yarn is used. On the other hand, when the average fiber length of the polymethylpentene fiber is 100 mm or less, the process passability and the handleability are good, which is preferable.
  • the average fiber length of the polymethylpentene fiber is more preferably 15 to 90 mm, and still more preferably 20 to 80 mm. Further, the fiber lengths of the polymethylpentene fibers may be the same or different.
  • the cross-sectional shape of the polymethylpentene fiber used in the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, and may be a perfect circular cross-section or a non-circular cross-section. Also good. Specific examples of non-circular cross sections include, but are not limited to, multi-leaf, polygon, flat, oval, C-shaped, H-shaped, S-shaped, T-shaped, W-shaped, X-shaped, Y-shaped, etc. Not. Moreover, it is preferable that the polymethylpentene fiber used by this invention is a solid fiber from the point of process passage property and handleability.
  • the strength of the polymethylpentene fiber used in the present invention is not particularly limited and can be appropriately selected according to the use and required characteristics, but is preferably 0.5 to 5.0 cN / dtex.
  • the strength of the polymethylpentene fiber is preferably as high as possible from the viewpoint of mechanical properties, but is preferably 0.5 cN / dtex or more. If the strength of the polymethylpentene fiber is 0.5 cN / dtex or more, it is preferable because the thread breakage is small, the process passability is good, and the durability is excellent.
  • the strength of the polymethylpentene fiber is more preferably 0.7 to 5.0 cN / dtex, still more preferably 1.0 to 5.0 cN / dtex.
  • the elongation of the polymethylpentene fiber used in the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is preferably 5 to 300%. If the elongation of the polymethylpentene fiber is 5% or more, it is preferable because the abrasion resistance of the spun yarn and the fiber structure is good, the generation of fluff is small, and the durability is good. On the other hand, when the polymethylpentene fiber is an undrawn yarn, it is preferable that the elongation is 300% or less because the handleability in drawing is good and the mechanical properties can be improved by drawing.
  • the polymethylpentene fiber is a drawn yarn
  • an elongation of 40% or less is preferable because the dimensional stability of the spun yarn and the fiber structure is improved.
  • the elongation is preferably 8 to 280%, more preferably 10 to 250%.
  • the elongation is more preferably 8 to 35%, and further preferably 10 to 30%.
  • the initial tensile resistance of the polymethylpentene fiber used in the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is preferably 10 to 100 cN / dtex. If the initial tensile resistance of the polymethylpentene fiber is 10 cN / dtex or more, the process passability and handleability are good, and the mechanical properties are excellent, which is preferable. On the other hand, it is preferable that the initial tensile resistance of the polymethylpentene fiber is 100 cN / dtex or less because the flexibility of the spun yarn and the fiber structure is not impaired.
  • the initial tensile resistance of the polymethylpentene fiber is more preferably 15 to 80 cN / dtex, still more preferably 20 to 60 cN / dtex.
  • the specific gravity of the polymethylpentene fiber used in the present invention is not particularly limited and can be appropriately selected according to the type of thermoplastic resin, the composite ratio, the application and required characteristics, and is 0.83 to 0.95. It is preferable. Since the specific gravity of the polymethylpentene resin is 0.83, it is preferably 0.95 or less from the viewpoint of light weight even when combined with a thermoplastic resin. If the specific gravity of the polymethylpentene fiber is 0.95 or less, it is preferable because a spun yarn having both lightness by the polymethylpentene resin and color development by the thermoplastic resin can be obtained. The specific gravity of the polymethylpentene fiber is more preferably 0.83 to 0.93, still more preferably 0.83 to 0.90.
  • the polymethylpentene fiber used in the present invention may have crimps. It is preferable to have crimps because, in the case of a spun yarn, in addition to strengthening the entanglement between the fibers, it is possible to obtain a bulky and light texture.
  • the number of crimps of the polymethylpentene fiber used in the present invention is not particularly limited and can be appropriately selected according to the use and required characteristics, but is preferably 2 to 40 m / 25 mm.
  • the number of crimps of the polymethylpentene fiber is 2 threads / 25 mm or more, in addition to strengthening the entanglement between the fibers in the case of a spun yarn, it imparts bulkiness to the spun yarn and the fiber structure. This is preferable.
  • the number of crimps of the polymethylpentene fiber is 40 peaks / 25 mm or less, it is preferable because the processability and handleability are good and the bulkiness of the spun yarn and the fiber structure is not impaired.
  • the number of crimps of the polymethylpentene fiber is more preferably 4 to 30 peaks / 25 mm, and still more preferably 6 to 20 peaks / 25 mm.
  • the crimp rate of the polymethylpentene fiber used in the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is preferably 5 to 40%. If the crimp rate of the polymethylpentene fiber is 5% or more, in addition to strengthening the entanglement between the fibers when the spun yarn is used, it is possible to impart bulkiness to the spun yarn and the fiber structure. This is preferable because it is possible. On the other hand, if the polymethylpentene fiber has a crimp rate of 40% or less, it is preferable because the processability and handleability are good and the bulkiness of the spun yarn and fiber structure is not impaired. The crimp rate of the polymethylpentene fiber is more preferably 8 to 35%, and still more preferably 10 to 30%.
  • the twist coefficient K can be appropriately selected according to the use and required characteristics of the spun yarn, but is more preferably 2.0 to 5.5, and still more preferably 2.5 to 5.0. 3.0 to 4.5 is particularly preferable.
  • the number of twists of the spun yarn of the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is preferably 5 to 75 times / 25.4 mm. If the number of twists of the spun yarn is 5 times / 25.4 mm or more, the fiber is entangled in a spun yarn, so that there is little generation of fluff at the time of use and excellent durability, which is preferable. On the other hand, if the number of twists of the spun yarn is 75 times / 25.4 mm or less, the texture is not too hard, and the flexibility of the spun yarn and the fiber structure is not impaired.
  • the number of twists of the spun yarn is more preferably 10 to 50 times / 25.4 mm, and further preferably 15 to 30 times / 25.4 mm.
  • the spun yarn in the present invention may be composed only of polymethylpentene fibers, and may be blended with chemical fibers or natural fibers. Alternatively, a spun yarn and a spun yarn made of chemical fiber or natural fiber may be twisted together. In addition, the chemical fiber or natural fiber used for blending or twisting may be used alone or in combination.
  • the chemical fiber in the present invention is not particularly limited and can be appropriately selected according to the use and required characteristics.
  • Specific examples of the chemical fiber include, but are not limited to, polyester fiber, polyamide fiber, polyacrylonitrile fiber, cellulose fiber, and cellulose fiber. Of these, polyester fibers, polyamide fibers, polyacrylonitrile fibers, cellulose fibers and the like are preferable.
  • polyester fiber examples include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polylactic acid.
  • polyamide fiber examples include nylon 6, nylon 66, and nylon 610.
  • polyacrylonitrile fiber examples include cellulose diacetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, and specific examples of cellulose fiber. Examples thereof include, but are not limited to, viscose rayon and cupra rayon.
  • the natural fiber in the present invention is not particularly limited and can be appropriately selected according to the use and required characteristics.
  • Specific examples of natural fibers include, but are not limited to, cotton, silk, hemp, wool, and the like.
  • the blend ratio (weight ratio) of the polymethylpentene fiber and the chemical fiber or natural fiber in the spun yarn of the present invention is not particularly limited and can be appropriately selected according to the use and required characteristics.
  • a blending ratio of polymethylpentene fibers of 85% by weight or more is preferable because it does not impair the lightness of the spun yarn.
  • the blend ratio of the polymethylpentene fiber is 97% by weight or less, that is, if the blend ratio of the chemical fiber or the natural fiber is 3% by weight or more, the texture of the chemical fiber or the natural fiber can be imparted to the spun yarn.
  • the melting point or decomposition temperature of the chemical fiber or natural fiber in the spun yarn of the present invention is preferably as high as possible from the viewpoint of heat resistance, but is preferably 200 ° C. or higher.
  • the melting point is used as an index of heat resistance
  • the decomposition temperature is used as an index of heat resistance. If the melting point or decomposition temperature of the chemical fiber or natural fiber is 200 ° C or higher, the iron can be used because of its excellent heat resistance, and it can be used for applications that are used at high temperatures in addition to general clothing applications. This is preferable.
  • the melting point or decomposition temperature of the chemical fiber or natural fiber is more preferably 210 ° C. or higher, and further preferably 220 ° C. or higher.
  • the English cotton count of the spun yarn of the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but it is preferably 1 to 200. It is preferable if the spun yarn has an English cotton count of 1 or more because the flexibility of the spun yarn and fiber structure is not impaired. On the other hand, if the spun yarn has an English cotton count of 200 or less, it is preferable because the yarn breakage during processing and the process passability are good, as well as the occurrence of fluff during use and excellent durability.
  • the English cotton count of the spun yarn is more preferably 10 to 150, and still more preferably 20 to 100.
  • the strength of the spun yarn of the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is preferably 0.5 to 5.0 cN / dtex.
  • the strength of the spun yarn is preferably as high as possible from the viewpoint of mechanical properties, but is preferably 0.5 cN / dtex or more. If the strength of the spun yarn is 0.5 cN / dtex or more, it is preferable because the yarn breakage is small, process passability is good, and durability is excellent.
  • the strength of the spun yarn is more preferably 0.7 to 5.0 cN / dtex, and still more preferably 1.0 to 5.0 cN / dtex.
  • the elongation of the spun yarn of the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is preferably 5 to 100%.
  • An elongation of the spun yarn of 5% or more is preferable because the spun yarn and the fiber structure have good wear resistance, less fluffing, and good durability.
  • an elongation of the spun yarn of 100% or less is preferable because the dimensional stability of the spun yarn and the fiber structure is improved.
  • the elongation of the spun yarn is preferably 8 to 80%, more preferably 10 to 40%.
  • the initial tensile resistance of the spun yarn of the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is preferably 10 to 100 cN / dtex. If the initial tensile resistance of the spun yarn is 10 cN / dtex or more, the process passability and handleability are good, and the mechanical properties are excellent, which is preferable. On the other hand, if the initial tensile resistance of the spun yarn is 100 cN / dtex or less, the flexibility of the spun yarn and the fiber structure is not impaired, which is preferable.
  • the initial tensile resistance of the spun yarn is more preferably 15 to 80 cN / dtex, still more preferably 20 to 60 cN / dtex.
  • the apparent specific gravity of the spun yarn of the present invention is not particularly limited, and can be appropriately selected according to the type of chemical fiber or natural fiber, the blending ratio, application and required characteristics, and is 0.83 to 1.2. It is preferable.
  • the apparent specific gravity of the spun yarn is preferably as small as possible from the viewpoint of lightness, but is preferably 0.83 or more. If the apparent specific gravity of the spun yarn is 0.83 or more, it is preferable because the texture of the chemical fiber or the natural fiber can be imparted to the polymethylpentene fiber excellent in light weight without impairing the light weight of the spun yarn.
  • the apparent specific gravity of the spun yarn is more preferably 0.83 to 1.15, and still more preferably 0.83 to 1.1.
  • the spun yarn of the present invention can be handled in the same manner as general fibers for weaving and knitting, and when forming a fiber structure, the spun yarn of the present invention and other fibers may be combined by weaving or knitting. .
  • the form of the fiber structure composed of the spun yarn of the present invention is not particularly limited, and can be made into a woven fabric, a knitted fabric, a pile fabric, a nonwoven fabric, or the like according to a known method.
  • the fiber structure comprising the spun yarn of the present invention may be any woven or knitted structure, such as plain weave, twill weave, satin weave, or these changed weaves, warp knitting, weft knitting, circular knitting, lace knitting. Or these change knitting etc. can be adopted suitably.
  • the spun yarn of the present invention is obtained by obtaining a polymethylpentene fiber from a raw material such as a polymethylpentene resin or a thermoplastic resin by melt spinning according to a known method, and then drawing, crimping, cutting, roving, fine spinning. Although it can obtain through processes, such as spinning, it is not limited to these.
  • the water content is 0.3% by weight or less.
  • a water content of 0.3% by weight or less is preferable because it does not cause foaming due to moisture during melt spinning and enables stable spinning.
  • the water content is more preferably 0.2% by weight or less, and further preferably 0.1% by weight or less.
  • melt spinning method a known method can be suitably employed for each of single component spinning and composite spinning.
  • the method of compounding the polymethylpentene resin and the thermoplastic resin by melt spinning include, but are not limited to, core-sheath type compound spinning, sea-island type compound spinning, polymer alloy type spinning, and the like.
  • each chip When performing core-sheath type composite spinning, each chip is dried as necessary, and then the chip is supplied to a melt spinning machine such as an extruder type or a pressure melter type to separate the core component and the sheath component separately. And weigh with a metering pump. Then, after introducing into the spinning pack heated in the spinning block and filtering the molten polymer in the spinning pack, the core component and the sheath component are merged with the core-sheath type composite spinneret to form a core-sheath structure. It is possible to suitably employ a method of discharging from a fiber into a yarn.
  • a melt spinning machine such as an extruder type or a pressure melter type
  • sea-island type composite spinning the same method as the core-sheath type composite spinning can be suitably employed except that the sea component and the island component are separately melted to form a sea-island structure using a sea-island type composite spinneret.
  • examples of methods for discharging from a spinneret into fiber yarns include the following examples, but are not limited thereto.
  • a polymethylpentene resin and a thermoplastic resin are melted and kneaded in advance using an extruder, etc., and the chips are dried as necessary, and then supplied to a melt spinning machine for melting. Measure with a metering pump. Then, after introducing into the spinning pack heated in the spinning block and filtering the molten polymer in the spinning pack, there is a method of discharging from the spinneret into a fiber yarn.
  • the chip is dried, and after mixing the polymethylpentene resin and the thermoplastic resin in the state of the chip, the mixed chip is supplied to the melt spinning machine and melted, and the metering pump is used. Weigh. Then, after introducing into the spinning pack heated in the spinning block and filtering the molten polymer in the spinning pack, there is a method of discharging from the spinneret into a fiber yarn.
  • the fiber yarn discharged from the spinneret is cooled and solidified by a cooling device in any case of single component spinning, core-sheath type composite spinning, sea-island type composite spinning, and polymer alloy type spinning, and is taken up by a roller.
  • a heating cylinder or a heat insulation cylinder having a length of 2 to 20 cm may be provided at the lower part of the spinneret as needed in order to improve the spinning maneuverability, productivity, and mechanical properties of the fiber.
  • the spinning temperature in melt spinning can be appropriately selected according to the melting point and heat resistance of the polymethylpentene resin and the thermoplastic resin, but is preferably 220 to 320 ° C. If the spinning temperature is 220 ° C. or higher, the elongation viscosity of the fiber yarn discharged from the spinneret is sufficiently lowered, so that the discharge is stable, and further, the spinning tension is not excessively increased and the yarn breakage is suppressed. This is preferable. On the other hand, if the spinning temperature is 320 ° C. or lower, it is preferable because thermal decomposition during spinning can be suppressed and the resulting polymethylpentene fiber does not have poor mechanical properties or coloring.
  • the spinning temperature is more preferably 240 to 300 ° C, and further preferably 260 to 280 ° C.
  • the spinning speed in melt spinning can be appropriately selected according to the spinning temperature, the single yarn fineness of the polymethylpentene fiber, etc., but is preferably 300 to 2500 m / min.
  • a spinning speed of 300 m / min or more is preferable because the running yarn is stable and yarn breakage can be suppressed.
  • a spinning speed of 2500 m / min or less is preferable because the fiber yarn can be sufficiently cooled and stable spinning can be performed.
  • the spinning speed is more preferably 500 to 2000 m / min, and still more preferably 1000 to 1500 m / min.
  • the method of taking out the spun yarn may be a method of taking up with a first godet roller and winding it up with a winder through a second godet roller. From the viewpoint of productivity, a method of storing undrawn yarn in a storage container
  • the so-called storage and take-up method can be suitably employed. Specifically, it is a method in which fiber yarns discharged from a plurality of spinnerets are guided by a number of roller groups and are shaken down and stored as a bundle in a storage container such as a can.
  • the total fineness of the polymethylpentene fiber after the storage and take-up method is not particularly limited and can be appropriately selected according to the draw ratio, the draw speed, etc., but is preferably 1,000 to 1,000,000 dtex. If the total fineness of the polymethylpentene fiber after carrying out the storage and taking-up method is 1000 dtex or more, it is preferable because thread breakage is small and processability is good. On the other hand, if the total fineness of the polymethylpentene fiber after carrying out the storage take-up method is 1 million dtex or less, the process passability and the handleability are good, which is preferable.
  • the total fineness of the polymethylpentene fiber after the storage and take-up method is preferably 5000 to 700,000 dtex, and more preferably 10,000 to 500,000 dtex.
  • the undrawn yarn taken up by melt spinning may be drawn to obtain a spun yarn having desired fiber characteristics.
  • the stretching method is not particularly limited, and in accordance with a known method, a two-step method of stretching unstretched yarn once wound on a drum, a direct spinning stretching method of continuously stretching without winding on a drum, a storage take-up method
  • yarn obtained by (1) is mentioned, It is not limited to these. From the viewpoint of productivity, a method of drawing after undrawn yarn obtained by the storage take-up method can be suitably employed. Specifically, undrawn yarns are launched from a plurality of storage containers, and after being aligned, are led to a drawing step.
  • the total fineness of the polymethylpentene fibers after the drawing is not particularly limited and can be appropriately selected according to the draw ratio, the draw speed, etc., but is preferably 10,000 to 1,000,000 dtex. If the total fineness of the polymethylpentene fiber after drawing is 10,000 dtex or more, it is preferable because thread breakage is small and processability is good. On the other hand, if the total fineness of the polymethylpentene fiber after the alignment is 1,000,000 dtex or less, the process passability and handleability are good, which is preferable.
  • the total fineness of the polymethylpentene fiber after drawing is more preferably 50,000 to 700,000 dtex, and further preferably 100,000 to 500,000 dtex.
  • the heating method in stretching is not particularly limited as long as it is an apparatus capable of directly or indirectly heating the running yarn.
  • Specific examples of the heating method include, but are not limited to, devices such as a heating roller, a hot pin, a hot plate, and a laser, a liquid bath such as hot water and hot water, a gas bath such as hot air and steam. These heating methods may be used alone or in combination.
  • the heating method from the viewpoint of controlling the heating temperature, uniform heating to the running yarn, and not complicating the apparatus, contact with the heating roller, contact with the hot pin, contact with the hot plate, hot water or hot water, etc. Immersion in a liquid bath can be suitably employed. Furthermore, from the viewpoint of productivity, immersion in a liquid bath such as warm water or hot water is particularly preferable.
  • the draw ratio in the case of drawing can be appropriately selected according to the strength and elongation of the spun yarn made of polymethylpentene fiber, but is preferably 1.02 to 7.0 times.
  • a draw ratio of 1.02 or more is preferable because mechanical properties such as strength and elongation of the polymethylpentene fiber can be improved by drawing.
  • the draw ratio is 7.0 times or less, yarn breakage during drawing is suppressed, and stable drawing can be performed.
  • the draw ratio is more preferably 1.2 to 6.0 times, and still more preferably 1.5 to 5.0 times. Further, any one of a one-stage stretching method or a two-stage or more multi-stage stretching method may be used.
  • the drawing temperature in the case of drawing can be appropriately selected according to the strength and elongation of the spun yarn made of polymethylpentene fiber, but is preferably 50 to 95 ° C.
  • a drawing temperature of 50 ° C. or higher is preferable because the yarn supplied to the drawing is sufficiently preheated, the thermal deformation during drawing becomes uniform, and the occurrence of fineness spots can be suppressed.
  • a stretching temperature of 95 ° C. or lower is preferable because yarn breakage during stretching is suppressed and stable stretching can be performed.
  • the stretching temperature is more preferably 55 to 90 ° C, still more preferably 60 to 85 ° C. If necessary, heat setting at 50 to 150 ° C. may be performed after stretching.
  • the stretching speed in the case of stretching can be appropriately selected according to the stretching method and the stretching ratio, but is preferably 30 to 1000 m / min.
  • a drawing speed of 30 m / min or more is preferable because the running yarn is stabilized even when the total fineness of the undrawn yarn is large.
  • a stretching speed of 1000 m / min or less is preferable because yarn breakage during stretching can be suppressed and stable stretching can be performed.
  • the stretching speed is more preferably 50 to 800 m / min, and further preferably 100 to 500 m / min.
  • an oil agent may be applied to the polymethylpentene fiber before stretching, after stretching, after crimping, or in each step.
  • Application of an oil agent is preferable because the coefficient of dynamic friction between fibers is reduced, and process passability and handleability are improved in a stretching process and a spinning process.
  • crimps may be imparted before stretching or in the course of multistage stretching, but crimping is preferably imparted after stretching from the viewpoint of stretchability and obtained fiber characteristics.
  • the method for imparting crimp is not particularly limited, and examples thereof include, but are not limited to, a stuffing box method, an indentation heating gear method, and a high-speed air injection indentation method according to a known method. If necessary, steam heating may be performed at the time of crimping, or heat setting or drying may be performed after crimping.
  • crimp may be imparted by blowing a cooling air from one side of the fiber yarn discharged from the spinneret to perform asymmetric cooling.
  • the temperature of the cooling air is preferably 20 to 30 ° C. and the wind speed is preferably 20 to 100 m / min.
  • the treatment temperature for imparting crimps can be appropriately selected according to the application and required characteristics, but is preferably 100 to 250 ° C. in order to impart stable crimps.
  • a treatment temperature of 100 ° C. or higher is preferable because the yarn supplied to the crimp is sufficiently preheated and thermally deformed when the crimp is applied.
  • a treatment temperature of 250 ° C. or lower is preferable because thermal degradation of the polymethylpentene fiber can be suppressed during crimping, and mechanical properties and coloration of the obtained spun yarn do not occur.
  • the treatment temperature for imparting crimps is more preferably 120 to 230 ° C, and further preferably 150 to 200 ° C.
  • the method for cutting the polymethylpentene fiber is not particularly limited, and examples thereof include a rotary cutter and a guillotine cutter, but are not limited thereto. Further, the polymethylpentene fiber may be cut into a fixed length, or may be cut so that the fiber length has a distribution.
  • the spinning method is not particularly limited, and a spun yarn is obtained by using a polymethylpentene fiber according to a known method, through the steps of cotton smashing, carding, kneading, roving and spinning. However, it is not limited to these.
  • polymethylpentene fibers and chemical fibers or natural fibers may be blended at a desired ratio.
  • the method of blending is not particularly limited, and in accordance with a known method, each raw cotton is put into a separate series from the battering to carding (card) process, and each sliver is combined in the drawing process, Examples include, but are not limited to, a method in which a plurality of roving yarns or slivers are supplied and combined in the spinning process.
  • twisting may be performed when spinning.
  • the method of twisting is not particularly limited, and according to known methods, false twisting methods such as ring, flyer, pot, mule, open end, binding method, alternating twisting method, interlacing, gluing method, Examples include, but are not limited to, a non-twisting method such as a fusion method.
  • the spun yarn obtained in the present invention may be twisted with a spun yarn made of chemical fiber or natural fiber.
  • the method of twisting is not particularly limited, and according to known methods, false twisting methods such as ring, flyer, pot, mule, open end, false twisting methods such as bundling method, alternating twisting method, interlacing, gluing method, fusion Examples include, but are not limited to, a non-twisting method such as a wearing method.
  • the number of twisted yarns is not particularly limited and can be appropriately selected according to the fiber characteristics of the spun yarn after twisting, but is preferably 5 to 75 times / 25.4 mm. .
  • the number of twisted yarns is 5 times / 25.4 mm or more, the fibers constituting the spun yarn are entangled with each other, so that generation of fluff is small during use and durability is excellent.
  • the number of twisted yarns is 75 times / 25.4 mm or less, in addition to good process passability, the texture does not become too hard, and the flexibility of the spun yarn and the fiber structure may be impaired. It is preferable because it is not present.
  • the number of twists is more preferably 10 to 50 times / 25.4 mm, and further preferably 15 to 30 times / 25.4 mm.
  • the dyeing method of the spun yarn of the present invention and the fiber structure comprising the spun yarn is not particularly limited, and according to known methods, cheese dyeing machine, liquid dyeing machine, drum dyeing machine, beam dyeing machine, jigger, high-pressure jigger Etc. can be suitably employed.
  • a dye can be appropriately selected according to the type of thermoplastic resin combined with the polymethylpentene resin, chemical fiber or natural fiber used for blending or twisting.
  • thermoplastic resin disperse dyes are used when polyester is used, acidic dyes are used when polyamide is used, cationic dyes are used when thermoplastic polyacrylonitrile is used, acidic dyes and modified polyolefins are used when thermoplastic polyurethane is used.
  • a cationic dye, a disperse dye in the case of using polyvinyl chloride, and a disperse dye in the case of using a cellulose derivative can be preferably used, but are not limited thereto.
  • polyester fiber as the chemical fiber
  • disperse dye when using polyamide fiber, acidic dye, when using polyacrylonitrile fiber, cationic dye, when using cellulose fiber, disperse dye, cellulose
  • reactive dyes or direct dyes can be suitably used, but the present invention is not limited to these.
  • reactive dyes or direct dyes when cotton is used, acidic dyes when silk is used, reactive dyes or direct dyes when hemp is used, and acidic dyes when wool is used can be suitably used. However, it is not limited to these.
  • the dye concentration and dyeing temperature there is no particular limitation on the dye concentration and dyeing temperature, and a known method can be suitably employed. If necessary, scouring may be performed before the dyeing process, or reduction cleaning may be performed after the dyeing process.
  • the spun yarn obtained by the present invention and the fiber structure comprising the spun yarn are excellent in heat retention, quick drying and iron heat resistance as well as light weight. Therefore, women's clothing, men's clothing, lining, underwear, down, vest, inner, outerwear and other general clothing uses, windbreakers, outdoor wear, ski wear, golf wear, swimwear and other sports clothing use, futon side, futon Covers, blankets, blankets, blanket covers, pillowcases, sheets and other bedding applications, tablecloths, curtains, tile carpets, household rugs, automobile mats, interior applications, belts, bags, sewing threads, sleeping bags, tents , Materials such as ropes, curing nets, filter cloths, narrow tapes, braids, upholstery, etc., but are not limited thereto.
  • the raw material of the polymethylpentene fiber and the properties of the fiber were calculated by the methods A to K.
  • MFR MFR (g / 10 min) was measured under the conditions of a measurement temperature of 260 ° C. and a load of 5.0 kg according to ASTM D1238-10 using a polymethylpentene resin as a sample. The measurement was performed 3 times per sample, and the average value was defined as MFR.
  • the water content (ppm) was measured using a trace moisture measuring device AQ-2000 and a moisture vaporizer EV-2000 manufactured by Hiranuma Sangyo. After putting the sample into the moisture vaporizer, the temperature of the heating furnace was measured at 180 ° C., and the flow rate of dry nitrogen gas was measured at 0.2 L / min. In addition, the measurement was performed 3 times per sample, and the average value was defined as the moisture content.
  • the composite ratio was calculated from the weight of the polymethylpentene resin used as a raw material for the polymethylpentene fiber and the weight of the thermoplastic resin.
  • the specific gravity was calculated according to JIS L1015: 2010 (chemical fiber staple test method) 8.14.1 (floating and sinking method) using the polymethylpentene fiber obtained in the example as a sample. The measurement was performed 3 times per sample, and the average value was defined as the specific gravity.
  • Average fiber length Average fiber length (mm) was obtained by using polymethylpentene fibers obtained in the examples as samples, JIS L1015: 2010 (chemical fiber staple test method) 8.4.1 (staple diagram method (A method)) It calculated according to. The measurement was performed 20 times per sample, and the average value was defined as the average fiber length.
  • the single yarn fineness (dtex) was calculated according to JIS L1015: 2010 (chemical fiber staple test method) 8.5.1 (Method A) using the polymethylpentene fiber obtained in the example as a sample. . In addition, the measurement was performed 3 times per sample, and the average value was defined as the single yarn fineness.
  • H. Strength, Elongation Strength (cN / dtex) and elongation (%) were measured in accordance with JIS L1015: 2010 (chemical fiber staple test method) 8.7.1 using polymethylpentene fibers obtained in the examples as samples. Calculated.
  • the tensile test was carried out using an autograph AG-50NISMS type manufactured by Shimadzu Corporation under the conditions of a grip interval of 20 mm and a tensile speed of 20 mm / min.
  • the initial tensile resistance (cN / dtex) was calculated according to JIS L1015: 2010 (chemical fiber staple test method) 8.11, using the polymethylpentene fiber obtained in the examples as a sample. Measurement was performed in the same manner as in H above to draw a load-elongation curve, and the maximum point of load change with respect to elongation change was determined near the origin of this curve, and the method described in JIS L1015: 2010 (chemical fiber staple test method) 8.11 The initial tensile resistance was calculated using the formula.
  • J. et al. Crimp number The number of crimps (crest / 25 mm) was calculated according to JIS L1015: 2010 (chemical fiber staple test method) 8.12.1 using the polymethylpentene fiber obtained in the example as a sample.
  • Crimp rate (%) was calculated according to JIS L1015: 2010 (chemical fiber staple test method) 8.12.2 using the polymethylpentene fiber obtained in the example as a sample.
  • the fiber characteristics of the spun yarn were calculated by the methods L to S.
  • Blend ratio was calculated from the weight of the polymethylpentene fiber used as the raw material for the spun yarn and the weight of the chemical fiber or natural fiber.
  • the English cotton count (count) was calculated according to JIS L1095: 2010 (general spun yarn test method) 9.4.2 using the spun yarn obtained in the example as a sample. In addition, the measurement was performed 3 times per sample, and the average value was defined as the single yarn fineness.
  • the initial tensile resistance (cN / dtex) was calculated according to JIS L1095: 2010 (general spun yarn test method) 9.13 using the spun yarn obtained in the example as a sample. Measurement was performed in the same manner as in P above to draw a load-elongation curve, and the maximum point of load change with respect to elongation change was determined near the origin of this curve, and the method described in JIS L1095: 2010 (General spinning yarn test method) 9.13 The initial tensile resistance was calculated using the formula.
  • the number of twists The number of twists (times / 25.4 mm) was calculated according to JIS L1095: 2010 (general spun yarn test method) 9.15.1 (Method A) using the spun yarn obtained in the example as a sample. .
  • twisting coefficient K was calculated by the following formula using the twist number T (times / 25.4 mm) calculated in R and the English cotton count N (count) calculated in O.
  • the number of fluff was calculated according to JIS L1095: 2010 (general spun yarn test method) 9.22 (method B) using the spun yarn obtained in the example as a sample.
  • the number of fluff was measured using F-INDEX TESTER manufactured by Shikishima Techno under the conditions of a sample length of 10 m and a yarn speed of 30 m / min, and the number of fluff of 3 mm or more was calculated. The measurement was performed 10 times per sample, and the average value was defined as the number of fluff.
  • the fabric characteristics of the spun yarn were calculated by the method of U to AF.
  • the apparent specific gravity was measured in accordance with JIS L1096: 2010 (fabric and knitted fabric test method) 8.11, using the plain fabric obtained in the examples as a sample. The measurement was performed three times for each sample, and the average value was the apparent specific gravity.
  • Thermal insulation rate (%) is based on JIS L1096: 2010 (fabric and knitted fabric test method) 8.27.1 (Method A (constant temperature method)) using the plain woven fabric obtained in the examples as a sample. It was measured.
  • Drying time (minutes) was measured according to JIS L1096: 2010 (fabric and knitted fabric test method) 8.25 using the plain fabric obtained in the examples as a sample.
  • polyester fiber is used as the chemical fiber
  • Japan is a disperse dye.
  • Kayalon Polyester Black EX-SF200 manufactured by Kayaku was used.
  • the plain fabric was dyed with a dyeing solution added with 8% by weight of a dye and adjusted to pH 5.0, under conditions of a bath ratio of 1: 100 and a dyeing time of 60 minutes.
  • the dyeing temperature was 100 ° C. for PLA, PPT, and CAP, and 130 ° C. for PET and polyester fibers.
  • the apparent specific gravity of a plain woven fabric calculated by U was used as an indicator of lightness.
  • the apparent specific gravity is “less than 0.25” A, “0.25 or more and less than 0.30” is B, “0.30 or more and less than 0.35” is C, “0.35 or more” is D, and “0 .25 or more and less than 0.30 "was regarded as passing.
  • Heat retention The heat retention rate of the plain woven fabric calculated by V was used as an index of heat retention.
  • the heat retention rate is “18% or more” A, “14% or more but less than 18%” B, “10% or more but less than 14%” C, “less than 10%” D, “14% or more but less than 18%” B or more of was regarded as passing.
  • Iron heat resistance The iron temperature of the plain woven fabric calculated by the above X was used as an index of iron heat resistance. Iron temperature is “180 ° C. to 210 ° C.” A, “160 ° C. to 170 ° C.” B, “140 ° C. to 150 ° C.” C, “130 ° C.” is D, and “160 ° C. to 170 ° C.” B or higher of “° C. or lower” was regarded as acceptable.
  • L * value of plain fabric dyed with Y was used as an index of color developability.
  • L * The value is “less than 40” as A, “40 or more but less than 50” as B, “50 or more but less than 60” as C, “60 or more” as D, and “40 or more but less than 50” as B or more as acceptable. .
  • Example The sensory test by 10 subjects was implemented about the plain fabric obtained by the Example. In the sensory test, the softness and quality of the plain fabric are evaluated by tentacles. “Excellent” is A, “Excellent” is B, “Normal” is C, “Inferior” is D, “Excellent” B or more "
  • the number of fluffs of the spun yarn obtained in the example was used as an index of fluffing.
  • the number of fluff is "30 / less than 10m" A, "30 / 10m or more but less than 50 / 10m” B, "50 / 10m or more but less than 70 / 10m” C, "70 / 10m or more” Was set to D, and B or more of “30/10 m or more and less than 50/10 m” was determined to be acceptable.
  • Example 1 Pellets of polymethylpentene (PMP) (“DX820” manufactured by Mitsui Chemicals, melting point 232 ° C., MFR 180 g / 10 min) are vacuum-dried at 95 ° C. for 12 hours, and then supplied to an extruder type melt spinning machine for melting and spinning.
  • a spun yarn was obtained by discharging from a spinneret (discharge hole diameter 0.3 mm, discharge hole length 0.6 mm, hole number 780, round hole) at a temperature of 280 ° C. The spun yarn is cooled with a cooling air of 20 ° C. and a cooling speed of 25 m / min.
  • the oil agent is applied and converged by an oiling device, taken up by a roller rotating at 1000 m / min, and another spinning spindle and 36 pieces.
  • the undrawn yarn was obtained by swinging it into the can and storing it. Thirty cans in which undrawn yarns were stored were lined up and 30 undrawn yarns were lined up, leading to a warm water bath at 90 ° C. and drawn at a draw ratio of 2.4 times.
  • the crimper is crimped with a crimper of about 10 crests / 25 mm, dried at 130 ° C., and then applied with 0.5% by mass of the finishing oil to the fiber by a spray method.
  • the polymethylpentene fiber was obtained by cutting to 64 mm.
  • the resulting polymethylpentene fiber was put into a card machine to make a sliver, and then 8 slivers were mixed with a drawing machine. Thereafter, roving was performed with a roving machine to obtain roving with a twist number of 0.5 times / 25.4 mm. This roving was supplied to a fine spinning machine to obtain a spun yarn with 18 twists / 25.4 mm and 20 English cotton count. Using the spun yarn thus obtained for warp and weft, a plain woven fabric having a warp density of 70 / 25.4 mm and a weft density of 70 / 25.4 mm was produced.
  • Table 1 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Since it is a woven fabric using spun yarn made of low specific gravity polymethylpentene fiber, it was extremely excellent in lightness. It was extremely excellent in heat retention and quick-drying, and also excellent in iron heat resistance. In addition, the texture was high in flexibility, extremely excellent quality, few occurrences of fluff, and the level of fluff was acceptable.
  • Example 2 A polymethylpentene fiber, a spun yarn, and a plain fabric were produced in the same manner as in Example 1 except that the twist coefficient was changed as shown in Table 1.
  • Table 1 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Even when the twisting coefficient was changed, it was extremely excellent in lightness, heat retention and quick drying, and further excellent in iron heat resistance. Moreover, compared with Example 1, although the increase in the number of fluff is seen when making a twist coefficient small, it is a pass level, and when a twist coefficient is made large, a plain fabric does not harden
  • Example 6 A polymethylpentene fiber, spun yarn and plain fabric were produced in the same manner as in Example 1 except that the single yarn fineness was changed as shown in Table 1. The evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics are shown in Table 1. Compared to Example 1, in Comparative Example 10, although the single yarn fineness was reduced, the lightness, heat retention, and quick drying were improved. However, the increase in the number of fluffs did not reach the acceptable level. In Example 6, all fabric characteristics were acceptable levels.
  • Example 7 In Examples 7 and 8, the cut length when cutting the polymethylpentene fiber was 38 mm and 120 mm, respectively, and in Examples 9 and 10, the number of crimps when crimping the polymethylpentene fiber was about 5 peaks / A polymethylpentene fiber, a spun yarn, and a plain woven fabric were produced in the same manner as in Example 1 except that the width was changed to 25 mm and about 25 crests / 25 mm.
  • Table 2 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Even when the average fiber length and the number of crimps were changed, all the fabric characteristics were acceptable levels.
  • Example 11 and 12 Polymethylpentene fibers, spun yarns and plain fabrics were produced in the same manner as in Example 1 except that the English cotton count was changed to 10th and 100th, respectively, during spinning.
  • Table 2 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Compared with Example 1, in Example 11, although the English cotton count was reduced, the lightness was slightly lowered, but it was a pass level. Regarding other fabric characteristics, both Examples 11 and 12 were acceptable levels.
  • Example 13 Except that the spinneret was changed to a Y-type die (slit width 0.08 mm, slit length 0.2 mm, discharge hole length 0.6 mm, number of holes 780, Y hole) in Example 7, the same as in Example 1 Polymethylpentene fiber, spun yarn and plain fabric were prepared.
  • Table 2 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics.
  • the fiber cross section was changed to the Y cross section, so that the heat retaining property and quick drying property were improved.
  • the iron heat resistance was also good, and the lightness and texture were extremely excellent.
  • the fuzz was also acceptable.
  • Example 14 to 21 Polymethylpentene fiber, spun yarn and plain fabric were produced in the same manner as in Example 1 except that pellets made of polymethylpentene resin and thermoplastic resin produced by the following method were used and the spinning temperature was changed.
  • PMP polymethylpentene
  • DX820 manufactured by Mitsui Chemicals, melting point 232 ° C., MFR 180 g / 10 min
  • thermoplastic resin 10 wt% thermoplastic resin 10 wt%
  • kneading temperature 260 using a biaxial extruder Kneading was performed at 0 ° C.
  • the strand discharged from the biaxial extruder was water-cooled and then cut into a length of about 5 mm with a pelletizer to obtain a pellet.
  • Example 14 as a thermoplastic resin, polylactic acid (PLA) (melting point: 168 ° C., weight average molecular weight: 145,000), and in Example 15, polyethylene terephthalate (PET) (Toray “T701T”, melting point: 257 ° C.), Example No.
  • PLA polylactic acid
  • PET polyethylene terephthalate
  • Example 16 is polypropylene terephthalate (PPT) (“Corterra CP513000” manufactured by Shell, melting point 225 ° C.), Nylon 6 (N6) (Toray “Amilan CM1017”, melting point 225 ° C.) is used in Example 17, Nylon 66 (N66 ) (Toray “CM3001-N”, melting point 265 ° C.),
  • Example 19 is polymethyl methacrylate (PMMA) (Mitsubishi Rayon “Acrypet VH000”, melting point 140 ° C.)
  • Example 20 is maleic anhydride-modified polypropylene ( MPP) ("Yomex 1010” manufactured by Sanyo Chemical Industries, melting point 1 2 ° C.), was used in Example 21 in a cellulose acetate propionate (CAP) (manufactured by Eastman Chemical "CAP-482-20", melting point 195 ° C.).
  • the spinning temperature was 260 ° C. in Examples 14, 16, 17, 19 to 21, and 290 ° C. in
  • Table 3 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics.
  • the lightness of the plain woven fabric was acceptable without impairing the lightness of the polymethylpentene resin.
  • all of the heat retaining properties, quick drying properties and fuzzing were acceptable levels.
  • the melting point of the thermoplastic resin was lower than 200 ° C., but since the thermoplastic resin was finely dispersed in the polymethylpentene resin, the iron heat resistance was also acceptable.
  • thermoplastic resin having high color developability is finely dispersed in the polymethylpentene resin having a low refractive index, the entire plain woven fabric is dyed uniformly and clearly, and the color developability is also excellent. In addition, the texture was very flexible and extremely excellent.
  • Example 30 Polymethylpentene (PMP) (Mitsui Chemicals “DX820”, melting point 232 ° C., MFR 180 g / 10 min) 80% by weight, carbon black 20% by weight, kneading temperature 260 ° C. using a biaxial extruder Kneading was performed.
  • the strand discharged from the biaxial extruder was water-cooled and then cut into a length of about 5 mm by a pelletizer to obtain a master batch.
  • the pellets and master batch of polymethylpentene (PMP) (Mitsui Chemicals “DX820”, melting point 232 ° C., MFR 180 g / 10 min) were vacuum-dried at 95 ° C. for 12 hours, and then discharged from the main feeder of the extruder type melt spinning machine.
  • Polymethylpentene fiber, spun yarn, and plain fabric were produced in the same manner as in Example 1 except that methylpentene was supplied and a master batch was supplied from the sub-feeder.
  • the blending ratio of 97.5% by weight of polymethylpentene and 2.5% by weight of the master batch was set to 0.5% by weight of carbon black in the obtained polymethylpentene fiber.
  • the blending ratio was 75% by weight of polymethylpentene, 25% by weight of the master batch, and 5% by weight of carbon black in the resulting polymethylpentene fiber.
  • Table 3 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Since an original fiber made of carbon black was used as the polymethylpentene fiber, the color development of the spun yarn was extremely good. Regarding the other fabric characteristics, both Examples 30 and 31 were acceptable levels.
  • Example 22 to 29 Using the polymethylpentene fiber obtained in Example 1, in Examples 22 to 24, polyethylene terephthalate fiber (round cross section, average fiber length 51 mm, single yarn fineness 1.7 dtex), in Example 25 viscose rayon fiber ( Average fiber length 51 mm, single yarn fineness 1.7 dtex), Examples 26-28 cotton (rice cotton, average fiber length 25.4 mm, single yarn fineness 2.3 dtex), Example 29 wool (merino wool, average fiber) 64 mm long, single yarn fineness 5.5 dtex). Polymethylpentene fiber and chemical fiber or natural fiber were put into a card machine at a blending ratio shown in Table 4 to form a sliver, and then a spun yarn and a plain fabric were produced in the same manner as in Example 1.
  • Table 4 shows the evaluation results of the fiber properties of the obtained polymethylpentene fibers, the fiber properties of the spun yarn, and the fabric properties.
  • Examples 22 to 24 as the blending ratio of the polyethylene terephthalate fiber increased, the apparent specific gravity increased, the heat retention ratio decreased, and the drying time tended to increase, but the lightness, heat retention, quick drying property, The iron heat resistance, texture, and fluffing were all acceptable.
  • the L * value decreased with an increase in the blend ratio of the polyethylene terephthalate fiber, and the color developability improved.
  • the blend ratio of cotton was observed in all fabric characteristics, which was acceptable levels. Also when blended with viscose rayon in Example 25 and wool in Example 29, all fabric properties were acceptable levels.
  • Examples 32 to 34 After the polymethylpentene fiber obtained in Example 1 and the polyethylene terephthalate fiber (round cross section, average fiber length 51 mm, single yarn fineness 1.7 dtex) were put into a card machine at a blending ratio shown in Table 5 to make a sliver A spun yarn and a plain fabric were produced in the same manner as in Example 1.
  • Table 5 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. As the blending ratio of polyethylene terephthalate fiber decreases, the apparent specific gravity decreases, the heat retention rate improves, and the drying time tends to be shortened. All were acceptable levels.
  • Example 35 to 40 After the polymethylpentene fiber obtained in Example 31 and the polyethylene terephthalate fiber (round cross section, average fiber length 51 mm, single yarn fineness 1.7 dtex) were put into a card machine at a blending ratio shown in Table 5 to make a sliver A spun yarn and a plain fabric were produced in the same manner as in Example 1.
  • Table 5 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Since an original fiber made of carbon black was used as the polymethylpentene fiber, the color development of the spun yarn was extremely good. In addition, as the blending ratio of polyethylene terephthalate fibers decreases, the apparent specific gravity decreases, the heat retention rate improves, and the drying time tends to be shortened, lightness, heat retention, quick drying, iron heat resistance, texture, It was a pass level in all of the fuzz.
  • Table 5 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics.
  • Comparative Examples 1 and 2 the lightness, heat retention, quick drying, and iron heat resistance were acceptable levels.
  • Comparative Example 1 since the single yarn fineness was small, the occurrence of fluff was extremely large, and the texture was very poor.
  • Comparative Example 2 since the single yarn fineness was large, the plain fabric lacked flexibility and had a very inferior texture.
  • Table 5 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics.
  • Comparative Examples 3 and 4 the lightness, heat retention, quick drying and iron heat resistance were acceptable levels.
  • Comparative Example 3 since the twisting coefficient was small, the occurrence of fluff was observed, and the texture was slightly inferior.
  • Comparative Example 4 since the twist coefficient was large, the plain woven fabric was cured, and the texture was not flexible. In addition, a lot of fluff was observed, and it did not reach a passing level.
  • Comparative Examples 5 to 8 In Comparative Example 5, polypropylene fiber (round cross section, average fiber length 51 mm, single yarn fineness 1.7 dtex), in Comparative Example 6, polyethylene terephthalate fiber (round cross section, average fiber length 51 mm, single yarn fineness 1.7 dtex), Comparative Example 7 In Example 1, cotton (rice cotton, average fiber length 25.4 mm, single yarn fineness 2.3 dtex) was used in Comparative Example 8, and wool (merino wool, average fiber length 64 mm, single yarn fineness 5.5 dtex) was used. Similarly, spun yarn and plain fabric were produced.
  • Table 5 shows the evaluation results of the fiber characteristics and fabric characteristics of the obtained spun yarn.
  • the comparative example 5 showed extremely excellent lightness, heat retention, quick drying, and texture, the iron heat resistance was extremely low due to the low melting point of polypropylene.
  • the fluffing did not reach a passing level.
  • Comparative Example 6 the properties other than lightness were excellent, but the specific gravity of polyethylene terephthalate was high, so that the lightness was lacking.
  • Comparative Example 7 since the specific gravity of cotton was high, the weight was inferior, and the heat conductivity was high, so that the heat retaining property was insufficient.
  • the drying time was long, and the quick drying property was slightly inferior, and the fluffing did not reach a passing level.
  • Comparative Example 8 since the specific gravity of wool was high, the lightness was low, the drying time was extremely long, and the quick drying property was inferior. In addition, the fluffing did not reach a passing level.
  • a pressure melter type melt spinning machine After drying, it is supplied to a pressure melter type melt spinning machine at a blending ratio of 50% by weight of polymethylpentene and 50% by weight of polypropylene and melted separately, and a spinneret (discharge hole diameter 0.3 mm, A spun yarn was obtained by discharging from a discharge hole length of 0.6 mm, a hole number of 780, a radial type round hole: 16 divisions).
  • the spun yarn is cooled with a cooling air of 20 ° C. and a cooling speed of 25 m / min.
  • the oil agent is applied and converged by an oiling device, taken up by a roller rotating at 1000 m / min, and another spinning spindle and 36 pieces.
  • the undrawn yarn was obtained by swinging it into the can and storing it. Thirty cans in which undrawn yarns were stored were lined up and 30 undrawn yarns were lined up, leading to a warm water bath at 90 ° C. and drawn at a draw ratio of 2.4 times. Subsequently, the crimper is crimped with a crimper of about 10 crests / 25 mm, dried at 130 ° C., and then applied with 0.5% by mass of the finishing oil to the fiber by a spray method. After cutting to 100 mm, a split type composite fiber composed of polymethylpentene fibers, that is, polymethylpentene and polypropylene, and capable of 16 splitting was obtained. The single yarn fineness of the split type composite fiber was 3.3 dtex.
  • the resulting split composite fiber was put into a card machine to make a sliver, and then 8 slivers were mixed with a drawing machine. Thereafter, roving was performed with a roving machine to obtain roving with a twist number of 0.5 times / 25.4 mm. The roving was supplied to a spinning machine to obtain a spun yarn having a twist number of 4 / 25.4 mm and an English cotton count of 20th. Subsequently, the obtained spun yarn is run at a speed of 0.5 m / min between rollers having a V-shaped spiral groove, and a high pressure liquid flow jetting apparatus having a plurality of jetting holes having a nozzle diameter of 0.5 mm from above.
  • the spun yarn after the split treatment was composed of polymethylpentene fiber having a single yarn fineness of 0.2 dtex and polypropylene fiber having a single yarn fineness of 0.2 dtex in a weight ratio of 50:50.
  • the spun yarn obtained by the division treatment as warp and weft, a plain woven fabric having a warp density of 70 / 25.4 mm and a weft density of 70 / 25.4 mm was produced.
  • Table 5 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Lightness, heat retention, and quick drying were acceptable levels. However, since the single yarn fineness of the polymethylpentene fiber and the polypropylene fiber constituting the spun yarn is small, the occurrence of fluff was extremely large and the texture was very inferior. In addition, since the single yarn fineness is small, the heat of the iron is easily transmitted to the spun yarn, and as a result of being strongly influenced by polypropylene which is inferior in heat resistance to polymethylpentene, the iron heat resistance is extremely low.
  • a spun yarn was obtained by discharging from a discharge hole length of 0.6 mm, a hole number of 780, a core-sheath type round hole, a core: polypropylene, and a sheath: polymethylpentene).
  • the spun yarn is cooled with a cooling air of 20 ° C. and a cooling speed of 25 m / min.
  • the oil agent is applied and converged by an oiling device, taken up by a roller rotating at 1000 m / min, and another spinning spindle and 36 pieces.
  • the undrawn yarn was obtained by swinging it into the can and storing it. Thirty cans in which undrawn yarns were stored were lined up and 30 undrawn yarns were lined up, leading to a warm water bath at 90 ° C. and drawn at a draw ratio of 2.4 times.
  • the crimper is crimped with a crimper of about 10 crests / 25 mm, dried at 130 ° C., and then applied with 0.5% by mass of the finishing oil to the fiber by a spray method. Cut to 51 mm to obtain a polymethylpentene fiber, that is, a core-sheath type composite fiber made of polymethylpentene and polypropylene.
  • Table 5 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Lightness, heat retention, and quick drying were acceptable levels. However, since the heat resistance of the polypropylene disposed in the core portion is low, a shape change was observed on the surface of the fabric after the iron was applied, and the iron heat resistance did not reach an acceptable level. In addition, the spun yarn obtained had a very inferior texture with the occurrence of fluff due to sheath cracks being extremely large.
  • the spun yarn of the present invention is excellent in heat retention, quick drying and iron heat resistance as well as lightness. Therefore, it can be suitably used as a fiber structure such as a woven or knitted fabric or a nonwoven fabric.

Abstract

The present invention addresses the problem of providing a spun yarn which exhibits excellent lightness, heat retaining properties, rapid drying properties, and heat resistance in ironing and which can be suitably employed as a fiber structure such as a woven, knitted or nonwoven fabric. A spun yarn which contains a polymethylpentene fiber that comprises a polymethylpentene-based resin as a main component and that has a single fiber fineness of 1 to 20dtex and which has a twist coefficient (K) of 1.3 to 6.5 as calculated according to formula (I): K = T ÷ N1/2 [wherein T is a twist number (twists/25.4mm) and N is an English cotton count].

Description

ポリメチルペンテン繊維を含有してなる紡績糸およびそれからなる繊維構造体Spun yarn containing polymethylpentene fiber and fiber structure comprising the same
 本発明は、ポリメチルペンテン繊維を含有してなる紡績糸に関するものである。より詳しくは、軽量性とともに保温性、速乾性、アイロン耐熱性に優れる紡績糸に関するものである。 The present invention relates to a spun yarn comprising polymethylpentene fiber. More specifically, the present invention relates to a spun yarn excellent in heat retention, quick drying, and iron heat resistance as well as light weight.
 従来より軽量で保温性の高い織編物が要望されており、これまでに種々の紡績糸が提案されている。紡績糸の軽量化に関する一般的な方法として、中空部や繊維間空隙の形成が挙げられる。中空部や繊維間空隙は空気を内包するため、軽量性に加えて、保温性を発現させることが可能である。 There has been a demand for woven and knitted fabrics that are lighter and have higher heat retention than before, and various spun yarns have been proposed so far. As a general method for reducing the weight of the spun yarn, formation of a hollow portion or an interfiber gap can be mentioned. Since the hollow portion and the inter-fiber gap contain air, it is possible to develop heat retaining properties in addition to light weight.
 特許文献1では、中空のポリエステル繊維からなる紡績糸が提案されている。この提案では、中空部によって、紡績糸へ軽量性と保温性を付与している。 Patent Document 1 proposes a spun yarn made of a hollow polyester fiber. In this proposal, the hollow portion imparts lightness and heat retention to the spun yarn.
 特許文献2では、高収縮性のポリオレフィン繊維からなる紡績糸が提案されている。この提案では、熱処理によって繊維を収縮させ、繊維間空隙を形成することで紡績糸へ軽量性を付与している。 Patent Document 2 proposes a spun yarn made of a highly shrinkable polyolefin fiber. In this proposal, the fiber is shrunk by heat treatment to form a gap between fibers, thereby imparting light weight to the spun yarn.
 特許文献3では、親和性の低い2種以上の熱可塑性樹脂からなる分割型複合繊維を用いた紡績糸が提案されている。この提案では、ともに低比重であるポリプロピレンとポリメチルペンテンを1:1の比率で複合後、分割することで単糸繊度約0.2デニール(約0.22dtex)の紡績糸を得たことが開示されている。 Patent Document 3 proposes a spun yarn using split composite fibers composed of two or more thermoplastic resins having low affinity. In this proposal, a low-specific gravity polypropylene and polymethylpentene were combined at a ratio of 1: 1 and then divided to obtain a spun yarn having a single yarn fineness of about 0.2 denier (about 0.22 dtex). It is disclosed.
特開2007-70768号公報JP 2007-70768 A 特開平5-44108号公報Japanese Patent Laid-Open No. 5-44108 特開平3-269126号公報JP-A-3-269126
 上記特許文献1記載の方法では、同文献で開示されたポリエステル繊維の比重が1.38と高いため、軽量性を向上させるには中空率を高くする必要があった。しかしながら、中空率が高い場合には、紡績糸とするまでの工程で中空部の割れや潰れが生じるため、軽量性の付与には限界があった。 In the method described in Patent Document 1, since the specific gravity of the polyester fiber disclosed in the same document is as high as 1.38, it is necessary to increase the hollow ratio in order to improve the lightness. However, when the hollow ratio is high, cracking and crushing of the hollow portion occurs in the process up to the spun yarn, so there is a limit to imparting light weight.
 特許文献2の方法では、布帛自身が収縮するために織編物組織が密となって硬化しやすく、軽量性や柔軟性が損なわれてしまうという課題があった。また、特許文献2で開示されたポリオレフィン繊維は融点が低いため、アイロン耐熱性が低く、一般衣料分野での展開用途が限られるものであった。 In the method of Patent Document 2, since the fabric itself contracts, the knitted and knitted fabric structure becomes dense and easily hardens, and the lightness and flexibility are impaired. Moreover, since the polyolefin fiber disclosed by patent document 2 has low melting | fusing point, iron heat resistance is low, and the expansion | deployment use in the general clothing field was restricted.
 特許文献3の方法では、得られる紡績糸を構成する繊維の単糸繊度が小さいために、毛羽等の発生により極めて品位が低下してしまうという課題があった。 In the method of Patent Document 3, since the single yarn fineness of the fibers constituting the obtained spun yarn is small, there is a problem that the quality is extremely deteriorated due to generation of fluff and the like.
 本発明の課題は、上記従来技術の問題点を解決し、軽量性、保温性に加えて速乾性、アイロン耐熱性にも優れ、織編物や不織布などの繊維構造体として好適に採用できる紡績糸を提供することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art, and is excellent in quick drying and iron heat resistance in addition to lightness and heat retention, and can be suitably used as a fiber structure such as woven or knitted fabric. Is to provide.
 上記の本発明の課題は、構成成分の60重量%以上がポリメチルペンテン系樹脂であり、かつ単糸繊度が2~20dtexであるポリメチルペンテン繊維を含有してなり、撚り数をT(回/25.4mm)、英式綿番手をNとしたとき、下記式(I)により算出される撚り係数Kが1.3~6.5である紡績糸によって解決することができる。
(I) K=T÷N1/2
 また、前記ポリメチルペンテン繊維は、ポリメチルペンテン系樹脂中にポリメチルペンテン系樹脂とは異なる熱可塑性樹脂を含んでいてもよく、ポリメチルペンテン繊維の平均繊維長が10~100mmであることが好適に採用できる。
The problem of the present invention is that the composition component comprises polymethylpentene resin in which 60% by weight or more of the component is a polymethylpentene resin and the single yarn fineness is 2 to 20 dtex, and the number of twists is T (times). /25.4 mm), where N is the English cotton count, the problem can be solved by a spun yarn having a twist coefficient K calculated by the following formula (I) of 1.3 to 6.5.
(I) K = T ÷ N 1/2
The polymethylpentene fiber may contain a thermoplastic resin different from the polymethylpentene resin in the polymethylpentene resin, and the average fiber length of the polymethylpentene fiber is 10 to 100 mm. It can be suitably employed.
 さらには、前記ポリメチルペンテン繊維と、化学繊維または天然繊維とを混紡してなる紡績糸であってもよく、前記ポリメチルペンテン繊維を(A)とし、前記化学繊維または前記天然繊維を(B)としたとき、(A)と(B)との混紡比率(重量比)がA/B=85/15~97/3であること、前記紡績糸の見掛け比重が0.83~1.2であること、前記化学繊維または前記天然繊維の融点または分解温度が200℃以上であること、がそれぞれ好ましい。前記化学繊維が、ポリエステル系繊維、ポリアミド系繊維、ポリアクリロニトリル系繊維、セルロース繊維であること、前記天然繊維が、綿、絹、麻、羊毛であることも好適に採用できる。 Furthermore, it may be a spun yarn obtained by blending the polymethylpentene fiber and a chemical fiber or a natural fiber. The polymethylpentene fiber is (A), and the chemical fiber or the natural fiber is (B ), The blend ratio (weight ratio) of (A) and (B) is A / B = 85/15 to 97/3, and the apparent specific gravity of the spun yarn is 0.83 to 1.2. It is preferable that the chemical fiber or the natural fiber has a melting point or decomposition temperature of 200 ° C. or higher. It can also be suitably employed that the chemical fiber is a polyester fiber, a polyamide fiber, a polyacrylonitrile fiber, or a cellulose fiber, and that the natural fiber is cotton, silk, hemp, or wool.
 また、上記のポリメチルペンテン繊維を含有する紡績糸は、繊維構造体の少なくとも一部に好適に用いることができる。 The spun yarn containing the polymethylpentene fiber can be suitably used for at least a part of the fiber structure.
 本発明によれば、軽量性とともに保温性、速乾性、アイロン耐熱性に優れる紡績糸を提供することができる。また、熱可塑性樹脂を含むポリメチルペンテン繊維を用いることによって、紡績糸へ発色性を付与することができる。本発明により得られる紡績糸は、織編物や不織布などの繊維構造体とすることで、一般衣料、スポーツ衣料、寝具、インテリア、資材などの幅広い用途において好適に用いることができる。 According to the present invention, it is possible to provide a spun yarn excellent in heat retention, quick drying property, and iron heat resistance as well as lightness. Further, by using a polymethylpentene fiber containing a thermoplastic resin, it is possible to impart color developability to the spun yarn. The spun yarn obtained by the present invention can be suitably used in a wide range of applications such as general clothing, sports clothing, bedding, interiors, and materials by using a fiber structure such as woven or knitted fabric.
 本発明の紡績糸は、構成成分の60重量%以上がポリメチルペンテン系樹脂であり、かつ単糸繊度が2~20dtexであるポリメチルペンテン繊維を含有してなり、撚り数をT(回/25.4mm)、英式綿番手をNとしたとき、下記式(I)により算出される撚り係数Kが1.3~6.5である。
(I) K=T÷N1/2
 本発明の紡績糸はポリメチルペンテン繊維を含有してなるものである。ポリオレフィン系樹脂の一種であるポリメチルペンテン系樹脂は、他のポリオレフィン系樹脂であるポリエチレンやポリプロピレンと同様に熱伝導率が低いため保温性に優れ、疎水性が高いため速乾性に優れる。さらに、ポリメチルペンテン系樹脂はポリエチレン、ポリプロピレンよりも比重が低く、極めて軽量性に優れている。また、他のポリオレフィン系樹脂よりも融点や軟化点が高く、耐熱性に優れるため、アイロンを使用することができ、一般衣料用途に加え、高温下で使用される用途への展開が可能である。そのため、構成成分としてポリメチルペンテン系樹脂を含むポリメチルペンテン繊維を含有せしめ、前記各要件を満たすことにより、軽量性とともに保温性、速乾性、アイロン耐熱性に優れた紡績糸を得ることができる。
The spun yarn of the present invention comprises polymethylpentene fiber in which 60% by weight or more of the constituent components is a polymethylpentene resin and the single yarn fineness is 2 to 20 dtex, and the number of twists is T (times / 25.4 mm), where the English cotton count is N, the twist coefficient K calculated by the following formula (I) is 1.3 to 6.5.
(I) K = T ÷ N 1/2
The spun yarn of the present invention contains polymethylpentene fiber. A polymethylpentene resin, which is a kind of polyolefin resin, is excellent in heat retention because of low thermal conductivity, as in the case of other polyolefin resins such as polyethylene and polypropylene, and is excellent in quick drying because of its high hydrophobicity. Furthermore, the polymethylpentene resin has a lower specific gravity than polyethylene and polypropylene and is extremely lightweight. In addition, it has a higher melting point and softening point than other polyolefin-based resins and is excellent in heat resistance, so it can be used for iron and can be used for high-temperature applications in addition to general clothing applications. . Therefore, by including polymethylpentene fiber containing a polymethylpentene resin as a constituent component and satisfying each of the above requirements, a spun yarn excellent in heat retention, quick-drying, and iron heat resistance can be obtained as well as light weight. .
 本発明において、構成成分の60重量%以上がポリメチルペンテン系樹脂であるポリメチルペンテン繊維とは、ポリメチルペンテン系樹脂を繊維中に60重量%以上含有するポリメチルペンテン繊維であることをいう。必要に応じて、前記ポリメチルペンテン繊維が、ポリメチルペンテン系樹脂中にポリメチルペンテン系樹脂とは異なる熱可塑性樹脂や各種の添加剤を含有してもよい。なお、ポリメチルペンテン繊維が、ポリメチルペンテン系樹脂中に、ポリメチルペンテン系樹脂とは異なる熱可塑性樹脂や各種の添加剤を含むとは、ポリメチルペンテン繊維が、ポリメチルペンテン系樹脂の他にポリメチルペンテン系樹脂とは異なる熱可塑性樹脂や各種の添加剤を含むことを示す。かかる場合でも、ポリメチルペンテン系樹脂の優れた軽量性を損なわないために、ポリメチルペンテン繊維は60重量%以上のポリメチルペンテン系樹脂を含有していることが必要である。 In the present invention, the polymethylpentene fiber in which 60% by weight or more of the constituent component is a polymethylpentene resin means a polymethylpentene fiber containing 60% by weight or more of the polymethylpentene resin in the fiber. . If necessary, the polymethylpentene fiber may contain a thermoplastic resin different from the polymethylpentene resin and various additives in the polymethylpentene resin. The polymethylpentene fiber contains a thermoplastic resin and various additives different from the polymethylpentene resin in the polymethylpentene resin. It shows that a thermoplastic resin different from polymethylpentene resin and various additives are included. Even in such a case, in order not to impair the excellent lightness of the polymethylpentene resin, the polymethylpentene fiber needs to contain 60% by weight or more of the polymethylpentene resin.
 本発明におけるポリメチルペンテン系樹脂としては、4-メチル-1-ペンテン系重合体が挙げられ、4-メチル-1-ペンテンの単独重合体であっても、4-メチル-1-ペンテンとその他のα-オレフィンとの共重合体であってもよい。これらその他のα-オレフィン(以下、単にα-オレフィンと称する場合もある)は、1種または2種以上で共重合することができる。 Examples of the polymethylpentene resin in the present invention include a 4-methyl-1-pentene polymer, and even if it is a homopolymer of 4-methyl-1-pentene, 4-methyl-1-pentene and others It may be a copolymer with an α-olefin. These other α-olefins (hereinafter sometimes simply referred to as α-olefins) can be copolymerized with one or more.
 これらα-オレフィンの炭素数は2~20であることが好ましく、α-オレフィンの分子鎖は直鎖状でも分岐鎖状でもよい。これらα-オレフィンの具体例として、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、3-エチル-1-ヘキセンなどが挙げられるが、これらに限定されない。 These α-olefins preferably have 2 to 20 carbon atoms, and the molecular chain of the α-olefin may be linear or branched. Specific examples of these α-olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, -Eicosene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 3-ethyl-1-hexene and the like.
 上記α-オレフィンの共重合率は、4-メチル-1-ペンテンとα-オレフィンの総モル数に対して20モル%以下であることが好ましい。α-オレフィンの共重合率が20モル%以下であれば、機械的特性や耐熱性が良好な紡績糸が得られるため好ましい。α-オレフィンの共重合率は15モル%以下であることがより好ましく、10モル%以下であることが更に好ましい。 The copolymerization rate of the α-olefin is preferably 20 mol% or less with respect to the total number of moles of 4-methyl-1-pentene and α-olefin. An α-olefin copolymerization rate of 20 mol% or less is preferred because a spun yarn having good mechanical properties and heat resistance can be obtained. The copolymerization ratio of α-olefin is more preferably 15 mol% or less, and further preferably 10 mol% or less.
 本発明におけるポリメチルペンテン系樹脂の融点は、200~250℃であることが好ましい。ポリメチルペンテン系樹脂の融点が200℃以上であれば、紡績糸の耐熱性が良好となるため好ましい。一方、ポリメチルペンテン系樹脂の融点が250℃以下であれば、溶融紡糸によって熱可塑性樹脂と複合化する際に製糸操業性が良好となるため好ましい。ポリメチルペンテン系樹脂の融点は210~245℃であることがより好ましく、220~240℃であることが更に好ましい。 The melting point of the polymethylpentene resin in the present invention is preferably 200 to 250 ° C. If the melting point of the polymethylpentene resin is 200 ° C. or higher, the heat resistance of the spun yarn is improved, which is preferable. On the other hand, if the melting point of the polymethylpentene resin is 250 ° C. or lower, it is preferable because the spinning operability is improved when it is combined with the thermoplastic resin by melt spinning. The melting point of the polymethylpentene resin is more preferably 210 to 245 ° C, and further preferably 220 to 240 ° C.
 本発明におけるポリメチルペンテン系樹脂は、副次的添加物を加えて種々の改質が行われたものであってもよい。副次的添加剤の具体例として、可塑剤、紫外線吸収剤、赤外線吸収剤、蛍光増白剤、離型剤、抗菌剤、核形成剤、熱安定剤、酸化防止剤、帯電防止剤、着色防止剤、調整剤、艶消し剤、消泡剤、防腐剤、ゲル化剤、ラテックス、フィラー、インク、着色料、染料、顔料、香料などが挙げられるが、これらに限定されない。これらの副次的添加物は単独で使用してもよく、複数を併用してもよい。 The polymethylpentene resin in the present invention may have been subjected to various modifications by adding secondary additives. Specific examples of secondary additives include plasticizers, ultraviolet absorbers, infrared absorbers, fluorescent brighteners, mold release agents, antibacterial agents, nucleating agents, thermal stabilizers, antioxidants, antistatic agents, coloring Examples include, but are not limited to, inhibitors, modifiers, matting agents, antifoaming agents, preservatives, gelling agents, latexes, fillers, inks, colorants, dyes, pigments, and fragrances. These secondary additives may be used alone or in combination.
 本発明で用いるポリメチルペンテン繊維は、ポリメチルペンテン系樹脂とは異なる熱可塑性樹脂(以下、単に熱可塑性樹脂と称することもある)を含んでいてもよい。ポリメチルペンテン系樹脂は透明性が高く、屈折率が低い樹脂であるため、熱可塑性樹脂を染色することによって、ポリメチルペンテン繊維へ発色性を付与することができるため好ましい。 The polymethylpentene fiber used in the present invention may contain a thermoplastic resin (hereinafter sometimes simply referred to as a thermoplastic resin) different from the polymethylpentene resin. Since polymethylpentene resin is a resin having high transparency and low refractive index, coloring property can be imparted to the polymethylpentene fiber by dyeing the thermoplastic resin, which is preferable.
 本発明における熱可塑性樹脂は、溶融紡糸によってポリメチルペンテン系樹脂と複合化することができ、染料によって染色することができれば、特に制限がなく、好適に採用できる。熱可塑性樹脂の具体例として、ポリエステル、ポリアミド、熱可塑性ポリアクリロニトリル、熱可塑性ポリウレタン、変性ポリオレフィン、ポリ塩化ビニル、セルロース誘導体などが挙げられるが、これらに限定されない。なかでも、ポリエステルやポリアミドは機械的特性に優れ、発色性も良好であるため好適に採用できる。なお、熱可塑性樹脂は1種のみを使用してもよく、複数を併用してもよい。 The thermoplastic resin in the present invention is not particularly limited and can be suitably used as long as it can be combined with a polymethylpentene resin by melt spinning and dyed with a dye. Specific examples of the thermoplastic resin include, but are not limited to, polyester, polyamide, thermoplastic polyacrylonitrile, thermoplastic polyurethane, modified polyolefin, polyvinyl chloride, and cellulose derivatives. Of these, polyesters and polyamides can be suitably used because they have excellent mechanical properties and good color developability. In addition, only 1 type may be used for a thermoplastic resin and multiple may be used together.
 ポリエステルの具体例として、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレートなどの芳香族ポリエステル、ポリ乳酸、ポリグリコール酸、ポリエチレンアジペート、ポリプロピレンアジペート、ポリブチレンアジペート、ポリエチレンサクシネート、ポリプロピレンサクシネート、ポリブチレンサクシネート、ポリエチレンセバケート、ポリプロピレンセバケート、ポリブチレンセバケート、ポリカプロラクトンなどの脂肪族ポリエステル、これらのポリエステルへ共重合成分を共重合させた共重合ポリエステルなどが挙げられるが、これらに限定されない。なかでも、ポリ乳酸は屈折率が低く、染色した場合の発色性が高いため好適に採用できる。 Specific examples of polyester include aromatic polyesters such as polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, polylactic acid, polyglycolic acid, polyethylene adipate, polypropylene adipate, polybutylene adipate, polyethylene succinate, polypropylene succinate , Polybutylene succinate, polyethylene sebacate, polypropylene sebacate, polybutylene sebacate, polycaprolactone, and other aliphatic polyesters, copolymer polyesters obtained by copolymerizing these polyesters with copolymer components, and the like. It is not limited. Among them, polylactic acid can be suitably employed because it has a low refractive index and high color developability when dyed.
 ポリエステルの共重合成分の具体例として、フタル酸、イソフタル酸、テレフタル酸、5-ナトリウムスルホイソフタル酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,2’-ビフェニルジカルボン酸、3,3’-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、アントラセンジカルボン酸などの芳香族ジカルボン酸、マロン酸、フマル酸、マレイン酸、コハク酸、イタコン酸、アジピン酸、アゼライン酸、セバシン酸、1,11-ウンデカンジカルボン酸、1,12-ドデカンジカルボン酸、1,14-テトラデカンジカルボン酸、1,18-オクタデカンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ダイマー酸などの脂肪族ジカルボン酸、および、カテコール、ナフタレンジオール、ビスフェノールなどの芳香族ジオール、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノールなどの脂肪族ジオールなどが挙げられるが、これらに限定されない。これらの共重合成分は1種のみを使用してもよく、2種以上を併用してもよい。 Specific examples of copolymerized components of polyester include phthalic acid, isophthalic acid, terephthalic acid, 5-sodium sulfoisophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,2′-biphenyldicarboxylic acid. Aromatic dicarboxylic acids such as 3,3'-biphenyldicarboxylic acid, 4,4'-biphenyldicarboxylic acid, anthracene dicarboxylic acid, malonic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, Sebacic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, 1,14-tetradecanedicarboxylic acid, 1,18-octadecanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid 1,4-cyclohexanedicarboxylic acid Aliphatic dicarboxylic acids such as dimer acid, and aromatic diols such as catechol, naphthalenediol, bisphenol, ethylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, diethylene glycol, polyethylene glycol, polypropylene glycol, neopentyl glycol, Examples include aliphatic diols such as cyclohexanedimethanol, but are not limited thereto. These copolymerization components may use only 1 type and may use 2 or more types together.
 ポリアミドの具体例として、ナイロン6T、ナイロン9T、ナイロン10Tなどの芳香族ポリアミド、ナイロン4、ナイロン6、ナイロン11、ナイロン12、ナイロン46、ナイロン410、ナイロン66、ナイロン610などの脂肪族ポリアミド、これらのポリアミドへ共重合成分を共重合させた共重合ポリアミドなどが挙げられるが、これらに限定されない。 Specific examples of polyamides include aromatic polyamides such as nylon 6T, nylon 9T, and nylon 10T, aliphatic polyamides such as nylon 4, nylon 6, nylon 11, nylon 12, nylon 46, nylon 410, nylon 66, and nylon 610, and the like. Examples thereof include, but are not limited to, a copolymerized polyamide obtained by copolymerizing a copolymer component with the polyamide.
 ポリアミドの共重合成分の具体例として、メタフェニレンジアミン、パラフェニレンジアミン、メタキシリレンジアミン、パラキシリレンジアミンなどの芳香族ジアミン、1,2-エチレンジアミン、1,3-トリメチレンジアミン、1,4-テトラメチレンジアミン、1,5-ペンタメチレンジアミン、2-メチル-1,5-ペンタメチレンジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、2-メチル-1,8-オクタメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、1,13-トリデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、1,18-オクタデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、ピペラジン、シクロヘキサンジアミンなどの脂肪族ジアミン、および、フタル酸、イソフタル酸、テレフタル酸、5-ナトリウムスルホイソフタル酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,2’-ビフェニルジカルボン酸、3,3’-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、アントラセンジカルボン酸などの芳香族ジカルボン酸、マロン酸、フマル酸、マレイン酸、コハク酸、イタコン酸、アジピン酸、アゼライン酸、セバシン酸、1,11-ウンデカンジカルボン酸、1,12-ドデカンジカルボン酸、1,14-テトラデカンジカルボン酸、1,18-オクタデカンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ダイマー酸などの脂肪族ジカルボン酸などが挙げられるが、これらに限定されない。これらの共重合成分は1種のみを使用してもよく、2種以上を併用してもよい。 Specific examples of the copolymerization component of polyamide include aromatic diamines such as metaphenylenediamine, paraphenylenediamine, metaxylylenediamine, paraxylylenediamine, 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4 -Tetramethylenediamine, 1,5-pentamethylenediamine, 2-methyl-1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1 , 9-nonamethylenediamine, 2-methyl-1,8-octamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-trideca Methylene diamine, 1,16-hexadecamethylene diamine, , 18-octadecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, piperazine, cyclohexanediamine, and other aliphatic diamines, and phthalic acid, isophthalic acid, terephthalic acid, 5-sodium sulfoisophthalic acid, 1,5 -Aromatic dicarboxylic acids such as naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,2'-biphenyldicarboxylic acid, 3,3'-biphenyldicarboxylic acid, 4,4'-biphenyldicarboxylic acid, anthracene dicarboxylic acid, Malonic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, sebacic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, 1,14-tetradecanedicarboxylic acid, 1, 18-octadecanedicarboxylic acid, , 2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and aliphatic dicarboxylic acids such as dimer acid, without limitation. These copolymerization components may use only 1 type and may use 2 or more types together.
 熱可塑性ポリアクリロニトリルとして、アクリロニトリルと共重合成分との共重合体が挙げられる。 Examples of the thermoplastic polyacrylonitrile include a copolymer of acrylonitrile and a copolymer component.
 熱可塑性ポリアクリロニトリルの共重合成分の具体例として、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチルなどのアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチルなどのメタクリル酸エステル、塩化ビニル、フッ化ビニル、塩化ビニリデン、フッ化ビニリデンなどのハロオレフィン、アクリルアミド、メタクリルアミド、ビニルピロリドンなどのビニルアミド、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル、スチレン、ビニルピリジンなどのビニル芳香族化合物、アクリル酸、メタクリル酸などのビニルカルボン酸、p-スチレンスルホン酸、アリルスルホン酸、メタリルスルホン酸などのビニルスルホン酸、アクリル酸ナトリウム、メタクリル酸ナトリウム、p-スチレンスルホン酸ナトリウム、アリルスルホン酸ナトリウム、メタリルスルホン酸ナトリウムなどのビニルカルボン酸やビニルスルホン酸の塩などが挙げられるが、これらに限定されない。これらの共重合成分は1種のみを使用してもよく、2種以上を併用してもよい。 Specific examples of copolymerization components of thermoplastic polyacrylonitrile include acrylic acid esters such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, etc. Methacrylic acid esters, haloolefins such as vinyl chloride, vinyl fluoride, vinylidene chloride, vinylidene fluoride, vinyl amides such as acrylamide, methacrylamide, vinyl pyrrolidone, vinyl esters such as vinyl acetate and vinyl propionate, styrene, vinyl pyridine, etc. Vinyl aromatic compounds, vinyl carboxylic acids such as acrylic acid and methacrylic acid, vinyl sulfonic acids such as p-styrene sulfonic acid, allyl sulfonic acid and methallyl sulfonic acid, sodium acrylate , Sodium methacrylate, sodium p- styrenesulfonate, sodium allyl sulfonate, although vinyl carboxylic acid or salt of vinyl sulfonic acid, such as sodium methallyl sulfonic acid, and the like. These copolymerization components may use only 1 type and may use 2 or more types together.
 熱可塑性ポリアクリロニトリルの具体例として、アクリロニトリル-アクリル酸メチル共重合体、アクリロニトリル-メタクリル酸エチル共重合体、アクリロニトリル-塩化ビニル共重合体、アクリロニトリル-アクリルアミド共重合体、アクリロニトリル-酢酸ビニル共重合体、アクリロニトリル-スチレン共重合体、アクリロニトリル-アクリル酸共重合体、アクリロニトリル-メタクリル酸ナトリウム共重合体などが挙げられるが、これらに限定されない。 Specific examples of thermoplastic polyacrylonitrile include acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-vinyl chloride copolymer, acrylonitrile-acrylamide copolymer, acrylonitrile-vinyl acetate copolymer, Examples include, but are not limited to, acrylonitrile-styrene copolymer, acrylonitrile-acrylic acid copolymer, acrylonitrile-sodium methacrylate copolymer, and the like.
 熱可塑性ポリウレタンとして、ジイソシアネート、ポリオール、鎖伸長剤の3成分の反応によって得られる高分子化合物が挙げられる。 Examples of the thermoplastic polyurethane include a polymer compound obtained by a three-component reaction of diisocyanate, polyol, and chain extender.
 ジイソシアネートの具体例として、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアネートメチル)シクロヘキサン、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、ジフェニルメタンジイソシアネートなどが挙げられるが、これらに限定されない。 Specific examples of the diisocyanate include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 1,3-bis (isocyanate methyl) cyclohexane, 1,4-bis (isocyanate methyl) cyclohexane, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene Examples include, but are not limited to, diisocyanate and diphenylmethane diisocyanate.
 ポリオールとして、ポリエーテルポリオール、ポリエステルポリオール、ポリカプロラクトンポリオール、ポリカーボネートポリオールなどが挙げられるが、これらに限定されない。ポリエーテルポリオールは、低分子量ポリオールや低分子量ポリアミンとアルキレンオキサイドとの開環付加重合により得られる。ポリエステルポリオールは、低分子量ポリオールと多価カルボン酸、多価カルボン酸エステル、多価カルボン酸無水物、多価カルボン酸ハライドとの縮合反応もしくはエステル交換反応により得られる。ポリカプロラクトンポリオールは、低分子量ポリオールとカプロラクトンとの開環重合により得られる。ポリカーボネートポリオールは、低分子量ポリオールとカーボネートとの付加重合により得られる。 Examples of the polyol include, but are not limited to, polyether polyol, polyester polyol, polycaprolactone polyol, and polycarbonate polyol. The polyether polyol is obtained by ring-opening addition polymerization of a low molecular weight polyol or a low molecular weight polyamine and an alkylene oxide. The polyester polyol is obtained by a condensation reaction or transesterification reaction between a low molecular weight polyol and a polyvalent carboxylic acid, a polyvalent carboxylic acid ester, a polyvalent carboxylic acid anhydride, or a polyvalent carboxylic acid halide. The polycaprolactone polyol is obtained by ring-opening polymerization of a low molecular weight polyol and caprolactone. The polycarbonate polyol is obtained by addition polymerization of a low molecular weight polyol and carbonate.
 低分子量ポリオールの具体例として、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジオール、シクロヘキサンジメタノール、ビスフェノール、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジグリセリン、キシリトール、ソルビトール、マンニトール、ジペンタエリスリトールショ糖などが挙げられるが、これらに限定されない。低分子量ポリアミンの具体例として、エチレンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,6-ヘキサメチレンジアミン、1,4-シクロヘキサンジアミン、ヒドラジンなどが挙げられるが、これらに限定されない。アルキレンオキサイドの具体例として、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、テトラヒドロフランなどが挙げられるが、これらに限定されない。多価カルボン酸の具体例として、シュウ酸、マロン酸、フマル酸、マレイン酸、コハク酸、イタコン酸、アジピン酸、フタル酸、イソフタル酸、テレフタル酸、ダイマー酸などが挙げられるが、これらに限定されない。多価カルボン酸エステルの具体例として、多価カルボン酸のメチルエステル、エチルエステルなどが挙げられるが、これらに限定されない。多価カルボン酸無水物の具体例として、無水シュウ酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水トリメリット酸などが挙げられるが、これらに限定されない。多価カルボン酸ハライドの具体例として、シュウ酸ジクロライド、アジピン酸ジクロライドなどが挙げられるが、これらに限定されない。カプロラクトンの具体例として、ε-カプロラクトンが挙げられるが、これに限定されない。カーボネートの具体例として、エチレンカーボネート、ジメチルカーボネートなどが挙げられるが、これらに限定されない。 Specific examples of low molecular weight polyols include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, cyclohexanediol, cyclohexanedimethanol, bisphenol , Diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, pentaerythritol, diglycerin, xylitol, sorbitol, mannitol, dipentaerythritol sucrose, and the like. Specific examples of the low molecular weight polyamine include, but are not limited to, ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,6-hexamethylenediamine, 1,4-cyclohexanediamine, and hydrazine. . Specific examples of the alkylene oxide include, but are not limited to, ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran. Specific examples of polyvalent carboxylic acids include, but are not limited to, oxalic acid, malonic acid, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, phthalic acid, isophthalic acid, terephthalic acid, and dimer acid. Not. Specific examples of the polycarboxylic acid ester include, but are not limited to, methyl ester and ethyl ester of polyvalent carboxylic acid. Specific examples of the polyvalent carboxylic acid anhydride include, but are not limited to, oxalic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride, and the like. Specific examples of the polyvalent carboxylic acid halide include, but are not limited to, oxalic acid dichloride and adipic acid dichloride. Specific examples of caprolactone include, but are not limited to, ε-caprolactone. Specific examples of carbonate include, but are not limited to, ethylene carbonate and dimethyl carbonate.
 鎖伸長剤の具体例として、エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコールなどが挙げられるが、これらに限定されない。 Specific examples of the chain extender include ethanediol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, dipropylene glycol and the like. It is not limited to these.
 変性ポリオレフィンは、α-オレフィンと共重合成分との共重合体であることが好適に採用できる。共重合体の形式として、ブロック共重合体やグラフト共重合体などが挙げられるが、これらに限定されない。 The modified polyolefin can suitably be a copolymer of an α-olefin and a copolymer component. Examples of the copolymer type include, but are not limited to, a block copolymer and a graft copolymer.
 α-オレフィンの炭素数は2~20であることが好ましく、α-オレフィンの分子鎖は直鎖状でも分岐鎖状でもよい。α-オレフィンの具体例として、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、3-エチル-1-ペンテン、3-エチル-1-ヘキセンなどが挙げられるが、これらに限定されない。これらのα-オレフィンは1種のみを使用してもよく、2種以上を併用してもよい。 The carbon number of the α-olefin is preferably 2 to 20, and the molecular chain of the α-olefin may be linear or branched. Specific examples of the α-olefin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1- Examples include, but are not limited to, eicosene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3-ethyl-1-pentene, and 3-ethyl-1-hexene. Not. These α-olefins may be used alone or in combination of two or more.
 変性ポリオレフィンの共重合成分として、染料と親和性の高い極性官能基を含む不飽和化合物を好適に採用できる。前記染料と親和性の高い極性官能基としては、カルボン酸基、カルボン酸無水物基、カルボン酸塩基、カルボン酸エステル基、カルボン酸アミド基などが挙げられる。変性ポリオレフィンの共重合成分の具体例として、マレイン酸、フマル酸、イタコン酸、アクリル酸、メタクリル酸などの不飽和カルボン酸、無水マレイン酸、無水イタコン酸などの不飽和カルボン酸無水物、メタクリル酸ナトリウム、アクリル酸ナトリウムなどの不飽和カルボン酸塩、酢酸ビニル、プロピオン酸ビニル、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、マレイン酸モノエチルエステルなどの不飽和カルボン酸エステル、アクリルアミド、マレイン酸モノアミドなどの不飽和アミドなどが挙げられるが、これらに限定されない。これらの共重合成分は1種のみを使用してもよく、2種以上を併用してもよい。 As the copolymerization component of the modified polyolefin, an unsaturated compound containing a polar functional group having a high affinity for the dye can be suitably used. Examples of the polar functional group having a high affinity with the dye include a carboxylic acid group, a carboxylic anhydride group, a carboxylic acid group, a carboxylic acid ester group, and a carboxylic acid amide group. Specific examples of copolymer components of the modified polyolefin include unsaturated carboxylic acids such as maleic acid, fumaric acid, itaconic acid, acrylic acid and methacrylic acid, unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride, methacrylic acid Unsaturated carboxylic acid salts such as sodium and sodium acrylate, vinyl acetate, vinyl propionate, methyl acrylate, ethyl acrylate, methyl methacrylate, maleic acid monoethyl ester and other unsaturated carboxylic acid esters, acrylamide and maleic acid monoamide Unsaturated amides such as, but not limited to. These copolymerization components may use only 1 type and may use 2 or more types together.
 変性ポリオレフィンの具体例として、エチレン-マレイン酸共重合体、エチレン-フマル酸共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-アクリル酸-メタクリル酸ナトリウム共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチル共重合体、アクリル酸グラフトポリエチレン、無水マレイン酸グラフトポリエチレン、無水マレイン酸グラフトポリプロピレン、無水マレイン酸グラフトエチレン-プロピレン共重合体、アクリル酸グラフトエチレン-プロピレン共重合体、マレイン酸グラフトエチレン-プロピレン-ノルボルナジエン共重合体、アクリル酸グラフトエチレン-酢酸ビニル共重合体などが挙げられるが、これらに限定されない。 Specific examples of modified polyolefins include ethylene-maleic acid copolymer, ethylene-fumaric acid copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-acrylic acid-sodium methacrylate copolymer. , Ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, acrylic acid grafted polyethylene, maleic anhydride grafted polyethylene, maleic anhydride grafted polypropylene, maleic anhydride grafted ethylene-propylene copolymer, acrylic acid grafted ethylene -Propylene copolymer, maleic acid grafted ethylene-propylene-norbornadiene copolymer, acrylic acid grafted ethylene-vinyl acetate copolymer, and the like, but are not limited thereto.
 ポリ塩化ビニルは、塩化ビニルの単独重合体であっても、塩化ビニルと共重合成分との共重合体であってもよい。 The polyvinyl chloride may be a homopolymer of vinyl chloride or a copolymer of vinyl chloride and a copolymer component.
 ポリ塩化ビニルの共重合成分の具体例として、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル、アクリル酸プロピル、アクリル酸ブチルなどのアクリル酸エステル、エチレン、プロピレンなどのオレフィンなどが挙げられるが、これらに限定されない。これらの共重合成分は1種のみを使用してもよく、2種以上を併用してもよい。 Specific examples of polyvinyl chloride copolymerization components include vinyl esters such as vinyl acetate and vinyl propionate, acrylic acid esters such as propyl acrylate and butyl acrylate, and olefins such as ethylene and propylene. It is not limited. These copolymerization components may use only 1 type and may use 2 or more types together.
 セルロース誘導体は、セルロースの構成単位であるグルコースに存在する3つの水酸基の少なくとも一部が他の官能基へ誘導体化された化合物である。例えば、セルロースへ1種のエステル基が結合したセルロース単独エステル、2種以上のエステル基が結合したセルロース混合エステル、1種のエーテル基が結合したセルロース単独エーテル、2種以上のエーテル基が結合したセルロース混合エーテル、エーテル基およびエステル基がそれぞれ1種または2種以上結合したセルロースエーテルエステルなどが挙げられるが、これらに限定されない。セルロース誘導体の置換度に関しては、特に制限がなく、溶融粘度や熱可塑性などに応じて適宜選択することができる。また、セルロース誘導体が熱可塑性を示さない場合には、熱流動性を向上させる目的でセルロース誘導体へ可塑剤を添加してもよい。 A cellulose derivative is a compound in which at least a part of three hydroxyl groups present in glucose, which is a constituent unit of cellulose, is derivatized to another functional group. For example, cellulose single ester with one ester group bonded to cellulose, cellulose mixed ester with two or more ester groups bonded, cellulose single ether with one ether group bonded, two or more ether groups bonded Examples thereof include, but are not limited to, cellulose mixed ethers, cellulose ether esters in which one or two or more ether groups and ester groups are bonded. There is no restriction | limiting in particular about the substitution degree of a cellulose derivative, According to melt viscosity, thermoplasticity, etc., it can select suitably. In addition, when the cellulose derivative does not exhibit thermoplasticity, a plasticizer may be added to the cellulose derivative for the purpose of improving thermal fluidity.
 セルロース誘導体の具体例として、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースバレレート、セルロースステアレートなどのセルロース単独エステル、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートバレレート、セルロースアセテートカプロエート、セルロースプロピオネートブチレート、セルロースアセテートプロピオネートブチレートなどのセルロース混合エステル、メチルセルロース、エチルセルロース、プロピルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロースなどのセルロース単独エーテル、メチルエチルセルロース、メチルプロピルセルロース、エチルプロピルセルロース、ヒドロキシメチルメチルセルロース、ヒドロキシメチルエチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースなどのセルロース混合エーテル、メチルセルロースアセテート、メチルセルロースプロピオネート、エチルセルロースアセテート、エチルセルロースプロピオネート、プロピルセルロースアセテート、プロピルセルロースプロピオネート、ヒドロキシメチルセルロースアセテート、ヒドロキシメチルセルロースプロピオネート、ヒドロキシエチルセルロースアセテート、ヒドロキシエチルセルロースプロピオネート、ヒドロキシプロピルセルロースアセテート、ヒドロキシプロピルセルロースプロピオネート、カルボキシメチルセルロースアセテート、カルボキシメチルセルロースプロピオネートなどのセルロースエーテルエステルなどが挙げられるが、これらに限定されない。 Specific examples of cellulose derivatives include cellulose acetate, cellulose propionate, cellulose butyrate, cellulose valerate, cellulose stearate, and other cellulose esters, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate valerate, and cellulose acetate. Cellulose mixed esters such as caproate, cellulose propionate butyrate, cellulose acetate propionate butyrate, cellulose single ethers such as methyl cellulose, ethyl cellulose, propyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, methyl Ethyl cellulose, methyl propyl cellulose , Ethyl mixed cellulose such as ethylpropylcellulose, hydroxymethylmethylcellulose, hydroxymethylethylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, methylcellulose acetate, methylcellulose propionate, ethylcellulose acetate, ethylcellulose propionate, propylcellulose acetate, Propylcellulose propionate, hydroxymethylcellulose acetate, hydroxymethylcellulose propionate, hydroxyethylcellulose acetate, hydroxyethylcellulose propionate, hydroxypropylcellulose acetate, hydroxypropylcellulose propionate, carbo Shi cellulose acetate, but cellulose ether esters such as carboxymethyl cellulose propionate and the like, without limitation.
 本発明で用いるポリメチルペンテン繊維におけるポリメチルペンテン系樹脂と熱可塑性樹脂の複合比率は、用途や要求特性に応じて適宜選択することができるが、ポリメチルペンテン系樹脂の優れた軽量性を損なわないために、ポリメチルペンテン繊維中のポリメチルペンテン系樹脂が60重量%以上となる範囲内で複合する必要がある。ポリメチルペンテン系樹脂を(A)とし、熱可塑性樹脂を(B)としたとき、(A)の(B)に対する複合比率(重量比)A/Bは、80/20~99/1であることがより好ましい。ポリメチルペンテン系樹脂の複合比率が上記範囲であると、特に優れた軽量性を維持しつつ、熱可塑性樹脂による発色性をポリメチルペンテン繊維へ付与することができるため好ましい。一方、ポリメチルペンテン系樹脂の複合比率が99重量%以下、すなわち熱可塑性樹脂の複合比率が1重量%以上であれば、発色性の高い熱可塑性樹脂が、屈折率の低いポリメチルペンテン系樹脂に複合比率に応じて散在し、鮮やかで深みのある発色を実現できるため好ましい。ポリメチルペンテン系樹脂(A)と熱可塑性樹脂(B)の複合比率(重量比)はA/B=85/15~97/3であることがさらに好ましく、A/B=90/10~95/5であることが特に好ましい。なお、熱可塑性樹脂を複数併用する場合には、それらの総和を熱可塑性樹脂(B)として複合比率を求めることとする。 The composite ratio of the polymethylpentene resin and the thermoplastic resin in the polymethylpentene fiber used in the present invention can be appropriately selected according to the use and required characteristics, but the excellent lightness of the polymethylpentene resin is impaired. Therefore, the polymethylpentene resin in the polymethylpentene fiber needs to be combined within a range of 60% by weight or more. When the polymethylpentene resin is (A) and the thermoplastic resin is (B), the composite ratio (weight ratio) A / B of (A) to (B) is 80/20 to 99/1. It is more preferable. It is preferable for the composite ratio of the polymethylpentene resin to be in the above-mentioned range since color development by the thermoplastic resin can be imparted to the polymethylpentene fiber while maintaining particularly excellent lightness. On the other hand, if the composite ratio of the polymethylpentene resin is 99% by weight or less, that is, if the composite ratio of the thermoplastic resin is 1% by weight or more, a highly color-forming thermoplastic resin is a polymethylpentene resin having a low refractive index. It is preferable because it can be dispersed according to the composite ratio and a vivid and deep color can be realized. The composite ratio (weight ratio) of the polymethylpentene resin (A) and the thermoplastic resin (B) is more preferably A / B = 85/15 to 97/3, and A / B = 90/10 to 95 Particularly preferred is / 5. In the case where a plurality of thermoplastic resins are used in combination, the composite ratio is determined with the sum of them as the thermoplastic resin (B).
 本発明では、ポリメチルペンテン系樹脂と熱可塑性樹脂の界面接着性の向上や分散状態の制御を目的として、必要に応じて熱可塑性樹脂の一部に相溶化剤となる熱可塑性樹脂(以下、単に相溶化剤と称することもある)を用いてもよい。相溶化剤は、熱可塑性樹脂の種類などに応じて適宜選択することができる。なお、相溶化剤は単独で使用してもよく、複数を併用してもよい。 In the present invention, for the purpose of improving the interfacial adhesion between the polymethylpentene-based resin and the thermoplastic resin and controlling the dispersion state, a thermoplastic resin (hereinafter, referred to as a compatibilizer) in a part of the thermoplastic resin as necessary. (Simply referred to as a compatibilizer) may be used. The compatibilizing agent can be appropriately selected according to the type of the thermoplastic resin. In addition, a compatibilizing agent may be used independently and may use multiple together.
 本発明における相溶化剤として、疎水性が高いポリメチルペンテン系樹脂に親和性の高い疎水性成分と、熱可塑性樹脂に親和性の高い成分が、両方とも同一分子内に含まれている熱可塑性樹脂を用いることができる。または、ポリメチルペンテン系樹脂に親和性の高い疎水性成分と、熱可塑性樹脂と反応しうる官能基が、両方とも同一分子内に含まれている熱可塑性樹脂を用いることができる。 As a compatibilizing agent in the present invention, a thermoplastic component in which both a hydrophobic component having high affinity for polymethylpentene resin having high hydrophobicity and a component having high affinity for thermoplastic resin are contained in the same molecule. Resin can be used. Alternatively, a thermoplastic resin in which both a hydrophobic component having high affinity for the polymethylpentene resin and a functional group capable of reacting with the thermoplastic resin are contained in the same molecule can be used.
 相溶化剤を構成する疎水性成分の具体例として、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリスチレン、エチレン-プロピレン共重合体、エチレン-ブチレン共重合体、プロピレン-ブチレン共重合体、スチレン-エチレン-ブチレン-スチレン共重合体などが挙げられるが、これらに限定されない。 Specific examples of the hydrophobic component constituting the compatibilizer include polyethylene, polypropylene, polymethylpentene, polystyrene, ethylene-propylene copolymer, ethylene-butylene copolymer, propylene-butylene copolymer, styrene-ethylene-butylene. -Styrene copolymers and the like may be mentioned, but not limited thereto.
 相溶化剤を構成する熱可塑性樹脂に親和性の高い成分または熱可塑性樹脂と反応しうる官能基の具体例として、カルボン酸基、カルボン酸無水物基、カルボン酸塩基、カルボン酸エステル基、カルボン酸アミド基、アミノ基、イミノ基、アルコキシシリル基、シラノール基、シリルエーテル基、ヒドロキシル基、エポキシ基などが挙げられるが、これらに限定されない。 Specific examples of components having high affinity for the thermoplastic resin constituting the compatibilizer or functional groups capable of reacting with the thermoplastic resin include carboxylic acid groups, carboxylic anhydride groups, carboxylic acid groups, carboxylic acid ester groups, Examples include, but are not limited to, acid amide groups, amino groups, imino groups, alkoxysilyl groups, silanol groups, silyl ether groups, hydroxyl groups, and epoxy groups.
 相溶化剤の具体例として、マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性ポリメチルペンテン、エポキシ変性ポリスチレン、無水マレイン酸変性スチレン-エチレン-ブチレン-スチレン共重合体、アミノ変性スチレン-エチレン-ブチレン-スチレン共重合体、イミノ変性スチレン-エチレン-ブチレン-スチレン共重合体などが挙げられるが、これらに限定されない。 Specific examples of the compatibilizer include maleic acid-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified polymethylpentene, epoxy-modified polystyrene, maleic anhydride-modified styrene-ethylene-butylene-styrene copolymer, amino-modified styrene- Examples thereof include, but are not limited to, ethylene-butylene-styrene copolymers and imino-modified styrene-ethylene-butylene-styrene copolymers.
 本発明において相溶化剤を用いる場合、その使用量は、相溶化剤を含む熱可塑性樹脂に対する割合が0.1~30重量%となる範囲であることが好ましい。相溶化剤の使用量が0.1重量%以上であれば、ポリメチルペンテン系樹脂と熱可塑性樹脂の相溶化効果が得られ、糸切れの抑制など製糸操業性が改善されるため好ましい。一方、相溶化剤の使用量が30重量%以下であれば、ポリメチルペンテン繊維においてポリメチルペンテン系樹脂や熱可塑性樹脂に由来する繊維特性や外観、風合いを維持することができるため好ましい。相溶化剤の使用量は、0.5~20重量%であることがより好ましく、1~10重量%であることが更に好ましい。 In the present invention, when a compatibilizing agent is used, the amount used is preferably in the range where the ratio to the thermoplastic resin containing the compatibilizing agent is 0.1 to 30% by weight. If the use amount of the compatibilizing agent is 0.1% by weight or more, it is preferable because a compatibilizing effect between the polymethylpentene resin and the thermoplastic resin can be obtained and the yarn operability such as suppression of yarn breakage is improved. On the other hand, if the amount of the compatibilizer used is 30% by weight or less, the polymethylpentene fiber can maintain the fiber characteristics, appearance, and texture derived from the polymethylpentene resin and thermoplastic resin. The amount of the compatibilizer used is more preferably 0.5 to 20% by weight, still more preferably 1 to 10% by weight.
 本発明で用いるポリメチルペンテン繊維は、発色性の付与を目的として、必要に応じてポリメチルペンテン系樹脂へ顔料や着色料などを添加した原着繊維であってもよい。顔料や着色料は、単独で使用してもよく、複数を併用してもよい。 The polymethylpentene fiber used in the present invention may be an original fiber in which a pigment or a colorant is added to a polymethylpentene-based resin as necessary for the purpose of imparting color developability. The pigments and colorants may be used alone or in combination.
 本発明における顔料や着色料の具体例として、カーボンブラック、コバルトブルー、クロムイエローなどの無機系顔料、アゾ系、フタロシアニン系、キナクリドン系、アントラキノン系、ジオキサジン系などの有機系顔料などが挙げられるが、これらに限定されない。 Specific examples of pigments and colorants in the present invention include inorganic pigments such as carbon black, cobalt blue, and chrome yellow, and organic pigments such as azo, phthalocyanine, quinacridone, anthraquinone, and dioxazine. However, it is not limited to these.
 本発明における顔料や着色料の添加量は、ポリメチルペンテン繊維中に0.2~10重量%であることが好ましい。顔料や着色料の添加量が0.2重量%以上であれば、ポリメチルペンテン繊維へ十分な発色性を付与することができるため好ましい。一方、顔料や着色料の添加量が10重量%以下であれば、糸切れの発生が少なく製糸操業性が良好であり、得られるポリメチルペンテン繊維の繊維特性も良好であるため好ましい。顔料や着色料の添加量は、0.5~8.5重量%であることがより好ましく、1.0~7.0重量%であることが更に好ましい。 In the present invention, the amount of pigment or colorant added is preferably 0.2 to 10% by weight in the polymethylpentene fiber. If the amount of the pigment or colorant added is 0.2% by weight or more, it is preferable because sufficient color developability can be imparted to the polymethylpentene fiber. On the other hand, if the addition amount of the pigment or the colorant is 10% by weight or less, the occurrence of yarn breakage is small, the spinning operability is good, and the resulting polymethylpentene fiber has good fiber characteristics, which is preferable. The amount of the pigment or colorant added is more preferably 0.5 to 8.5% by weight, and even more preferably 1.0 to 7.0% by weight.
 本発明における顔料や着色料の添加方法として、ポリメチルペンテン系樹脂へ顔料や着色料を添加して二軸押出機を用いた溶融混練によってマスターバッチを作製した後、溶融紡糸を行うことが挙げられる。また、溶融紡糸を行う際に、ポリメチルペンテン系樹脂と顔料や着色料をブレンドしてもよいが、これらに限定されない。 As a method for adding a pigment or a colorant in the present invention, a pigment or a colorant is added to a polymethylpentene-based resin, a master batch is prepared by melt kneading using a twin screw extruder, and then melt spinning is performed. It is done. In addition, when performing melt spinning, a polymethylpentene resin and a pigment or colorant may be blended, but are not limited thereto.
 本発明で用いるポリメチルペンテン繊維の単糸繊度は、2~20dtexである。ポリメチルペンテン繊維の単糸繊度が2dtex以上であれば、糸切れが少なく、工程通過性が良好であることに加え、使用時に毛羽の発生が少なく、品位、耐久性に優れる。一方、ポリメチルペンテン繊維の単糸繊度が20dtex以下であれば、紡績糸ならびに繊維構造体の柔軟性を損なうことがない。ポリメチルペンテン繊維の単糸繊度は、2~15dtexであることがより好ましく、2~10dtexであることが更に好ましい。 The single yarn fineness of the polymethylpentene fiber used in the present invention is 2 to 20 dtex. If the single yarn fineness of the polymethylpentene fiber is 2 dtex or more, in addition to few yarn breaks and good process passability, there is little fluffing during use and excellent quality and durability. On the other hand, if the single yarn fineness of the polymethylpentene fiber is 20 dtex or less, the flexibility of the spun yarn and the fiber structure is not impaired. The single yarn fineness of the polymethylpentene fiber is more preferably 2 to 15 dtex, and further preferably 2 to 10 dtex.
 本発明で用いるポリメチルペンテン繊維の平均繊維長は、10~100mmであることが好ましい。ポリメチルペンテン繊維の平均繊維長が10mm以上であれば、紡績糸とした場合に繊維同士が十分に絡合し、十分な強度を得ることができるため好ましい。一方、ポリメチルペンテン繊維の平均繊維長が100mm以下であれば、工程通過性や取り扱い性が良好であるため好ましい。ポリメチルペンテン繊維の平均繊維長は、15~90mmであることがより好ましく、20~80mmであることが更に好ましい。また、ポリメチルペンテン繊維の繊維長は等しくても、異なっていてもよい。 The average fiber length of the polymethylpentene fiber used in the present invention is preferably 10 to 100 mm. If the average fiber length of the polymethylpentene fiber is 10 mm or more, it is preferable because fibers can be sufficiently entangled and sufficient strength can be obtained when a spun yarn is used. On the other hand, when the average fiber length of the polymethylpentene fiber is 100 mm or less, the process passability and the handleability are good, which is preferable. The average fiber length of the polymethylpentene fiber is more preferably 15 to 90 mm, and still more preferably 20 to 80 mm. Further, the fiber lengths of the polymethylpentene fibers may be the same or different.
 本発明で用いるポリメチルペンテン繊維の断面形状は、特に制限がなく、用途や要求特性に応じて適宜選択することができ、真円状の円形断面であってもよく、非円形断面であってもよい。非円形断面の具体例として、多葉形、多角形、扁平形、楕円形、C字形、H字形、S字形、T字形、W字形、X字形、Y字形などが挙げられるが、これらに限定されない。また、本発明で用いるポリメチルペンテン繊維は工程通過性や取り扱い性の点から中実繊維であることが好ましい。 The cross-sectional shape of the polymethylpentene fiber used in the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, and may be a perfect circular cross-section or a non-circular cross-section. Also good. Specific examples of non-circular cross sections include, but are not limited to, multi-leaf, polygon, flat, oval, C-shaped, H-shaped, S-shaped, T-shaped, W-shaped, X-shaped, Y-shaped, etc. Not. Moreover, it is preferable that the polymethylpentene fiber used by this invention is a solid fiber from the point of process passage property and handleability.
 本発明で用いるポリメチルペンテン繊維の強度は、特に制限がなく、用途や要求特性に応じて適宜選択することができるが、0.5~5.0cN/dtexであることが好ましい。ポリメチルペンテン繊維の強度は、機械的特性の観点から高ければ高いほど好ましいが、0.5cN/dtex以上であることが好ましい。ポリメチルペンテン繊維の強度が0.5cN/dtex以上であれば、糸切れが少なく、工程通過性が良好であることに加え、耐久性に優れるため好ましい。ポリメチルペンテン繊維の強度は0.7~5.0cN/dtexであることがより好ましく、1.0~5.0cN/dtexであることが更に好ましい。 The strength of the polymethylpentene fiber used in the present invention is not particularly limited and can be appropriately selected according to the use and required characteristics, but is preferably 0.5 to 5.0 cN / dtex. The strength of the polymethylpentene fiber is preferably as high as possible from the viewpoint of mechanical properties, but is preferably 0.5 cN / dtex or more. If the strength of the polymethylpentene fiber is 0.5 cN / dtex or more, it is preferable because the thread breakage is small, the process passability is good, and the durability is excellent. The strength of the polymethylpentene fiber is more preferably 0.7 to 5.0 cN / dtex, still more preferably 1.0 to 5.0 cN / dtex.
 本発明で用いるポリメチルペンテン繊維の伸度は、特に制限がなく、用途や要求特性に応じて適宜選択することができるが、5~300%であることが好ましい。ポリメチルペンテン繊維の伸度が5%以上であれば、紡績糸ならびに繊維構造体の耐摩耗性が良好となり、毛羽の発生が少なく、耐久性が良好となるため好ましい。一方、ポリメチルペンテン繊維が未延伸糸である場合、伸度が300%以下であれば、延伸における取り扱い性が良好であり、延伸によって機械的特性を向上させることができるため好ましい。また、ポリメチルペンテン繊維が延伸糸である場合、伸度が40%以下であれば、紡績糸ならびに繊維構造体の寸法安定性が良好となるため好ましい。ポリメチルペンテン繊維が未延伸糸である場合、伸度は8~280%であることが好ましく、10~250%であることが更に好ましい。また、ポリメチルペンテン繊維が延伸糸である場合、伸度は8~35%であることがより好ましく、10~30%であることが更に好ましい。 The elongation of the polymethylpentene fiber used in the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is preferably 5 to 300%. If the elongation of the polymethylpentene fiber is 5% or more, it is preferable because the abrasion resistance of the spun yarn and the fiber structure is good, the generation of fluff is small, and the durability is good. On the other hand, when the polymethylpentene fiber is an undrawn yarn, it is preferable that the elongation is 300% or less because the handleability in drawing is good and the mechanical properties can be improved by drawing. When the polymethylpentene fiber is a drawn yarn, an elongation of 40% or less is preferable because the dimensional stability of the spun yarn and the fiber structure is improved. When the polymethylpentene fiber is an undrawn yarn, the elongation is preferably 8 to 280%, more preferably 10 to 250%. When the polymethylpentene fiber is a drawn yarn, the elongation is more preferably 8 to 35%, and further preferably 10 to 30%.
 本発明で用いるポリメチルペンテン繊維の初期引張抵抗度は、特に制限がなく、用途や要求特性に応じて適宜選択することができるが、10~100cN/dtexであることが好ましい。ポリメチルペンテン繊維の初期引張抵抗度が10cN/dtex以上であれば、工程通過性や取り扱い性が良好であり、機械的特性に優れるため好ましい。一方、ポリメチルペンテン繊維の初期引張抵抗度が100cN/dtex以下であれば、紡績糸ならびに繊維構造体の柔軟性を損なうことがないため好ましい。ポリメチルペンテン繊維の初期引張抵抗度は15~80cN/dtexであることがより好ましく、20~60cN/dtexであることが更に好ましい。 The initial tensile resistance of the polymethylpentene fiber used in the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is preferably 10 to 100 cN / dtex. If the initial tensile resistance of the polymethylpentene fiber is 10 cN / dtex or more, the process passability and handleability are good, and the mechanical properties are excellent, which is preferable. On the other hand, it is preferable that the initial tensile resistance of the polymethylpentene fiber is 100 cN / dtex or less because the flexibility of the spun yarn and the fiber structure is not impaired. The initial tensile resistance of the polymethylpentene fiber is more preferably 15 to 80 cN / dtex, still more preferably 20 to 60 cN / dtex.
 本発明で用いるポリメチルペンテン繊維の比重は、特に制限がなく、熱可塑性樹脂の種類や複合比率、用途や要求特性に応じて適宜選択することができるが、0.83~0.95であることが好ましい。ポリメチルペンテン系樹脂の比重は0.83であるため、熱可塑性樹脂と複合した場合にも軽量性の観点から0.95以下であることが好ましい。ポリメチルペンテン繊維の比重が0.95以下であれば、ポリメチルペンテン系樹脂による軽量性と熱可塑性樹脂による発色性を両立した紡績糸を得ることができるため好ましい。ポリメチルペンテン繊維の比重は0.83~0.93であることがより好ましく、0.83~0.90であることが更に好ましい。 The specific gravity of the polymethylpentene fiber used in the present invention is not particularly limited and can be appropriately selected according to the type of thermoplastic resin, the composite ratio, the application and required characteristics, and is 0.83 to 0.95. It is preferable. Since the specific gravity of the polymethylpentene resin is 0.83, it is preferably 0.95 or less from the viewpoint of light weight even when combined with a thermoplastic resin. If the specific gravity of the polymethylpentene fiber is 0.95 or less, it is preferable because a spun yarn having both lightness by the polymethylpentene resin and color development by the thermoplastic resin can be obtained. The specific gravity of the polymethylpentene fiber is more preferably 0.83 to 0.93, still more preferably 0.83 to 0.90.
 本発明で用いるポリメチルペンテン繊維は、捲縮を有していてもよい。捲縮を有することで、紡績糸とした場合に繊維同士の絡合が強固となるのに加えて、嵩高で軽量感のある風合いを得ることができるため好ましい。 The polymethylpentene fiber used in the present invention may have crimps. It is preferable to have crimps because, in the case of a spun yarn, in addition to strengthening the entanglement between the fibers, it is possible to obtain a bulky and light texture.
 本発明で用いるポリメチルペンテン繊維の捲縮数は、特に制限がなく、用途や要求特性に応じて適宜選択することができるが、2~40山/25mmであることが好ましい。ポリメチルペンテン繊維の捲縮数が2山/25mm以上であれば、紡績糸とした場合に繊維同士の絡合が強固となるのに加えて、紡績糸ならびに繊維構造体へ嵩高性を付与することができるため好ましい。一方、ポリメチルペンテン繊維の捲縮数が40山/25mm以下であれば、工程通過性や取り扱い性が良好であることに加え、紡績糸ならびに繊維構造体の嵩高性を損なうことがないため好ましい。ポリメチルペンテン繊維の捲縮数は4~30山/25mmであることがより好ましく、6~20山/25mmであることが更に好ましい。 The number of crimps of the polymethylpentene fiber used in the present invention is not particularly limited and can be appropriately selected according to the use and required characteristics, but is preferably 2 to 40 m / 25 mm. When the number of crimps of the polymethylpentene fiber is 2 threads / 25 mm or more, in addition to strengthening the entanglement between the fibers in the case of a spun yarn, it imparts bulkiness to the spun yarn and the fiber structure. This is preferable. On the other hand, if the number of crimps of the polymethylpentene fiber is 40 peaks / 25 mm or less, it is preferable because the processability and handleability are good and the bulkiness of the spun yarn and the fiber structure is not impaired. . The number of crimps of the polymethylpentene fiber is more preferably 4 to 30 peaks / 25 mm, and still more preferably 6 to 20 peaks / 25 mm.
 本発明で用いるポリメチルペンテン繊維の捲縮率は、特に制限がなく、用途や要求特性に応じて適宜選択することができるが、5~40%であることが好ましい。ポリメチルペンテン繊維の捲縮率が5%以上であれば、紡績糸とした場合に繊維同士の絡合が強固となるのに加えて、紡績糸ならびに繊維構造体へ嵩高性を付与することができるため好ましい。一方、ポリメチルペンテン繊維の捲縮率が40%以下であれば、工程通過性や取り扱い性が良好であることに加え、紡績糸ならびに繊維構造体の嵩高性を損なうことがないため好ましい。ポリメチルペンテン繊維の捲縮率は8~35%であることがより好ましく、10~30%であることが更に好ましい。 The crimp rate of the polymethylpentene fiber used in the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is preferably 5 to 40%. If the crimp rate of the polymethylpentene fiber is 5% or more, in addition to strengthening the entanglement between the fibers when the spun yarn is used, it is possible to impart bulkiness to the spun yarn and the fiber structure. This is preferable because it is possible. On the other hand, if the polymethylpentene fiber has a crimp rate of 40% or less, it is preferable because the processability and handleability are good and the bulkiness of the spun yarn and fiber structure is not impaired. The crimp rate of the polymethylpentene fiber is more preferably 8 to 35%, and still more preferably 10 to 30%.
 次に、本発明の紡績糸について説明する。 Next, the spun yarn of the present invention will be described.
 本発明の紡績糸は、撚り数をT(回/25.4mm)、英式綿番手をNとしたとき、下記式(I)により算出される撚り係数Kが1.3~6.5である。
(I) K=T÷N1/2
 撚り係数Kが1.3以上であれば、紡績糸とした場合に繊維同士の絡合が大きいため、使用時に毛羽の発生が少なく、耐久性に優れる。一方、撚り係数が6.5以下であれば、風合いが硬くなり過ぎず、紡績糸ならびに繊維構造体の柔軟性を損なうことがない。撚り係数Kは、紡績糸の用途や要求特性に応じて適宜選択することができるが、2.0~5.5であることがより好ましく、2.5~5.0であることが更に好ましく、3.0~4.5であることが特に好ましい。
The spun yarn of the present invention has a twist coefficient K calculated by the following formula (I) of 1.3 to 6.5 when the number of twists is T (times / 25.4 mm) and the English cotton count is N. is there.
(I) K = T ÷ N 1/2
If the twist coefficient K is 1.3 or more, the fibers are entangled with each other when the spun yarn is used. On the other hand, if the twist coefficient is 6.5 or less, the texture does not become too hard, and the flexibility of the spun yarn and the fiber structure is not impaired. The twist coefficient K can be appropriately selected according to the use and required characteristics of the spun yarn, but is more preferably 2.0 to 5.5, and still more preferably 2.5 to 5.0. 3.0 to 4.5 is particularly preferable.
 本発明の紡績糸の撚り数は、特に制限がなく、用途や要求特性に応じて適宜選択することができるが、5~75回/25.4mmであることが好ましい。紡績糸の撚り数が5回/25.4mm以上であれば、紡績糸とした場合に繊維同士の絡合が大きいため、使用時に毛羽の発生が少なく、耐久性に優れるため好ましい。一方、紡績糸の撚り数が75回/25.4mm以下であれば、風合いが硬くなり過ぎず、紡績糸ならびに繊維構造体の柔軟性を損なうことがないため好ましい。紡績糸の撚り数は、10~50回/25.4mmであることがより好ましく、15~30回/25.4mmであることが更に好ましい。 The number of twists of the spun yarn of the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is preferably 5 to 75 times / 25.4 mm. If the number of twists of the spun yarn is 5 times / 25.4 mm or more, the fiber is entangled in a spun yarn, so that there is little generation of fluff at the time of use and excellent durability, which is preferable. On the other hand, if the number of twists of the spun yarn is 75 times / 25.4 mm or less, the texture is not too hard, and the flexibility of the spun yarn and the fiber structure is not impaired. The number of twists of the spun yarn is more preferably 10 to 50 times / 25.4 mm, and further preferably 15 to 30 times / 25.4 mm.
 本発明における紡績糸は、ポリメチルペンテン繊維のみで構成されていてもよく、化学繊維または天然繊維と混紡されていてもよい。また、紡績糸と、化学繊維または天然繊維からなる紡績糸を撚り合わせてなるものであってもよい。なお、混紡または撚り合わせに用いる化学繊維または天然繊維は、単独で使用してもよく、複数を併用してもよい。 The spun yarn in the present invention may be composed only of polymethylpentene fibers, and may be blended with chemical fibers or natural fibers. Alternatively, a spun yarn and a spun yarn made of chemical fiber or natural fiber may be twisted together. In addition, the chemical fiber or natural fiber used for blending or twisting may be used alone or in combination.
 本発明における化学繊維は、特に制限がなく、用途や要求特性に応じて適宜選択することができる。化学繊維の具体例として、ポリエステル系繊維、ポリアミド系繊維、ポリアクリロニトリル系繊維、セルロース系繊維、セルロース繊維などが挙げられるが、これらに限定されない。なかでもポリエステル系繊維、ポリアミド系繊維、ポリアクリロニトリル系繊維、セルロース系繊維などが好ましい。 The chemical fiber in the present invention is not particularly limited and can be appropriately selected according to the use and required characteristics. Specific examples of the chemical fiber include, but are not limited to, polyester fiber, polyamide fiber, polyacrylonitrile fiber, cellulose fiber, and cellulose fiber. Of these, polyester fibers, polyamide fibers, polyacrylonitrile fibers, cellulose fibers and the like are preferable.
 ポリエステル系繊維の具体例として、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸などが、ポリアミド系繊維の具体例として、ナイロン6、ナイロン66、ナイロン610などが、ポリアクリロニトリル系繊維の具体例として、アクリロニトリル-アクリル酸メチル共重合体、アクリロニトリル-メタクリル酸エチル共重合体、セルロース系繊維の具体例として、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロース繊維の具体例として、ビスコースレーヨン、キュプラレーヨンなどが挙げられるが、これらに限定されない。 Specific examples of the polyester fiber include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polylactic acid. Specific examples of the polyamide fiber include nylon 6, nylon 66, and nylon 610. Specific examples of the polyacrylonitrile fiber. Specific examples of acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, and cellulose fiber include cellulose diacetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, and specific examples of cellulose fiber. Examples thereof include, but are not limited to, viscose rayon and cupra rayon.
 本発明における天然繊維は、特に制限がなく、用途や要求特性に応じて適宜選択することができる。天然繊維の具体例として、綿、絹、麻、羊毛などが好ましく挙げられるが、これらに限定されない。 The natural fiber in the present invention is not particularly limited and can be appropriately selected according to the use and required characteristics. Specific examples of natural fibers include, but are not limited to, cotton, silk, hemp, wool, and the like.
 本発明の紡績糸におけるポリメチルペンテン繊維と、化学繊維または天然繊維の混紡比率(重量比)は、特に制限がなく、用途や要求特性に応じて適宜選択することができるが、ポリメチルペンテン繊維を(A)とし、化学繊維または天然繊維を(B)としたとき、(A)と(B)との混紡比率(重量比)が、A/B=85/15~97/3であることが好ましい。ポリメチルペンテン繊維の混紡比率が85重量%以上であれば、紡績糸の軽量性を損なうことがないため好ましい。一方、ポリメチルペンテン繊維の混紡比率が97重量%以下、すなわち化学繊維または天然繊維の混紡比率が3重量%以上であれば、化学繊維または天然繊維による風合いを紡績糸へ付与することができるため好ましい。ポリメチルペンテン繊維(A)と、化学繊維または天然繊維(B)の混紡比率(重量比)はA/B=90/10~95/5であることが更に好ましい。 The blend ratio (weight ratio) of the polymethylpentene fiber and the chemical fiber or natural fiber in the spun yarn of the present invention is not particularly limited and can be appropriately selected according to the use and required characteristics. (A) and chemical fiber or natural fiber (B), the blend ratio (weight ratio) of (A) and (B) is A / B = 85/15 to 97/3 Is preferred. A blending ratio of polymethylpentene fibers of 85% by weight or more is preferable because it does not impair the lightness of the spun yarn. On the other hand, if the blend ratio of the polymethylpentene fiber is 97% by weight or less, that is, if the blend ratio of the chemical fiber or the natural fiber is 3% by weight or more, the texture of the chemical fiber or the natural fiber can be imparted to the spun yarn. preferable. The blend ratio (weight ratio) of the polymethylpentene fiber (A) and the chemical fiber or natural fiber (B) is more preferably A / B = 90/10 to 95/5.
 本発明の紡績糸における化学繊維または天然繊維の融点または分解温度は、耐熱性の観点から高ければ高いほど好ましいが、200℃以上であることが好ましい。本発明においては、化学繊維または天然繊維が明確な融点を示す場合には融点を耐熱性の指標とし、明確な融点を示さない場合には、分解温度を耐熱性の指標とした。化学繊維または天然繊維の融点または分解温度が200℃以上であれば、耐熱性に優れるため、アイロンを使用することができ、一般衣料用途に加え、高温下で使用される用途への展開が可能となるため好ましい。化学繊維または天然繊維の融点または分解温度は210℃以上であることがより好ましく、220℃以上であることが更に好ましい。 The melting point or decomposition temperature of the chemical fiber or natural fiber in the spun yarn of the present invention is preferably as high as possible from the viewpoint of heat resistance, but is preferably 200 ° C. or higher. In the present invention, when the chemical fiber or natural fiber has a clear melting point, the melting point is used as an index of heat resistance, and when the chemical fiber or natural fiber does not show a clear melting point, the decomposition temperature is used as an index of heat resistance. If the melting point or decomposition temperature of the chemical fiber or natural fiber is 200 ° C or higher, the iron can be used because of its excellent heat resistance, and it can be used for applications that are used at high temperatures in addition to general clothing applications. This is preferable. The melting point or decomposition temperature of the chemical fiber or natural fiber is more preferably 210 ° C. or higher, and further preferably 220 ° C. or higher.
 本発明の紡績糸の英式綿番手は、特に制限がなく、用途や要求特性に応じて適宜選択することができるが、1~200番手であることが好ましい。紡績糸の英式綿番手が1番手以上であれば、紡績糸ならびに繊維構造体の柔軟性を損なうことがないため好ましい。一方、紡績糸の英式綿番手が200番手以下であれば、加工時に糸切れが少なく、工程通過性が良好であることに加え、使用時に毛羽の発生が少なく、耐久性に優れるため好ましい。紡績糸の英式綿番手は、10~150番手であることがより好ましく、20~100番手であることが更に好ましい。 The English cotton count of the spun yarn of the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but it is preferably 1 to 200. It is preferable if the spun yarn has an English cotton count of 1 or more because the flexibility of the spun yarn and fiber structure is not impaired. On the other hand, if the spun yarn has an English cotton count of 200 or less, it is preferable because the yarn breakage during processing and the process passability are good, as well as the occurrence of fluff during use and excellent durability. The English cotton count of the spun yarn is more preferably 10 to 150, and still more preferably 20 to 100.
 本発明の紡績糸の強度は、特に制限がなく、用途や要求特性に応じて適宜選択することができるが、0.5~5.0cN/dtexであることが好ましい。紡績糸の強度は、機械的特性の観点から高ければ高いほど好ましいが、0.5cN/dtex以上であることが好ましい。紡績糸の強度が0.5cN/dtex以上であれば、糸切れが少なく、工程通過性が良好であることに加え、耐久性に優れるため好ましい。紡績糸の強度は0.7~5.0cN/dtexであることがより好ましく、1.0~5.0cN/dtexであることが更に好ましい。 The strength of the spun yarn of the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is preferably 0.5 to 5.0 cN / dtex. The strength of the spun yarn is preferably as high as possible from the viewpoint of mechanical properties, but is preferably 0.5 cN / dtex or more. If the strength of the spun yarn is 0.5 cN / dtex or more, it is preferable because the yarn breakage is small, process passability is good, and durability is excellent. The strength of the spun yarn is more preferably 0.7 to 5.0 cN / dtex, and still more preferably 1.0 to 5.0 cN / dtex.
 本発明の紡績糸の伸度は、特に制限がなく、用途や要求特性に応じて適宜選択することができるが、5~100%であることが好ましい。紡績糸の伸度が5%以上であれば、紡績糸ならびに繊維構造体の耐摩耗性が良好となり、毛羽の発生が少なく、耐久性が良好となるため好ましい。一方、紡績糸の伸度が100%以下であれば、紡績糸ならびに繊維構造体の寸法安定性が良好となるため好ましい。紡績糸の伸度は8~80%であることが好ましく、10~40%であることが更に好ましい。 The elongation of the spun yarn of the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is preferably 5 to 100%. An elongation of the spun yarn of 5% or more is preferable because the spun yarn and the fiber structure have good wear resistance, less fluffing, and good durability. On the other hand, an elongation of the spun yarn of 100% or less is preferable because the dimensional stability of the spun yarn and the fiber structure is improved. The elongation of the spun yarn is preferably 8 to 80%, more preferably 10 to 40%.
 本発明の紡績糸の初期引張抵抗度は、特に制限がなく、用途や要求特性に応じて適宜選択することができるが、10~100cN/dtexであることが好ましい。紡績糸の初期引張抵抗度が10cN/dtex以上であれば、工程通過性や取り扱い性が良好であり、機械的特性に優れるため好ましい。一方、紡績糸の初期引張抵抗度が100cN/dtex以下であれば、紡績糸ならびに繊維構造体の柔軟性を損なうことがないため好ましい。紡績糸の初期引張抵抗度は15~80cN/dtexであることがより好ましく、20~60cN/dtexであることが更に好ましい。 The initial tensile resistance of the spun yarn of the present invention is not particularly limited and can be appropriately selected according to the application and required characteristics, but is preferably 10 to 100 cN / dtex. If the initial tensile resistance of the spun yarn is 10 cN / dtex or more, the process passability and handleability are good, and the mechanical properties are excellent, which is preferable. On the other hand, if the initial tensile resistance of the spun yarn is 100 cN / dtex or less, the flexibility of the spun yarn and the fiber structure is not impaired, which is preferable. The initial tensile resistance of the spun yarn is more preferably 15 to 80 cN / dtex, still more preferably 20 to 60 cN / dtex.
 本発明の紡績糸の見掛け比重は、特に制限がなく、化学繊維または天然繊維の種類や混紡比率、用途や要求特性に応じて適宜選択することができるが、0.83~1.2であることが好ましい。紡績糸の見掛け比重は、軽量性の観点から小さければ小さいほど好ましいが、0.83以上であることが好ましい。紡績糸の見掛け比重が0.83以上であれば、紡績糸の軽量性を損なうことなく、軽量性に優れたポリメチルペンテン繊維へ化学繊維または天然繊維の風合いを付与することができるため好ましい。紡績糸の見掛け比重は0.83~1.15であることがより好ましく、0.83~1.1であることが更に好ましい。 The apparent specific gravity of the spun yarn of the present invention is not particularly limited, and can be appropriately selected according to the type of chemical fiber or natural fiber, the blending ratio, application and required characteristics, and is 0.83 to 1.2. It is preferable. The apparent specific gravity of the spun yarn is preferably as small as possible from the viewpoint of lightness, but is preferably 0.83 or more. If the apparent specific gravity of the spun yarn is 0.83 or more, it is preferable because the texture of the chemical fiber or the natural fiber can be imparted to the polymethylpentene fiber excellent in light weight without impairing the light weight of the spun yarn. The apparent specific gravity of the spun yarn is more preferably 0.83 to 1.15, and still more preferably 0.83 to 1.1.
 本発明の紡績糸は、製織や製編について一般の繊維と同様に扱うことができ、繊維構造体とする際に本発明の紡績糸と他の繊維を交織や交編などによって組み合わせてもよい。 The spun yarn of the present invention can be handled in the same manner as general fibers for weaving and knitting, and when forming a fiber structure, the spun yarn of the present invention and other fibers may be combined by weaving or knitting. .
 本発明の紡績糸からなる繊維構造体の形態は、特に制限がなく、公知の方法に従い、織物、編物、パイル布帛、不織布などにすることができる。また、本発明の紡績糸からなる繊維構造体は、いかなる織組織または編組織であってもよく、平織、綾織、朱子織あるいはこれらの変化織や、経編、緯編、丸編、レース編あるいはこれらの変化編などが好適に採用できる。 The form of the fiber structure composed of the spun yarn of the present invention is not particularly limited, and can be made into a woven fabric, a knitted fabric, a pile fabric, a nonwoven fabric, or the like according to a known method. Further, the fiber structure comprising the spun yarn of the present invention may be any woven or knitted structure, such as plain weave, twill weave, satin weave, or these changed weaves, warp knitting, weft knitting, circular knitting, lace knitting. Or these change knitting etc. can be adopted suitably.
 次に、本発明の紡績糸の製造方法について説明する。 Next, a method for producing the spun yarn of the present invention will be described.
 本発明の紡績糸は、公知の方法に従い、溶融紡糸によってポリメチルペンテン系樹脂、またはこれと熱可塑性樹脂等の原料からポリメチルペンテン繊維を得た後、延伸、捲縮、カット、粗紡、精紡などの工程を経て得ることができるが、これらに限定されない。 The spun yarn of the present invention is obtained by obtaining a polymethylpentene fiber from a raw material such as a polymethylpentene resin or a thermoplastic resin by melt spinning according to a known method, and then drawing, crimping, cutting, roving, fine spinning. Although it can obtain through processes, such as spinning, it is not limited to these.
 本発明では、溶融紡糸を行う前にポリメチルペンテン系樹脂ならびに熱可塑性樹脂を乾燥させ、含水率を0.3重量%以下としておくことが好ましい。含水率が0.3重量%以下であれば、溶融紡糸の際に水分によって発泡することがなく、安定して紡糸を行うことが可能となるため好ましい。含水率は0.2重量%以下であることがより好ましく、0.1重量%以下であることが更に好ましい。 In the present invention, it is preferable to dry the polymethylpentene resin and the thermoplastic resin before melt spinning, so that the water content is 0.3% by weight or less. A water content of 0.3% by weight or less is preferable because it does not cause foaming due to moisture during melt spinning and enables stable spinning. The water content is more preferably 0.2% by weight or less, and further preferably 0.1% by weight or less.
 溶融紡糸の方法としては、単成分紡糸、複合紡糸のそれぞれについて公知の方法を好適に採用できる。溶融紡糸によってポリメチルペンテン系樹脂と熱可塑性樹脂を複合化する方法として、芯鞘型複合紡糸、海島型複合紡糸もしくはポリマーアロイ型紡糸などが挙げられるが、これらに限定されない。 As the melt spinning method, a known method can be suitably employed for each of single component spinning and composite spinning. Examples of the method of compounding the polymethylpentene resin and the thermoplastic resin by melt spinning include, but are not limited to, core-sheath type compound spinning, sea-island type compound spinning, polymer alloy type spinning, and the like.
 芯鞘型複合紡糸を行う場合には、必要に応じてそれぞれのチップを乾燥した後、エクストルーダー型やプレッシャーメルター型などの溶融紡糸機へチップを供給して、芯成分と鞘成分をそれぞれ別々に溶融し、計量ポンプで計量する。その後、紡糸ブロックにおいて加温した紡糸パックへ導入して、紡糸パック内で溶融ポリマーを濾過した後、芯鞘型複合用紡糸口金で芯成分と鞘成分を合流させて芯鞘構造として、紡糸口金から吐出して繊維糸条とする方法を好適に採用できる。海島型複合紡糸については、海成分と島成分をそれぞれ別々に溶融し、海島型複合用紡糸口金を用いて海島構造とする以外は芯鞘型複合紡糸と同様の方法を好適に採用できる。 When performing core-sheath type composite spinning, each chip is dried as necessary, and then the chip is supplied to a melt spinning machine such as an extruder type or a pressure melter type to separate the core component and the sheath component separately. And weigh with a metering pump. Then, after introducing into the spinning pack heated in the spinning block and filtering the molten polymer in the spinning pack, the core component and the sheath component are merged with the core-sheath type composite spinneret to form a core-sheath structure. It is possible to suitably employ a method of discharging from a fiber into a yarn. For the sea-island type composite spinning, the same method as the core-sheath type composite spinning can be suitably employed except that the sea component and the island component are separately melted to form a sea-island structure using a sea-island type composite spinneret.
 ポリマーアロイ型紡糸を行う場合には、紡糸口金から吐出して繊維糸条とする方法として、以下に示す例が挙げられるが、これらに限定されない。第一の例として、ポリメチルペンテン系樹脂と熱可塑性樹脂をエクストルーダーなどで事前に溶融混練して複合化したチップを必要に応じて乾燥した後、溶融紡糸機へチップを供給して溶融し、計量ポンプで計量する。その後、紡糸ブロックにおいて加温した紡糸パックへ導入して、紡糸パック内で溶融ポリマーを濾過した後、紡糸口金から吐出して繊維糸条とする方法が挙げられる。第二の例として、必要に応じてチップを乾燥し、チップの状態でポリメチルペンテン系樹脂と熱可塑性樹脂を混合した後、溶融紡糸機へ混合したチップを供給して溶融し、計量ポンプで計量する。その後、紡糸ブロックにおいて加温した紡糸パックへ導入して、紡糸パック内で溶融ポリマーを濾過した後、紡糸口金から吐出して繊維糸条とする方法が挙げられる。 In the case of performing polymer alloy spinning, examples of methods for discharging from a spinneret into fiber yarns include the following examples, but are not limited thereto. As a first example, a polymethylpentene resin and a thermoplastic resin are melted and kneaded in advance using an extruder, etc., and the chips are dried as necessary, and then supplied to a melt spinning machine for melting. Measure with a metering pump. Then, after introducing into the spinning pack heated in the spinning block and filtering the molten polymer in the spinning pack, there is a method of discharging from the spinneret into a fiber yarn. As a second example, if necessary, the chip is dried, and after mixing the polymethylpentene resin and the thermoplastic resin in the state of the chip, the mixed chip is supplied to the melt spinning machine and melted, and the metering pump is used. Weigh. Then, after introducing into the spinning pack heated in the spinning block and filtering the molten polymer in the spinning pack, there is a method of discharging from the spinneret into a fiber yarn.
 紡糸口金から吐出された繊維糸条は、単成分紡糸、芯鞘型複合紡糸、海島型複合紡糸、ポリマーアロイ型紡糸のいずれの場合においても、冷却装置によって冷却固化され、ローラーによって引き取られる。さらには、製糸操業性、生産性、繊維の機械的特性を向上させるために、必要に応じて紡糸口金下部に2~20cmの長さの加熱筒や保温筒を設置してもよい。また、給油装置を用いて繊維糸条へ給油してもよく、交絡装置を用いて繊維糸条へ交絡を付与してもよい。 The fiber yarn discharged from the spinneret is cooled and solidified by a cooling device in any case of single component spinning, core-sheath type composite spinning, sea-island type composite spinning, and polymer alloy type spinning, and is taken up by a roller. Furthermore, a heating cylinder or a heat insulation cylinder having a length of 2 to 20 cm may be provided at the lower part of the spinneret as needed in order to improve the spinning maneuverability, productivity, and mechanical properties of the fiber. Moreover, you may supply oil to a fiber yarn using an oil supply apparatus, and you may give an entanglement to a fiber yarn using an entanglement apparatus.
 溶融紡糸における紡糸温度は、ポリメチルペンテン系樹脂ならびに熱可塑性樹脂の融点や耐熱性などに応じて適宜選択することができるが、220~320℃であることが好ましい。紡糸温度が220℃以上であれば、紡糸口金より吐出された繊維糸条の伸長粘度が十分に低下するため吐出が安定し、さらには、紡糸張力が過度に高くならず、糸切れを抑制することができるため好ましい。一方、紡糸温度が320℃以下であれば、紡糸時の熱分解を抑制することができ、得られるポリメチルペンテン繊維の機械的特性不良や着色が生じないため好ましい。紡糸温度は、240~300℃であることがより好ましく、260~280℃であることが更に好ましい。 The spinning temperature in melt spinning can be appropriately selected according to the melting point and heat resistance of the polymethylpentene resin and the thermoplastic resin, but is preferably 220 to 320 ° C. If the spinning temperature is 220 ° C. or higher, the elongation viscosity of the fiber yarn discharged from the spinneret is sufficiently lowered, so that the discharge is stable, and further, the spinning tension is not excessively increased and the yarn breakage is suppressed. This is preferable. On the other hand, if the spinning temperature is 320 ° C. or lower, it is preferable because thermal decomposition during spinning can be suppressed and the resulting polymethylpentene fiber does not have poor mechanical properties or coloring. The spinning temperature is more preferably 240 to 300 ° C, and further preferably 260 to 280 ° C.
 溶融紡糸における紡糸速度は、紡糸温度やポリメチルペンテン繊維の単糸繊度などに応じて適宜選択することができるが、300~2500m/分であることが好ましい。紡糸速度が300m/分以上であれば、走行糸条が安定し、糸切れを抑制することができるため好ましい。一方、紡糸速度が2500m/分以下であれば、繊維糸条を十分に冷却することができ、安定した紡糸を行うことができるため好ましい。紡糸速度は、500~2000m/分であることがより好ましく、1000~1500m/分であることが更に好ましい。 The spinning speed in melt spinning can be appropriately selected according to the spinning temperature, the single yarn fineness of the polymethylpentene fiber, etc., but is preferably 300 to 2500 m / min. A spinning speed of 300 m / min or more is preferable because the running yarn is stable and yarn breakage can be suppressed. On the other hand, a spinning speed of 2500 m / min or less is preferable because the fiber yarn can be sufficiently cooled and stable spinning can be performed. The spinning speed is more preferably 500 to 2000 m / min, and still more preferably 1000 to 1500 m / min.
 紡出糸条の引取方法は、第1ゴデットローラーで引き取り、第2ゴデットローラーを介してワインダーで巻き取る方法でもよいが、生産性の観点からは未延伸糸を収納容器に収納する方法、いわゆる収納引き取り法を好適に採用できる。具体的には、複数の紡糸口金から吐出された繊維糸条を多数のローラー群で誘導し、一つの束として缶などの収納容器内に振り落として収納する方法である。 The method of taking out the spun yarn may be a method of taking up with a first godet roller and winding it up with a winder through a second godet roller. From the viewpoint of productivity, a method of storing undrawn yarn in a storage container The so-called storage and take-up method can be suitably employed. Specifically, it is a method in which fiber yarns discharged from a plurality of spinnerets are guided by a number of roller groups and are shaken down and stored as a bundle in a storage container such as a can.
 収納引き取り法を行った後のポリメチルペンテン繊維の全繊度は、特に制限がなく、延伸倍率や延伸速度などに応じて適宜選択することができるが、1000~100万dtexであることが好ましい。収納引き取り法を行った後のポリメチルペンテン繊維の全繊度が1000dtex以上であれば、糸切れが少なく、工程通過性が良好であるため好ましい。一方、収納引き取り法を行った後のポリメチルペンテン繊維の全繊度が100万dtex以下であれば、工程通過性や取り扱い性が良好であるため好ましい。収納引き取り法を行った後のポリメチルペンテン繊維の全繊度は、5000~70万dtexであることがより好ましく、1万~50万dtexであることが更に好ましい。 The total fineness of the polymethylpentene fiber after the storage and take-up method is not particularly limited and can be appropriately selected according to the draw ratio, the draw speed, etc., but is preferably 1,000 to 1,000,000 dtex. If the total fineness of the polymethylpentene fiber after carrying out the storage and taking-up method is 1000 dtex or more, it is preferable because thread breakage is small and processability is good. On the other hand, if the total fineness of the polymethylpentene fiber after carrying out the storage take-up method is 1 million dtex or less, the process passability and the handleability are good, which is preferable. The total fineness of the polymethylpentene fiber after the storage and take-up method is preferably 5000 to 700,000 dtex, and more preferably 10,000 to 500,000 dtex.
 溶融紡糸によって引き取られた未延伸糸は、所望の繊維特性を有する紡績糸を得るために延伸を行ってもよい。延伸の方法は、特に制限がなく、公知の方法に従い、ドラムに一旦巻き取った未延伸糸を延伸する2工程法、ドラムへ巻き取らずに連続して延伸する直接紡糸延伸法、収納引き取り法によって得られた未延伸糸を引き揃えた後に延伸する方法などが挙げられるが、これらに限定されない。生産性の観点からは、収納引き取り法によって得られた未延伸糸を引き揃えた後に延伸する方法を好適に採用できる。具体的には、複数の収納容器から未延伸糸を立ち上げて、引き揃えた後に延伸工程へと導かれる。 The undrawn yarn taken up by melt spinning may be drawn to obtain a spun yarn having desired fiber characteristics. The stretching method is not particularly limited, and in accordance with a known method, a two-step method of stretching unstretched yarn once wound on a drum, a direct spinning stretching method of continuously stretching without winding on a drum, a storage take-up method Although the method of extending | stretching after drawing the undrawn thread | yarn obtained by (1) is mentioned, It is not limited to these. From the viewpoint of productivity, a method of drawing after undrawn yarn obtained by the storage take-up method can be suitably employed. Specifically, undrawn yarns are launched from a plurality of storage containers, and after being aligned, are led to a drawing step.
 引き揃えを行った後のポリメチルペンテン繊維の全繊度は、特に制限がなく、延伸倍率や延伸速度などに応じて適宜選択することができるが、1万~100万dtexであることが好ましい。引き揃えを行った後のポリメチルペンテン繊維の全繊度が1万dtex以上であれば、糸切れが少なく、工程通過性が良好であるため好ましい。一方、引き揃えを行った後のポリメチルペンテン繊維の全繊度が100万dtex以下であれば、工程通過性や取り扱い性が良好であるため好ましい。引き揃えを行った後のポリメチルペンテン繊維の全繊度は、5万~70万dtexであることがより好ましく、10万~50万dtexであることが更に好ましい。 The total fineness of the polymethylpentene fibers after the drawing is not particularly limited and can be appropriately selected according to the draw ratio, the draw speed, etc., but is preferably 10,000 to 1,000,000 dtex. If the total fineness of the polymethylpentene fiber after drawing is 10,000 dtex or more, it is preferable because thread breakage is small and processability is good. On the other hand, if the total fineness of the polymethylpentene fiber after the alignment is 1,000,000 dtex or less, the process passability and handleability are good, which is preferable. The total fineness of the polymethylpentene fiber after drawing is more preferably 50,000 to 700,000 dtex, and further preferably 100,000 to 500,000 dtex.
 延伸における加熱方法としては、走行糸条を直接的あるいは間接的に加熱できる装置であれば、特に限定されない。加熱方法の具体例として、加熱ローラー、熱ピン、熱板、レーザーなどの装置、温水、熱水などの液体浴、熱空、スチームなどの気体浴などが挙げられるがこれらに限定されない。これらの加熱方法は単独で使用してもよく、複数を併用してもよい。加熱方法としては、加熱温度の制御、走行糸条への均一な加熱、装置が複雑にならない観点から、加熱ローラーとの接触、熱ピンとの接触、熱板との接触、温水や熱水などの液体浴への浸漬を好適に採用できる。さらには、生産性の観点から、温水や熱水などの液体浴への浸漬が特に好ましい。 The heating method in stretching is not particularly limited as long as it is an apparatus capable of directly or indirectly heating the running yarn. Specific examples of the heating method include, but are not limited to, devices such as a heating roller, a hot pin, a hot plate, and a laser, a liquid bath such as hot water and hot water, a gas bath such as hot air and steam. These heating methods may be used alone or in combination. As the heating method, from the viewpoint of controlling the heating temperature, uniform heating to the running yarn, and not complicating the apparatus, contact with the heating roller, contact with the hot pin, contact with the hot plate, hot water or hot water, etc. Immersion in a liquid bath can be suitably employed. Furthermore, from the viewpoint of productivity, immersion in a liquid bath such as warm water or hot water is particularly preferable.
 延伸を行う場合の延伸倍率は、ポリメチルペンテン繊維からなる紡績糸の強度や伸度などに応じて適宜選択することができるが、1.02~7.0倍であることが好ましい。延伸倍率が1.02倍以上であれば、延伸によってポリメチルペンテン繊維の強度や伸度などの機械的特性を向上させることができるため好ましい。一方、延伸倍率が7.0倍以下であれば、延伸時の糸切れが抑制され、安定した延伸を行うことができるため好ましい。延伸倍率は、1.2~6.0倍であることがより好ましく、1.5~5.0倍であることが更に好ましい。また、1段延伸法または2段以上の多段延伸法のいずれの方法によってもよい。 The draw ratio in the case of drawing can be appropriately selected according to the strength and elongation of the spun yarn made of polymethylpentene fiber, but is preferably 1.02 to 7.0 times. A draw ratio of 1.02 or more is preferable because mechanical properties such as strength and elongation of the polymethylpentene fiber can be improved by drawing. On the other hand, if the draw ratio is 7.0 times or less, yarn breakage during drawing is suppressed, and stable drawing can be performed. The draw ratio is more preferably 1.2 to 6.0 times, and still more preferably 1.5 to 5.0 times. Further, any one of a one-stage stretching method or a two-stage or more multi-stage stretching method may be used.
 延伸を行う場合の延伸温度は、ポリメチルペンテン繊維からなる紡績糸の強度や伸度などに応じて適宜選択することができるが、50~95℃であることが好ましい。延伸温度が50℃以上であれば、延伸に供給される糸条の予熱が充分に行われ、延伸時の熱変形が均一となり、繊度斑の発生を抑制できるため好ましい。一方、延伸温度が95℃以下であれば、延伸時の糸切れが抑制され、安定した延伸を行うことができるため好ましい。延伸温度は、55~90℃であることがより好ましく、60~85℃であることが更に好ましい。また、必要に応じて、延伸後に50~150℃の熱セットを行ってもよい。 The drawing temperature in the case of drawing can be appropriately selected according to the strength and elongation of the spun yarn made of polymethylpentene fiber, but is preferably 50 to 95 ° C. A drawing temperature of 50 ° C. or higher is preferable because the yarn supplied to the drawing is sufficiently preheated, the thermal deformation during drawing becomes uniform, and the occurrence of fineness spots can be suppressed. On the other hand, a stretching temperature of 95 ° C. or lower is preferable because yarn breakage during stretching is suppressed and stable stretching can be performed. The stretching temperature is more preferably 55 to 90 ° C, still more preferably 60 to 85 ° C. If necessary, heat setting at 50 to 150 ° C. may be performed after stretching.
 延伸を行う場合の延伸速度は、延伸方法や延伸倍率などに応じて適宜選択することができるが、30~1000m/分であることが好ましい。延伸速度が30m/分以上であれば、未延伸糸の総繊度が大きい場合にも走行糸条が安定するため好ましい。一方、延伸速度が1000m/分以下であれば、延伸時の糸切れが抑制され、安定した延伸を行うことができるため好ましい。延伸速度は、50~800m/分であることがより好ましく、100~500m/分であることが更に好ましい。 The stretching speed in the case of stretching can be appropriately selected according to the stretching method and the stretching ratio, but is preferably 30 to 1000 m / min. A drawing speed of 30 m / min or more is preferable because the running yarn is stabilized even when the total fineness of the undrawn yarn is large. On the other hand, a stretching speed of 1000 m / min or less is preferable because yarn breakage during stretching can be suppressed and stable stretching can be performed. The stretching speed is more preferably 50 to 800 m / min, and further preferably 100 to 500 m / min.
 本発明では、延伸前、延伸後、捲縮付与後のいずれか、もしくはそれぞれの工程においてポリメチルペンテン繊維へ油剤を付与してもよい。油剤の付与によって繊維同士の動摩擦係数が軽減され、延伸工程や紡績工程において工程通過性や取り扱い性が向上するため好ましい。 In the present invention, an oil agent may be applied to the polymethylpentene fiber before stretching, after stretching, after crimping, or in each step. Application of an oil agent is preferable because the coefficient of dynamic friction between fibers is reduced, and process passability and handleability are improved in a stretching process and a spinning process.
 本発明では、溶融紡糸から紡績までのいずれかの工程において、ポリメチルペンテン繊維に捲縮を付与することが好ましい。例えば、延伸前や多段延伸の途中で捲縮を付与してもよいが、延伸性や得られる繊維特性の観点から、延伸後に捲縮を付与することが好ましい。 In the present invention, it is preferable to crimp the polymethylpentene fiber in any step from melt spinning to spinning. For example, crimps may be imparted before stretching or in the course of multistage stretching, but crimping is preferably imparted after stretching from the viewpoint of stretchability and obtained fiber characteristics.
 捲縮を付与する方法は、特に制限がなく、公知の方法に従い、スタフィングボックス法、押し込み加熱ギア法、高速エアー噴射押し込み法などが挙げられるが、これらに限定されない。必要に応じて、捲縮付与時にスチーム加熱を行ってもよく、捲縮付与後に熱セットや乾燥を行ってもよい。また、溶融紡糸工程において、紡糸口金から吐出された繊維糸条の片側から冷却風を吹き付けて非対称冷却することで、捲縮を付与してもよい。冷却風の温度は20~30℃、風速は20~100m/分とすることが好適に採用できる。 The method for imparting crimp is not particularly limited, and examples thereof include, but are not limited to, a stuffing box method, an indentation heating gear method, and a high-speed air injection indentation method according to a known method. If necessary, steam heating may be performed at the time of crimping, or heat setting or drying may be performed after crimping. In the melt spinning step, crimp may be imparted by blowing a cooling air from one side of the fiber yarn discharged from the spinneret to perform asymmetric cooling. The temperature of the cooling air is preferably 20 to 30 ° C. and the wind speed is preferably 20 to 100 m / min.
 捲縮を付与する際の処理温度は、用途や要求特性に応じて適宜選択することができるが、安定した捲縮を付与するために100~250℃であることが好ましい。処理温度が100℃以上であれば、捲縮に供給される糸条の予熱が充分に行われ、捲縮付与時に熱変形するため好ましい。一方、処理温度が250℃以下であれば、捲縮付与時にポリメチルペンテン繊維の熱分解を抑制することができ、得られる紡績糸の機械的特性不良や着色が生じないため好ましい。捲縮を付与する際の処理温度は、120~230℃であることがより好ましく、150~200℃であることが更に好ましい。 The treatment temperature for imparting crimps can be appropriately selected according to the application and required characteristics, but is preferably 100 to 250 ° C. in order to impart stable crimps. A treatment temperature of 100 ° C. or higher is preferable because the yarn supplied to the crimp is sufficiently preheated and thermally deformed when the crimp is applied. On the other hand, a treatment temperature of 250 ° C. or lower is preferable because thermal degradation of the polymethylpentene fiber can be suppressed during crimping, and mechanical properties and coloration of the obtained spun yarn do not occur. The treatment temperature for imparting crimps is more preferably 120 to 230 ° C, and further preferably 150 to 200 ° C.
 ポリメチルペンテン繊維を切断する方法は、特に制限がなく、公知の方法に従い、ロータリーカッター、ギロチンカッターなどが挙げられるが、これらに限定されない。また、ポリメチルペンテン繊維を定長に切断してもよく、繊維長が分布を有するように切断してもよい。 The method for cutting the polymethylpentene fiber is not particularly limited, and examples thereof include a rotary cutter and a guillotine cutter, but are not limited thereto. Further, the polymethylpentene fiber may be cut into a fixed length, or may be cut so that the fiber length has a distribution.
 紡績の方法は、特に制限がなく、公知の方法に従い、ポリメチルペンテン繊維を用いて、打綿、梳綿(カード)、練条、粗紡、精紡の工程を経ることで紡績糸を得ることができるが、これらに限定されない。 The spinning method is not particularly limited, and a spun yarn is obtained by using a polymethylpentene fiber according to a known method, through the steps of cotton smashing, carding, kneading, roving and spinning. However, it is not limited to these.
 本発明では、紡績を行う際にポリメチルペンテン繊維と、化学繊維または天然繊維を所望の割合で混紡してもよい。混紡の方法は、特に制限がなく、公知の方法に従い、打綿から梳綿(カード)の工程まででそれぞれの原綿を別々の系列に投入して練条工程で各スライバーを複合する方法や、精紡工程で粗糸あるいはスライバーを複数本供給して複合する方法などが挙げられるが、これらに限定されない。 In the present invention, when spinning, polymethylpentene fibers and chemical fibers or natural fibers may be blended at a desired ratio. The method of blending is not particularly limited, and in accordance with a known method, each raw cotton is put into a separate series from the battering to carding (card) process, and each sliver is combined in the drawing process, Examples include, but are not limited to, a method in which a plurality of roving yarns or slivers are supplied and combined in the spinning process.
 本発明では、紡績を行う際に加撚してもよい。加撚の方法は、特に制限がなく、公知の方法に従い、リング、フライヤー、ポット、ミュール、オープンエンドなどの実撚法、結束法,交互撚糸法などの仮撚法、インターレース、糊着法、融着法などの無撚法などが挙げられるが、これらに限定されない。 In the present invention, twisting may be performed when spinning. The method of twisting is not particularly limited, and according to known methods, false twisting methods such as ring, flyer, pot, mule, open end, binding method, alternating twisting method, interlacing, gluing method, Examples include, but are not limited to, a non-twisting method such as a fusion method.
 本発明で得られた紡績糸は、化学繊維または天然繊維からなる紡績糸と撚り合わせてもよい。撚糸の方法は、特に制限がなく、公知の方法に従い、リング、フライヤー、ポット、ミュール、オープンエンドなどの実撚法、結束法,交互撚糸法などの仮撚法、インターレース、糊着法、融着法などの無撚法などが挙げられるが、これらに限定されない。また、撚り合わせの撚糸回数は特に制限がなく、撚り合わせを行った後の紡績糸の繊維特性などに応じて適宜選択することができるが、5~75回/25.4mmであることが好ましい。撚り合わせの撚糸回数が5回/25.4mm以上であれば、紡績糸を構成する繊維同士の絡み合いが大きいため、使用時に毛羽の発生が少なく、耐久性に優れるため好ましい。一方、撚り合わせの撚糸回数が75回/25.4mm以下であれば、工程通過性が良好であることに加え、風合いが硬くなり過ぎず、紡績糸ならびに繊維構造体の柔軟性を損なうことがないため好ましい。撚糸回数は、10~50回/25.4mmであることがより好ましく、15~30回/25.4mmであることが更に好ましい。 The spun yarn obtained in the present invention may be twisted with a spun yarn made of chemical fiber or natural fiber. The method of twisting is not particularly limited, and according to known methods, false twisting methods such as ring, flyer, pot, mule, open end, false twisting methods such as bundling method, alternating twisting method, interlacing, gluing method, fusion Examples include, but are not limited to, a non-twisting method such as a wearing method. The number of twisted yarns is not particularly limited and can be appropriately selected according to the fiber characteristics of the spun yarn after twisting, but is preferably 5 to 75 times / 25.4 mm. . When the number of twisted yarns is 5 times / 25.4 mm or more, the fibers constituting the spun yarn are entangled with each other, so that generation of fluff is small during use and durability is excellent. On the other hand, if the number of twisted yarns is 75 times / 25.4 mm or less, in addition to good process passability, the texture does not become too hard, and the flexibility of the spun yarn and the fiber structure may be impaired. It is preferable because it is not present. The number of twists is more preferably 10 to 50 times / 25.4 mm, and further preferably 15 to 30 times / 25.4 mm.
 本発明の紡績糸、および紡績糸からなる繊維構造体の染色方法は、特に制限がなく、公知の方法に従い、チーズ染色機、液流染色機、ドラム染色機、ビーム染色機、ジッガー、高圧ジッガーなどを好適に採用することができる。 The dyeing method of the spun yarn of the present invention and the fiber structure comprising the spun yarn is not particularly limited, and according to known methods, cheese dyeing machine, liquid dyeing machine, drum dyeing machine, beam dyeing machine, jigger, high-pressure jigger Etc. can be suitably employed.
 本発明では、ポリメチルペンテン系樹脂と複合する熱可塑性樹脂や、混紡や撚り合わせに用いる化学繊維または天然繊維の種類に応じて染料を適宜選択することができる。いずれの染料を用いた場合も、ポリメチルペンテン系樹脂はほとんど染色されることはないが、熱可塑性樹脂や化学繊維、天然繊維が染色されることによって、紡績糸ならびに繊維構造体へ発色性を付与することができる。熱可塑性樹脂として、ポリエステルを用いる場合には分散染料、ポリアミドを用いる場合には酸性染料、熱可塑性ポリアクリロニトリルを用いる場合にはカチオン染料、熱可塑性ポリウレタンを用いる場合には酸性染料、変性ポリオレフィンを用いる場合にはカチオン染料、ポリ塩化ビニルを用いる場合には分散染料、セルロース誘導体を用いる場合には分散染料を好適に採用できるが、これらに限定されない。化学繊維として、ポリエステル系繊維を用いる場合には分散染料、ポリアミド系繊維を用いる場合には酸性染料、ポリアクリロニトリル系繊維を用いる場合にはカチオン染料、セルロース系繊維を用いる場合には分散染料、セルロース繊維を用いる場合には反応染料または直接染料を好適に採用できるが、これらに限定されない。天然繊維として、綿を用いる場合には反応染料または直接染料、絹を用いる場合には酸性染料、麻を用いる場合には反応染料または直接染料、羊毛を用いる場合には酸性染料を好適に採用できるが、これらに限定されない。 In the present invention, a dye can be appropriately selected according to the type of thermoplastic resin combined with the polymethylpentene resin, chemical fiber or natural fiber used for blending or twisting. When using any dye, polymethylpentene resin is hardly dyed, but by coloring thermoplastic resin, chemical fiber, and natural fiber, coloring property to the spun yarn and fiber structure is improved. Can be granted. As the thermoplastic resin, disperse dyes are used when polyester is used, acidic dyes are used when polyamide is used, cationic dyes are used when thermoplastic polyacrylonitrile is used, acidic dyes and modified polyolefins are used when thermoplastic polyurethane is used. In this case, a cationic dye, a disperse dye in the case of using polyvinyl chloride, and a disperse dye in the case of using a cellulose derivative can be preferably used, but are not limited thereto. When using polyester fiber as the chemical fiber, disperse dye, when using polyamide fiber, acidic dye, when using polyacrylonitrile fiber, cationic dye, when using cellulose fiber, disperse dye, cellulose When fibers are used, reactive dyes or direct dyes can be suitably used, but the present invention is not limited to these. As natural fibers, reactive dyes or direct dyes when cotton is used, acidic dyes when silk is used, reactive dyes or direct dyes when hemp is used, and acidic dyes when wool is used can be suitably used. However, it is not limited to these.
 本発明では、染料濃度や染色温度に関して特に制限がなく、公知の方法を好適に採用できる。また、必要に応じて、染色加工前に精練を行ってもよく、染色加工後に還元洗浄を行ってもよい。 In the present invention, there is no particular limitation on the dye concentration and dyeing temperature, and a known method can be suitably employed. If necessary, scouring may be performed before the dyeing process, or reduction cleaning may be performed after the dyeing process.
 本発明により得られる紡績糸、および紡績糸からなる繊維構造体は、軽量性とともに保温性、速乾性、アイロン耐熱性に優れたものである。そのため、婦人服、紳士服、裏地、下着、ダウン、ベスト、インナー、アウターなどの一般衣料用途、ウインドブレーカー、アウトドアウェア、スキーウェア、ゴルフウェア、水着などのスポーツ衣料用途、ふとん用側地、ふとんカバー、毛布、毛布用側地、毛布カバー、枕カバー、シーツなどの寝具用途、テーブルクロス、カーテン、タイルカーペット、家庭用敷物、自動車用マットなどのインテリア用途、ベルト、かばん、縫糸、寝袋、テント、ロープ、養生ネット、ろ過布、細幅テープ、組紐、椅子張りなどの資材用途などが挙げられるが、これらに限定されない。 The spun yarn obtained by the present invention and the fiber structure comprising the spun yarn are excellent in heat retention, quick drying and iron heat resistance as well as light weight. Therefore, women's clothing, men's clothing, lining, underwear, down, vest, inner, outerwear and other general clothing uses, windbreakers, outdoor wear, ski wear, golf wear, swimwear and other sports clothing use, futon side, futon Covers, blankets, blankets, blanket covers, pillowcases, sheets and other bedding applications, tablecloths, curtains, tile carpets, household rugs, automobile mats, interior applications, belts, bags, sewing threads, sleeping bags, tents , Materials such as ropes, curing nets, filter cloths, narrow tapes, braids, upholstery, etc., but are not limited thereto.
 以下、実施例により本発明をより詳細に説明する。なお、実施例中の各特性値は、以下の方法で求めたものである。 Hereinafter, the present invention will be described in more detail with reference to examples. In addition, each characteristic value in an Example is calculated | required with the following method.
 ポリメチルペンテン繊維の原料および繊維の特性について、A~Kの方法により算出した。 The raw material of the polymethylpentene fiber and the properties of the fiber were calculated by the methods A to K.
 A.MFR
 MFR(g/10分)は、ポリメチルペンテン系樹脂を試料とし、ASTM D1238-10に準じて測定温度260℃、荷重5.0kgの条件で測定した。なお、測定は1試料につき3回行い、その平均値をMFRとした。
A. MFR
MFR (g / 10 min) was measured under the conditions of a measurement temperature of 260 ° C. and a load of 5.0 kg according to ASTM D1238-10 using a polymethylpentene resin as a sample. The measurement was performed 3 times per sample, and the average value was defined as MFR.
 B.含水率
 真空乾燥後のポリメチルペンテン系樹脂および熱可塑性樹脂を試料とし、平沼産業製微量水分測定装置AQ-2000および水分気化装置EV-2000を用いて含水率(ppm)を測定した。水分気化装置へ試料を投入した後、加熱炉の温度を180℃、乾燥窒素ガスの流量を0.2L/分の条件で測定した。なお、測定は1試料につき3回行い、その平均値を含水率とした。
B. Water content Using the polymethylpentene resin and the thermoplastic resin after vacuum drying as samples, the water content (ppm) was measured using a trace moisture measuring device AQ-2000 and a moisture vaporizer EV-2000 manufactured by Hiranuma Sangyo. After putting the sample into the moisture vaporizer, the temperature of the heating furnace was measured at 180 ° C., and the flow rate of dry nitrogen gas was measured at 0.2 L / min. In addition, the measurement was performed 3 times per sample, and the average value was defined as the moisture content.
 C.融点
 ポリメチルペンテン系樹脂および熱可塑性樹脂について、パーキンエルマー製示差走査熱量計(DSC)DSC7型を用いて融点を測定した。窒素雰囲気下において、試料約10mgを30℃から280℃まで昇温速度15℃/分で昇温後、280℃で3分間保持して試料の熱履歴を取り除いた。その後、280℃から30℃まで降温速度15℃/分で降温後、30℃で3分間保持した。さらに、30℃から280℃まで昇温速度15℃/分で昇温し、2回目の昇温過程中に観測された吸熱ピークのピーク温度を融点(℃)とした。なお、測定は1試料につき3回行い、その平均値を融点とした。
C. Melting | fusing point About polymethylpentene type-resin and thermoplastic resin, melting | fusing point was measured using the Perkin-Elmer differential scanning calorimeter (DSC) DSC7 type | mold. Under a nitrogen atmosphere, about 10 mg of the sample was heated from 30 ° C. to 280 ° C. at a rate of temperature increase of 15 ° C./min, and held at 280 ° C. for 3 minutes to remove the thermal history of the sample. Thereafter, the temperature was decreased from 280 ° C. to 30 ° C. at a temperature decrease rate of 15 ° C./min, and then held at 30 ° C. for 3 minutes. Furthermore, the temperature was raised from 30 ° C. to 280 ° C. at a rate of temperature rise of 15 ° C./min, and the peak temperature of the endothermic peak observed during the second temperature raising process was taken as the melting point (° C.). The measurement was performed three times for each sample, and the average value was taken as the melting point.
 D.複合比率
 ポリメチルペンテン繊維の原料として用いたポリメチルペンテン系樹脂の重量と熱可塑性樹脂の重量から、複合比率(重量比)を算出した。
D. Composite ratio The composite ratio (weight ratio) was calculated from the weight of the polymethylpentene resin used as a raw material for the polymethylpentene fiber and the weight of the thermoplastic resin.
 E.比重
 比重は、実施例によって得られたポリメチルペンテン繊維を試料とし、JIS L1015:2010(化学繊維ステープル試験方法)8.14.1(浮沈法)に準じて算出した。なお、測定は1試料につき3回行い、その平均値を比重とした。
E. Specific gravity The specific gravity was calculated according to JIS L1015: 2010 (chemical fiber staple test method) 8.14.1 (floating and sinking method) using the polymethylpentene fiber obtained in the example as a sample. The measurement was performed 3 times per sample, and the average value was defined as the specific gravity.
 F.平均繊維長
 平均繊維長(mm)は、実施例によって得られたポリメチルペンテン繊維を試料とし、JIS L1015:2010(化学繊維ステープル試験方法)8.4.1(ステープルダイヤグラム法(A法))に準じて算出した。なお、測定は1試料につき20回行い、その平均値を平均繊維長とした。
F. Average fiber length Average fiber length (mm) was obtained by using polymethylpentene fibers obtained in the examples as samples, JIS L1015: 2010 (chemical fiber staple test method) 8.4.1 (staple diagram method (A method)) It calculated according to. The measurement was performed 20 times per sample, and the average value was defined as the average fiber length.
 G.単糸繊度
 単糸繊度(dtex)は、実施例によって得られたポリメチルペンテン繊維を試料とし、JIS L1015:2010(化学繊維ステープル試験方法)8.5.1(A法)に準じて算出した。なお、測定は1試料につき3回行い、その平均値を単糸繊度とした。
G. Single yarn fineness The single yarn fineness (dtex) was calculated according to JIS L1015: 2010 (chemical fiber staple test method) 8.5.1 (Method A) using the polymethylpentene fiber obtained in the example as a sample. . In addition, the measurement was performed 3 times per sample, and the average value was defined as the single yarn fineness.
 H.強度、伸度
 強度(cN/dtex)および伸度(%)は、実施例によって得られたポリメチルペンテン繊維を試料とし、JIS L1015:2010(化学繊維ステープル試験方法)8.7.1に準じて算出した。引張試験は、島津製作所製オートグラフAG-50NISMS型を用いて、つかみ間隔20mm、引張速度20mm/分の条件で行った。
H. Strength, Elongation Strength (cN / dtex) and elongation (%) were measured in accordance with JIS L1015: 2010 (chemical fiber staple test method) 8.7.1 using polymethylpentene fibers obtained in the examples as samples. Calculated. The tensile test was carried out using an autograph AG-50NISMS type manufactured by Shimadzu Corporation under the conditions of a grip interval of 20 mm and a tensile speed of 20 mm / min.
 I.初期引張抵抗度
 初期引張抵抗度(cN/dtex)は、実施例によって得られたポリメチルペンテン繊維を試料とし、JIS L1015:2010(化学繊維ステープル試験方法)8.11に準じて算出した。上記Hと同様に測定を行って荷重-伸び曲線を描き、この曲線の原点近傍において伸長変化に対する荷重変化の最大点を求め、JIS L1015:2010(化学繊維ステープル試験方法)8.11に記載の式を用いて初期引張抵抗度を算出した。
I. Initial tensile resistance The initial tensile resistance (cN / dtex) was calculated according to JIS L1015: 2010 (chemical fiber staple test method) 8.11, using the polymethylpentene fiber obtained in the examples as a sample. Measurement was performed in the same manner as in H above to draw a load-elongation curve, and the maximum point of load change with respect to elongation change was determined near the origin of this curve, and the method described in JIS L1015: 2010 (chemical fiber staple test method) 8.11 The initial tensile resistance was calculated using the formula.
 J.捲縮数
 捲縮数(山/25mm)は、実施例によって得られたポリメチルペンテン繊維を試料とし、JIS L1015:2010(化学繊維ステープル試験方法)8.12.1に準じて算出した。
J. et al. Crimp number The number of crimps (crest / 25 mm) was calculated according to JIS L1015: 2010 (chemical fiber staple test method) 8.12.1 using the polymethylpentene fiber obtained in the example as a sample.
 K.捲縮率
 捲縮率(%)は、実施例によって得られたポリメチルペンテン繊維を試料とし、JIS L1015:2010(化学繊維ステープル試験方法)8.12.2に準じて算出した。
K. Crimp rate The crimp rate (%) was calculated according to JIS L1015: 2010 (chemical fiber staple test method) 8.12.2 using the polymethylpentene fiber obtained in the example as a sample.
 紡績糸の繊維特性について、L~Sの方法により算出した。 The fiber characteristics of the spun yarn were calculated by the methods L to S.
 L.融点または分解温度
 紡績糸の原料として用いた化学繊維または天然繊維を試料として、上記Cと同様に融点を測定した。試料が明確な融点を示さない場合には、セイコーインスツルメント製熱重量示差熱分析装置(TG-DTA)6200型を用いて分解温度を測定した。空気雰囲気下において、試料約10mgを30℃から500℃まで昇温速度10℃/分で昇温後、試料の重量が10%減少した温度を分解温度(℃)とした。なお、測定は1試料につき3回行い、その平均値を分解温度とした。
L. Melting point or decomposition temperature Using the chemical fiber or natural fiber used as the raw material of the spun yarn, the melting point was measured in the same manner as in C above. When the sample did not show a clear melting point, the decomposition temperature was measured using a Seiko Instruments thermogravimetric differential thermal analyzer (TG-DTA) Model 6200. In an air atmosphere, about 10 mg of the sample was heated from 30 ° C. to 500 ° C. at a heating rate of 10 ° C./min, and the temperature at which the weight of the sample decreased by 10% was taken as the decomposition temperature (° C.). The measurement was performed three times per sample, and the average value was taken as the decomposition temperature.
 M.混紡比率
 紡績糸の原料として用いたポリメチルペンテン繊維の重量と、化学繊維または天然繊維の重量から、混紡比率(重量比)を算出した。
M.M. Blend ratio The blend ratio (weight ratio) was calculated from the weight of the polymethylpentene fiber used as the raw material for the spun yarn and the weight of the chemical fiber or natural fiber.
 N.見掛け比重
 見掛け比重は、実施例によって得られた紡績糸を試料とし、上記Eと同様に測定した。
N. Apparent specific gravity The apparent specific gravity was measured in the same manner as E described above using the spun yarn obtained in the example as a sample.
 O.英式綿番手
 英式綿番手(番手)は、実施例によって得られた紡績糸を試料とし、JIS L1095:2010(一般紡績糸試験方法)9.4.2に準じて算出した。なお、測定は1試料につき3回行い、その平均値を単糸繊度とした。
O. English Cotton Count The English cotton count (count) was calculated according to JIS L1095: 2010 (general spun yarn test method) 9.4.2 using the spun yarn obtained in the example as a sample. In addition, the measurement was performed 3 times per sample, and the average value was defined as the single yarn fineness.
 P.強力、伸度
 強力(cN)および伸度(%)は、実施例によって得られた紡績糸を試料とし、JIS L1095:2010(一般紡績糸試験方法)9.5.1(標準時)に準じて算出した。引張試験は、島津製作所製オートグラフAG-50NISMS型を用いて、つかみ間隔50cm、引張速度30cm/分の条件で行った。
P. Tenacity, elongation Tenacity (cN) and elongation (%) were measured according to JIS L1095: 2010 (general spun yarn test method) 9.5.1 (standard time) using the spun yarn obtained in the examples as a sample. Calculated. The tensile test was carried out using an autograph AG-50NISMS type manufactured by Shimadzu Corporation under the conditions of a gripping interval of 50 cm and a tensile speed of 30 cm / min.
 Q.初期引張抵抗度
 初期引張抵抗度(cN/dtex)は、実施例によって得られた紡績糸を試料とし、JIS L1095:2010(一般紡績糸試験方法)9.13に準じて算出した。上記Pと同様に測定を行って荷重-伸び曲線を描き、この曲線の原点近傍において伸長変化に対する荷重変化の最大点を求め、JIS L1095:2010(一般紡績糸試験方法)9.13に記載の式を用いて初期引張抵抗度を算出した。
Q. Initial tensile resistance (cN / dtex) The initial tensile resistance (cN / dtex) was calculated according to JIS L1095: 2010 (general spun yarn test method) 9.13 using the spun yarn obtained in the example as a sample. Measurement was performed in the same manner as in P above to draw a load-elongation curve, and the maximum point of load change with respect to elongation change was determined near the origin of this curve, and the method described in JIS L1095: 2010 (General spinning yarn test method) 9.13 The initial tensile resistance was calculated using the formula.
 R.撚り数
 撚り数(回/25.4mm)は、実施例によって得られた紡績糸を試料とし、JIS L1095:2010(一般紡績糸試験方法)9.15.1(A法)に準じて算出した。
R. The number of twists The number of twists (times / 25.4 mm) was calculated according to JIS L1095: 2010 (general spun yarn test method) 9.15.1 (Method A) using the spun yarn obtained in the example as a sample. .
 S.撚り係数
 撚り係数Kは、上記Rで算出した撚り数T(回/25.4mm)と上記Oで算出した英式綿番手N(番手)を用いて下記式によって算出した。 
S. Twisting coefficient The twisting coefficient K was calculated by the following formula using the twist number T (times / 25.4 mm) calculated in R and the English cotton count N (count) calculated in O.
 撚り係数K=T÷N1/2  。 Twisting coefficient K = T ÷ N 1/2 .
 T.毛羽数
 毛羽数(個/10m)は、実施例によって得られた紡績糸を試料とし、JIS L1095:2010(一般紡績糸試験方法)9.22(B法)に準じて算出した。毛羽数の測定は、敷島テクノ製F-INDEX TESTERを用いて、試料長10m、糸速度30m/分の条件で行い、3mm以上の毛羽数を算出した。なお、測定は1試料につき10回行い、その平均値を毛羽数とした。
T.A. The number of fluff was calculated according to JIS L1095: 2010 (general spun yarn test method) 9.22 (method B) using the spun yarn obtained in the example as a sample. The number of fluff was measured using F-INDEX TESTER manufactured by Shikishima Techno under the conditions of a sample length of 10 m and a yarn speed of 30 m / min, and the number of fluff of 3 mm or more was calculated. The measurement was performed 10 times per sample, and the average value was defined as the number of fluff.
 紡績糸の布帛特性について、U~AFの方法により算出した。 The fabric characteristics of the spun yarn were calculated by the method of U to AF.
 U.見掛け比重
 見掛け比重は、実施例によって得られた平織物を試料とし、JIS L1096:2010(織物及び編物の生地試験方法)8.11に準じて測定した。なお、測定は1試料につき3回行い、その平均値を見掛け比重とした。
U. Apparent specific gravity The apparent specific gravity was measured in accordance with JIS L1096: 2010 (fabric and knitted fabric test method) 8.11, using the plain fabric obtained in the examples as a sample. The measurement was performed three times for each sample, and the average value was the apparent specific gravity.
 V.保温率
 保温率(%)は、実施例によって得られた平織物を試料とし、JIS L1096:2010(織物及び編物の生地試験方法)8.27.1(A法(恒温法))に準じて測定した。
V. Thermal insulation rate Thermal insulation rate (%) is based on JIS L1096: 2010 (fabric and knitted fabric test method) 8.27.1 (Method A (constant temperature method)) using the plain woven fabric obtained in the examples as a sample. It was measured.
 W.乾燥時間
 乾燥時間(分)は、実施例によって得られた平織物を試料とし、JIS L1096:2010(織物及び編物の生地試験方法)8.25に準じて測定した。
W. Drying time Drying time (minutes) was measured according to JIS L1096: 2010 (fabric and knitted fabric test method) 8.25 using the plain fabric obtained in the examples as a sample.
 X.アイロン温度
 実施例によって得られた平織物(15cm×15cm)を試料とし、設定温度に加熱したアイロン(三洋電機製A-1F、面圧約8g/cm)を15秒間当てた後の織物表面の形状変化を観察した。織物表面の形状に変化が見られない場合は、設定温度を10℃ずつ上げ、形状変化がない最高温度をアイロン温度(℃)とした。なお、アイロンの設定温度は130℃から210℃まで変更した。なお、測定は1試料につき3回行い、その平均値をアイロン温度とした。
X. Iron temperature Using the plain woven fabric (15 cm × 15 cm) obtained in the example as a sample, the surface of the woven fabric after applying an iron (Sanyo A-1F, surface pressure of about 8 g / cm 2 ) heated to a set temperature for 15 seconds. The shape change was observed. When no change was observed in the shape of the fabric surface, the set temperature was increased by 10 ° C., and the maximum temperature at which the shape did not change was defined as the iron temperature (° C.). The set temperature of the iron was changed from 130 ° C to 210 ° C. In addition, the measurement was performed 3 times per sample, and the average value was used as the iron temperature.
 Y.L
 ポリメチルペンテン繊維と熱可塑性樹脂を複合した場合、もしくはポリメチルペンテン繊維と、化学繊維または天然繊維を混紡した場合に、実施例によって得られた平織物を試料とし、精練を70℃で20分間行った後、乾熱セットを160℃で2分間行い、常法に従って染色した。染色後の試料を、ミノルタ製分光測色計CM-3700d型を用いてD65光源、視野角度10°、光学条件をSCE(正反射光除去法)としてL値を測定した。なお、測定は1試料につき3回行い、その平均値をL値とした。また、ポリメチルペンテン繊維として原着繊維を用いた場合も上記と同様にL値を測定した。各試料についての具体的な染色方法は、以下のとおりである。
Y. L * value When a polymethylpentene fiber and a thermoplastic resin are combined, or when a polymethylpentene fiber and a chemical fiber or a natural fiber are blended, the plain fabric obtained in the example is used as a sample, and scouring is performed at 70 ° C. For 20 minutes, followed by dry heat setting at 160 ° C. for 2 minutes and staining according to a conventional method. The L * value of the dyed sample was measured using a Minolta spectrophotometer CM-3700d model with a D65 light source, a viewing angle of 10 °, and an optical condition of SCE (regular reflection light removal method). In addition, the measurement was performed 3 times per sample, and the average value was defined as L * value. Further, when an original fiber was used as the polymethylpentene fiber, the L * value was measured in the same manner as described above. The specific staining method for each sample is as follows.
 熱可塑性樹脂としてポリ乳酸(PLA)、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート(PPT)、セルロースアセテートプロピオネート(CAP)、化学繊維としてポリエステル系繊維を用いた場合は、染料に分散染料である日本化薬製Kayalon Polyester Black EX-SF200を用いた。平織物に対して染料を8重量%加え、pHを5.0に調整した染色液で、浴比1:100、染色時間60分の条件で染色した。なお、染色温度は、PLA、PPT、CAPの場合は100℃、PET、ポリエステル系繊維の場合は130℃とした。 When polylactic acid (PLA), polyethylene terephthalate (PET), polypropylene terephthalate (PPT), cellulose acetate propionate (CAP) is used as the thermoplastic resin, and polyester fiber is used as the chemical fiber, Japan is a disperse dye. Kayalon Polyester Black EX-SF200 manufactured by Kayaku was used. The plain fabric was dyed with a dyeing solution added with 8% by weight of a dye and adjusted to pH 5.0, under conditions of a bath ratio of 1: 100 and a dyeing time of 60 minutes. The dyeing temperature was 100 ° C. for PLA, PPT, and CAP, and 130 ° C. for PET and polyester fibers.
 熱可塑性樹脂としてナイロン6(N6)、ナイロン66(N66)、天然繊維として羊毛を用いた場合は、染料に酸性染料である日本化薬製Kayanol Milling Black TLBを用いた。平織物に対して染料を8重量%加え、pHを4.5に調整した染色液で、浴比1:100、染色温度100℃、染色時間60分の条件で染色した。 When nylon 6 (N6) and nylon 66 (N66) were used as the thermoplastic resin, and wool was used as the natural fiber, Kayanol Milling Black TLB made by Nippon Kayaku, which is an acid dye, was used as the dye. Dye was added to the plain woven fabric by 8% by weight and dyed with a pH adjusted to 4.5 and dyed under the conditions of a bath ratio of 1: 100, a dyeing temperature of 100 ° C., and a dyeing time of 60 minutes.
 熱可塑性樹脂としてポリメチルメタクリレート(PMMA)、無水マレイン酸変性ポリプロピレン(MPP)を用いた場合は、染料にカチオン染料である日本化薬製Kayacryl Black YAを用いた。平織物に対して染料を8重量%加え、pHを4.0に調整した染色液で、浴比1:100、染色温度100℃、染色時間60分の条件で染色した。 When polymethyl methacrylate (PMMA) or maleic anhydride-modified polypropylene (MPP) was used as the thermoplastic resin, Kayacryl Black YA made by Nippon Kayaku, which is a cationic dye, was used as the dye. The plain fabric was dyed with a dyeing solution prepared by adding 8% by weight of a dye and adjusting the pH to 4.0 under the conditions of a bath ratio of 1: 100, a dyeing temperature of 100 ° C., and a dyeing time of 60 minutes.
 化学繊維としてセルロース繊維、天然繊維として綿を用いた場合は、染料に反応染料である日本化薬製Kayacion Black CF-BGを用いた。平織物に対して染料を8重量%加え、pHを11.0に調整した染色液で、浴比1:100、染色温度60℃、染色時間60分の条件で染色した。 When cellulose fiber was used as the chemical fiber and cotton as the natural fiber, Kayion Black CF-BG manufactured by Nippon Kayaku, which is a reactive dye, was used as the dye. Dye was added to the plain woven fabric by 8% by weight and dyed with a pH adjusted to 11.0.
 Z.軽量性
 上記Uで算出した平織物の見掛け比重を軽量性の指標とした。見掛け比重が「0.25未満」をA、「0.25以上0.30未満」をB、「0.30以上0.35未満」をC、「0.35以上」をDとし、「0.25以上0.30未満」のB以上を合格とした。
Z. Lightness The apparent specific gravity of a plain woven fabric calculated by U was used as an indicator of lightness. The apparent specific gravity is “less than 0.25” A, “0.25 or more and less than 0.30” is B, “0.30 or more and less than 0.35” is C, “0.35 or more” is D, and “0 .25 or more and less than 0.30 "was regarded as passing.
 AA.保温性
 上記Vで算出した平織物の保温率を保温性の指標とした。保温率が「18%以上」をA、「14%以上18%未満」をB、「10%以上14%未満」をC、「10%未満」をDとし、「14%以上18%未満」のB以上を合格とした。
AA. Heat retention The heat retention rate of the plain woven fabric calculated by V was used as an index of heat retention. The heat retention rate is “18% or more” A, “14% or more but less than 18%” B, “10% or more but less than 14%” C, “less than 10%” D, “14% or more but less than 18%” B or more of was regarded as passing.
 AB.速乾性
 上記Wで算出した平織物の乾燥時間を速乾性の指標とした。乾燥時間が「100分未満」をA、「100分以上300分未満」をB、「300分以上500分未満」をC、「500分以上」をDとし、「100分以上300分未満」のB以上を合格とした。
AB. Quick-drying The drying time of a plain woven fabric calculated by the above W was used as an index for quick-drying. Drying time is “less than 100 minutes” A, “100 minutes to less than 300 minutes” B, “300 minutes to less than 500 minutes” C, “500 minutes or more” D, “100 minutes to less than 300 minutes” B or more of was regarded as passing.
 AC.アイロン耐熱性
 上記Xで算出した平織物のアイロン温度をアイロン耐熱性の指標とした。アイロン温度が「180℃以上210℃以下」をA、「160℃以上170℃以下」をB、「140℃以上150℃以下」をC、「130℃以下」をDとし、「160℃以上170℃以下」のB以上を合格とした。
AC. Iron heat resistance The iron temperature of the plain woven fabric calculated by the above X was used as an index of iron heat resistance. Iron temperature is “180 ° C. to 210 ° C.” A, “160 ° C. to 170 ° C.” B, “140 ° C. to 150 ° C.” C, “130 ° C.” is D, and “160 ° C. to 170 ° C.” B or higher of “° C. or lower” was regarded as acceptable.
 AD.発色性
 上記Yで染色した平織物のL値を発色性の指標とした。L値が「40未満」をA、「40以上50未満」をB、「50以上60未満」をC、「60以上」をDとし、「40以上50未満」のB以上を合格とした。
AD. Color developability The L * value of plain fabric dyed with Y was used as an index of color developability. L * The value is “less than 40” as A, “40 or more but less than 50” as B, “50 or more but less than 60” as C, “60 or more” as D, and “40 or more but less than 50” as B or more as acceptable. .
 AE.風合い
 実施例によって得られた平織物について、10人の被験者による官能試験を実施した。官能試験では触手によって平織物の柔軟性および品位を評価し、「極めて優れている」をA、「優れている」をB、「普通」をC、「劣っている」をDとし、「優れている」のB以上を合格とした。
AE. Texture The sensory test by 10 subjects was implemented about the plain fabric obtained by the Example. In the sensory test, the softness and quality of the plain fabric are evaluated by tentacles. “Excellent” is A, “Excellent” is B, “Normal” is C, “Inferior” is D, “Excellent” B or more "
 AF.毛羽立ち
 実施例によって得られた紡績糸の毛羽数を毛羽立ちの指標とした。毛羽数が「30個/10m未満」をA、「30個/10m以上50個/10m未満」をB、「50個/10m以上70個/10m未満」をC、「70個/10m以上」をDとし、「30個/10m以上50個/10m未満」のB以上を合格とした。
AF. Fluffing The number of fluffs of the spun yarn obtained in the example was used as an index of fluffing. The number of fluff is "30 / less than 10m" A, "30 / 10m or more but less than 50 / 10m" B, "50 / 10m or more but less than 70 / 10m" C, "70 / 10m or more" Was set to D, and B or more of “30/10 m or more and less than 50/10 m” was determined to be acceptable.
 (実施例1)
 ポリメチルペンテン(PMP)(三井化学製“DX820”、融点232℃、MFR180g/10分)のペレットを95℃で12時間真空乾燥した後、エクストルーダー型溶融紡糸機へ供給して溶融させ、紡糸温度280℃で紡糸口金(吐出孔径0.3mm、吐出孔長0.6mm、孔数780、丸孔)から吐出させて紡出糸条を得た。この紡出糸条を風温20℃、風速25m/分の冷却風で冷却し、給油装置で油剤を付与して収束させ、1000m/分で回転するローラーで引き取り、他の紡糸錘と36本合糸した後に、缶内へ振り落として収納することにより、未延伸糸を得た。未延伸糸が収納された缶を30缶並べて30本の未延伸糸を引き揃えながら、90℃の温水浴に導き、延伸倍率2.4倍で延伸した。続いて、クリンパーで捲縮数を約10山/25mmとして捲縮加工を施し、130℃で乾燥後、スプレー方式によって仕上げ油剤を繊維に対して0.5質量%付与し、回転式のカッターによって64mmに切断してポリメチルペンテン繊維を得た。
(Example 1)
Pellets of polymethylpentene (PMP) (“DX820” manufactured by Mitsui Chemicals, melting point 232 ° C., MFR 180 g / 10 min) are vacuum-dried at 95 ° C. for 12 hours, and then supplied to an extruder type melt spinning machine for melting and spinning. A spun yarn was obtained by discharging from a spinneret (discharge hole diameter 0.3 mm, discharge hole length 0.6 mm, hole number 780, round hole) at a temperature of 280 ° C. The spun yarn is cooled with a cooling air of 20 ° C. and a cooling speed of 25 m / min. The oil agent is applied and converged by an oiling device, taken up by a roller rotating at 1000 m / min, and another spinning spindle and 36 pieces. After combining the yarns, the undrawn yarn was obtained by swinging it into the can and storing it. Thirty cans in which undrawn yarns were stored were lined up and 30 undrawn yarns were lined up, leading to a warm water bath at 90 ° C. and drawn at a draw ratio of 2.4 times. Subsequently, the crimper is crimped with a crimper of about 10 crests / 25 mm, dried at 130 ° C., and then applied with 0.5% by mass of the finishing oil to the fiber by a spray method. The polymethylpentene fiber was obtained by cutting to 64 mm.
 得られたポリメチルペンテン繊維をカードマシンに投入してスライバーとした後、練条機にて8本のスライバーを混合した。その後、粗紡機にて粗紡し、撚り数0.5回/25.4mmの粗紡糸を得た。この粗紡糸を精紡機に供給し、撚り数18回/25.4mm、英式綿番手20番手の紡績糸を得た。得られた紡績糸を経糸、緯糸に用いて、経糸密度70本/25.4mm、緯糸密度70本/25.4mmの平織物を作製した。 The resulting polymethylpentene fiber was put into a card machine to make a sliver, and then 8 slivers were mixed with a drawing machine. Thereafter, roving was performed with a roving machine to obtain roving with a twist number of 0.5 times / 25.4 mm. This roving was supplied to a fine spinning machine to obtain a spun yarn with 18 twists / 25.4 mm and 20 English cotton count. Using the spun yarn thus obtained for warp and weft, a plain woven fabric having a warp density of 70 / 25.4 mm and a weft density of 70 / 25.4 mm was produced.
 得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表1に示す。低比重のポリメチルペンテン繊維からなる紡績糸を用いた織物であるため、軽量性に極めて優れていた。保温性、速乾性にも極めて優れており、さらにはアイロン耐熱性にも優れていた。また、風合いについては、柔軟性が高く、極めて優れた品位であり、毛羽数の発生も少なく、毛羽立ちについて合格レベルであった。 Table 1 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Since it is a woven fabric using spun yarn made of low specific gravity polymethylpentene fiber, it was extremely excellent in lightness. It was extremely excellent in heat retention and quick-drying, and also excellent in iron heat resistance. In addition, the texture was high in flexibility, extremely excellent quality, few occurrences of fluff, and the level of fluff was acceptable.
 (実施例2~4)
 撚り係数を表1に示すとおり変更した以外は、実施例1と同様にポリメチルペンテン繊維、紡績糸および平織物を作製した。
(Examples 2 to 4)
A polymethylpentene fiber, a spun yarn, and a plain fabric were produced in the same manner as in Example 1 except that the twist coefficient was changed as shown in Table 1.
 得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表1に示す。撚り係数を変更した場合も、極めて優れた軽量性、保温性、速乾性であり、さらにはアイロン耐熱性に優れていた。また、実施例1と比べ、撚り係数を小さくした場合に毛羽数の増加が見られるものの合格レベルであり、撚り係数を大きくした場合に平織物が硬化せず、いずれの場合も極めて優れた品位であった。 Table 1 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Even when the twisting coefficient was changed, it was extremely excellent in lightness, heat retention and quick drying, and further excellent in iron heat resistance. Moreover, compared with Example 1, although the increase in the number of fluff is seen when making a twist coefficient small, it is a pass level, and when a twist coefficient is made large, a plain fabric does not harden | cure, and the quality which was extremely excellent in any case Met.
 (比較例10)、(実施例6)
 単糸繊度を表1に示すとおり変更した以外は、実施例1と同様にポリメチルペンテン繊維、紡績糸および平織物を作製した。
得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表1に示す。実施例1と比べ、比較例10では単糸繊度を小さくしたことにより、軽量性、保温性、速乾性が向上したものの、毛羽数の増加により毛羽立ちについては合格レベルに至らなかった。実施例6ではいずれの布帛特性も合格レベルであった。
(Comparative Example 10), (Example 6)
A polymethylpentene fiber, spun yarn and plain fabric were produced in the same manner as in Example 1 except that the single yarn fineness was changed as shown in Table 1.
The evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics are shown in Table 1. Compared to Example 1, in Comparative Example 10, although the single yarn fineness was reduced, the lightness, heat retention, and quick drying were improved. However, the increase in the number of fluffs did not reach the acceptable level. In Example 6, all fabric characteristics were acceptable levels.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例7~10)
 実施例7、8ではポリメチルペンテン繊維を切断する際のカット長をそれぞれ38mm、120mmとし、実施例9、10ではポリメチルペンテン繊維を捲縮加工する際の捲縮数をそれぞれ約5山/25mm、約25山/25mmに変更した以外は、実施例1と同様にポリメチルペンテン繊維、紡績糸および平織物を作製した。
(Examples 7 to 10)
In Examples 7 and 8, the cut length when cutting the polymethylpentene fiber was 38 mm and 120 mm, respectively, and in Examples 9 and 10, the number of crimps when crimping the polymethylpentene fiber was about 5 peaks / A polymethylpentene fiber, a spun yarn, and a plain woven fabric were produced in the same manner as in Example 1 except that the width was changed to 25 mm and about 25 crests / 25 mm.
 得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表2に示す。平均繊維長や捲縮数を変更した場合も、全ての布帛特性において合格レベルであった。 Table 2 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Even when the average fiber length and the number of crimps were changed, all the fabric characteristics were acceptable levels.
 (実施例11、12)
 精紡する際に英式綿番手をそれぞれ10番手、100番手に変更した以外は、実施例1と同様にポリメチルペンテン繊維、紡績糸および平織物を作製した。
(Examples 11 and 12)
Polymethylpentene fibers, spun yarns and plain fabrics were produced in the same manner as in Example 1 except that the English cotton count was changed to 10th and 100th, respectively, during spinning.
 得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表2に示す。実施例1と比べ、実施例11では英式綿番手を小さくしたことにより、やや軽量性が低下したものの合格レベルであった。その他の布帛特性についても、実施例11、12ともに全て合格レベルであった。 Table 2 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Compared with Example 1, in Example 11, although the English cotton count was reduced, the lightness was slightly lowered, but it was a pass level. Regarding other fabric characteristics, both Examples 11 and 12 were acceptable levels.
 (実施例13)
 紡糸口金を実施例7ではY型口金(スリット幅0.08mm、スリット長0.2mm、吐出孔長0.6mm、孔数780、Y孔)、に変更した以外は、実施例1と同様にポリメチルペンテン繊維、紡績糸および平織物を作製した。
(Example 13)
Except that the spinneret was changed to a Y-type die (slit width 0.08 mm, slit length 0.2 mm, discharge hole length 0.6 mm, number of holes 780, Y hole) in Example 7, the same as in Example 1 Polymethylpentene fiber, spun yarn and plain fabric were prepared.
 得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表2に示す。実施例1と比べ、実施例7では繊維断面をY断面としたことにより、保温性および速乾性が向上した。また、アイロン耐熱性も良好であり、軽量性、風合いについても極めて優れるものであった。さらには、毛羽立ちについても合格レベルであった。 Table 2 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Compared to Example 1, in Example 7, the fiber cross section was changed to the Y cross section, so that the heat retaining property and quick drying property were improved. Moreover, the iron heat resistance was also good, and the lightness and texture were extremely excellent. Furthermore, the fuzz was also acceptable.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例14~21)
 下記方法で作製したポリメチルペンテン系樹脂と熱可塑性樹脂からなるペレットを使用し、紡糸温度を変更した以外は、実施例1と同様にポリメチルペンテン繊維、紡績糸および平織物を作製した。
(Examples 14 to 21)
Polymethylpentene fiber, spun yarn and plain fabric were produced in the same manner as in Example 1 except that pellets made of polymethylpentene resin and thermoplastic resin produced by the following method were used and the spinning temperature was changed.
 ポリメチルペンテン(PMP)(三井化学製“DX820”、融点232℃、MFR180g/10分)を90重量%、熱可塑性樹脂を10重量%の配合比で、二軸エクストルーダーを用いて混練温度260℃で混練を行った。二軸エクストルーダーより吐出されたストランドを水冷した後、ペレタイザーにて5mm長程度にカットして、ペレットを得た。熱可塑性樹脂として実施例14ではポリ乳酸(PLA)(融点168℃、重量平均分子量14.5万)、実施例15ではポリエチレンテレフタレート(PET)(東レ製“T701T”、融点257℃)、実施例16ではポリプロピレンテレフタレート(PPT)(シェル製“コルテラCP513000”、融点225℃)、実施例17ではナイロン6(N6)(東レ製“アミランCM1017”、融点225℃)、実施例18ではナイロン66(N66)(東レ製“CM3001-N”、融点265℃)、実施例19ではポリメチルメタクリレート(PMMA)(三菱レイヨン製“アクリペットVH000”、融点140℃)、実施例20では無水マレイン酸変性ポリプロピレン(MPP)(三洋化成製“ユーメックス1010”、融点142℃)、実施例21ではセルロースアセテートプロピオネート(CAP)(イーストマンケミカル製“CAP-482-20”、融点195℃)を使用した。紡糸温度については、実施例14、16、17、19~21では260℃、実施例15、18では290℃とした。 Mixing ratio of polymethylpentene (PMP) (“DX820” manufactured by Mitsui Chemicals, melting point 232 ° C., MFR 180 g / 10 min) 90 wt%, thermoplastic resin 10 wt%, kneading temperature 260 using a biaxial extruder Kneading was performed at 0 ° C. The strand discharged from the biaxial extruder was water-cooled and then cut into a length of about 5 mm with a pelletizer to obtain a pellet. In Example 14, as a thermoplastic resin, polylactic acid (PLA) (melting point: 168 ° C., weight average molecular weight: 145,000), and in Example 15, polyethylene terephthalate (PET) (Toray “T701T”, melting point: 257 ° C.), Example No. 16 is polypropylene terephthalate (PPT) (“Corterra CP513000” manufactured by Shell, melting point 225 ° C.), Nylon 6 (N6) (Toray “Amilan CM1017”, melting point 225 ° C.) is used in Example 17, Nylon 66 (N66 ) (Toray “CM3001-N”, melting point 265 ° C.), Example 19 is polymethyl methacrylate (PMMA) (Mitsubishi Rayon “Acrypet VH000”, melting point 140 ° C.), Example 20 is maleic anhydride-modified polypropylene ( MPP) ("Yomex 1010" manufactured by Sanyo Chemical Industries, melting point 1 2 ° C.), was used in Example 21 in a cellulose acetate propionate (CAP) (manufactured by Eastman Chemical "CAP-482-20", melting point 195 ° C.). The spinning temperature was 260 ° C. in Examples 14, 16, 17, 19 to 21, and 290 ° C. in Examples 15 and 18.
 得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表3に示す。いずれの熱可塑性樹脂と複合した場合も、ポリメチルペンテン系樹脂の軽量性を損なうことなく、平織物の軽量性は合格レベルであった。また、保温性、速乾性、毛羽立ちについても全て合格レベルであった。実施例14、19~21では熱可塑性樹脂の融点が200℃より低いが、ポリメチルペンテン系樹脂の中に熱可塑性樹脂が微分散しているため、アイロン耐熱性も合格レベルであった。また、屈折率の低いポリメチルペンテン系樹脂の中に、発色性の高い熱可塑性樹脂が微分散しているため、平織物全体が均一かつ鮮明に染まり、発色性にも優れていた。さらには、風合いについても柔軟性が高く、極めて優れた品位であった。 Table 3 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. When combined with any thermoplastic resin, the lightness of the plain woven fabric was acceptable without impairing the lightness of the polymethylpentene resin. In addition, all of the heat retaining properties, quick drying properties and fuzzing were acceptable levels. In Examples 14 and 19 to 21, the melting point of the thermoplastic resin was lower than 200 ° C., but since the thermoplastic resin was finely dispersed in the polymethylpentene resin, the iron heat resistance was also acceptable. Further, since the thermoplastic resin having high color developability is finely dispersed in the polymethylpentene resin having a low refractive index, the entire plain woven fabric is dyed uniformly and clearly, and the color developability is also excellent. In addition, the texture was very flexible and extremely excellent.
 (実施例30、31)
 ポリメチルペンテン(PMP)(三井化学製“DX820”、融点232℃、MFR180g/10分)を80重量%、カーボンブラックを20重量%の配合比で、二軸エクストルーダーを用いて混練温度260℃で混練を行った。二軸エクストルーダーより吐出されたストランドを水冷した後、ペレタイザーにて5mm長程度にカットして、マスターバッチを得た。
(Examples 30 and 31)
Polymethylpentene (PMP) (Mitsui Chemicals “DX820”, melting point 232 ° C., MFR 180 g / 10 min) 80% by weight, carbon black 20% by weight, kneading temperature 260 ° C. using a biaxial extruder Kneading was performed. The strand discharged from the biaxial extruder was water-cooled and then cut into a length of about 5 mm by a pelletizer to obtain a master batch.
 ポリメチルペンテン(PMP)(三井化学製“DX820”、融点232℃、MFR180g/10分)のペレットおよびマスターバッチを95℃で12時間真空乾燥した後、エクストルーダー型溶融紡糸機のメインフィーダーからポリメチルペンテンを供給し、サブフィーダーからマスターバッチを供給した以外は、実施例1と同様にポリメチルペンテン繊維、紡績糸および平織物を作製した。なお、実施例30ではポリメチルペンテンを97.5重量%、マスターバッチを2.5重量%の配合比とし、得られるポリメチルペンテン繊維中のカーボンブラックを0.5重量%とし、実施例31ではポリメチルペンテンを75重量%、マスターバッチを25重量%の配合比とし、得られるポリメチルペンテン繊維中のカーボンブラックを5重量%とした。 The pellets and master batch of polymethylpentene (PMP) (Mitsui Chemicals “DX820”, melting point 232 ° C., MFR 180 g / 10 min) were vacuum-dried at 95 ° C. for 12 hours, and then discharged from the main feeder of the extruder type melt spinning machine. Polymethylpentene fiber, spun yarn, and plain fabric were produced in the same manner as in Example 1 except that methylpentene was supplied and a master batch was supplied from the sub-feeder. In Example 30, the blending ratio of 97.5% by weight of polymethylpentene and 2.5% by weight of the master batch was set to 0.5% by weight of carbon black in the obtained polymethylpentene fiber. The blending ratio was 75% by weight of polymethylpentene, 25% by weight of the master batch, and 5% by weight of carbon black in the resulting polymethylpentene fiber.
 得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表3に示す。ポリメチルペンテン繊維として、カーボンブラックによる原着繊維を用いたため、紡績糸の発色性は極めて良好であった。その他の布帛特性についても、実施例30、31ともに全て合格レベルであった。 Table 3 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Since an original fiber made of carbon black was used as the polymethylpentene fiber, the color development of the spun yarn was extremely good. Regarding the other fabric characteristics, both Examples 30 and 31 were acceptable levels.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (実施例22~29)
 実施例1で得られたポリメチルペンテン繊維を用いて、実施例22~24ではポリエチレンテレフタレート繊維(丸断面、平均繊維長51mm、単糸繊度1.7dtex)、実施例25ではビスコースレーヨン繊維(平均繊維長51mm、単糸繊度1.7dtex)、実施例26~28では綿(米綿、平均繊維長25.4mm、単糸繊度2.3dtex)、実施例29では羊毛(メリノウール、平均繊維長64mm、単糸繊度5.5dtex)と混紡した。ポリメチルペンテン繊維と、化学繊維または天然繊維を表4に示す混紡比率でカードマシンに投入してスライバーとした後、実施例1と同様に紡績糸および平織物を作製した。
(Examples 22 to 29)
Using the polymethylpentene fiber obtained in Example 1, in Examples 22 to 24, polyethylene terephthalate fiber (round cross section, average fiber length 51 mm, single yarn fineness 1.7 dtex), in Example 25 viscose rayon fiber ( Average fiber length 51 mm, single yarn fineness 1.7 dtex), Examples 26-28 cotton (rice cotton, average fiber length 25.4 mm, single yarn fineness 2.3 dtex), Example 29 wool (merino wool, average fiber) 64 mm long, single yarn fineness 5.5 dtex). Polymethylpentene fiber and chemical fiber or natural fiber were put into a card machine at a blending ratio shown in Table 4 to form a sliver, and then a spun yarn and a plain fabric were produced in the same manner as in Example 1.
 得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表4に示す。実施例22~24ではポリエチレンテレフタレート繊維の混紡比率が高くなるにつれて、見掛け比重は高くなり、保温率が低下し、乾燥時間が長くなる傾向が見られたものの、軽量性、保温性、速乾性、アイロン耐熱性、風合い、毛羽立ちの全てにおいて合格レベルであった。L値についてはポリエチレンテレフタレート繊維の混紡比率の増加に伴って低下し、発色性が向上した。実施例26~28で綿と混紡した場合も綿の混紡比率が高くなるにつれ、全ての布帛特性において実施例22~24と同様の傾向であり、合格レベルであった。実施例25でビスコースレーヨン、実施例29で羊毛と混紡した場合も、全ての布帛特性において合格レベルであった。 Table 4 shows the evaluation results of the fiber properties of the obtained polymethylpentene fibers, the fiber properties of the spun yarn, and the fabric properties. In Examples 22 to 24, as the blending ratio of the polyethylene terephthalate fiber increased, the apparent specific gravity increased, the heat retention ratio decreased, and the drying time tended to increase, but the lightness, heat retention, quick drying property, The iron heat resistance, texture, and fluffing were all acceptable. The L * value decreased with an increase in the blend ratio of the polyethylene terephthalate fiber, and the color developability improved. In the case of blending with cotton in Examples 26 to 28, as the blend ratio of cotton increased, the same tendency as in Examples 22 to 24 was observed in all fabric characteristics, which was acceptable levels. Also when blended with viscose rayon in Example 25 and wool in Example 29, all fabric properties were acceptable levels.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (実施例32~34)
 実施例1で得られたポリメチルペンテン繊維と、ポリエチレンテレフタレート繊維(丸断面、平均繊維長51mm、単糸繊度1.7dtex)を表5に示す混紡比率でカードマシンに投入してスライバーとした後、実施例1と同様に紡績糸および平織物を作製した。
(Examples 32 to 34)
After the polymethylpentene fiber obtained in Example 1 and the polyethylene terephthalate fiber (round cross section, average fiber length 51 mm, single yarn fineness 1.7 dtex) were put into a card machine at a blending ratio shown in Table 5 to make a sliver A spun yarn and a plain fabric were produced in the same manner as in Example 1.
 得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表5に示す。ポリエチレンテレフタレート繊維の混紡比率が低くなるにつれて、見掛け比重は低くなり、保温率が向上し、乾燥時間が短くなる傾向が見られ、軽量性、保温性、速乾性、アイロン耐熱性、風合い、毛羽立ちの全てにおいて合格レベルであった。 Table 5 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. As the blending ratio of polyethylene terephthalate fiber decreases, the apparent specific gravity decreases, the heat retention rate improves, and the drying time tends to be shortened. All were acceptable levels.
 (実施例35~40)
 実施例31で得られたポリメチルペンテン繊維と、ポリエチレンテレフタレート繊維(丸断面、平均繊維長51mm、単糸繊度1.7dtex)を表5に示す混紡比率でカードマシンに投入してスライバーとした後、実施例1と同様に紡績糸および平織物を作製した。
(Examples 35 to 40)
After the polymethylpentene fiber obtained in Example 31 and the polyethylene terephthalate fiber (round cross section, average fiber length 51 mm, single yarn fineness 1.7 dtex) were put into a card machine at a blending ratio shown in Table 5 to make a sliver A spun yarn and a plain fabric were produced in the same manner as in Example 1.
 得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表5に示す。ポリメチルペンテン繊維として、カーボンブラックによる原着繊維を用いたため、紡績糸の発色性は極めて良好であった。また、ポリエチレンテレフタレート繊維の混紡比率が低くなるにつれて、見掛け比重は低くなり、保温率が向上し、乾燥時間が短くなる傾向が見られ、軽量性、保温性、速乾性、アイロン耐熱性、風合い、毛羽立ちの全てにおいて合格レベルであった。 Table 5 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Since an original fiber made of carbon black was used as the polymethylpentene fiber, the color development of the spun yarn was extremely good. In addition, as the blending ratio of polyethylene terephthalate fibers decreases, the apparent specific gravity decreases, the heat retention rate improves, and the drying time tends to be shortened, lightness, heat retention, quick drying, iron heat resistance, texture, It was a pass level in all of the fuzz.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (比較例1、2)
 単糸繊度を表5に示すとおり変更した以外は、実施例1と同様にポリメチルペンテン繊維、紡績糸および平織物を作製した。
(Comparative Examples 1 and 2)
A polymethylpentene fiber, spun yarn and plain fabric were produced in the same manner as in Example 1 except that the single yarn fineness was changed as shown in Table 5.
 得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表5に示す。比較例1、2ともに軽量性、保温性、速乾性、アイロン耐熱性は合格レベルであった。しかし、比較例1では単糸繊度が小さいために毛羽の発生が極めて多く見られ、極めて劣る風合いあった。比較例2では単糸繊度が大きいために平織物は柔軟性に欠け、極めて劣る風合いであった。 Table 5 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. In Comparative Examples 1 and 2, the lightness, heat retention, quick drying, and iron heat resistance were acceptable levels. However, in Comparative Example 1, since the single yarn fineness was small, the occurrence of fluff was extremely large, and the texture was very poor. In Comparative Example 2, since the single yarn fineness was large, the plain fabric lacked flexibility and had a very inferior texture.
 (比較例3、4)
 撚り係数を表5に示すとおり変更した以外は、実施例1と同様にポリメチルペンテン繊維、紡績糸および平織物を作製した。
(Comparative Examples 3 and 4)
A polymethylpentene fiber, a spun yarn, and a plain fabric were produced in the same manner as in Example 1 except that the twist coefficient was changed as shown in Table 5.
 得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表5に示す。比較例3,4ともに軽量性、保温性、速乾性、アイロン耐熱性は合格レベルであった。しかし、比較例3では撚り係数が小さいために毛羽の発生が見られ、やや劣る風合いであった。比較例4では撚り係数が大きいために平織物の硬化が見られ、風合いは柔軟性に欠けるものであった。また、毛羽の発生が多数見られ、合格レベルに至らなかった。 Table 5 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. In Comparative Examples 3 and 4, the lightness, heat retention, quick drying and iron heat resistance were acceptable levels. However, in Comparative Example 3, since the twisting coefficient was small, the occurrence of fluff was observed, and the texture was slightly inferior. In Comparative Example 4, since the twist coefficient was large, the plain woven fabric was cured, and the texture was not flexible. In addition, a lot of fluff was observed, and it did not reach a passing level.
 (比較例5~8)
 比較例5ではポリプロピレン繊維(丸断面、平均繊維長51mm、単糸繊度1.7dtex)、比較例6ではポリエチレンテレフタレート繊維(丸断面、平均繊維長51mm、単糸繊度1.7dtex)、比較例7では綿(米綿、平均繊維長25.4mm、単糸繊度2.3dtex)、比較例8では羊毛(メリノウール、平均繊維長64mm、単糸繊度5.5dtex)を用いて、実施例1と同様に紡績糸および平織物を作製した。
(Comparative Examples 5 to 8)
In Comparative Example 5, polypropylene fiber (round cross section, average fiber length 51 mm, single yarn fineness 1.7 dtex), in Comparative Example 6, polyethylene terephthalate fiber (round cross section, average fiber length 51 mm, single yarn fineness 1.7 dtex), Comparative Example 7 In Example 1, cotton (rice cotton, average fiber length 25.4 mm, single yarn fineness 2.3 dtex) was used in Comparative Example 8, and wool (merino wool, average fiber length 64 mm, single yarn fineness 5.5 dtex) was used. Similarly, spun yarn and plain fabric were produced.
 得られた紡績糸の繊維特性および布帛特性の評価結果を表5に示す。比較例5では極めて優れた軽量性、保温性、速乾性、風合いを示すものの、ポリプロピレンの融点が低いために、アイロン耐熱性は極めて低いものであった。また、毛羽立ちについても合格レベルに至らなかった。比較例6では軽量性以外の特性は優れていたものの、ポリエチレンテレフタレートの比重が高いために、軽量性に欠けるものであった。比較例7では綿の比重が高いため軽量性に劣り、熱伝導率が高いため保温性に欠けるものであった。また、乾燥時間が長く、やや速乾性に劣っており、毛羽立ちについても合格レベルに至らなかった。比較例8では羊毛の比重が高いため軽量性が低く、乾燥時間についても極めて長く、速乾性に劣るものであった。また、毛羽立ちについても合格レベルに至らなかった。 Table 5 shows the evaluation results of the fiber characteristics and fabric characteristics of the obtained spun yarn. Although the comparative example 5 showed extremely excellent lightness, heat retention, quick drying, and texture, the iron heat resistance was extremely low due to the low melting point of polypropylene. In addition, the fluffing did not reach a passing level. In Comparative Example 6, the properties other than lightness were excellent, but the specific gravity of polyethylene terephthalate was high, so that the lightness was lacking. In Comparative Example 7, since the specific gravity of cotton was high, the weight was inferior, and the heat conductivity was high, so that the heat retaining property was insufficient. In addition, the drying time was long, and the quick drying property was slightly inferior, and the fluffing did not reach a passing level. In Comparative Example 8, since the specific gravity of wool was high, the lightness was low, the drying time was extremely long, and the quick drying property was inferior. In addition, the fluffing did not reach a passing level.
 (比較例9)
 ポリメチルペンテン(PMP)(三井化学製“DX820”、融点232℃、MFR180g/10分)とポリプロピレン(PP)(日本ポリプロ製“ノバテックFY6”、融点170℃)のペレットを95℃で12時間真空乾燥した後、ポリメチルペンテンを50重量%、ポリプロピレンを50重量%の配合比でプレッシャーメルター型溶融紡糸機へ供給して別々に溶融させ、紡糸温度260℃で紡糸口金(吐出孔径0.3mm、吐出孔長0.6mm、孔数780、放射状型丸孔:16分割、)から吐出させて紡出糸条を得た。この紡出糸条を風温20℃、風速25m/分の冷却風で冷却し、給油装置で油剤を付与して収束させ、1000m/分で回転するローラーで引き取り、他の紡糸錘と36本合糸した後に、缶内へ振り落として収納することにより、未延伸糸を得た。未延伸糸が収納された缶を30缶並べて30本の未延伸糸を引き揃えながら、90℃の温水浴に導き、延伸倍率2.4倍で延伸した。続いて、クリンパーで捲縮数を約10山/25mmとして捲縮加工を施し、130℃で乾燥後、スプレー方式によって仕上げ油剤を繊維に対して0.5質量%付与し、回転式のカッターによって100mmに切断して、ポリメチルペンテン繊維、すなわちポリメチルペンテンとポリプロピレンからなり、16分割可能な分割型複合繊維を得た。なお、分割型複合繊維の単糸繊度は3.3dtexであった。
(Comparative Example 9)
Pellets of polymethylpentene (PMP) (Mitsui Chemicals “DX820”, melting point 232 ° C., MFR 180 g / 10 min) and polypropylene (PP) (Nippon Polypro “Novatech FY6”, melting point 170 ° C.) are vacuumed at 95 ° C. for 12 hours. After drying, it is supplied to a pressure melter type melt spinning machine at a blending ratio of 50% by weight of polymethylpentene and 50% by weight of polypropylene and melted separately, and a spinneret (discharge hole diameter 0.3 mm, A spun yarn was obtained by discharging from a discharge hole length of 0.6 mm, a hole number of 780, a radial type round hole: 16 divisions). The spun yarn is cooled with a cooling air of 20 ° C. and a cooling speed of 25 m / min. The oil agent is applied and converged by an oiling device, taken up by a roller rotating at 1000 m / min, and another spinning spindle and 36 pieces. After combining the yarns, the undrawn yarn was obtained by swinging it into the can and storing it. Thirty cans in which undrawn yarns were stored were lined up and 30 undrawn yarns were lined up, leading to a warm water bath at 90 ° C. and drawn at a draw ratio of 2.4 times. Subsequently, the crimper is crimped with a crimper of about 10 crests / 25 mm, dried at 130 ° C., and then applied with 0.5% by mass of the finishing oil to the fiber by a spray method. After cutting to 100 mm, a split type composite fiber composed of polymethylpentene fibers, that is, polymethylpentene and polypropylene, and capable of 16 splitting was obtained. The single yarn fineness of the split type composite fiber was 3.3 dtex.
 得られた分割型複合繊維をカードマシンに投入してスライバーとした後、練条機にて8本のスライバーを混合した。その後、粗紡機にて粗紡し、撚り数0.5回/25.4mmの粗紡糸を得た。この粗紡糸を精紡機に供給し、撚り数4回/25.4mm、英式綿番手20番手の紡績糸を得た。続いて、得られた紡績糸をV字型の螺旋溝を有するローラー間において0.5m/分の速度で走行させ、上方からノズル径0.5mmの多数の噴射孔を有する高圧液体流噴射装置によって、水圧6.0MPaの水流を紡績糸に対して噴射し、紡績糸を構成する分割型複合繊維を分割した。分割処理後の紡績糸は、単糸繊度0.2dtexのポリメチルペンテン繊維と、単糸繊度0.2dtexのポリプロピレン繊維が50:50の重量比で構成されていた。分割処理によって得られた紡績糸を経糸、緯糸に用いて、経糸密度70本/25.4mm、緯糸密度70本/25.4mmの平織物を作製した。 The resulting split composite fiber was put into a card machine to make a sliver, and then 8 slivers were mixed with a drawing machine. Thereafter, roving was performed with a roving machine to obtain roving with a twist number of 0.5 times / 25.4 mm. The roving was supplied to a spinning machine to obtain a spun yarn having a twist number of 4 / 25.4 mm and an English cotton count of 20th. Subsequently, the obtained spun yarn is run at a speed of 0.5 m / min between rollers having a V-shaped spiral groove, and a high pressure liquid flow jetting apparatus having a plurality of jetting holes having a nozzle diameter of 0.5 mm from above. Thus, a water flow having a water pressure of 6.0 MPa was jetted onto the spun yarn, and the split type composite fiber constituting the spun yarn was divided. The spun yarn after the split treatment was composed of polymethylpentene fiber having a single yarn fineness of 0.2 dtex and polypropylene fiber having a single yarn fineness of 0.2 dtex in a weight ratio of 50:50. By using the spun yarn obtained by the division treatment as warp and weft, a plain woven fabric having a warp density of 70 / 25.4 mm and a weft density of 70 / 25.4 mm was produced.
 得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表5に示す。軽量性、保温性、速乾性については合格レベルであった。しかしながら、紡績糸を構成するポリメチルペンテン繊維とポリプロピレン繊維の単糸繊度が小さいために、毛羽の発生が極めて多く見られ、極めて劣る風合いであった。また、単糸繊度が小さいために紡績糸へアイロンの熱が伝わりやすく、ポリメチルペンテンよりも耐熱性に劣るポリプロピレンの影響を強く受けた結果、アイロン耐熱性は極めて低いものであった。 Table 5 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Lightness, heat retention, and quick drying were acceptable levels. However, since the single yarn fineness of the polymethylpentene fiber and the polypropylene fiber constituting the spun yarn is small, the occurrence of fluff was extremely large and the texture was very inferior. In addition, since the single yarn fineness is small, the heat of the iron is easily transmitted to the spun yarn, and as a result of being strongly influenced by polypropylene which is inferior in heat resistance to polymethylpentene, the iron heat resistance is extremely low.
 (比較例11)
 ポリメチルペンテン(PMP)(三井化学製“DX820”、融点232℃、MFR180g/10分)とポリプロピレン(PP)(日本ポリプロ製“ノバテックFY6”、融点170℃)のペレットを95℃で12時間真空乾燥した後、ポリメチルペンテンを50重量%、ポリプロピレンを50重量%の配合比でプレッシャーメルター型溶融紡糸機へ供給して別々に溶融させ、紡糸温度260℃で紡糸口金(吐出孔径0.3mm、吐出孔長0.6mm、孔数780、芯鞘型丸孔、芯:ポリプロピレン、鞘:ポリメチルペンテン)から吐出させて紡出糸条を得た。この紡出糸条を風温20℃、風速25m/分の冷却風で冷却し、給油装置で油剤を付与して収束させ、1000m/分で回転するローラーで引き取り、他の紡糸錘と36本合糸した後に、缶内へ振り落として収納することにより、未延伸糸を得た。未延伸糸が収納された缶を30缶並べて30本の未延伸糸を引き揃えながら、90℃の温水浴に導き、延伸倍率2.4倍で延伸した。続いて、クリンパーで捲縮数を約10山/25mmとして捲縮加工を施し、130℃で乾燥後、スプレー方式によって仕上げ油剤を繊維に対して0.5質量%付与し、回転式のカッターによって51mmに切断して、ポリメチルペンテン繊維、すなわちポリメチルペンテンとポリプロピレンからなる芯鞘型複合繊維を得た。
(Comparative Example 11)
Pellets of polymethylpentene (PMP) (Mitsui Chemicals “DX820”, melting point 232 ° C., MFR 180 g / 10 min) and polypropylene (PP) (Nippon Polypro “Novatech FY6”, melting point 170 ° C.) are vacuumed at 95 ° C. for 12 hours. After drying, it is supplied to a pressure melter type melt spinning machine at a blending ratio of 50% by weight of polymethylpentene and 50% by weight of polypropylene and melted separately, and a spinneret (discharge hole diameter 0.3 mm, A spun yarn was obtained by discharging from a discharge hole length of 0.6 mm, a hole number of 780, a core-sheath type round hole, a core: polypropylene, and a sheath: polymethylpentene). The spun yarn is cooled with a cooling air of 20 ° C. and a cooling speed of 25 m / min. The oil agent is applied and converged by an oiling device, taken up by a roller rotating at 1000 m / min, and another spinning spindle and 36 pieces. After combining the yarns, the undrawn yarn was obtained by swinging it into the can and storing it. Thirty cans in which undrawn yarns were stored were lined up and 30 undrawn yarns were lined up, leading to a warm water bath at 90 ° C. and drawn at a draw ratio of 2.4 times. Subsequently, the crimper is crimped with a crimper of about 10 crests / 25 mm, dried at 130 ° C., and then applied with 0.5% by mass of the finishing oil to the fiber by a spray method. Cut to 51 mm to obtain a polymethylpentene fiber, that is, a core-sheath type composite fiber made of polymethylpentene and polypropylene.
 得られた芯鞘型複合繊維をカードマシンに投入してスライバーとした後、練条機にて8本のスライバーを混合した。その後、粗紡機にて粗紡し、撚り数0.5回/25.4mmの粗紡糸を得た。この粗紡糸を精紡機に供給し、撚り数18回/25.4mm、英式綿番手30番手の紡績糸を得た。得られた紡績糸を経糸、緯糸に用いて、経糸密度70本/25.4mm、緯糸密度70本/25.4mmの平織物を作製した。 After the obtained core-sheath type composite fiber was put into a card machine to make a sliver, 8 slivers were mixed with a drawing machine. Thereafter, roving was performed with a roving machine to obtain roving with a twist number of 0.5 times / 25.4 mm. This roving yarn was supplied to a fine spinning machine to obtain a spun yarn having a twist number of 18 / 25.4 mm and an English cotton count of 30. Using the spun yarn thus obtained for warp and weft, a plain woven fabric having a warp density of 70 / 25.4 mm and a weft density of 70 / 25.4 mm was produced.
 得られたポリメチルペンテン繊維の繊維特性、紡績糸の繊維特性および布帛特性の評価結果を表5に示す。軽量性、保温性、速乾性については合格レベルであった。しかしながら、芯部に配置したポリプロピレンの耐熱性が低いため、アイロンを当てた後に織物表面に形状変化が見られ、アイロン耐熱性は合格レベルに至らなかった。また、得られた紡績糸は鞘割れに起因した毛羽の発生が極めて多く見られ、極めて劣る風合いであった。 Table 5 shows the evaluation results of the fiber characteristics of the obtained polymethylpentene fiber, the fiber characteristics of the spun yarn, and the fabric characteristics. Lightness, heat retention, and quick drying were acceptable levels. However, since the heat resistance of the polypropylene disposed in the core portion is low, a shape change was observed on the surface of the fabric after the iron was applied, and the iron heat resistance did not reach an acceptable level. In addition, the spun yarn obtained had a very inferior texture with the occurrence of fluff due to sheath cracks being extremely large.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の紡績糸は、軽量性とともに保温性、速乾性、アイロン耐熱性に優れるものである。そのため、織編物や不織布などの繊維構造体として好適に用いることができる。 The spun yarn of the present invention is excellent in heat retention, quick drying and iron heat resistance as well as lightness. Therefore, it can be suitably used as a fiber structure such as a woven or knitted fabric or a nonwoven fabric.

Claims (10)

  1.  構成成分の60重量%以上がポリメチルペンテン系樹脂であり、かつ単糸繊度が2~20dtexであるポリメチルペンテン繊維を含有してなり、撚り数をT(回/25.4mm)、英式綿番手をNとしたとき、下記式(I)により算出される撚り係数Kが1.3~6.5である紡績糸。
    (I)K=T÷N1/2
    60% by weight or more of the constituent component is a polymethylpentene resin and contains polymethylpentene fiber having a single yarn fineness of 2 to 20 dtex, the number of twists is T (times / 25.4 mm), English A spun yarn having a twist coefficient K calculated by the following formula (I) of 1.3 to 6.5, where N is the cotton count.
    (I) K = T ÷ N 1/2
  2.  前記ポリメチルペンテン繊維が、ポリメチルペンテン系樹脂中にポリメチルペンテン系樹脂とは異なる熱可塑性樹脂を含有してなる繊維である請求項1に記載の紡績糸。 The spun yarn according to claim 1, wherein the polymethylpentene fiber is a fiber comprising a thermoplastic resin different from the polymethylpentene resin in the polymethylpentene resin.
  3.  前記ポリメチルペンテン繊維の平均繊維長が10~100mmである請求項1または2に記載の紡績糸。 The spun yarn according to claim 1 or 2, wherein the polymethylpentene fiber has an average fiber length of 10 to 100 mm.
  4.  前記ポリメチルペンテン繊維と、化学繊維または天然繊維とを混紡してなる請求項1~3のいずれか1項に記載の紡績糸。 The spun yarn according to any one of claims 1 to 3, wherein the polymethylpentene fiber is mixed with a chemical fiber or a natural fiber.
  5.  前記ポリメチルペンテン繊維を(A)とし、前記化学繊維または前記天然繊維を(B)としたとき、(A)と(B)との混紡比率(重量比)が、A/B=85/15~97/3である請求項4に記載の紡績糸。 When the polymethylpentene fiber is (A) and the chemical fiber or the natural fiber is (B), the blend ratio (weight ratio) of (A) and (B) is A / B = 85/15 The spun yarn of claim 4, wherein the spun yarn is -97/3.
  6.  見掛け比重が0.83~1.2である請求項1~5のいずれか1項に記載の紡績糸。 The spun yarn according to any one of claims 1 to 5, having an apparent specific gravity of 0.83 to 1.2.
  7.  前記化学繊維または前記天然繊維の融点または分解温度が200℃以上である請求項4~6のいずれか1項に記載の紡績糸。 The spun yarn according to any one of claims 4 to 6, wherein the melting point or decomposition temperature of the chemical fiber or the natural fiber is 200 ° C or higher.
  8.  前記化学繊維が、ポリエステル系繊維、ポリアミド系繊維、ポリアクリロニトリル系繊維、セルロース系繊維、セルロース繊維からなる群から選択される少なくとも一つの繊維である請求項4~7のいずれか1項に記載の紡績糸。 The chemical fiber according to any one of claims 4 to 7, wherein the chemical fiber is at least one fiber selected from the group consisting of a polyester fiber, a polyamide fiber, a polyacrylonitrile fiber, a cellulosic fiber, and a cellulose fiber. Spun yarn.
  9.  前記天然繊維が、綿、絹、麻、羊毛からなる群から選択される少なくとも一つの繊維である請求項4~8のいずれか1項に記載の紡績糸。 The spun yarn according to any one of claims 4 to 8, wherein the natural fiber is at least one fiber selected from the group consisting of cotton, silk, hemp, and wool.
  10.  請求項1~9のいずれか1項に記載の紡績糸を少なくとも一部に用いた繊維構造体。 A fiber structure using at least a part of the spun yarn according to any one of claims 1 to 9.
PCT/JP2014/054195 2013-02-28 2014-02-21 Spun yarn that contains polymethylpentene fiber, and fiber structure made of same WO2014132895A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014512200A JP6308127B2 (en) 2013-02-28 2014-02-21 Spun yarn containing polymethylpentene fiber and fiber structure comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013038946 2013-02-28
JP2013-038946 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014132895A1 true WO2014132895A1 (en) 2014-09-04

Family

ID=51428163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054195 WO2014132895A1 (en) 2013-02-28 2014-02-21 Spun yarn that contains polymethylpentene fiber, and fiber structure made of same

Country Status (3)

Country Link
JP (1) JP6308127B2 (en)
TW (1) TW201443303A (en)
WO (1) WO2014132895A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI609109B (en) * 2015-02-12 2017-12-21 和明紡織股份有限公司 Method of manufacturing fibers with super high twist

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102487915B1 (en) * 2022-01-25 2023-01-13 주식회사 피피 Manufacturing method for PLA fabric and medical uniform using recycle PLA

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175902A (en) * 1988-12-27 1990-07-09 Daiwabo Co Ltd Sock
JPH02175939A (en) * 1988-12-27 1990-07-09 Daiwabo Co Ltd Spun yarn and knit or woven fabric
JPH09157960A (en) * 1995-12-08 1997-06-17 Kuraray Co Ltd Conjugate fiber
JP2000192335A (en) * 1998-12-22 2000-07-11 Japan Vilene Co Ltd Fiber capable of forming ultra fine fiber, ultra fine fiber generated from it and sheet using the ultra fine fiber
JP2004183113A (en) * 2002-11-29 2004-07-02 Toyobo Co Ltd Stretchable bulky staple fiber woven or knitted fabric and method for producing the same
JP2008274468A (en) * 2007-04-27 2008-11-13 Toray Ind Inc Spun yarn
WO2013141033A1 (en) * 2012-03-23 2013-09-26 東レ株式会社 Polymethylpentene conjugate fiber or porous polymethylpentene fiber and fiber structure comprising same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175902A (en) * 1988-12-27 1990-07-09 Daiwabo Co Ltd Sock
JPH02175939A (en) * 1988-12-27 1990-07-09 Daiwabo Co Ltd Spun yarn and knit or woven fabric
JPH09157960A (en) * 1995-12-08 1997-06-17 Kuraray Co Ltd Conjugate fiber
JP2000192335A (en) * 1998-12-22 2000-07-11 Japan Vilene Co Ltd Fiber capable of forming ultra fine fiber, ultra fine fiber generated from it and sheet using the ultra fine fiber
JP2004183113A (en) * 2002-11-29 2004-07-02 Toyobo Co Ltd Stretchable bulky staple fiber woven or knitted fabric and method for producing the same
JP2008274468A (en) * 2007-04-27 2008-11-13 Toray Ind Inc Spun yarn
WO2013141033A1 (en) * 2012-03-23 2013-09-26 東レ株式会社 Polymethylpentene conjugate fiber or porous polymethylpentene fiber and fiber structure comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI609109B (en) * 2015-02-12 2017-12-21 和明紡織股份有限公司 Method of manufacturing fibers with super high twist

Also Published As

Publication number Publication date
JP6308127B2 (en) 2018-04-11
JPWO2014132895A1 (en) 2017-02-02
TW201443303A (en) 2014-11-16

Similar Documents

Publication Publication Date Title
TWI725267B (en) Eccentric core sheath composite fiber and mixed fiber yarn
JP6299222B2 (en) Polymethylpentene conjugate fiber and fiber structure comprising the same
JP2014167185A (en) Spun yarn containing polymethylpentene hollow fiber, and fiber structure comprising the same
JP6562073B2 (en) Dyeable polyolefin fiber and fiber structure comprising the same
KR102335576B1 (en) Twisted yarn made of dyeable polyolefin fiber
JP7056153B2 (en) Polymer alloy fibers and fiber structures made of them
EP3741885A1 (en) Dyeable polyolefin fiber and fibrous structure comprising same
JP6308127B2 (en) Spun yarn containing polymethylpentene fiber and fiber structure comprising the same
JP7290025B2 (en) Dyeable polyolefin core-sheath type composite fiber and fiber structure composed thereof
JP2018204157A (en) Core-sheath type composite fiber, false twist yarn and fibrous structure superior in hygroscopicity
JP7406697B2 (en) Core-sheath type polymer alloy fiber, fiber aggregate containing the same, and manufacturing method thereof
JP7172258B2 (en) Knitted fabric
JP3719258B2 (en) Soft stretch yarn, production method and fabric
JP2020084369A (en) Polymer alloy fiber and fiber structure made of the same
JP2019099986A (en) Composite fiber and fiber structure thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014512200

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756521

Country of ref document: EP

Kind code of ref document: A1