WO2014129528A1 - 映像信号処理装置及び方法 - Google Patents

映像信号処理装置及び方法 Download PDF

Info

Publication number
WO2014129528A1
WO2014129528A1 PCT/JP2014/053988 JP2014053988W WO2014129528A1 WO 2014129528 A1 WO2014129528 A1 WO 2014129528A1 JP 2014053988 W JP2014053988 W JP 2014053988W WO 2014129528 A1 WO2014129528 A1 WO 2014129528A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
video signal
mixing ratio
interpolation
mixing
Prior art date
Application number
PCT/JP2014/053988
Other languages
English (en)
French (fr)
Inventor
智之 宍戸
浩史 野口
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2014129528A1 publication Critical patent/WO2014129528A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0135Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
    • H04N7/014Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes involving the use of motion vectors

Definitions

  • the present invention relates to a video signal processing apparatus and method for generating interpolated image data based on a motion vector of a video signal and converting a frame frequency.
  • the number of frames is increased by interpolating interpolated frames made up of interpolated image data between real frames of a video signal, for example, a frame rate (frame frequency) of a vertical frequency of 60 Hz. Is converted to a double frame rate of 120 Hz or higher to display an image.
  • a frame rate frame frequency
  • the motion vector is detected by estimation based on pixels in a limited number of frames in a continuous frame, and it is difficult to detect a motion vector without erroneous detection. For example, when the motion of the foreground image positioned spatially in front and the background image positioned spatially behind are different, erroneous detection of a motion vector is likely to occur. Thus, as an example, various devices for improving the detection accuracy of motion vectors have been proposed as in Patent Document 1.
  • an object of the present invention is to provide a video signal processing apparatus and method that can reduce visual discomfort even if erroneous detection of a motion vector occurs.
  • a motion vector detection unit that detects a motion vector of an image in an input video signal having a first frame frequency, and the motion vector And an interpolation frame generation unit that generates one or a plurality of interpolation frames to be interpolated between two actual frames in the input video signal, and reliability data that generates reliability data indicating the reliability of the motion vector
  • a generating unit a mixing ratio generating unit that generates mixing ratio control data based on the reliability data, and an actual frame or another interpolated frame with respect to the interpolated frame to a mixing ratio value indicated by the mixing ratio control data;
  • a mixing unit that generates a mixed frame by mixing according to the interpolation frame and the mixed frame, or the real frame and the mixed frame.
  • a video signal processing apparatus comprising: a frame rate conversion unit that generates an output video signal by outputting a frame at a second frame frequency that is an integer multiple of the first frame frequency.
  • a motion vector of an image in an input video signal having a first frame frequency is detected, and the motion vector is used.
  • Generating data mixing an actual frame or another interpolation frame with respect to the interpolation frame according to a value of the mixing ratio indicated by the mixing ratio control data to generate a mixed frame, and the interpolation frame and the mixed frame;
  • the actual frame and the mixed frame are output at a second frame frequency that is an integer multiple of the first frame frequency.
  • Video signal processing method characterized by generating an output video signal.
  • the video signal processing apparatus and method of the present invention it is possible to reduce visual discomfort even if erroneous detection of a motion vector occurs.
  • FIG. 2 is a diagram illustrating an input video signal f0 and interpolation frame signals f0a and f0.5a output from interpolation frame generation units 15 and 16 in FIG. It is a figure which shows the mixing operation
  • FIG. 1 shows an input video signal f0, an interpolation frame signal f0a, and a mixed interpolation frame signal f0.5b output from the mixing unit 18 when the mixing ratio indicated by the mixing ratio control data Dmr in FIG. 1 is 1 ⁇ 2 of the maximum value.
  • FIG. It is a figure which shows the input video signal f0, the interpolation frame signal f0a, and the mixing interpolation frame signal f0.5b when the mixing ratio which the mixing ratio control data Dmr in FIG. 1 shows is the maximum value.
  • FIG. 8 is a diagram illustrating an input video signal f0 and interpolation frame signals f0.75a, f0.5a, and f0.25a output from interpolation frame generation units 261 to 263 in FIG.
  • the mixing ratio indicated by the mixing ratio control data Dmr in FIG. 7 is 1 ⁇ 2 of the maximum value
  • the input video signal f0 and the interpolated frame signals f0.75a, f0.5a, f0.25a in the mixing sections 281 to 283 are shown. It is a figure which shows mixing operation.
  • FIG. 8 is a diagram illustrating an input video signal f0 and mixed interpolation frame signals f0.75b, f0.5b, and f0.25b when the mixing ratio indicated by the mixing ratio control data Dmr in FIG. 7 is the maximum value.
  • each pixel data of the input video signal f0 is sequentially input to the frame memory 11, the pull-down detection unit 13, the motion vector detection unit 14, and the interpolation frame generation units 15 and 16.
  • the frame frequency of the input video signal f0 is set to 60 Hz, for example.
  • the frame memory 11 delays each pixel data of the input video signal f0 by one frame period and outputs it as each pixel data of the video signal f1.
  • Each pixel data of the video signal f1 is sequentially input to the frame memory 12, the pull-down detection unit 13, the motion vector detection unit 14, and the interpolation frame generation units 15 and 16.
  • the frame memory 12 delays each pixel data of the video signal f1 by one frame period and outputs it as each pixel data of the video signal f2.
  • the video signal f2 is a signal delayed by 2 frames with respect to the input video signal f0.
  • Each pixel data of the video signal f2 is sequentially input to the pull-down detection unit 13.
  • the pull-down detection unit 13 compares the frames of the input video signal f0, the video signal f1, and the video signal f2, so that the input video signal f0 is a pull-down video signal obtained by converting 24 frames into 60 frames by 2-3 pull-down. Detect whether or not there is. When the pull-down detection unit 13 detects that it is a pull-down video signal, it also detects a pull-down sequence. The pull-down detection unit 13 outputs a pull-down detection signal Spd. The pull-down detection signal Spd is input to the interpolation frame generation units 15 and 16.
  • the pull-down detection unit 13 detects whether or not it is a pull-down video signal and a pull-down sequence using a 3-frame video signal in order to increase the accuracy of pull-down detection.
  • the pull-down detection unit 13 may detect the two video signals of the input video signal f0 and the video signal f1. In this case, the frame memory 12 need not be provided.
  • the motion vector detection unit 14 detects a motion vector MV between frames based on the input video signal f0 and the video signal f1, for example, using a matching method.
  • the motion vector detection unit 14 takes difference values in a plurality of directions between the pixel data of the input video signal f0 and the pixel data of the video signal f1, and sets the direction having the smallest difference value as the motion vector MV.
  • the motion vector detection unit 14 also outputs a difference value between the pixel data of the input video signal f0 and the pixel data of the video signal f1 when the motion vector MV is determined as reliability data Dre of the motion vector MV.
  • the smaller the reliability data Dre the higher the reliability.
  • the difference value itself is used as the reliability data Dre of the motion vector MV, but the method of generating the reliability is not limited to this. You may use reliability data that reliability is so high that reliability Dre data is large.
  • the motion vector detection unit 14 is a reliability data generation unit that generates reliability data indicating the reliability of the motion vector MV.
  • the reliability data generation unit may be provided separately from the motion vector detection unit 14.
  • the motion vector MV is input to the interpolation frame generation units 15 and 16.
  • the reliability data Dre is input to the mixture ratio generation unit 17.
  • the interpolation frame generation units 15 and 16 sequentially generate the respective interpolation pixel data constituting the interpolation frame signals f0a and f0.5a based on the motion vector MV using the pixel data of the input video signal f0 and the video signal f1. Output.
  • the interpolation frame generation units 15 and 16 interpolate for one or a plurality of dejuders that interpolate between two real frames having different images in order to smooth the movement of a moving object included in the image in the input video signal f0. Generate a frame.
  • the interpolation frame generation units 15 and 16 generate the interpolation frame signals f0a and f0.5a.
  • the interpolation frame signals f0a and f0.5a include the frame (original frame) of the input video signal f0. That is, the interpolation frame generation units 15 and 16 may output the original frame of the input video signal f0 as the interpolation frame signals f0a and f0.5a as they are. Details of the interpolation frame signals f0a and f0.5a generated by the interpolation frame generation units 15 and 16 will be described later.
  • the mixing ratio generation unit 17 generates mixing ratio control data Dmr for mixing the interpolation pixel data of the interpolation frame signals f0a and f0.5a based on the input reliability data Dre.
  • the mixing ratio generation unit 17 includes a comparison unit 171, a one-frame period integration unit 172, a subtracter 173, and a mixing ratio determination unit 174.
  • the mixing ratio generator 17 generates the mixing ratio control data Dmr as follows.
  • the comparison unit 171 compares the reliability data Dre and a predetermined threshold th1.
  • the comparison unit 171 outputs the comparison data Dcp of 1 if the reliability data Dre is equal to or greater than the threshold th1 and 0 if it is less than the threshold th1.
  • the comparison data Dcp may be output if the reliability data Dre is equal to or less than the threshold th1 and 0 if the reliability data exceeds the threshold th1. . That is, the comparison unit 171 outputs the comparison data Dcp that becomes 1 when the reliability is lower than a predetermined reference based on the reliability data Dre.
  • the one-frame period integrating unit 172 integrates the comparison data Dcp for one frame period to generate integrated data Dacp1.
  • the integrated data Dacp1 has a larger value as the reliability of the motion vector MV in one entire screen is lower.
  • the comparison data Dcp is integrated for one frame period to generate integrated data Dacp1, but the integrated data Dacp1 may be generated by integrating for a predetermined period such as two frame periods or a period of less than one frame. . However, integration of one frame period is most preferable.
  • the subtracter 173 subtracts a predetermined threshold th2 from the integrated data Dacp1 and outputs corrected integrated data Dacp2 corrected so that the value becomes smaller than the integrated data Dacp1.
  • the reason why the predetermined threshold th2 is subtracted from the integrated data Dacp1 by the subtractor 173 is that the integrated data Dacp1 is inconvenient because the value becomes too large.
  • the mixing ratio determining unit 174 limits the value that can be obtained by setting the negative value in the corrected integrated data Dacp2 to 0, and multiplies the value by a predetermined gain to output the mixing ratio control data Dmr.
  • the mixing ratio control data Dmr is input to the mixing unit 18.
  • the mixing unit 18 mixes the interpolated frame signals f0a and f0.5a based on the following equation (1) according to the mixing ratio control data Dmr, and generates the mixed interpolated frame signal f0.5b. Output.
  • Vdmr is the value of the mixing ratio indicated by the mixing ratio control data Dmr
  • Vmax is the maximum value that Vdmr can take.
  • F0.5b ⁇ (f0a ⁇ Vdmr) + (f0.5a ⁇ (Vmax-Vdmr)) ⁇ / Vmax... (1)
  • the mixed interpolation frame signal f0.5b is generated with the value of the mixing ratio as the degree of mixing of the interpolation frame signal f0a with the interpolation frame signal f0.5a, but as in Expression (2), The mixed interpolation frame signal f0.5b may be generated with the mixing ratio value as the degree of mixing of the interpolation frame signal f0.5a with the interpolation frame signal f0a.
  • F0.5b ⁇ (f0a ⁇ (Vmax-Vdmr)) + (f0.5a ⁇ Vdmr) ⁇ / Vmax... (2)
  • Each interpolated pixel data constituting the interpolated frame signal f0a output from the interpolated frame generation unit 15 and each interpolated pixel data constituting the mixed interpolated frame signal f0.5b output from the mixing unit 18 are converted into a frame rate converting unit 19. Are sequentially input.
  • the frame rate conversion unit 19 alternately outputs the interpolated frame signal f0a and the mixed interpolated frame signal f0.5b alternately at 120 Hz that is twice the frame frequency of the input video signal f0. From the frame rate conversion unit 19, an output video signal f20 having a frame frequency of 120 Hz is output.
  • FIG. 3 shows a frame in the input video signal f0. Since the input video signal f0 is a pull-down video signal obtained by converting 24 frames into 60 frames by 2-3 pulldown, as shown in FIG. 3A, two frames f0A and three frames f0B are consecutive. Yes. The frame f0C also continues for two frames. That is, the same image is alternately continued in 2 frames and 3 frames.
  • the circular object OB is moving from the left to the right of the frame.
  • the movement of the object OB is not smooth, and so-called motion judder occurs.
  • FIG. 3 a broken line in the vertical direction in the frame is shown for convenience so that the position of the object OB can be easily understood.
  • FIG. 3B shows the interpolation frame signal f0a output from the interpolation frame generation unit 15
  • FIG. 3C shows the interpolation frame signal f0.5a output from the interpolation frame generation unit 16.
  • An object OBi indicates an object interpolated based on the two frames in FIG. 3 (b) and 3 (c), the frame indicated by the thick solid line indicates the original frame of the input video signal f0 shown in FIG. 3 (a).
  • the interpolation frame generation units 15 and 16 divide the distance between the object OB of the frame f0A and the object OB of the frame f0B into five equal parts so that the object OB smoothly moves between the frames f0A and f0B.
  • the four interpolation frames f0AB1 to f0AB4 to be inserted between the frame f0A and the frame f0B are generated.
  • the interpolation frame generation unit 15 After outputting the frame f0A which is the original frame of the input video signal f0, the interpolation frame generation unit 15 generates the second interpolation frame f0AB2 and the fourth interpolation frame f0AB4 located immediately before the frame f0B. Output.
  • the interpolation frame generation unit 16 generates and outputs a first interpolation frame f0AB1 and a third interpolation frame f0AB3 located immediately after the frame f0A, and then outputs a frame f0B that is an original frame of the input video signal f0. Is output.
  • the interpolation frame generation units 15 and 16 repeat the same operation after the frame f0C of the input video signal f0.
  • the mixing unit 18 uses the interpolation frame signal f0.5a shown in FIG.
  • the mixed interpolation frame signal f0.5b is output.
  • the mixed interpolation frame signal f0.5b is an unmixed interpolation frame signal f0.5a.
  • the frame rate conversion unit 19 if described in the range from the frame f0A to the frame f0B, the interpolated frame signals f0a, f0 so that the frame f0A, the interpolated frames f0AB1, f0AB2, f0AB3, f0AB4, and the frame f0B are in order. .5b is selected as the output video signal f20. Therefore, the movement of the object OB (OBi) is smooth.
  • the mixing unit 18 causes each frame of the interpolated frame signal f0.5a to maximize the effect of dejada. Is output as a mixed interpolation frame signal f0.5b.
  • the video signal processing apparatus of the first embodiment operates as follows, and the video signal processing method of the first embodiment is as follows. To process. When the mixing ratio Vdmr is Vmax / 2, the mixing unit 18 mixes the interpolated frame signal f0a and the interpolated frame signal f0.5a at the same ratio and outputs it as a mixed interpolated frame signal f0.5b from equation (1). To do.
  • FIG. 4A shows a frame f0A, interpolation frames f0AB2, f0AB4, and f0BC1 in the interpolation frame signal f0a
  • FIG. 4B shows an interpolation frame f0AB1, f0AB3, frame f0B, and an interpolation frame f0BC2 in the interpolation frame signal f0.5a. Is shown.
  • the mixing unit 18 mixes the frame f0A and the interpolation frame f0AB1 at the same ratio to generate a mixed interpolation frame f0AAB1. Then, the object OB and the object OBi are mixed to generate a blurred object OBmix. The mixing unit 18 mixes the interpolation frame f0AB2 and the interpolation frame f0AB3 at the same ratio to generate a mixed interpolation frame f0AB2AB3. Similarly, a blurred object OBmix is generated.
  • the mixing unit 18 mixes the interpolation frame f0AB4 and the frame f0B at the same ratio to generate a mixed interpolation frame f0AB4B. Similarly, a blurred object OBmix is generated. The mixing unit 18 mixes the interpolation frame f0BC1 and the interpolation frame f0BC2 at the same ratio to generate a mixed interpolation frame f0BC1BC2. Similarly, a blurred object OBmix is generated. Thereafter, the same operation is repeated.
  • the frame rate conversion unit 19 includes the frame f0A, the mixed interpolation frame f0AAB1, the interpolation frame f0AB2, the mixed interpolation frame f0AB2AB3, the interpolation frame f0AB4, the mixed interpolation frame f0AB4B, the interpolation frame f0BC1, and the mixed interpolation.
  • the interpolated frame signals f0a and f0.5b are selected so as to be in the order of the frames f0BC1BC2. Therefore, the image of the object OB (OBi, OBmix) is blurred.
  • the mixing unit 18 mixes the interpolation frame signal f0a and the interpolation frame signal f0.5a according to the value of the mixing ratio Vdmr.
  • the mixing unit 18 mixes the interpolated frame signal f0a and the interpolated frame signal f0.5a according to the value of the mixing ratio Vdmr, the effect of the dejudder decreases as the mixing ratio Vdmr increases from the minimum value.
  • FIG. 6 shows a state when the mixing ratio Vdmr is the maximum value Vmax.
  • (a) is each frame in the input video signal f0
  • (b) is each frame of the interpolation frame signal f0a
  • (c) is a mixed interpolation frame signal f0.5b when the mixing ratio Vdmr is the maximum value Vmax.
  • Each frame is shown.
  • the mixing unit 18 If the mixing ratio Vdmr is the maximum value Vmax, the mixing unit 18 outputs the interpolated frame signal f0a shown in (b) of FIG. 3 as the mixed interpolated frame signal f0.5b from the equation (1). In this case, strictly speaking, the mixed interpolation frame signal f0.5b is an unmixed interpolation frame signal f0a.
  • the frame rate conversion unit 19 selects the interpolated frame signals f0a and f0.5b in the order of frames f0A and f0A, interpolated frames f0AB2, f0AB2, f0AB4, f0AB4, f0BC1, f0BC1,.
  • the output video signal is f20. That is, the frame rate conversion unit 19 outputs each frame of the interpolated frame signal f0a twice to obtain an output video signal f20.
  • the frame frequency of the output video signal f20 is 120 Hz
  • the image of the object OB (OBi) is not smooth.
  • the mixing unit 18 directly uses each frame of the interpolated frame signal f0a as the mixed interpolation frame so as to minimize the effect of the dejada. Output as signal f0.5b.
  • the video signal processing apparatus and method according to the first embodiment can perform dejada interpolation using a dejada interpolation frame that smoothes the movement of a moving object included in an image according to the reliability of the motion vector MV. Increase or decrease the effect.
  • the video signal processing apparatus and method according to the first embodiment converts the frame rate so as to intentionally leave motion judder when an erroneous detection of a motion vector occurs.
  • the operation when the input video signal f0 is a pull-down video signal has been described.
  • the input video signal f0 may be a normal video signal that is not a pull-down video signal.
  • the first embodiment shows the frame rate conversion in which the input video signal f0 having a frame frequency of 60 Hz is converted into the output video signal f20 having a frequency of 120 Hz, the frame rate may be converted to three times or more.
  • the second embodiment shows a case where the input video signal f0 is a normal video signal and the frame rate is converted to four times.
  • each pixel data of the input video signal f 0 is sequentially input to the frame memory 21, the motion vector detection unit 24, the interpolation frame generation units 261 to 263, the mixing units 281 to 283, and the frame rate conversion unit 29. Is done.
  • the frame memory 21 delays each pixel data of the input video signal f0 by one frame period and outputs it as each pixel data of the video signal f1.
  • Each pixel data of the video signal f1 is sequentially input to the motion vector detection unit 24 and the interpolation frame generation units 261 to 263.
  • the motion vector detection unit 24 generates and outputs the motion vector MV and the reliability data Dre indicating the reliability of the motion vector MV, similarly to the motion vector detection unit 14 of FIG.
  • the motion vector detection unit 24 is a reliability data generation unit.
  • the motion vector MV is input to the interpolation frame generation units 261 to 263.
  • the reliability data Dre is input to the mixture ratio generation unit 27.
  • the interpolation frame generation units 261 to 263 use the respective pixel data of the input video signal f0 and the video signal f1, and based on the motion vector MV, each interpolation constituting the interpolation frame signals f0.75a, f0.5a, f0.25a. Pixel data is sequentially generated and output.
  • Interpolated frame signals f0.75a, f0.5a, and f0.25a are signals constituting three frames that are interpolated between two adjacent frames in the input video signal f0.
  • the interpolated frame signals f0.75a, f0.5a, and f0.25a are the interpolated frame signal f0.75a is the earliest frame signal in time order, and the interpolated frame signal f0.25a is the earliest frame signal in time order. is there.
  • the mixing ratio generation unit 27 may have the same configuration as the mixing ratio generation unit 17 illustrated in FIG.
  • the mixing ratio generation unit 27 generates mixing ratio control data Dmr that determines the mixing ratio in the mixing units 281 to 283 based on the input reliability data Dre.
  • the input video signal f0 is mixed according to the value of the mixing ratio indicated by the control data Dmr.
  • the mixing units 281 to 283 output mixed interpolation frame signals f0.75b, f0.5b, and f0.25b.
  • the mixed interpolation frame signals f0.75b, f0.5b, and f0.25b may be the same as the interpolation frame signals f0.75a, f0.5a, and f0.25a.
  • the mixed interpolation frame signals f0.75b, f0.5b, and f0.25b may all be the same as the input video signal f0.
  • interpolation frame signals f0.75a, f0.5a, and f0.25a may be mixed.
  • the input video signal f0 may be mixed with some of the interpolated frame signals f0.75a, f0.5a, and f0.25a, and another interpolated frame signal may be mixed with the remaining interpolated frame signals. Good.
  • the interpolated frame signal f0.5a may be mixed with the interpolated frame signals f0.75a and f0.25a.
  • the input video signal f0 and the interpolated frame signals f0.75a, f0.5a, and f0.25a two temporally adjacent frame signals (interpolated frame signals) may be mixed.
  • the frame rate conversion unit 29 converts the input video signal f0 and the mixed interpolation frame signals f0.75b, f0.5b, and f0.25b into the mixed interpolation frame signals f0.75b, f0.5b, f0.25b, and the input video signal f0. Are sequentially output at 240 Hz, which is a frame frequency four times that of the input video signal f0. From the frame rate conversion unit 29, an output video signal f40 with a frame frequency of 240 Hz is output.
  • FIG. 8A to 8C show frames of the interpolation frame signals f0.75a, f0.5a, and f0.25a
  • FIG. 8D shows a frame of the input video signal f0.
  • the circular object OB moves from the left direction to the right direction of the frame.
  • An object OBi in the frames of the interpolation frame signals f0.75a, f0.5a, and f0.25a indicates an object interpolated based on two adjacent frames in the input video signal f0.
  • Interpolation frame generation units 261 to 263 generate three interpolation frames f0AB1 to f0AB3 located between the frame f0A and the frame f0B in the input video signal f0.
  • the interpolation frame generation units 261 to 263 generate three interpolation frames f0BC1 to f0BC3 positioned between the frame f0B and the frame f0C in the input video signal f0.
  • Interpolation frame generation units 261 to 263 generate three interpolation frames f0CD1 to f0CD3 located between the frame f0C and the frame f0D in the input video signal f0. Thereafter, the interpolation frame generation units 261 to 263 repeat the same operation.
  • the mixing units 281 to 283 indicate that the interpolated frame signal f0.75a shown in (a) to (c) of FIG. , F0.5a, f0.25a are output as mixed interpolation frame signals f0.75b, f0.5b, f0.25b as they are.
  • the mixed interpolation frame signals f0.75b, f0.5b, and f0.25b become unmixed interpolation frame signals f0.75a, f0.5a, and f0.25a.
  • the mixing units 281 to 283 each of the interpolated frame signals f0.75a, f0.5a, and f0.25a each frame. Are output as mixed interpolation frame signals f0.75b, f0.5b, and f0.25b.
  • the video signal processing apparatus of the second embodiment operates as follows, and the video signal processing method of the second embodiment is as follows. To process. When the mixing ratio Vdmr is Vmax / 2, the mixing units 281 to 283 mix the input video signal f0 and the interpolated frame signals f0.75a, f0.5a, and f0.25a at the same ratio to obtain the mixed interpolated frame signal f0. Output as .75b, f0.5b, f0.25b.
  • the mixing unit 281 mixes the interpolation frame f0AB1 in the interpolation frame signal f0.75a shown in (a) of FIG. 8 and the frame f0B in the input video signal f0 shown in (d) of FIG. A mixed interpolation frame f0BAB1 shown in a) is generated.
  • the mixing unit 282 mixes the interpolation frame f0AB2 in the interpolation frame signal f0.5a shown in (b) of FIG. 8 and the frame f0B in the input video signal f0 shown in (d) of FIG. A mixed interpolation frame f0BAB2 shown in b) is generated.
  • the mixing unit 283 mixes the interpolation frame f0AB3 in the interpolation frame signal f0.25a shown in (c) of FIG. 8 and the frame f0B in the input video signal f0 shown in (d) of FIG. A mixed interpolation frame f0BAB3 shown in c) is generated.
  • the mixing units 281 to 283 perform interpolation frames f0BC1 to f0BC3 and input video signals in the interpolation frame signals f0.75a, f0.5a, and f0.25a.
  • the interpolated frames f0CBC1 to f0CBC3 are generated by mixing the frame f0C at f0.
  • the mixing units 281 to 283 are used in the interpolation frames f0CD1 to f0CD3 and the input video signal f0 in the interpolation frame signals f0.75a, f0.5a, and f0.25a.
  • the frame f0D is mixed to generate mixed interpolation frames f0DCD1 to f0DCD3. Thereafter, the mixing units 281 to 283 repeat the same operation.
  • the mixed interpolation frames f0BAB1 to f0BAB3, f0CBC1 to f0CBC3, and f0DCD1 to f0DCD3 include a blurred object OBmix in which the object OB and the object OBi are mixed.
  • the mixing units 281 to 283 indicate that the input video signal f0 and the interpolated frame signals f0.75a, f0.5a, Mix with f0.25a.
  • the mixing units 281 to 283 mix the input video signal f0 and the interpolated frame signals f0.75a, f0.5a, and f0.25a, the ratio of the input video signal f0 increases as the mixing ratio Vdmr increases from the minimum value. I will do it.
  • FIG. 10 shows a state when the mixing ratio Vdmr is the maximum value Vmax.
  • the mixing units 281 to 283, as shown in (a) to (c) of FIG. 10 use the input video signal f0 shown in (d) of FIG.
  • the signals are output as signals f0.75b, f0.5b, and f0.25b.
  • the mixed interpolation frame signals f0.75b, f0.5b, and f0.25b become the unmixed input video signal f0.
  • the frame frequency of the output video signal f40 is 240 Hz
  • the image of the object OB (OBi) is not smooth.
  • each component of the video signal processing apparatus operates as follows. That's fine.
  • the motion vector detection unit (14, 24) detects the motion vector MV of the image in the input video signal f0 having the first frame frequency.
  • the interpolation frame generation unit (15, 16, 261 to 263) generates one or a plurality of interpolation frames to be interpolated between two real frames in the input video signal f0 using the motion vector MV.
  • the reliability data generation unit (14, 24) generates reliability data Dre indicating the reliability of the motion vector MV.
  • the mixing ratio generation unit (17, 27) generates mixing ratio control data Dmr based on the reliability data Dre.
  • the mixing unit (18, 281 to 283) generates a mixed frame by mixing an actual frame or another interpolation frame with respect to the interpolation frame in accordance with the value of the mixing ratio indicated by the mixing ratio control data Dmr.
  • the mixing unit 18 mixes another interpolation frame with the interpolation frame to generate a mixed frame.
  • the mixing units 281 to 283 mix a real frame with an interpolated frame to generate a mixed frame.
  • the frame rate conversion unit (19, 29) outputs an output video signal by outputting an interpolated frame and a mixed frame, or an actual frame and a mixed frame at a second frame frequency that is an integer multiple of the first frame frequency. Generate.
  • the first frame frequency is 60 Hz
  • the frame rate conversion unit 19 outputs the output video signal f20 of 120 Hz as the second frame frequency based on the interpolation frame and the mixed frame. Is generated.
  • the first frame frequency is 60 Hz
  • the frame rate conversion unit 29 generates an output video signal f40 of 240 Hz as the second frame frequency based on the actual frame and the mixed frame.
  • the mixing unit (18, 281 to 283) may use the interpolated frame as it is as the mixed frame when the value of the mixing ratio is minimum. When the value of the mixing ratio is maximum, the mixing unit (18, 281 to 283) may use the actual frame or another interpolated frame as it is as the mixed frame.
  • the input video signal f0 may be a pull-down video signal obtained by converting a video signal having a third frame frequency lower than the first frame frequency into a video signal having the first frame frequency by pull-down.
  • the interpolation frame generation unit (15, 16) is an interpolation frame that is interpolated between two real frames with different images in the input video signal f0, and is included in the image.
  • An interpolation frame for dejudder for smoothing the motion of the object to be generated may be generated.
  • Two frames that are adjacent when the real frame and the interpolated frame are arranged in the order of the moving object are set as a set, one of the two frames to be set is a first frame and the other is a second frame To do.
  • the mixing unit (18) may set the second frame as a mixed frame when the value of the mixing ratio is minimum.
  • the mixing unit (18) may set the first frame as the mixed frame when the value of the mixing ratio is the maximum.
  • the mixing unit (18) may mix the first frame and the second frame according to the mixing ratio to form a mixing frame when the value of the mixing ratio is between the minimum and maximum.
  • the video signal processing device may include a pull-down detection unit (13) that detects whether or not the input video signal f0 is a pull-down video signal and a pull-down sequence when the input video signal f0 is a pull-down video signal.
  • the interpolation frame generation unit (15, 16) may generate an interpolation frame to be interpolated between two real frames having different images based on the pull-down sequence.
  • the mixing ratio generation unit (17, 27) includes an integration unit (172) that integrates a state where the reliability of the motion vector MV indicated by the reliability data Dre is lower than a predetermined reference for a predetermined period to generate integrated data, It is preferable to include a mixing ratio determining unit (174) that generates mixing ratio control data Dmr for determining a mixing ratio for mixing two frames based on the integrated data.
  • FIGS. 1 and 7 The configuration shown in FIGS. 1 and 7 is merely an example, and the specific configuration of the video signal processing apparatus is not limited to the configuration shown in FIGS.
  • the present invention can be used in a video signal processing apparatus and method for generating interpolated image data based on a motion vector of a video signal and converting a frame frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Television Systems (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 動きベクトル検出部(14)は、第1のフレーム周波数を有する入力映像信号(f0)における画像の動きベクトル(MV)を検出し、動きベクトル(MV)の信頼度を示す信頼度データ(Dre)を生成する。補間フレーム生成部(15,16)は、補間フレーム信号(f0a,f0.5a)を生成する。混合比率生成部(17)は、信頼度データ(Dre)に基づいて混合比率制御データ(Dmr)を生成する。混合部(18)は、補間フレーム信号(f0a,f0.5a)を、混合比率制御データ(Dmr)が示す混合比率の値に応じて混合して混合フレーム(f0.5b)を生成する。フレームレート変換部(19)は、補間フレーム(f0a)及び混合フレーム(f0.5b)を第2のフレーム周波数で出力して出力映像信号(f20)を生成する。

Description

映像信号処理装置及び方法
 本発明は、映像信号の動きベクトルに基づいて補間画像データを生成し、フレーム周波数を変換する映像信号処理装置及び方法に関する。
 液晶パネルを用いた画像表示装置で動画像を表示すると残像が生じやすい。そこで、残像を低減させて動画特性を向上させるために、映像信号の実フレーム間に補間画像データよりなる補間フレームを内挿してフレーム数を増大させ、例えば垂直周波数60Hzのフレームレート(フレーム周波数)を2倍の120Hzまたはそれ以上のフレームレートに変換して画像表示することが行われている。
 補間フレームを生成する際には、映像信号における画像の動きベクトルを検出し、動きベクトルを用いて各補間画素を生成して補間フレームを生成するのが一般的である。
 動きベクトルは、連続するフレームの内の限られた複数のフレーム内の画素に基づいた推定によって検出されるものであり、誤検出なく動きベクトルを検出することは難しい。例えば、空間的に前に位置する前景の画像と空間的に後ろに位置する背景の画像との動きが異なる場合には、動きベクトルの誤検出が発生しやすい。そこで、一例として特許文献1のように、動きベクトルの検出精度を向上させるための工夫が種々提案されている。
特開2011-82846号公報
 しかしながら、動きベクトルの検出精度を向上させても動きベクトルの誤検出を完全になくすことは難しい。動きベクトルの誤検出があると補間画像は破綻してしまい、違和感のある画像として認識されてしまう。そこで、動きベクトルの誤検出が発生しても視覚的な違和感を軽減させることが求められる。
 本発明はこのような要望に対応するため、動きベクトルの誤検出が発生しても視覚的な違和感を軽減させることができる映像信号処理装置及び方法を提供することを目的とする。
 本発明の第1の態様によれば、上述した従来の技術の課題を解決するため、第1のフレーム周波数を有する入力映像信号における画像の動きベクトルを検出する動きベクトル検出部と、前記動きベクトルを用いて、前記入力映像信号における2つの実フレーム間に内挿する1または複数の補間フレームを生成する補間フレーム生成部と、前記動きベクトルの信頼度を示す信頼度データを生成する信頼度データ生成部と、前記信頼度データに基づいて混合比率制御データを生成する混合比率生成部と、補間フレームに対して実フレームまたは他の補間フレームを、前記混合比率制御データが示す混合比率の値に応じて混合して混合フレームを生成する混合部と、前記補間フレーム及び前記混合フレーム、または、前記実フレーム及び前記混合フレームを、前記第1のフレーム周波数の整数倍である第2のフレーム周波数で出力することにより出力映像信号を生成するフレームレート変換部とを備えることを特徴とする映像信号処理装置が提供される。
 また、本発明の第2の態様によれば、上述した従来の技術の課題を解決するため、第1のフレーム周波数を有する入力映像信号における画像の動きベクトルを検出し、前記動きベクトルを用いて、前記入力映像信号における2つの実フレーム間に内挿する1または複数の補間フレームを生成し、前記動きベクトルの信頼度を示す信頼度データを生成し、前記信頼度データに基づいて混合比率制御データを生成し、補間フレームに対して実フレームまたは他の補間フレームを、前記混合比率制御データが示す混合比率の値に応じて混合して混合フレームを生成し、前記補間フレーム及び前記混合フレーム、または、前記実フレーム及び前記混合フレームを、前記第1のフレーム周波数の整数倍である第2のフレーム周波数で出力することにより出力映像信号を生成することを特徴とする映像信号処理方法が提供される。
 本発明の映像信号処理装置及び方法によれば、動きベクトルの誤検出が発生しても視覚的な違和感を軽減させることができる。
第1実施形態の映像信号処理装置を示すブロック図である。 図1中の混合比率生成部17の具体的な構成例を示すブロック図である。 図1における入力映像信号f0と補間フレーム生成部15,16より出力される補間フレーム信号f0a,f0.5aを示す図である。 図1における混合比率制御データDmrが示す混合比率が最大値の1/2である場合の混合部18における補間フレーム信号f0a,f0.5aの混合動作を示す図である。 図1における混合比率制御データDmrが示す混合比率が最大値の1/2である場合の、入力映像信号f0と補間フレーム信号f0aと混合部18より出力される混合補間フレーム信号f0.5bを示す図である。 図1における混合比率制御データDmrが示す混合比率が最大値である場合の、入力映像信号f0と補間フレーム信号f0aと混合補間フレーム信号f0.5bを示す図である。 第2実施形態の映像信号処理装置を示すブロック図である。 図7における入力映像信号f0と補間フレーム生成部261~263より出力される補間フレーム信号f0.75a,f0.5a,f0.25aを示す図である。 図7における混合比率制御データDmrが示す混合比率が最大値の1/2である場合の混合部281~283における入力映像信号f0と補間フレーム信号f0.75a,f0.5a,f0.25aとの混合動作を示す図である。 図7における混合比率制御データDmrが示す混合比率が最大値である場合の、入力映像信号f0と混合補間フレーム信号f0.75b,f0.5b,f0.25bを示す図である。
<第1実施形態>
 以下、第1実施形態の映像信号処理装置及び方法について、添付図面を参照して説明する。図1において、入力映像信号f0の各画素データは、フレームメモリ11と、プルダウン検出部13と、動きベクトル検出部14と、補間フレーム生成部15,16に順次入力される。入力映像信号f0のフレーム周波数を例えば60Hzとする。フレームメモリ11は、入力映像信号f0の各画素データを1フレーム期間遅延させ、映像信号f1の各画素データとして出力する。
 映像信号f1の各画素データは、フレームメモリ12と、プルダウン検出部13と、動きベクトル検出部14と、補間フレーム生成部15,16に順次入力される。フレームメモリ12は、映像信号f1の各画素データを1フレーム期間遅延させ、映像信号f2の各画素データとして出力する。映像信号f2は、入力映像信号f0に対して2フレーム遅延した信号である。映像信号f2の各画素データは、プルダウン検出部13に順次入力される。
 プルダウン検出部13は、入力映像信号f0と映像信号f1と映像信号f2のそれぞれのフレームを比較することによって、入力映像信号f0が24フレームを2-3プルダウンによって60フレームに変換したプルダウン映像信号であるか否かを検出する。プルダウン検出部13は、プルダウン映像信号であることを検出した場合に、プルダウンシーケンスも併せて検出する。プルダウン検出部13は、プルダウン検出信号Spdを出力する。プルダウン検出信号Spdは、補間フレーム生成部15,16に入力される。
 ここでは、プルダウン検出部13は、プルダウン検出の精度を高めるために3フレームの映像信号を用いてプルダウン映像信号であるか否か及びプルダウンシーケンスを検出している。プルダウン検出部13は、入力映像信号f0と映像信号f1の2フレームの映像信号を用いてそれらを検出してもよい。この場合には、フレームメモリ12を設けなくてよい。
 動きベクトル検出部14は、入力映像信号f0と映像信号f1とに基づき、例えばマッチング法を用いてフレーム間の動きベクトルMVを検出する。動きベクトル検出部14は、入力映像信号f0の画素データと映像信号f1の画素データとの複数の方向の差分値をとり、差分値が最も小さい方向を動きベクトルMVとする。
 動きベクトル検出部14は、併せて、動きベクトルMVを決定したときの入力映像信号f0の画素データと映像信号f1の画素データとの差分値を動きベクトルMVの信頼度データDreとして出力する。この場合、信頼度データDreが小さいほど信頼度が高いということになる。ここでは差分値自体を動きベクトルMVの信頼度データDreとしているが、信頼度の生成方法はこれに限定されない。信頼度Dreデータが大きいほど信頼度が高いような信頼度データを用いてもよい。
 動きベクトル検出部14は、動きベクトルMVの信頼度を示す信頼度データを生成する信頼度データ生成部である。信頼度データ生成部を、動きベクトル検出部14とは別に設けてもよい。
 動きベクトルMVは、補間フレーム生成部15,16に入力される。信頼度データDreは、混合比率生成部17に入力される。補間フレーム生成部15,16は、入力映像信号f0と映像信号f1それぞれの画素データを用い、動きベクトルMVに基づいて、補間フレーム信号f0a,f0.5aを構成する各補間画素データを順次生成して出力する。
 補間フレーム生成部15,16は、入力映像信号f0における画像に含まれる移動する物体の動きを滑らかにするために、画像が異なる2つの実フレーム間に内挿する1または複数のデジャダ用の補間フレームを生成する。
 補間フレーム生成部15,16は補間フレーム信号f0a,f0.5aを生成するとしているが、補間フレーム信号f0a,f0.5aには入力映像信号f0のフレーム(オリジナルフレーム)が含まれる。即ち、補間フレーム生成部15,16は、入力映像信号f0のオリジナルフレームをそのまま補間フレーム信号f0a,f0.5aとして出力する場合がある。補間フレーム生成部15,16が生成する補間フレーム信号f0a,f0.5aの詳細については後述する。
 混合比率生成部17は、入力された信頼度データDreに基づいて、補間フレーム信号f0a,f0.5aの補間画素データを混合する混合比率制御データDmrを生成する。
 混合比率生成部17は、図2に示すように、比較部171,1フレーム期間積算部172,減算器173,混合比率決定部174を有する。混合比率生成部17は、次のようにして混合比率制御データDmrを生成する。図2において、比較部171は、信頼度データDreと所定の閾値th1とを比較する。比較部171は、信頼度データDreが閾値th1以上であれば1、閾値th1未満であれば0の比較データDcpを出力する。
 信頼度Dreデータが大きいほど信頼度が高いような信頼度データを用いる場合には、信頼度データDreが閾値th1以下であれば1、閾値th1を越えれば0の比較データDcpを出力すればよい。即ち、比較部171は、信頼度データDreに基づいて、信頼度が所定の基準よりも低い場合に1となる比較データDcpを出力する。
 1フレーム期間積算部172は、比較データDcpを1フレーム期間積算して、積算データDacp1を生成する。積算データDacp1は、1画面全体における動きベクトルMVの信頼度が低いほど大きな値となる。ここでは、比較データDcpを1フレーム期間積算して、積算データDacp1を生成しているが、2フレーム期間、1フレーム未満の期間等の所定の期間積算して、積算データDacp1を生成すればよい。但し、1フレーム期間の積算が最も好ましい。
 減算器173は、積算データDacp1から所定の閾値th2を減算して、積算データDacp1より値が小さくなるように補正した補正積算データDacp2を出力する。減算器173によって積算データDacp1から所定の閾値th2を減算するのは、積算データDacp1そのままであると値が大きくなりすぎて不都合であるからである。
 混合比率決定部174は、補正積算データDacp2における負の値を0とすることによってとり得る値を0以上に制限し、所定のゲインを乗じて混合比率制御データDmrとして出力する。混合比率制御データDmrは混合部18に入力される。
 図1に戻り、混合部18は、補間フレーム信号f0a,f0.5aを、混合比率制御データDmrに応じて、次の式(1)に基づいて混合して、混合補間フレーム信号f0.5bを出力する。式(1)において、Vdmrは混合比率制御データDmrが示す混合比率の値とし、VmaxはVdmrがとり得る最大値とする。
 f0.5b={(f0a×Vdmr)+(f0.5a×(Vmax-Vdmr))}/Vmax  …(1)
 式(1)では、混合比率の値を、補間フレーム信号f0.5aに対する補間フレーム信号f0aの混合の程度として混合補間フレーム信号f0.5bを生成しているが、式(2)のように、混合比率の値を、補間フレーム信号f0aに対する補間フレーム信号f0.5aの混合の程度として混合補間フレーム信号f0.5bを生成してもよい。
 f0.5b={(f0a×(Vmax-Vdmr))+(f0.5a×Vdmr)}/Vmax  …(2)
 補間フレーム生成部15より出力された補間フレーム信号f0aを構成する各補間画素データと、混合部18より出力された混合補間フレーム信号f0.5bを構成する各補間画素データは、フレームレート変換部19に順次入力される。フレームレート変換部19は、補間フレーム信号f0aと混合補間フレーム信号f0.5bとを、入力映像信号f0の2倍のフレーム周波数である120Hzで交互に順次出力する。フレームレート変換部19からは、フレーム周波数120Hzの出力映像信号f20が出力される。
 図3~図6を用いて、第1実施形態の映像信号処理装置の動作、及び、第1実施形態の映像信号処理方法について改めて説明する。
 図3の(a)は、入力映像信号f0におけるフレームを示している。入力映像信号f0が24フレームを2-3プルダウンによって60フレームに変換したプルダウン映像信号であるので、図3の(a)に示すように、フレームf0Aが2フレーム、フレームf0Bが3フレーム連続している。フレームf0Cも2フレーム連続する。即ち、同じ画像が2フレーム、3フレームと交互に連続する。
 円形の物体OBがフレームの左方向から右方向へと移動している。入力映像信号f0では、同じ画像が2フレームまたは3フレーム連続するので、物体OBの動きは滑らかではなく、いわゆるモーションジャダが発生する。なお、図3において、フレーム内の垂直方向の破線は、物体OBの位置が分かりやすいよう、便宜上示しているものである。
 図3の(b)は補間フレーム生成部15より出力される補間フレーム信号f0aを、図3の(c)は補間フレーム生成部16より出力される補間フレーム信号f0.5aを示している。物体OBiは、図3の(a)における2フレームに基づいて補間した物体を示している。図3の(b),(c)において、太い実線で示すフレームは図3の(a)に示す入力映像信号f0のオリジナルフレームを示している。
 補間フレーム生成部15,16は、フレームf0Aとフレームf0Bとの間で物体OBが滑らかに移動するように、フレームf0Aの物体OBとフレームf0Bの物体OBとの間の距離を5等分して、フレームf0Aとフレームf0Bとの間に挿入する4つの補間フレームf0AB1~f0AB4を生成する。
 補間フレーム生成部15は、入力映像信号f0のオリジナルフレームであるフレームf0Aを出力した後、2つ目の補間フレームf0AB2と、フレームf0Bの直前に位置する4つ目の補間フレームf0AB4とを生成して出力する。補間フレーム生成部16は、フレームf0Aの直後に位置する1つ目の補間フレームf0AB1と、3つ目の補間フレームf0AB3とを生成して出力した後、入力映像信号f0のオリジナルフレームであるフレームf0Bを出力する。
 補間フレーム生成部15,16は、入力映像信号f0のフレームf0C以降も同様の動作を繰り返す。
 混合部18に入力される混合比率制御データDmrが示す混合比率Vdmrが0であれば、式(1)より、混合部18は、図3の(c)に示す補間フレーム信号f0.5aをそのまま混合補間フレーム信号f0.5bとして出力する。この場合、厳密には、混合補間フレーム信号f0.5bは非混合の補間フレーム信号f0.5aとなる。
 この場合、フレームレート変換部19は、フレームf0Aからフレームf0Bまでの範囲で説明すれば、フレームf0A,補間フレームf0AB1,f0AB2,f0AB3,f0AB4,フレームf0Bの順となるように補間フレーム信号f0a,f0.5bを選択して出力映像信号f20とする。よって、物体OB(OBi)の動きは滑らかとなる。
 このように、混合部18は、混合比率制御データDmrが示す混合比率Vdmrが最小値である0を示す場合には、デジャダの効果を最大とするよう、補間フレーム信号f0.5aのそれぞれのフレームをそのまま混合補間フレーム信号f0.5bとして出力する。
 混合比率制御データDmrが示す混合比率Vdmrが例えばVmax/2であるとすると、第1実施形態の映像信号処理装置は次のように動作し、第1実施形態の映像信号処理方法は次のように処理する。混合比率VdmrがVmax/2のとき、式(1)より、混合部18は、補間フレーム信号f0aと補間フレーム信号f0.5aとを同じ割合で混合して、混合補間フレーム信号f0.5bとして出力する。
 図4を用いて、混合部18における補間フレーム信号f0aと補間フレーム信号f0.5aとの混合の動作について説明する。図4において、(a)は補間フレーム信号f0aにおけるフレームf0A,補間フレームf0AB2,f0AB4,f0BC1を示し、(b)は、補間フレーム信号f0.5aにおける補間フレームf0AB1,f0AB3,フレームf0B,補間フレームf0BC2を示している。
 図4の(c)に示すように、混合部18は、フレームf0Aと補間フレームf0AB1とを同じ割合で混合して混合補間フレームf0AAB1を生成する。すると、物体OBと物体OBiとが混合されて、ぼやけた物体OBmixが生成される。混合部18は、補間フレームf0AB2と補間フレームf0AB3とを同じ割合で混合して混合補間フレームf0AB2AB3を生成する。同様に、ぼやけた物体OBmixが生成される。
 混合部18は、補間フレームf0AB4とフレームf0Bとを同じ割合で混合して混合補間フレームf0AB4Bを生成する。同様に、ぼやけた物体OBmixが生成される。混合部18は、補間フレームf0BC1と補間フレームf0BC2とを同じ割合で混合して混合補間フレームf0BC1BC2を生成する。同様に、ぼやけた物体OBmixが生成される。以降、同様の動作を繰り返す。
 図5において、(a)は入力映像信号f0における各フレーム、(b)は補間フレーム信号f0aの各フレーム、(c)は、混合比率VdmrがVmax/2のとき、図4のようにして生成した混合補間フレーム信号f0.5bの各フレームを示している。
 この場合、フレームレート変換部19は、フレームf0A以降で説明すれば、フレームf0A,混合補間フレームf0AAB1,補間フレームf0AB2,混合補間フレームf0AB2AB3,補間フレームf0AB4,混合補間フレームf0AB4B,補間フレームf0BC1,混合補間フレームf0BC1BC2…の順となるように補間フレーム信号f0a,f0.5bを選択して出力映像信号f20とする。よって、物体OB(OBi,OBmix)の動きがぼやけた画像となる。
 ここでは、混合比率VdmrがVmax/2のときを示しているが、混合部18は、混合比率Vdmrの値に応じて補間フレーム信号f0aと補間フレーム信号f0.5aとを混合する。混合部18が混合比率Vdmrの値に応じて補間フレーム信号f0aと補間フレーム信号f0.5aとを混合すると、混合比率Vdmrが最小値から大きくなるに従って、デジャダの効果が小さくなっていく。
 図6は、混合比率Vdmrが最大値Vmaxのときの状態を示している。図6において、(a)は入力映像信号f0における各フレーム、(b)は補間フレーム信号f0aの各フレーム、(c)は、混合比率Vdmrが最大値Vmaxのときの混合補間フレーム信号f0.5bの各フレームを示している。
 混合比率Vdmrが最大値Vmaxであれば、式(1)より、混合部18は、図3の(b)に示す補間フレーム信号f0aをそのまま混合補間フレーム信号f0.5bとして出力する。この場合、厳密には、混合補間フレーム信号f0.5bは非混合の補間フレーム信号f0aとなる。
 フレームレート変換部19は、フレームf0A以降で説明すれば、フレームf0A,f0A,補間フレームf0AB2,f0AB2,f0AB4,f0AB4,f0BC1,f0BC1…の順となるように補間フレーム信号f0a,f0.5bを選択して出力映像信号f20とする。即ち、フレームレート変換部19は、補間フレーム信号f0aの各フレームを2回ずつ出力して、出力映像信号f20とする。
 この場合、出力映像信号f20のフレーム周波数は120Hzではあるものの、物体OB(OBi)の動きが滑らかではない画像となる。
 このように、混合部18は、混合比率制御データDmrが示す混合比率Vdmrが最大値である場合には、デジャダの効果を最小とするよう、補間フレーム信号f0aのそれぞれのフレームをそのまま混合補間フレーム信号f0.5bとして出力する。
 以上説明したように、第1実施形態の映像信号処理装置及び方法は、動きベクトルMVの信頼度に応じて、画像に含まれる移動する物体の動きを滑らかにするデジャダ用の補間フレームによるデジャダの効果を増減させる。第1実施形態の映像信号処理装置及び方法は、動きベクトルの誤検出が発生した場合には、意図的にモーションジャダを残すように、フレームレートを変換する。
 よって、第1実施形態の映像信号処理装置及び方法によれば、動きベクトルの誤検出が発生しても視覚的な違和感を軽減させることができる。
<第2実施形態>
 第1実施形態においては、入力映像信号f0がプルダウン映像信号である場合の動作について説明したが、入力映像信号f0はプルダウン映像信号ではない通常の映像信号であってもよい。また、第1実施形態は、フレーム周波数60Hzの入力映像信号f0を、120Hzの出力映像信号f20に変換するフレームレート変換を示しているが、フレームレートを3倍以上に変換してもよい。
 第2実施形態は、入力映像信号f0を通常の映像信号とし、フレームレートを4倍に変換する場合を示す。図7に示す第2実施形態の映像信号処理装置において、図1に示す第1実施形態の映像信号処理装置と共通部分の説明を適宜省略することとする。
 図7において、入力映像信号f0の各画素データは、フレームメモリ21と、動きベクトル検出部24と、補間フレーム生成部261~263と、混合部281~283と、フレームレート変換部29に順次入力される。
 図7に示す構成では、図1におけるプルダウン検出部13が存在していないため、入力映像信号f0を遅延させるフレームメモリはフレームメモリ21の1つのみでよい。図7に示す構成では、プルダウン映像信号のデジャダを意図していないため、入力映像信号f0をフレームレート変換部29に入力している。
 フレームメモリ21は、入力映像信号f0の各画素データを1フレーム期間遅延させ、映像信号f1の各画素データとして出力する。映像信号f1の各画素データは、動きベクトル検出部24と補間フレーム生成部261~263に順次入力される。
 動きベクトル検出部24は、図1の動きベクトル検出部14と同様、動きベクトルMVと動きベクトルMVの信頼度を示す信頼度データDreとを生成して出力する。動きベクトル検出部24は、信頼度データ生成部である。
 動きベクトルMVは、補間フレーム生成部261~263に入力される。信頼度データDreは、混合比率生成部27に入力される。
 補間フレーム生成部261~263は、入力映像信号f0と映像信号f1それぞれの画素データを用い、動きベクトルMVに基づいて、補間フレーム信号f0.75a,f0.5a,f0.25aを構成する各補間画素データを順次生成して出力する。
 補間フレーム信号f0.75a,f0.5a,f0.25aは、入力映像信号f0における隣接する2フレーム間に内挿する3つのフレームを構成する信号である。補間フレーム信号f0.75a,f0.5a,f0.25aは、補間フレーム信号f0.75aが時間順で最も前のフレーム信号であり、補間フレーム信号f0.25aが時間順で最も後のフレーム信号である。
 混合比率生成部27は、図2に示す混合比率生成部17と同じ構成でよい。混合比率生成部27は、入力された信頼度データDreに基づいて、混合部281~283における混合比率を決める混合比率制御データDmrを生成する。
 後述するように、第2実施形態の映像信号処理装置及び方法においては、混合部281~283は、一例として、補間フレーム信号f0.75a,f0.5a,f0.25aそれぞれに対して、混合比率制御データDmrが示す混合比率の値に応じて、入力映像信号f0を混合する。混合部281~283は、混合補間フレーム信号f0.75b,f0.5b,f0.25bを出力する。
 混合補間フレーム信号f0.75b,f0.5b,f0.25bは、補間フレーム信号f0.75a,f0.5a,f0.25aと同じ場合がある。混合補間フレーム信号f0.75b,f0.5b,f0.25bは、全て入力映像信号f0と同じ場合がある。
 前述のように、複数のフレーム信号(補間フレーム信号)を混合するのは、動きベクトルMVの信頼度が比較的低い場合に、動きベクトルの誤検出が発生しても視覚的な違和感を軽減させるためである。
 視覚的な違和感を軽減させるための混合の仕方は他にも考えられる。例えば、補間フレーム信号f0.75a,f0.5a,f0.25aのうちの少なくとも2つの補間フレーム信号を混合してもよい。また、補間フレーム信号f0.75a,f0.5a,f0.25aのうちの一部の補間フレーム信号に入力映像信号f0を混合し、残りの補間フレーム信号に他の補間フレーム信号を混合してもよい。
 補間フレーム信号f0.5aを補間フレーム信号f0.75a,f0.25aに混合してもよい。入力映像信号f0と補間フレーム信号f0.75a,f0.5a,f0.25aとのうち、時間的に隣接する2つのフレーム信号(補間フレーム信号)を混合してもよい。
 これらの混合のさせ方を実施する場合には、混合部281~283にはそれぞれ必要なフレーム信号(補間フレーム信号)を入力すればよい。
 フレームレート変換部29は、入力映像信号f0と混合補間フレーム信号f0.75b,f0.5b,f0.25bとを、混合補間フレーム信号f0.75b,f0.5b,f0.25b、入力映像信号f0の順で、入力映像信号f0の4倍のフレーム周波数である240Hzで順次出力する。フレームレート変換部29からは、フレーム周波数240Hzの出力映像信号f40が出力される。
 図8~図10を用いて、第2実施形態の映像信号処理装置の動作、及び、第2実施形態の映像信号処理方法について改めて説明する。
 図8の(a)~(c)は補間フレーム信号f0.75a,f0.5a,f0.25aのフレームを、図8の(d)は入力映像信号f0のフレームを示している。図8の(d)に示すように、円形の物体OBがフレームの左方向から右方向へと移動している。補間フレーム信号f0.75a,f0.5a,f0.25aのフレームにおける物体OBiは、入力映像信号f0における隣接する2フレームに基づいて補間した物体を示している。
 補間フレーム生成部261~263は、入力映像信号f0におけるフレームf0Aとフレームf0Bとの間に位置する、3つの補間フレームf0AB1~f0AB3を生成する。補間フレーム生成部261~263は、入力映像信号f0におけるフレームf0Bとフレームf0Cとの間に位置する、3つの補間フレームf0BC1~f0BC3を生成する。
 補間フレーム生成部261~263は、入力映像信号f0におけるフレームf0Cとフレームf0Dとの間に位置する、3つの補間フレームf0CD1~f0CD3を生成する。補間フレーム生成部261~263は、以下、同様の動作を繰り返す。
 混合部281~283に入力される混合比率制御データDmrが示す混合比率Vdmrが0であれば、混合部281~283は、図8の(a)~(c)に示す補間フレーム信号f0.75a,f0.5a,f0.25aをそのまま混合補間フレーム信号f0.75b,f0.5b,f0.25bとして出力する。この場合、厳密には、混合補間フレーム信号f0.75b,f0.5b,f0.25bは非混合の補間フレーム信号f0.75a,f0.5a,f0.25aとなる。
 このように、混合部281~283は、混合比率制御データDmrが示す混合比率Vdmrが最小値である0を示す場合には、補間フレーム信号f0.75a,f0.5a,f0.25aそれぞれのフレームをそのまま混合補間フレーム信号f0.75b,f0.5b,f0.25bとして出力する。
 混合比率制御データDmrが示す混合比率Vdmrが例えばVmax/2であるとすると、第2実施形態の映像信号処理装置は次のように動作し、第2実施形態の映像信号処理方法は次のように処理する。混合比率VdmrがVmax/2のとき、混合部281~283は、入力映像信号f0と補間フレーム信号f0.75a,f0.5a,f0.25aとを同じ割合で混合して、混合補間フレーム信号f0.75b,f0.5b,f0.25bとして出力する。
 混合部281は、図8の(a)に示す補間フレーム信号f0.75aにおける補間フレームf0AB1と、図8の(d)に示す入力映像信号f0におけるフレームf0Bとを混合して、図9の(a)に示す混合補間フレームf0BAB1を生成する。
 混合部282は、図8の(b)に示す補間フレーム信号f0.5aにおける補間フレームf0AB2と、図8の(d)に示す入力映像信号f0におけるフレームf0Bとを混合して、図9の(b)に示す混合補間フレームf0BAB2を生成する。
 混合部283は、図8の(c)に示す補間フレーム信号f0.25aにおける補間フレームf0AB3と、図8の(d)に示す入力映像信号f0におけるフレームf0Bとを混合して、図9の(c)に示す混合補間フレームf0BAB3を生成する。
 同様にして、図9の(a)~(c)に示すように、混合部281~283は、補間フレーム信号f0.75a,f0.5a,f0.25aにおける補間フレームf0BC1~f0BC3と入力映像信号f0におけるフレームf0Cとを混合して、混合補間フレームf0CBC1~f0CBC3を生成する。
 また、図9の(a)~(c)に示すように、混合部281~283は、補間フレーム信号f0.75a,f0.5a,f0.25aにおける補間フレームf0CD1~f0CD3と入力映像信号f0におけるフレームf0Dとを混合して、混合補間フレームf0DCD1~f0DCD3を生成する。混合部281~283は、以降、同様の動作を繰り返す。
 混合補間フレームf0BAB1~f0BAB3,f0CBC1~f0CBC3,f0DCD1~f0DCD3は、物体OBと物体OBiとが混合された、ぼやけた物体OBmixを含む。
 ここでは、混合比率VdmrがVmax/2のときを示しているが、混合部281~283は、混合比率Vdmrの値に応じて、入力映像信号f0と補間フレーム信号f0.75a,f0.5a,f0.25aとを混合する。混合部281~283が入力映像信号f0と補間フレーム信号f0.75a,f0.5a,f0.25aとを混合するとき、混合比率Vdmrが最小値から大きくなるに従って、入力映像信号f0の割合が増加していく。
 図10は、混合比率Vdmrが最大値Vmaxのときの状態を示している。混合比率Vdmrが最大値Vmaxであれば、混合部281~283は、図10の(a)~(c)に示すように、図10の(d)に示す入力映像信号f0をそのまま混合補間フレーム信号f0.75b,f0.5b,f0.25bとして出力する。この場合、厳密には、混合補間フレーム信号f0.75b,f0.5b,f0.25bは非混合の入力映像信号f0となる。
 図10の場合、出力映像信号f40のフレーム周波数は240Hzではあるものの、物体OB(OBi)の動きが滑らかではない画像となる。
 図7に示す第2実施形態の映像信号処理装置において、入力映像信号f0がプルダウン映像信号であり、入力映像信号f0のデジャダを意図する場合には、補間フレーム生成部をもう1つ設ければよい。図1と同様に、映像信号f2を生成するフレームメモリと、プルダウン検出部を設けることが好ましい。
<第1及び第2実施形態のまとめ>
 以上説明した第1及び第2実施形態より分かるように、動きベクトルMVの誤検出が発生しても視覚的な違和感を軽減させるために、映像信号処理装置の各構成は次のように動作すればよい。
 動きベクトル検出部(14,24)は、第1のフレーム周波数を有する入力映像信号f0における画像の動きベクトルMVを検出する。補間フレーム生成部(15,16,261~263)は、動きベクトルMVを用いて、入力映像信号f0における2つの実フレーム間に内挿する1または複数の補間フレームを生成する。
 信頼度データ生成部(14,24)は、動きベクトルMVの信頼度を示す信頼度データDreを生成する。混合比率生成部(17,27)は、信頼度データDreに基づいて混合比率制御データDmrを生成する。
 混合部(18,281~283)は、補間フレームに対して実フレームまたは他の補間フレームを、混合比率制御データDmrが示す混合比率の値に応じて混合して混合フレームを生成する。
 上述のように、第1実施形態においては、混合部18は、補間フレームに対して他の補間フレームを混合して混合フレームを生成する。第2実施形態においては、混合部281~283は、補間フレームに対して実フレームを混合して混合フレームを生成する。
 補間フレームに対して、実フレームまたは他の補間フレームを混合することにより、動きベクトルMVの誤検出が発生したとしても、視覚的な違和感が軽減されることになる。
 フレームレート変換部(19,29)は、補間フレーム及び混合フレーム、または、実フレーム及び混合フレームを、第1のフレーム周波数の整数倍である第2のフレーム周波数で出力することにより出力映像信号を生成する。
 上述のように、第1実施形態においては、第1のフレーム周波数は60Hzであり、フレームレート変換部19は、補間フレームと混合フレームとに基づいて第2のフレーム周波数として120Hzの出力映像信号f20を生成する。
第2実施形態においては、第1のフレーム周波数は60Hzであり、フレームレート変換部29は、実フレームと混合フレームとに基づいて第2のフレーム周波数として240Hzの出力映像信号f40を生成する。
 混合部(18,281~283)は、混合比率の値が最小であるとき、補間フレームをそのまま混合フレームとしてよい。混合部(18,281~283)は、混合比率の値が最大であるとき、実フレームまたは他の補間フレームをそのまま混合フレームとしてよい。
 入力映像信号f0は、第1のフレーム周波数より低い第3のフレーム周波数を有する映像信号がプルダウンによって第1のフレーム周波数を有する映像信号に変換されたプルダウン映像信号であってもよい。
 入力映像信号f0がプルダウン映像信号であるとき、補間フレーム生成部(15,16)は、入力映像信号f0における画像が異なる2つの実フレーム間に内挿する補間フレームであり、画像に含まれる移動する物体の動きを滑らかにするためのデジャダ用の補間フレームを生成してよい。
 実フレームと補間フレームとを移動する物体の順となるように並べたときの隣接する2つのフレームを組とし、組となる2つのフレームの一方を第1のフレーム、他方を第2のフレームとする。混合部(18)は、混合比率の値が最小であるとき、第2のフレームを混合フレームとしてよい。混合部(18)は、混合比率の値が最大であるとき、第1のフレームを混合フレームとしてよい。
 混合部(18)は、混合比率の値が最小と最大との間であるとき、第1のフレームと第2のフレームとを混合比率に応じて混合して混合フレームとしてよい。
 映像信号処理装置は、入力映像信号f0がプルダウン映像信号であるか否か、及び、プルダウン映像信号である場合にプルダウンシーケンスを検出するプルダウン検出部(13)を備えるのがよい。補間フレーム生成部(15,16)は、プルダウンシーケンスに基づいて、画像が異なる2つの実フレーム間に内挿する補間フレームを生成するのがよい。
 混合比率生成部(17,27)は、信頼度データDreが示す動きベクトルMVの信頼度が所定の基準よりも低い状態を所定の期間積算して積算データを生成する積算部(172)と、積算データに基づいて2つのフレームを混合する混合比率を決定する混合比率制御データDmrを生成する混合比率決定部(174)とを有する構成とするのがよい。
 本発明は以上説明した本実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。図1,図7に示す構成は単なる例であり、映像信号処理装置の具体的な構成は図1,図7の構成に限定されない。
 本発明は、映像信号の動きベクトルに基づいて補間画像データを生成し、フレーム周波数を変換する映像信号処理装置及び方法に利用できる。

Claims (6)

  1.  第1のフレーム周波数を有する入力映像信号における画像の動きベクトルを検出する動きベクトル検出部と、
     前記動きベクトルを用いて、前記入力映像信号における2つの実フレーム間に内挿する1または複数の補間フレームを生成する補間フレーム生成部と、
     前記動きベクトルの信頼度を示す信頼度データを生成する信頼度データ生成部と、
     前記信頼度データに基づいて混合比率制御データを生成する混合比率生成部と、
     補間フレームに対して実フレームまたは他の補間フレームを、前記混合比率制御データが示す混合比率の値に応じて混合して混合フレームを生成する混合部と、
     前記補間フレーム及び前記混合フレーム、または、前記実フレーム及び前記混合フレームを、前記第1のフレーム周波数の整数倍である第2のフレーム周波数で出力することにより出力映像信号を生成するフレームレート変換部と、
     を備えることを特徴とする映像信号処理装置。
  2.  前記混合部は、混合比率の値が最小であるとき、前記補間フレームを前記混合フレームとし、混合比率の値が最大であるとき、前記実フレームまたは前記他の補間フレームを前記混合フレームとすることを特徴とする請求項1記載の映像信号処理装置。
  3.  前記入力映像信号が、前記第1のフレーム周波数より低い第3のフレーム周波数を有する映像信号がプルダウンによって前記第1のフレーム周波数を有する映像信号に変換されたプルダウン映像信号であるとき、
     前記補間フレーム生成部は、前記入力映像信号における画像が異なる2つの実フレーム間に内挿する補間フレームであり、前記画像に含まれる移動する物体の動きを滑らかにするためのデジャダ用の補間フレームを生成し、
     前記混合部は、前記実フレームと前記補間フレームとを移動する物体の順となるように並べたときの隣接する2つのフレームを組とし、組となる2つのフレームの一方を第1のフレーム、他方を第2のフレームとしたとき、前記混合比率制御データが示す混合比率の値が最小である場合には、前記第2のフレームを前記混合フレームとし、前記混合比率制御データが示す混合比率の値が最大である場合には、前記第1のフレームを前記混合フレームとし、前記混合比率制御データが示す混合比率の値が最小と最大との間である場合には、前記第1のフレームと前記第2のフレームとを混合比率に応じて混合して前記混合フレームとする
     ことを特徴とする請求項1記載の映像信号処理装置。
  4.  前記入力映像信号がプルダウン映像信号であるか否か、及び、プルダウン映像信号である場合にプルダウンシーケンスを検出するプルダウン検出部をさらに備え、
     前記補間フレーム生成部は、前記プルダウン検出部によって前記入力映像信号がプルダウン映像信号であることが検出された場合に、前記プルダウンシーケンスに基づいて、画像が異なる2つの実フレーム間に内挿する補間フレームを生成する
     ことを特徴とする請求項3記載の映像信号処理装置。
  5.  前記混合比率生成部は、
     前記信頼度データが示す前記動きベクトルの信頼度が所定の基準よりも低い状態を所定の期間積算して積算データを生成する積算部と、
     前記積算データに基づいて2つのフレームを混合する混合比率を決定する前記混合比率制御データを生成する混合比率決定部と、
     を有することを特徴とする請求項1~4のいずれか1項に記載の映像信号処理装置。
  6.  第1のフレーム周波数を有する入力映像信号における画像の動きベクトルを検出し、
     前記動きベクトルを用いて、前記入力映像信号における2つの実フレーム間に内挿する1または複数の補間フレームを生成し、
     前記動きベクトルの信頼度を示す信頼度データを生成し、
     前記信頼度データに基づいて混合比率制御データを生成し、
     補間フレームに対して実フレームまたは他の補間フレームを、前記混合比率制御データが示す混合比率の値に応じて混合して混合フレームを生成し、
     前記補間フレーム及び前記混合フレーム、または、前記実フレーム及び前記混合フレームを、前記第1のフレーム周波数の整数倍である第2のフレーム周波数で出力することにより出力映像信号を生成する
     ことを特徴とする映像信号処理方法。
PCT/JP2014/053988 2013-02-25 2014-02-20 映像信号処理装置及び方法 WO2014129528A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013034177 2013-02-25
JP2013-034177 2013-02-25
JP2014-028121 2014-02-18
JP2014028121A JP2014187690A (ja) 2013-02-25 2014-02-18 映像信号処理装置及び方法

Publications (1)

Publication Number Publication Date
WO2014129528A1 true WO2014129528A1 (ja) 2014-08-28

Family

ID=51391312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053988 WO2014129528A1 (ja) 2013-02-25 2014-02-20 映像信号処理装置及び方法

Country Status (2)

Country Link
JP (1) JP2014187690A (ja)
WO (1) WO2014129528A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113114946A (zh) * 2021-04-19 2021-07-13 深圳市帧彩影视科技有限公司 视频的处理方法、装置、电子设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6904192B2 (ja) 2017-09-22 2021-07-14 株式会社Jvcケンウッド 補間フレーム生成装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167887A (ja) * 2003-12-05 2005-06-23 Victor Co Of Japan Ltd 動画像フォーマット変換装置及び方法
JP2006304266A (ja) * 2005-03-25 2006-11-02 Sanyo Electric Co Ltd フレームレート変換装置、パン・チルト判定装置および映像装置
JP2009077383A (ja) * 2007-08-27 2009-04-09 Sony Corp 画像処理装置および方法、並びにプログラム
JP2009135641A (ja) * 2007-11-29 2009-06-18 Panasonic Corp 再生装置、及び再生方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167887A (ja) * 2003-12-05 2005-06-23 Victor Co Of Japan Ltd 動画像フォーマット変換装置及び方法
JP2006304266A (ja) * 2005-03-25 2006-11-02 Sanyo Electric Co Ltd フレームレート変換装置、パン・チルト判定装置および映像装置
JP2009077383A (ja) * 2007-08-27 2009-04-09 Sony Corp 画像処理装置および方法、並びにプログラム
JP2009135641A (ja) * 2007-11-29 2009-06-18 Panasonic Corp 再生装置、及び再生方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113114946A (zh) * 2021-04-19 2021-07-13 深圳市帧彩影视科技有限公司 视频的处理方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
JP2014187690A (ja) 2014-10-02

Similar Documents

Publication Publication Date Title
KR101186143B1 (ko) 프레임 레이트 변환 장치 및 방법
JP2004312680A (ja) スクロールされるテキストまたはグラフィックデータの検出が可能な動き推定装置および方法
JP2003244661A (ja) 動き適応型デインターレース方法および装置
EP1646228B1 (en) Image processing apparatus and method
TWI384865B (zh) 影像處理之方法及電路
JPH11112940A (ja) 動きベクトルの生成方法および装置
WO2014129528A1 (ja) 映像信号処理装置及び方法
US20120274845A1 (en) Image processing device and method, and program
JP6904192B2 (ja) 補間フレーム生成装置
US7362375B2 (en) Scanning conversion apparatus and method
JP2009135847A (ja) 映像処理装置及びフレームレート変換方法
CN101232568B (zh) 图像解交错的方法及相关装置
JP2005333254A (ja) 画像処理装置および画像処理方法
JP2006174123A (ja) 順次走査変換装置
JP2010252117A (ja) フレームレート変換装置、フレームレート変換方法、動画像表示装置、フレームレート変換プログラムおよび記録媒体
US7791672B2 (en) Scanning conversion apparatus and method
JP5526918B2 (ja) 映像信号処理装置及び方法
KR100359111B1 (ko) 필드 및/또는 프레임 레이트 변환방법 및 장치
KR100359112B1 (ko) 필드 및/또는 프레임 레이트 변환방법 및 장치
JP4735779B2 (ja) 補間画素データ生成装置及び方法
JP5891913B2 (ja) 映像信号処理装置及び方法
WO2020075649A1 (ja) 補間フレーム生成装置及び方法
JP2017102190A (ja) 表示装置及びその制御方法
JP2012182691A (ja) 画像変換装置
KR20080023604A (ko) 프레임 레이트 변환장치 및 프레임 레이트 변환방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754947

Country of ref document: EP

Kind code of ref document: A1