WO2014128964A1 - 地震予測装置 - Google Patents

地震予測装置 Download PDF

Info

Publication number
WO2014128964A1
WO2014128964A1 PCT/JP2013/054758 JP2013054758W WO2014128964A1 WO 2014128964 A1 WO2014128964 A1 WO 2014128964A1 JP 2013054758 W JP2013054758 W JP 2013054758W WO 2014128964 A1 WO2014128964 A1 WO 2014128964A1
Authority
WO
WIPO (PCT)
Prior art keywords
earthquake
value
alarm
prediction
mmivp
Prior art date
Application number
PCT/JP2013/054758
Other languages
English (en)
French (fr)
Inventor
周一 他谷
Original Assignee
東海旅客鉄道株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海旅客鉄道株式会社 filed Critical 東海旅客鉄道株式会社
Priority to PCT/JP2013/054758 priority Critical patent/WO2014128964A1/ja
Priority to CN201380073794.8A priority patent/CN105074503B/zh
Priority to US14/770,398 priority patent/US20160011325A1/en
Priority to EP13875835.4A priority patent/EP2960677A4/en
Priority to JP2015501227A priority patent/JP6189922B2/ja
Publication of WO2014128964A1 publication Critical patent/WO2014128964A1/ja
Priority to HK16100140.1A priority patent/HK1212451A1/xx

Links

Images

Classifications

    • G01V1/01
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • G01V1/303Analysis for determining velocity profiles or travel times

Definitions

  • the present invention relates to an earthquake prediction apparatus that uses a revised Mercari seismic intensity scale as an earthquake motion index indicating the magnitude of an earthquake shake, and predicts the magnitude of the earthquake shake in an initial motion portion.
  • Patent Document 1 an apparatus for measuring the magnitude of an earthquake shake in real time is known.
  • This device detects acceleration components in three directions (up / down, east / west, north / south) of earthquake motion, calculates the acceleration by vector combining these acceleration components, and calculates an index value indicating the magnitude of the earthquake shake from this acceleration By doing so, the magnitude of the earthquake shake is measured in real time.
  • Patent Document 2 an apparatus that predicts the magnitude of an earthquake shake at the initial motion part of the earthquake motion is also known (Patent Document 2).
  • the vertical acceleration component has a property of being larger than the other acceleration components.
  • this device predicts the magnitude of the earthquake shake by detecting the vertical acceleration component of the earthquake motion and calculating an index value indicating the magnitude of the earthquake shake corresponding to this acceleration component. .
  • the earthquake prediction apparatus uses MMI as the earthquake motion index, and predicts the magnitude of the earthquake shake early in consideration of the speed of the earthquake motion in the initial motion portion of the earthquake motion.
  • the earthquake prediction apparatus includes a vertical acceleration acquisition unit (10, S10), a vertical speed calculation unit (12, S14), and a predicted value calculation unit (16, S14).
  • the vertical acceleration acquisition unit (10, S10) sequentially acquires vertical acceleration information indicating an acceleration component in the vertical direction of the earthquake motion from the sensor when the sensor for detecting the earthquake motion starts detecting the earthquake motion.
  • the vertical velocity calculation unit (12, S14) sequentially calculates vertical velocity components of the earthquake motion from the vertical acceleration information acquired by the vertical acceleration acquisition unit.
  • the predicted value calculation unit (16, S14) uses the maximum absolute value among the absolute values of the speed components sequentially calculated by the vertical speed calculation unit as the maximum speed value (Vumax), and uses the following prediction formula to Is a predicted value (MMIvp) indicating the magnitude of the sway by the index value of the revised Mercari seismic intensity scale.
  • ⁇ v and ⁇ v are the maximum absolute value of the absolute values of the vertical velocity component indicated by the ground motion of each earthquake for the multiple earthquakes that occurred in the past, and the maximum absolute value is the explanatory variable (X). It is a regression coefficient calculated in advance by regression analysis using the index value whose magnitude is indicated by the revised Mercari tremor scale as a dependent variable (Y).
  • Non-Patent Document 1 when the maximum absolute value of the absolute values of the earthquake motion is Vmax, the magnitude of the earthquake shake can be calculated by using the following calculation formula.
  • the calculated value (MMIv) shown in the revised Mercari seismic intensity scale can be obtained.
  • the earthquake prediction apparatus of the present invention when used, the magnitude of the earthquake shake can be predicted at an early stage in the initial movement portion of the earthquake using MMI as the earthquake motion index.
  • the earthquake prediction apparatus of the present invention predicts the magnitude of the earthquake shake in consideration of the speed of the earthquake motion.
  • the earthquake prediction apparatus of the present invention is optimal as an apparatus for predicting earthquake motion on a railway or the like that has many earth structures such as embankments. Therefore, when the earthquake prediction device of the present invention is used, it is possible to suppress an accident in which the train is overturned due to collapse of embankment or the like by stopping the train early using an automatic train stop device when an earthquake occurs.
  • the earthquake prediction apparatus of the present invention uses MMI as an earthquake motion index, it is possible to predict earthquakes that are easily understood internationally.
  • an adjustment coefficient setting unit (22) for adjusting the adjustment coefficient ( ⁇ v) is provided, and the prediction As a formula, the following prediction formula to which the adjustment coefficient ( ⁇ v) is added may be used.
  • the air vibration alarm means a hypersensitivity alarm for small shaking.
  • ⁇ v is added to the prediction formula to adjust the magnitude of the calculated predicted value (MMIvp) so that the above two requirements can be met. For example, if the alarm reference value is 5.5 steps of MMI and ⁇ v is ⁇ 1, the idling alarm ratio is close to 0% as shown in FIG. The alarm success rate is close to 100%.
  • the earthquake prediction device of the present invention when used, in addition to the effect of the earthquake prediction device of the first aspect of the present invention, prediction according to the user's request becomes possible.
  • the prediction value (MMIvp) calculated by the prediction value calculation unit is compared with a predetermined alarm reference value, and the prediction value (MMIvp) is calculated.
  • An alarm unit (18, S22 to S24) that performs an alarm when the alarm reference value is exceeded may be provided.
  • an earthquake occurrence determination unit (20) that determines the occurrence of an earthquake based on the presence or absence of earthquake motion is provided, and the alarm unit generates an earthquake by the earthquake occurrence determination unit.
  • An alarm may be issued when it is determined that the alarm has occurred.
  • the reference numerals in parentheses such as the above parts are examples showing the correspondence with the functional blocks described in the embodiments described later, and the present invention is the functional blocks indicated by the reference numerals in the parentheses of the above parts, etc. It is not limited to.
  • Calculated values (MMIv) and predicted values (MMIvp) are the earthquakes that have occurred in the past, each of which has a 5.5 level or higher, the timing when the predicted value (MMIvp) has reached 5.5 levels, and the calculated value (MMIv) is It is a bar graph which sorts for every difference with the timing which reached 5.5 steps, and shows the number of the sort. It is the graph which showed the time history change of the predicted value (MMIvp) and the calculated value (MMIv) about the 2011 off the Pacific coast of Tohoku Earthquake, and the graph which showed the change from the detection start to the end of the earthquake motion.
  • 5B is a graph showing changes in the time history of the predicted value (MMIvp) and the calculated value (MMIv) for the 2011 off the Pacific coast of Tohoku Earthquake. In order to make the change in the values easy to read, It is the graph which expanded and displayed about the area. It is a flowchart of the earthquake warning process performed with the earthquake prediction apparatus of 1st Embodiment. It is the block diagram which showed each function which the earthquake prediction apparatus of 2nd Embodiment has with the block. It is a graph which shows a mode that an alarm success rate and an idling alarm ratio change when an adjustment coefficient ((gamma) v) is adjusted. It is the block diagram which showed each function which the earthquake prediction apparatus of other embodiment has with the block. It is a flowchart of the earthquake warning process performed with the earthquake prediction apparatus of other embodiment.
  • the earthquake prediction apparatus 1 of this embodiment is a computer apparatus provided with CPU, ROM1a, RAM, etc. In FIG. 1, the CPU and RAM are not shown. In addition, an acceleration sensor device 3 and an external alarm device 5 are connected to the earthquake prediction device 1.
  • the acceleration sensor device 3 includes three acceleration sensors (vertical acceleration sensor 30, east-west acceleration sensor 32, north-south acceleration sensor 34) for detecting earthquake motion as acceleration components in three directions (vertical, east-west, north-south) orthogonal to each other. ).
  • observation points are set in a scattered manner in an area that warns of an earthquake, and the earthquake prediction device 1 and the acceleration sensor device 3 are installed at each observation point.
  • this acceleration sensor device 3 when an earthquake wave reaches the observation point, each sensor 30 to 34 starts detecting an acceleration component of the earthquake motion at each observation point, and starts outputting an analog signal indicating each acceleration component. .
  • the external alarm device 5 is installed at a location distant from each observation point, and is connected to a plurality of earthquake prediction devices 1 installed at each observation point through a public line. When the external alarm device 5 receives an alarm signal from any of the earthquake prediction devices 1, the external alarm device 5 performs an alarm operation such as outputting an alarm sound or displaying alarm information.
  • the external alarm device 5 when the external alarm device 5 is interlocked with the train control device, when receiving an alarm signal, the external alarm device 5 can also execute an alarm operation for instructing the train control device to stop the train.
  • the earthquake prediction apparatus 1 includes an acceleration acquisition unit 10, a vertical speed calculation unit 12, a speed recording unit 14, a predicted value calculation unit 16, a first alarm unit 18, and an earthquake occurrence determination unit 20. Yes.
  • the functions of these units 10 to 20 are realized by the earthquake prediction device 1 executing an earthquake warning process A described later stored in the ROM 1a.
  • the acceleration acquisition unit 10 sequentially inputs analog signals indicating acceleration components in three directions (east-west, north-south, up-down) that are output when each of the sensors 30 to 34 of the acceleration sensor device 3 detects earthquake motion. Sampling is performed at predetermined sampling periods.
  • the acceleration acquisition unit 10 sequentially outputs a digital signal obtained by sampling an analog signal indicating the vertical acceleration component of the earthquake motion to the vertical velocity calculation unit 12 and the earthquake occurrence determination unit 20.
  • the acceleration acquisition unit 10 sequentially outputs a digital signal obtained by sampling an analog signal indicating an acceleration component in the east-west direction and an acceleration component in the north-south direction to the earthquake occurrence determination unit 20.
  • the sampling period is set to 100 Hz, but the present invention is not limited to this.
  • positions the acceleration acquisition part 10 in the acceleration sensor apparatus 3, and transmits a digital signal from the acceleration sensor apparatus 3 to the earthquake prediction apparatus 1 may be sufficient.
  • the vertical velocity calculation unit 12 integrates the acceleration component with the sampling time (1/100 second) every time a digital signal indicating the vertical acceleration component of the earthquake motion is input from the acceleration acquisition unit 10 for each sampling period. A process of sequentially calculating the vertical velocity component (the unit is kine) of the earthquake motion is executed.
  • the speed recording unit 14 executes a process of storing information on the speed component (hereinafter referred to as “vertical speed information”) each time the vertical speed calculation unit 12 calculates the vertical speed component of the earthquake motion.
  • the predicted value calculation unit 16 calculates the absolute value of the vertical velocity component from the vertical velocity information recorded in the velocity recording unit 14 every time the vertical velocity calculation unit 12 calculates the vertical velocity component of the earthquake motion.
  • a predicted value (MMIvp) in which the magnitude of the earthquake shake is expressed by MMI is sequentially calculated based on a prediction formula described later using the maximum velocity value (Vumax) which is the maximum absolute value.
  • the first alarm unit 18 uses the predicted value (MMIvp) calculated by the predicted value calculation unit 16 as a predetermined alarm reference value when the earthquake occurrence determination unit 20 determines that an earthquake has occurred. When it is determined that (MMI 5.5 stage) is exceeded, an alarm signal is output to the external alarm device 5.
  • the earthquake occurrence determination unit 20 is flag information used in an earthquake warning process A (see FIG. 6), which will be described later, and whether or not an earthquake motion is detected at an observation point, that is, whether or not an earthquake is currently occurring.
  • the flag storage area 20a for storing the flag information is provided.
  • the earthquake occurrence determination unit 20 stores the acceleration in the flag storage area 20a when the absolute value of the acceleration exceeds a predetermined earthquake occurrence reference value for determining whether or not an earthquake has occurred. The process of setting the flag information to “1” is executed.
  • the earthquake occurrence determination unit 20 executes processing for setting the flag information stored in the flag storage area 20a to “0”. Then, the earthquake occurrence determination unit 20 outputs the flag information stored in the flag storage area 20a to the first alarm unit 18.
  • Vumax is the maximum absolute value among the absolute values of the vertical velocity component of the earthquake motion stored in the velocity recording unit 14.
  • the vertical speed calculation unit 12 sequentially calculates the vertical speed component of the earthquake motion, and the calculation result is sequentially stored in the speed recording unit 14. Therefore, the predicted value calculation unit 16 obtains the maximum speed value (Vumax) from the speed recording unit 14 when calculating the predicted value (MMIvp) using the prediction formula.
  • ⁇ v and ⁇ v are coefficient values calculated in advance using recorded waveform data of K-NET, which is an earthquake observation network operated by the National Research Institute for Earth Science and Disaster Prevention.
  • K-NET is an earthquake observation network operated by the National Research Institute for Earth Science and Disaster Prevention.
  • the maximum absolute value (kine) and the MMI index value of the vertical velocity component of each recorded waveform are obtained, Is plotted on a semilogarithmic graph with the horizontal axis and vertical axis, the relationship shown in FIG.
  • ⁇ v and ⁇ v are calculated as regression coefficients by regression analysis with the maximum absolute value of the vertical velocity component in FIG. 2 as the explanatory variable (X) and the MMI index value as the dependent variable (Y).
  • Formula MMIv ⁇ log 10 (Vmax) + ⁇
  • Vmax is an absolute value of the maximum speed of the ground motion.
  • is 3.47 and ⁇ is 2.35.
  • the predicted value (MMIvp) and the calculated value (MMIv) are both MMI index values indicating 5.5 levels or more. There is an example.
  • the predicted value (MMIvp) reached the 5.5 stage of the revised Mercari seismic intensity scale about 4 seconds earlier than the calculated value (MMIv).
  • both the predicted value (MMIvp) and the calculated value (MMIv) are earthquake waveforms that reach the 5.5 stage with the index value of MMI, and the maximum seismic intensity in the 2011 off the Pacific coast of Tohoku Earthquake is the index value of MMI.
  • the predicted value (MMIvp) is about 8 seconds ahead of the calculated value (MMIv). It reached 5.5 stage.
  • the earthquake prediction apparatus 1 can use MMI as a seismic motion index and can predict at an early stage whether or not the initial motion portion of the seismic motion will cause a shake having a required magnitude.
  • the earthquake warning processing A of the present embodiment is started when a power switch (not shown) of the earthquake prediction apparatus 1 is turned on, and thereafter repeatedly executed until the power switch is turned off every sampling cycle.
  • this earthquake warning process A first, the acceleration acquisition process of S10 is executed.
  • S10 an analog signal indicating the acceleration component in the three directions (east-west, north-south, up-down) of the ground motion detected by the acceleration sensor device 3 from the acceleration sensor device 3 is processing executed by the acceleration acquisition unit 10. Are sequentially input and sampled.
  • a digital signal indicating the vertical acceleration component of the sampled ground motion is output to the vertical velocity calculation unit 12 and the earthquake occurrence determination unit 20, and the digital signal indicating the acceleration component in the east-west direction and the acceleration component in the north-south direction is output.
  • a process of outputting a signal to the earthquake occurrence determination unit 20 is executed.
  • the speed and MMIvp calculation process of S12 is executed.
  • the process executed by the vertical speed calculation unit 12 is executed to calculate the vertical speed component of the earthquake motion from the vertical acceleration component of the earthquake motion indicated by the digital signal from the acceleration acquisition unit 10.
  • the process is executed by the predicted value calculation unit 16, and the maximum absolute value of the absolute values of the velocity components in the vertical direction is selected from the vertical velocity information recorded in the velocity recording unit 14.
  • a process of calculating a predicted value (MMIvp) is executed using a certain maximum speed value (Vumax).
  • a process executed by the earthquake occurrence determination unit 20 is a process for calculating the acceleration of the ground motion at the observation point from the acceleration components in the three directions of the ground motion converted into digital signals by the acceleration acquisition unit 10. Executed.
  • S16 processing for determining whether an earthquake has occurred is executed.
  • This S16 is processing performed by the first alarm unit 18, and specifically, the flag stored in the flag storage area 20a is “1” indicating that an earthquake is occurring, or an earthquake has occurred.
  • a process of determining whether the value is “0” indicating no normal state is executed.
  • S18 processing for determining whether or not the absolute value of the acceleration of the seismic motion at the observation point is larger than the above-described earthquake occurrence reference value is executed. This S18 is executed by the earthquake occurrence determination unit 20.
  • This S22 is a process executed by the first alarm unit 18, and the predicted value (MMIvp) calculated in S12 is greater than or equal to an alarm reference value serving as an alarm reference, that is, at an MMI of 5.5 or more levels. Processing for determining whether or not there is is executed.
  • This S27 is executed by the earthquake occurrence determination unit 20.
  • processing for determining whether or not the absolute value of the acceleration at the observation point is equal to or less than the above-described earthquake occurrence reference value is executed.
  • the earthquake alarm process A is immediately terminated, and the processes after S10 are executed again. 4).
  • the predicted value (MMIvp) and the calculated value (MMIv) of the earthquake motion of the earthquake that occurred in the past are compared, as shown in FIG. It was found that the predicted value (MMIvp) reaches the warning reference value earlier than the calculated value (MMIv) in the initial movement part.
  • the earthquake prediction apparatus 1 when used, it is possible to predict the occurrence of an earthquake requiring an alarm at an early stage using the MMI as an earthquake motion index. In addition, the earthquake prediction apparatus 1 according to the present embodiment predicts the magnitude of the earthquake shake in consideration of the speed of the earthquake motion.
  • the earthquake prediction apparatus 1 of the present embodiment is optimal as an earthquake prediction apparatus for a railway or the like that has many earth structures such as embankments. That is, if the earthquake prediction apparatus 1 of this embodiment is used as an earthquake prediction apparatus for a railway or the like that has many earth structures such as embankments, for example, when an earthquake occurs, the train is stopped early using an automatic train stop device, Accidents where the train overturns due to the collapse of the train can be suppressed.
  • the elevator can be stopped, or the occurrence of an earthquake can be notified to a person through television or the like.
  • the earthquake prediction apparatus 1 of this embodiment since the occurrence of an earthquake that requires a warning is predicted at an early stage using the MMI, it is possible to predict an earthquake that is easy to understand internationally.
  • an alarm is issued only when the predicted value (MMIvp) exceeds a predetermined earthquake occurrence reference value (S22 ⁇ S24), so an earthquake that does not require an alarm occurs. In this case, it is possible to suppress the waste of alarming.
  • a predetermined earthquake occurrence reference value S22 ⁇ S24
  • the earthquake prediction apparatus 1 of the present embodiment is different from the earthquake prediction apparatus 1 of the first embodiment in that an adjustment coefficient setting unit 22 is provided.
  • the present embodiment is different from the first embodiment in that an adjustment value ⁇ v is added to a prediction formula for calculating a prediction value (MMIvp) used in the prediction value calculation unit 16.
  • Prediction formula MMIvp ⁇ vlog 10 (Vumax) + ⁇ v + ⁇ v
  • ⁇ v can be adjusted from ⁇ 1 to 1, and for example, a rotary adjustment knob is used as the adjustment coefficient setting unit 22. By changing the amount of rotation and the like, ⁇ v can be adjusted by human operation. What can adjust the value is provided.
  • the predicted value calculation unit 16 uses the value set as the adjustment value ⁇ v set by the adjustment coefficient setting unit 22 to calculate the predicted value (MMIvp) using a prediction formula to which this ⁇ v is added.
  • the calculation of the predicted value (MMIvp) is performed using the above-described prediction formula with ⁇ v added.
  • the alarm success rate and the air vibration alarm ratio are calculated using the earthquake motion data recorded in the K-NET.
  • the alarm success rate is a ratio of the total value of the calculated value (MMIv) of 5.5 or more to the predicted value (MMIvp) of 5.5 or more. This is the ratio of earthquakes where the calculated value (MMIv) is less than 5.5 out of the total of 5.5 or more.
  • the alarm success rate becomes higher as ⁇ v is closer to 1, and is almost 100% when ⁇ v is 1. Conversely, the alarm success rate decreases as ⁇ v approaches ⁇ 1, and is about 40% when ⁇ v is set to ⁇ 1.
  • the earthquake prediction device 1 of the present embodiment has the following effects in addition to the effects exhibited by the earthquake prediction device 1 of the first embodiment.
  • the earthquake prediction device 1 of the present embodiment When the earthquake prediction device 1 of the present embodiment is used to predict and warn of the occurrence of an earthquake at an early stage, for example, the following two requests are expected as user requests.
  • One is that if you want to be alerted when you predict the occurrence of an earthquake that requires caution, whether or not an earthquake that requires caution is really occurring, If you want to increase the alarm success rate, you can consider.
  • an alarm may not be given when an earthquake that requires vigilance occurs, so that an alarm should not be given when an earthquake that requires vigilance does not occur. If you want it, i.e., if you want to lower the idling alarm ratio.
  • ⁇ v is added to the prediction formula to adjust the magnitude of the calculated predicted value (MMIvp) so that the above two requirements can be met. For example, if the alarm reference value is 5.5 steps of MMI and ⁇ v is ⁇ 1, the idling alarm ratio is close to 0% as shown in FIG. The alarm success rate is close to 100%.
  • the information regarding the vertical acceleration component of the earthquake motion indicated by the analog signal output from the vertical acceleration sensor 30 of the above-described embodiment corresponds to an example of the vertical acceleration information of the present invention.
  • the process executed by the acceleration acquisition unit 10 in the process of S10 of the above-described embodiment corresponds to an example of the vertical acceleration acquisition unit described in the claims.
  • the process executed by the vertical speed calculation unit 12 in the process of S14 of the above-described embodiment corresponds to an example of the vertical speed calculation unit described in the claims.
  • the process performed by the predicted value calculation unit 16 in the process of S14 of the above-described embodiment corresponds to an example of the predicted value calculation unit described in the claims.
  • the process in which the first alarm unit 18 transmits an alarm signal to the external alarm device 5 is an example of the process in which the alarm unit described in the claims issues an alarm. It corresponds to. (Other embodiments)
  • the external alarm device 5 has been described as a device capable of communicating with the earthquake prediction device 1 via a public line.
  • an alarm device that emits an alarm sound provided in the earthquake prediction device 1 may be used.
  • the earthquake prediction apparatus 1 may include a general earthquake determination unit 24 and a second alarm unit 26 that determine and warn of an earthquake by a conventional determination method.
  • the general earthquake determination unit 24 determines that an earthquake has occurred
  • the second alarm unit 26 executes processing for issuing an alarm to the external alarm device 5. For this reason, in the earthquake prediction device 1 of the present embodiment, if it is determined that an earthquake has occurred in either the first alarm unit 18 or the second alarm unit 26, an alarm is issued in the external alarm device 5.
  • the adjustment coefficient setting unit 22 may or may not be provided. And when these general earthquake determination parts 24 and the 2nd alarm part 26 are provided, as shown in FIG. 10, you may make it perform the process of S25 and S26 between S24 and S27.
  • S25 it is determined whether an earthquake has occurred by a conventional method. If it is determined that an earthquake has occurred (S25: YES), in S26, a second alarm different from the early warning in the above embodiment is used. A process for executing the alarm is executed.
  • each part constituting the earthquake prediction device 1 of the present embodiment can be realized by a computer connected to the acceleration sensor device 3 and the external alarm device 5 by a program stored in the ROM 1a.
  • the program may be used by being loaded into the computer from the ROM 1a or the backup RAM, or may be loaded and used for the computer via a network.
  • this program may be used by being recorded on a recording medium of any form readable by a computer.
  • the recording medium include a portable semiconductor memory (for example, a USB memory, a memory card (registered trademark), etc.).
  • the present invention is not limited to the above-described embodiment as long as it meets the gist of the invention described in the claims.

Abstract

 地震予測装置は、予測される地震動の大きさを改正メルカリ震度階で示した予測値(MMIvp)を、地震の地震動の検出をセンサが始めた後、上下速度算出部で算出された速度成分の絶対値の中で最大となる最大速度値(Vumax)を用いて、予測式から算出する予測値算出部を備えている。前記予測式は、MMIvp=αvlog10(Vumax)+βvである。

Description

地震予測装置
 本発明は、地震の揺れの大きさを示す地震動指標として改正メルカリ震度階を用い、地震動の初動部分において、地震の揺れの大きさを予測する地震予測装置に関する。
 現在、地震の揺れの大きさをリアルタイムに計測する装置が知られている(特許文献1)。
 この装置は、地震動の3方向(上下、東西、南北)の加速度成分を検出し、これら加速度成分をベクトル合成して加速度を算出し、この加速度から地震の揺れの大きさを示す指標値を算出することによって、地震の揺れの大きさをリアルタイムに計測する。
 また、現在、地震動の初動部分において、地震の揺れの大きさを予測する装置も知られている(特許文献2)。
 上述した地震動の3方向の加速度成分のうち上下方向の加速度成分は、他の加速度成分よりも大きな値となる性質を有している。
 そのためこの装置では、地震動の上下方向の加速度成分を検出して、この加速度成分に対応する地震の揺れの大きさを示す指標値を算出することによって、地震の揺れの大きさを予測している。
 ところで、上記特許文献1,2に記載された発明は、日本で創作されたものであることから、いずれも地震動指標として日本の気象庁が示す震度階が用いられている。
 しかし、地震動指標は、国際的には、改正メルカリ震度階(MMI:Modified Mercalli Intensity)が用いられており、上記特許文献1,2に記載された装置は、そのまま海外で使用することはできない。
 そのため、上述した特許文献1,2に記載された各装置を海外で使用する場合、地震動指標を日本の気象庁が示す震度階からMMIに置き換えることが考えられるが、MMIは、人の体感または地震後の被害状況の調査により決められる地震動指標であるため、器械計測に馴染にくいものであり、この置き換えは容易ではなかった。
 その一方で、このMMIを器械計測に用いるための提案がいくつかなされている。
 例えば、Waldらは、地震動の加速度や速度からMMIの指標値を推計する方法を提案しており(非特許文献1)、また、日本国内でも、中村が、地震動指標としてMMIを用いて地震の揺れの大きさを実測する方法(非特許文献2)を提案している。
特許第4472769号公報 特開2009-68899号公報
「Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California」David J. Wald, Vincent Quitoriano, Thomas H. Heaton, and Hiroo Kanamori、Earthquake Spectra, Vol.15, No.3, Aug.1999 「合理的な地震動指標値の検討-DI値を中心にした地震動指標間の関係」中村豊、2003年、土木学会地震工学論文集
 しかし、いずれの提案も、地震動指標としてMMIを用いてはいるものの、地震の揺れの大きさを予測するには至っていない。
 また、盛土等の土構造物や木造建築物等の比較的固有周期が長い構造物に対する地震による被害の大きさは、地震動の速度との相関性が高いと考えられている。
 そのため、警戒が必要な大きさの地震の発生を早期に予測するとしても、盛土等の土構造物を多く用いる鉄道などでは、地震動の速度を考慮した予測が行われることが望まれるが、このようなことが可能か明らかではない。
 そこで、本発明の第1局面の地震予測装置では、地震動指標としてMMIを用い、地震動の初動部分において、地震動の速度を考慮し、地震の揺れの大きさを早期に予測する。
 本発明の第1局面の地震予測装置は、上下加速度取得部(10、S10)と、上下速度算出部(12、S14)と、予測値算出部(16、S14)とを備えるものである。
 上下加速度取得部(10、S10)は、地震動を検出するセンサが地震動の検出を始めると、地震動の上下方向の加速度成分を示す上下加速度情報を、センサから順次取得するものである。
 上下速度算出部(12、S14)は、上下加速度取得部が取得した上下加速度情報から、地震動の上下方向の速度成分を順次算出するものである。
 予測値算出部(16、S14)は、上下速度算出部で順次算出された速度成分の絶対値のうち、最大の絶対値を最大速度値(Vumax)とし、下記の予測式を用いて、地震の揺れの大きさを改正メルカリ震度階の指標値で示した予測値(MMIvp)を算出するものである。
 予測式は、MMIvp=αvlog10(Vumax)+βvである。
 但し、αv及びβvは、過去に発生した複数の地震について、各地震の地震動が示す上下方向の速度成分の絶対値のうち、最大の絶対値を説明変数(X)とし、各地震の揺れの大きさを改正メルカリ震動階で示した指標値を従属変数(Y)として、回帰分析により予め算出された回帰係数である。
 例えば、過去に発生した地震を記録したデータベースとしてK-NETを用いて回帰分析を行うと(図2参照)、Y=3.67log10X+3.72となるので、上記予測式のαvは3.67、βvは3.72としてもよい。
 また、Waldらの非特許文献1の提案によると、地震動の速度の絶対値のうち、最大の絶対値をVmaxとした場合、下記の計算式を用いることで、その地震の揺れの大きさを改正メルカリ震度階で示した計算値(MMIv)を求めることができるとしている。
 計算式 MMIv=αlog10(Vmax)+β
 この計算式におけるαは3.47、βは2.35である。
 そして、これら予測式と計算式とから導かれる予測値(MMIvp)と計算値(MMIv)とを比較すると、図5Bに示すように、地震の初動の部分では、予測値(MMIvp)のほうが計算値(MMIv)よりも早く、上昇することが分かった。
 従って、本発明の地震予測装置を用いると、地震動指標としてMMIを用い、地震の初動部分において、その地震の揺れの大きさを早期に予測することができる。
 また、本発明の地震予測装置は、地震動の速度を考慮し、その地震の揺れの大きさを予測している。
 そのため、本発明の地震予測装置は、例えば盛土等の土構築物が多い鉄道などでの地震動の予測装置として最適である。
 従って、本発明の地震予測装置を用いると、地震発生時に、自動列車停止装置を用いて早期に列車を止め、盛土等の崩壊により列車が転覆等する事故を抑制することができる。
 さらに、本発明の地震予測装置では、地震動指標としてMMIを用いているので、国際的にもわかりやすい地震の予測が可能である。
 次に、本発明の第2局面の地震予測装置のように、第1局面の地震予測装置の構成に加え、調整係数(γv)を調整する調整係数設定部(22)を備え、且つ、予測式としては、この調整係数(γv)を加えた下記の予測式を用いてもよい。
 予測式は、MMIvp=αvlog10(Vumax)+βv+γvである。
 本発明の地震予測装置を用いて地震の揺れの大きさを予測して警報する場合、ユーザ側の要求としては、例えば、次の二つの要求が予想される。
 一つは、予測ははずれてもよいから、警戒が必要な大きさの揺れを引き起こす地震が発生したことを予測したとき、警戒が必要な大きさの揺れを引き起こす地震が本当に発生しているか否かにかかわらず、すべて警報して欲しいと望む場合、すなわち、警報成功率を高めたい場合、が考えられる。
 もう一つは、警戒が必要な大きさの揺れを引き起こす地震が発生しているときに警報がなされない場合があってもよいから、警戒が必要な大きさの揺れを引き起こす地震が発生していないときに警報がなされないようにして欲しいと望む場合、すなわち空振警報比率を低くしたい場合、とが考えられる。ここで、空振警報とは、小さな揺れに対する過敏警報のことを意味する。
 そのため、本発明の地震予測装置では、予測式内にγvを加えて、算出される予測値(MMIvp)の大きさを調整し、上述の二つの要求に対応できるようにしている。
 例えば、警報基準値をMMIの5.5段階とし、γvを-1とした場合、図8に示すように、空振警報比率は0%に近くなり、逆に、γvを1とした場合は、警報成功率は100%に近くなる。
 すなわち、γvを1とした場合、警戒が必要な大きさの揺れを引き起こす地震が発生したことを予測すると、警戒が必要な大きさの揺れを引き起こす地震が本当に発生しているか否かにかかわらず必ず警報がなされる。
 一方、γvを-1とした場合、警戒が必要な大きさの揺れを引き起こす地震が発生しているときに警報がなされない場合があるが、警戒が必要な大きさの揺れを引き起こす地震が発生していないときに警報がなされることはない。
 従って、本発明の地震予測装置を用いると、本発明の第1局面の地震予測装置の効果に加え、ユーザの要求に応じた予測が可能となる。
 次に、本発明の第3局面の地震予測装置のように、予測値算出部で算出された予測値(MMIvp)と予め定められた警報基準値とを比較して、予測値(MMIvp)が警報基準値を越えた場合、警報を行う警報部(18、S22~S24)を備えてもよい。
 この地震予測装置では、予め定められた警報基準値を予測値(MMIvp)が超えた場合にのみ警報がなされるので、警報が不要な地震が発生した場合に警報がなされる無駄を抑制することができる。
 尚、本発明の第4局面の地震予測装置のように、地震動の有無により地震の発生を判定する地震発生判定部(20)を備え、警報部は、地震発生判定部により、地震が発生していると判定されているときに警報を行うようにしてもよい。
 因みに、上記各部等の括弧内の符号は、後述する実施形態に記載の機能ブロック等との対応関係を示す一例であり、本発明は上記各部等の括弧内の符号に示された機能ブロック等に限定されるものではない。
第1実施形態の地震予測装置が有する各機能をブロックで示したブロック図である。 横軸を速度(単位はkine)、縦軸をMMIの指標値とする指数関数グラフであって、過去に発生した各地震について、各地震の地震動に関する上下方向の速度成分の絶対値のうち、最大の絶対値を横軸座標とし、各地震の揺れの大きさをMMIで示した指標値を縦軸座標としてプロットしたグラフである。 過去に発生した各地震を、各地震の揺れの大きさを示す計算値(MMIv)及び予測値(MMIvp)がそれぞれ5.5段階以上か否かにより仕分け、その仕分けた数を示す表である。 計算値(MMIv)も予測値(MMIvp)もそれぞれ5.5段階以上を示す過去に発生した各地震を、予測値(MMIvp)が5.5段階に達したタイミングと、計算値(MMIv)が5.5段階に達したタイミングとの差毎に仕分け、その仕分けた数を示す棒グラフである。 2011年の東北地方太平洋沖地震について、予測値(MMIvp)及び計算値(MMIv)の時刻歴変化を示したグラフであり、地震動の検出開始から終了までの変化を示したグラフである。 2011年の東北地方太平洋沖地震について、予測値(MMIvp)及び計算値(MMIv)の時刻歴変化を示したグラフであり、値の変化を読み取りやすくするため、図5Aの時刻10~40秒の区間について拡大表示したグラフである。 第1実施形態の地震予測装置で実行される地震警報処理のフローチャートである。 第2実施形態の地震予測装置が有する各機能をブロックで示したブロック図である。 調整係数(γv)を調整した場合に、警報成功率及び空振警報比率が変化する様子を示すグラフである。 その他の実施形態の地震予測装置が有する各機能をブロックで示したブロック図である。 その他の実施形態の地震予測装置で実行される地震警報処理のフローチャートである。
 1… 地震予測装置 3… 加速度センサ装置 5… 外部警報装置
 10… 加速度取得部 12… 上下速度算出部 14… 速度記録部
 16… 予測値算出部 18… 第1警報部 20… 地震発生判定部
 20a… フラグ記憶領域 22… 調整係数設定部
 24… 一般地震判定部 26… 第2警報部 30…上下加速度センサ
 32… 東西加速度センサ  34… 南北加速度センサ
 以下に本発明の実施形態を図面と共に説明する。
(第1実施形態)
1.地震予測装置1
 第1実施形態の地震予測装置1について、図1を用いて説明する。尚、第1実施形態について説明する以下の欄では、第1実施形態を本実施形態と言う。
 本実施形態の地震予測装置1は、CPU、ROM1a、RAM等を備えるコンピュータ装置である。尚、図1ではCPU及びRAMの図示はしていない。
 また、この地震予測装置1には、加速度センサ装置3と、外部警報装置5とが接続されている。
 このうち加速度センサ装置3は、地震動を、互いに直交する3方向(上下、東西、南北)の加速度成分として検出するための3つの加速度センサ(上下加速度センサ30、東西加速度センサ32、南北加速度センサ34)を備えている。
 本実施形態では、地震を警戒する区域に観測点が散点的に設定され、各観測点に地震予測装置1及び加速度センサ装置3が設置される。
 この加速度センサ装置3は、その観測点に地震波が到達すると、各センサ30~34が各観測点での地震動の加速度成分の検出をそれぞれ開始し、各加速度成分を示すアナログ信号の出力を開始する。
 外部警報装置5は、各観測点から離れた場所に設置されており、各観測点に設置された複数の地震予測装置1と公衆回線を介して通信可能に接続されている。
 そして、この外部警報装置5は、いずれかの地震予測装置1から警報信号を受信すると、警報音を出力したり、警報情報を表示するなどの警報動作を実行する。
 また、この外部警報装置5は、例えば、列車制御装置と連動している場合、警報信号を受信したら、列車制御装置に列車を止めるよう指示を出す警報動作を実行することもできる。
 地震予測装置1は、図1に示すように、加速度取得部10、上下速度算出部12、速度記録部14、予測値算出部16、第1警報部18、地震発生判定部20を有している。
 これら各部10~20の機能は、地震予測装置1が、ROM1aに記憶された後述する地震警報処理Aを実行することにより実現される。
 加速度取得部10は、加速度センサ装置3の各センサ30~34が地震動を検出したときに出力する3方向(東西、南北、上下)の加速度成分を示すアナログ信号を順次入力し、これらアナログ信号を予め定められたサンプリング周期ごとにサンプリングする。
 そして、この加速度取得部10は、地震動の上下方向の加速度成分を示すアナログ信号をサンプリングしたデジタル信号を、上下速度算出部12及び地震発生判定部20に順次出力する。
 また、この加速度取得部10は、東西方向の加速度成分及び南北方向の加速度成分を示すアナログ信号をサンプリングしたデジタル信号を地震発生判定部20に順次出力する。
 尚、本実施形態では、サンプリング周期は100Hzに設定されているが、これに限られるものではない。(加速度取得部10を加速度センサ装置3に配置し、加速度センサ装置3から地震予測装置1へデジタル信号を伝送する形態でもよい。)
 上下速度算出部12は、加速度取得部10から地震動の上下方向の加速度成分を示すデジタル信号をサンプリング周期ごとに入力するたびに、その加速度成分をサンプリング時間(1/100秒)で積分して、地震動の上下方向の速度成分(単位はkine)を順次算出する処理を実行する。
 そして速度記録部14は、この上下速度算出部12が、地震動の上下方向の速度成分を算出するごとに、その速度成分に関する情報(以下「上下速度情報」という)を記憶する処理を実行する。
 予測値算出部16は、上下速度算出部12が、地震動の上下方向の速度成分を算出するごとに、速度記録部14に記録された上下速度情報中から、上下方向の速度成分の絶対値のうち最大の絶対値である最大速度値(Vumax)を用いて、後述する予測式に基づき、地震の揺れの大きさをMMIによって表した予測値(MMIvp)を順次算出する。
 第1警報部18は、地震発生判定部20で地震が発生していると判定されているときに、予測値算出部16において算出された予測値(MMIvp)が、予め定められた警報基準値(MMIで5.5段階)を越えたと判定された場合に、外部警報装置5に警報信号を出力する。
 地震発生判定部20は、後述する地震警報処理A(図6参照)で用いるフラグ情報であって、観測点において地震動を検出しているか否か、すなわち、地震が現在発生しているか否かを示すフラグ情報を記憶するフラグ記憶領域20aを備えている。
 この地震発生判定部20は、加速度取得部10から地震動の直交する3方向の加速度成分を示すサンプリング周期毎にデジタル信号を入力するたびに、これら3方向の加速度成分をベクトル合成した加速度の絶対値を算出する。
 そして、地震発生判定部20は、この加速度の絶対値が、地震が発生しているか否かを判断するため予め定められた地震発生基準値を超えている場合は、フラグ記憶領域20aに記憶されたフラグ情報を「1」とする処理を実行する。
 一方、地震発生判定部20は、この加速度の絶対値が地震発生基準値以下の場合は、フラグ記憶領域20aに記憶されたフラグ情報を「0」とする処理を実行する。
 そして、地震発生判定部20は、フラグ記憶領域20aに記憶されたフラグ情報を第1警報部18に出力する。
 2.MMIvpの算出方法について
 次に、本実施形態で用いられている下記の予測式について説明する。
 予測式 MMIvp=αvlog10(Vumax)+βv
 この予測式は、地震の揺れの大きさを改正メルカリ震度階の指標値で示した予測値(MMIvp)を求めるものである。
 Vumaxは、速度記録部14に記憶された地震動の上下方向の速度成分についての絶対値の中で、その最大の絶対値である。
 上述のように、上下加速度センサ30が地震動の検出を始めると、加速度取得部10が、上下加速度センサ30から出力される地震動の上下方向の加速度成分を示すアナログ信号を順次入力する。
 すると、上下速度算出部12が地震動の上下方向の速度成分を順次算出し、その算出結果が速度記録部14に順次記憶される。
 そのため、予測値算出部16は、上記予測式を用いて予測値(MMIvp)を算出するとき、この速度記録部14から最大速度値(Vumax)を得ている。
 一方、αv及びβvは、防災科学技術研究所が運用している地震観測ネットワークであるK-NETの記録波形データを用いて予め算出した係数値である。
 過去に発生した13回の地震時にK-NETで記録された2323個の記録波形データについて、各記録波形の上下方向速度成分の絶対値の最大値(kine)とMMIの指標値を求め、それぞれを横軸、縦軸にとった片対数グラフ上にプロットすると、図2に示すような関係を示す。
 αv及びβvは、図2における上下方向速度成分の絶対値の最大値を説明変数(X)とし、MMIの指標値を従属変数(Y)として、回帰分析により回帰係数として算出される。
 このK-NETに記録された地震の地震動のデータを用いて回帰分析を行った場合、その結果は、Y=3.67log10X+3.72となるので、上記予測式のαvは3.67、βvは3.72とした。
 尚、各地震の揺れの大きさをMMIの指標値で示すため、この指標値(以下「計算値(MMIv)という」)の算出には、Waldらの非特許文献1による提案による計算式を用いた。
 計算式 MMIv=αlog10(Vmax)+β
 ここで、Vmaxは、地震動の最大速度の絶対値である。
 また、αは3.47、βは2.35である。
 次に、K-NETに記録された地震波形データと上記予測式及び計算式を用いて、時間に対する予測値(MMIvp)及び計算値(MMIv)の時刻歴変化をシミュレーションし、そのシミュレーションによる結果を比較したので、その比較結果を説明する。
 図3に示すように、今回検討対象とした2323例の地震波形データのうち、予測値(MMIvp)及び計算値(MMIv)がいずれもMMIの指標値で5.5段階以上を示すものは299例ある。
 このうち、上記シミュレーションにより、予測値(MMIvp)が計算値(MMIv)より先にMMIの指標値で5.5段階に到達する例が173例あり、逆に、計算値(MMIv)が先に達する例が126例あった。
 そして、上記299例の地震波形データついてさらに検討すると、図4に示すように、予測値(MMIvp)が計算値(MMIv)よりも0秒以上2秒未満の範囲内で、MMIの指標値で5.5段階に到達する地震波形データが92例あることなどが分かった。
 また、平均では、予測値(MMIvp)は、計算値(MMIv)よりも約4秒早く改正メルカリ震度階の5.5段階に達することが分かった。
 ここで、予測値(MMIvp)と計算値(MMIv)が共にMMIの指標値で5.5段階に達する地震波形であって、2011年の東北地方太平洋沖地震で最大震度がMMIの指標値で9.5段階となる地震波形についてみると、図5Bに示すように、地震動の初期段階では、予測値(MMIvp)が計算値(MMIv)よりも、約8秒先行して、MMIの指標値で5.5段階に達していた。
 一方、このような地震でも、地震発生から100秒以上経過すると、図5Aに示すように、予測値(MMIvp)も計算値(MMIv)もほぼ同じ値を示すようになる。
 つまり、本実施形態の地震予測装置1は、地震動指標としてMMIを用い、地震動の初動部分において、警報が必要な大きさの揺れとなるかどうかを早期に予測することができる。
 3.地震警報処理
 次に、本実施形態の地震予測装置1で実行される地震警報処理Aについて、図6を用いて説明する。
 本実施形態の地震警報処理Aは、地震予測装置1の図示しない電源スイッチを入れると開始され、その後、サンプリング周期毎に電源スイッチが切られるまで繰り返し実行される。
 この地震警報処理Aでは、最初に、S10の加速度取得処理が実行される。
 このS10では、加速度取得部10で実行される処理であって、加速度センサ装置3から、この加速度センサ装置3で検出された地震動の3方向(東西、南北、上下)の加速度成分を示すアナログ信号を順次入力して、サンプリングする処理が実行される。
 そして、このS10では、サンプリングした地震動の上下方向の加速度成分を示すデジタル信号を、上下速度算出部12及び地震発生判定部20に出力し、東西方向の加速度成分及び南北方向の加速度成分を示すデジタル信号を地震発生判定部20に出力する処理が実行される。
 次に、S12の速度、MMIvp算出処理が実行される。
 このS12では、上下速度算出部12で実行される処理であって、加速度取得部10からデジタル信号が示す地震動の上下方向の加速度成分から、地震動の上下方向の速度成分を算出する処理が実行される。
 また、このS12では、予測値算出部16で実行される処理であって、速度記録部14に記録された上下速度情報の中から、上下方向の速度成分の絶対値のうち最大の絶対値である最大速度値(Vumax)を用いて、予測値(MMIvp)を算出する処理が実行される。
 次に、S14では、地震発生判定部20で実行される処理であって、加速度取得部10がデジタル信号に変換した地震動の3方向の加速度成分から、観測点の地震動の加速度を算出する処理が実行される。
[規則91に基づく訂正 02.05.2013] 
 次に、S16の処理が実行される。
 このS16では、地震が発生しているか判定する処理が実行される。
 このS16は、第1警報部18で行われる処理であって、具体的には、フラグ記憶領域20aに記憶されたフラグが、地震発生中を示す「1」であるか、地震が発生していない通常状態を示す「0」であるかを判定する処理が実行される。
 このS16で、フラグが「0」、すなわち「通常状態」であると判定されると(S16:YES)、次にS18の処理が実行される。S16において、フラグが「1」、すなわち「地震発生中」であると判定されると(S16:NO)、次にS22の処理が実行される。
 S18では、観測点の地震動の加速度について、その加速度の絶対値が、前述した地震発生基準値よりも大きいか否かを判定する処理が実行される。
 このS18は、地震発生判定部20で実行される。
 このS18では、地震動の加速度の絶対値が地震発生基準値よりも大きい場合、すなわち地震が発生している場合(S18:YES)、フラグ記憶領域20aに記憶されたフラグを「0」から「1」に変更する処理が実行される(S20)。その後、本地震警報処理Aが終了して、再び、S10以下の処理が実行される。
 一方、地震動の加速度の絶対値が地震発生基準値よりも小さい場合、すなわち地震が発生していない場合(S18:NO)、直ちに本地震警報処理Aが終了し、再び、S10以下の処理が実行される。
 次に、S16で、フラグが「1」、すなわち「地震発生中」であると判定された場合(S16:NO)に実行されるS22の処理について説明する。
 このS22は、第1警報部18で実行される処理であって、S12で算出された予測値(MMIvp)が、警報の基準となる警報基準値以上、すなわち、MMIで5.5段階以上であるか判定する処理が実行される。
 このS22において、予測値(MMIvp)が警報基準値よりも大きいと判定されると、上述したように、平均では、地震予測装置1が設置された観測点で、実際にMMIで5.5段階以上の揺れが生じる4秒前であることが分かる。
 そのため、S22において、予測値(MMIvp)がMMIで5.5段階以上であると判定された場合(S22:YES)、次にS24の処理が実行され、第1警報部18から外部警報装置5に警報信号を発信する処理が実行される。そして、このS24の後、S27の処理が実行される。
[規則91に基づく訂正 02.05.2013] 
 一方、S22において、予測値(MMIvp)がMMIで5.5段階未満であると判定された場合(S22:NO)、次にS27の処理が実行される。
 S27では、S18と反対に、観測点の地震動の加速度の大きさが、予め定めた地震発生基準値よりも小さいか否かを判定する処理が実行される。
 このS27は、地震発生判定部20で実行される。このS27では、S18と同様、観測点の地震動の加速度について、その加速度の絶対値が、前述した地震発生基準値以下であるか否かを判定する処理が実行される。
 このS27により、地震動の加速度の絶対値が基準値以下の場合(S27:YES)、フラグ記憶領域20aに記憶されたフラグを「1」から「0」に変更する処理が実行される(S28)。その後、本地震警報処理Aが終了し、再び、S10以下の処理が実行される。
 一方、地震動の加速度の大きさが基準値よりも大きい場合(S27:NO)、直ちに本地震警報処理Aが終了し、再び、S10以下の処理が実行される。
4.本実施形態の地震予測装置の特徴的な作用効果
 上述したように、過去に発生した地震の地震動の予測値(MMIvp)と計算値(MMIv)とを比較すると、図5Bに示すように、地震の初動の部分では、予測値(MMIvp)のほうが計算値(MMIv)よりも早く警報基準値に達することが分かった。
 従って、本実施形態の地震予測装置1を用いると、地震動指標としてMMIを用い、地震動の初動部分において、警報が必要な地震の発生を早期に予測することができる。
 また、本実施形態の地震予測装置1は、地震動の速度を考慮し、その地震の揺れの大きさを予測している。
 そのため、本実施形態の地震予測装置1は、例えば盛土等の土構築物が多い鉄道等に対する地震の予測装置として最適である。
 つまり、本実施形態の地震予測装置1は、例えば盛土等の土構築物が多い鉄道等に対する地震の予測装置として用いれば、地震発生時に、自動列車停止装置を用いて早期に列車を止め、盛土等の崩壊により列車が転覆等する事故を抑制することができる。
 他に、エレベータを止めたり、テレビ等を通じて人に対して地震の発生を告知することもできる。
 さらに、本実施形態の地震予測装置1では、警報が必要な地震の発生を、MMIを用いて早期に予測しているので、国際的にもわかりやすい地震の予測が可能である。
 また、本実施形態の地震予測装置1では、予め定められた地震発生基準値を予測値(MMIvp)が超えた場合にのみ警報がなされるので(S22→S24)、警報が不要な地震が発生した場合に警報がなされる無駄を抑制することができる。
(第2実施形態)
 次に、本発明の第2実施形態について説明する。
 本実施形態では、第1実施形態と異なる点のみ説明する。尚、第2実施形態について説明する以下の欄では、第2実施形態を本実施形態と呼んで説明する。
1.地震予測装置1
 本実施形態の地震予測装置1は、図7に示すように、調整係数設定部22を備えている点が、第1実施形態の地震予測装置1とは異なる。
 また、本実施形態では、予測値算出部16で用いる予測値(MMIvp)を算出する予測式中に調整値γvが加えられている点が、第1実施形態とは異なる。
 予測式 MMIvp=αvlog10(Vumax)+βv+γv
 本実施形態では、γvは-1~1まで調整することができ、調整係数設定部22としては、例えば回転式の調整ツマミが用いられ、その回転量等を変えることで人の操作によりγvの値を調整することができるものが備えられる。
 予測値算出部16は、この調整係数設定部22で設定された調整値γvとして設定した値を用いて、このγvを加えた予測式を用いて予測値(MMIvp)を算出する。
 尚、本実施形態の地震予測装置1で実行される地震警報処理AのS22でも、予測値(MMIvp)の算出は、上述のγvを加えた予測式を用いて行われる。
 2.調整値γvについて
 次に、警報成功率、及び、空振警報比率について図8を用いて説明する。
 この警報成功率、及び、空振警報比率は、K-NETに記録された地震の地震動のデータを用いて算出したものである。
 警報成功率は、計算値(MMIv)が5.5以上になるものの総数のうち、予測値(MMIvp)が5.5以上になるものの割合である
 空振警報比率は、予測値(MMIvp)が5.5以上になるものの総数のうち、計算値(MMIv)が5.5未満となる地震の割合である。
 この図8に示すように、警報成功率は、γvが1に近いほど高くなって、γvを1とするとほぼ100%となる。逆に、警報成功率は、γvが-1に近いほど低くなって、γvを-1とすると約40%となる。
 一方、空振警報比率は、γvが-1に近いほど低くなり、γvを-1とするとほぼ0%となる。逆に、空振警報比率は、γvが1に近いほど高くなり、γvを1とする約40%となる。
3.本実施形態の地震予測装置の特徴的な作用効果
 本実施形態の地震予測装置1は、第1実施形態の地震予測装置1が奏する効果に加え、下記のような効果も奏する。
 本実施形態の地震予測装置1を用いて地震の発生を早期に予測して警報する場合、ユーザ側の要求としては、例えば、次の二つの要求が予想される。
 一つは、予測ははずれてもよいから、警戒が必要な地震の発生を予測したとき、警戒が必要な地震が本当に発生しているか否かにかかわらず、すべて警報して欲しいと望む場合すなわち、警報成功率を高めたい場合、が考えられる。
 もう一つは、警戒が必要な地震が発生しているときに警報がなされない場合があってもよいから、警戒が必要な地震が発生していないときに警報がなされることがないようにして欲しいと望む場合、すなわち空振警報比率を低くしたい場合、とが考えられる。
 そのため、本実施形態の地震予測装置1では、予測式内にγvを加えて、算出される予測値(MMIvp)の大きさを調整し、上述の二つの要求に対応できるようにしている。
 例えば、警報基準値をMMIの5.5段階とし、γvを-1とした場合、図8に示すように、空振警報比率は0%に近くなり、逆に、γvを1とした場合は、警報成功率は100%に近くなる。
 すなわち、γvを1とした場合、警戒が必要な地震の発生を予測すると、警戒が必要な地震が本当に発生しているか否かにかかわらず必ず警報がなされる。
 一方、γvを-1とした場合、警戒が必要な地震が発生しているときに警報がなされない場合があるが、警戒が必要な地震が発生していないときに警報がなされることはない。
 従って、本実施形態の地震予測装置1を用いると、ユーザの要求に応じた予測が可能となる。
(対応関係)
 上述の実施形態の上下加速度センサ30から出力されたアナログ信号が示す地震動の上下方向の加速度成分に関する情報が、本発明の上下加速度情報の一例に相当する。
 上述の実施形態のS10の処理において加速度取得部10が実行する処理が、特許請求の範囲に記載された上下加速度取得部の一例に相当する。
 上述の実施形態のS14の処理において上下速度算出部12が実行する処理が、特許請求の範囲に記載された上下速度算出部の一例に相当する。
 上述の実施形態のS14の処理において予測値算出部16が実行する処理が、特許請求の範囲に記載された予測値算出部の一例に相当する。
 上述の実施形態のS22~S24の処理において、第1警報部18が外部警報装置5に対して警報信号を送信する処理が、特許請求の範囲に記載された警報部が警報を行う処理の一例に相当する。
(その他の実施形態)
 上記実施形態では、加速度センサ装置3は、地震予測装置1とは別装置として説明したが、地震予測装置1に組み込まれていてもよい。
 上記実施形態では、外部警報装置5は、地震予測装置1と公衆回線を介して通信可能な装置として説明したが、地震予測装置1に備えられた警報音を発する警報装置でもよい。
 また、図9に示すように、地震予測装置1には、従来の判定方法により地震を判定し、警報する一般地震判定部24と第2警報部26とを備えるようにしてもよい。
 この場合、第2警報部26は、一般地震判定部24で地震が発生したと判定されたら、外部警報装置5に警報を発する処理を実行する。
 このため、本実施形態の地震予測装置1では、第1警報部18または第2警報部26のいずれかで地震が発生したと判定されたら、外部警報装置5において警報がなされることとなる。
 尚、この場合、調整係数設定部22は備えていても備えていなくてもよい。
 そして、これら一般地震判定部24と第2警報部26とを備える場合、図10に示すように、S24からS27の間で、S25及びS26の処理を実行するようにしてもよい。
 この場合、S25では、従来の方法で地震が発生しているか判定され、地震が発生していると判定されたら(S25:YES)、S26において、上記実施形態の早期警報とは別の第2の警報を実行する処理が実行される。
[規則91に基づく訂正 02.05.2013] 
 尚、本実施形態の地震予測装置1を構成する各部の機能10~26は、ROM1aに記憶されたプログラムにより、加速度センサ装置3と外部警報装置5が接続されたコンピュータに実現させることができるが、このプログラムは、ROM1aやバックアップRAMからコンピュータにロードされて用いられてもよいし、ネットワークを介してコンピュータにロードされて用いられてもよい。
 また、このプログラムは、コンピュータにて読み取り可能なあらゆる形態の記録媒体に記録されて用いられてもよい。記録媒体としては、例えば、持ち運び可能な半導体メモリ(例えばUSBメモリ、メモリカード(登録商標)など)などが含まれる。
 本発明は、特許請求の範囲に記載された発明の趣旨に合致するものであればよく、上述の実施形態に限定されるものではない。

Claims (4)

  1.  地震動を検出するセンサが地震動の検出を始めると、前記地震動の上下方向の加速度成分を示す上下加速度情報を、前記センサから順次取得する上下加速度取得部(10、S10)と、
     前記上下加速度取得部が取得した前記上下加速度情報から、前記地震動の上下方向の速度成分を順次算出する上下速度算出部(12、S12)と、
     前記上下速度算出部で順次算出された前記速度成分の絶対値のうち、最大の絶対値を最大速度値(Vumax)とし、下記の予測式を用いて、地震の揺れの大きさを改正メルカリ震度階の指標値で示した予測値(MMIvp)を算出する予測値算出部(16、S12)と
     を備えることを特徴とする地震予測装置。
      予測式 MMIvp=αvlog10(Vumax)+βv
      但し、αv及びβvは、回帰分析により予め算出された回帰係数である。
  2.  請求項1に記載の地震予測装置において、
     調整係数(γv)を調整する調整係数設定部(22)を備え、
     前記予測値算出部は、前記調整係数(γv)を加えた下記の予測式を用いて前記予測値(MMIvp)を算出する、
     ことを特徴とする地震予測装置。
      予測式 MMIvp=αvlog10(Vumax)+βv+γv
  3.  請求項1,2のいずれか1項に記載の地震予測装置において、
     前記予測値算出部で算出された前記予測値(MMIvp)と、予め定められた警報基準値とを比較して、前記予測値(MMIvp)が前記警報基準値を越えた場合、警報を行う警報部(18、S22~S24)
     を備えることを特徴とする地震予測装置。
  4.  請求項3に記載の地震予測装置において、
     前記地震動の有無により地震の発生を判定する地震発生判定部(20)を備え、
     前記警報部は、
      前記地震発生判定部により、前記地震が発生していると判定されているときに警報を行うことを特徴とする地震予測装置。
PCT/JP2013/054758 2013-02-25 2013-02-25 地震予測装置 WO2014128964A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2013/054758 WO2014128964A1 (ja) 2013-02-25 2013-02-25 地震予測装置
CN201380073794.8A CN105074503B (zh) 2013-02-25 2013-02-25 地震预测装置
US14/770,398 US20160011325A1 (en) 2013-02-25 2013-02-25 Earthquake prediction device
EP13875835.4A EP2960677A4 (en) 2013-02-25 2013-02-25 APPARATUS FOR PREDICTING EARTHQUAKES
JP2015501227A JP6189922B2 (ja) 2013-02-25 2013-02-25 地震予測装置
HK16100140.1A HK1212451A1 (en) 2013-02-25 2016-01-08 Earthquake prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054758 WO2014128964A1 (ja) 2013-02-25 2013-02-25 地震予測装置

Publications (1)

Publication Number Publication Date
WO2014128964A1 true WO2014128964A1 (ja) 2014-08-28

Family

ID=51390787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054758 WO2014128964A1 (ja) 2013-02-25 2013-02-25 地震予測装置

Country Status (6)

Country Link
US (1) US20160011325A1 (ja)
EP (1) EP2960677A4 (ja)
JP (1) JP6189922B2 (ja)
CN (1) CN105074503B (ja)
HK (1) HK1212451A1 (ja)
WO (1) WO2014128964A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019086480A (ja) * 2017-11-10 2019-06-06 株式会社ミエルカ防災 地震警報システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605860B2 (ja) * 2012-11-15 2014-10-15 東芝エレベータ株式会社 エレベータの運転制御方法及び運転制御装置
JP2017166832A (ja) * 2016-03-14 2017-09-21 オムロン株式会社 感震センサ及び地震検知方法
JP6851150B2 (ja) * 2016-07-11 2021-03-31 リンナイ株式会社 ガスコンロ
TWI620154B (zh) * 2017-04-11 2018-04-01 楊偉智 使用者裝置、地震警報伺服器及其地震警報方法
CN109545735B (zh) * 2017-09-22 2022-01-28 蓝枪半导体有限责任公司 金属内连线结构及其制作方法
US11402525B2 (en) * 2019-11-10 2022-08-02 Kenneth H Sheeks Earthquake detector
JP7422103B2 (ja) 2021-03-23 2024-01-25 大成建設株式会社 地震動波形の推定方法、地震動の予測システム
CN113268852B (zh) * 2021-04-14 2022-02-22 西南交通大学 一种基于蒙特卡洛模拟的地震滑坡概率危险性分析方法
CN117151937A (zh) * 2023-09-18 2023-12-01 广州禧闻信息技术有限公司 一种建筑震动预防趋势分析系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082864A (ja) * 1996-09-05 1998-03-31 Tomihiko Okayama 空間電磁界センサ及びそれを用いた地震防災直前警報発生装置並びにその方法
JP2006349358A (ja) * 2005-06-13 2006-12-28 Meisei Electric Co Ltd 地震情報伝達システム
JP2007198812A (ja) * 2006-01-25 2007-08-09 Matsushita Electric Works Ltd 震度計
JP2009068899A (ja) 2007-09-11 2009-04-02 Central Japan Railway Co 警報用予測震度算出装置、地震警報報知システム
JP2009075058A (ja) * 2007-08-31 2009-04-09 Citizen Holdings Co Ltd 電子時計
JP4472769B2 (ja) 2007-12-28 2010-06-02 株式会社シグネット リアルタイム震度計とそれを用いた震度等の予知方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058847A (zh) * 1991-05-08 1992-02-19 曹松林 地震提前报警的方法及其报警灯具
US5625348A (en) * 1994-03-10 1997-04-29 Farnsworth; David F. Method and apparatus for detecting local precursor seismic activity
US5597188A (en) * 1995-06-19 1997-01-28 Miche; John A. Earthquake latch
CN201210339Y (zh) * 2008-06-21 2009-03-18 王暾 基于加速度传感器的地震烈度报警装置
US20120274440A1 (en) * 2011-04-29 2012-11-01 General Electric Company Method and system to disconnect a utility service based on seismic activity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082864A (ja) * 1996-09-05 1998-03-31 Tomihiko Okayama 空間電磁界センサ及びそれを用いた地震防災直前警報発生装置並びにその方法
JP2006349358A (ja) * 2005-06-13 2006-12-28 Meisei Electric Co Ltd 地震情報伝達システム
JP2007198812A (ja) * 2006-01-25 2007-08-09 Matsushita Electric Works Ltd 震度計
JP2009075058A (ja) * 2007-08-31 2009-04-09 Citizen Holdings Co Ltd 電子時計
JP2009068899A (ja) 2007-09-11 2009-04-02 Central Japan Railway Co 警報用予測震度算出装置、地震警報報知システム
JP4472769B2 (ja) 2007-12-28 2010-06-02 株式会社シグネット リアルタイム震度計とそれを用いた震度等の予知方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Relationships between Instrumental Ground- Motion Parameters and Modified Mercalli Intensity in Eastern North America", BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, vol. 94, no. 5, October 2004 (2004-10-01), pages 1728 - 1736, XP008180852 *
DAVID J. WALD ET AL.: "Relationships between Peak Ground Acceleration", PEAK GROUND VELOCITY, AND MODIFIED MERCALLI INTENSITY IN CALIFORNIA, EARTHQUAKE SPECTRA, vol. 15, no. 3, 1 August 1999 (1999-08-01), pages 557 - 564, XP008180892 *
DAVID J. WALD; VINCENT QUITORIANO; THOMAS H. HEATON; HIROO KANAMORI: "Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California", EARTHQUAKE SPECTRA, vol. 15, no. 3, August 1999 (1999-08-01), XP008180892
See also references of EP2960677A4
YUTAKA NAKAMURA: "Examination of Rational Ground Motion Index Value - Relationship between Ground Motion Indices based on DI Value", COLLECTION OF EARTHQUAKE ENGINEERING PAPERS BY JAPAN SOCIETY OF CIVIL ENGINEERS, 2003

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019086480A (ja) * 2017-11-10 2019-06-06 株式会社ミエルカ防災 地震警報システム
JP7015523B2 (ja) 2017-11-10 2022-02-15 有限会社日新情報 地震警報システム

Also Published As

Publication number Publication date
US20160011325A1 (en) 2016-01-14
JPWO2014128964A1 (ja) 2017-02-02
CN105074503B (zh) 2018-04-10
CN105074503A (zh) 2015-11-18
EP2960677A4 (en) 2016-10-12
EP2960677A1 (en) 2015-12-30
HK1212451A1 (en) 2016-06-10
JP6189922B2 (ja) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6189922B2 (ja) 地震予測装置
Moschas et al. Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer
JP4503068B2 (ja) 緊急遮断システム及び緊急遮断システムの使用方法
JP2007198813A (ja) 震度計
KR20170052271A (ko) 진동 가속도와 변위 계측 기반 재난 경보 시스템 및 방법
JP5015970B2 (ja) 地震動の予測システム
JP6189923B2 (ja) 地震予測装置
JP4460520B2 (ja) 地震評価方法および地震評価装置
JP2006194822A (ja) 加速度センサを用いる地盤等の変位モニタリング方法
TWI589914B (zh) Earthquake prediction device
TWI580991B (zh) Earthquake prediction device
JP2016075480A (ja) 単独観測点の地震波を用いた近距離地震に対する早期警報方法
US20160042185A1 (en) Information processing apparatus, storage medium, and information processing method
JP6885077B2 (ja) 物性解析装置、物性解析方法、物性解析プログラムおよび物性解析システム
JP2013200284A (ja) 地震検知装置
JP2017134019A (ja) 斜面崩壊予兆検知システム、プログラム及び斜面崩壊予兆検知方法
CN105738946A (zh) 多元触发的方法
JP5653600B2 (ja) 免震システムおよび免震システムの制御方法
US20230050431A1 (en) Systems and methods for earthquake detection and alerts
JP4182259B1 (ja) 地震動の初期微動を用いた震源距離または震央距離推定方法
JP3793787B2 (ja) 地震動のp波検知方法とそれに基づいた警報発令方法
Redhwan et al. A Neyman-Pearson approach to the development of low cost earthquake detection and damage mitigation system using sensor fusion
Brincker et al. Nonlinear Detection in Wave Loaded Structures
Chou et al. Exploring changes in building strength using seismic wave deconvolution.
JP2015200530A (ja) 建物の振動に関する居住性評価システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380073794.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14770398

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013875835

Country of ref document: EP