WO2014132696A1 - 位置検出器 - Google Patents

位置検出器 Download PDF

Info

Publication number
WO2014132696A1
WO2014132696A1 PCT/JP2014/050811 JP2014050811W WO2014132696A1 WO 2014132696 A1 WO2014132696 A1 WO 2014132696A1 JP 2014050811 W JP2014050811 W JP 2014050811W WO 2014132696 A1 WO2014132696 A1 WO 2014132696A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
window
shielding plate
position detector
predetermined
Prior art date
Application number
PCT/JP2014/050811
Other languages
English (en)
French (fr)
Inventor
茂 川瀬
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Priority to EP14756270.6A priority Critical patent/EP2963379B1/en
Priority to CN201480023797.5A priority patent/CN105143815B/zh
Publication of WO2014132696A1 publication Critical patent/WO2014132696A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/342Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells the sensed object being the obturating part

Definitions

  • the present invention relates to a position detector that detects the position of an actuator, for example.
  • linear actuators have been used in production sites depending on the application.
  • a linear actuator having a relatively high response speed is used in operations such as assembly and mounting of electronic parts and pick and place.
  • the movable range is about 1 cm to 10 cm, and high-speed and precise work is realized by performing position feedback control using a position detector suitable for position accuracy and response speed required for work.
  • Position detectors are analog and digital encoder types based on the method, magnetism and eddy currents are detected based on the detection principle, differential transformers, potentiometer types, and so on. Type, reflection type, etc.
  • Examples of the digital position detector using light include a laser displacement meter and a digital scale.
  • This digital position detector has many advantages such as high minimum resolution, no drift and good linearity as long as the scale is not deformed, and long stroke measurement. Is often used.
  • problems such as that the position detector itself is expensive, the peripheral circuit is complicated, and an expensive dedicated IC is required.
  • some digital scales use magnetism, they are similarly expensive and are more susceptible to noise generated when the actuator is driven with a large current than in the optical system.
  • a transmissive photo interrupter In an analog type position detector, a transmissive photo interrupter, a reflective photo reflector, etc. are used as light, and those using magnetism are a Hall element or a magnetoresistive element (AMR: Antimagnetic Magneto Resistance), There are other giant magnetoresistive elements (GMR: Giant Magneto Resistance) that use the principles of eddy currents and differential transformers (see, for example, Patent Document 1).
  • AMR Antimagnetic Magneto Resistance
  • GMR Giant Magneto Resistance
  • Analog type position detectors are more susceptible to noise generated when the actuator is driven with a larger current than digital types.
  • the method using light is relatively less susceptible to electromagnetic noise generated by passing a current through the coil of the actuator.
  • the fiber unit 3 including the projector 1 and the light receiver 2 is separated from the amplifier unit 6 including the light emitting unit 4 and the light amount detection unit 5, and the fiber unit 3 and the amplifier unit 6 are separated.
  • the optical fiber type position detector (hereinafter referred to as a fiber type optical sensor) connected to the optical fiber 8a, 8b is completely affected by actuator drive current noise because the optical sensor and the amplifier can be installed at a location away from the actuator coil.
  • the fiber unit 3 of this fiber type optical sensor has a transmission type and a reflection type.
  • this transmission type as shown in FIGS. 2 and 3, the light from the optical fiber emitting end 12 installed inside is converted into parallel light by a lens 13, and the direction of the light is a mirror array 14 having a small mirror 141. (Or prism array) is changed to the direction of the light receiver 2, the light projector 1 that projects light from the light projection window 11, and the parallel light is received by the light reception window 21, and the direction of the light is a mirror array 22 having a small mirror 221.
  • the fiber unit 3 of the type using the mirror arrays 14 and 22 (hereinafter, the description of the prism array is omitted) can generate wide parallel light with a simple configuration including only the lenses 13 and 23 and the mirror arrays 14 and 22. Can do. Then, as shown in FIG. 2, the light projector 1 and the light receiver 2 are opposed to each other, and the shield plate 7 is moved in the longitudinal direction of the windows 11 and 21 between them, so that the light receiver is proportional to the position of the shield plate 7. The amount of received light 2 changes. For this reason, the output of the amplifier unit 6 also changes in proportion to the position of the shielding plate 7, and can be used as a position detector having a relatively long detection distance.
  • the installation angle ⁇ 1 of the mirror arrays 14 and 22 is generally set to an angle smaller than 45 °.
  • the mirror array 14 since it is necessary to change the direction of the parallel light from the lens 13 of the projector 1 to a substantially vertical direction and project the light onto the light receiver 2, the parallel light among the individual mirrors constituting the mirror array 14 is required.
  • the installation angle ⁇ 2 of the mirror 141 used for changing the angle of is configured to be 45 ° with respect to the parallel light from the lens 13.
  • the mirror array 22 it is necessary to change the direction of the parallel light from the projector 1 to a substantially vertical direction and project the light onto the lens 23. Therefore, the angle of the parallel light among the individual mirrors constituting the mirror array 22 is set.
  • the installation angle ⁇ 2 of the mirror 221 (see FIG. 2B) used for changing is configured to be 45 ° with respect to the parallel light from the projector 1.
  • the portion of the mirror arrays 14 and 22 used for reflecting parallel light is less than half. Therefore, the parallel light projected substantially perpendicularly to the light receiver 2 has a region Tb having a high light intensity and a region Td having a very weak intensity, and is repeated at a constant periodic interval Tp.
  • the actual light intensity is not stepwise at the boundary between the high light intensity region and the very weak region because the influence of diffraction by the shielding plate 7 and the light flux of the optical system are not ideal parallel light. To change. Therefore, the output change of the amplifier unit 6 is not actually stepped. However, the influence of diffraction and the substantially parallelism of the light flux on the output change is not dominant, and when the projector 1 and the light receiver 2 are arranged at a relatively short distance, they are not easily affected. The present invention does not discuss the effect.
  • the present invention has been made to solve the above-described problems. Even if the parallel light projected on the light receiving window includes a region having a high light intensity and a region having a very low light intensity, the shielding plate is not longer than the length of the window.
  • a position detector that can be made proportional to the moving distance of the shielding plate when moving in the vertical direction, and is the same as when the light intensity of the parallel light projected onto the light receiving window is uniform. It is intended to provide.
  • a position detector has a window having a predetermined width and a predetermined length larger than the width, a projector that projects parallel light of a predetermined width from the window, and a predetermined width and a predetermined length.
  • a receiver that receives parallel light through the window, and a part of the parallel light that is held horizontally movable in the length direction of the window and enters the receiver window according to the position of the object to be measured Alternatively, a shielding plate that shields everything, a light amount detection unit that outputs a position signal having a magnitude proportional to the amount of light received by the light receiver, and at least one of the projector and the light receiver are provided to face the window, and at a predetermined cycle.
  • Deflection means for changing the direction of parallel light in a substantially vertical direction with respect to the window by a plurality of arranged deflection elements, the end line of the shielding plate, when viewed from the direction substantially perpendicular to the window, The start point of the arrangement period at a predetermined deflection element at one end in the width direction of the window, and the window To a line connecting the end points of the arrangement period of a predetermined deflection element in the direction other end, it is those substantially parallel.
  • the shielding plate is moved in the length direction of the window even if the parallel light projected on the light receiving window has a strong light intensity region and a very weak region.
  • the change in the integrated light quantity can be made proportional to the moving distance of the shielding plate, and the same effect as when the light intensity of the parallel light projected onto the light receiving window is uniform can be obtained.
  • Embodiment 1 FIG.
  • the overall configuration of the position detector according to the first embodiment of the present invention is similar to the conventional configuration, as shown in FIG. 1, the fiber unit 3 including the projector 1 and the light receiver 2, the light emitting unit 4, and the light amount detecting unit. 5 and a shielding plate 7 that shields light projected from the light projector 1 to the light receiver 2.
  • the fiber unit 3 and the amplifier unit 6 are connected by optical fibers 8a and 8b.
  • FIGS. 5A and 5B are diagrams showing configurations of the projector 1, the light receiver 2, and the shielding plate 7 of the position detector according to Embodiment 1 of the present invention.
  • FIG. 5A is a side view
  • FIG. It is a partial top view.
  • the projector 1 and the light receiver 2 are provided with windows having the same shape (light projection window 11 and light reception window 21).
  • the windows 11 and 21 have a rectangular shape including a predetermined width and a predetermined length larger than the width.
  • the light projecting window 11 of the light projector 1 and the light receiving window 21 of the light receiver 2 are arranged to face each other so as to coincide with each other when viewed from the light direction.
  • the projector 1 includes a lens 13 that converts light from the optical fiber emitting end 12 emitted from the light emitting unit 4 and guided by the optical fiber 8a into parallel light, and a plurality of parallel lights from the lens 13 that are arranged at a predetermined period.
  • a mirror array (deflection means) 14 that changes light in a substantially vertical direction by a mirror (deflection element) 141 and projects light to the light receiver 2 is formed.
  • the mirror array 14 is set to have an installation angle ⁇ 1 with respect to the entire projection window 11 smaller than 45 ° as shown in FIG. Has been.
  • the installation angle ⁇ 2 of the mirror 141 used to change the angle of light among the individual mirrors constituting the mirror array 14 is configured to be 45 ° with respect to the parallel light from the lens 13. Further, the mirrors 141 arranged at a predetermined period are arranged substantially parallel to the width direction of the light projection window 11.
  • the light receiver 2 includes a mirror array (deflecting unit) 22 that changes parallel light received from the projector 1 through the light receiving window 21 into a substantially vertical direction by a plurality of mirrors (deflecting elements) 221 arranged at a predetermined period. And a lens 23 that condenses the parallel light from the mirror array 22 on the optical fiber incident end 24.
  • the installation angle ⁇ ⁇ b> 1 with respect to the entire light receiving window 21 is set to an angle smaller than 45 °, similarly to the projector 1.
  • the installation angle ⁇ 2 of the mirror 221 used for changing the light angle among the individual mirrors constituting the mirror array 22 is configured to be 45 ° with respect to the parallel light from the projector 1.
  • the mirrors 221 arranged at a predetermined cycle are arranged substantially parallel to the width direction of the light receiving window 21 (see FIG. 5B).
  • the light emitting unit 4 guides light from a light source such as an LED to the projector 1 through the optical fiber 8a.
  • the light quantity detection unit 5 receives the light that has been focused on the optical fiber 8b and guided by the optical receiver 2, and outputs a value proportional to the light quantity as a position signal.
  • the shielding plate 7 has a surface that is substantially perpendicular to the parallel light and has a width larger than the width of the windows 11 and 21, and in the length direction (x direction) of the windows 11 and 21. It is held so that it can move horizontally.
  • the end line 71 of the shielding plate 7 is inclined with respect to the width direction of the windows 11 and 21. The arrangement relationship between the end line 71 of the shielding plate 7 and the mirror arrays 14 and 22 will be described later.
  • the shielding plate 7 moves horizontally according to the position of the measurement target, and shields part or all of the parallel light entering the light receiving window 21. From the point where the shielding plate 7 reaches one end of the light receiving window 21 (the right end in FIG.
  • the shielding plate 7 reaches the other end of the light receiving window 21 (the left end in FIG. 5B).
  • the amount of light reaching the light amount detection unit 5 changes from the maximum value to 0 until the point where all the parallel light is blocked.
  • FIG. 6A shows a state in which the mirror array 22 is viewed from a direction substantially perpendicular to the light receiving window 21.
  • the mirror array 14 is similarly configured.
  • a region painted with a dotted line of the mirror 221 shown in FIG. 6A is a portion having a very low light intensity
  • a plain region is a portion having a high light intensity.
  • FIG. 6B is a diagram illustrating an output (amplifier output) of the amplifier unit 6 with respect to a change in the position of the shielding plate 3.
  • the mirrors 141 and 221 used for light reflection among the individual mirrors constituting the mirror arrays 14 and 22 are half of the entire area. It becomes as follows. Therefore, as shown in FIG. 6A, the light projected substantially perpendicularly to the light receiver 2 has a region Tb (P2 to P3) having a high light intensity and a region Td (P1 to P2) having a very low intensity. Exists and is repeated at a constant period interval Tp.
  • the shielding plate 7 when the end line 71 of the shielding plate 7 is substantially parallel to the width direction of the windows 11 and 21 as in the conventional configuration, the shielding plate 7 is linearly arranged in the longitudinal direction of the windows 11 and 21. Even if it is moved, the output of the amplifier unit 6 changes stepwise.
  • the predetermined mirrors 141 and 141 at one end in the width direction of the windows 11 and 21 are displayed. It is tilted so as to be substantially parallel to a line segment connecting the start point of the arrangement period at 221 and the end point of the arrangement period at the predetermined mirrors 141 and 221 at the other end in the width direction of the windows 11 and 21.
  • FIG. 1 In the example of FIG.
  • the end line 71 of the shielding plate 7 is a line segment AB connecting the start point (A) of the arrangement period at the lower end of the window 21 and the end point (B) at the upper end of the window 22 in the leftmost mirror 221.
  • region on the right side from P4 among the light quantity increase of the light receiver 2 is represented by Formula (3). Therefore, the movement amount of the shielding plate 7 and the light quantity increase of the light receiver 2 are not proportional to the area S3.
  • S3 (1/2) ⁇ tan ⁇ ⁇ ⁇ x 2 ( ⁇ x: 0 ⁇ Tb) (3)
  • the amount of movement of the shielding plate 7 and the amount of light of the light receiver 2 increase (that is, the amplifier unit 6) even if the parallel light projected substantially perpendicularly to the light receiving window 21 has a strong light intensity region and a very weak region. Output) is always proportional. Therefore, the same effect as the case where the position detector with the uniform light intensity of the parallel light projected substantially perpendicularly to the light receiving window 21 is used while the depths of the light projector 1 and the light receiver 2 are kept small can be obtained.
  • the area S2 of the region on the left side of P3 out of the increase in the light amount of the light receiver 2 is expressed by Equation (5)
  • the area S3 of the region is expressed by Expression (6)
