WO2014132815A1 - Solid-state image sensing device, manufacturing method, and electronic device - Google Patents

Solid-state image sensing device, manufacturing method, and electronic device Download PDF

Info

Publication number
WO2014132815A1
WO2014132815A1 PCT/JP2014/053480 JP2014053480W WO2014132815A1 WO 2014132815 A1 WO2014132815 A1 WO 2014132815A1 JP 2014053480 W JP2014053480 W JP 2014053480W WO 2014132815 A1 WO2014132815 A1 WO 2014132815A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
transfer
floating diffusion
pixel
photoelectric conversion
Prior art date
Application number
PCT/JP2014/053480
Other languages
French (fr)
Japanese (ja)
Inventor
典弘 久保
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2014132815A1 publication Critical patent/WO2014132815A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Definitions

  • the present disclosure relates to a solid-state imaging device, a manufacturing method, and an electronic device, and in particular, a solid-state imaging device and a manufacturing method capable of suppressing deterioration in image quality due to white spots with a simpler structure, Further, it relates to an electronic device.
  • a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • a solid-state imaging device for a pixel array unit in which a plurality of pixels are arranged in an array, a control process for driving each pixel in the pixel array unit, and a signal output from each pixel in the pixel array unit.
  • a peripheral circuit that performs signal processing is provided.
  • the pixel is a PD (Photodiode) that generates a charge corresponding to the amount of light received by photoelectric conversion, and an FD (Floating Diffusion) that is used to convert the charge generated by the photodiode into a pixel signal.
  • a transfer transistor for transferring charges generated in the photodiode to the FD portion is disposed between the PD and the FD portion. For example, a voltage of ⁇ 1 V or less is applied to the gate electrode of the transfer transistor during the period in which the charge is accumulated in the PD, and thereby, the charge is designed not to flow freely from the PD to the FD portion. .
  • the voltage almost the same as that of the pixel power supply is always applied to the FD portion, by applying a voltage of ⁇ 1 V or less to the gate electrode of the transfer transistor, the voltage between the gate electrode of the transfer transistor and the FD portion is reduced.
  • the voltage gap becomes large and a strong electric field is generated.
  • Such a strong electric field affects the pixel signal output from the pixel.
  • the image quality may be deteriorated by appearing as a white spot in an image constructed from the pixel signal.
  • a side wall is formed on the side surface thereof, so that the end portion of the gate electrode of the transfer transistor and the FD portion are formed.
  • An offset according to the sidewall is provided.
  • the power supply voltage to a high voltage (for example, 2.7 V or more)
  • a high voltage for example, 2.7 V or more
  • the voltage gap becomes too high between the gate electrode of the transfer transistor and the FD portion when the transfer transistor is off. Is done. Therefore, even if the sidewall is formed, a strong electric field is generated at the end of the gate electrode of the transfer transistor, and it is difficult to suppress the generation of white spots.
  • the gate electrode of the transfer transistor has a tapered shape at the lower portion at the boundary between the transfer transistor and the FD portion, so that the gate electrode of the transfer transistor and the FD portion A technique for relaxing the electric field between them is disclosed.
  • the gate electrode of the transfer transistor in order to form the tapered portion, the gate electrode of the transfer transistor needs to dig a few tens of nm or more below. Therefore, it becomes weak against process variations, the dark current may deteriorate, and the lower interface state of the gate electrode of the transfer transistor may increase. Due to these factors, not only is there a concern about characteristic deterioration such as deterioration of white spots, but the cost increases due to an increase in the number of steps.
  • the present disclosure has been made in view of such a situation, and is capable of suppressing deterioration in image quality due to generation of white spots with a simpler structure.
  • a solid-state imaging device includes a photoelectric conversion unit that performs photoelectric conversion to generate charges, a floating diffusion unit that converts charges generated in the photoelectric conversion units into signals, and the floating conversion unit from the photoelectric conversion unit to the floating A transfer unit that transfers charge to the diffusion unit; and a sidewall that is formed on a side surface of the electrode that constitutes the transfer unit on the side of the floating diffusion unit, from the electrode that constitutes the transfer unit to the floating diffusion unit In the meantime, a gap region having a predetermined interval not less than the width of the sidewall is formed.
  • a manufacturing method includes a photoelectric conversion unit that generates a charge by performing photoelectric conversion, a floating diffusion unit that converts the charge generated in the photoelectric conversion unit into a signal, and the floating diffusion from the photoelectric conversion unit.
  • a solid-state imaging device manufacturing method comprising: a transfer unit that transfers charges to a unit; and a sidewall that is formed on a side surface of the electrode that constitutes the transfer unit on the side of the floating diffusion unit.
  • a step of forming the floating diffusion portion so as to provide a gap region having a predetermined interval between the electrode to be configured and the floating diffusion portion;
  • An electronic apparatus includes a photoelectric conversion unit that generates a charge by performing photoelectric conversion, a floating diffusion unit that converts the charge generated in the photoelectric conversion unit into a signal, and the floating diffusion from the photoelectric conversion unit.
  • a transfer unit that transfers charges to the unit, and a sidewall that is formed on a side surface of the electrode that constitutes the transfer unit on the side of the floating diffusion unit, from the electrode that constitutes the transfer unit to the floating diffusion unit.
  • a solid-state imaging device in which a gap region having a predetermined interval equal to or larger than the width of the sidewall is formed is provided.
  • a gap region having a predetermined interval is formed between the gate electrode constituting the transfer transistor and the floating diffusion portion.
  • FIG. 1A shows a planar configuration example of the pixel
  • FIG. 1B shows a circuit diagram equivalent to the pixel shown in FIG. 1A
  • FIG. Shows the cross-sectional structure of the pixel.
  • the pixel 11 includes a PD 12, a transfer transistor 13, an FD unit 14, an amplification transistor 15, a selection transistor 16, and a reset transistor 17.
  • the charge generated in the PD 12 by photoelectric conversion is transferred to the FD unit 14 via the transfer transistor 13, converted into a pixel signal by the amplification transistor 15, and then the vertical signal line VSL via the selection transistor 16. Is output.
  • the pixel 11 is formed with respect to the silicon substrate 21, and the gate electrode 22 of the transfer transistor 13 is formed on the surface of the silicon substrate 21 via an insulating film (not shown).
  • a sidewall 23 is formed on the side surface of the gate electrode 22 on the FD portion 14 side.
  • the FD portion 14 is constituted by a dense N-type region 24 formed by injecting an N-type impurity into the silicon substrate 21.
  • a voltage of ⁇ 1 V or less is applied to the gate electrode 22 of the transfer transistor 13 during the period in which the charge is accumulated in the PD 12, so that the charge is free from the PD 12 to the FD unit 14. It is designed not to flow out. Since the FD portion 14 is always applied with a voltage substantially the same as that of the pixel power supply VDD, by applying a voltage of ⁇ 1 V or less to the gate electrode 22 of the transfer transistor 13, A voltage gap becomes large with the part 14, and a strong electric field is generated.
  • the PD 12 and the gate electrode 22 of the transfer transistor 13 are formed. Thereafter, a sidewall 23 is manufactured on the side surface of the gate electrode 22 on the opposite side where the PD 12 is formed. Then, the sidewall 23 is self-aligned, and an N-type impurity is implanted to form a dense N-type region 24, whereby the FD portion 14 is formed. By doing so, the end portion of the gate electrode 22 of the transfer transistor 13 and the FD portion 14 are offset according to the region where the sidewall 23 is formed, and the electric field generated at the end portion of the gate electrode 22 of the transfer transistor 13. Will drop.
  • the power supply voltage is designed to be a high voltage (for example, 2.7 V or more)
  • a strong electric field is generated even in the configuration in which the sidewall 23 is formed and the offset is provided.
  • a white spot occurred.
  • the number of white spots (hereinafter appropriately referred to as FD white spots) generated due to such a strong electric field has a characteristic that depends on the voltage of the pixel power supply.
  • FIG. 3 shows the relationship between the pixel power supply voltage and the number of FD white spots.
  • the horizontal axis indicates the voltage of the pixel power supply
  • the vertical axis indicates the value obtained by normalizing the number of FD white spots by the number when the pixel power supply is 2.5V.
  • FIG. 3 shows that the number of FD white spots increases as the voltage of the pixel power supply is increased.
  • Patent Document 1 has a structure in which the gate electrode of the transfer transistor has a tapered portion at the bottom, so that it is difficult to adjust process conditions.
  • FIG. 4 is a diagram illustrating a configuration example of the first embodiment of a pixel to which the present technology is applied.
  • FIG. 4A shows an example of a planar configuration of a pixel
  • FIG. 4B shows a cross-sectional structure of the pixel.
  • the pixel 31 includes a PD 32, a transfer transistor 33, an FD unit 34, an amplification transistor 35, a selection transistor 36, and a reset transistor 37.
  • a gap region 38 is provided between the transfer transistor 33 and the FD portion 34.
  • the PD 32 receives light and performs photoelectric conversion, and generates and accumulates charges corresponding to the light quantity.
  • the transfer transistor 33 transfers the charge generated in the PD 32 to the FD unit 34, and the FD unit 34 temporarily accumulates the charge and converts the charge into a signal.
  • the amplification transistor 35 amplifies the charge accumulated in the FD unit 34 and outputs a signal having a level corresponding to the charge to the vertical signal line via the selection transistor 36.
  • the reset transistor 37 discharges the charge accumulated in the FD unit 34 to the pixel power supply VDD and resets it.
  • the pixel 31 is formed with respect to the silicon substrate 41, and the gate electrode 42 of the transfer transistor 33 is formed on the surface of the silicon substrate 41 via an insulating film (not shown).
  • the A sidewall 43 is formed on the side surface of the transfer transistor 33 on the side of the FD portion 34 of the gate electrode 42.
  • the FD portion 34 is constituted by a dense N-type region 44 formed by ion-implanting N-type impurities into the silicon substrate 41, and an N-type region 45 is formed at a location deeper than the dense N-type region 44.
  • the N-type region 45 is used for transferring charges from the PD 32 to the transfer transistor 33.
  • the gap region 38 is provided by forming the dark N-type region 44 constituting the FD portion 34 at a distance D from the end of the gate electrode 42 of the transfer transistor 33.
  • the distance D in the gap region 38 is set to a predetermined interval at least equal to or larger than the width of the sidewall 43, for example, 100 nm.
  • the gate electrode 42, formation of the side wall 43, and formation of the FD part 34 it does not limit about the order which forms them, You may form in any order.
  • a strong electric field is generated between the gate electrode 42 of the transfer transistor 33 and the FD portion 34 by providing the gap region 38 having the distance D so as to have a gap wider than the width of the sidewall 43. Can be prevented from occurring.
  • the distance D in the gap region 38 to 100 nm or more, it is possible to prevent the generation of FD white spots caused by a strong electric field.
  • the selection range of the pixel power supply can be expanded.
  • FIG. 5 shows the relationship between the electric field intensity generated at the end of the gate electrode 42 of the transfer transistor 33, the potential barrier between the PD 32 and the FD portion 34, and the distance D of the gap region 38. .
  • the horizontal axis of FIG. 5 indicates the distance D of the gap region 38
  • the left vertical axis indicates the electric field intensity generated at the end of the gate electrode 42 of the transfer transistor 33
  • the right vertical axis indicates The potential barrier between PD32 and FD part 34 is shown.
  • the distance D of the gap region 38 that is, the distance D from the end of the gate electrode 42 of the transfer transistor 33 to the FD portion 14 is 100 nm or more, the end of the gate electrode 42 of the transfer transistor 33.
  • the electric field strength at the end of the gate electrode 42 of the transfer transistor 33 gradually converges.
  • FIG. 6 is a diagram illustrating a configuration example of the pixel 31 according to the second embodiment.
  • the same reference numerals are given to the same components as those of the pixel 31 in FIG. 4, and detailed description thereof will be omitted. That is, the pixel 31 ⁇ / b> A is different from the pixel 31 in that an additional N-type region 51 is formed near the surface of the silicon substrate 41 from the gap region 38 to the FD portion 34.
  • the additional N-type region 51 has an N-type impurity concentration in the region of a depth of about 0.1 ⁇ m from the surface of the silicon substrate 41 at a concentration that is two orders of magnitude lower than the N-type impurity concentration injected into the FD portion 34. It is formed by injection.
  • the additional N-type region 51 functions as a transfer auxiliary unit that assists transfer of charges from the transfer transistor 33 toward the FD unit 34.
  • the step of implanting N-type impurities to form the additional N-type region 51 is performed after the sidewall 43 is formed, so that the end of the sidewall 43 and the end of the additional N-type region 51 are Formed to match.
  • FIG. 6B shows the shape of the potential with respect to the X direction (direction along the cross section of FIG. 6A) of the pixel 31A.
  • 6C shows the distribution of N-type impurities in the FD portion 34 and the additional N-type region 51.
  • the horizontal axis indicates the depth from the surface of the silicon substrate 41
  • the vertical axis indicates the concentration of the N-type impurity.
  • the concentration of the N-type impurity injected into the additional N-type region 51 is two orders of magnitude lower than the concentration of the N-type impurity injected into the FD portion 34.
  • the n-type impurity concentration is highest.
  • charge transfer via the additional N-type region 51 is performed.
  • the transfer gradient from the transfer transistor 33 to the FD portion 34 is enhanced by the additional N-type region 51, and then further enhanced by the dark N-type region 44 in the FD portion 34.
  • charges can be efficiently transferred to the FD portion 34.
  • the pixel 31A can suppress the generation of FD white spots even when the pixel voltage is set to a high voltage of 2.7 V or more, and in addition, the charge from the transfer transistor 33 to the FD unit 34 can be suppressed. Transfer can be performed well. Further, the process conditions for manufacturing the pixel 31A can be designed so as to achieve both suppression of the FD white spot and improvement of charge transfer. Thereby, the pixel 31A can avoid the generation of the FD white spot and the black spot, and can further improve the image quality.
  • FIG. 7 is a diagram illustrating a configuration example of the third to fifth embodiments of the pixel 31.
  • the same reference numerals are given to the same components as those of the pixel 31A of FIG. 6, and detailed description thereof is omitted.
  • the pixel 31B is configured differently from the pixel 31A of FIG. 6 in that the end of the additional N-type region 51a is formed to coincide with the end of the gate electrode 42 of the transfer transistor 33.
  • N-type impurities are implanted by self-alignment of the gate electrode 42, whereby the additional N-type region 51a is formed. It is formed.
  • the pixel 31B can further improve the charge transfer efficiency than the pixel 31A.
  • FIG. 7B shows a pixel 31C of the fourth embodiment.
  • the end of the additional N-type region 51b protrudes more toward the gate electrode 42 of the transfer transistor 33 than the end of the sidewall 43, and more than the end of the gate electrode 42 of the transfer transistor 33.
  • 6 is different from the pixel 31 ⁇ / b> A in FIG. 6 in that it is formed so as to be on the FD portion 34 side. That is, in the pixel 31C, after forming the gate electrode 42 of the transfer transistor 33 and before forming the sidewall 43, a gap is provided between the end of the gate electrode 42 of the transfer transistor 33 and a mask is used. By implanting N-type impurities, an additional N-type region 51b is formed.
  • the balance between the electric field strength and the transfer efficiency can be adjusted. The interval is adjusted to obtain optimum characteristics.
  • the pixel 31D is different from the pixel 31A in FIG. 6 in that an N-type region 45a used for charge transfer from the PD 32 to the FD unit 34 is formed to the periphery of the transfer transistor 33. That is, in the pixel 31D, the N-type region 45a is not connected to the FD portion 34.
  • the additional N-type region 51 is formed as in the pixel 31A. However, the additional N-type region 51a such as the pixel 31B or the additional N-type region 51b such as the pixel 31C is formed. The additional N-type region 51 such as the pixel 31 may not be formed.
  • the first manufacturing method of the pixel 31 will be described with reference to FIG.
  • the sidewall material 61 to be the sidewall 43 is formed over the distance D from the side surface of the gate electrode 42.
  • the distance D is, for example, 100 nm or more as described above.
  • the sidewall material 61 is self-aligned to inject a dense N-type impurity to form a dense N-type region 44, thereby forming the FD portion 34.
  • the side wall material 61 is etched to form the side wall 43, whereby the gap region 38 of the distance D is provided.
  • the pixel 31 in which the gap region 38 with the distance D is provided between the end of the gate electrode 42 of the transfer transistor 33 and the FD portion 34 can be manufactured.
  • the sidewall material 61 is shared with other masks and N-type impurities are implanted, so that the process can be reduced and the manufacturing cost of the pixel 31 can be reduced.
  • a gate electrode material 62 to be the gate electrode 42 of the transfer transistor 33 is formed on the surface of the silicon substrate 41.
  • the gate electrode material 62 is formed so as to extend according to the distance D from the position serving as the end of the gate electrode 42 toward the side where the FD portion 34 is formed.
  • the distance D is, for example, 100 nm or more as described above.
  • the gate electrode material 62 is self-aligned to inject a dense N-type impurity to form a dense N-type region 44, thereby forming the FD portion 34.
  • the gate electrode material 62 is etched to form the gate electrode 42 so that the end of the gate electrode 42 is formed at a position away from the FD portion 34 according to the distance D. A gap region 38 of distance D is provided. Thereafter, the sidewall 43 is formed.
  • the pixel 31 in which the gap region 38 with the distance D is provided between the end of the gate electrode 42 of the transfer transistor 33 and the FD portion 34 can be manufactured. Further, in this manufacturing method, the gate electrode material 62 is shared with other masks and N-type impurities are implanted, so that the process can be reduced and the manufacturing cost of the pixel 31 can be reduced.
  • an FD is provided so that the gap region 38 of the distance D is provided.
  • the portion 34 may be formed.
  • the silicon substrate 41 is inclined with respect to the implantation direction. .
  • the FD portion 34 can be formed so as to be separated from the gate electrode 42 according to the distance D by using the shadow of the gate electrode 42.
  • the sidewall 43 is formed.
  • the FD portion 34 can be formed so as to be separated from the gate electrode 42 according to the distance D by using the shadow of the gate electrode 42.
  • the solid-state imaging device 101 includes a pixel array unit 102, a vertical drive unit 103, a column processing unit 104, a horizontal drive unit 105, an output unit 106, and a drive control unit 107.
  • the pixels 31 of the various configuration examples described above are arranged in an array, and are connected to the vertical driving unit 103 via a plurality of horizontal signal lines corresponding to the number of rows of the pixels 31.
  • the vertical drive unit 103 sequentially supplies a drive signal for driving (transferring, selecting, resetting, etc.) each pixel 31 for each row of the plurality of pixels 31 included in the pixel array unit 102 via the horizontal signal line. Supply.
  • the column processing unit 104 extracts the signal level of the pixel signal by performing CDS (Correlated Double Sampling) processing on the pixel signal output from each pixel 32 via the vertical signal line. Pixel data corresponding to the amount of light received by the pixel 31 is acquired.
  • the horizontal driving unit 105 outputs, to the column processing unit 104, a driving signal for causing the column processing unit 104 to output pixel data acquired from each pixel 31 for each column of the plurality of pixels 31 included in the pixel array unit 102. Supply sequentially.
  • the pixel data is supplied from the column processing unit 104 to the output unit 106 at a timing according to the drive signal of the horizontal driving unit 105, and the output unit 106 amplifies the pixel data, for example, to the image processing circuit in the subsequent stage. Output.
  • the drive control unit 107 controls driving of each block inside the solid-state image sensor 101. For example, the drive control unit 107 generates a clock signal according to the drive cycle of each block and supplies the clock signal to each block.
  • the solid-state imaging device 101 configured as described above includes various imaging devices such as an imaging system such as a digital still camera or a digital video camera, a mobile phone having an imaging function, or other devices having an imaging function. It can be applied to electronic equipment.
  • an imaging system such as a digital still camera or a digital video camera
  • a mobile phone having an imaging function or other devices having an imaging function. It can be applied to electronic equipment.
  • FIG. 12 is a block diagram illustrating a configuration example of an imaging device mounted on an electronic device.
  • the imaging apparatus 201 includes an optical system 202, an imaging element 203, a signal processing circuit 204, a monitor 205, and a memory 206, and can capture still images and moving images.
  • the optical system 202 includes one or more lenses, guides image light (incident light) from a subject to the image sensor 203, and forms an image on a light receiving surface (sensor unit) of the image sensor 203.
  • the solid-state image sensor 101 having the pixels 31 of the various configuration examples described above is applied.
  • electrons are accumulated for a certain period according to the image formed on the light receiving surface via the optical system 202. Then, a signal corresponding to the electrons accumulated in the image sensor 203 is supplied to the signal processing circuit 204.
  • the signal processing circuit 204 performs various signal processing on the pixel signal output from the image sensor 203.
  • An image (image data) obtained by performing signal processing by the signal processing circuit 204 is supplied to the monitor 205 and displayed, or supplied to the memory 206 and stored (recorded).
  • the imaging apparatus 201 configured as described above, by applying the solid-state imaging device 101 having the pixel 31 configured as described above, generation of white spots is suppressed even when the pixel power supply is set to a high voltage. Therefore, it is possible to obtain an image with better image quality.
  • the silicon substrate constituting the solid-state imaging device 101 may be either an Nsub substrate or a Psub substrate. Further, as the solid-state imaging device 101, any of a front side CMOS sensor, a backside illumination type CMOS sensor, and a CCD can be employed.
  • this technique can also take the following structures.
  • a photoelectric conversion unit that generates electric charges by performing photoelectric conversion;
  • a floating diffusion unit that converts the charge generated in the photoelectric conversion unit into a signal;
  • a transfer unit that transfers charges from the photoelectric conversion unit to the floating diffusion unit;
  • a sidewall formed on a side surface of the electrode constituting the transfer portion on the floating diffusion portion side, and
  • a gap region having a predetermined interval equal to or larger than the width of the sidewall is formed between the electrode constituting the transfer portion and the floating diffusion portion.
  • the transfer auxiliary portion is formed such that an end portion on the transfer portion side coincides with an end portion of a sidewall formed on a side surface of the electrode constituting the transfer portion on the floating diffusion portion side.
  • the transfer auxiliary unit has an end on the transfer unit side that protrudes closer to the transfer unit than an end of a sidewall formed on a side surface of the electrode constituting the transfer unit on the floating diffusion side, and

Abstract

This disclosure relates to a solid-state image sensing device, a manufacturing method and an electronic device wherein the degradation of image quality caused by occurrence of white points can be suppressed by use of a simpler structure. A pixel comprises: a photoelectric conversion part that performs a photoelectric conversion to generate a charge; a floating diffusion part that converts the charge generated by the photoelectric conversion part to a signal; a transfer transistor that transfers the charge from the photoelectric conversion part to the floating diffusion part; and a side wall that is formed on a side surface of a gate electrode constituting the transfer transistor, said side surface facing the floating diffusion part. A gap region, which is a predetermined interval, equal to or greater than the width of the side wall, between the gate electrode constituting the transfer transistor and the floating diffusion part, is formed. This technique can be applied to, for example, a back-illuminated CMOS sensor.

Description

固体撮像素子および製造方法、並びに電子機器Solid-state imaging device, manufacturing method, and electronic apparatus
 本開示は、固体撮像素子および製造方法、並びに電子機器に関し、特に、より簡易な構造で、白点が発生することによる画質の劣化を抑制することができるようにした固体撮像素子および製造方法、並びに電子機器に関する。 The present disclosure relates to a solid-state imaging device, a manufacturing method, and an electronic device, and in particular, a solid-state imaging device and a manufacturing method capable of suppressing deterioration in image quality due to white spots with a simpler structure, Further, it relates to an electronic device.
 従来、デジタルスチルカメラやデジタルビデオカメラなどの撮像機能を備えた電子機器においては、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの固体撮像素子が使用されている。 Conventionally, in an electronic device having an imaging function such as a digital still camera or a digital video camera, for example, a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) image sensor is used.
 一般的に、固体撮像素子は、複数の画素がアレイ状に配置された画素アレイ部と、画素アレイ部の各画素を駆動する制御処理、および、画素アレイ部の各画素から出力される信号に対する信号処理を行う周辺回路を備えて構成される。 In general, a solid-state imaging device is provided for a pixel array unit in which a plurality of pixels are arranged in an array, a control process for driving each pixel in the pixel array unit, and a signal output from each pixel in the pixel array unit. A peripheral circuit that performs signal processing is provided.
 画素は、光電変換によって光の受光量に応じた電荷を生成するPD(Photodiode:フォトダイオード)と、フォトダイオードで発生した電荷を画素信号に変換するのに用いられるFD(Floating Diffusion:フローティングディフュージョン)部とを有する。また、PDとFD部との間には、フォトダイオードで発生した電荷のFD部への転送を担う転送トランジスタが配置されている。転送トランジスタのゲート電極には、PDに電荷を蓄積する期間において、例えば、-1V以下の電圧が印加されており、これにより、PDからFD部に電荷が自由に流れ出ないように設計されている。 The pixel is a PD (Photodiode) that generates a charge corresponding to the amount of light received by photoelectric conversion, and an FD (Floating Diffusion) that is used to convert the charge generated by the photodiode into a pixel signal. Part. Further, a transfer transistor for transferring charges generated in the photodiode to the FD portion is disposed between the PD and the FD portion. For example, a voltage of −1 V or less is applied to the gate electrode of the transfer transistor during the period in which the charge is accumulated in the PD, and thereby, the charge is designed not to flow freely from the PD to the FD portion. .
 ところで、FD部には、画素電源と略同一の電圧が常に印加されているため、転送トランジスタのゲート電極に-1V以下の電圧を印加することによって、転送トランジスタのゲート電極とFD部との間で電圧ギャップが大きくなり、強電界が発生する。このような強電界は、画素から出力される画素信号に影響を与え、例えば、画素信号から構築される画像において白点となって現れることにより、画質が劣化することがあった。 By the way, since the voltage almost the same as that of the pixel power supply is always applied to the FD portion, by applying a voltage of −1 V or less to the gate electrode of the transfer transistor, the voltage between the gate electrode of the transfer transistor and the FD portion is reduced. The voltage gap becomes large and a strong electric field is generated. Such a strong electric field affects the pixel signal output from the pixel. For example, the image quality may be deteriorated by appearing as a white spot in an image constructed from the pixel signal.
 そこで、強電界の発生を抑制する対策として、例えば、転送トランジスタのゲート電極を形成した後に、その側面にサイドウォールを形成することで、転送トランジスタのゲート電極の端部とFD部との間にサイドウォールに応じたオフセットを設けることが行われている。このオフセットによって、転送トランジスタのゲート電極の端部に発生する電界を下げることができ、強電界を緩和することができる。 Therefore, as a measure for suppressing the generation of a strong electric field, for example, after forming the gate electrode of the transfer transistor, a side wall is formed on the side surface thereof, so that the end portion of the gate electrode of the transfer transistor and the FD portion are formed. An offset according to the sidewall is provided. By this offset, the electric field generated at the end of the gate electrode of the transfer transistor can be lowered, and the strong electric field can be relaxed.
 一方、近年のカメラ市場では、暗所でも被写体を判別することができるようにS/N(Signal / Noise)性能に優れた固体撮像素子の需要が高まっており、例えば、監視カメラなどの産業用カメラや放送局用の業務用カメラなどで特に需要が高くなっている。このように暗所において、より高画質に撮像できる固体撮像素子の開発を行うため、近年では、画素電源を高電圧にし、画素から出力される画素信号の信号量が大きくなるように設計することによって、高S/Nを実現する傾向がある。 On the other hand, in the recent camera market, there is an increasing demand for solid-state image sensors with excellent S / N (Signal / Noise) performance so that subjects can be identified even in dark places. Demand is particularly high for cameras and commercial cameras for broadcasting stations. In order to develop a solid-state image sensor that can capture images with higher image quality in a dark place as described above, in recent years, the pixel power supply is set to a high voltage and the signal amount of the pixel signal output from the pixel is increased. There is a tendency to achieve high S / N.
 しかしながら、電源電圧を高電圧(例えば、2.7V以上)に設計することで、転送トランジスタがオフであるときに、転送トランジスタのゲート電極とFD部との間で電圧ギャップが高くなり過ぎることが想定される。そのため、サイドウォールを形成したとしても、転送トランジスタのゲート電極の端部に強電界が発生してしまい、白点の発生を抑制することは困難であった。 However, by designing the power supply voltage to a high voltage (for example, 2.7 V or more), it is assumed that the voltage gap becomes too high between the gate electrode of the transfer transistor and the FD portion when the transfer transistor is off. Is done. Therefore, even if the sidewall is formed, a strong electric field is generated at the end of the gate electrode of the transfer transistor, and it is difficult to suppress the generation of white spots.
 また、例えば、特許文献1には、転送トランジスタとFD部との境界部において、転送トランジスタのゲート電極が下部にテーパー形状部を有する形状とすることで、転送トランジスタのゲート電極とFD部との間の電界を緩和させる技術が開示されている。 Further, for example, in Patent Document 1, the gate electrode of the transfer transistor has a tapered shape at the lower portion at the boundary between the transfer transistor and the FD portion, so that the gate electrode of the transfer transistor and the FD portion A technique for relaxing the electric field between them is disclosed.
 しかしながら、特許文献1に開示されている技術では、テーパー形状部を形成するために、転送トランジスタのゲート電極が下部を数10nm以上掘り込む必要がある。そのため、プロセスばらつきに対して弱くなり、暗電流が悪化することや、転送トランジスタのゲート電極の下界面準位が増加することがある。そして、これらに起因して、白点が悪化するなどの特性劣化が懸念されるだけでなく、工程数が増加することによってコストが増加してしまう。 However, in the technique disclosed in Patent Document 1, in order to form the tapered portion, the gate electrode of the transfer transistor needs to dig a few tens of nm or more below. Therefore, it becomes weak against process variations, the dark current may deteriorate, and the lower interface state of the gate electrode of the transfer transistor may increase. Due to these factors, not only is there a concern about characteristic deterioration such as deterioration of white spots, but the cost increases due to an increase in the number of steps.
特開2008-227263号公報JP 2008-227263 A
 上述したように、従来の固体撮像素子は、転送トランジスタのゲート電極とFD部との間で強電界が発生することに起因して画像に白点が発生し、画質が劣化することがあった。また、特許文献1で開示されている技術では、転送トランジスタのゲート電極が下部にテーパー形状部を有する構造とするため、プロセス条件の合わせ込みが困難であり、工程数が増加することによってコストが増加することが想定される。 As described above, in the conventional solid-state imaging device, a white spot is generated in the image due to the generation of a strong electric field between the gate electrode of the transfer transistor and the FD portion, and the image quality may be deteriorated. . In addition, in the technique disclosed in Patent Document 1, since the gate electrode of the transfer transistor has a structure having a tapered portion in the lower part, it is difficult to adjust process conditions, and the cost increases due to an increase in the number of processes. It is expected to increase.
 本開示は、このような状況に鑑みてなされたものであり、より簡易な構造で、白点が発生することによる画質の劣化を抑制することができるようにするものである。 The present disclosure has been made in view of such a situation, and is capable of suppressing deterioration in image quality due to generation of white spots with a simpler structure.
 本開示の一側面の固体撮像素子は、光電変換を行って電荷を発生する光電変換部と、前記光電変換部で発生した電荷を信号に変換するフローティングディフュージョン部と、前記光電変換部から前記フローティングディフュージョン部への電荷の転送を行う転送部と、前記転送部を構成する電極の前記フローティングディフュージョン部側の側面に形成されるサイドウォールとを備え、前記転送部を構成する電極から前記フローティングディフュージョン部までの間に、前記サイドウォールの幅以上の所定の間隔となるギャップ領域が形成される。 A solid-state imaging device according to one aspect of the present disclosure includes a photoelectric conversion unit that performs photoelectric conversion to generate charges, a floating diffusion unit that converts charges generated in the photoelectric conversion units into signals, and the floating conversion unit from the photoelectric conversion unit to the floating A transfer unit that transfers charge to the diffusion unit; and a sidewall that is formed on a side surface of the electrode that constitutes the transfer unit on the side of the floating diffusion unit, from the electrode that constitutes the transfer unit to the floating diffusion unit In the meantime, a gap region having a predetermined interval not less than the width of the sidewall is formed.
 本開示の一側面の製造方法は、光電変換を行って電荷を発生する光電変換部と、前記光電変換部で発生した電荷を信号に変換するフローティングディフュージョン部と、前記光電変換部から前記フローティングディフュージョン部への電荷の転送を行う転送部と、前記転送部を構成する電極の前記フローティングディフュージョン部側の側面に形成されるサイドウォールとを備える固体撮像素子の製造方法であって、前記転送部を構成する電極から前記フローティングディフュージョン部までの間に、所定の間隔となるギャップ領域を設けるように前記フローティングディフュージョン部を形成するステップを含む。 A manufacturing method according to one aspect of the present disclosure includes a photoelectric conversion unit that generates a charge by performing photoelectric conversion, a floating diffusion unit that converts the charge generated in the photoelectric conversion unit into a signal, and the floating diffusion from the photoelectric conversion unit. A solid-state imaging device manufacturing method comprising: a transfer unit that transfers charges to a unit; and a sidewall that is formed on a side surface of the electrode that constitutes the transfer unit on the side of the floating diffusion unit. A step of forming the floating diffusion portion so as to provide a gap region having a predetermined interval between the electrode to be configured and the floating diffusion portion;
 本開示の一側面の電子機器は、光電変換を行って電荷を発生する光電変換部と、前記光電変換部で発生した電荷を信号に変換するフローティングディフュージョン部と、前記光電変換部から前記フローティングディフュージョン部への電荷の転送を行う転送部と、前記転送部を構成する電極の前記フローティングディフュージョン部側の側面に形成されるサイドウォールとを備え、前記転送部を構成する電極から前記フローティングディフュージョン部までの間に、前記サイドウォールの幅以上の所定の間隔となるギャップ領域が形成される固体撮像素子を備える。 An electronic apparatus according to an aspect of the present disclosure includes a photoelectric conversion unit that generates a charge by performing photoelectric conversion, a floating diffusion unit that converts the charge generated in the photoelectric conversion unit into a signal, and the floating diffusion from the photoelectric conversion unit. A transfer unit that transfers charges to the unit, and a sidewall that is formed on a side surface of the electrode that constitutes the transfer unit on the side of the floating diffusion unit, from the electrode that constitutes the transfer unit to the floating diffusion unit In the meantime, a solid-state imaging device in which a gap region having a predetermined interval equal to or larger than the width of the sidewall is formed is provided.
 本開示の一側面においては、転送トランジスタを構成するゲート電極からフローティングディフュージョン部までの間に所定の間隔を設けたギャップ領域が形成される。 In one aspect of the present disclosure, a gap region having a predetermined interval is formed between the gate electrode constituting the transfer transistor and the floating diffusion portion.
 本開示の一側面によれば、より簡易な構造で、白点が発生することによる画質の劣化を抑制することができる。 According to one aspect of the present disclosure, it is possible to suppress deterioration in image quality due to white spots with a simpler structure.
従来の画素構造を示す図である。It is a figure which shows the conventional pixel structure. 従来の画素の製造方法を説明する図である。It is a figure explaining the manufacturing method of the conventional pixel. 白点個数と画素電源との関係を示す図である。It is a figure which shows the relationship between the number of white spots, and a pixel power supply. 本技術を適用した画素の第1の実施の形態の構成例を示す図である。It is a figure showing an example of composition of a 1st embodiment of a pixel to which this art is applied. 電界強度およびポテンシャルバリアとギャップ領域の距離との関係を示す図である。It is a figure which shows the relationship between electric field strength and the distance of a potential barrier and a gap area | region. 画素の第2の実施の形態の構成例を示す図である。It is a figure which shows the structural example of 2nd Embodiment of a pixel. 画素の第3乃至第5の実施の形態の構成例を示す図である。It is a figure which shows the structural example of 3rd thru | or 5th Embodiment of a pixel. 第1の製造方法を説明する図である。It is a figure explaining a 1st manufacturing method. 第2の製造方法を説明する図である。It is a figure explaining the 2nd manufacturing method. 他の製造方法を説明する図である。It is a figure explaining other manufacturing methods. 固体撮像装置の一実施の形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of one Embodiment of a solid-state imaging device. 電子機器に搭載される撮像装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the imaging device mounted in an electronic device.
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。 Hereinafter, specific embodiments to which the present technology is applied will be described in detail with reference to the drawings.
 まず、図1乃至図3を参照して、従来の固体撮像素子について説明する。 First, a conventional solid-state imaging device will be described with reference to FIGS.
 図1のAには、画素の平面的な構成例が示されており、図1のBには、図1のAに示す画素と等価の回路図が示されており、図1のCには、画素の断面構造が示されている。 1A shows a planar configuration example of the pixel, FIG. 1B shows a circuit diagram equivalent to the pixel shown in FIG. 1A, and FIG. Shows the cross-sectional structure of the pixel.
 図1のAおよび図1のBに示すように、画素11は、PD12、転送トランジスタ13、FD部14、増幅トランジスタ15、選択トランジスタ16、およびリセットトランジスタ17を備えて構成される。画素11では、光電変換によってPD12で発生した電荷は、転送トランジスタ13を介してFD部14に転送されて、増幅トランジスタ15によって画素信号に変換された後、選択トランジスタ16を介して垂直信号線VSLに出力される。 1A and 1B, the pixel 11 includes a PD 12, a transfer transistor 13, an FD unit 14, an amplification transistor 15, a selection transistor 16, and a reset transistor 17. In the pixel 11, the charge generated in the PD 12 by photoelectric conversion is transferred to the FD unit 14 via the transfer transistor 13, converted into a pixel signal by the amplification transistor 15, and then the vertical signal line VSL via the selection transistor 16. Is output.
 また、図1のCに示すように、画素11は、シリコン基板21に対して形成されており、シリコン基板21の表面に、図示しない絶縁膜を介して転送トランジスタ13のゲート電極22が形成され、ゲート電極22のFD部14側の側面にはサイドウォール23が形成される。また、FD部14は、シリコン基板21に対してN型の不純物を注入することにより形成される濃いN型領域24により構成される。 As shown in FIG. 1C, the pixel 11 is formed with respect to the silicon substrate 21, and the gate electrode 22 of the transfer transistor 13 is formed on the surface of the silicon substrate 21 via an insulating film (not shown). A sidewall 23 is formed on the side surface of the gate electrode 22 on the FD portion 14 side. Further, the FD portion 14 is constituted by a dense N-type region 24 formed by injecting an N-type impurity into the silicon substrate 21.
 上述したように、画素11では、PD12に電荷を蓄積する期間において、転送トランジスタ13のゲート電極22に、例えば、-1V以下の電圧が印加されることで、PD12からFD部14に電荷が自由に流れ出ないように設計されている。FD部14には、画素電源VDDと略同一の電圧が常に印加されているため、転送トランジスタ13のゲート電極22に-1V以下の電圧を印加することによって、転送トランジスタ13のゲート電極22とFD部14との間で電圧ギャップが大きくなり、強電界が発生する。 As described above, in the pixel 11, for example, a voltage of −1 V or less is applied to the gate electrode 22 of the transfer transistor 13 during the period in which the charge is accumulated in the PD 12, so that the charge is free from the PD 12 to the FD unit 14. It is designed not to flow out. Since the FD portion 14 is always applied with a voltage substantially the same as that of the pixel power supply VDD, by applying a voltage of −1 V or less to the gate electrode 22 of the transfer transistor 13, A voltage gap becomes large with the part 14, and a strong electric field is generated.
 このような強電界が発生すると、図1のCで×印で示される箇所で電流リークが発生することが懸念される。これにより、画素11から出力される画素信号が影響を受け、画像において白点となって現れることにより、画質が劣化してしまう。 When such a strong electric field is generated, there is a concern that current leakage may occur at a location indicated by an X in FIG. As a result, the pixel signal output from the pixel 11 is affected and appears as a white spot in the image, thereby degrading the image quality.
 図2を参照して、画素11の製造方法について説明する。 The manufacturing method of the pixel 11 will be described with reference to FIG.
 まず、PD12と、転送トランジスタ13のゲート電極22とが形成される。その後、PD12が形成されている反対側のゲート電極22の側面にサイドウォール23が製作される。そして、サイドウォール23をセルフアラインにしてN型の不純物を注入して濃いN型領域24を形成することでFD部14が形成される。こうすることにより、転送トランジスタ13のゲート電極22の端部とFD部14とが、サイドウォール23が形成される領域に応じてオフセットされ、転送トランジスタ13のゲート電極22の端部に発生する電界が低下することになる。 First, the PD 12 and the gate electrode 22 of the transfer transistor 13 are formed. Thereafter, a sidewall 23 is manufactured on the side surface of the gate electrode 22 on the opposite side where the PD 12 is formed. Then, the sidewall 23 is self-aligned, and an N-type impurity is implanted to form a dense N-type region 24, whereby the FD portion 14 is formed. By doing so, the end portion of the gate electrode 22 of the transfer transistor 13 and the FD portion 14 are offset according to the region where the sidewall 23 is formed, and the electric field generated at the end portion of the gate electrode 22 of the transfer transistor 13. Will drop.
 ところが、上述したように、電源電圧を高電圧(例えば、2.7V以上)に設計した場合には、サイドウォール23を形成してオフセットを設けた構成においても強電界が発生してしまい、画像において白点が発生していた。このような強電界に起因して発生する白点(以下適宜、FD白点と称する)の個数は、画素電源の電圧に依存する特性がある。 However, as described above, when the power supply voltage is designed to be a high voltage (for example, 2.7 V or more), a strong electric field is generated even in the configuration in which the sidewall 23 is formed and the offset is provided. A white spot occurred. The number of white spots (hereinafter appropriately referred to as FD white spots) generated due to such a strong electric field has a characteristic that depends on the voltage of the pixel power supply.
 図3には、画素電源の電圧と、FD白点の個数との関係が示されている。 FIG. 3 shows the relationship between the pixel power supply voltage and the number of FD white spots.
 図3において、横軸は、画素電源の電圧を示しており、縦軸は、FD白点の個数を、画素電源が2.5Vであるときの個数で規格化した値を示している。図3には、画素電源の電圧を増加させるのに従って、FD白点の個数が増加することが示されている。 In FIG. 3, the horizontal axis indicates the voltage of the pixel power supply, and the vertical axis indicates the value obtained by normalizing the number of FD white spots by the number when the pixel power supply is 2.5V. FIG. 3 shows that the number of FD white spots increases as the voltage of the pixel power supply is increased.
 また、上述したように特許文献1に開示されている技術は、転送トランジスタのゲート電極が下部にテーパー形状部を有する構造とするため、プロセス条件の合わせ込みが困難であった。 In addition, as described above, the technique disclosed in Patent Document 1 has a structure in which the gate electrode of the transfer transistor has a tapered portion at the bottom, so that it is difficult to adjust process conditions.
 従って、プロセス条件の合わせ込みが容易となる簡易な構造で、かつ、画素電源を2.7V以上に設計してもFD白点の発生を抑制することができる画素構造が求められている。 Therefore, there is a demand for a pixel structure that can easily adjust the process conditions and can suppress the generation of FD white spots even if the pixel power supply is designed to be 2.7 V or higher.
 そこで、以下では、本技術を適用した具体的な実施の形態について説明する。 Therefore, a specific embodiment to which the present technology is applied will be described below.
 図4は、本技術を適用した画素の第1の実施の形態の構成例を示す図である。図4のAには、画素の平面的な構成例が示されており、図4のBには、画素の断面構造が示されている。 FIG. 4 is a diagram illustrating a configuration example of the first embodiment of a pixel to which the present technology is applied. FIG. 4A shows an example of a planar configuration of a pixel, and FIG. 4B shows a cross-sectional structure of the pixel.
 図4に示すように、画素31は、PD32、転送トランジスタ33、FD部34、増幅トランジスタ35、選択トランジスタ36、およびリセットトランジスタ37を備えて構成される。そして、画素31では、転送トランジスタ33およびFD部34の間にギャップ領域38が設けられている。 4, the pixel 31 includes a PD 32, a transfer transistor 33, an FD unit 34, an amplification transistor 35, a selection transistor 36, and a reset transistor 37. In the pixel 31, a gap region 38 is provided between the transfer transistor 33 and the FD portion 34.
