WO2014132633A1 - エンジンシステム及び船舶 - Google Patents

エンジンシステム及び船舶 Download PDF

Info

Publication number
WO2014132633A1
WO2014132633A1 PCT/JP2014/001011 JP2014001011W WO2014132633A1 WO 2014132633 A1 WO2014132633 A1 WO 2014132633A1 JP 2014001011 W JP2014001011 W JP 2014001011W WO 2014132633 A1 WO2014132633 A1 WO 2014132633A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
power turbine
fuel
maximum
engine system
Prior art date
Application number
PCT/JP2014/001011
Other languages
English (en)
French (fr)
Inventor
重治 藤原
哲男 野上
誠司 西
貴士 久保
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to KR1020157024763A priority Critical patent/KR101760000B1/ko
Priority to CN201480006300.9A priority patent/CN104956050B/zh
Publication of WO2014132633A1 publication Critical patent/WO2014132633A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • F01K15/04Adaptations of plants for special use for driving vehicles, e.g. locomotives the vehicles being waterborne vessels
    • F01K15/045Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/14Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled including at least one combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine system that recovers waste heat energy.
  • Patent Documents 1 and 2 propose a diesel engine (engine system) that converts waste heat energy into electric power for recovery.
  • an engine system that converts waste heat energy into electric power requires a generator and its peripheral devices, and electric power may be surplus depending on use conditions.
  • waste heat energy can be used to assist the engine.
  • Such an engine system has an advantage that facilities such as a generator are not required.
  • the total output of the engine system temporarily increases, and an excessive load may be applied to the shaft (propeller shaft in the case of a ship) that receives power from the engine system. In this case, it is necessary to temporarily stop the engine to prevent the shaft receiving the power from being damaged.
  • an engine system that uses waste heat energy to assist the engine may not be able to operate efficiently depending on the operating conditions.
  • the present invention has been made in view of such circumstances, and aims to improve the efficiency of an engine system that uses waste heat energy to assist the engine.
  • An engine system includes an engine, a power turbine that is driven by exhaust gas to assist the engine, a power turbine inflow passage that guides exhaust gas from the engine to the power turbine, and the power turbine.
  • the fuel injection amount is controlled so that when the power turbine assists the engine, the fuel injection amount is controlled so as not to exceed the assist maximum fuel value, and the assist maximum fuel value is the normal maximum fuel value. It is set smaller than the fuel value.
  • the fuel injection amount is controlled so as not to exceed the assist maximum fuel value set relatively low, so that the total output of the engine system is unlikely to be excessive. There is no need to stop assisting the engine. Therefore, the efficiency of the engine system can be improved.
  • the maximum assist fuel value may be set according to the output of the power turbine. According to this configuration, since the maximum assist fuel value is set according to the output of the power turbine, the engine system can be operated more flexibly than when the maximum assist fuel value is constant.
  • the maximum assist fuel value may be set to increase as the output of the power turbine decreases if the total output of the engine system is the same. As the power turbine output decreases, the power to assist the engine decreases, reducing the risk that the total output of the engine system will increase excessively. In such a case, the engine system can be operated more flexibly by increasing the maximum assist fuel value.
  • the maximum assist fuel value may be set to increase as the engine output decreases as long as the power turbine output is the same. If the engine output decreases, the risk that the total output of the engine system will rise excessively decreases.
  • a control valve is provided in the power turbine inflow passage, the coupler is configured to be able to release the connection between the power turbine and the engine, and the fuel control device includes: When the control valve is open and the power turbine and the engine are connected, the power turbine may be configured to determine that the power turbine is assisting the engine. With this configuration, the fuel control device can accurately switch between the normal maximum fuel value and the assist maximum fuel value.
  • a ship according to an embodiment of the present invention includes any one of the above engine systems.
  • the efficiency can be improved.
  • FIG. 1 is an overall view of an engine system according to an embodiment.
  • FIG. 2 is a block diagram of a fuel control system of the engine system.
  • FIG. 3 is a block diagram of the total output limiter of the fuel control system.
  • FIG. 4 is a flowchart showing a method for setting the maximum assistance fuel value.
  • FIG. 5 is a graph showing the relationship between the engine speed and the total output of the engine system at each fuel injection amount.
  • FIG. 6 is a graph illustrating a method for setting the maximum assistance fuel value.
  • FIG. 1 is an overall view of the engine system 100.
  • the engine system 100 is a so-called main engine for navigating the ship 101, and includes an engine 10, a supercharger 20, a power turbine 30, and a coupler 40.
  • the engine 10 is a so-called center device of the engine system 100, and rotates a propeller shaft 103 having a propeller 102 attached to the tip.
  • a crankshaft 11 connected to the propeller shaft 103 is connected to a plurality of pistons 12.
  • Each piston 12 reciprocates as the fuel injected into the cylinder 13 explodes, and the crankshaft 11 rotates as the piston 12 reciprocates.
  • the air compressed in the supercharger 20 is supplied to each cylinder 13 via the scavenging pipe 14, and the exhaust gas generated in the cylinder 13 is supplied to the supercharger 20 and the power turbine 30 via the exhaust pipe 15. Is done.
  • the amount of fuel injected into the cylinder 13 is determined by the amount of movement of a fuel plunger (not shown), and this fuel plunger is driven by a fuel injection valve actuator (or fuel rack) 16 (see FIG. 2).
  • the engine 10 is provided with an engine tachometer 17 (see FIG. 2) for measuring the rotation speed of the engine 10 and a scavenging pressure gauge 18 (see FIG. 2) for measuring the pressure (scavenging pressure) in the scavenging pipe 14. It has been.
  • the supercharger 20 is a device that compresses air taken in from the outside and supplies the compressed air to the engine 10.
  • the supercharger 20 has a turbine part 21 and a compressor part 22.
  • the exhaust gas discharged from the engine 10 (exhaust pipe 15) is supplied to the turbine unit 21.
  • the turbine unit 21 rotates using the energy of the exhaust gas supplied from the exhaust pipe 15.
  • the compressor unit 22 is connected to the turbine unit 21 via a connecting shaft 23. Therefore, as the turbine unit 21 rotates, the compressor unit 22 also rotates.
  • the compressor unit 22 compresses the air taken from the outside and supplies the compressed air to the scavenging pipe 14.
  • the supercharger 20 is provided with a supercharger tachometer 24 (see FIG. 2) that measures the rotation speed of the supercharger 20.
  • the power turbine 30 is a device that assists the engine 10 using the energy of the exhaust gas.
  • the exhaust gas discharged from the engine 10 is guided to the power turbine 30 by the power turbine inflow passage 31.
  • the power turbine 30 is rotated by the energy of the supplied exhaust gas, and assists the engine 10 by transmitting power to the engine 10 via the coupler 40.
  • a control valve 32 is provided in the power turbine inflow passage 31, and the amount of exhaust gas supplied to the power turbine 30, and consequently the output of the power turbine 30, can be changed by changing the opening degree of the control valve 32. Can be adjusted.
  • the power turbine 30 and the control valve 32 may be integrated.
  • the coupler 40 is a device that couples the power turbine 30 and the engine 10. Although the coupler 40 of the present embodiment directly connects the crankshaft 11 of the engine 10 and the power turbine 30, other equipment may be interposed. Further, the coupler 40 also functions as a speed reducer.