  • the increase in the amount of light of the light receiver 2 is equal to the sum of the areas S2 and S3, and is expressed by Expression (7). Therefore, the amount of movement of the shielding plate 7 and the increase in the amount of light of the light receiver 2 are not proportional.
  • S2 (1/2) ⁇ tan ⁇ ⁇ (2 ⁇ Tb ⁇ ⁇ x ⁇ x 2 ) ( ⁇ x: 0 ⁇ Tb) (5)
  • S3 (1/2) ⁇ tan ⁇ ⁇ ( ⁇ x ⁇ P) 2 ( ⁇ x: 0 ⁇ Tb) (6)
  • S2 + S3 Tb ⁇ tan ⁇ ⁇ ⁇ x ⁇ 2 ⁇ ⁇ x ⁇ ⁇ P + ⁇ P 2 ( ⁇ x: 0 ⁇ Tb) (7)
  • the end line 71 of the shielding plate 7 is placed at the start point (A) of the arrangement cycle of the first mirror 221 from the left at the lower end of the window 22 and from the left at the upper end of the window 22.
  • the second mirror 221 is set so as to be substantially parallel to the line segment AB ′ connecting the end point (B ′) of the arrangement cycle.
  • S1 ′ is a term proportional to the change in the position of the shielding plate 7, and as described in the example of FIG. 6, the positional relationship between the end points of the shielding plate 7 and the mirror array 14 satisfies the optimum condition. If so, the term (S2 + S3) is also proportional. When the above optimum condition is satisfied, the area (S2 + S3) is equal to the area S1 ′ as apparent from FIG. 7, and the light quantity increase of the light receiver 2 is 7 times the area S1 ′ from the equation (8). Proportional to position change.
  • FIG. 8 is a diagram showing the change in the area of S3 when the inclination angle ⁇ of the end line 71 of the shielding plate 7 is changed under the optimum conditions. As shown in FIG. 8, it can be seen that the smaller the inclination angle ⁇ of the end line 71 of the shielding plate 7, the smaller the area of S 3, and the less affected by the error.
  • the shielding plate 7 when the end line 71 of the shielding plate 7 looks at the mirror arrays 14 and 22 from a direction substantially perpendicular to the windows 11 and 21, Approximately parallel to a line segment connecting the start point of the arrangement cycle at the predetermined mirrors 141 and 221 at one end in the width direction and the end point of the arrangement cycle at the predetermined mirrors 141 and 221 at the other end in the width direction of the windows 11 and 21. Therefore, even if the parallel light projected substantially perpendicularly to the light receiving window 21 has a strong light intensity region and a very weak region, the shielding plate 7 is placed in the length direction of the windows 11 and 21. The change in the integrated light quantity when moved is proportional to the moving distance of the shielding plate 7, and the same effect as when the light intensity of the parallel light projected substantially perpendicularly to the light receiving window 21 is uniform is obtained. .
  • Embodiment 2 FIG.
  • the mirrors 141 and 221 of the mirror arrays 14 and 22 are substantially parallel to the width direction of the windows 11 and 21, and the end line 71 of the shielding plate 7 is inclined with respect to the width direction of the windows 11 and 21.
  • the end line 71 of the shielding plate 7 is made substantially parallel to the width direction of the windows 11 and 21, and the mirrors 141 and 221 of the mirror arrays 14 and 22 are set in the width direction of the windows 11 and 21. The case of tilting with respect to will be described.
  • FIG. 9 is a diagram showing the positional relationship between the mirror arrays 14 and 22 and the end line 71 of the shielding plate 7 by the position detector according to Embodiment 2 of the present invention.
  • the end line 71 of the shielding plate 7 is configured substantially parallel to the width direction of the windows 14 and 22.
  • the mirrors 141 and 221 of the mirror arrays 14 and 22 are arranged under the optimum conditions shown in the first embodiment (the end line 71 of the shielding plate 7 moves the mirror arrays 14 and 22 from a direction substantially perpendicular to the windows 11 and 21.
  • the start point of the arrangement cycle at the predetermined mirrors 141 and 221 at one end in the width direction of the windows 11 and 21 and the end point of the arrangement cycle at the predetermined mirrors 141 and 221 at the other end in the width direction of the windows 11 and 21. Is inclined with respect to the width direction of the windows 11 and 21 so as to satisfy a condition of being substantially parallel to a line segment connecting the two.
  • the end line 71 of the shielding plate 7 is a line segment AB connecting the start point (A) of the arrangement cycle at the lower end of the window 21 and the end point (B) at the upper end of the window 22 in the leftmost mirror 221.
  • the mirrors 141 and 221 are tilted so as to be substantially parallel to each other.
  • the end line 71 of the shielding plate 7 is substantially parallel to the width direction of the windows 14 and 22, and the mirrors 141 and 221 of the mirror arrays 14 and 22 are set to the optimum conditions. Even if it is configured to be inclined with respect to the width direction of the windows 11 and 21, the same effect as in the first embodiment can be obtained. Further, when the end line 71 of the shielding plate 7 is made substantially parallel to the width direction of the light projection window 11, the user can use it in the same manner as a conventional edge sensor without particular awareness.
  • Embodiment 3 FIG.
  • the first and second embodiments when one of the mirrors 141 and 221 of the mirror arrays 14 and 22 and the end line 71 of the shielding plate 7 is substantially parallel to the width direction of the windows 11 and 21 and the other is inclined. Showed about.
  • the third embodiment a case where both the mirrors 141 and 221 of the mirror arrays 14 and 22 and the end line 71 of the shielding plate 7 are inclined with respect to the width direction of the windows 11 and 21 will be described.
  • FIG. 10 is a diagram showing the positional relationship between the mirror array 14 and the end line 71 of the shielding plate 7 by the position detector according to Embodiment 3 of the present invention.
  • the end line 71 of the shielding plate 7 and the mirrors 141 and 221 of the mirror arrays 14 and 22 are the optimum conditions shown in the first embodiment (the end line 71 of the shielding plate 7 is the windows 11 and 21.
  • the arrangement cycle start point of the predetermined mirrors 141 and 221 at one end in the width direction of the windows 11 and 21 and the other end in the width direction of the windows 11 and 21 are displayed.
  • the end line 71 of the shielding plate 7 is a line segment AB connecting the start point (A) of the arrangement cycle at the lower end of the window 21 and the end point (B) at the upper end of the window 21 in the leftmost mirror 221.
  • the mirrors 141 and 221 and the end line 71 of the shielding plate 7 are tilted so as to be substantially parallel to each other.
  • the origin is P2.
  • the change in the amount of light with respect to the amount of movement when moved by ⁇ x is proportional to the amount of movement as in the first and second embodiments.
  • the width direction of the windows 11 and 21 is such that both the end line 71 of the shielding plate 7 and the mirrors 141 and 221 of the mirror arrays 14 and 22 are in the optimum condition. Even if it is configured to be inclined with respect to, the same effect as in the first embodiment can be obtained.
  • the mirror arrays 14 and 22 are provided in both the projector 1 and the light receiver 2 .
  • the mirror arrays 14 and 22 may be provided only in one.
  • Embodiment 1-3 the case where the mirror arrays 14 and 22 are used as the deflecting means has been described.
  • the present invention is not limited to this, and a prism array may be used.
  • the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
  • the deflection means when the deflection means is viewed from the direction substantially perpendicular to the window, the end line of the shielding plate, the starting point of the arrangement period at the predetermined deflection element at one end in the width direction of the window, Since it is configured to be substantially parallel to the line segment connecting the end of the arrangement period of the predetermined deflecting element at the other end in the width direction of the window, the region where the light intensity is very strong in the parallel light projected on the light receiving window Even if there is a weak region, the same effect as when the light intensity of the parallel light projected onto the light receiving window is uniform is obtained, and it is suitable for use in a position detector such as an actuator.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

遮蔽板(7)の端線(71)が、窓(11,21)に対して略垂直方向からミラーアレイ(14,22)を見た際に、窓(11,21)の幅方向一端における所定のミラー(141,221)での配置周期の始点と、窓(11,21)の幅方向他端における所定のミラー(141,221)での配置周期の終点とを結ぶ線分に対し、略平行である。

Description

位置検出器
 この発明は、例えばアクチュエータなどの位置を検出する位置検出器に関するものである。
 近年、製造現場において用途に応じ様々な方式のリニアアクチュエータが用いられている。例えば、電子部品の組み立てや実装、ピック&プレースなどの作業においては比較的応答速度の早いリニアアクチュエータなどが用いられている。その可動範囲は1cmから10cm程度であり、作業に要求される位置精度や応答速度に適した位置検出器を用いて位置のフィードバック制御を行うことで、高速で精密な作業を実現している。
 位置検出器は、その方式からアナログ型やデジルタエンコーダ型などに、また、検出原理から磁気や渦電流、差動変圧器、ポテンショメータ型などに、また、構成から接触型や非接触型、透過型、反射型などにそれぞれ分類される。
 光を用いたデジタル型の位置検出器としては、レーザ変位計やデジタルスケールが挙げられる。このデジタル型の位置検出器は、最小分解能が高い、スケールが変形しない限りドリフトがなくリニアリティが良い、ロングストロークの測定が可能など利点が多いため、測定器や要求される位置決め精度が高い装置などに多用されている。しかしながら、位置検出器自体が高価であり、周辺回路が複雑で高価な専用のICが必要である点などの課題がある。
 また、デジタルスケールとして磁気を用いたものもあるが同様に高価であり、アクチュエータを大電流で駆動した場合に発生するノイズの影響を光方式に比べて受け易い。
 一方、アナログ型の位置検出器において、光を使うものとしては透過型のフォトインタラプタや反射型のフォトリフレクタなどが、磁気を使ったものはホール素子や磁気抵抗素子(AMR:Anitorpic Magneto Resistance)、巨大磁気抵抗素子(GMR:Giant Magneto Resistance)などが、他に渦電流や差動変圧器の原理を利用したものなどがある(例えば特許文献1参照)。
 アナログ型の位置検出器は、デジタル型に比べてアクチュエータを大電流で駆動した場合に発生するノイズの影響を受け易い。しかしながら、光を使う方式は、アクチュエータのコイルに電流を流すことにより発生する電磁ノイズの影響を比較的受け難い。
 特に、例えば図1に示すように、投光器1および受光器2からなるファイバーユニット3と、発光部4および光量検出部5を内蔵したアンプユニット6とを分離し、ファイバーユニット3とアンプユニット6とを光ファイバー8a,8bで接続した光ファイバー型の位置検出器(以降、ファイバー型光センサーと呼ぶ)は、光センサーおよび増幅器をアクチュエータコイルから離れた場所に設置できるのでアクチュエータ駆動電流ノイズの影響を全く受けない利点がある。
 このファイバー型光センサーのファイバーユニット3には透過型と反射型がある。この透過型の一例として、図2,3に示すように、内部に設置された光ファイバー出射端12からの光をレンズ13で平行光にし、その光の向きを小型のミラー141を有するミラーアレイ14(もしくはプリズムアレイ)で受光器2の方向に変え、投光窓11から投光する投光器1と、平行光を受光窓21により受光し、その光の向きを小型のミラー221を有するミラーアレイ22(もしくはプリズムアレイ)でレンズ23の方向に変え、レンズ23により平行光をファイバー入射端24に集光する受光器2とで構成される形式のものがある。
 特にミラーアレイ14,22(以降プリズムアレイの記載は省略する)を用いた形式のファイバーユニット3は、レンズ13,23とミラーアレイ14,22だけの簡単な構成で幅の広い平行光をつくることができる。そして、図2に示すように、投光器1と受光器2とを対向させ、その間で窓11,21の長手方向に遮蔽板7を移動させることにより、遮蔽板7の位置に比例して受光器2の受光量が変化する。このため、アンプユニット6の出力も遮蔽板7の位置に比例して変化し、比較的検出距離の長い位置検出器として利用することができる。
特開平6-258139号公報
 ここで、投光器1、受光器2の奥行きを小さくするため、図3に示すように、ミラーアレイ14,22の設置角度θ1は一般的には45°よりも小さな角度に設定される。一方、ミラーアレイ14では、投光器1のレンズ13からの平行光の向きを略垂直方向に変えて受光器2に投光する必要があるため、ミラーアレイ14を構成する個々のミラーのうち平行光の角度を変えるために使われるミラー141の設置角度θ2は、レンズ13からの平行光に対し45°になるように構成されている。
 同様に、ミラーアレイ22では、投光器1からの平行光の向きを略垂直方向に変えてレンズ23に投光する必要があるため、ミラーアレイ22を構成する個々のミラーのうち平行光の角度を変えるために使われるミラー221(図2(b)参照)の設置角度θ2は、投光器1からの平行光に対し45°になるように構成されている。
 しかしながら、上記のように構成されたミラーアレイ14,22を用いた場合、ミラーアレイ14,22のうち平行光の反射に使われる部分は半分以下となる。そのため、受光器2に対し略垂直に投光される平行光には光強度の強い領域Tbと、非常に弱い領域Tdが存在し、一定の周期間隔Tpで繰り返されることになる。
 この構成において、ミラー141,221に対して端線71が略平行である遮蔽板7(図2(b)参照)を長手方向に直線的に移動させると、図4に示すように、光強度の強い領域Tbでは位置の変化に比例して受光器2の受光量も増加し、アンプユニット6の出力も増加する。しかしながら、光強度の非常に弱い領域Tdでは位置が変化しでも受光器2の受光量はほとんど増加しないため、アンプユニット6の出力も変化しない。そして、この出力変化は一定の周期間隔Tpで繰り返されるため、遮蔽板7の位置を直線的に変化させても出力は階段状に変化する。
 したがって、遮蔽板7の直線的な位置変化に対して出力がほとんど変化しない領域が存在するため、位置検出器としては分解能が非常に劣化した状態となる(一般的には位置検出器と言えないレベルとなる)。
 なお、実際の光強度は、遮蔽板7による回折の影響や光学系の光束が理想的な平行光ではないために、光強度の強い領域と非常に弱い領域の境界で階段状ではなく連続的に変化する。そのため、アンプユニット6の出力変化も実際には階段状にはならない。
 しかしながら、回折や光束の略平行度が出力変化に及ぼす影響は支配的ではないこと、また、投光器1と受光器2を比較的近距離に配した場合にはその影響を受け難いことなどにより、本発明ではその影響については論じていない。
 この発明は、上記のような課題を解決するためになされたもので、受光窓に投光される平行光に光強度の強い領域と非常に弱い領域があっても、遮蔽板を窓の長さ方向に移動させた場合の積算光量変化を遮蔽板の移動距離に比例させることができ、見かけ上受光窓に投光される平行光の光強度が均一の場合と同じとなる位置検出器を提供することを目的としている。
 この発明に係る位置検出器は、所定の幅および当該幅よりも大きな所定の長さの窓を有し、一定幅の平行光を当該窓から投光する投光器と、所定の幅および所定の長さの窓を有し、平行光を当該窓により受光する受光器と、窓の長さ方向に水平移動可能に保持され、測定対象の位置に応じて受光器の窓に入る平行光の一部または全てを遮蔽する遮蔽板と、受光器の受光量に比例した大きさの位置信号を出力する光量検出部と、投光器および受光器のうち少なくとも一方に窓に対向して設けられ、所定周期で配置された複数の偏向素子により平行光の向きを窓に対し略垂直方向に変える偏向手段とを備え、遮蔽板の端線は、窓に対して略垂直方向から偏向手段を見た際に、窓の幅方向一端における所定の偏向素子での配置周期の始点と、窓の幅方向他端における所定の偏向素子での配置周期の終点とを結ぶ線分に対し、略平行であるものである。
 この発明によれば、上記のように構成したので、受光窓に投光される平行光に光強度の強い領域と非常に弱い領域があっても、遮蔽板を窓の長さ方向に移動させた場合の積算光量変化を遮蔽板の移動距離に比例させることができ、見かけ上受光窓に投光される平行光の光強度が均一の場合と同じ効果が得られる。
位置検出器の全体構成を示すブロック図である。 従来の位置検出器の投光器、受光器および遮蔽板の構成を示す図であり、(a)側面図であり、(b)受光器についての一部上面図である。 位置検出器におけるミラーアレイの構成を示す図である。 従来の位置検出器による遮蔽板の位置変化に対するアンプ出力を示す図である。 この発明の実施の形態1に係る位置検出器の投光器、受光器および遮蔽板の構成を示す図であり、(a)側面図であり、(b)受光器についての一部上面図である。 この発明の実施の形態1に係る位置検出器によるミラーアレイと遮蔽板の端線との配置関係と、遮蔽板の位置変化に対するアンプ出力を示す図である。 この発明の実施の形態1における遮蔽板の端線の傾斜角度を変化させた場合を示す図である。 この発明の実施の形態1における遮蔽板の端線の傾斜角度の違いによる面積S3の変化を示す図である。 この発明の実施の形態2に係る位置検出器によるミラーアレイと遮蔽板の端線との配置関係を示す図である。 この発明の実施の形態3に係る位置検出器によるミラーアレイと遮蔽板の端線との配置関係を示す図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 この発明の実施の形態1に係る位置検出器の全体構成は、従来構成と同様に、図1に示すように、投光器1および受光器2からなるファイバーユニット3と、発光部4および光量検出部5を内蔵したアンプユニット6と、投光器1から受光器2に投光される光を遮蔽する遮蔽板7とから構成されている。また、ファイバーユニット3およびアンプユニット6は光ファイバー8a,8bで接続されている。
 図5はこの発明の実施の形態1に係る位置検出器の投光器1、受光器2および遮蔽板7の構成を示す図であり、(a)側面図であり、(b)受光器2についての一部上面図である。
 図5に示すように、投光器1および受光器2には、同じ形状の窓(投光窓11、受光窓21)が設けられている。この窓11,21の形状は、図5(b)に示すように、所定の幅と当該幅よりも大きな所定の長さとで構成される矩形状である。そして、投光器1の投光窓11と受光器2の受光窓21は、光方向から見て一致するように対向して配置される。
 投光器1は、発光部4から発光され光ファイバー8aで導波された光ファイバー出射端12からの光を平行光にするレンズ13と、当該レンズ13からの平行光を、所定周期で配置された複数のミラー(偏向素子)141により略垂直方向に変え、受光器2へ投光するミラーアレイ(偏向手段)14とから構成されている。
 ここで、ミラーアレイ14は、投光器1の奥行を小さくするため、従来構成と同様に、図3に示すように、その全体の投光窓11に対する設置角度θ1が45°よりも小さな角度に設定されている。そして、ミラーアレイ14を構成する個々のミラーのうち光の角度を変えるために使われるミラー141の設置角度θ2は、レンズ13からの平行光に対し45°となるように構成されている。また、所定周期で配置された各ミラー141は、投光窓11の幅方向に対して略平行に配置されている。
 また、受光器2は、受光窓21を介して投光器1から受光した平行光を、所定周期で配置された複数のミラー(偏向素子)221により略垂直方向に変えるミラーアレイ(偏向手段)22と、ミラーアレイ22からの平行光を光ファイバー入射端24に集光するレンズ23とから構成されている。
 ここで、ミラーアレイ22は、受光器2の奥行を小さくするため、投光器1と同様に、その全体の受光窓21に対する設置角度θ1が45°よりも小さな角度に設定されている。そして、ミラーアレイ22を構成する個々のミラーのうち光の角度を変えるために使われるミラー221の設置角度θ2は、投光器1からの平行光に対し45°となるように構成されている。また、所定周期で配置された各ミラー221は、受光窓21の幅方向に対して略平行に配置されている(図5(b)参照)。
 また、発光部4は、LEDなどの光源の光を光ファイバー8aで投光器1に導波するものである。また、光量検出部5は、受光器2で光ファイバー8bに集光されて導波された光を受光し、その光量に比例した値を位置信号として出力するものである。
 遮蔽板7は、図5に示すように、平行光に対し略垂直で幅が窓11,21の幅よりも大きな面を有し、かつ、窓11,21の長さ方向(x方向)に水平移動可能に保持されたものである。また、遮蔽板7の端線71は、窓11,21の幅方向に対して傾いている。この遮蔽板7の端線71とミラーアレイ14,22との配置関係については後述する。
 そして、遮蔽板7は、測定対象の位置に応じて水平移動し、受光窓21に入る平行光の一部または全てを遮蔽する。遮蔽板7が受光窓21の一端(図5(b)の右端)に達して平行光を遮り始める点から、遮蔽板7が受光窓21の他端(図5(b)の左端)に達して平行光を全て遮る点までに、光量検出部5に達する光量は最大値から0まで変化する。
 次に、遮蔽板7の端線71とミラーアレイ14,22との配置関係について、図6を参照しながら説明する。なお図6(a)は、受光窓21に対して略垂直方向からミラーアレイ22を見た状態を示している。ミラーアレイ14についても同様に構成されている。ここで、図6(a)に示すミラー221の点線で塗られた領域は光強度の非常に弱い部分、無地の領域は光強度の強い部分である。そして遮蔽板7が移動し前記領域に光が当たると、その面積と光強度に比例して総受光量が増加する。また、図6(b)は、遮蔽板3の位置変化に対するアンプユニット6の出力(アンプ出力)を示す図である。
 ここで、上述したように投光器1、受光器2の奥行を小さくするため、ミラーアレイ14,22を構成する個々のミラーのうち光の反射に使われるミラー141,221部分は全体の領域の半分以下となる。そのため、図6(a)に示すように、受光器2に略垂直に投光される光には光強度の強い領域Tb(P2~P3)と、非常に弱い領域Td(P1~P2)が存在し、一定の周期間隔Tpで繰り返される。
 そのため、従来構成のように、遮蔽板7の端線71を窓11,21の幅方向に対して略平行とした場合には、この遮蔽板7を窓11,21の長手方向に直線的に移動させてもアンプユニット6の出力は階段状に変化してしまう。
 そこで本発明では、遮蔽板7の端線71を、窓11,21に対して略垂直方向からミラーアレイ14,22を見た際に、窓11,21の幅方向一端における所定のミラー141,221での配置周期の始点と、窓11,21の幅方向他端における所定のミラー141,221での配置周期の終点とを結ぶ線分に対し、略平行となるように傾ける。図6の例では、遮蔽板7の端線71を、左端のミラー221での、窓21の下端における配置周期の始点(A)と窓22の上端における終点(B)とを結ぶ線分ABに対して、略平行となるように傾けた場合を示している。
 図6において、遮蔽板7の端線71が(a)から(b)まで移動した場合を考える。
 このときの受光器2の光量増加分は面積S1であり、遮蔽板7の端線71のP1からの移動量をΔxとすると面積S1は式(1)で表される。よって、遮蔽板7の移動量と受光器2の光量増加(すなわちアンプユニット6の出力)は比例する。
S1=Tb・tanθ・Δx (Δx:0→Td)   (1)
 次に、遮蔽板7の端線71が(b)から(c)まで移動した場合を考える。
 このときの遮蔽板7の端線71のP2からの移動量をΔxとすると、受光器2の光量増加分のうちP3より左側の領域の面積S2は式(2)で表される。よって、面積S2に関して遮蔽板7の移動量と受光器2の光量増加は比例しない。
S2=(1/2)・tanθ・(2・Tb・Δx-Δx) (Δx:0→Tb)       (2)
 また、受光器2の光量増加分のうちP4より右側の領域の面積S3は式(3)で表される。よって、同じく面積S3に関しても遮蔽板7の移動量と受光器2の光量増加は比例しない。
S3=(1/2)・tanθ・Δx (Δx:0→Tb)   (3)
 ところが遮蔽板7の端線71が(b)から(c)まで移動した場合の受光器2の光量増加は面積S2と面積S3を加算したものと等しく、また、面積S2+S3は式(4)で表される。よって、遮蔽板7の移動量と受光器2の光量増加は比例し、その変化率は遮蔽板7の端線71が(a)から(b)まで移動した場合の値(式(1))と等しくなる。
S2+S3=(1/2)・tanθ・(2・Tb・Δx-Δx)+(1/2)・tanθ・Δx=Tb・tanθ・Δx (Δx:0→Tb)           (4)
 これは、受光窓21に略垂直に投光される平行光に光強度の強い領域と非常に弱い領域があっても、遮蔽板7の移動量と受光器2の光量増加(すなわちアンプユニット6の出力)が常に比例することを意味している。よって、投光器1、受光器2の奥行を小さく保ったまま、受光窓21に略垂直に投光される平行光の光強度が均一の位置検出器を用いた場合と同じ効果が得られる。
 一方、図6(a)に破線(d)で示すように、遮蔽板7の端線71の傾きを少し小さくして(θ1)、上端点が(b)よりΔPだけずれた状態で、遮蔽板7の端線71が(d)から(e)まで移動した場合を考える。
 このときの遮蔽板7端線71のP2からの移動量をΔxとすると、受光器2の光量増加分のうちP3より左側の領域の面積S2は式(5)で表され、P4より右側の領域の面積S3は式(6)で表される。そして、受光器2の光量増加は面積S2と面積S3を加算したものと等しくなり、式(7)で表される。よって、遮蔽板7の移動量と受光器2の光量増加とは比例しない。
S2=(1/2)・tanθ・(2・Tb・Δx-Δx) (Δx:0→Tb)     (5)
S3=(1/2)・tanθ・(Δx-ΔP) (Δx:0→Tb)          (6)
S2+S3=Tb・tanθ・Δx-2・Δx・ΔP+ΔP (Δx:0→Tb)    (7)
 したがって、式(4)と式(7)より、遮蔽板7の端線71を、窓11,21に対して略垂直方向からミラーアレイ14,22を見た際に、窓11,21の幅方向一端における所定のミラー141,221での配置周期の始点と、窓11,21の幅方向他端における所定のミラー141,221での配置周期の終点とを結ぶ線分に対し、略平行となるように設定することが、遮蔽板7の移動量と受光器2の光量の比例関係を成立させる最適条件であることが分かる。
 次に、図7に示すように、遮蔽板7の端線71を、窓22の下端における左から1番目のミラー221での配置周期の始点(A)と、窓22の上端における左から7番目のミラー221での配置周期の終点(B’)とを結ぶ線分AB’に略平行となるように設定した場合について説明する。
 この条件で遮蔽板7の端線71が(a)から(b)まで移動した場合、受光器2の光量増加は式(8)で表される。
6×S1’+S2+S3      (8)
 式(8)において、S1’は遮蔽板7の位置変化に比例する項であり、図6の例で説明した通り、遮蔽板7の端点とミラーアレイ14との配置関係が上記最適条件を満たしていれば(S2+S3)の項も比例する。
 そして、上記最適条件を満たしている場合、図7を見て明らかな通り面積(S2+S3)は面積S1’と等しくなり、受光器2の光量増加は式(8)より面積S1’の7倍となり位置変化に比例する。
 また、遮蔽板7の端線71の傾斜角度θが小さい場合には、遮蔽板7の端線71の傾斜角度θが上記最適条件から少しずれて、式(8)における(S2+S3)の項が遮蔽板7の位置変化に比例しなくなったとしても、位置検出器の分解能に及ぼす影響は遮蔽板7の端線71の傾斜角度θが大きい場合に比べて少なくなる。
 図8は上記最適条件において、遮蔽板7の端線71の傾斜角度θを変化させた場合でのS3の面積の変化を表した図である。この図8に示すように、遮蔽板7の端線71の傾斜角度θを小さくするほどS3の面積が減少し、誤差の影響を受け難くなることが分かる。
 一方、遮蔽板7の端線71の傾斜角度θを小さくすると、受光窓21の長さ方向の両端部において直線性が悪くなり位置検出器としての有効範囲が減ってしまう。したがって、必要以上に傾斜角度θを小さくすることなく、本発明の原理を適応して分解能を改善する方法が最も有効である。
 以上のように、この実施の形態1によれば、遮蔽板7の端線71が、窓11,21に対して略垂直方向からミラーアレイ14,22を見た際に、窓11,21の幅方向一端における所定のミラー141,221での配置周期の始点と、窓11,21の幅方向他端における所定のミラー141,221での配置周期の終点とを結ぶ線分に対し、略平行であるように構成したので、受光窓21に略垂直に投光される平行光に光強度の強い領域と非常に弱い領域があっても、遮蔽板7を窓11,21の長さ方向に移動させた場合の積算光量変化を遮蔽板7の移動距離に比例させることができ、見かけ上受光窓21に略垂直に投光される平行光の光強度が均一の場合と同じ効果が得られる。
実施の形態2.
 実施の形態1では、ミラーアレイ14,22のミラー141,221を窓11,21の幅方向に対して略平行とし、遮蔽板7の端線71を窓11,21の幅方向に対して傾けた場合について示した。それに対して、実施の形態2では、遮蔽板7の端線71を窓11,21の幅方向に対して略平行とし、ミラーアレイ14,22のミラー141,221を窓11,21の幅方向に対して傾けた場合について説明する。
 図9はこの発明の実施の形態2に係る位置検出器によるミラーアレイ14,22と遮蔽板7の端線71との配置関係を示す図である。
 図9に示すように、遮蔽板7の端線71は、窓14,22の幅方向に対して略平行に構成されている。一方、ミラーアレイ14,22のミラー141,221は、実施の形態1において示した最適条件(遮蔽板7の端線71が、窓11,21に対して略垂直方向からミラーアレイ14,22を見た際に、窓11,21の幅方向一端における所定のミラー141,221での配置周期の始点と、窓11,21の幅方向他端における所定のミラー141,221での配置周期の終点とを結ぶ線分に対し、略平行である条件)を満たすように窓11,21の幅方向に対して傾けて構成されている。図9の例では、遮蔽板7の端線71が、左端のミラー221での、窓21の下端における配置周期の始点(A)と窓22の上端における終点(B)とを結ぶ線分ABに対して、略平行となるように、ミラー141,221を傾けた場合を示している。
 図9において、遮蔽板7の端線71が(a)から(b)まで移動した場合を考える。
 このときの受光器2の光量増加分は面積S1と等しくなり、遮蔽板7の端線71のP1からの移動量をΔxとすると面積S1は式(9)で表される。よって、遮蔽板7の移動量と受光器2の光量増加は比例する。
S1=Tb・tanθ・Δx (Δx:0→Td)   (9)
 次に、遮蔽板7の端線71が(b)から(c)まで移動した場合を考える。
 このときの遮蔽板7の端線71のP2からの移動量をΔxとすると、受光器2の光量増加分である面積S2+S3は正方形となり、その高さはTb・tanθであるため、式(10)で表される。よって、遮蔽板7の移動量と光量増加は比例し、その変化率は遮蔽板7の端線71が(a)から(b)まで移動した場合の値(式(9))と等しくなる。
S2+S3=Tb・tanθ・Δx (Δx:0→Tb)   (10)
 以上のように、この実施の形態2によれば、遮蔽板7の端線71を窓14,22の幅方向に対して略平行とし、ミラーアレイ14,22のミラー141,221を上記最適条件となるように窓11,21の幅方向に対して傾けるように構成しても、実施の形態1と同様の効果を得ることができる。また、遮蔽板7の端線71を投光窓11の幅方向に対して略平行とした場合、ユーザは特に意識することなく従来のエッジセンサーと同様に使用することができる。
実施の形態3.
 実施の形態1,2では、ミラーアレイ14,22のミラー141,221および遮蔽板7の端線71のうち、一方を窓11,21の幅方向に対して略平行とし、他方を傾けた場合について示した。それに対して、実施の形態3では、ミラーアレイ14,22のミラー141,221および遮蔽板7の端線71の両方を窓11,21の幅方向に対して傾けた場合について説明する。
 図10はこの発明の実施の形態3に係る位置検出器によるミラーアレイ14と遮蔽板7の端線71との配置関係を示す図である。
 図10に示すように、遮蔽板7の端線71およびミラーアレイ14,22のミラー141,221を、実施の形態1において示した最適条件(遮蔽板7の端線71が、窓11,21に対して略垂直方向からミラーアレイ14,22を見た際に、窓11,21の幅方向一端における所定のミラー141,221での配置周期の始点と、窓11,21の幅方向他端における所定のミラー141,221での配置周期の終点とを結ぶ線分に対し、略平行である条件)を満たすように窓11,21の幅方向に対して傾ける。図10の例では、遮蔽板7の端線71が、左端のミラー221での、窓21の下端における配置周期の始点(A)と窓21の上端における終点(B)とを結ぶ線分ABに対して、略平行となるように、ミラー141,221および遮蔽板7の端線71を傾けた場合を示している。
 図10において、遮蔽板7の端線71が(a)から(b)まで移動した場合を考える。
 このときの受光器2の光量増加分は面積S1と等しくなり、面積S1の平行四辺形の底辺の長さをL、高さをH1とすると、面積S1は式(11)で表される。
S1=H1・L            (11)
 次に、遮蔽板7の端線71が(b)から(c)まで移動した場合を考える。
 このとき、受光器2の光量増加分である面積S2+S3は略平行四辺形となり、その高さをH2とするとその底辺の長さは面積S1の平行四辺形と同じくLであるため式(12)で表される。
S2+S3=H2・L         (12)
 ここで、前記平行四辺形S1とS2+S3の形に着目すると同図に示すように底辺の長さが同じLであるため、遮蔽板7がP1を起点にΔxだけ移動した場合と、P2を起点にΔxだけ移動した場合の移動量に対する光量変化は、実施の形態1,2と同様に比例関係にある。
 以上のように、この実施の形態3によれば、遮蔽板7の端線71およびミラーアレイ14,22のミラー141,221の両方を、上記最適条件となるように窓11,21の幅方向に対して傾けるように構成しても、実施の形態1と同様の効果を得ることができる。
 なお、実施の形態1-3では、投光器1および受光器2の両方にミラーアレイ14,22を設けた場合について示したが、一方にのみ設けるようにしてもよい。
 また、実施の形態1-3では、偏向手段としてミラーアレイ14,22を用いた場合について示したが、これに限るものではなく、プリズムアレイを用いてもよい。
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る位置検出器は、遮蔽板の端線を、窓に対して略垂直方向から偏向手段を見た際に、窓の幅方向一端における所定の偏向素子での配置周期の始点と、窓の幅方向他端における所定の偏向素子での配置周期の終点とを結ぶ線分に対し、略平行に構成したので、受光窓に投光される平行光に光強度の強い領域と非常に弱い領域があっても、見かけ上受光窓に投光される平行光の光強度が均一の場合と同じ効果が得られ、アクチュエータなどの位置検出器に用いるのに適している。
1 投光器
2 受光器
3 ファイバーユニット
4 発光部
5 光量検出部
6 アンプユニット
7 遮蔽板
8a,8b 光ファイバー
11 投光窓
12 光ファイバー出射端
13 レンズ
14 ミラーアレイ(偏向手段)
21 受光窓
22 ミラーアレイ(偏向手段)
23 レンズ
24 光ファイバー入射端
71 端線
141 ミラー(偏向素子)
221 ミラー(偏向素子)

Claims (5)

  1.  所定の幅および当該幅よりも大きな所定の長さの窓を有し、一定幅の平行光を当該窓から投光する投光器と、
     前記所定の幅および前記所定の長さの窓を有し、前記平行光を当該窓により受光する受光器と、
     前記窓の長さ方向に水平移動可能に保持され、測定対象の位置に応じて前記受光器の窓に入る平行光の一部または全てを遮蔽する遮蔽板と、
     前記受光器の受光量に比例した大きさの位置信号を出力する光量検出部と、
     前記投光器および前記受光器のうち少なくとも一方に前記窓に対向して設けられ、所定周期で配置された複数の偏向素子により前記平行光の向きを前記窓に対し略垂直方向に変える偏向手段とを備え、
     前記遮蔽板の端線は、前記窓に対して略垂直方向から前記偏向手段を見た際に、前記窓の幅方向一端における所定の前記偏向素子での配置周期の始点と、前記窓の幅方向他端における所定の前記偏向素子での配置周期の終点とを結ぶ線分に対し、略平行である
     ことを特徴とする位置検出器。
  2.  前記偏向手段の各偏向素子は、前記窓の幅方向に対し略平行である
     ことを特徴とする請求項1記載の位置検出器。
  3.  前記遮蔽板の端線は、前記窓の幅方向に対し略平行である
     ことを特徴とする請求項1記載の位置検出器。
  4.  前記偏向手段はミラーアレイである
     ことを特徴とする請求項1記載の位置検出器。
  5.  前記偏向手段はプリズムアレイである
     ことを特徴とする請求項1記載の位置検出器。
PCT/JP2014/050811 2013-02-26 2014-01-17 位置検出器 WO2014132696A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14756270.6A EP2963379B1 (en) 2013-02-26 2014-01-17 Position detector
CN201480023797.5A CN105143815B (zh) 2013-02-26 2014-01-17 位置检测器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-035928 2013-02-26
JP2013035928A JP6061725B2 (ja) 2013-02-26 2013-02-26 位置検出器

Publications (1)

Publication Number Publication Date
WO2014132696A1 true WO2014132696A1 (ja) 2014-09-04

Family

ID=51427970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050811 WO2014132696A1 (ja) 2013-02-26 2014-01-17 位置検出器

Country Status (4)

Country Link
EP (1) EP2963379B1 (ja)
JP (1) JP6061725B2 (ja)
CN (1) CN105143815B (ja)
WO (1) WO2014132696A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021015100A (ja) * 2019-07-16 2021-02-12 パナソニックIpマネジメント株式会社 受光器、投光器、及び光電センサ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134752A (en) * 1976-01-30 1977-11-11 Rca Corp Apparatus for detecting relative position of movable element
JPS5729805U (ja) * 1980-07-25 1982-02-17
JPH06258139A (ja) 1993-03-09 1994-09-16 Mitsubishi Electric Corp 透過型位置検出装置
JPH08501879A (ja) * 1992-10-02 1996-02-27 チン,フィリップ,ケイ. 光変位センサ
JPH09105607A (ja) * 1995-10-11 1997-04-22 Opt Techno:Kk 移動距離測定装置
JP2008241389A (ja) * 2007-03-27 2008-10-09 Canon Inc 位置検出装置、振れ補正装置および撮像装置
JP2014025756A (ja) * 2012-07-25 2014-02-06 Azbil Corp 位置検出装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791607A (en) * 1971-11-15 1974-02-12 Bucode Light collecting and transmitting apparatus
US4011447A (en) * 1976-02-09 1977-03-08 Henderson George R System for detecting the edges of a moving object employing a photocell and an amplifier in the saturation mode
JP2009002701A (ja) * 2007-06-19 2009-01-08 Yamatake Corp エッジ検出装置及びエッジ検出装置用ラインセセンサ
JP4893581B2 (ja) * 2007-10-23 2012-03-07 日本電気株式会社 多重化通信システム、送信処理装置、受信処理装置、多重化通信方法、送信処理方法、および受信処理方法
JP5616009B2 (ja) * 2008-09-22 2014-10-29 アズビル株式会社 反射型光電センサおよび物体検出方法
CN202083360U (zh) * 2011-06-03 2011-12-21 北京世纪桑尼科技有限公司 测定旋转元件角度位置的装置
FR2978241B1 (fr) * 2011-07-21 2014-02-28 Bertrand Arnold Dispositif de mesure de deplacement numerique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134752A (en) * 1976-01-30 1977-11-11 Rca Corp Apparatus for detecting relative position of movable element
JPS5729805U (ja) * 1980-07-25 1982-02-17
JPH08501879A (ja) * 1992-10-02 1996-02-27 チン,フィリップ,ケイ. 光変位センサ
JPH06258139A (ja) 1993-03-09 1994-09-16 Mitsubishi Electric Corp 透過型位置検出装置
JPH09105607A (ja) * 1995-10-11 1997-04-22 Opt Techno:Kk 移動距離測定装置
JP2008241389A (ja) * 2007-03-27 2008-10-09 Canon Inc 位置検出装置、振れ補正装置および撮像装置
JP2014025756A (ja) * 2012-07-25 2014-02-06 Azbil Corp 位置検出装置

Also Published As

Publication number Publication date
EP2963379A1 (en) 2016-01-06
EP2963379A4 (en) 2016-03-09
CN105143815B (zh) 2017-09-22
CN105143815A (zh) 2015-12-09
JP2014163826A (ja) 2014-09-08
EP2963379B1 (en) 2017-05-31
JP6061725B2 (ja) 2017-01-18

Similar Documents

Publication Publication Date Title
JP5147367B2 (ja) エンコーダ
KR101910672B1 (ko) 위치 검출 장치용 포토 센서, 이를 이용한 위치 검출 장치 및 위치 검출 방법
US7132647B2 (en) Optical encoder
JP5717633B2 (ja) 光学式位置測定装置
JP5147368B2 (ja) エンコーダ
US20060170418A1 (en) Drive unit provided with position detecting device
KR102002077B1 (ko) 반사형 포토 센서를 이용한 위치 검출 장치
JP6038502B2 (ja) 遠隔から非接触でビーム発射および信号検知を行う受動読取ヘッドを有する光学式エンコーダ
JP2006087282A (ja) ボイスコイルモーター定位装置
TWI664398B (zh) Optical rotary encoder
US8102514B2 (en) Beam irradiation apparatus
JP6061725B2 (ja) 位置検出器
JP2007304097A (ja) 光学エンコーダ
JP2013104771A (ja) 光走査装置及びレーザレーダ装置
US9823058B2 (en) Device for position determination
US11353583B2 (en) Optical position-measurement device with varying focal length along a transverse direction
WO2014017163A1 (ja) 位置検出装置
ATE382849T1 (de) Optische positionsmesseinrichtung
KR102004186B1 (ko) 위치 변화 감지 광센서
JPH06249676A (ja) 絶対位置検出装置
JP2007183115A (ja) 光学式エンコーダ
JP2012194131A (ja) 位置検出装置および入力機能付き表示システム
JPH05141990A (ja) リニアエンコーダ
JP2012226412A (ja) 光学式位置検出装置および入力機能付き表示システム
JP2016205854A (ja) リニアゲージセンサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023797.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756270

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014756270

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014756270

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE