WO2014132590A1 - アンテナ及び電子装置 - Google Patents

アンテナ及び電子装置 Download PDF

Info

Publication number
WO2014132590A1
WO2014132590A1 PCT/JP2014/000837 JP2014000837W WO2014132590A1 WO 2014132590 A1 WO2014132590 A1 WO 2014132590A1 JP 2014000837 W JP2014000837 W JP 2014000837W WO 2014132590 A1 WO2014132590 A1 WO 2014132590A1
Authority
WO
WIPO (PCT)
Prior art keywords
split
conductor pattern
auxiliary conductor
antenna
split ring
Prior art date
Application number
PCT/JP2014/000837
Other languages
English (en)
French (fr)
Inventor
淳 内田
Original Assignee
Necアクセステクニカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necアクセステクニカ株式会社 filed Critical Necアクセステクニカ株式会社
Priority to US14/767,329 priority Critical patent/US9685696B2/en
Priority to CN201480010421.0A priority patent/CN105009367B/zh
Publication of WO2014132590A1 publication Critical patent/WO2014132590A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • H01Q9/38Vertical arrangement of element with counterpoise
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas

Definitions

  • the present invention relates to an antenna and an electronic device.
  • metamaterials the propagation characteristics of electromagnetic waves can be controlled by periodically arranging conductor patterns having a specific structure (hereinafter referred to as metamaterials).
  • metamaterials Known as the most basic component of a metamaterial is a split ring resonator using a C-shaped split ring obtained by cutting an annular conductor at a part in the circumferential direction.
  • the split ring resonator can control the effective permeability by interacting with the magnetic field.
  • Patent Document 1 The technology of Patent Document 1 is disclosed as an antenna having a split ring resonator.
  • This invention solves the said subject, and it aims at providing the antenna and electronic device which can be manufactured cheaply while being small.
  • An antenna of the present invention that solves the above-described problems is provided with a first split ring portion formed in a substantially C shape on a first conductor layer located on one side of a dielectric layer, and on the other side of the dielectric layer.
  • a second split ring portion formed in a substantially C shape so as to face the first split ring portion with the dielectric layer interposed therebetween, and the first split ring portion and the second split layer
  • a split ring resonator including a plurality of ring portions spaced apart from each other in the substantially C-shaped circumferential direction and electrically connecting the first split ring portion and the second split ring portion.
  • a first split portion is formed in a substantially C-shaped open portion of the first split ring portion
  • a second split portion is formed in a substantially C-shaped open portion of the second split ring portion
  • Split part It said second split portion constitutes the split, functions as a capacitor.
  • An electronic device of the present invention that solves the above-described problems includes the antenna.
  • a two-layer configuration can be downsized to the same extent as a multilayer (for example, six-layer) configuration. Moreover, it is less expensive than a multi-layer configuration.
  • FIG. 1 is a schematic perspective view of an antenna according to a first embodiment. It is a schematic plan view and a layer exploded view (first embodiment). It is a schematic sectional drawing (1st Embodiment). It is a detailed sectional view of the auxiliary conductor pattern (first embodiment). It is a figure which shows the impedance characteristic of an antenna. It is a figure which shows a return loss characteristic. It is a figure which shows the relationship between the return loss and the matching loss of a radio
  • FIG. 1 is a schematic perspective view of an antenna according to a first embodiment of the present invention.
  • FIG. 2 is a schematic plan view. 1 and 2, the dielectric layers 9A and 9B of the dielectric multilayer substrate 7 are omitted to illustrate the structure of the inner layer.
  • the schematic plan view of FIG. 2 shows the details of the first split part 6a and the second split part 6b by disassembling the two layers together with the overall view.
  • FIG. 3 is a schematic sectional view
  • FIG. 4 is a detailed sectional view of the auxiliary conductor pattern.
  • the antenna 10 has a dielectric layer substrate 7 on which dielectric layers 9A and 9B are laminated.
  • the first split ring portion 1 is formed on the conductor layer (first conductor layer) 7A
  • the second split ring portion 2 is formed on the conductor layer (second conductor layer) 7B.
  • the first split ring portion 1 and the second split ring portion 2 are at least partially disposed so as to face each other with the dielectric layers 9A and 9B interposed therebetween.
  • the first split ring part 1 and the second split ring part 2 are substantially C-shaped, and the substantially C-shaped has an opening inside.
  • the first split ring portion 1 is formed with a rectangular opening 5a.
  • the second split ring portion 2 is formed with a rectangular opening 5b similar to the opening 5a.
  • the openings 5a and 5b are continuous with the substantially C-shaped opening.
  • the openings 5 a and 5 b are formed so as to overlap each other when viewed from a direction orthogonal to the surface of the dielectric multilayer substrate 7.
  • a split portion (first split portion) 6a is formed in a substantially C-shaped opening continuous with the opening 5a.
  • a split portion (second split portion) 6b is formed in a substantially C-shaped open portion that is continuous with the opening 5b.
  • the split portion 6a includes an auxiliary conductor pattern (first auxiliary conductor pattern) 11a formed at one end of the first split ring portion and a substantially C-shaped end, and between the distal end side of the auxiliary conductor pattern 11a and the other end of the substantially C-shaped portion.
  • a split (first split) 12a is formed.
  • the split portion 6b includes an auxiliary conductor pattern (second auxiliary conductor pattern) 11b formed at one end of the second split ring portion and a substantially C-shape, and between the distal end side of the auxiliary conductor pattern 11b and the other end of the substantially C-shape.
  • a split (second split) 12b is formed.
  • the auxiliary conductor pattern 11b is formed to face the auxiliary conductor pattern 11a. That is, the auxiliary conductor pattern 11a and the auxiliary conductor pattern 11b overlap each other when viewed from above (when viewed from a direction orthogonal to the surface of the dielectric multilayer substrate 7).
  • the entire auxiliary conductor pattern 11b is preferably formed to face the auxiliary conductor pattern 11a, but only a part of the auxiliary conductor pattern 11b is formed to face the auxiliary conductor pattern 11a. It may be.
  • the auxiliary conductor patterns 11a and 11b are rectangular and are arranged so as to bite into a substantially C-shape, but are not limited thereto.
  • the split 12b is formed on the opposite side of the split 12a facing position across the auxiliary conductor pattern 11b. That is, when viewed from above, the split 12a and the split 12b are in symmetrical positions with the auxiliary conductor patterns 11a and 11b interposed therebetween.
  • first split ring part 1 and the second split ring part 2 are configured symmetrically in a top view.
  • a plurality of through holes 3 are formed around the opening 5a and the opening 5b so as to surround the opening 5a and the opening 5b.
  • the plurality of through holes 3 penetrate through the dielectric layers 9A and 9B and electrically connect the first split ring part 1 and the second split ring part 2.
  • Antenna feed point 4 is the start of the antenna, where the microstrip line and coaxial cable (+) (-) that transmit radio waves without loss are connected (powered). There is a first layer split pattern on the feed point (+) side, and a second layer split pattern on the feed point ( ⁇ ) side.
  • the first split ring portion 1, the second split ring portion 2, and the feeder line are generally formed of copper foil, but may be formed of other materials as long as they are conductive. The same material may be sufficient and a different material may be sufficient.
  • the dielectric multilayer substrate 7 may be made of any material and by any process as long as it is a multilayer substrate (here, two layers).
  • the dielectric multilayer board 7 may be, for example, a printed board using glass epoxy resin, an interposer board such as LSI, or a ceramic material such as LTCC (Low Temperature Co-fired Ceramics). It may be a module substrate using a semiconductor substrate or a semiconductor substrate formed of single crystal silicon or the like.
  • the split ring resonator 13 is configured on the left dotted line in FIG. At this time, a split 14 is formed between the auxiliary conductor pattern 11a of the split part 6a and the auxiliary conductor pattern 11b of the split part 6b, and functions as a large-capacity capacitor between two layers (described later).
  • the impedance matching loop 15 is configured on the right dotted line in FIG.
  • the impedance matching loop 15 improves impedance matching between the antenna 10 and a radio circuit (not shown).
  • the capacitor via the split 12a functions, the capacitor via the split 14 has a larger capacity than the capacitor via the split 12a. The same applies to the capacitor through the split 12b.
  • the effects of the splits 12a and 12b are omitted.
  • the inductance L generated by the current flowing in the ring shape in the first split ring portion 1 and the second split ring portion 2 and the split portions 6a and 6b (particularly the auxiliary conductor patterns 11a and 11b) are generated.
  • An LC series resonance circuit (split ring resonator 13) composed of a capacitance C is formed, whereby the antenna 10 operates as an antenna near the resonance frequency.
  • the split ring resonator is fed with a high frequency signal from an RF (Radio Frequency) circuit via an antenna feeding point 4.
  • the antenna feeding point 4 has a feeding point (+) side and a feeding point ( ⁇ ) side.
  • the auxiliary conductor pattern 11a stores positive charges
  • the auxiliary conductor pattern 11b stores negative charges.
  • 14 functions as a capacitor between two layers (thick arrow shown in FIG. 4).
  • FIG. 5 shows the impedance characteristics of the antenna 10
  • FIG. 6 shows the return loss characteristics. In both cases, the antenna was measured from the feeding point 4 with a network analyzer.
  • Impedance characteristics are one way of looking at antenna behavior at high frequencies, and are drawn on the Smith chart. In general, the closer to 50 ⁇ (one place at the center of the circle) of the Smith chart circle, the better the antenna characteristics and the better the matching with the circuit side. In FIG. 5, the position approaches 1 at the center of the circle between marker 1 (2300 MHz) and marker 2 (2520 MHz) (approximately 2400 MHz).
  • FIG. 6 shows that the closer to 50 ⁇ , the smaller the return loss.
  • the trough portion (about 2400 MHz) shown in the figure is close to 50 ⁇ , and it can be seen that the antenna characteristics and the matching between the circuit and the antenna are improved.
  • the frequency corresponding to the valley formed between the marker 1 (2300 MHz) and the marker 2 (2520 MHz) is called the resonance frequency of the antenna. By approaching the resonance frequency, better antenna performance can be realized.
  • the example shown here is an example of designing a WiFi (WirelessWireFidelity) antenna, and it can be said that the antenna has a resonance frequency set to 2400-2500 MHz.
  • FIG. 7 is a diagram showing the relationship between return loss and matching loss between radio circuits.
  • the return loss exceeds 5 dB, the matching loss increases abruptly, so the return loss is designed to be less than 5 dB.
  • the return loss is less than 5 dB between the marker 1 (2300 MHz) and the marker 2 (2520 MHz), and it can be determined that the antenna described above has sufficient performance as a WiFi antenna.
  • FIG. 8 is a simplified diagram and an electrical equivalent circuit diagram of the split ring resonator 13 and the feeding point 4.
  • FIG. 8A is a simplified diagram of the split ring resonator 13 and the feeding point 4.
  • FIG. 8-2 is a diagram illustrating an electrical equivalent circuit. That is, the split part functions as a capacitor. The pattern length (ring) other than the split portion functions as a coil.
  • FIG. 8-2 is nothing but a series resonance circuit diagram of a capacitor and a coil when viewed from the feeding point.
  • Series resonance frequency f 1 / [2 ⁇ * ⁇ (L * C)], and this frequency becomes the antenna resonance frequency. If the series resonance frequency f is constant, the inductance L can be reduced by increasing the capacitance C.
  • the pattern width (area) of the auxiliary conductor patterns 11a and 11b is increased, the capacitor capacity is increased, and the coil, that is, the pattern length can be shortened. As a result, a small antenna can be realized.
  • the series resonance frequency f can also be adjusted by adjusting the pattern width (area) of the auxiliary conductor patterns 11a and 11b on the same principle. That is, the frequency can be lowered by increasing the capacitance C.
  • FIG. 9 is a plan view of Comparative Example 1.
  • FIG. Comparative Example 1 is an antenna with a pattern drawn on a single-layer printed circuit board.
  • the split portion 6 is formed between an auxiliary conductor pattern 16A formed at one end of a substantially C-shape, an auxiliary conductor pattern 16B formed at the other end of a substantially C-shape, and between the auxiliary conductor pattern 16A and the auxiliary conductor pattern 16B.
  • the auxiliary conductor pattern 16A and the auxiliary conductor pattern 16B face each other through the split 17 in the same layer, and the split portion 6 functions as a capacitor.
  • the split ring portion is a very thin copper foil, and the split portion 6 formed in the same layer is difficult to secure the capacitor capacity.
  • the present embodiment is an antenna patterned on a two-layer printed board, and the split portions 6a and 6b (particularly the auxiliary conductor patterns 11a and 11b) can increase the capacitor capacity.
  • this embodiment can be reduced in size compared with the comparative example 1.
  • 9 corresponds to the size of the split ring resonator 13 and the impedance matching loop 15 of the present embodiment. It can be seen that this size can be made very small.
  • FIG. 10 is a plan view of Comparative Example 2.
  • Comparative Example 2 is an antenna with a pattern drawn on a multilayer printed board.
  • the comparative example 1 is laminated (in the figure, 6 layers). The stack is disassembled and displayed so that the outline of Comparative Example 2 can be easily understood.
  • FIG. 11 is a detailed cross-sectional view of the auxiliary conductor pattern of Comparative Example 2. The top view which shows a cutting location is shown collectively.
  • the auxiliary conductor pattern 16 the left side in the figure is the A side, and the right side in the figure is the B side. Numbers a to f are assigned to correspond to the first to sixth layers. Capacitor capacity (thin arrow in the figure) can be increased by multilayering. As a result, the size can be reduced as in this embodiment.
  • this embodiment is an antenna in which a pattern is drawn on a two-layer printed board.
  • An antenna having the same size and the same performance as Comparative Example 2 (six layers) can be realized by two layers. That is, an antenna equivalent to Comparative Example 2 can be manufactured at a lower cost than that of Comparative Example 2.
  • a two-layer configuration can be downsized to the same extent as a multilayer (for example, six-layer) configuration. Moreover, it is less expensive than a multi-layer configuration. Further, by reducing the size and cost of the antenna, the electronic device including the antenna can be further reduced in size and cost.
  • FIG. 12 is a schematic perspective view of an antenna according to the second embodiment.
  • FIG. 13 is a schematic plan view. 12 and 13, the dielectric layers 9A and 9B of the dielectric multilayer substrate 7 are omitted in order to illustrate the structure of the inner layer.
  • the schematic plan view (FIG. 13) shows the details of the first split part 6a and the second split part 6b by disassembling the two layers together with the overall view.
  • FIG. 14 is a detailed sectional view of the auxiliary conductor pattern. In FIG. 14, the top view which shows a cutting location is shown collectively.
  • the schematic configuration of the second embodiment is the same as that of the first embodiment. However, the detailed configurations of the split part (first split part) 6a and the split part (second split part) 6b are different.
  • the split portion 6a includes an auxiliary conductor pattern 18aA (third A auxiliary conductor pattern) formed at a substantially C-shaped one end, an auxiliary conductor pattern 18aB (third B auxiliary conductor pattern) formed at a substantially C-shaped other end, It has a split 19a (third split) formed between the auxiliary conductor pattern 18aA and the auxiliary conductor pattern 18aB.
  • the split portion 6b includes an auxiliary conductor pattern 18bA (fourth A auxiliary conductor pattern) formed at one end of a substantially C shape, an auxiliary conductor pattern 18bB (fourth B auxiliary conductor pattern) formed at the other end of a substantially C shape, It has a split 19b (fourth split) formed between the auxiliary conductor pattern 18bA and the auxiliary conductor pattern 18bB.
  • the auxiliary conductor pattern 18bB is formed to face the auxiliary conductor pattern 18aA.
  • auxiliary conductor pattern 18bB may be formed to face the auxiliary conductor pattern 18aA, but it is more preferable that the whole is formed to face the auxiliary conductor pattern 18aA. Thereby, the capacitor capacity can be further increased.
  • the auxiliary conductor patterns 18aA, 18aB, 18bA, and 18Bb are rectangular and arranged so as to bite into a substantially C-shape, but are not limited thereto.
  • the split 19a and the split 19b are arranged so as to be shifted in a top view.
  • first split ring part 1 and the second split ring part 2 are configured symmetrically in top view.
  • the split ring resonator 13 is configured.
  • the split 20 is formed between the auxiliary conductor pattern 18aA of the split portion 6a and the auxiliary conductor pattern 18bB of the split portion 6b, and functions as a large-capacity capacitor between the two layers (shown in the upper diagram of FIG. 14). Thick arrow).
  • the antenna can be manufactured at a low cost while being small.
  • FIG. 15 is a schematic plan view of an antenna according to the third embodiment.
  • the stack is disassembled and displayed together with the overall view.
  • FIG. 16 is a detailed sectional view of the auxiliary conductor pattern.
  • the left side in the figure is the A side
  • the right side in the figure is the B side.
  • Numbers a to f are assigned to correspond to the first to sixth layers.
  • the top view which shows a cutting location is shown collectively.
  • the antenna in the third embodiment is obtained by stacking the antennas in the second embodiment. That is, the conductor layers 7A and the conductor layers 7B are alternately stacked (for example, six layers). In other words, the split 19a and the split 19b are arranged alternately.
  • the auxiliary conductor pattern 18cA is further formed so as to be opposed to the auxiliary conductor pattern 18bB, and a split 20b is formed between the auxiliary conductor patterns 18bA and functions as a large-capacity capacitor between the layers.
  • splits 20c to 20f are formed and function as a large-capacity capacitor between each layer (thick arrows in the figure).
  • the antenna in the third embodiment can have a larger capacitor capacity than the antenna in the second embodiment.
  • Comparative Example 2 is obtained by stacking Comparative Example 1 (see FIG. 9) (six layers in the drawing).
  • the auxiliary conductor pattern 16A and the auxiliary conductor pattern 16B face each other through the split 17 in the same layer, and the split portion 6 functions as a capacitor.
  • the split ring portion is a very thin copper foil, and the split portion 6 formed in the same layer is difficult to secure the capacitor capacity.
  • the auxiliary conductor pattern 16aA and the auxiliary conductor pattern 16bA face each other, a split is formed therebetween, and the auxiliary conductor pattern 16aB and the auxiliary conductor pattern 16bB face each other. However, a split is formed between them.
  • the same positive and negative charges are stored in the auxiliary conductor pattern 16aA and the auxiliary conductor pattern 16bA by feeding from the antenna feeding point 4.
  • the same positive and negative charges are stored in the auxiliary conductor pattern 16aB and the auxiliary conductor pattern 16bB. Therefore, it does not function as a capacitor through the split. Therefore, there is a limit to increasing the capacitor capacity.
  • the splits 20c to 20f function as a large-capacitance capacitor. Thereby, compared with the comparative example 2, further size reduction can be achieved.
  • both the comparative example 2 and the third embodiment are antennas patterned on a six-layer printed circuit board, and can be manufactured at the same price.
  • FIG. 17 is a schematic plan view of an antenna according to the fourth embodiment.
  • the stack is disassembled and displayed together with the overall view.
  • FIG. 18 is a detailed sectional view of the auxiliary conductor pattern. The top view which shows a cutting location is shown collectively.
  • the fourth embodiment is a stack of the first embodiment.
  • the splits 14a to 14f are formed, and each function as a large-capacitance capacitor (thick arrow in the figure).
  • the antenna in the fourth embodiment can have a larger capacitor capacity than the antenna in the first embodiment.
  • the effect similar to 3rd Embodiment is acquired. That is, according to the antenna in the fourth embodiment, the price is about the same as the multi-layer configuration described in Patent Document 1. While maintaining the same price, further downsizing can be achieved.
  • the antenna of the present invention includes the split ring resonator 13 including the first split ring portion 1, the substantially C-shaped second split ring portion 2, and the through hole 3.
  • the split ring portion 1 is formed in a substantially C shape on the first conductor layer 7A located on one surface side of the dielectric layer 9.
  • the substantially C-shaped second split ring portion 2 is opposed to the first split ring portion 1 with the dielectric layer 9 sandwiched between the second conductor layer 7B located on the other surface side of the dielectric layer 9. It is formed in a substantially C shape.
  • a plurality of through holes 3 are provided at intervals in the substantially C-shaped circumferential direction of the first split ring portion 1 and the second split ring portion 2.
  • the through hole 3 electrically connects the first split ring part 1 and the second split ring part 2.
  • a first split portion 6a (11a, 18aA, 18aB) is formed in a substantially C-shaped opening of the first split ring portion 1.
  • a second split portion 6b (11b, 18bA, 18bB) is formed in the substantially C-shaped opening of the second split ring portion 2.
  • the first split portion and the second split portion constitute a split (14, 20) and function as a capacitor.
  • the split ring resonator is an LC series resonance circuit. If the capacitance C is increased, the inductance L can be reduced. That is, the pattern length can be shortened. As a result, a small antenna can be realized.
  • the first split portion 6a includes a first auxiliary conductor pattern 11a formed at one end of a substantially C-shape, a distal end side of the first auxiliary conductor pattern, and a substantially C-shaped other end. 1st split 12a formed between.
  • the second split portion 6b includes a second auxiliary conductor pattern 11b formed at one end of a substantially C shape, and a second split 12b formed between the tip side of the second auxiliary conductor pattern and the other end of the substantially C shape. And have. Further, at least a part of the second auxiliary conductor pattern 11b is formed to face the first auxiliary conductor pattern 11a.
  • the second split 12b is formed on the side opposite to the first split facing position with the second auxiliary conductor pattern 11b interposed therebetween.
  • the auxiliary conductor patterns 11a and 11b are charged with positive and negative charges, and a large-capacity capacitor functions between the two layers.
  • the present invention corresponds to the first embodiment and the fourth embodiment.
  • the first split portion 6a includes a third A auxiliary conductor pattern 18aA formed at one end of a substantially C shape and a third B auxiliary conductor pattern 18aB formed at the other end of a substantially C shape. And a third split 19a formed between the 3A auxiliary conductor pattern and the 3B auxiliary conductor pattern.
  • the second split portion 6b includes a 4A auxiliary conductor pattern 18bA formed at one end of a substantially C shape, a 4B auxiliary conductor pattern 18bB formed at the other end of the substantially C shape, and a 4A auxiliary conductor pattern.
  • a fourth split 19b formed between the fourth B auxiliary conductor pattern. At least a part of the fourth B auxiliary conductor pattern 18bB is formed to face the 3A auxiliary conductor pattern 18aA.
  • the auxiliary conductor patterns 18aA and 18bB store different positive and negative charges, and a large-capacity capacitor functions between the two layers.
  • the present invention corresponds to the second embodiment and the third embodiment.
  • a pattern is drawn on a two-layer printed board.
  • a two-layer configuration can be downsized to the same extent as a multilayer (for example, six-layer) configuration. Moreover, it is less expensive than a multi-layer configuration.
  • the present invention corresponds to the first embodiment and the second embodiment.
  • a pattern is drawn on a printed board having three or more layers, and the first conductor layers 7A and the second conductor layers 7B are alternately laminated.
  • the present invention when the present invention is applied to a multilayer (three or more layers) configuration, further miniaturization can be achieved as compared with the existing multilayer configuration.
  • the price is similar to that of the multilayer structure described in Patent Document 1.
  • the present invention corresponds to the third embodiment and the fourth embodiment.
  • the electronic device of the present invention includes an antenna 10.
  • the present invention can be applied to, for example, an electronic device having a structure for radiating heat of an electronic board on which a heat generating component is mounted.

Abstract

スプリット部6aは、第1スプリットリング部の略C字状一端に形成される補助導体パターン11aと、これと略C字状他端との間に形成されるスプリット12aを有する。スプリット部6bは、第2スプリットリング部略C字状一端に形成される補助導体パターン11bと、これと略C字状他端との間に形成されるスプリット12bを有する。補助導体パターン11bは、補助導体パターン11aと対向するよう形成される。スプリット12bは、補助導体パターン11bを挟んでスプリット12a対向位置と反対側に形成される。補助導体パターン11aと補助導体パターン11bとの間にはスプリット14が構成され、正負の異なる電荷が蓄電され、大容量のコンデンサとして機能する。これにより、小型でありながら、安価に製造することができる。

Description

アンテナ及び電子装置
 本発明は、アンテナ及び電子装置に関する。
 特定の構造を有する導体パターンを周期的に配置すること(以下、メタマテリアルと記載)で電磁波の伝播特性を制御できることが明らかになっている。メタマテリアルの最も基本的な構成要素として知られるものに、環状の導体を周方向の一部で切断したC字状のスプリットリングを用いたスプリットリング共振器がある。スプリットリング共振器は、磁界と相互作用することで実効的な透磁率を制御することができる。
 スプリットリング共振器を備えたアンテナとして特許文献1の技術が開示されている。
特表2011-525721号公報
 通信機能を有した電子装置においては、常に小型化が望まれており、これに伴い、通信を担うアンテナも小型化が要求されている。そこで、スプリットリング共振器を利用してアンテナを小型化する技術が提案されている。
 発明者の研究結果から、多層化が小型化に有効であることがわかってきた。しかしながら、多層のプリント基板にパターン描画されたアンテナは高価である。一方、単層のプリント基板にパターン描画されたアンテナは安価であるが、小型化が難しい。
 本発明は上記課題を解決するものであり、小型でありながら、安価に製造可能なアンテナ及び電子装置を提供することを目的とする。
 上記課題を解決する本発明のアンテナは、誘電体層の一面側に位置する第1導体層に略C字状に形成された第1スプリットリング部と、前記誘電体層の他面側に位置する第2導体層に、前記誘電体層を挟んで前記第1スプリットリング部と対向するように略C字状に形成された第2スプリットリング部と、前記第1スプリットリング部および第2スプリットリング部の前記略C字状の周方向に間隔を隔てて複数備えられ、前記第1スプリットリング部と前記第2スプリットリング部とを電気的に接続するスルーホールと、を含むスプリットリング共振器を備え、前記第1スプリットリング部の略C字状開部に第1スプリット部が形成され、前記第2スプリットリング部の略C字状開部に第2スプリット部が形成され、前記第1スプリット部と前記第2スプリット部とがスプリットを構成し、コンデンサとして機能する。
 上記課題を解決する本発明の電子装置は、上記アンテナを備える。
 本発明は、2層構成でも、多層(たとえば6層)構成と同程度に小型化を図れる。しかも、多層構成に比べて安価である。
 本発明を多層(3層以上)構成に適用すると、既存の多層構成に比べて、更なる小型化を図ることができる。既存の多層構成と同程度の価格で製造できる。
 アンテナの小型化、安価化を図ることにより、更に、アンテナを備える電子装置の小型化、安価化を図ることができる。
第1実施形態に係るアンテナの概略斜視図である。 概略平面図と層分解図(第1実施形態)である。 概略断面図(第1実施形態)である。 補助導体パターンの詳細断面図(第1実施形態)である。 アンテナのインピーダンス特性を示す図である。 リターンロス特性を示す図である。 リターンロスと無線回路との整合損失との関係を示す図である。 スプリットリング共振器と給電点を簡略化した図および電気的等価回路図である。 比較例1の平面図である。 比較例2の平面図(層分解図)である。 補助導体パターンの詳細断面図(比較例2)である。 第2実施形態に係るアンテナの概略斜視図である。 概略平面図と層分解図(第2実施形態)である。 補助導体パターンの詳細断面図(第2実施形態)である。 概略平面図(層分解図)(第3実施形態)である。 補助導体パターンの詳細断面図(第3実施形態)である。 概略平面図と層分解図(第4実施形態)である。 補助導体パターンの詳細断面図(第4実施形態)である。
 <第1実施形態>
 ~構成~
 次に、本発明の実施の形態の構成について図面を参照して詳細に説明する。図1は、本発明の第1実施形態に係るアンテナの概略斜視図である。図2は、概略平面図である。なお、図1、図2では内層の構造を図示するため、誘電体多層基板7の誘電体層9A、9Bを省略している。図2の概略平面図は、全体図とともに、2層を分解して第1スプリット部6aおよび第2スプリット部6bの詳細を示す。図3は、概略断面図であり、図4は補助導体パターンの詳細断面図である。
 アンテナ10は、誘電体層9A、9Bが積層された誘電体層基板7を有する。導体層(第1導体層)7Aに、第1スプリットリング部1が形成され、導体層(第2導体層)7Bに、第2スプリットリング部2が形成される。
 第1スプリットリング部1と第2スプリットリング部2は、少なくとも一部で、誘電体層9A、9Bを挟んで、互いに対向するように配置されている。
 第1スプリットリング部1と第2スプリットリング部2は、略C字状をしており、略C字状は内部に開口部を有する。
 すなわち、第1スプリットリング部1には長方形の開口部5aが形成されている。また、第2スプリットリング部2には開口部5aと同様の長方形の開口部5bが形成されている。開口部5a、5bは、略C字状開部と連続している。開口部5a、5bは、それぞれ誘電体多層基板7の表面に直交する方向から見たときに、互いに重なるよう形成されている。
 開口部5aと連続する略C字状開部において、スプリット部(第1スプリット部)6aが形成されている。開口部5bと連続する略C字状開部において、スプリット部(第2スプリット部)6bが形成されている。
 スプリット部6aは、第1スプリットリング部略C字状一端に形成される補助導体パターン(第1補助導体パターン)11aと、補助導体パターン11aの先端側と略C字状他端との間に形成されるスプリット(第1スプリット)12aを有する。
 スプリット部6bは、第2スプリットリング部略C字状一端に形成される補助導体パターン(第2補助導体パターン)11bと、補助導体パターン11bの先端側と略C字状他端との間に形成されるスプリット(第2スプリット)12bを有する。
 補助導体パターン11bは、補助導体パターン11aと対向するよう形成される。すなわち、上面視(誘電体多層基板7の表面に直交する方向から見たとき)にて、補助導体パターン11aと補助導体パターン11bとは重なっている。
 なお、図示の様に、補助導体パターン11b全体が、補助導体パターン11aと対向するよう形成されることが好ましいが、補助導体パターン11bの一部のみが補助導体パターン11aと対向するように形成されていてもよい。
 また、図示では、補助導体パターン11a、11bは、長方形であり、略C字状内に食い込むように配置されているが、これに限定されない。
 スプリット12bは、補助導体パターン11bを挟んでスプリット12a対向位置と反対側に形成される。すなわち、上面視にて、スプリット12aとスプリット12bとは、補助導体パターン11a、11bを挟んで対称位置にある。
 上記構成を言い換えると、第1スプリットリング部1と第2スプリットリング部2は上面視で左右対称に構成される。
 上面視で、開口部5aおよび開口部5bの周囲には、複数のスルーホール3が開口部5a、開口部5bを囲むように形成されている。複数のスルーホール3は、誘電体層9A、9Bを貫通して、第1スプリットリング部1と第2スプリットリング部2とを電気的に接続している。
 アンテナ給電点4は、電波をロス無く伝達するマイクロストリップラインや同軸ケーブルの(+)(-)を接続(給電)する所で、アンテナの始まりである。給電点(+)側には第1層スプリット用パターンがあり、給電点(-)側には第2層スプリット用パターンがある。
 第1スプリットリング部1、第2スプリットリング部2、および給電線は、銅箔で形成される場合が一般的であるが、導電性であれば他の素材で形成されてもよく、各々が同じ素材であってもよいし、異なる素材であってもよい。
 誘電体多層基板7は、多層基板(ここでは2層)であれば、どのような材料で、どのようなプロセスで作られたものでもよい。誘電体多層基板7は、例えば、ガラスエポキシ樹脂を用いたプリント基板であってもよいし、LSI等のインターポーザー基板であってもよいし、LTCC(Low Temperature Co-fired Ceramics)などのセラミック材料を用いたモジュール基板であってもよいし、単結晶シリコンなどで形成された半導体基板であってもよい。
 図2左側点線において、スプリットリング共振器13が構成される。このとき、スプリット部6aの補助導体パターン11aとスプリット部6bの補助導体パターン11bとの間にはスプリット14が構成され、2層間にて大容量のコンデンサとして機能する(後述)。
 図2右側点線において、インピーダンス整合用ループ15が構成される。このインピーダンス整合用ループ15は、アンテナ10と無線回路(図示せず)間のインピーダンス整合をより良くするものである。
 なお、スプリット12aを介したコンデンサが機能するが、スプリット14を介したコンデンサの方が、スプリット12aを介したコンデンサよりも大容量である。スプリット12bを介したコンデンサも同様である。以下、スプリット12a、12bによる効果は省略する。
 ~動作~
 上記構成のアンテナ10によれば、第1スプリットリング部1、第2スプリットリング部2をリング状に流れる電流によって生じるインダクタンスLと、スプリット部6a、6b(特に補助導体パターン11a、11b)に生じるキャパシタンスCと、からなるLC直列共振回路(スプリットリング共振器13)が形成され、これによってアンテナ10が共振周波数付近でアンテナとして動作する。スプリットリング共振器には、アンテナ給電点4を介してRF(Radio Frequency)回路から高周波信号が給電される。
 アンテナ給電点4には給電点(+)側と給電点(-)側があり、例えば、補助導体パターン11aには正の電荷が蓄電し、補助導体パターン11bには負の電荷が蓄電し、スプリット14を介して、2層間にてコンデンサとして機能する(図4に図示した太い矢印)。
 ~実証試験~
 図5は、アンテナ10のインピーダンス特性であり、図6は、リターンロス特性である。両者とも給電点4からアンテナをネットワークアナライザーで計測したものである。
 インピーダンス特性は、高周波においてのアンテナの振る舞いを見る1つの見方であり、スミスチャートに描かれる。一般的にはスミスチャート円の中心の50Ω(円中心の1の場所)に近い程、アンテナとしての特性が良く更に回路側との整合も良くなる。図5では、マーカー1(2300MHz)とマーカー2(2520 MHz)との間(おおよそ、2400MHz程度)で円中心の1の場所に近づく。
 またリターンロスとは、インピーダンスと全く同じ測定をするもので、単にチャート(図表)が異なるのみである。図6は、50Ωに近ければ近い程リターンロスが小さな値になることを示している。図6において、図示の谷の部分(およそ2400MHz程度)が50Ωに近く、アンテナの特性及び回路とアンテナの整合が良くなる事が分かる。マーカー1(2300MHz)とマーカー2(2520 MHz)との間に形成される谷に相当する周波数はアンテナの共振周波数と呼ばれる。この共振周波数に近づけることにより、より良好なアンテナの性能を実現できる。
 ちなみに、ここで示した例は、WiFi(Wireless Fidelity)のアンテナを設計した例であり、2400~2500MHzに共振周波数を設定したアンテナであると言える。
 図7はリターンロスと無線回路との整合損失との関係を示す図である。リターンロスが5dB以上になると整合損失は急激に増加するため、リターンロスを5dB未満となるように設計する。図6において、マーカー1(2300MHz)とマーカー2(2520 MHz)との間でリターンロスが5dB未満となっており、前述したアンテナは、WiFiアンテナとして充分な性能を有すると判断出来る。
 ~基本原理~
 アンテナを小型化できる理由を説明する。図8は、スプリットリング共振器13と給電点4を簡略化した図および電気的等価回路図である。図8-1は、スプリットリング共振器13と給電点4を簡略した図である。図8-2は、電気的等価回路を示す図である。すなわち、スプリット部はコンデンサとして機能する。スプリット部以外のパターン長(リング)はコイルとして機能する。図8-2は、給電点から見れば、コンデンサとコイルの直列共振回路図に他ならない。
 直列共振周波数f=1/[2π*√(L*C)]であり、この周波数がアンテナ共振周波数となる。直列共振周波数fを一定にするならば、キャパシタンスCを大きくすれば、インダクタンスLを小さくできる。
 言い換えると、補助導体パターン11a、11bのパターン幅(面積)を大きくすれば、コンデンサ容量が大きくなり、コイルすなわちパターン長を短くできる。その結果、小型なアンテナが実現可能になる。
 なお、同様の原理で、補助導体パターン11a、11bのパターン幅(面積)を調整することで、直列共振周波数fを調整することもできる。すなわち、キャパシタンスCを大きくすることで低周波化することができる。
 ~効果~
 比較例1および比較例2と比較することにより、本実施形態の効果について説明する。
 図9は、比較例1の平面図である。比較例1は、単層のプリント基板にパターン描画されたアンテナである。スプリット部6は、略C字状一端に形成される補助導体パターン16Aと、略C字状他端に形成される補助導体パターン16Bと、補助導体パターン16Aと補助導体パターン16Bとの間に形成されるスプリット17とを有する。
 補助導体パターン16Aと補助導体パターン16Bとはスプリット17を介して同一層で対向し、スプリット部6はコンデンサとして機能する。しかし、スプリットリング部は非常に薄い銅箔であり、同一層に形成されたスプリット部6はコンデンサ容量を確保し難い。
 これに対し、本実施形態は、2層のプリント基板にパターン描画されたアンテナであり、スプリット部6a、6b(特に補助導体パターン11a、11b)はコンデンサ容量を大きくできる。
 これにより、本実施形態を比較例1に比べて小型化できる。図9における点線部で囲われた領域は、本実施形態のスプリットリング共振器13およびインピーダンス整合用ループ15の大きさに対応する。この大きさを非常に小さく構成出来る事が分かる。
 図10は、比較例2の平面図である。比較例2は、多層のプリント基板にパターン描画されたアンテナである。比較例1を積層(図示では6層)したものである。比較例2の概略が判りやすいように、積層を分解して表示している。図11は、比較例2の補助導体パターンの詳細断面図である。切断箇所を示す平面図を併せて示す。補助導体パターン16において、図示左側をA側とし、図示右側をB側とする。第1~6層に対応するようにa~fを付番する。多層化により、コンデンサ容量(図示細い矢印)を大きくできる。その結果、本実施形態と同様に小型化できる。
 しかしながら、多層のプリント基板にパターン描画されたアンテナは高価である。
 これに対し、本実施形態は、2層のプリント基板にパターン描画されたアンテナである。比較例2(6層)と同等のサイズで同性能のアンテナを2層で実現できる。すなわち、比較例2と同等のアンテナを、比較例2に比べて安価に製造できる。
 以上の様に、本発明の第1実施形態におけるアンテナによれば、2層構成でも、多層(たとえば6層)構成と同程度に小型化を図れる。しかも、多層構成に比べて安価である。また、アンテナの小型化、安価化を図ることにより、更に、アンテナを備える電子装置の小型化、安価化を図ることができる。
 <第2実施形態>
 図12は、第2実施形態に係るアンテナの概略斜視図である。図13は概略平面図である。図12および図13では、内層の構造を図示するため、誘電体多層基板7の誘電体層9A、9Bを省略している。概略平面図(図13)は、全体図とともに、2層を分解して、第1スプリット部6aおよび第2スプリット部6bの詳細を示す。図14は補助導体パターンの詳細断面図である。図14では、切断箇所を示す平面図を併せて示す。
 第2実施形態の概略構成は、第1実施形態と共通である。ただし、スプリット部(第1スプリット部)6aおよびスプリット部(第2スプリット部)6bの詳細構成が異なる。
 スプリット部6aは、略C字状一端に形成される補助導体パターン18aA(第3A補助導体パターン)と、略C字状他端に形成される補助導体パターン18aB(第3B補助導体パターン)と、補助導体パターン18aAと補助導体パターン18aBとの間に形成されるスプリット19a(第3スプリット)とを有する。
 スプリット部6bは、略C字状一端に形成される補助導体パターン18bA(第4A補助導体パターン)と、略C字状他端に形成される補助導体パターン18bB(第4B補助導体パターン)と、補助導体パターン18bAと補助導体パターン18bBとの間に形成されるスプリット19b(第4スプリット)とを有する。
 補助導体パターン18bBは、補助導体パターン18aAと対向するよう形成される。
 なお、図示の様に、補助導体パターン18bBの一部が、補助導体パターン18aAと対向するよう形成されていてもよいが、全部が対向するように形成されていると更に良い。これにより、コンデンサ容量をより大きくすることができる。
 また、図示では、補助導体パターン18aA、18aB、18bA、18Bbは、長方形であり、略C字状内に食い込むように配置されているが、これに限定されない。
 スプリット19aとスプリット19bとは上面視にてズレて配置される。
 上記構成を言い換えると、第1スプリットリング部1と第2スプリットリング部2とは上面視左右対称に構成される。
 第2実施形態でも、スプリットリング共振器13が構成される。このとき、スプリット部6aの補助導体パターン18aAとスプリット部6bの補助導体パターン18bBとの間にはスプリット20が構成され、2層間にて大容量のコンデンサとして機能する(図14の上図に図示した太い矢印)。
 すなわち、アンテナ給電点4からの給電により、補助導体パターン18aAと補助導体パターン18bBとには、それぞれ正負の異なる電荷が蓄電する。
 これにより、第2実施形態においても、第1実施形態と同様な効果が得られる。すなわち、アンテナを、小型でありながら、安価に製造可能である。
 <第3実施形態>
 ~構成・動作~
 図15は、第3実施形態に係るアンテナの概略平面図である。概略平面図は、全体図とともに、積層を分解して表示する。図16は補助導体パターンの詳細断面図である。補助導体パターン18において、図示左側をA側とし、図示右側をB側とする。第1~6層に対応するようにa~fを付番する。図16では、切断箇所を示す平面図を併せて示す。
 第3実施形態におけるアンテナは、第2実施形態におけるアンテナを積層したものである。すなわち、導体層7Aと導体層7Bが交互に積層される(例えば6層)。言い換えると、スプリット19aとスプリット19bとが互い違いになるように配置される。
 これにより、更に、補助導体パターン18cAは、補助導体パターン18bBと対向するよう形成され、その間には、スプリット20bが構成され、層間にて大容量のコンデンサとして機能する。
 同様に、スプリット20c~fが構成され、それぞれ各層間にて大容量のコンデンサとして機能する(図示太い矢印)。その結果、第3実施形態におけるアンテナは、第2実施形態におけるアンテナに比べて、更にコンデンサ容量を大きくできる。
 ~効果~
 図10および図11に示す比較例2と比較することにより、第3実施形態の効果について説明する。
 比較例2は、比較例1(図9参照)を積層(図示では6層)したものである。比較例1において、補助導体パターン16Aと補助導体パターン16Bとはスプリット17を介して同一層で対向し、スプリット部6はコンデンサとして機能する。しかし、スプリットリング部は非常に薄い銅箔であり、同一層に形成されたスプリット部6はコンデンサ容量を確保し難い。
 比較例2において、多層化により、コンデンサ容量を大きくできる(図示細い矢印)。しかし、下記の様に大容量化に限界がある。
 図11に示されるように、第1層と第2層において、補助導体パターン16aAと補助導体パターン16bAとが対向し、間にスプリットが構成され、補助導体パターン16aBと補助導体パターン16bBとが対向し、間にスプリットが構成されている。
 アンテナ給電点4からの給電により、補助導体パターン16aAと補助導体パターン16bAとには、同じ正負の電荷が蓄電する。同様に、補助導体パターン16aBと補助導体パターン16bBとには、同じ正負の電荷が蓄電する。したがって、スプリットを介してコンデンサとして機能しない。したがって、コンデンサ容量の大容量化に限界がある。
 これに対し、第3実施形態におけるアンテナでは、スプリット20c~fが大容量のコンデンサとして機能する。これにより、比較例2に比べて、更なる小型化を図ることができる。一方、比較例2も第3実施形態も、6層のプリント基板にパターン描画されたアンテナであり、同程度の価格で製造可能である。
 <第4実施形態>
 図17は、第4実施形態に係るアンテナの概略平面図である。概略平面図は、全体図とともに、積層を分解して表示する。図18は補助導体パターンの詳細断面図である。切断箇所を示す平面図を併せて示す。
 第3実施形態が、第2実施形態を積層したものであるのに対し、第4実施形態は、第1実施形態を積層したものである。
 これにより、図18に示されるように、スプリット14a~fが構成され、それぞれ大容量のコンデンサとして機能する(図示太い矢印)。その結果、第4実施形態におけるアンテナは、第1実施形態におけるアンテナに比べて、更にコンデンサ容量を大きくできる。
 これにより、第4実施形態においても、第3実施形態と同様な効果が得られる。すなわち、第4実施形態におけるアンテナによれば、特許文献1に記載の多層構成と同程度の価格である。
同程度の価格を維持しながら、更なる小型化を図ることができる。
 以上の通り、本発明のアンテナは、第1スプリットリング部1と、略C字状の第2スプリットリング部2と、スルーホール3とを含むスプリットリング共振器13を備えている。スプリットリング部1は、誘電体層9の一面側に位置する第1導体層7Aに略C字状に形成されている。略C字状の第2スプリットリング部2は、誘電体層9の他面側に位置する第2導体層7Bに、誘電体層9を挟んで前記第1スプリットリング部1と対向するように略C字状に形成されている。スルーホール3は、第1スプリットリング部1および第2スプリットリング部2の略C字状の周方向に間隔を隔てて複数備えられている。また、スルーホール3は、第1スプリットリング部1と第2スプリットリング部2とを電気的に接続する。また、前記第1スプリットリング部1の略C字状開部に第1スプリット部6a(11a、18aA、18aB)が形成されている。また、前記第2スプリットリング部2の略C字状開部に第2スプリット部6b(11b、18bA、18bB)が形成されている。また、前記第1スプリット部と前記第2スプリット部とがスプリット(14、20)を構成し、コンデンサとして機能する。
 このように、正負の異なる電荷を給電することにより、第1スプリットリング部1、2、すなわち、2層間で、大容量のコンデンサが機能する。スプリットリング共振器はLC直列共振回路であり、キャパシタンスCを大きくすれば、インダクタンスLを小さくできる。すなわち、パターン長を短くできる。その結果、小型なアンテナが実現可能になる。
 更に好ましくは、本発明のアンテナにおいて、第1スプリット部6aは、略C字状一端に形成される第1補助導体パターン11aと、第1補助導体パターンの先端側と略C字状他端との間に形成される第1スプリット12aとを有する。第2スプリット部6bは、略C字状一端に形成される第2補助導体パターン11bと、第2補助導体パターンの先端側と略C字状他端との間に形成される第2スプリット12bとを有する。また、第2補助導体パターン11bの少なくとも一部は、第1補助導体パターン11aと対向するよう形成されている。第2スプリット12bは、第2補助導体パターン11bを挟んで第1スプリット対向位置と反対側に形成されている。
 このように、上面視左右対称の構成とすることにより、補助導体パターン11a、11bには、正負の異なる電荷が蓄電され、2層間で、大容量のコンデンサが機能する。本発明は、第1実施形態および第4実施形態に対応する。
 本発明のアンテナにおいて、更に好ましくは、第1スプリット部6aは、略C字状一端に形成される第3A補助導体パターン18aAと、略C字状他端に形成される第3B補助導体パターン18aBと、第3A補助導体パターンと第3B補助導体パターンとの間に形成される第3スプリット19aとを有する。また、第2スプリット部6bは、略C字状一端に形成される第4A補助導体パターン18bAと、略C字状他端に形成される第4B補助導体パターン18bBと、第4A補助導体パターンと第4B補助導体パターンとの間に形成される第4スプリット19bとを有する。第4B補助導体パターン18bBの少なくとも一部は、第3A補助導体パターン18aAと対向するよう形成されている。
 このように、上面視左右対称の構成とすることにより、補助導体パターン18aA、18bBには、正負の異なる電荷が蓄電され、2層間で、大容量のコンデンサが機能する。本発明は、第2実施形態および第3実施形態に対応する。
 本発明のアンテナにおいて、更に好ましくは、2層のプリント基板にパターン描画される。
 本発明は、2層構成でも、多層(たとえば6層)構成と同程度に小型化を図れる。しかも、多層構成に比べて安価である。本発明は、第1実施形態および第2実施形態に対応する。
 本発明のアンテナにおいて、更に好ましくは、3層以上のプリント基板にパターン描画され、第1導体層7Aと第2導体層7Bが交互に積層される。
 このように、本発明を多層(3層以上)構成に適用すると、既存の多層構成に比べて、更なる小型化を図ることができる。特許文献1に記載の多層構成と同程度の価格である。本発明は、第3実施形態および第4実施形態に対応する。
 本発明の電子装置は、アンテナ10を備える。
 以上、実施の形態をもとに本発明を説明した。実施の形態は例示であり、本発明の主旨から逸脱しない限り、上述各実施の形態に対して、さまざまな変更、増減、組合せを加えてもよい。これらの変更、増減、組合せが加えられた変形例も本発明の範囲にあることは当業者に理解されるところである。
 この出願は、2013年2月26日に出願された日本出願特願2013-035234を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、例えば、発熱部品が搭載された電子基板の熱を放熱する構造を備えた電子装置等に適用することが可能である。
 1  第1スプリットリング部
 2  第2スプリットリング部
 3  スルーホール
 4  給電点
 5a、5b 開口部
 6a スプリット部(第1スプリット部)
 6b スプリット部(第2スプリット部)
 6c スプリット部
 7  誘電体多層基板
 7A 導体層(第1導体層)
 7B 導体層(第2導体層)
 9A、9B 誘電体層
 10 アンテナ
 11a 補助導体パターン(第1補助導体パターン)
 11b 補助導体パターン(第2補助導体パターン)
 11c~f 補助導体パターン
 12a スプリット(第1スプリット)
 12b スプリット(第2スプリット)
 13 スプリットリング共振器
 14、14a~f スプリット
 15 インピーダンス整合用ループ
 16、16a~f スプリット(比較例)
 17、17a~f スプリット(比較例)
 18aA 補助導体パターン(第3A補助導体パターン)
 18aB 補助導体パターン(第3B補助導体パターン)
 18bA 補助導体パターン(第4A補助導体パターン)
 18bB 補助導体パターン(第4B補助導体パターン)
 18cA~fB 補助導体パターン
 19a スプリット(第3スプリット)
 19b スプリット(第4スプリット)
 19c~f スプリット
 20、20a~f スプリット

Claims (6)

  1.  誘電体層の一面側に位置する第1導体層に略C字状に形成された第1スプリットリング部と、
     前記誘電体層の他面側に位置する第2導体層に、前記誘電体層を挟んで前記第1スプリットリング部と対向するように略C字状に形成された第2スプリットリング部と、
     前記第1スプリットリング部および第2スプリットリング部の前記略C字状の周方向に間隔を隔てて複数備えられ、前記第1スプリットリング部と前記第2スプリットリング部とを電気的に接続するスルーホールと、
     を含むスプリットリング共振器を備え、
     前記第1スプリットリング部の略C字状開部に第1スプリット部が形成され、
     前記第2スプリットリング部の略C字状開部に第2スプリット部が形成され、
     前記第1スプリット部と前記第2スプリット部とがスプリットを構成し、コンデンサとして機能する
     ことを特徴とするアンテナ。
  2.  前記第1スプリット部は、
     略C字状一端に形成される第1補助導体パターンと、
     該第1補助導体パターンの先端側と略C字状他端との間に形成される第1スプリットと
     を有し、
     前記第2スプリット部は、
     略C字状一端に形成される第2補助導体パターンと、
     該第2補助導体パターンの先端側と略C字状他端との間に形成される第2スプリットと
     を有し、
     前記第2補助導体パターンの少なくとも一部は、前記第1補助導体パターンと対向するよう形成され、
     前記第2スプリットは、前記第2補助導体パターンを挟んで前記第1スプリット対向位置と反対側に形成される
     ことを特徴とする請求項1記載のアンテナ。
  3.  前記第1スプリット部は、
     略C字状一端に形成される第3A補助導体パターンと、
     略C字状他端に形成される第3B補助導体パターンと、
     該第3A補助導体パターンと該第3B補助導体パターンとの間に形成される第3スプリットと
     を有し、
     前記第2スプリット部は、
     略C字状一端に形成される第4A補助導体パターンと、
     略C字状他端に形成される第4B補助導体パターンと、
     該第4A補助導体パターンと該第4B補助導体パターンとの間に形成される第4スプリットと
     を有し、
     前記第4B補助導体パターンの少なくとも一部は、前記第3A補助導体パターンと対向するよう形成される
     ことを特徴とする請求項1記載のアンテナ。
  4.  2層のプリント基板にパターン描画される
     ことを特徴とする請求項1~3記載のアンテナ。
  5.  3層以上のプリント基板にパターン描画され、
     前記第1導体層と前記第2導体層が交互に積層される
     ことを特徴とする請求項1~3記載のアンテナ。
  6.  請求項1~5記載のアンテナを備えることを特徴とする電子装置。
PCT/JP2014/000837 2013-02-26 2014-02-19 アンテナ及び電子装置 WO2014132590A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/767,329 US9685696B2 (en) 2013-02-26 2014-02-19 Antenna and electronic device
CN201480010421.0A CN105009367B (zh) 2013-02-26 2014-02-19 天线及电子装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013035234A JP5725573B2 (ja) 2013-02-26 2013-02-26 アンテナ及び電子装置
JP2013-035234 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014132590A1 true WO2014132590A1 (ja) 2014-09-04

Family

ID=51427869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000837 WO2014132590A1 (ja) 2013-02-26 2014-02-19 アンテナ及び電子装置

Country Status (4)

Country Link
US (1) US9685696B2 (ja)
JP (1) JP5725573B2 (ja)
CN (2) CN107681275B (ja)
WO (1) WO2014132590A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131319A (ja) * 2015-01-14 2016-07-21 Necプラットフォームズ株式会社 アンテナ構造
JPWO2014132519A1 (ja) * 2013-02-26 2017-02-02 日本電気株式会社 アンテナ、プリント基板、及び無線通信装置
JP2017098872A (ja) * 2015-11-27 2017-06-01 Necプラットフォームズ株式会社 アンテナ装置、無線通信装置およびアンテナ形成方法
WO2020213295A1 (ja) * 2019-04-17 2020-10-22 日本電気株式会社 スプリットリング共振器及び通信装置
JP2021005819A (ja) * 2019-06-27 2021-01-14 日本航空電子工業株式会社 アンテナ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009143289A2 (en) 2008-05-20 2009-11-26 Deka Products Limited Partnership Rfid system
JP5947263B2 (ja) * 2013-08-27 2016-07-06 Necプラットフォームズ株式会社 アンテナおよび無線通信装置
JP6426493B2 (ja) * 2015-02-16 2018-11-21 Necプラットフォームズ株式会社 アンテナ構造および電子機器
JP6659519B2 (ja) 2016-11-02 2020-03-04 株式会社東芝 アンテナ装置
KR102486593B1 (ko) * 2017-12-19 2023-01-10 삼성전자 주식회사 수직편파 방사를 지원하는 안테나 모듈 및 이를 포함하는 전자장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082170A (ja) * 2005-09-13 2007-03-29 Samsung Electronics Co Ltd 二重帯域アンテナ
US20110032165A1 (en) * 2009-08-05 2011-02-10 Chew Chwee Heng Antenna with multiple coupled regions
WO2011086723A1 (ja) * 2010-01-18 2011-07-21 株式会社村田製作所 アンテナ及び無線通信装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4219634B2 (ja) * 2002-08-01 2009-02-04 凌和電子株式会社 磁気センサ、側面開放型temセル、およびこれらを利用した装置
KR100995265B1 (ko) * 2003-12-25 2010-11-19 미쓰비시 마테리알 가부시키가이샤 안테나 장치 및 통신기기
JP5024587B2 (ja) * 2005-12-07 2012-09-12 日本電気株式会社 磁界および電流測定に使用される磁界検出器及び電流測定方法
EP1855348A1 (en) 2006-05-11 2007-11-14 Seiko Epson Corporation Split ring resonator bandpass filter, electronic device including said bandpass filter, and method of producing said bandpass filter
KR100942424B1 (ko) 2008-02-20 2010-03-05 주식회사 이엠따블유 자석 유전체를 이용한 메타머티리얼 안테나
CN102142617A (zh) 2011-01-21 2011-08-03 杭州电子科技大学 基于高阶腔体谐振模式的高增益集成天线
CN202019043U (zh) 2011-02-21 2011-10-26 上海大学 具有陡峭边带特性的基片集成波导滤波器
JP5609922B2 (ja) * 2011-08-10 2014-10-22 株式会社村田製作所 アンテナ装置および通信端末装置
CN105896093B (zh) * 2011-08-24 2019-10-18 日本电气株式会社 天线和电子装置
US9748641B2 (en) * 2013-02-20 2017-08-29 Nec Platforms, Ltd. Antenna device and method for designing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082170A (ja) * 2005-09-13 2007-03-29 Samsung Electronics Co Ltd 二重帯域アンテナ
US20110032165A1 (en) * 2009-08-05 2011-02-10 Chew Chwee Heng Antenna with multiple coupled regions
WO2011086723A1 (ja) * 2010-01-18 2011-07-21 株式会社村田製作所 アンテナ及び無線通信装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014132519A1 (ja) * 2013-02-26 2017-02-02 日本電気株式会社 アンテナ、プリント基板、及び無線通信装置
US9960483B2 (en) 2013-02-26 2018-05-01 Nec Corporation Antenna, printed circuit board, and wireless communication device
JP2016131319A (ja) * 2015-01-14 2016-07-21 Necプラットフォームズ株式会社 アンテナ構造
JP2017098872A (ja) * 2015-11-27 2017-06-01 Necプラットフォームズ株式会社 アンテナ装置、無線通信装置およびアンテナ形成方法
WO2020213295A1 (ja) * 2019-04-17 2020-10-22 日本電気株式会社 スプリットリング共振器及び通信装置
US11843159B2 (en) 2019-04-17 2023-12-12 Japan Aviation Electronics Industry, Limited Split ring resonator and communication device
JP2021005819A (ja) * 2019-06-27 2021-01-14 日本航空電子工業株式会社 アンテナ

Also Published As

Publication number Publication date
US20150380809A1 (en) 2015-12-31
CN105009367B (zh) 2018-01-12
US9685696B2 (en) 2017-06-20
CN107681275B (zh) 2020-02-21
CN107681275A (zh) 2018-02-09
CN105009367A (zh) 2015-10-28
JP2014165683A (ja) 2014-09-08
JP5725573B2 (ja) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2014132590A1 (ja) アンテナ及び電子装置
US10218071B2 (en) Antenna and electronic device
JP6222103B2 (ja) アンテナ及び無線通信装置
JP3640595B2 (ja) 積層パターンアンテナ及びそれを備えた無線通信装置
US7477201B1 (en) Low profile antenna pair system and method
JP5711318B2 (ja) アンテナ装置及びこれを用いた無線通信機器
US10992042B2 (en) High-frequency transmission line
US9960483B2 (en) Antenna, printed circuit board, and wireless communication device
KR20040064740A (ko) 필터 회로
US9935601B2 (en) LC parallel resonant element
TW200921994A (en) Antenna device
KR101926549B1 (ko) 안테나 장치
KR20110010938A (ko) 메타머티리얼을 이용한 다층 구조 안테나 및 이를 포함하는 이동 통신 장치
JP2015185910A (ja) 通信装置及びアンテナ装置
CN112615114B (zh) 天线结构及移动终端
US8725095B2 (en) Planar inverted-F antennas, and modules and systems in which they are incorporated
US10062960B2 (en) Antenna element, antenna device, and wireless communication equipment using the same
JP5729636B2 (ja) バンドパスフィルタ及びこれを用いた複合部品
JP2005311979A (ja) 帯域フィルタおよび高周波モジュール
JP2010252056A (ja) 積層型誘電体フィルタ
JP2008244713A (ja) 高周波フィルタ
JP2006238092A (ja) 積層ストリップラインフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14767329

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757221

Country of ref document: EP

Kind code of ref document: A1