  • the coupler 40 has a clutch mechanism 42, and the clutch mechanism 42 can connect and release the crankshaft 11 and the power turbine 30.
  • the coupler 40 is provided with a clutch sensor 41 (see FIG. 2).
  • the clutch sensor 41 detects whether the crankshaft 11 and the power turbine 30 are connected or disconnected. be able to.
  • the engine system 100 drives the power turbine 30 using the energy of exhaust gas, that is, waste heat energy, to assist the engine 10.
  • the assistance of the engine 10 is not always performed, but is performed under certain conditions. For example, when the engine load is small, the amount of exhaust gas decreases, so that all exhaust gas is supplied to the supercharger 20. In this case, by closing the control valve 32 provided in the power turbine inflow passage 31, the supply of exhaust gas to the power turbine 30 is stopped, and the engine 10 is not assisted by the power turbine 30. In the present embodiment, when the control valve 32 is closed, the connection between the power turbine 30 and the engine 10 can be released so that the power turbine 30 does not idle.
  • FIG. 2 is a block diagram of the fuel control system of the engine system 100.
  • the engine system 100 includes a fuel control device 50.
  • the fuel control device 50 includes a CPU, a ROM, a RAM, and the like.
  • the fuel control device 50 includes, as a functional configuration, a rotation speed control unit 51, a torque limiter 52, a scavenging pressure limiter 53, a total output limiter 54, and a low selector 55. ing.
  • the rotational speed control unit 51 is a part that attempts to control the fuel injection amount so that the actual rotational speed of the engine 10 becomes the designated engine rotational speed.
  • the fuel control device 50 is electrically connected to the operation panel 104 for operating the ship 101 and the engine tachometer 17, and based on input signals from these devices, the designated engine speed and actual Information on the rotational speed of the engine 10 is acquired.
  • the rotational speed control unit 51 obtains a difference value between the designated engine rotational speed and the actual rotational speed of the engine 10, calculates a fuel injection amount that makes the difference value small, and uses this to calculate the first fuel injection. Amount.
  • the torque limiter 52 is a part that suppresses an excessive increase in engine torque due to an excessive fuel injection amount with respect to the rotational speed of the engine 10.
  • the fuel control device 50 can acquire information on the rotational speed of the engine 10.
  • the torque limiter 52 calculates the upper limit value of the fuel injection amount corresponding to the rotational speed based on the information on the rotational speed of the engine 10, or reads the upper limit value from the map and sets the upper limit value as the second fuel injection amount. .
  • the scavenging air pressure limiter 53 is a part for avoiding incomplete combustion due to an excessive fuel injection amount with respect to the scavenging air pressure, that is, the air amount supplied to the cylinder 13.
  • the fuel control device 50 is electrically connected to the scavenging pressure gauge 18 and acquires scavenging pressure information based on an input signal from this device.
  • the scavenging air pressure limiter 53 calculates the upper limit value of the fuel injection amount corresponding to the scavenging air pressure based on the scavenging air pressure information or reads it from the map and sets the upper limit value as the third fuel injection amount.
  • the total output limiter 54 suppresses an excessive increase in the total output of the engine system 100 (the output of the engine 10 plus the output of the power turbine 30) due to an excessive fuel injection amount, thereby causing damage to the propeller shaft 103. It is a part to avoid. For example, when the rudder is turned off, a large resistance is temporarily applied to the propeller 102. At this time, when the fuel injection amount is increased by the above-described rotation speed control unit 51 so that the rotation speed of the engine 10 does not decrease, the propeller shaft 103 may be damaged. The total output limiter 54 avoids damage to the propeller shaft 103 by suppressing the total output even if the rotational speed of the engine 10 is reduced at this time.
  • the fuel control device 50 is electrically connected to the control valve 32, the clutch sensor 41, and the supercharger tachometer 24. Based on the input signals from these devices, the fuel control device 50 opens and closes the control valve 32, the engine 10 and Information on the connection of the power turbine 30 and the rotational speed of the supercharger 20 is acquired.
  • the total output limiter 54 obtains the upper limit value of the fuel injection amount from the viewpoint of the total output of the engine system 100 based on the information of the fuel injection amount selected by the low selector 55 described later in addition to these pieces of information. The value is the fourth fuel injection amount. Details of the total output limiter 54 will be described later.
  • the low selector 55 includes a first fuel injection amount, a second fuel injection amount, a third fuel injection amount, and a fourth fuel from the rotation speed control unit 51, the torque limiter 52, the scavenging pressure limiter 53, and the total output limiter 54, respectively.
  • the injection amount is acquired, and the smallest fuel injection amount is selected.
  • the fuel control device 50 is electrically connected to the fuel injection valve actuator 16 and transmits a control signal corresponding to the fuel injection amount selected by the low selector 55 to the fuel injection valve actuator 16.
  • the fuel injection valve actuator 16 drives the fuel plunger so that the amount of fuel selected by the low selector 55 is injected into the cylinder 13 based on the control signal received from the fuel control device 50.
  • the first fuel injection amount is often the smallest among the first to fourth fuel injection amounts. Therefore, normally, the fuel injection amount is determined by the rotation speed control unit 51. However, the fuel injection amount obtained by any of the limiters 52 to 54 depending on the situation is larger than the fuel injection amount calculated by the rotation speed control unit 51. When it becomes smaller, the fuel injection amount is suppressed regardless of the rotational speed of the engine 10.
  • FIG. 3 is a block diagram of the total output limiter 54. As shown in FIG. 3, the total output limiter 54 has an assist determination unit 56, a selection switch 57, and an assist maximum fuel value calculation unit 58 as a functional configuration.
  • the assistance determination unit 56 is a part that determines whether or not the engine 10 is assisted by the power turbine 30.
  • the assistance determination unit 56 determines whether or not the engine 10 is assisted by the power turbine 30 based on information on the opening / closing of the control valve 32 and the connection between the engine 10 and the power turbine 30 acquired by the fuel control device 50. Specifically, when the control valve 32 is open and the power turbine 30 and the engine 10 are connected, it is determined that the power turbine 30 is assisting the engine 10. And the assistance determination part 56 switches the selection switch 57 according to the determination result.
  • the selection switch 57 sets either a normal maximum fuel value or an assist maximum fuel value, which will be described later, as the fourth fuel injection amount according to the determination result of the assist determination unit 56. Specifically, when it is determined that the power turbine 30 is not assisting the engine 10, the maximum fuel value is normally set to the fourth fuel injection amount, and it is determined that the power turbine 30 is assisting the engine 10. In this case, the maximum assist fuel value is set as the fourth fuel injection amount.
  • normal maximum fuel value and “assistance maximum fuel value” will be described.
  • the upper limit value of power that can be input to the propeller shaft 103 is determined in order to avoid damage to the propeller shaft 103
  • the total output of the engine system 100 is the upper limit value (hereinafter referred to as “danger output”). It is necessary not to exceed.
  • an upper limit value of the fuel injection amount must be set.
  • the value when the power turbine 30 is not assisting the engine 10 is the “normal maximum fuel value”, and the value when the power turbine 30 is assisting the engine 10. Is the “maximum fuel value”.
  • the upper limit value corresponding to the “subsidy maximum fuel value” is not set, and only the upper limit value corresponding to the “normal maximum fuel value” is set. Therefore, in an engine system in which the engine is assisted by the power turbine, the total output may exceed the dangerous output. When the dangerous output is exceeded, the assistance of the engine must be stopped. Therefore, such an engine system has to be operated inefficiently depending on conditions.
  • the power turbine 30 subsidizes the engine 10
  • the “subsidized maximum fuel value” considering the output of the power turbine 30 is set, and therefore the power turbine 30 subsidizes the engine 10.
  • the total output of the engine system 100 does not exceed the dangerous output.
  • the normal maximum fuel value is set to be constant, while the assisting maximum fuel value is smaller than the normal maximum fuel value and varies depending on the conditions.
  • the maximum assistance fuel value may be constant.
  • a value of 95% of the normal maximum fuel value may be set as the assisting maximum fuel value.
  • the fuel control device can be configured relatively simply.
  • the assist maximum fuel value is set smaller than the normal maximum fuel value, when the engine 10 is assisted by the power turbine 30 by the operation of the selection switch 57, it is not assisted. In comparison, a small value is selected as the fourth fuel injection amount.
  • the assistance maximum fuel value calculation unit 58 is a part that calculates the assistance maximum fuel value.
  • the assisting maximum fuel value is obtained based on the output of the power turbine 30 and the total output of the engine system 100. Specifically, the maximum assisting fuel is obtained by the procedure shown in FIG. FIG. 4 is a flowchart showing a method for calculating the maximum assistance fuel value by the maximum assistance fuel value calculation unit 58.
  • the assistance maximum fuel value calculation part 58 acquires the rotation speed of the supercharger 20 (step S1), and calculates the output of the engine 10 (step S2).
  • the output of the engine 10 can be obtained from a function having the number of revolutions of the supercharger 20 as a variable, as shown in the following equation.
  • the assistance maximum fuel value calculation unit 58 acquires the rotational speed of the engine 10 and the actual fuel injection amount (step S3), and obtains the total output of the engine system 100 (step S4).
  • the total output of the engine system 100 can be obtained (estimated) using a map prepared in advance based on the rotational speed of the engine 10 and the fuel injection amount.
  • FIG. 5 is a graph showing the relationship between the rotational speed of the engine 10 and the total output of the engine system 100 at each fuel injection amount.
  • the fuel control device 50 stores a map corresponding to FIG. 5, and the assisting maximum fuel value calculation unit 58 can obtain the total output of the engine system 100 using this map.
  • the output of the power turbine 30 is calculated based on the total output of the engine system 100 obtained in step S4 and the output of the engine 10 calculated in step S2 (step S5).
  • the output of the power turbine 30 can be calculated by multiplying the total output of the engine system 100 by the output of the engine 10 and the power turbine efficiency and mechanical efficiency.
  • the output of the power turbine 30 is calculated as described above, but may be obtained by other methods.
  • the amount of air flowing through the power turbine 30 may be calculated or estimated, and may be calculated from a power turbine heat drop, an energy conservation law, or the like based on the amount of air flowing through the power turbine 30.
  • the assistance maximum fuel value calculation unit 58 obtains the assistance maximum fuel value based on the total output of the engine system 100 obtained in step S4 and the output of the power turbine 30 obtained in step S5 (step S6). Specifically, the fuel control device 50 stores a map or mathematical expression corresponding to the graph shown in FIG. 6, and the assistance maximum fuel value calculation unit 58 obtains the assistance maximum fuel value using the map or expression. .
  • the horizontal axis represents the total output of the engine system 100
  • the vertical axis represents the maximum assist fuel value.
  • the curve in the figure is a maximum fuel curve showing the relationship between the total output of the engine system 100 and the assisting maximum fuel.
  • a maximum fuel curve is drawn for each output of the power turbine 30.
  • the maximum fuel curve is drawn when the output of the power turbine 30 is 100% (maximum value), 50%, and 10%.
  • 100% of the maximum assist fuel value on the vertical axis corresponds to the normal maximum fuel value.
  • 100% of the total output of the engine system 100 on the horizontal axis is the output of the engine 10 when fuel corresponding to the normal maximum fuel value is supplied to the engine 10 (the total output of the engine system 100 when there is no assistance). It corresponds to.
  • the maximum fuel curve corresponding to the output of the power turbine 30 calculated in step S5 is selected. Then, using the selected maximum fuel curve, the assisting maximum fuel value is read from the total output value of the engine system 100 calculated in step S4. For example, when the output of the power turbine 30 is 50% and the total output of the engine system 100 is P1, the maximum assisting fuel value is F1, as shown in FIG. In this manner, the assistance maximum fuel value calculation unit 58 can calculate the assistance maximum fuel value through steps S1 to S6 shown in FIG.
  • the maximum assist fuel value is set to increase as the output of the power turbine 30 decreases if the total output of the engine system 100 is the same. This is because if the output of the power turbine 30 is reduced, the force for assisting the engine 10 is reduced, and the risk that the total output of the engine system 100 is excessively increased (exceeds the dangerous output) is reduced. That is, when the output of the power turbine 30 is small, the assist maximum fuel value can be increased, so that the engine system 100 can be operated more flexibly than when the assist maximum fuel value is set to a low value.
  • the assisting maximum fuel value is set to increase as the total output of the engine system 100 decreases.
  • the total output of the engine system 100 decreases means that the output of the engine 10 decreases when the output of the power turbine 30 is the same. That is, in this embodiment, if the output of the power turbine 30 is the same, the assist maximum fuel value is set to increase as the output of the engine 10 decreases. This is because even when the output of the engine 10 is reduced, the risk that the total output of the engine system 100 is excessively increased is reduced. That is, even when the output of the engine 10 is small, the maximum assist fuel value can be increased, so that the engine system 100 can be operated more flexibly than when the maximum assist fuel value is set to a low value.
  • the fuel injection amount is controlled so as not to exceed the normal maximum fuel value.
  • the fuel injection amount is controlled so as not to exceed the assist maximum fuel value.
  • the assist maximum fuel value is set to be smaller than the normal maximum fuel value. Therefore, even when the power turbine 30 assists the engine 10, the fuel injection amount decreases before the total output of the engine system 100 exceeds the dangerous output, so that it is necessary to stop assisting the engine 10 by the power turbine 30. There is no. Therefore, according to the present embodiment, the efficiency of the engine system 100 can be improved.
  • the efficiency of an engine system that uses waste heat energy to assist the engine can be improved, which is beneficial in the technical field of engine systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 エンジンシステム(100)の燃料制御装置(50)は、パワータービン(30)がエンジン(10)を助勢しないときには通常最大燃料値を超えないように燃料噴射量を制御するとともに、パワータービン(30)がエンジン(10)を助勢するときには助勢最大燃料値を超えないように燃料噴射量を制御するように構成されており、助勢最大燃料値は通常最大燃料値よりも小さく設定される。

Description

エンジンシステム及び船舶
 本発明は、廃熱エネルギを回収するエンジンシステムに関する。
 昨今、廃熱エネルギの有効活用が注目されており、特許文献1及び2では、廃熱エネルギを電力に変換して回収するディーゼル機関(エンジンシステム)が提案されている。
特開2011-122597号公報 特開2010-138875号公報
 ただし、廃熱エネルギを電力に変換するエンジンシステムでは、発電機及びその周辺機器が必要となり、また、使用条件によっては電力が余剰する場合もある。一方、廃熱エネルギをエンジンの助勢に利用することもできる。このようなエンジンシステムは、発電機等の設備が不要となる利点がある。ただし、エンジンを助勢することで、一時的にエンジンシステムの総出力が増大し、エンジンシステムから動力を受ける軸(船舶であればプロペラ軸)に過度の負荷がかかる場合がある。この場合は、動力を受ける軸が破損するのを避けるため、一時的にエンジンの助勢を止める必要がある。このように、廃熱エネルギをエンジンの助勢に利用したエンジンシステムでは、運転状況によっては効率の良い運転ができない場合がある。
 本発明は、このような事情に鑑みてなされたものであり、廃熱エネルギをエンジンの助勢に利用するエンジンシステムの効率を向上させることを目的としている。
 本発明のある形態に係るエンジンシステムは、エンジンと、排気ガスによって駆動し、前記エンジンを助勢するパワータービンと、前記エンジンから前記パワータービンへ排気ガスを導くパワータービン流入通路と、前記パワータービンと前記エンジンを連結する連結器と、前記エンジンにおける燃料噴射量を制御する燃料制御装置と、を備え、前記燃料制御装置は、前記パワータービンが前記エンジンを助勢しないときには通常最大燃料値を超えないように燃料噴射量を制御するとともに、前記パワータービンが前記エンジンを助勢するときには助勢最大燃料値を超えないように燃料噴射量を制御するように構成されており、前記助勢最大燃料値は前記通常最大燃料値よりも小さく設定される。
 かかる構成によれば、パワータービンがエンジンを助勢するときには、比較的低く設定された助勢最大燃料値を超えないように燃料噴射量が制御されるため、エンジンシステムの総出力が過大になりにくく、エンジンの助勢を停止する必要がない。そのため、エンジンシステムの効率を向上させることができる。
 また、上記のエンジンシステムにおいて、前記助勢最大燃料値は前記パワータービンの出力に応じて設定されてもよい。かかる構成によれば、パワータービンの出力に応じて助勢最大燃料値が設定されるため、助勢最大燃料値が一定の場合に比べて、エンジンシステムのより柔軟な運用が可能となる。
 また、上記のエンジンシステムにおいて、前記助勢最大燃料値は、エンジンシステムの総出力が同じであれば前記パワータービンの出力が小さくなるに従って大きくなるように設定されてもよい。パワータービンの出力が小さくなれば、エンジンを助勢するする力は小さくなるため、エンジンシステムの総出力が過上昇するリスクは減少する。このような場合には助勢最大燃料値を大きくすることで、エンジンシステムのより柔軟な運用が可能となる。
 また、上記のエンジンシステムにおいて、前記助勢最大燃料値は、前記パワータービンの出力が同じであればエンジンの出力が小さくなるに従って大きくなるように設定されてもよい。エンジンの出力が小さくなれば、エンジンシステムの総出力が過上昇するリスクは減少する。
 また、上記のエンジンシステムにおいて、前記パワータービン流入通路には制御弁が設けられており、前記連結器は前記パワータービンと前記エンジンの連結を解除可能に構成されており、前記燃料制御装置は、前記制御弁が開いており、かつ、前記パワータービンと前記エンジンとが連結されているとき、前記パワータービンが前記エンジンを助勢していると判断するように構成されていてもよい。かかる構成によれば、燃料制御装置は、通常最大燃料値と助勢最大燃料値との切り換えを正確に行うことができる。
 さらに、本発明のある形態に係る船舶は、上記のうちいずれかのエンジンシステムを備えている。
 以上のとおり、上記のエンジンシステムによれば、効率の向上が可能である。
図1は、実施形態に係るエンジンシステムの全体図である。 図2は、上記エンジンシステムの燃料制御系のブロック図である。 図3は、上記燃料制御系の総出力リミッタのブロック図である。 図4は、助勢最大燃料値の設定方法を示すフローチャートである。 図5は、各燃料噴射量におけるエンジンの回転数とエンジンシステムの総出力との関係を示すグラフである。 図6は、助勢最大燃料値の設定方法を説明するグラフである。
 以下、図を参照しながら実施形態に係るエンジンシステムついて説明する。以下では、全ての図面を通じて同一又は相当する要素には同じ符号を付して、重複する説明は省略する。
 <エンジンシステムの全体構成>
 まず、エンジンシステム100の全体構成について説明する。図1は、エンジンシステム100の全体図である。図1に示すように、エンジンシステム100は、船舶101を航行させるためのいわゆる主機であって、エンジン10と、過給機20と、パワータービン30と、連結器40と、を備えている。
 エンジン10は、エンジンシステム100のいわば中心となる装置であって、先端にプロペラ102が取り付けられたプロペラ軸103を回転させる。プロペラ軸103に連結されるクランク軸11は、複数のピストン12に連結されている。各ピストン12はシリンダ13内に噴射された燃料の爆発に伴って往復運動し、各ピストン12の往復運動によってクランク軸11は回転する。各シリンダ13には過給機20で圧縮された空気が掃気管14を介して供給され、シリンダ13内で生成された排気ガスは排気管15を介して過給機20及びパワータービン30へ供給される。シリンダ13内に噴射される燃料の噴射量は燃料プランジャ(不図示)の移動量によって決定され、この燃料プランジャは燃料噴射弁用アクチュエータ(又は燃料ラック)16(図2参照)によって駆動される。なお、エンジン10には、エンジン10の回転数を計測するエンジン回転計17(図2参照)、及び掃気管14内の圧力(掃気圧)を計量する掃気圧計18(図2参照)が設けられている。
 過給機20は、外部から取り込んだ空気を圧縮してエンジン10に供給する装置である。過給機20は、タービン部21と、コンプレッサ部22とを有している。エンジン10(排気管15)から排出された排気ガスは、タービン部21に供給される。タービン部21は、排気管15から供給された排気ガスのエネルギを利用して回転する。コンプレッサ部22は、連結軸23を介してタービン部21と連結されている。そのため、タービン部21が回転するのに伴って、コンプレッサ部22も回転する。コンプレッサ部22は、外部から取り込んだ空気を圧縮し、掃気管14に供給する。なお、過給機20には、過給機20の回転数を測定する過給機回転計24(図2参照)が設けられている。
 パワータービン30は、排気ガスのエネルギを利用してエンジン10を助勢する装置である。エンジン10から排出された排気ガスは、パワータービン流入通路31によってパワータービン30に導かれる。パワータービン30は、供給された排気ガスのエネルギによって回転し、連結器40を介してエンジン10に動力を伝えることでエンジン10を助勢する。また、パワータービン流入通路31には、制御弁32が設けられており、この制御弁32の開度を変えることで、パワータービン30に供給される排気ガスの量、ひいてはパワータービン30の出力を調整することができる。なお、パワータービン30と制御弁32が一体構成となる場合もある。
 連結器40は、パワータービン30とエンジン10とを連結する装置である。本実施形態の連結器40は、エンジン10のクランク軸11とパワータービン30を直接連結しているが、他の機器が介在していてもよい。また、連結器40は減速機としても機能している。連結器40はクラッチ機構42を有しており、クラッチ機構42はクランク軸11とパワータービン30を連結したり連結を解除したりすることができる。連結器40にはクラッチセンサ41(図2参照)が設けられており、クラッチセンサ41はクランク軸11とパワータービン30が連結されている状態か、あるいは連結が解除されている状態かを検知することができる。
 以上のように、本実施形態に係るエンジンシステム100は、排気ガスのエネルギ、すなわち廃熱エネルギを利用してパワータービン30を駆動し、エンジン10を助勢するものである。ただし、エンジン10の助勢は、常に行われているわけではなく、一定の条件下で行われる。例えば、エンジン負荷が小さい場合には、排気ガスの量が少なくなるため、全ての排気ガスが過給機20に供給される。この場合、パワータービン流入通路31に設けられた制御弁32を閉じることで、パワータービン30への排気ガスの供給が止められ、パワータービン30によるエンジン10の助勢は行われなくなる。なお、本実施形態では、制御弁32を閉じたときは、パワータービン30が空回りをしないようにパワータービン30とエンジン10の連結を解除することができる。
 <燃料制御系の構成>
 次に、エンジンシステム100の燃料制御系の構成について説明する。図2は、エンジンシステム100の燃料制御系のブロック図である。エンジンシステム100は、燃料制御装置50を備えている。燃料制御装置50は、CPU、ROM、RAM等によって構成されている。図2に示すように、燃料制御装置50は、機能的な構成として、回転数制御部51と、トルクリミッタ52と、掃気圧リミッタ53と、総出力リミッタ54と、ローセレクタ55と、を備えている。
 回転数制御部51は、実際のエンジン10の回転数が、指定されたエンジン回転数となるように燃料噴射量を制御しようとする部分である。燃料制御装置50は、船舶101を操作する運転操作盤104、及びエンジン回転計17と電気的に接続されており、これらの機器からの入力信号に基づいて、指定されたエンジン回転数、及び実際のエンジン10の回転数の情報を取得する。回転数制御部51では、指定されたエンジン回転数と実際のエンジン10の回転数との差分値を取得し、その差分値が小さくなるような燃料噴射量を算出し、これを第1燃料噴射量とする。
 トルクリミッタ52は、エンジン10の回転数に対して燃料噴射量が過剰になることによるエンジントルクの過上昇を抑える部分である。上述したように、燃料制御装置50はエンジン10の回転数の情報を取得することができる。トルクリミッタ52は、このエンジン10の回転数の情報に基づいて、その回転数に対応する燃料噴射量の上限値を算出し、又は、マップから読取り、その上限値を第2燃料噴射量とする。
 掃気圧リミッタ53は、掃気圧に対して、すなわちシリンダ13へ供給する空気量に対して燃料噴射量が過剰になることによる不完全燃焼を回避する部分である。燃料制御装置50は、掃気圧計18と電気的に接続されており、この機器からの入力信号に基づいて、掃気圧の情報を取得する。掃気圧リミッタ53では、この掃気圧の情報に基づいて、その掃気圧に対応する燃料噴射量の上限値を算出し、又は、マップから読取り、その上限値を第3燃料噴射量とする。
 総出力リミッタ54は、燃料噴射量が過剰になることによるエンジンシステム100の総出力(エンジン10の出力にパワータービン30の出力を加えたもの)の過上昇を抑え、これによりプロペラ軸103の破損を回避する部分である。例えば舵を切ったときなど一時的にプロペラ102に大きな抵抗が加わるが、このとき上記の回転数制御部51によってエンジン10の回転数が落ちないように燃料噴射量が増加されると、プロペラ軸103が破損するおそれがある。総出力リミッタ54は、このときエンジン10の回転数を落としてでも総出力を抑えることで、プロペラ軸103の破損を回避する。燃料制御装置50は、制御弁32、クラッチセンサ41、及び過給機回転計24と電気的に接続されており、これらの機器からの入力信号に基づいて、制御弁32の開閉、エンジン10とパワータービン30の連結、及び過給機20の回転数の情報を取得する。総出力リミッタ54は、これらの情報に加え、後述するローセレクタ55で選択した燃料噴射量の情報に基づいて、エンジンシステム100の総出力の観点からの燃料噴射量の上限値を求め、その上限値を第4燃料噴射量とする。なお、総出力リミッタ54の詳細については、後述する。
 ローセレクタ55は、回転数制御部51、トルクリミッタ52、掃気圧リミッタ53、及び総出力リミッタ54から、それぞれ第1燃料噴射量、第2燃料噴射量、第3燃料噴射量、及び第4燃料噴射量を取得し、このうち最も少ない燃料噴射量を選択する。燃料制御装置50は、燃料噴射弁用アクチュエータ16と電気的に接続されており、ローセレクタ55で選択した燃料噴射量に対応する制御信号を燃料噴射弁用アクチュエータ16に送信する。燃料噴射弁用アクチュエータ16は、燃料制御装置50から受信した制御信号に基づいて、ローセレクタ55で選択された量の燃料がシリンダ13内に噴射されるように、燃料プランジャを駆動する。
 実際のエンジンシステム100の運用においては、第1~第4燃料噴射量のうち、第1燃料噴射量が最も小さいことが多い。そのため、通常は、回転数制御部51によって燃料噴射量が決定されるが、状況によりいずれかのリミッタ52~54で求められた燃料噴射量が回転数制御部51で算出した燃料噴射量よりも小さくなった場合には、エンジン10の回転数に関係なく燃料噴射量が抑えられることになる。
 <総出力リミッタの構成>
 次に、総出力リミッタ54の詳細構成について説明する。図3は、総出力リミッタ54のブロック図である。図3に示すように、総出力リミッタ54は、機能的な構成として、助勢判定部56と、選択スイッチ57と、助勢最大燃料値算出部58と、を有している。
 助勢判定部56は、エンジン10がパワータービン30に助勢されているか否かを判定する部分である。助勢判定部56は、燃料制御装置50が取得した制御弁32の開閉及びエンジン10とパワータービン30の連結の情報に基づいて、エンジン10がパワータービン30に助勢されているか否かを判断する。具体的には、制御弁32が開いており、かつ、パワータービン30とエンジン10とが連結されているとき、パワータービン30がエンジン10を助勢していると判断する。そして、助勢判定部56は、その判断結果に応じて選択スイッチ57を切り換える。
 選択スイッチ57は、助勢判定部56の判断結果に応じて、後述する通常最大燃料値又は助勢最大燃料値のいずれかを第4燃料噴射量とする。具体的には、パワータービン30がエンジン10を助勢していないと判断された場合には通常最大燃料値を第4燃料噴射量とし、パワータービン30がエンジン10を助勢していると判断された場合には助勢最大燃料値を第4燃料噴射量とする。
 ここで、「通常最大燃料値」と「助勢最大燃料値」について説明する。例えば、プロペラ軸103の破損を回避するために、プロペラ軸103に入力可能な動力の上限値が決まっているとき、エンジンシステム100の総出力がこの上限値(以下、「危険出力」と称す)を超えないようにする必要がある。エンジンシステム100の総出力がこの危険出力を超えないようにするには、燃料噴射量の上限値を設定しなければならない。そして、この燃料噴射量の上限値のうち、パワータービン30がエンジン10を助勢していないときのものが「通常最大燃料値」であり、パワータービン30がエンジン10を助勢しているときのものが「助勢最大燃料値」である。
 従来のエンジンシステムでは「助成最大燃料値」に相当する上限値は設定されておらず、「通常最大燃料値」に相当する上限値のみが設定されていた。そのため、パワータービンによってエンジンが助勢されるエンジンシステムでは、総出力が危険出力を超えるおそれがあり、危険出力を超えるような場合にはエンジンの助勢を停止しなければならなかった。そのため、そのようなエンジンシステムは、条件によっては効率の悪い運用を行わざるを得なかった。一方、本実施形態では、パワータービン30がエンジン10を助成する場合には、パワータービン30の出力を考慮した「助成最大燃料値」が設定されるため、パワータービン30がエンジン10を助成する場合にも、エンジンシステム100の総出力が危険出力を超えることはない。
 本実施形態では、通常最大燃料値は一定に設定されている一方、助勢最大燃料値は通常最大燃料値よりも小さい値であって、条件に応じて変動する。ただし、助勢最大燃料値は一定であってもよい。例えば、通常最大燃料値の95%の値を助勢最大燃料値としてもよい。この場合、燃料制御装置を比較的単純に構成できるという利点がある。上記のように、通常最大燃料値に比べ、助勢最大燃料値は小さく設定されるため、選択スイッチ57の作動により、エンジン10がパワータービン30に助勢されているときは、助勢されていないときに比べて、第4燃料噴射量としては小さい値が選定される。
 助勢最大燃料値算出部58は、助勢最大燃料値を算出する部分である。本実施形態では、パワータービン30の出力、及びエンジンシステム100の総出力に基づいて、助勢最大燃料値が求められる。具体的には、図4に示すような手順で助勢最大燃料が求められる。図4は、助勢最大燃料値算出部58による助勢最大燃料値の算出方法を示したフローチャートである。
 まず、助勢最大燃料値算出部58は、過給機20の回転数を取得し(ステップS1)、エンジン10の出力を算出する(ステップS2)。エンジン10の出力は、以下の数式に示すように、過給機20の回転数を変数とする関数から求めることができる。
Figure JPOXMLDOC01-appb-M000001
 続いて、助勢最大燃料値算出部58は、エンジン10の回転数、及び実際の燃料噴射量を取得し(ステップS3)、エンジンシステム100の総出力を求める(ステップS4)。エンジンシステム100の総出力は、エンジン10の回転数と燃料噴射量に基づいて予め用意したマップを用いれば求める(推定する)ことができる。図5は、各燃料噴射量におけるエンジン10の回転数とエンジンシステム100の総出力との関係を示したグラフである。燃料制御装置50は、図5に対応するマップを記憶しており、助勢最大燃料値算出部58は、このマップを利用してエンジンシステム100の総出力を求めることができる。
 続いて、ステップS4で求めたエンジンシステム100の総出力と、ステップS2で算出したエンジン10の出力に基づいて、パワータービン30の出力を算出する(ステップS5)。パワータービン30の出力は、下記の式に示すように、エンジンシステム100の総出力からエンジン10の出力を差し引いたものにパワータービン効率と機械効率を乗じることで算出できる。
Figure JPOXMLDOC01-appb-M000002
 
 なお、本実施形態では、パワータービン30の出力は上記のようにして算出しているが、他の方法で求めてもよい。例えば、パワータービン30に流れる風量を算出又は推定し、パワータービン30に流れる風量に基づいて、パワータービン熱落差、エネルギ保存則等から算出してもよい。
 続いて、助勢最大燃料値算出部58は、ステップS4で求めたエンジンシステム100の総出力と、ステップS5で求めたパワータービン30の出力に基づいて、助勢最大燃料値を求める(ステップS6)。具体的には、燃料制御装置50は、図6に示すグラフに対応するマップ又は数式を記憶しており、助勢最大燃料値算出部58はそのマップ又は数式を利用して助勢最大燃料値を求める。
 図6において、横軸はエンジンシステム100の総出力であり、縦軸は助勢最大燃料値である。また、図中の曲線はエンジンシステム100の総出力と助勢最大燃料の関係を示す最大燃料曲線である。最大燃料曲線は、パワータービン30の出力ごとに描かれる。図6では、一例として、パワータービン30の出力が100%(最大値)のとき、50%のとき、10%のときの最大燃料曲線が描かれている。縦軸の助勢最大燃料値における100%は、通常最大燃料値に相当する。また、横軸のエンジンシステム100の総出力の100%は、通常最大燃料値に相当する燃料がエンジン10に供給されたときのエンジン10の出力(助勢がないときのエンジンシステム100の総出力)に相当する。
 助勢最大燃料値を求めるにあたっては、まず、ステップS5で算出したパワータービン30の出力に対応する最大燃料曲線を選択する。そして、選択した最大燃料曲線を用いて、ステップS4で算出したエンジンシステム100の総出力の値から助勢最大燃料値を読み取る。例えば、パワータービン30の出力が50%、エンジンシステム100の総出力がP1である場合は、図6に示すように助勢最大燃料値はF1となる。このように、図4に示すステップS1~S6を経ることにより、助勢最大燃料値算出部58は、助勢最大燃料値を算出することができる。
 なお、図6から理解できるように、本実施形態では、エンジンシステム100の総出力が同じであればパワータービン30の出力が小さくなるに従って助勢最大燃料値が大きくなるように設定されている。これは、パワータービン30の出力が小さくなれば、エンジン10を助勢するする力は小さくなるため、エンジンシステム100の総出力が過上昇する(危険出力を超える)リスクが減少するからである。すなわち、パワータービン30の出力が小さい場合には、助勢最大燃料値を大きくできるので、助勢最大燃料値を低い値に設定する場合に比べて、エンジンシステム100のより柔軟な運用が可能となる。
 また、図6から理解できるように、パワータービン30の出力が同じであればエンジンシステム100の総出力が小さくなるに従って助勢最大燃料値が大きくなるように設定されている。ここで、「エンジンシステム100の総出力が小さくなる」とは、パワータービン30の出力が同じであれば、エンジン10の出力が小さくなることを意味する。つまり、本実施形態では、パワータービン30の出力が同じであればエンジン10の出力が小さくなるに従って助勢最大燃料値が大きくなるように設定されている。これは、エンジン10の出力が小さくなった場合も、エンジンシステム100の総出力が過上昇するリスクが減少するからである。すなわち、エンジン10の出力が小さい場合も、助勢最大燃料値を大きくできるので、助勢最大燃料値を低い値に設定する場合に比べて、エンジンシステム100のより柔軟な運転が可能となる。
 以上で説明したとおり、本実施形態に係るエンジンシステム100は、パワータービン30がエンジン10を助勢しないときには通常最大燃料値を超えないように燃料噴射量が制御されるとともに、パワータービン30がエンジン10を助勢するときには助勢最大燃料値を超えないように燃料噴射量を制御するように構成されている。そして、この助勢最大燃料値は通常最大燃料値よりも小さくなるように設定される。そのため、パワータービン30がエンジン10を助勢する場合であっても、エンジンシステム100の総出力が危険出力を超える前に燃料噴射量が減少するため、パワータービン30によるエンジン10の助勢を停止する必要がない。よって、本実施形態によれば、エンジンシステム100の効率を向上させることができる。
 以上、本発明に係る実施形態について図を参照して説明したが、具体的な構成はこれらの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。
 なお、上記の実施形態では、エンジンシステム100が船舶101に搭載されている場合について説明したが、エンジンシステムが発電設備に用いられるものであっても、本発明の構成を備える限り本発明に含まれる。
 本発明によれば、廃熱エネルギをエンジンの助勢に利用するエンジンシステムの効率を向上させることができるため、エンジンシステムの技術分野において有益である。
10 エンジン
30 パワータービン
31 パワータービン流入通路
32 制御弁
40 連結器
50 燃料制御装置
100 エンジンシステム
101 船舶

Claims (6)

  1.  エンジンと、
     排気ガスによって駆動し、前記エンジンを助勢するパワータービンと、
     前記エンジンから前記パワータービンへ排気ガスを導くパワータービン流入通路と、
     前記パワータービンと前記エンジンを連結する連結器と、
     前記エンジンにおける燃料噴射量を制御する燃料制御装置と、を備え、
     前記燃料制御装置は、前記パワータービンが前記エンジンを助勢しないときには通常最大燃料値を超えないように燃料噴射量を制御するとともに、前記パワータービンが前記エンジンを助勢するときには助勢最大燃料値を超えないように燃料噴射量を制御するように構成されており、前記助勢最大燃料値は前記通常最大燃料値よりも小さく設定される、エンジンシステム。
  2.  前記助勢最大燃料値は前記パワータービンの出力に応じて設定される、請求項1に記載のエンジンシステム。
  3.  前記助勢最大燃料値は、エンジンシステムの総出力が同じであれば前記パワータービンの出力が小さくなるに従って大きくなるように設定される、請求項2に記載のエンジンシステム。
  4.  前記助勢最大燃料値は、前記パワータービンの出力が同じであればエンジンの出力が小さくなるに従って大きくなるように設定される、請求項3に記載のエンジンシステム。
  5.  前記パワータービン流入通路には制御弁が設けられており、
     前記連結器は前記パワータービンと前記エンジンの連結を解除可能に構成されており、
     前記燃料制御装置は、前記制御弁が開いており、かつ、前記パワータービンと前記エンジンとが連結されているとき、前記パワータービンが前記エンジンを助勢していると判断する、請求項1乃至4のうちいずれか一の項に記載のエンジンシステム。
  6.  請求項1乃至5のうちいずれか一の項に記載のエンジンシステムを備えた船舶。
PCT/JP2014/001011 2013-02-27 2014-02-26 エンジンシステム及び船舶 WO2014132633A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157024763A KR101760000B1 (ko) 2013-02-27 2014-02-26 엔진 시스템 및 선박
CN201480006300.9A CN104956050B (zh) 2013-02-27 2014-02-26 发动机系统以及船舶

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-037373 2013-02-27
JP2013037373A JP6101111B2 (ja) 2013-02-27 2013-02-27 エンジンシステム及び船舶

Publications (1)

Publication Number Publication Date
WO2014132633A1 true WO2014132633A1 (ja) 2014-09-04

Family

ID=51427910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001011 WO2014132633A1 (ja) 2013-02-27 2014-02-26 エンジンシステム及び船舶

Country Status (4)

Country Link
JP (1) JP6101111B2 (ja)
KR (1) KR101760000B1 (ja)
CN (1) CN104956050B (ja)
WO (1) WO2014132633A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107387217A (zh) * 2017-07-31 2017-11-24 中国船舶重工集团公司第七研究所 动力涡轮发电装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6463640B2 (ja) 2015-01-27 2019-02-06 川崎重工業株式会社 舶用排気タービン

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144434U (ja) * 1988-03-29 1989-10-04
JP2010196586A (ja) * 2009-02-25 2010-09-09 Nissan Motor Co Ltd 内燃機関の始動制御装置
JP2013032153A (ja) * 2012-09-06 2013-02-14 Mitsubishi Heavy Ind Ltd 船舶の制御方法および船舶

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5249866B2 (ja) * 2009-06-25 2013-07-31 三菱重工業株式会社 エンジン排気エネルギー回収装置
JP5086323B2 (ja) * 2009-11-30 2012-11-28 三菱重工業株式会社 排熱回収型船舶推進装置およびこれを備えた船舶ならびに排熱回収型船舶推進装置の制御方法
DE102011011637A1 (de) * 2011-02-17 2012-09-13 Voith Patent Gmbh Antriebsstrang mit aufgeladenem Verbrennungsmotor und Turbocompoundsystem

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144434U (ja) * 1988-03-29 1989-10-04
JP2010196586A (ja) * 2009-02-25 2010-09-09 Nissan Motor Co Ltd 内燃機関の始動制御装置
JP2013032153A (ja) * 2012-09-06 2013-02-14 Mitsubishi Heavy Ind Ltd 船舶の制御方法および船舶

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107387217A (zh) * 2017-07-31 2017-11-24 中国船舶重工集团公司第七研究所 动力涡轮发电装置

Also Published As

Publication number Publication date
JP2014163355A (ja) 2014-09-08
KR101760000B1 (ko) 2017-07-20
JP6101111B2 (ja) 2017-03-22
CN104956050A (zh) 2015-09-30
KR20150119147A (ko) 2015-10-23
CN104956050B (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
US10577776B2 (en) Shovel and method of controlling shovel
KR101261163B1 (ko) 전동 과급기
RU2015149550A (ru) Газовые турбины в системах с механическим приводом и способы управления
CN103256129A (zh) 具有涡轮增压装置的内燃机的操作方法及其控制单元
US9790664B2 (en) Shovel having an engine equipped with a supercharger
WO2012060326A1 (ja) エンジン排気エネルギー回収装置
JP2012097716A5 (ja)
US20170002745A1 (en) Control apparatus for angling guide vanes of a torque converter
JP2009002333A (ja) パワータービンを備えるターボエンジン
CN103742256A (zh) 发动机、发动机增压器保护方法和装置
JP6101111B2 (ja) エンジンシステム及び船舶
US10422248B2 (en) Method and system for preventing oil escape
US20130243611A1 (en) Hydraulic fan drive for an internal combustion engine
EP2362086A1 (en) Method and device for controlling diesel engine, and ship with same
JP2014177918A (ja) ガス燃料エンジン
JP5804756B2 (ja) 過給機システム、内燃機関及び過給機システムの制御方法
CN104003305A (zh) 一种起重机泵控系统极限功率的匹配方法及装置
JP6609334B2 (ja) 航空機用レシプロエンジンの高空始動装置
JP2008128467A (ja) 車両のロックアップクラッチ制御装置
US9709046B2 (en) Hydrostatic power unit as hydraulic starter of an internal combustion engine
US10174689B2 (en) Method and device for operating a drive system including an internal combustion engine
JP6554159B2 (ja) エンジンシステム
US10450901B2 (en) Rankine cycle system which restrains over-speed of a turbine
JP6509610B2 (ja) 過給機付き内燃機関の制御方法及び過給機付き内燃機関
JP2018155024A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157024763

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14757624

Country of ref document: EP

Kind code of ref document: A1