 PD32は、光を受光して光電変換を行い、その光量に応じた電荷を発生して蓄積する。転送トランジスタ33は、PD32で発生した電荷をFD部34に転送し、FD部34は、その電荷を一時的に蓄積し、電荷を信号に変換する。増幅トランジスタ35は、FD部34に蓄積されている電荷を増幅して、その電荷に応じたレベルの信号を、選択トランジスタ36を介して垂直信号線に出力する。リセットトランジスタ37は、FD部34に蓄積されている電荷を画素電源VDDに排出してリセットする。 The PD 32 receives light and performs photoelectric conversion, and generates and accumulates charges corresponding to the light quantity. The transfer transistor 33 transfers the charge generated in the PD 32 to the FD unit 34, and the FD unit 34 temporarily accumulates the charge and converts the charge into a signal. The amplification transistor 35 amplifies the charge accumulated in the FD unit 34 and outputs a signal having a level corresponding to the charge to the vertical signal line via the selection transistor 36. The reset transistor 37 discharges the charge accumulated in the FD unit 34 to the pixel power supply VDD and resets it.
 また、図4のBに示すように、画素31は、シリコン基板41に対して形成されており、シリコン基板41の表面に、図示しない絶縁膜を介して転送トランジスタ33のゲート電極42が形成される。また、転送トランジスタ33のゲート電極42のFD部34側の側面にはサイドウォール43が形成される。 Further, as shown in FIG. 4B, the pixel 31 is formed with respect to the silicon substrate 41, and the gate electrode 42 of the transfer transistor 33 is formed on the surface of the silicon substrate 41 via an insulating film (not shown). The A sidewall 43 is formed on the side surface of the transfer transistor 33 on the side of the FD portion 34 of the gate electrode 42.
 FD部34は、シリコン基板41に対してN型の不純物をイオン注入することにより形成される濃いN型領域44により構成され、濃いN型領域44よりも深い箇所にN型領域45が形成される。N型領域45は、PD32から転送トランジスタ33へ電荷を転送するために用いられる。 The FD portion 34 is constituted by a dense N-type region 44 formed by ion-implanting N-type impurities into the silicon substrate 41, and an N-type region 45 is formed at a location deeper than the dense N-type region 44. The The N-type region 45 is used for transferring charges from the PD 32 to the transfer transistor 33.
 そして、画素31では、FD部34を構成する濃いN型領域44を、転送トランジスタ33のゲート電極42の端部から距離Dを設けて形成することで、ギャップ領域38が設けられる。ギャップ領域38における距離Dは、少なくともサイドウォール43の幅以上の所定の間隔、例えば、100nmに設定される。なお、ゲート電極42の形成、サイドウォール43の形成、およびFD部34の形成について、それらを形成する順番について限定されることはなく、どの順番で形成してもよい。 In the pixel 31, the gap region 38 is provided by forming the dark N-type region 44 constituting the FD portion 34 at a distance D from the end of the gate electrode 42 of the transfer transistor 33. The distance D in the gap region 38 is set to a predetermined interval at least equal to or larger than the width of the sidewall 43, for example, 100 nm. In addition, about the formation of the gate electrode 42, formation of the side wall 43, and formation of the FD part 34, it does not limit about the order which forms them, You may form in any order.
 このように、画素31では、サイドウォール43の幅よりも広い間隔となるように、距離Dのギャップ領域38を設けることで、転送トランジスタ33のゲート電極42とFD部34との間で強電界が発生することを抑制することができる。特に、ギャップ領域38における距離Dを100nm以上に設定することで、強電界に起因して発生するFD白点が、ほぼ発生しないようにすることができる。 Thus, in the pixel 31, a strong electric field is generated between the gate electrode 42 of the transfer transistor 33 and the FD portion 34 by providing the gap region 38 having the distance D so as to have a gap wider than the width of the sidewall 43. Can be prevented from occurring. In particular, by setting the distance D in the gap region 38 to 100 nm or more, it is possible to prevent the generation of FD white spots caused by a strong electric field.
 従って、画素31では、画素電源を高電圧(例えば、2.7V以上)に設定しても、FD白点が発生することを回避することができ、高S/Nの固体撮像素子を開発する際に、画素電源の選択範囲を拡大することができる。 Therefore, in the pixel 31, even when the pixel power supply is set to a high voltage (for example, 2.7 V or more), it is possible to avoid the generation of an FD white spot, and when developing a high S / N solid-state imaging device. In addition, the selection range of the pixel power supply can be expanded.
 ところで、転送トランジスタ33のゲート電極42とFD部34との間を広げると、その間におけるポテンシャルバリアにより、転送トランジスタ33のゲート電極42からFD部14まで電荷が転送される際に転送劣化が発生することが懸念される。 By the way, if the space between the gate electrode 42 of the transfer transistor 33 and the FD portion 34 is widened, transfer deterioration occurs when charges are transferred from the gate electrode 42 of the transfer transistor 33 to the FD portion 14 due to the potential barrier therebetween. There is concern.
 図5には、転送トランジスタ33のゲート電極42の端部に発生する電界強度、および、PD32とFD部34との間におけるポテンシャルバリアと、ギャップ領域38の距離Dとの関係が示されている。 FIG. 5 shows the relationship between the electric field intensity generated at the end of the gate electrode 42 of the transfer transistor 33, the potential barrier between the PD 32 and the FD portion 34, and the distance D of the gap region 38. .
 図5の横軸は、ギャップ領域38の距離Dを示しており、左側の縦軸は、転送トランジスタ33のゲート電極42の端部に発生する電界強度を示しており、右側の縦軸は、PD32とFD部34との間におけるポテンシャルバリアを示している。 The horizontal axis of FIG. 5 indicates the distance D of the gap region 38, the left vertical axis indicates the electric field intensity generated at the end of the gate electrode 42 of the transfer transistor 33, and the right vertical axis indicates The potential barrier between PD32 and FD part 34 is shown.
 図5に示すように、ギャップ領域38の距離D、即ち、転送トランジスタ33のゲート電極42の端部からFD部14までの距離Dを100nm以上にすると、転送トランジスタ33のゲート電極42の端部における電界強度が低下する。そして、さらにギャップ領域38の距離Dを大きくすると、転送トランジスタ33のゲート電極42の端部における電界強度は、次第に収束する。 As shown in FIG. 5, when the distance D of the gap region 38, that is, the distance D from the end of the gate electrode 42 of the transfer transistor 33 to the FD portion 14 is 100 nm or more, the end of the gate electrode 42 of the transfer transistor 33. The electric field strength at decreases. When the distance D of the gap region 38 is further increased, the electric field strength at the end of the gate electrode 42 of the transfer transistor 33 gradually converges.
 一方、図5に示すように、ギャップ領域38の距離Dを200nm以上にすると、PD32とFD部34との間にポテンシャルバリアが発生し、転送劣化が発生する。この転送劣化は、画素から出力される画素信号に影響を与え、例えば、画素信号から構築される画像において黒点となって現れることにより、画質が劣化する。 On the other hand, as shown in FIG. 5, when the distance D of the gap region 38 is set to 200 nm or more, a potential barrier is generated between the PD 32 and the FD portion 34, and transfer deterioration occurs. This transfer deterioration affects the pixel signal output from the pixel. For example, the image quality deteriorates by appearing as a black spot in an image constructed from the pixel signal.
 そこで、例えば、ギャップ領域38に追加的にN型領域を形成することによって、転送トランジスタ33のゲート電極42からFD部14までの電荷転送を向上させることができる。 Therefore, for example, by additionally forming an N-type region in the gap region 38, charge transfer from the gate electrode 42 of the transfer transistor 33 to the FD portion 14 can be improved.
 即ち、図6は、画素31の第2の実施の形態の構成例を示す図である。 That is, FIG. 6 is a diagram illustrating a configuration example of the pixel 31 according to the second embodiment.
 図6に示す画素31Aにおいて、図4の画素31と共通する構成については同一の符号を付し、その詳細な説明は省略する。即ち、画素31Aは、ギャップ領域38からFD部34に亘って、シリコン基板41の表面近傍に追加N型領域51が形成される点で、画素31と異なる構成とされる。 In the pixel 31A shown in FIG. 6, the same reference numerals are given to the same components as those of the pixel 31 in FIG. 4, and detailed description thereof will be omitted. That is, the pixel 31 </ b> A is different from the pixel 31 in that an additional N-type region 51 is formed near the surface of the silicon substrate 41 from the gap region 38 to the FD portion 34.
 追加N型領域51は、例えば、シリコン基板41の表面から0.1μm程度の深さの領域に、FD部34に注入されるN型の不純物濃度よりも2桁以上低い濃度でN型の不純物を注入することにより形成される。このような不純物濃度の追加N型領域51を形成することにより、追加N型領域51は、転送トランジスタ33からFD部34に向かう電荷の転送を補助する転送補助部として機能する。また、追加N型領域51を形成するためにN型の不純物を注入する工程は、サイドウォール43を形成した後とすることで、サイドウォール43の端部と追加N型領域51の端部が一致するように形成される。 For example, the additional N-type region 51 has an N-type impurity concentration in the region of a depth of about 0.1 μm from the surface of the silicon substrate 41 at a concentration that is two orders of magnitude lower than the N-type impurity concentration injected into the FD portion 34. It is formed by injection. By forming the additional N-type region 51 having such an impurity concentration, the additional N-type region 51 functions as a transfer auxiliary unit that assists transfer of charges from the transfer transistor 33 toward the FD unit 34. The step of implanting N-type impurities to form the additional N-type region 51 is performed after the sidewall 43 is formed, so that the end of the sidewall 43 and the end of the additional N-type region 51 are Formed to match.
 従って、図6のBに示すように、追加N型領域51を設けることによって、ギャップ領域38における転送勾配が強化される。図6のBには、画素31AのX方向(図6のAの断面に沿った方向)に対するポテンシャルの形状が示されている。 Therefore, as shown in FIG. 6B, by providing the additional N-type region 51, the transfer gradient in the gap region 38 is strengthened. FIG. 6B shows the shape of the potential with respect to the X direction (direction along the cross section of FIG. 6A) of the pixel 31A.
 また、図6のCには、FD部34および追加N型領域51におけるN型の不純物の分布が示されている。図6のCにおいて、横軸は、シリコン基板41の表面からの深さを示しており、縦軸は、N型の不純物の濃度を示している。このように、追加N型領域51に注入されるN型の不純物の濃度は、FD部34に注入されるN型の不純物濃度よりも2桁以上低く、追加N型領域51は、シリコン基板41の表面近傍においてN型の不純物の濃度が最も高くなるように形成される。このN型の不純物の濃度が最も高くなる深さにおいて、追加N型領域51を介した電荷転送が行われる。 6C shows the distribution of N-type impurities in the FD portion 34 and the additional N-type region 51. 6C, the horizontal axis indicates the depth from the surface of the silicon substrate 41, and the vertical axis indicates the concentration of the N-type impurity. As described above, the concentration of the N-type impurity injected into the additional N-type region 51 is two orders of magnitude lower than the concentration of the N-type impurity injected into the FD portion 34. In the vicinity of the surface, the n-type impurity concentration is highest. At a depth where the concentration of the N-type impurity is the highest, charge transfer via the additional N-type region 51 is performed.
 このように、転送トランジスタ33からFD部34へ向かうポテンシャルは、追加N型領域51により転送勾配が強化され、その後、FD部34における濃いN型領域44によりさらに強化される。このように、段階構造のポテンシャル分布を形成することによって、FD部34に電荷を効率よく転送することができる。 Thus, the transfer gradient from the transfer transistor 33 to the FD portion 34 is enhanced by the additional N-type region 51, and then further enhanced by the dark N-type region 44 in the FD portion 34. Thus, by forming a potential distribution having a stepped structure, charges can be efficiently transferred to the FD portion 34.
 従って、画素31Aは、画素31と同様に、画素電圧を2.7V以上の高電圧にしてもFD白点の発生を抑制することができるのに加えて、転送トランジスタ33からFD部34への電荷転送を良好に行うことができる。また、画素31Aを製造する際のプロセス条件を、FD白点の抑制と、電荷転送の向上とを両立するように設計することができる。これにより、画素31Aは、FD白点および黒点の発生を回避することができ、より画質の向上を図ることができる。 Therefore, similarly to the pixel 31, the pixel 31A can suppress the generation of FD white spots even when the pixel voltage is set to a high voltage of 2.7 V or more, and in addition, the charge from the transfer transistor 33 to the FD unit 34 can be suppressed. Transfer can be performed well. Further, the process conditions for manufacturing the pixel 31A can be designed so as to achieve both suppression of the FD white spot and improvement of charge transfer. Thereby, the pixel 31A can avoid the generation of the FD white spot and the black spot, and can further improve the image quality.
 次に、図7は、画素31の第3乃至第5の実施の形態の構成例を示す図である。図7に示す画素31B乃至31Dにおいて、図6の画素31Aと共通する構成については同一の符号を付し、その詳細な説明は省略する。 Next, FIG. 7 is a diagram illustrating a configuration example of the third to fifth embodiments of the pixel 31. In the pixels 31B to 31D shown in FIG. 7, the same reference numerals are given to the same components as those of the pixel 31A of FIG. 6, and detailed description thereof is omitted.
 図7のAには、第3の実施の形態の画素31Bが示されている。画素31Bは、追加N型領域51aの端部が、転送トランジスタ33のゲート電極42の端部に一致するように形成されている点で、図6の画素31Aと異なる構成とされる。つまり、画素31Bでは、転送トランジスタ33のゲート電極42を形成した後、サイドウォール43を形成する前に、ゲート電極42のセルフアラインでN型の不純物を注入することで、追加N型領域51aが形成される。このように追加N型領域51aを形成することによって、画素31Bは、画素31Aよりも、電荷転送効率をより向上させることができる。 7A shows a pixel 31B of the third embodiment. The pixel 31B is configured differently from the pixel 31A of FIG. 6 in that the end of the additional N-type region 51a is formed to coincide with the end of the gate electrode 42 of the transfer transistor 33. In other words, in the pixel 31B, after forming the gate electrode 42 of the transfer transistor 33 and before forming the sidewall 43, N-type impurities are implanted by self-alignment of the gate electrode 42, whereby the additional N-type region 51a is formed. It is formed. By forming the additional N-type region 51a in this way, the pixel 31B can further improve the charge transfer efficiency than the pixel 31A.
 図7のBには、第4の実施の形態の画素31Cが示されている。画素31Cは、追加N型領域51bの端部が、サイドウォール43の端部よりも転送トランジスタ33のゲート電極42側に突出するように、かつ、転送トランジスタ33のゲート電極42の端部よりもFD部34側となるように形成されている点で、図6の画素31Aと異なる構成とされる。つまり、画素31Cでは、転送トランジスタ33のゲート電極42を形成した後、サイドウォール43を形成する前に、転送トランジスタ33のゲート電極42の端部との間に間隔を設けてマスクを利用してN型の不純物を注入することで、追加N型領域51bが形成される。このように、追加N型領域51bの端部と、転送トランジスタ33のゲート電極42の端部との間隔を適宜調整することによって、電界強度と転送効率とのバランスを調整することができ、より最適な特性となるように間隔が調整される。 FIG. 7B shows a pixel 31C of the fourth embodiment. In the pixel 31C, the end of the additional N-type region 51b protrudes more toward the gate electrode 42 of the transfer transistor 33 than the end of the sidewall 43, and more than the end of the gate electrode 42 of the transfer transistor 33. 6 is different from the pixel 31 </ b> A in FIG. 6 in that it is formed so as to be on the FD portion 34 side. That is, in the pixel 31C, after forming the gate electrode 42 of the transfer transistor 33 and before forming the sidewall 43, a gap is provided between the end of the gate electrode 42 of the transfer transistor 33 and a mask is used. By implanting N-type impurities, an additional N-type region 51b is formed. Thus, by appropriately adjusting the distance between the end of the additional N-type region 51b and the end of the gate electrode 42 of the transfer transistor 33, the balance between the electric field strength and the transfer efficiency can be adjusted. The interval is adjusted to obtain optimum characteristics.
 図7のCには、第5の実施の形態の画素31Dが示されている。画素31Dは、PD32からFD部34への電荷転送に用いられるN型領域45aが、転送トランジスタ33の周辺まで形成されている点で、図6の画素31Aと異なる構成とされる。即ち、画素31Dでは、N型領域45aがFD部34まで繋がることのない構成とされている。なお、画素31Dでは、画素31Aと同様に追加N型領域51が形成されているが、画素31Bのような追加N型領域51aまたは画素31Cのような追加N型領域51bが形成された構造や、画素31のような追加N型領域51が形成されない構造としてもよい。 7C shows a pixel 31D of the fifth embodiment. The pixel 31D is different from the pixel 31A in FIG. 6 in that an N-type region 45a used for charge transfer from the PD 32 to the FD unit 34 is formed to the periphery of the transfer transistor 33. That is, in the pixel 31D, the N-type region 45a is not connected to the FD portion 34. In the pixel 31D, the additional N-type region 51 is formed as in the pixel 31A. However, the additional N-type region 51a such as the pixel 31B or the additional N-type region 51b such as the pixel 31C is formed. The additional N-type region 51 such as the pixel 31 may not be formed.
 図8を参照して、画素31の第1の製造方法について説明する。 The first manufacturing method of the pixel 31 will be described with reference to FIG.
 まず、第1の工程において、シリコン基板41の表面に転送トランジスタ33のゲート電極42を形成した後に、サイドウォール43となるサイドウォール材61を、ゲート電極42の側面から距離Dに亘って形成する。距離Dは、例えば、上述したように100nm以上とされる。 First, in the first step, after the gate electrode 42 of the transfer transistor 33 is formed on the surface of the silicon substrate 41, the sidewall material 61 to be the sidewall 43 is formed over the distance D from the side surface of the gate electrode 42. . The distance D is, for example, 100 nm or more as described above.
 次に、第2の工程において、サイドウォール材61をセルフアラインにして濃い濃度のN型の不純物を注入して濃いN型領域44を形成することによりFD部34を形成する。 Next, in the second step, the sidewall material 61 is self-aligned to inject a dense N-type impurity to form a dense N-type region 44, thereby forming the FD portion 34.
 そして、第3の工程において、サイドウォール材61をエッチングしてサイドウォール43を形成することで、距離Dのギャップ領域38が設けられる。 Then, in the third step, the side wall material 61 is etched to form the side wall 43, whereby the gap region 38 of the distance D is provided.
 以上のような工程により、距離Dのギャップ領域38が、転送トランジスタ33のゲート電極42の端部からFD部34までの間に設けられた画素31を製造することができる。また、この製造方法では、サイドウォール材61を他のマスクと共有してN型の不純物を注入することで、工程削減を図ることができ、画素31の製造コストを削減することができる。 Through the steps as described above, the pixel 31 in which the gap region 38 with the distance D is provided between the end of the gate electrode 42 of the transfer transistor 33 and the FD portion 34 can be manufactured. In this manufacturing method, the sidewall material 61 is shared with other masks and N-type impurities are implanted, so that the process can be reduced and the manufacturing cost of the pixel 31 can be reduced.
 図9を参照して、画素31の第2の製造方法について説明する。 With reference to FIG. 9, the second manufacturing method of the pixel 31 will be described.
 まず、第1の工程において、シリコン基板41の表面に転送トランジスタ33のゲート電極42となるゲート電極材62を形成する。ゲート電極材62は、ゲート電極42の端部となる位置からFD部34が形成される側に向かって、距離Dに従って延長するように形成される。距離Dは、例えば、上述したように100nm以上とされる。 First, in the first step, a gate electrode material 62 to be the gate electrode 42 of the transfer transistor 33 is formed on the surface of the silicon substrate 41. The gate electrode material 62 is formed so as to extend according to the distance D from the position serving as the end of the gate electrode 42 toward the side where the FD portion 34 is formed. The distance D is, for example, 100 nm or more as described above.
 次に、第2の工程において、ゲート電極材62をセルフアラインにして濃い濃度のN型の不純物を注入して濃いN型領域44を形成することによりFD部34を形成する。 Next, in the second step, the gate electrode material 62 is self-aligned to inject a dense N-type impurity to form a dense N-type region 44, thereby forming the FD portion 34.
 そして、第3の工程において、FD部34から距離Dに応じて離れた位置にゲート電極42の端部が形成されるようにゲート電極材62をエッチングしてゲート電極42を形成することで、距離Dのギャップ領域38が設けられる。その後、サイドウォール43が形成される。 In the third step, the gate electrode material 62 is etched to form the gate electrode 42 so that the end of the gate electrode 42 is formed at a position away from the FD portion 34 according to the distance D. A gap region 38 of distance D is provided. Thereafter, the sidewall 43 is formed.
 以上のような工程により、距離Dのギャップ領域38が、転送トランジスタ33のゲート電極42の端部からFD部34までの間に設けられた画素31を製造することができる。また、この製造方法では、ゲート電極材62を他のマスクと共有してN型の不純物を注入することで、工程削減を図ることができ、画素31の製造コストを削減することができる。 Through the steps as described above, the pixel 31 in which the gap region 38 with the distance D is provided between the end of the gate electrode 42 of the transfer transistor 33 and the FD portion 34 can be manufactured. Further, in this manufacturing method, the gate electrode material 62 is shared with other masks and N-type impurities are implanted, so that the process can be reduced and the manufacturing cost of the pixel 31 can be reduced.
 なお、図8および図9では、図4の画素31の製造方法について説明したが、図6の画素31Aおよび図7の画素31B乃至31Dについても同様の製造方法を採用することができる。 8 and 9, the manufacturing method of the pixel 31 of FIG. 4 has been described, but the same manufacturing method can be adopted for the pixel 31A of FIG. 6 and the pixels 31B to 31D of FIG.
 また、サイドウォール材61またはゲート電極材62をセルフアラインにして不純物を注入する他、例えば、転送トランジスタ33のゲート電極42のシャドーを利用して、距離Dのギャップ領域38が設けられるようにFD部34を形成してもよい。 In addition to implanting impurities by making the sidewall material 61 or the gate electrode material 62 self-aligned, for example, using the shadow of the gate electrode 42 of the transfer transistor 33, an FD is provided so that the gap region 38 of the distance D is provided. The portion 34 may be formed.
 次に、図10を参照して、画素31の他の製造方法について説明する。 Next, another method for manufacturing the pixel 31 will be described with reference to FIG.
 例えば、図10のAに示すように、転送トランジスタ33のゲート電極42を形成した後、FD部34を形成するN型の不純物を注入する際に、その注入方向に対してシリコン基板41を傾ける。これにより、ゲート電極42のシャドーを利用し、ゲート電極42から距離Dに応じて離れるようにFD部34を形成することができる。その後、サイドウォール43が形成される。 For example, as shown in FIG. 10A, after forming the gate electrode 42 of the transfer transistor 33, when the N-type impurity forming the FD portion 34 is implanted, the silicon substrate 41 is inclined with respect to the implantation direction. . Thereby, the FD portion 34 can be formed so as to be separated from the gate electrode 42 according to the distance D by using the shadow of the gate electrode 42. Thereafter, the sidewall 43 is formed.
 また、図10のBに示すように、転送トランジスタ33のゲート電極42を形成し、サイドウォール43を形成した後、FD部34を形成するN型の不純物を注入する際に、その注入方向に対してシリコン基板41を傾ける。これにより、ゲート電極42のシャドーを利用し、ゲート電極42から距離Dに応じて離れるようにFD部34を形成することができる。 Further, as shown in FIG. 10B, after forming the gate electrode 42 of the transfer transistor 33 and forming the sidewall 43, when implanting N-type impurities for forming the FD portion 34, In contrast, the silicon substrate 41 is tilted. Thereby, the FD portion 34 can be formed so as to be separated from the gate electrode 42 according to the distance D by using the shadow of the gate electrode 42.
 なお、図10では、図4の画素31の製造方法について説明したが、図6の画素31Aおよび図7の画素31B乃至31Dについても同様の製造方法を採用することができる。 Although the manufacturing method of the pixel 31 in FIG. 4 has been described with reference to FIG. 10, the same manufacturing method can be employed for the pixel 31A in FIG. 6 and the pixels 31B to 31D in FIG.
 次に、画素31を有する固体撮像素子について説明する。 Next, a solid-state imaging device having the pixels 31 will be described.
 図11に示すように、固体撮像素子101は、画素アレイ部102、垂直駆動部103、カラム処理部104、水平駆動部105、出力部106、駆動制御部107を備えて構成される。 As shown in FIG. 11, the solid-state imaging device 101 includes a pixel array unit 102, a vertical drive unit 103, a column processing unit 104, a horizontal drive unit 105, an output unit 106, and a drive control unit 107.
 画素アレイ部102は、上述した各種の構成例の画素31がアレイ状に配置されており、画素31の行数に応じた複数の水平信号線を介して垂直駆動部103に接続され、画素31の列数に応じた複数の垂直信号線を介してカラム処理部104に接続されている。垂直駆動部103は、画素アレイ部102が有する複数の画素31の行ごとに、それぞれの画素31を駆動(転送や、選択、リセットなど)するための駆動信号を、水平信号線を介して順次供給する。 In the pixel array unit 102, the pixels 31 of the various configuration examples described above are arranged in an array, and are connected to the vertical driving unit 103 via a plurality of horizontal signal lines corresponding to the number of rows of the pixels 31. Are connected to the column processing unit 104 via a plurality of vertical signal lines corresponding to the number of columns. The vertical drive unit 103 sequentially supplies a drive signal for driving (transferring, selecting, resetting, etc.) each pixel 31 for each row of the plurality of pixels 31 included in the pixel array unit 102 via the horizontal signal line. Supply.
 カラム処理部104は、垂直信号線を介して、それぞれの画素32から出力される画素信号に対してCDS(Correlated Double Sampling:相関2重サンプリング)処理を施すことで画素信号の信号レベルを抽出し、画素31の受光量に応じた画素データを取得する。水平駆動部105は、画素アレイ部102が有する複数の画素31の列ごとに、それぞれの画素31から取得された画素データをカラム処理部104から出力させるための駆動信号を、カラム処理部104に順次供給する。 The column processing unit 104 extracts the signal level of the pixel signal by performing CDS (Correlated Double Sampling) processing on the pixel signal output from each pixel 32 via the vertical signal line. Pixel data corresponding to the amount of light received by the pixel 31 is acquired. The horizontal driving unit 105 outputs, to the column processing unit 104, a driving signal for causing the column processing unit 104 to output pixel data acquired from each pixel 31 for each column of the plurality of pixels 31 included in the pixel array unit 102. Supply sequentially.
 出力部106には、水平駆動部105の駆動信号に従ったタイミングでカラム処理部104から画素データが供給され、出力部106は、例えば、その画素データを増幅して、後段の画像処理回路に出力する。駆動制御部107は、固体撮像素子101の内部の各ブロックの駆動を制御する。例えば、駆動制御部107は、各ブロックの駆動周期に従ったクロック信号を生成して、それぞれのブロックに供給する。 The pixel data is supplied from the column processing unit 104 to the output unit 106 at a timing according to the drive signal of the horizontal driving unit 105, and the output unit 106 amplifies the pixel data, for example, to the image processing circuit in the subsequent stage. Output. The drive control unit 107 controls driving of each block inside the solid-state image sensor 101. For example, the drive control unit 107 generates a clock signal according to the drive cycle of each block and supplies the clock signal to each block.
 そして、このように構成されている固体撮像素子101は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像システム、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。 The solid-state imaging device 101 configured as described above includes various imaging devices such as an imaging system such as a digital still camera or a digital video camera, a mobile phone having an imaging function, or other devices having an imaging function. It can be applied to electronic equipment.
 図12は、電子機器に搭載される撮像装置の構成例を示すブロック図である。 FIG. 12 is a block diagram illustrating a configuration example of an imaging device mounted on an electronic device.
 図12に示すように、撮像装置201は、光学系202、撮像素子203、信号処理回路204、モニタ205、およびメモリ206を備えて構成され、静止画像および動画像を撮像可能である。 As shown in FIG. 12, the imaging apparatus 201 includes an optical system 202, an imaging element 203, a signal processing circuit 204, a monitor 205, and a memory 206, and can capture still images and moving images.
 光学系202は、1枚または複数枚のレンズを有して構成され、被写体からの像光(入射光)を撮像素子203に導き、撮像素子203の受光面(センサ部)に結像させる。 The optical system 202 includes one or more lenses, guides image light (incident light) from a subject to the image sensor 203, and forms an image on a light receiving surface (sensor unit) of the image sensor 203.
 撮像素子203としては、上述した各種の構成例の画素31を有する固体撮像素子101が適用される。撮像素子203には、光学系202を介して受光面に結像される像に応じて、一定期間、電子が蓄積される。そして、撮像素子203に蓄積された電子に応じた信号が信号処理回路204に供給される。 As the image sensor 203, the solid-state image sensor 101 having the pixels 31 of the various configuration examples described above is applied. In the image sensor 203, electrons are accumulated for a certain period according to the image formed on the light receiving surface via the optical system 202. Then, a signal corresponding to the electrons accumulated in the image sensor 203 is supplied to the signal processing circuit 204.
 信号処理回路204は、撮像素子203から出力された画素信号に対して各種の信号処理を施す。信号処理回路204が信号処理を施すことにより得られた画像(画像データ)は、モニタ205に供給されて表示されたり、メモリ206に供給されて記憶(記録)されたりする。 The signal processing circuit 204 performs various signal processing on the pixel signal output from the image sensor 203. An image (image data) obtained by performing signal processing by the signal processing circuit 204 is supplied to the monitor 205 and displayed, or supplied to the memory 206 and stored (recorded).
 このように構成されている撮像装置201では、上述したような構成の画素31を有する固体撮像素子101を適用することによって、画素電源を高電圧に設定しても、白点の発生を抑制した、より良好な画質の画像を取得することができる。 In the imaging apparatus 201 configured as described above, by applying the solid-state imaging device 101 having the pixel 31 configured as described above, generation of white spots is suppressed even when the pixel power supply is set to a high voltage. Therefore, it is possible to obtain an image with better image quality.
 なお、固体撮像素子101を構成するシリコン基板は、Nsub基板およびPsub基板のどちらでもよい。また、固体撮像素子101としては、表面側CMOSセンサ、裏面照射型CMOSセンサ、および、CCDのいずれも採用することができる。 Note that the silicon substrate constituting the solid-state imaging device 101 may be either an Nsub substrate or a Psub substrate. Further, as the solid-state imaging device 101, any of a front side CMOS sensor, a backside illumination type CMOS sensor, and a CCD can be employed.
 なお、本技術は以下のような構成も取ることができる。
(1)
 光電変換を行って電荷を発生する光電変換部と、
 前記光電変換部で発生した電荷を信号に変換するフローティングディフュージョン部と、
 前記光電変換部から前記フローティングディフュージョン部への電荷の転送を行う転送部と、
 前記転送部を構成する電極の前記フローティングディフュージョン部側の側面に形成されるサイドウォールと
 を備え、
 前記転送部を構成する電極から前記フローティングディフュージョン部までの間に、前記サイドウォールの幅以上の所定の間隔となるギャップ領域が形成される
 固体撮像素子。
(2)
 前記ギャップ領域に、前記転送部から前記フローティングディフュージョン部に向かう電荷の転送を補助する転送補助部を設ける
 上記(1)に記載の固体撮像素子。
(3)
 前記転送補助部は、前記転送部側の端部が、前記転送部を構成する電極の前記フローティングディフュージョン部側の側面に形成されるサイドウォールの端部に一致するように形成される
 上記(1)または(2)に記載の固体撮像素子。
(4)
 前記転送補助部は、前記転送部側の端部が、前記転送部を構成する電極の端部に一致するように形成される
 上記(1)または(2)に記載の固体撮像素子。
(5)
 前記転送補助部は、前記転送部側の端部が、前記転送部を構成する電極の前記フローティングディフュージョン部側の側面に形成されるサイドウォールの端部よりも前記転送部側に突出し、かつ、前記転送部を構成する電極の端部よりも前記フローティングディフュージョン部側となるように形成される
 上記(1)または(2)に記載の固体撮像素子。
In addition, this technique can also take the following structures.
(1)
A photoelectric conversion unit that generates electric charges by performing photoelectric conversion;
A floating diffusion unit that converts the charge generated in the photoelectric conversion unit into a signal;
A transfer unit that transfers charges from the photoelectric conversion unit to the floating diffusion unit;
A sidewall formed on a side surface of the electrode constituting the transfer portion on the floating diffusion portion side, and
A gap region having a predetermined interval equal to or larger than the width of the sidewall is formed between the electrode constituting the transfer portion and the floating diffusion portion.
(2)
The solid-state imaging device according to (1), wherein a transfer auxiliary unit that assists transfer of charges from the transfer unit toward the floating diffusion unit is provided in the gap region.
(3)
The transfer auxiliary portion is formed such that an end portion on the transfer portion side coincides with an end portion of a sidewall formed on a side surface of the electrode constituting the transfer portion on the floating diffusion portion side. ) Or (2).
(4)
The solid-state imaging device according to (1) or (2), wherein the transfer assisting unit is formed such that an end on the transfer unit side coincides with an end of an electrode constituting the transfer unit.
(5)
The transfer auxiliary unit has an end on the transfer unit side that protrudes closer to the transfer unit than an end of a sidewall formed on a side surface of the electrode constituting the transfer unit on the floating diffusion side, and The solid-state imaging device according to (1) or (2), wherein the solid-state imaging element is formed so as to be closer to the floating diffusion portion than an end portion of an electrode constituting the transfer portion.
 なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the present embodiment is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present disclosure.
 31 画素, 32 PD, 33 転送トランジスタ, 34 FD部, 35 増幅トランジスタ, 36 選択トランジスタ, 37 リセットトランジスタ, 38 ギャップ領域, 41 シリコン基板, 42 ゲート電極, 43 サイドウォール, 44 濃いN型領域, 51 追加N型領域, 61 サイドウォール材, 62 ゲート電極材 31 pixels, 32 PD, 33 transfer transistor, 34 FD section, 35 amplification transistor, 36 selection transistor, 37 reset transistor, 38 gap region, 41 silicon substrate, 42 gate electrode, 43 sidewall, 44 dark N-type region, 51 added N-type region, 61 side wall material, 62 gate electrode material

Claims (7)

  1.  光電変換を行って電荷を発生する光電変換部と、
     前記光電変換部で発生した電荷を信号に変換するフローティングディフュージョン部と、
     前記光電変換部から前記フローティングディフュージョン部への電荷の転送を行う転送部と、
     前記転送部を構成する電極の前記フローティングディフュージョン部側の側面に形成されるサイドウォールと
     を備え、
     前記転送部を構成する電極から前記フローティングディフュージョン部までの間に、前記サイドウォールの幅以上の所定の間隔となるギャップ領域が形成される
     固体撮像素子。
    A photoelectric conversion unit that generates electric charges by performing photoelectric conversion;
    A floating diffusion unit that converts the charge generated in the photoelectric conversion unit into a signal;
    A transfer unit that transfers charges from the photoelectric conversion unit to the floating diffusion unit;
    A sidewall formed on a side surface of the electrode constituting the transfer portion on the floating diffusion portion side, and
    A gap region having a predetermined interval equal to or larger than the width of the sidewall is formed between the electrode constituting the transfer portion and the floating diffusion portion.
  2.  前記ギャップ領域に、前記転送部から前記フローティングディフュージョン部に向かう電荷の転送を補助する転送補助部を設ける
     請求項1に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein a transfer auxiliary unit that assists transfer of electric charges from the transfer unit to the floating diffusion unit is provided in the gap region.
  3.  前記転送補助部は、前記転送部側の端部が前記サイドウォールの端部に一致するように形成される
     請求項2に記載の固体撮像素子。
    The solid-state imaging device according to claim 2, wherein the transfer auxiliary unit is formed such that an end on the transfer unit side coincides with an end of the sidewall.
  4.  前記転送補助部は、前記転送部側の端部が前記転送部を構成する電極の端部に一致するように形成される
     請求項2に記載の固体撮像素子。
    The solid-state imaging device according to claim 2, wherein the transfer auxiliary unit is formed such that an end on the transfer unit side coincides with an end of an electrode constituting the transfer unit.
  5.  前記転送補助部は、前記転送部側の端部が、前記サイドウォールの端部よりも前記転送部側に突出し、かつ、前記転送部を構成する電極の端部よりも前記フローティングディフュージョン部側となるように形成される
     請求項2に記載の固体撮像素子。
    The transfer auxiliary unit has an end on the transfer unit side that protrudes more toward the transfer unit than an end of the sidewall, and the floating diffusion unit side from an end of an electrode that constitutes the transfer unit. The solid-state imaging device according to claim 2, wherein the solid-state imaging device is formed.
  6.  光電変換を行って電荷を発生する光電変換部と、前記光電変換部で発生した電荷を信号に変換するフローティングディフュージョン部と、前記光電変換部から前記フローティングディフュージョン部への電荷の転送を行う転送部と、前記転送部を構成する電極の前記フローティングディフュージョン部側の側面に形成されるサイドウォールとを備える固体撮像素子の製造方法であって、
     前記転送部を構成する電極から前記フローティングディフュージョン部までの間に、所定の間隔となるギャップ領域を設けるように前記フローティングディフュージョン部を形成するステップを含む
     製造方法。
    A photoelectric conversion unit that generates charges by performing photoelectric conversion, a floating diffusion unit that converts charges generated in the photoelectric conversion unit into signals, and a transfer unit that transfers charges from the photoelectric conversion unit to the floating diffusion unit And a method of manufacturing a solid-state imaging device comprising a side wall formed on a side surface of the electrode constituting the transfer unit on the floating diffusion part side,
    The manufacturing method includes a step of forming the floating diffusion portion so as to provide a gap region having a predetermined interval between the electrode constituting the transfer portion and the floating diffusion portion.
  7.  光電変換を行って電荷を発生する光電変換部と、
     前記光電変換部で発生した電荷を信号に変換するフローティングディフュージョン部と、
     前記光電変換部から前記フローティングディフュージョン部への電荷の転送を行う転送部と、
     前記転送部を構成する電極の前記フローティングディフュージョン部側の側面に形成されるサイドウォールと
     を備え、
     前記転送部を構成する電極から前記フローティングディフュージョン部までの間に、前記サイドウォールの幅以上の所定の間隔となるギャップ領域が形成される
     固体撮像素子を備える電子機器。
    A photoelectric conversion unit that generates electric charges by performing photoelectric conversion;
    A floating diffusion unit that converts the charge generated in the photoelectric conversion unit into a signal;
    A transfer unit that transfers charges from the photoelectric conversion unit to the floating diffusion unit;
    A sidewall formed on a side surface of the electrode constituting the transfer portion on the floating diffusion portion side, and
    An electronic apparatus comprising: a solid-state imaging device in which a gap region having a predetermined interval equal to or larger than the width of the sidewall is formed between an electrode constituting the transfer unit and the floating diffusion unit.
PCT/JP2014/053480 2013-02-27 2014-02-14 Solid-state image sensing device, manufacturing method, and electronic device WO2014132815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013037541 2013-02-27
JP2013-037541 2013-02-27

Publications (1)

Publication Number Publication Date
WO2014132815A1 true WO2014132815A1 (en) 2014-09-04

Family

ID=51428087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053480 WO2014132815A1 (en) 2013-02-27 2014-02-14 Solid-state image sensing device, manufacturing method, and electronic device

Country Status (2)

Country Link
TW (1) TW201436185A (en)
WO (1) WO2014132815A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218070A (en) * 1992-01-30 1993-08-27 Sanyo Electric Co Ltd Mos field-effect semiconductor device
JPH0964353A (en) * 1995-08-25 1997-03-07 Sanyo Electric Co Ltd Semiconductor device and its manufacture
JP2003273349A (en) * 2002-03-15 2003-09-26 Seiko Epson Corp Method for manufacturing semiconductor device
JP2009135349A (en) * 2007-12-03 2009-06-18 Panasonic Corp Mos solid-state imaging device and method of manufacturing the same
JP2009212111A (en) * 2008-02-29 2009-09-17 Renesas Technology Corp Transistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218070A (en) * 1992-01-30 1993-08-27 Sanyo Electric Co Ltd Mos field-effect semiconductor device
JPH0964353A (en) * 1995-08-25 1997-03-07 Sanyo Electric Co Ltd Semiconductor device and its manufacture
JP2003273349A (en) * 2002-03-15 2003-09-26 Seiko Epson Corp Method for manufacturing semiconductor device
JP2009135349A (en) * 2007-12-03 2009-06-18 Panasonic Corp Mos solid-state imaging device and method of manufacturing the same
JP2009212111A (en) * 2008-02-29 2009-09-17 Renesas Technology Corp Transistor

Also Published As

Publication number Publication date
TW201436185A (en) 2014-09-16

Similar Documents

Publication Publication Date Title
US20210335875A1 (en) Solid-state imaging element, manufacturing method, and electronic device
US11032502B2 (en) Solid-state imaging device and driving method thereof, and electronic apparatus
JP6126666B2 (en) Solid-state imaging device and electronic apparatus
JP5671830B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic apparatus
JP5564909B2 (en) SOLID-STATE IMAGING DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
US8629484B2 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
JP5651976B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic device
KR102248958B1 (en) Solid-state imaging element, electronic device, and manufacturing method
US20110248371A1 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
US8399914B2 (en) Method for making solid-state imaging device
JP2011029835A (en) Solid-state imaging device, drive method therefor, and electronic device
WO2016158483A1 (en) Solid-state imaging element, driving method, and electronic device
US20130050552A1 (en) Solid-state imaging apparatus, method of manufacturing solid-state imaging apparatus, and electronic apparatus
US20110018037A1 (en) Solid-state imaging device and method of manufacturing solid-state imaging device
KR20080012166A (en) Solid-state imaging device
US9406816B2 (en) Solid-state imaging apparatus, method of manufacturing solid-state imaging apparatus and electronic device
JP2013033885A (en) Solid-state imaging device, method for manufacturing the same, method for driving the same, and electronic device
TWI534997B (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and camera module
JP2013125862A (en) Solid state image sensor and electronic equipment
WO2014132815A1 (en) Solid-state image sensing device, manufacturing method, and electronic device
JP2015018907A (en) Solid-state image sensor and method of manufacturing the same, and electronic apparatus
JP2006165006A (en) Solid-state imaging element
JP2011009466A (en) Solid-state image pickup device, and electronic apparatus
JP2010212319A (en) Solid-state imaging apparatus, electronic equipment and method of manufacturing the solid-state imaging apparatus
JP2012028586A (en) Solid-state image pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP