WO2014123360A1 - 엘이디 조명장치 - Google Patents

엘이디 조명장치 Download PDF

Info

Publication number
WO2014123360A1
WO2014123360A1 PCT/KR2014/000998 KR2014000998W WO2014123360A1 WO 2014123360 A1 WO2014123360 A1 WO 2014123360A1 KR 2014000998 W KR2014000998 W KR 2014000998W WO 2014123360 A1 WO2014123360 A1 WO 2014123360A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
led
unit
current
voltage
Prior art date
Application number
PCT/KR2014/000998
Other languages
English (en)
French (fr)
Inventor
공명국
유경호
조용욱
추길호
김종일
이영준
한승종
Original Assignee
주식회사 루멘스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20130056437A external-priority patent/KR101490232B1/ko
Priority claimed from KR1020130056432A external-priority patent/KR101595846B1/ko
Priority claimed from KR20130056435A external-priority patent/KR101490231B1/ko
Priority claimed from KR20130056433A external-priority patent/KR101490230B1/ko
Priority claimed from KR1020130056436A external-priority patent/KR101553342B1/ko
Priority claimed from KR1020130084815A external-priority patent/KR101568746B1/ko
Priority claimed from KR1020130084813A external-priority patent/KR20150010177A/ko
Priority claimed from KR1020130084814A external-priority patent/KR20150010178A/ko
Priority claimed from KR1020130084816A external-priority patent/KR101568752B1/ko
Priority claimed from KR1020130084812A external-priority patent/KR101568751B1/ko
Priority claimed from KR1020130099825A external-priority patent/KR20140100386A/ko
Priority to US14/765,610 priority Critical patent/US9491825B2/en
Application filed by 주식회사 루멘스 filed Critical 주식회사 루멘스
Priority to CN201480007145.2A priority patent/CN104969663B/zh
Publication of WO2014123360A1 publication Critical patent/WO2014123360A1/ko
Priority to US15/245,538 priority patent/US9918363B2/en
Priority to US15/721,898 priority patent/US10206256B2/en
Priority to US15/876,448 priority patent/US10362649B2/en
Priority to US16/219,430 priority patent/US20190132914A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to an LED (Light Emitting Diode) lighting device, the switch for operating the LED by the input voltage is automatically switched, the heat generation problem occurs in the switching IC generated when the voltage is input above the rated voltage It is about lighting device to solve.
  • LED Light Emitting Diode
  • LED diodes (hereinafter referred to as LEDs) have been widely used in lighting devices due to low power efficiency and long life.
  • Conventional switching circuits include a voltage sensing circuit or a cycle sensing circuit to control a switch corresponding to the LED by sensing the magnitude of the voltage or the input period of the voltage according to the input voltage.
  • the conventional switching circuit includes a voltage sensing circuit or a periodic sensing circuit, a problem arises in that the size of the entire circuit becomes large. Therefore, the area that can further include the LED is reduced.
  • the switching circuit is composed of FETs, which are vulnerable to the invention because these FET ICs are sensitive components. If the input voltage is input above the rated voltage, there is a problem that a lot of heat is generated in the switching circuit. That is, when the input voltage is input above the rated voltage, a high ampere current flows through the switching circuit, causing a lot of heat generation in the switching circuit.
  • U.S. Patent No. US6989807 mentions a feature for driving an LED at a voltage that changes in real time by adjusting a plurality of switches connected in parallel to a plurality of LED groups connected in series at an AC input voltage whose voltage changes in real time.
  • the US Patent US6989807 also includes a voltage sensing circuit for sensing the input voltage, the area to add the LED is small, when the rated voltage is more than 100% is generated a lot of heat generated in the switching circuit power consumption This increases efficiency, and the high heat generated in the switching circuit increases the possibility of malfunction of the circuit.
  • An object of the present invention is to protect the switch unit by reducing heat generated in the switch unit by dissipating heat from the resistor when the rated voltage or more is input to the LED unit to which the plurality of LEDs are connected. All.
  • Another object of the present invention is to configure the switch unit without configuring the voltage sensing circuit or the periodic sensing circuit for sensing the input voltage to be able to further configure the LED in a limited area.
  • Another object of the present invention is to prevent the flicker phenomenon by connecting a capacitor to the LED.
  • Another object of the present invention is to economically control the dimming of the LED.
  • a power supply unit for supplying input power; and a rectifier circuit unit for receiving the input power from the power supply unit to output rectified rectified power; and a plurality of LED (LED) channel is connected in series and the LED channel
  • An LED unit having a resistance unit connected to the last stage of the current sensing resistor; And a plurality of switches, wherein the n th switch is connected to a rear end of the n th LED channel to control the operation of the LED channel, and the current of the n th switch and the n + 1 th switch of the current sensing resistor.
  • a resistor connected to the last LED channel and a switch connected to the resistor unit may be included in the switch unit, so that the resistor unit may reduce heat by distributing heat generated from the switch unit.
  • the LED channel may include one or more LEDs.
  • the n-th LED channel may have different forward voltages Vf to reduce power consumption generated by the n-th switch.
  • the saturation current of the n + 1 th switch may be set higher than the saturation current of the n th switch.
  • the voltage applied to the current sensing resistor is changed by the sum of the currents flowing through the nth and n + 1th switches, and the input voltage is equal to or higher than the forward voltage Vf of the n + 1th LED channel.
  • the n th switch may be turned off.
  • each LED operation unit includes the rectifier circuit unit, the LED unit, the current sensing resistor: and the switch circuit unit; wherein each of the plurality of LED operation unit and the power supply unit Can be connected in parallel.
  • the plurality of LED operation units may include a rectifying circuit unit for outputting the same or different voltages to the input power of the same power unit, respectively.
  • the LED unit may be configured as a block, and the LED lighting apparatus may have a matrix connection structure, and the block connection unit may have a specific connection structure with each other when the LED unit configured as the block is connected. .
  • the plurality of LED units constituted by the blocks may be connected in parallel.
  • the LED channel may be composed of a block including one or more LEDs.
  • the LED unit may further include capacitors that are connected to each LED channel in parallel. Further, the capacitor may supply a voltage to the parallel connected LED channels when the input voltage is input at a voltage that does not operate the parallel connected LED channels.
  • the current control unit including a temperature sensor for measuring the temperature of the switch circuit portion and controls the current flowing in the switch circuit portion in accordance with the temperature of the switch circuit portion; It may further include.
  • a malfunction temperature is set in the current controller, and when the current controller measures the temperature of the switch circuit, the switches are controlled to prevent current from flowing in the switch circuit when the temperature exceeds the malfunction. It is possible to protect the switch circuit unit through the current control, characterized in that.
  • the switch circuit unit is connected in series with the resistor unit and detects the current flowing through the switch circuit unit to block the current flowing through the switch circuit portion; may further include a.
  • the switch circuit portion current interruption portion is set with a stable operating current value capable of stably operating the switch circuit portion, so that when the current flowing through the switch circuit portion current interruption portion is greater than the stable operating current value, It is possible to protect the switch circuit portion through the current control, characterized in that the current flows in the switch circuit unit by blocking the current flow switch in the switch.
  • the current switch is configured between the resistor and the last switch to cut off the current flowing in the switch circuit portion; And a current blocking control unit controlling the current switching switch to block a current flowing to the switch circuit unit when an overcurrent flows in the switch circuit unit.
  • the current interruption control unit is set to a stable operating current value capable of stably operating the switch circuit unit, and when the current flowing through the switch circuit unit is greater than the stable operating current value to control the current switching switch to It is possible to prevent current from flowing in the switch circuit portion.
  • the rectifier circuit unit for receiving the input power from the power supply unit to output the rectified rectified power;
  • An LED unit in which a plurality of LED channels are connected in series and a resistor unit is connected to the last end of the LED channel;
  • a dimming controller configured to include a variable resistor to control dimming of the LED channel by controlling a current flowing in the LED unit;
  • a plurality of switches wherein the n th switch is connected to a rear end of the n th LED channel to control the operation of the LED channel, and the current of the n th switch and the n + 1 th switch current flow through the variable resistor.
  • LED lighting apparatus is provided, including; the switch circuit unit to control the n-th switch by the sum.
  • the dimming control unit may further include a dimming control switch to change the resistance value of the variable resistor through the switch to control the number of operations of the LED channel of the LED unit to perform dimming control.
  • the dimming control unit may further include a dimming control switch to change the resistance value of the variable resistor through the switch to control a current value flowing through the LED channel of the LED unit to perform dimming control.
  • the rectifier circuit unit for receiving the input power from the power supply unit to output the rectified rectified power;
  • a charge storage circuit unit which receives power from the rectifier circuit unit to store charge when the voltage is high and discharge the stored charge when the voltage is low;
  • An LED unit in which a plurality of LED channels are connected in series and a resistor unit is connected to the last end of the LED channel;
  • a switch circuit unit in which the n-th switch is controlled by the sum of the currents of the first switch; LED lighting device comprising a.
  • the charge storage circuit unit may include a first capacitor, a second capacitor, a first diode, a second diode, and a third diode, and the second diode is connected in a forward direction between the first capacitor and the second capacitor.
  • one side of the first capacitor is connected to a power supply voltage node of the rectifier circuit unit, and one side of the second capacitor is connected to ground, and the first diode is connected to a node connected to the first capacitor and the second diode.
  • the third diode is connected in a reverse direction between the grounds, and the third diode is connected between a node to which the second capacitor and the second diode are connected and the LED unit, so that the voltage output from the rectifier circuit unit is the charge storage circuit unit. When the voltage is lower than the voltage stored in the stored charge can be discharged to supply the voltage to the LED unit.
  • the rectifier circuit unit for receiving the input power from the power supply unit to output the rectified rectified power;
  • a ripple cancellation circuit unit configured to receive the input power to store charge and to output stored power by releasing stored charge when the input power is reduced;
  • An LED unit in which a plurality of LED channels are connected in series and a resistor unit is connected to the last end of the LED channel;
  • a switch circuit unit in which the n-th switch is controlled by the sum of the currents of the first switch; LED lighting device comprising a.
  • the ripple cancellation circuit unit may include a circuit for removing ripple, wherein the ripple cancellation circuit unit is configured to emit charge stored in the capacitor when the input power is reduced.
  • the redistribution of the forward voltage of the LED channel has the effect of reducing the power consumption generated in the switch unit to increase the efficiency.
  • the dimming control may be performed by controlling the number of LEDs or the operating current of the LEDs using the variable resistor.
  • FIG. 1 is a view showing the structure of a lighting device to reduce the heat generated by the switch unit when a voltage of more than the rated voltage is input in some embodiments of the present invention.
  • FIG. 2 is a diagram illustrating a voltage applied to an LED channel position according to an input voltage
  • FIG. 3 is a diagram illustrating power consumption generated by a switch unit of the present invention.
  • FIG. 4 is a view illustrating a structure of an LED lighting apparatus including one LED operating unit in some embodiments of the present invention.
  • FIG. 5 is a diagram illustrating a structure in which LED operating units are connected in series according to some embodiments of the present invention.
  • FIG. 6 is a view showing a structure in which the LED operating unit in parallel in some embodiments of the present invention.
  • FIG. 7 is a diagram for describing an operation of an LED operation unit according to the magnitude of an input voltage according to an embodiment of the present invention.
  • FIG. 8 is a view showing the structure of a basic LED lighting device in some embodiments of the present invention.
  • FIG. 9 is a view illustrating a structure in which a plurality of LED operation units are connected to a power supply unit in some embodiments of the present invention.
  • FIG. 10 is a view illustrating a structure of an LED lighting apparatus including one LED unit according to some embodiments of the present invention.
  • FIG. 11 is a diagram illustrating a circuit structure including one or more LED parts in some embodiments of the present invention.
  • FIG. 12 and 13 illustrate a structure of an LED channel including one or more LEDs according to some embodiments of the present invention.
  • FIG. 14 is a view showing the structure of a lighting device for reducing the heat generation of the switch unit when a voltage of more than the rated voltage is input in some embodiments of the present invention.
  • 15 is a diagram illustrating a current applied to an LED channel position according to an input voltage according to some embodiments of the present invention.
  • FIG. 16 is a diagram illustrating dimming control by changing a current value flowing in an LED channel according to some embodiments of the present invention.
  • 17 is a view illustrating a structure of an LED lighting device that prevents flicker by connecting a capacitor to parallel LED channels in some embodiments of the present invention.
  • 18 is a diagram for describing an operation of an LED channel according to an input voltage according to some embodiments of the present invention.
  • 19 is a view illustrating a brightness change according to an input voltage according to some embodiments of the present invention.
  • 20 is a view showing the structure of an LED lighting apparatus including a circuit for reducing the flicker phenomenon in some embodiments of the present invention.
  • 21 is a diagram for explaining a structure and a function of a charge storage circuit unit according to an exemplary embodiment of the present invention.
  • 22 is a diagram showing the magnitude of the voltage supplied to the LED operation unit in accordance with some embodiments of the present invention.
  • FIG. 23 is a diagram showing the structure of an LED lighting device including a circuit for removing ripple in some embodiments of the present invention.
  • FIG. 24 is a diagram illustrating a voltage input to the LED operation unit by the ripple cancellation circuit unit according to some embodiments of the present invention.
  • FIG. 25 is a view illustrating brightness when there is no ripple cancellation circuit in some embodiments of the present invention
  • FIG. 26 is a view illustrating brightness when there is a ripple cancellation circuit in some embodiments of the present invention.
  • FIG. 27 is a diagram illustrating a structure of an LED lighting device that protects a switch unit through current control in some embodiments of the present invention.
  • FIG. 28 is a diagram illustrating a current applied to an LED channel position according to an input voltage according to some embodiments of the present invention.
  • FIG. 29 is a diagram illustrating controlling the temperature of the switch control unit by controlling the current of the switch unit in accordance with some embodiments of the present invention.
  • FIG. 30 is a view illustrating a structure of an LED lighting device that protects a switch unit through current control in some embodiments of the present invention.
  • 31 is a diagram illustrating a current applied to an LED channel position according to an input voltage according to some embodiments of the present invention.
  • FIG. 32 is a view showing the blocking of a current flowing in a switch section when an input voltage is input above a rated voltage according to some embodiments of the present invention.
  • 33 is a view showing the structure of an LED lighting device to protect the switch unit through the current control in some embodiments of the present invention.
  • 34 is a view showing that the current interruption control section is configured between the switch section and the current sensing resistor in some embodiments of the present invention.
  • 35 is a diagram illustrating a current applied to an LED channel position according to an input voltage according to some embodiments of the present invention.
  • FIG. 36 is a view showing cutoff of a current flowing in a switch unit when an input voltage is input above a rated voltage according to some embodiments of the present invention.
  • FIG. 1 is a view showing the structure of a lighting device to reduce the heat generated by the switch unit when a voltage of more than the rated voltage is input in some embodiments of the present invention.
  • the lighting apparatus of the present invention includes a rectifier circuit unit 20, the LED unit 30, the switch unit 40 and the current sensing resistor 50.
  • the power supply unit 10 supplies input power
  • the rectifier circuit unit 20 receives AC input power from the power supply unit 10 and outputs rectified rectified power.
  • the LED unit 30 includes n LED channels connected in series, and a resistor unit 38 is connected to the last end of the last LED channel.
  • an exemplary LED unit 30 includes seven LED channels 31, 32, 33, 34, 35, 36, and 37.
  • the resistor unit 38 is connected to the next stage of the last LED channel 37 of the LED channels connected in series with each other.
  • the switch unit 40 includes n + 1 switches for operating the LED channel according to the input power.
  • the n switches control the operation of the LED channel according to the input power, and the n + 1 th switch operates the resistor 38.
  • the second LED channel 32 and the first switch 41 are connected to the next stage of the first LED channel 31.
  • the third LED channel 33 and the second switch 42 are connected.
  • the LED stage 34 and the third switch 43 are connected to the third stage of the LED channel 33.
  • the LED channel 35 and the fourth switch 44 is connected.
  • the LED channel 35 of the fifth LED channel 36 and the switch 45 is connected to the sixth LED.
  • the seventh LED channel 37 and the sixth switch 46 is connected.
  • the resistor 38 and the seventh switch 47 are connected to the next stage of the seventh LED channel 37.
  • the switch 8 of the resistance unit 38 is connected to the eighth switch 46.
  • each switch is composed of a field effect transistor (FET).
  • FET field effect transistor
  • NMOS FET NMOS FET
  • the current sensing resistor 50 is connected to each of the switches 41, 42, 43, 44, 45, 46, 47, and 48 included in the switch unit 40. Therefore, when current flows through the switch, the current flowing through the current sensing resistor 50 becomes the sum of the current flowing through the switch.
  • the LED channel is operated according to the size of the input power.
  • the corresponding LED channel is operated according to the size of the rectified power input to the LED unit 30.
  • the operation of the switch unit 40 of the present invention is as follows.
  • the operating voltage is input to the gates of all the switches 41, 42, 43, 44, 45, 46, 47, and 48 so that each switch can operate (i.e., a current flows).
  • the conditions Vgs1 ⁇ Vgs2 ⁇ Vgs3 ⁇ Vgs4 ⁇ Vgs5 ⁇ Vgs6 ⁇ Vgs7 are satisfied.
  • Each of Vgs1, Vgs2, Vgs3, Vgs4, Vgs5, Vgs6 and Vgs7 is connected to the current sensing resistor 50 and is affected by the voltage across the current sensing resistor 50.
  • the switch of the switch unit 40 is automatically controlled by the voltage value applied to the current sensing resistor 50 according to the magnitude of the rectified voltage input to the LED unit 30 to operate the LED channel.
  • the switching condition is that when current flows in both neighboring switches, the voltage is generated in the current sensing resistor by the sum of the currents flowing in the two neighboring switches, and the operating voltage is changed by the voltage applied to the current sensing resistor. This means that the switch having a lower operating voltage is turned off first.
  • the current sense resistor is set to 10 ohms.
  • ⁇ Table 1> shows the saturation current value according to the switch (FET) and the voltage applied to the current sensing resistor when the saturation current flows through the switch.
  • Id means the saturation current of the switch. It means the saturation voltage when the switch operates and current flows.
  • Vrs is the voltage across the current sense resistor.
  • the forward voltage Vf of each LED channel is 30V.
  • the first LED channel 31 is operated and the current I1 gradually flows through the first switch 41.
  • the first switch 41 has a saturation current of 20 mA and the voltage applied to the current sensing resistor is 0.2V.
  • switch 2 of the second switch 42 flows 40 mA of saturation current, and switch 1 is completely turned off.
  • the LED channel 33 When the input voltage rises to about 90V, the LED channel 33 is operated and the current I3 gradually flows through the switch 43. At this time, in the current sensing resistor 50, the current flows by the sum of 40 mA, which is the current flowing through the second switch 42, and the current I3 flowing through the third switch 43. Therefore, the voltage is gradually increased in the current sensing resistor 50.
  • the voltage applied to the current sensing resistor 50 rises in this way, the voltage Vgs2 input to the gate of the switch 2 is relatively low, so that the switch 2 is switched from the on state to the off state.
  • the second switch 42 When the condition is entered and the voltage value of the current sensing resistor 50 gradually rises and the voltage value of Vgs2 decreases, the second switch 42 is turned off.
  • the third switch 43 flows a saturation current of 60 mA and the second switch 42 is completely turned off.
  • the seventh LED channel 37 When the input voltage rises to near 210V, the seventh LED channel 37 operates, and the currents I7 and I8 gradually flow through the seventh switch 47 and the eighth switch 48. At this time, in the current sensing resistor 50, the current flows by the sum of the current flowing through the switch 6 of 120 mA and the current flowing through the switch 7 and the switch 47 and the switch 48. Similarly, when the input voltage is 210V or more, the switch No. 7 flows 140 mA and the switch No. 6 is completely turned off.
  • the seventh switch 47 is turned off and only the eighth switch 48 operates for the same reason.
  • the eighth switch 48 prevents excessive heat from being generated. By doing so, in the present invention, even when the input voltage is input above the rated voltage, excessive heat is not generated in the switch unit 40, so that the stability of the switch unit 40 composed of ICs can be maintained.
  • a capacitor may be connected between the rectifier circuit 20 and each of the LED channels 31, 32, 33, 34, 35, 36, and 37 to prevent flicker.
  • FIG. 2 is a diagram illustrating a voltage applied to an LED channel position according to an input voltage
  • FIG. 3 is a diagram illustrating power consumption generated by a switch unit of the present invention.
  • the voltage of the LED unit 30 is changed into a stepped voltage B by the forward voltage of each LED channel according to the input voltage A.
  • 1 is the voltage applied to the LED unit 30 when the LED channel 1 operates
  • 2 is the voltage applied to the LED unit 30 when the LED channel 2 operates
  • 3 is the LED channel 3
  • the voltage applied to the LED unit 30, 4 is the voltage applied to the LED unit 30 when the LED channel 4 is operating
  • 5 is the LED unit 30 when the LED channel 5 operates.
  • the voltage applied to the LED unit 30 is increased.
  • the voltage applied to the LED stage 30 is increased, and thus the current flowing through the switch connected to the last stage is also increased.
  • FIG 3 illustrates power consumption generated by the switch unit 40 according to the operating LED channel.
  • FIG. 3 (a) is a diagram showing the power consumption generated by the switch unit 40 when the forward voltages of the LED channels are all constant and the LEDs are connected instead of the resistor unit 38.
  • FIG. 2 shows power consumption when current flows
  • 2 shows power consumption when current flows through switch 42
  • 3 shows power consumption when current flows through switch 43.
  • 4 indicates power consumption when current flows through switch 4
  • 5 indicates power consumption when current flows through switch 45
  • 6 indicates switch 46.
  • Is the power consumption when the current flows 7 is the power consumption when the current flows through the switch 47
  • 8 is 8 when the current flows through the switch 48 and the rated voltage or more Indicate the power consumption when input A.
  • the power consumed by each switch can be made to be almost the same level.
  • the power consumed by the nth and n + 1th switches can be made almost equal.
  • the heat generated by the switch unit 40 may be the same even when the input voltage is changed.
  • FIG. 3 (b) is a diagram showing the power consumed by the switch unit 40 to be 0.2 or less even when the input voltage is increased by redistributing the forward voltage of each LED channel.
  • the forward voltage Vf may be freely changed for each LED channel, but the sum of all forward voltages Vf is set to match the maximum value of the input voltage.
  • the resistor 38 is provided so that the power (heat) consumed by the switch 8, the last switch, is equal to the power consumed by the other switch even when the input voltage is higher than the rated voltage. The figure shown.
  • the lighting apparatus of the present invention configured as described above has the following advantages.
  • Switching of the FET switch can be performed automatically according to the input voltage without configuring an input voltage sensing circuit or an input period sensing circuit.
  • the switch unit can be easily configured, an extra LED channel can be added to the same area.
  • the efficiency of the switch unit can be increased, and a combination of free LEDs can be performed.
  • the primary LED 31 in order to prevent the ghost light from occurring, the primary LED 31 is removed, and the anti-quick resistance (not shown) is added at the position of the primary switch 41. It may be.
  • the anti-quick resistance (not shown) is added at the position of the primary switch 41. It may be.
  • an auxiliary light that emits light may be added.
  • the primary LED 31 of the LED unit 30 emits light through the light emitting path of the auxiliary light even when the on / off switch is turned off.
  • This anti-balancing structure can be similarly applied to later embodiments.
  • FIG. 4 is a view illustrating a structure of an LED lighting apparatus including one LED operating unit in some embodiments of the present invention.
  • the rectifier circuit unit 20 receives AC input power from the power supply unit 10 and outputs the rectified rectified power.
  • the LED operation unit includes an LED unit 30, a switch unit 40, and a current sensing resistor 50.
  • the LED unit 30 receives power from the rectifier circuit unit 20 to perform an operation.
  • a plurality of (n) LED channels are connected in series and a resistance unit 35 is connected to the lower end of the last LED channel. have.
  • Switch unit 40 includes a plurality of switches (41, 42, 43, 44, 45), the n-th switch is connected to the rear end of the n-th LED channel to control the operation of the LED channel, the current sensing resistor The nth switch is controlled by the sum of the current of the nth switch and the current of the n + 1th switch flowing in (50).
  • the current sensing resistor 50 is connected to each of the switches 41, 42, 43, 44, and 45 included in the switch unit 40. Therefore, when current flows through the switch, the current flowing through the current sensing resistor 50 becomes the sum of the current flowing through the switch.
  • the second LED channel 32 and the first switch 41 are connected to the next stage of the first LED channel 31.
  • the third LED channel 33 and the second switch 42 are connected.
  • the LED stage 34 and the third switch 43 are connected to the third stage of the LED channel 33.
  • the resistor 35 and the switch 44 are connected to the fourth stage of the LED channel 34.
  • the fifth switch 45 is connected to the next stage of the resistor unit 35.
  • each switch is composed of a field effect transistor (FET).
  • FET field effect transistor
  • NMOS FET NMOS FET
  • the current sensing resistor 50 is connected to each of the switches 41, 42, 43, 44, and 45 included in the switch unit 40. Therefore, when current flows through the switch, the current flowing through the current sensing resistor 50 becomes the sum of the current flowing through the switch.
  • the current sensing resistor 50 may be configured as a variable resistor.
  • the LED channel is operated according to the size of the input power.
  • the corresponding LED channel is operated according to the size of the rectified power input to the LED unit 30.
  • the operation of the switch unit 40 of the present invention is as follows.
  • the operating voltage is inputted to the gates of all the switches 41, 42, 43, 44, and 45 so that each switch can operate (i.e., a current flows).
  • the operating voltage of the first switch 41 is Vgs1
  • the operating voltage of the second switch 42 is Vgs2
  • the operating voltage of the third switch 43 is Vgs3
  • the operating voltage of the fourth switch 44 is Vgs4,
  • the operating voltage of the switch 45 is referred to as Vgs5.
  • Vgs1 ⁇ Vgs2 ⁇ Vgs3 ⁇ Vgs4 ⁇ Vgs5 is satisfied.
  • Each of Vgs1, Vgs2, Vgs3, Vgs4 and Vgs5 is connected to the current sensing resistor 50 and is affected by the voltage across the current sensing resistor 50.
  • the switch of the switch unit 40 is automatically controlled by the voltage value applied to the current sensing resistor 50 according to the magnitude of the rectified voltage input to the LED unit 30 to operate the LED channel.
  • the switching condition is that when current flows in both neighboring switches, the voltage is generated in the current sensing resistor by the sum of the currents flowing in the two neighboring switches, and the operating voltage is changed by the voltage applied to the current sensing resistor. This means that the switch having a lower operating voltage is turned off first.
  • the switch of the switch unit 40 is automatically controlled by the voltage value applied to the current sensing resistor 50 according to the magnitude of the rectified voltage input to the LED unit 30 to operate the LED channel.
  • the current sensing resistor 50 in the present invention is set to 10 ohms, for example.
  • Table 2 shows the saturation current values according to the switch (FET) and the voltage applied to the current sensing resistor 50 when the saturation current flows through the switch.
  • Id means the saturation current of the switch. It means the saturation voltage when the switch operates and current flows.
  • Vrs means the voltage applied to the current sensing resistor 50.
  • the forward voltage Vf of each LED channel is 50V.
  • the first LED channel 31 is operated and the current I1 gradually flows through the first switch 41.
  • the first switch 41 has a saturation current of 20 mA and the voltage applied to the current sensing resistor 50 becomes 0.2V.
  • the switch 2 When the input voltage is more than 100V, the switch 2 has a saturation current of 40 mA and the switch 1 is completely turned off.
  • the LED channel 33 When the input voltage rises to reach 150V, the LED channel 33 is operated and the current I3 gradually flows through the switch 43. At this time, in the current sensing resistor 50, the current flows by the sum of 40 mA, which is the current flowing through the second switch 42, and the current I3 flowing through the third switch 43. Therefore, the voltage applied to the current sensing resistor 50 is gradually increased.
  • the voltage applied to the current sensing resistor 50 rises in this way, the voltage Vgs2 input to the gate of the switch 2 is relatively low, so that the switch 2 is switched from the on state to the off state.
  • the second switch 42 When the condition is entered and the voltage value of the current sensing resistor 50 gradually rises and the voltage value of Vgs2 is relatively low, the second switch 42 is turned off.
  • the third switch 43 flows a saturation current of 60 mA and the second switch 42 is completely turned off.
  • switch 4 when a voltage higher than the rated voltage is input (for example, a voltage of about 250V), switch 4 is turned off and only switch 45 operates for the same reason.
  • a voltage higher than the rated voltage for example, a voltage of about 250V
  • the switch 45 when the resistance unit 35 is connected to the last end of the LED unit 30 and the voltage is distributed from the resistor unit 35, when the rated voltage or more is input, the switch 45 is generated in the fifth switch 45. By distributing the heat to the resistor unit 35, it prevents the excessive heat generated in the switch 45. By doing so, in the present invention, even when the input voltage is input above the rated voltage, excessive heat generated in the switch unit 40 is partially distributed in the resistor unit 35 to generate heat, thereby causing excessive heat in the switch unit 40 composed of the IC. It is possible to reduce the occurrence of this can maintain the stability of the switch unit (40).
  • the present invention may have the following features in terms of power consumption.
  • switch n From switch 1 to switch 4, when input voltage rises, voltage is canceled by forward voltage in LED channel n, and switch n is operated with the remaining voltage, and switch n is turned off when more voltage is input.
  • the power (heat) consumed by each switch increases, but the overall power consumption is within a certain system specification range.
  • the fifth switch 45 which is the last switch, when the rated voltage or more is input, excessive current flows and the consumed power (heat) exceeds the range of the system standard. Therefore, when the rated voltage or more is input, the fifth switch 45 generates excessive heat.
  • heat generated in the switch 45 may be offset by generating heat in the resistor unit 35.
  • the power consumed by each switch can be made to be almost the same level.
  • the power consumed by the nth and n + 1th switches can be made almost equal.
  • the heat generated by the switch unit 40 may be the same even when the input voltage is changed.
  • the forward voltage Vf may be freely changed for each LED channel, but the sum of all forward voltages Vf is set to match the maximum value of the input voltage.
  • FIG. 5 is a diagram illustrating a structure in which LED operating units are connected in series according to some embodiments of the present invention.
  • In the present invention can be configured by connecting the LED operation unit in series as shown in FIG.
  • FIG. 5 shows an LED lighting device including two LED operating units 100 and 200 connected in series with each other.
  • Each of the LED operation units 100 and 200 includes the LED unit 30, the switch unit 40, and the current sensing resistor 50 as described above with reference to FIG. 4.
  • the maximum voltage of the input voltage is referred to as Vmax, and the same forward voltage is applied to the LED units of the first LED operating unit 100 and the second LED operating unit 200.
  • Vf the maximum voltage of the input voltage
  • the second LED operation unit 200 is a ( Switching operation is performed at a voltage of 1/2) * Vmax or more.
  • the switching operation of the LED unit 30 and the switch unit 40 of the first LED operation unit 100 is operated as described above with reference to FIG. Perform.
  • the input voltages of the respective LED operating parts 100 and 200 operate.
  • the range of is dependent on the magnitude of the forward voltage (Vf) each LED operating unit (100,200) has.
  • FIG. 6 is a view showing a structure in which the LED operating unit in parallel in some embodiments of the present invention.
  • the LED operation unit can be configured by connecting in parallel as shown in FIG.
  • FIG. 6 illustrates an LED lighting device including two LED operation units 300 and 400 connected in parallel to each other.
  • Each of the LED operation units 300 and 400 includes the LED unit 30, the switch unit 40, and the current sensing resistor 50, as described above with reference to FIG. 4.
  • the switching operation of the switch unit 40 and the operation of the LED unit 30 are the same as described above with reference to FIG. 4.
  • LEDs having the same forward voltage Vf are used for the LED units of the first LED operating unit 300 and the second LED operating unit 400.
  • the first LED operating unit 300 and the second LED operating unit 400 independently perform the same operation at the same input voltage according to the magnitude of the input voltage (V).
  • the switching operation of) performs the same operation as described above with reference to FIG. 4.
  • the input voltages at which the respective LED operating portions 300 and 400 operate are used.
  • the range of depends on the size of the forward voltage (Vf) each LED operating unit (300, 400) has.
  • the LED operating units 300 and 400 when the LED operating units 300 and 400 are connected in parallel, the LED operating units 300 and 400 may have twice the brightness as compared to using one LED operating unit in the same power source.
  • FIG. 7 is a diagram for describing an operation of an LED operation unit according to the magnitude of an input voltage according to an embodiment of the present invention.
  • V1 is called the magnitude of the input voltage at which all the LED channels of the first LED operating part operate, and V2 is called the maximum value of the input voltage.
  • first LED operating unit 100 and the second LED operating unit 200 are connected in series as shown in FIG. 5, only the first LED operating unit 100 operates as described in FIG. 4 when the input voltage is within V1. Done. When the input voltage is greater than or equal to V1, all LED channels of the LED unit 30 of the first LED operating unit 100 operate (light emission), and the second LED operating unit 200 operates according to the magnitude of the input voltage. It operates as described in FIG.
  • the first LED operating unit 100 performs the switching operation as described above in FIG. 4 so that the corresponding LED channel operates according to the magnitude of the input voltage.
  • the period B all the LED channels of the first LED operating unit 100 perform an operation, and only the second LED operating unit 200 performs the switching operation as described above with reference to FIG. It will work.
  • the LED lighting device of the present invention configured as described above has the following advantages.
  • Switching of the FET switch can be performed automatically according to the input voltage without configuring an input voltage sensing circuit or an input period sensing circuit.
  • the switch unit can be easily configured, an extra LED channel can be added to the same area.
  • the efficiency of the switch unit can be increased, and a combination of free LEDs can be performed.
  • n times the brightness may be used in a section in which the nth LED operating unit performs an operation than when only one LED operating unit is used.
  • m LEDs are connected in parallel, m times the brightness is always available regardless of the magnitude of the input voltage than when only one LED is used.
  • FIG. 8 is a view showing the structure of a basic LED lighting device in some embodiments of the present invention.
  • the lighting apparatus of this embodiment includes an LED operation unit 100 that receives power from the power supply unit 10.
  • the LED operation unit 100 may be configured in plural and may be connected to the power supply unit 10 in parallel, respectively, but in FIG. 8, one LED operation unit 100 is connected to the power supply unit to explain the operation of the LED operation unit 100. 10 to be described as an example.
  • the power supply unit 10 supplies input power. Since the power supply unit 10 uses an AC power source, the magnitude of the input voltage changes periodically with time.
  • the LED operation unit 100 includes a rectifier circuit unit 20, an LED unit 30, a switch unit 40, and a current sensing resistor 50.
  • the rectifier circuit unit 20 receives AC input power from the power supply unit 10 and outputs the rectified rectified power.
  • the LED unit 30 receives power from the rectifier circuit unit 20 to perform an operation.
  • a plurality of (n) LED channels are connected in series and a resistance unit 35 is connected to the lower end of the last LED channel. have.
  • Switch unit 40 includes a plurality of switches (41, 42, 43, 44, 45), the n-th switch is connected to the rear end of the n-th LED channel to control the operation of the LED channel, the current sensing resistor The n th switch is controlled by the sum of the current of the n th switch and the current of the n + 1 th switch.
  • the current sensing resistor 50 is connected to each of the switches 41, 42, 43, 44, and 45 included in the switch unit 40. Therefore, when current flows through the switch, the current flowing through the current sensing resistor 50 becomes the sum of the current flowing through the switch.
  • the second LED channel 32 and the first switch 41 are connected to the next stage of the first LED channel 31.
  • the third LED channel 33 and the second switch 42 are connected.
  • the LED stage 34 and the third switch 43 are connected to the third stage of the LED channel 33.
  • the resistor 35 and the switch 44 are connected to the fourth stage of the LED channel 34.
  • the fifth switch 45 is connected to the next stage of the resistor unit 35.
  • each switch is composed of a field effect transistor (FET).
  • FET field effect transistor
  • NMOS FET NMOS FET
  • the current sensing resistor 50 is connected to each of the switches 41, 42, 43, 44, and 45 included in the switch unit 40. Therefore, when current flows through the switch, the current flowing through the current sensing resistor 50 becomes the sum of the current flowing through the switch.
  • the current sensing resistor 50 may be configured as a variable resistor.
  • the LED channel is operated according to the size of the input power.
  • the corresponding LED channel is operated according to the size of the rectified power input to the LED unit 30.
  • the resistance unit 35 when the resistance unit 35 is connected to the last end of the LED unit 30 and the voltage is distributed from the resistor unit 35, when the rated voltage or more is inputted in the switch 45, By distributing the generated heat to the resistor unit 35, it prevents the excessive heat generated in the switch 45. By doing so, in the present invention, even when the input voltage is input above the rated voltage, excessive heat generated in the switch unit 40 is partially distributed in the resistor unit 35 to generate heat, thereby causing excessive heat in the switch unit 40 composed of the IC. It is possible to reduce the occurrence of this can maintain the stability of the switch unit (40).
  • the features retain the features of the embodiment of FIG. Accordingly, by redistributing the forward voltage Vf of the LED channel, even when the input voltage is changed, the heat generated by the switch unit 40 may be the same.
  • FIG. 9 is a view illustrating a structure in which a plurality of LED operation units are connected to a power supply unit in some embodiments of the present invention.
  • Figure 9 can be configured by connecting the LED operating unit to the power supply unit 10 in parallel, respectively.
  • FIG 9 illustrates an LED lighting device including three LED operation units 100_1, 100_2, and 100_3 connected in parallel with each other.
  • Each of the LED operation units 100_1, 100_2, and 100_3 includes a rectifier circuit unit 20, an LED unit 30, a switch unit 40, and a current sensing resistor 50, as described above with reference to FIG. 8.
  • the switching operation of the switch unit 40 and the operation of the LED unit 30 of the LED operation units 100_1, 100_2, and 100_3 are the same as described above with reference to FIG. 8.
  • the LED operating units 100_1, 100_2, and 100_3 are connected in parallel, the LED units of the first LED operating unit 100_1, the second LED operating unit 100_2, and the third LED operating unit 100_3 are the same. If the LED having the forward voltage Vf is used, the first LED operating unit 100_1, the second LED operating unit 100_2, and the third LED operating unit 100_3 are independently identical to each other according to the magnitude of the input voltage V. FIG. Perform the same operation on the magnitude of the input voltage.
  • LEDs having different forward voltages Vf are used in the LED portions of the first LED operating portion 100_1, the second LED operating portion 100_2 and the third LED operating portion 100_3, the respective LED operating portions 100_1.
  • the range of the input voltages at which the plurality of LEDs 100, 100_2 and 100_3 operate depends on the size of the forward voltage Vf of the LEDs of the LEDs used in the LED operation units 100_1, 100_2 and 100_3.
  • the LEDs have three times the brightness than using one LED operating unit 100 in the same power source.
  • the LED operating unit (100_1, 100_2, 100_3) are each configured in a block structure and each block is connected to the desired number of blocks according to the user's convenience can be used in a wider range as a lighting device is automatically switched .
  • the LED operating part is configured as the number that can cover all the range of the playground as in the present invention, it can be used more easily and easily as the illumination of the stadium Have
  • the rectifier circuits included in the plurality of LED operation units 100_1, 100_2, and 100_3 may be configured with the same rectifier circuit unit, or may be configured with rectifier circuit units having different output voltage ranges.
  • each of the plurality of LED operating units 100_1, 100_2, and 100_3 include the same rectifying circuit unit
  • each of the plurality of LED operating units 100_1, 100_2, and 100_3 is the same illumination according to the input voltage output from the power supply unit 10.
  • the plurality of LED operation units 100_1, 100_2, and 100_3 include different rectifying circuit units
  • each of the plurality of LED operation units 100_1, 100_2, and 100_3 may be all according to an input voltage output from the power supply unit 10. It will have different lighting characteristics. Therefore, in a region (range) in which the characteristics of the lighting are different from each other, the plurality of LED operation units 100_1, 100_2, and 100_3 may include different rectifier circuit units so as to have lighting characteristics suitable for the region.
  • the LED lighting device of the present invention configured as described above has the following advantages. Switching of the FET switch can be performed automatically according to the input voltage without configuring an input voltage sensing circuit or an input period sensing circuit. In addition, since the switch unit can be easily configured, an extra LED channel can be added to the same area. In addition, by adjusting and repositioning the forward voltage Vf for each LED channel, the efficiency of the switch unit can be increased, and a combination of free LEDs can be performed. In addition, by configuring the LED operation unit with a block it may have a feature that can easily extend the lighting to the structure connecting the blocks. In addition, when m LEDs are connected in parallel, m times the brightness is always available regardless of the magnitude of the input voltage than when only one LED is used. In addition, the rectifying circuit portion of each LED operation unit has a characteristic that can be used to match the area to be extended in the case of extending the lighting by having a different characteristic of the rectifier circuit characteristics.
  • FIG. 10 is a view illustrating a structure of an LED lighting apparatus including one LED unit according to some embodiments of the present invention.
  • the rectifier circuit unit 20 receives AC input power from the power supply unit 10 and outputs the rectified rectified power.
  • the LED unit 30 receives power from the rectifier circuit unit 20 to perform an operation.
  • a plurality of (n) LED channels are connected in series and a resistance unit 35 is connected to the lower end of the last LED channel. have.
  • Switch unit 40 includes a plurality of switches (41, 42, 43, 44, 45), the n-th switch is connected to the rear end of the n-th LED channel to control the operation of the LED channel, the current sensing resistor The n th switch is controlled by the sum of the current of the n th switch and the current of the n + 1 th switch.
  • the current sensing resistor 50 is connected to each of the switches 41, 42, 43, 44, and 45 included in the switch unit 40. Therefore, when current flows through the switch, the current flowing through the current sensing resistor 50 becomes the sum of the current flowing through the switch.
  • the second LED channel 32 and the first switch 41 are connected to the next stage of the first LED channel 31.
  • the third LED channel 33 and the second switch 42 are connected.
  • the LED stage 34 and the third switch 43 are connected to the third stage of the LED channel 33.
  • the resistor 35 and the switch 44 are connected to the fourth stage of the LED channel 34.
  • the fifth switch 45 is connected to the next stage of the resistor unit 35.
  • each switch is composed of a field effect transistor (FET).
  • FET field effect transistor
  • NMOS FET NMOS FET
  • the current sensing resistor 50 is connected to each of the switches 41, 42, 43, 44, and 45 included in the switch unit 40. Therefore, when current flows through the switch, the current flowing through the current sensing resistor 50 becomes the sum of the current flowing through the switch.
  • the current sensing resistor 50 may be configured as a variable resistor.
  • the LED channel is operated according to the size of the input power.
  • the corresponding LED channel is operated according to the size of the rectified power input to the LED unit 30.
  • the resistance unit 35 when the resistance unit 35 is connected to the last end of the LED unit 30 and the voltage is distributed from the resistor unit 35, when the rated voltage or more is inputted in the switch 45, By distributing the generated heat to the resistor unit 35, it prevents the excessive heat generated in the switch 45. By doing so, in the present invention, even when the input voltage is input above the rated voltage, excessive heat generated in the switch unit 40 is partially distributed in the resistor unit 35 to generate heat, thereby causing excessive heat in the switch unit 40 composed of the IC. It is possible to reduce the occurrence of this can maintain the stability of the switch unit (40).
  • the features retain the features of the embodiment of FIG. Accordingly, by redistributing the forward voltage Vf of the LED channel, even when the input voltage is changed, the heat generated by the switch unit 40 may be the same.
  • FIG. 11 is a diagram illustrating a circuit structure including one or more LED parts in some embodiments of the present invention.
  • the LED unit 30 can be configured as a block. Therefore, the LED unit 30 composed of blocks may be connected in parallel, as shown in FIG. 11, using a plurality of blocks to form a lighting apparatus having the LED units configured in parallel.
  • an LED lighting device including an LED unit configured as a block of the present invention includes a block connection unit having a matrix connection structure.
  • the LED unit 30 composed of blocks is formed in a block structure having a predetermined connection structure, and thus may be connected by fitting to the block connection unit. That is, it is possible to have a desired circuit structure by inserting the LED unit 30 consisting of blocks of the block connection unit and connecting the matrix structure of the block connection unit to have a desired circuit structure.
  • the block connection portions are connected to have a plurality of parallel connection structures, and the LED portions 30_1, 30_2, and 30_3 composed of blocks are inserted by inserting the LED portions 30 at the corresponding positions. It is possible to have a parallel connection structure with each other.
  • the lighting apparatus having three times the brightness as compared to the lighting unit composed of one LED unit 30 Can be configured.
  • the LED unit is configured as a block and connected to the block connection unit as an example, but the LED channel may be configured as a block and connected to the block connection unit to configure a desired circuit.
  • FIG. 12 and 13 illustrate a structure of an LED channel including one or more LEDs according to some embodiments of the present invention.
  • each LED channel 31, 32, 33, 34 is shown. May be configured as a block, and one or more LED channels 31, 32, 33, and 34 may be connected to a block connection unit having a matrix connection structure to configure an illumination device having a desired illumination brightness and illumination color.
  • the LED channel 31 including four LEDs connected in series may be configured as one block.
  • four LEDs connected in series may be configured as an LED group 32 having a structure in which a group including four LEDs is connected in parallel.
  • the LED block according to the input voltage can be configured according to the input voltage of 110V or 220V. That is, the LED circuit having the maximum efficiency can be easily implemented according to the magnitude of the input voltage.
  • each block may be configured to have a different illumination color.
  • the LED lighting device of the present invention configured as described above has the following advantages. Switching of the FET switch can be performed automatically according to the input voltage without configuring an input voltage sensing circuit or an input period sensing circuit. In addition, since the switch unit can be easily configured, an extra LED channel can be added to the same area. In addition, by adjusting and repositioning the forward voltage Vf for each LED channel, the efficiency of the switch unit can be increased, and a combination of free LEDs can be performed. In addition, when a plurality of LED operating units are connected in series, n times the brightness may be used in a section in which the nth LED operating unit performs an operation than when only one LED operating unit is used. In addition, by connecting the LED channel or the LED unit consisting of blocks to the block connection portion it is possible to easily implement the circuit of the lighting device having the desired illumination brightness or illumination color.
  • FIG. 14 is a view showing the structure of a lighting device for reducing the heat generation of the switch unit when a voltage of more than the rated voltage is input in some embodiments of the present invention.
  • the lighting device for reducing the heat generation of the switch unit when a voltage of more than the rated voltage of the present invention is inputted the power supply unit 10, the rectifier circuit unit 20, the LED unit 30, the switch unit 40 and the dimming control unit 50 Include.
  • the power supply unit 10 supplies input power
  • the rectifier circuit unit 20 receives AC input power from the power supply unit 10 and outputs rectified rectified power.
  • the LED unit 30 includes n LED channels connected in series, and the resistor unit 35 is connected to the last end of the last LED channel 34.
  • the LED unit 30 includes four LED channels 31, 32, 33, and 34 by way of example.
  • the resistor unit 35 is connected to the next stage of the last LED channel 34 of the LED channels connected in series with each other.
  • the switch unit 40 includes n + 1 switches for operating the LED channel according to the input power.
  • the n switches control the operation of the LED channel according to the input power
  • the n + 1th switch operates the resistor unit 35.
  • the second LED channel 32 and the first switch 41 are connected to the next stage of the first LED channel 31.
  • the third LED channel 33 and the second switch 42 are connected.
  • the LED stage 34 and the third switch 43 are connected to the third stage of the LED channel 33.
  • the resistor 35 and the switch 44 are connected to the fourth stage of the LED channel 34.
  • the fifth switch 45 is connected to the next stage of the resistor unit 35.
  • each switch is composed of a field effect transistor (FET).
  • FET field effect transistor
  • NMOS FET NMOS FET
  • the dimming controller 50 includes a variable resistor 51.
  • the variable resistor 51 is connected to each of the switches 41, 42, 43, 44, and 45 included in the switch unit 40. Therefore, when current flows through the switch, the current flowing through the current variable resistor 51 becomes the sum of the current flowing through the switch.
  • the dimming controller 50 further includes a switch for controlling the resistance value of the variable resistor 51.
  • the LED channel is operated according to the size of the input power.
  • the corresponding LED channel is operated according to the size of the rectified power input to the LED unit 30.
  • the resistance unit 35 when the resistance unit 35 is connected to the last end of the LED unit 30 and the voltage is distributed from the resistor unit 35, when the rated voltage or more is inputted in the switch 45, By distributing the generated heat to the resistor unit 35, it prevents the excessive heat generated in the switch 45. By doing so, in the present invention, even when the input voltage is input above the rated voltage, excessive heat generated in the switch unit 40 is partially distributed in the resistor unit 35 to generate heat, thereby causing excessive heat in the switch unit 40 composed of the IC. It is possible to reduce the occurrence of this can maintain the stability of the switch unit (40).
  • 15 is a diagram illustrating a current applied to an LED channel position according to an input voltage according to some embodiments of the present invention.
  • Section a of FIG. 15 is a section in which an input voltage for operating the first LED channel 31 is input. Therefore, the current of I1 flows in the first LED channel 31 and the first switch 41 in the section where the input voltage is a.
  • Section b is a section in which an input voltage for operating the second LED channel 32 is input. Therefore, the current of I2 flows in the second LED channel 32 and the second switch 42 in the section where the input voltage is b.
  • the section c is a section in which an input voltage for operating the third LED channel 33 is input. Therefore, the current of I3 flows through the third LED channel 33 and the third switch 43 in the section where the input voltage is c.
  • the d section is a section in which an input voltage for operating the fourth LED channel 34 is input. Therefore, the current of I4 flows through the fourth LED channel 34 and the fourth switch 44 in the period where the input voltage is d.
  • section a is a section in which the first switch is operated to operate the first LED channel
  • section b is a section in which the second switch is operated to operate the first LED channel and the second LED channel
  • section c is a section in which the third switch is operated.
  • the first LED channel, the second LED channel and the third LED channel is a section in operation
  • the d section is the fourth switch is operated to operate the first LED channel, the second LED channel, the third LED channel and the fourth LED channel.
  • a method of performing dimming control uses the following two methods.
  • the n-th and n + 1 th switches are controlled by controlling the resistance value of the variable resistor 51 included in the diving control unit 50 to operate the n-th and n + 1 th LED channels.
  • the dimming control can be performed by controlling.
  • the number of LED channels may be controlled by controlling the resistance of the variable resistor 51. Therefore, the number of LED channels operating can be controlled by controlling the order of the switches operating by controlling the resistance value of the variable resistor 51 regardless of the input voltage.
  • the lighting can be brightened by increasing the number of LED channels to operate by lowering the variable resistance value to increase the number of switches to operate.
  • dark lighting by increasing the variable resistance value It is possible to dim the lights by lowering the number of active switches to reduce the number of LED channels.
  • dimming control may be performed by controlling the number of LEDs that perform an operation regardless of the interval of the input voltage.
  • FIG. 16 is a diagram illustrating dimming control by changing a current value flowing in an LED channel according to some embodiments of the present invention.
  • the resistance value of the variable resistor 51 is changed so that the current value of the current I flowing through the LED channel is in the range of Ivmax to Ivmin. Can be changed from
  • the dimming of the LED channel can be controlled brightly by lowering the variable resistance value to the operating current value of the LED channel as Ivmax, and when the dark lighting is necessary, increasing the variable resistance value to increase the operating current of the LED channel. You can set the value to Ivmin to darken the dimming of the LED channel.
  • the present invention may have the following features in terms of power consumption.
  • switch n From switch 1 to switch 4, when input voltage rises, voltage is canceled by forward voltage in LED channel n, and switch n is operated with the remaining voltage, and switch n is turned off when more voltage is input.
  • the power (heat) consumed by each switch increases, but the overall power consumption is within a certain system specification range.
  • the fifth switch 45 which is the last switch, when the rated voltage or more is input, excessive current flows and the consumed power (heat) exceeds the range of the system standard. Therefore, when the rated voltage or more is input, the fifth switch 45 generates excessive heat.
  • heat generated in the switch 45 may be offset by generating heat in the resistor unit 35.
  • the power consumed by each switch can be made to be almost the same level.
  • the power consumed by the nth and n + 1th switches can be made almost equal.
  • the heat generated by the switch unit 40 may be the same even when the input voltage is changed.
  • the forward voltage Vf may be freely changed for each LED channel, but the sum of all forward voltages Vf is set to match the maximum value of the input voltage.
  • the lighting apparatus of the present invention configured as described above has the following advantages. Switching of the FET switch can be performed automatically according to the input voltage without configuring an input voltage sensing circuit or an input period sensing circuit. In addition, since the switch unit can be easily configured, an extra LED channel can be added to the same area. In addition, by adjusting and repositioning the forward voltage Vf for each LED channel, the efficiency of the switch unit can be increased, and a combination of free LEDs can be performed.
  • 17 is a view illustrating a structure of an LED lighting device that prevents flicker by connecting a capacitor to parallel LED channels in some embodiments of the present invention.
  • LED lighting device to prevent the flicker phenomenon of the present invention includes a power supply unit 10, rectifier circuit unit 20, LED unit 30, the switch unit 40, the current sensing resistor (50).
  • the power supply unit 10 supplies an input voltage.
  • the rectifier circuit unit 20 receives an AC input voltage from the power supply unit 10 and outputs the rectified rectified power.
  • the LED unit 30 includes n LED channels connected in series, and the resistor unit 36 is connected to the last end of the last LED channel 35.
  • each LED channel has a structure in which capacitors are connected in parallel.
  • the switch section 40 includes n + 1 switches.
  • the switch m is connected to the rear end of the LED channel m and the last switch is connected to the rear end of the resistor unit.
  • n and m are natural numbers.
  • the second LED channel 32 and the first switch 41 are connected to the next stage of the first LED channel 31.
  • the third LED channel 33 and the second switch 42 are connected.
  • the LED stage 34 and the third switch 43 are connected to the third stage of the LED channel 33.
  • the resistor 35 and the fourth switch 44 are connected to the fourth stage of the LED channel 34.
  • the fifth switch 45 is connected to the next stage of the resistor unit 35.
  • each switch of the switch unit 40 is composed of a field effect transistor (FET).
  • FET field effect transistor
  • NMOS FET NMOS FET
  • the current sensing resistor 50 may be configured as a variable resistor.
  • the current sensing resistor 50 is connected to each of the switches 41, 42, 43, 44, and 45 included in the switch unit 40. Therefore, when current flows through the switch, the current flowing through the current sensing resistor 50 becomes the sum of the current flowing through the switch.
  • the switch unit 40 of the present invention operates as follows before each capacitor 36, 37, 38, 39 connected in parallel to the LED channel is fully charged.
  • the resistance unit 35 when the resistance unit 35 is connected to the last end of the LED unit 30 and the voltage is distributed from the resistor unit 35, when the rated voltage or more is inputted in the switch 45, By distributing the generated heat to the resistor unit 35, it prevents the excessive heat generated in the switch 45. By doing so, in the present invention, even when the input voltage is input above the rated voltage, excessive heat generated in the switch unit 40 is partially distributed in the resistor unit 35 to generate heat, thereby causing excessive heat in the switch unit 40 composed of the IC. It is possible to reduce the occurrence of this can maintain the stability of the switch unit (40).
  • LED 4 channel 34 did not operate. However, in the present invention, it is charged in capacitor 4 39 connected in parallel with LED 4 channel 34. It can be operated by supplying a voltage to the LED channel 34 with a voltage that is present.
  • the third LED channel 33 did not operate.
  • the third LED 38 is charged to the third capacitor 38 connected in parallel with the LED channel 33 in the third embodiment.
  • the LED channel 33 may be operated by supplying a voltage.
  • the second LED channel 32 did not operate, but in the present invention, twice as the voltage charged in the second capacitor 37 connected in parallel with the second LED channel 32.
  • the LED channel 32 may be operated by supplying a voltage.
  • the first LED channel 31 when the input voltage is less than 50V, the first LED channel 31 did not operate. However, in the present invention, the first LED channel 31 is charged to the first capacitor 36 connected in parallel with the first LED channel 31.
  • the LED channel 31 may be operated by supplying a voltage.
  • the capacitor connected in parallel with the LED panel is fully charged, even if the input voltage does not reach a voltage capable of operating the corresponding LED channel by supplying a voltage to the corresponding LED channel with the voltage charged in the capacitor
  • the LED channel can be operated.
  • 18 is a diagram for describing an operation of an LED channel according to an input voltage according to some embodiments of the present invention.
  • each LED channel 31, 32, 33, 34 has a current when more than the forward voltage (Vf) is input according to the input voltage.
  • V1 denotes a voltage at which the LED channel 31 can operate
  • V2 denotes a voltage at which the LED channel 32 can operate
  • V3 denotes a LED channel 33 at the third operation. This means a voltage that can operate
  • V4 means a voltage that can operate the LED channel 34
  • V5 means a voltage above the rated voltage.
  • I1 is a current flowing in LED channel 31
  • I2 is a current flowing in LED channel 32
  • I3 is a current flowing in LED channel 33
  • I4 is LED 4.
  • the current flowing through the channel 34 and I5 is the current flowing through the resistor 35 and the fifth switch 45.
  • the input voltage is input between V1 and V2 so that LED channel 31 operates.
  • current Il flows through the first switch 41.
  • the input voltage is input between V2 and V3 so that LED channel 32 operates.
  • the current I2 flows through the second switch 42.
  • the input voltage is input between V3 and V4 so that LED channel 33 operates.
  • the current I3 flows through the third switch 43.
  • the input voltage is input between V4 and V5 so that LED channel 34 operates. In this case, current I4 flows through switch 44.
  • the LED channel 31 operates in the sections a and i, and the first LED channel 31 and the second LED channel 32 operate in the sections b and h, and in the sections c and g,
  • the first LED channel 31, the second LED channel 32, and the third LED channel 33 operate, and in the intervals d and f, the first LED channel 31 and the second LED channel 32, and the third LED channel 33 and LED channel 33 is in operation. Therefore, the LED channel operates or does not operate sequentially according to the magnitude of the input voltage, causing flicker.
  • the LED channel operates only when the input voltage reaches a voltage capable of operating the LED channel.
  • the LED channel when the capacitor is sufficiently charged, the LED channel is connected in parallel with each LED channel. Since the capacitor supplies voltage to the corresponding LED channel, all LED channels can operate regardless of the input voltage.
  • 19 is a view illustrating a brightness change according to an input voltage according to some embodiments of the present invention.
  • 19 (a) is a view showing the brightness according to the input voltage of the conventional lighting device.
  • the LED channel performing the operation is changed according to the input voltage
  • the LED channel performing the operation is changed according to the input voltage section so that the brightness is changed. That is, as shown in Fig. 19A, the brightness changes stepwise.
  • Figure 19 (b) is a view showing the brightness according to the input voltage of the flicker prevention LED lighting apparatus of the present invention.
  • the flicker-proof LED lighting apparatus of the present invention can receive a voltage from a capacitor connected in parallel with the LED channel, all LED channels can operate regardless of the magnitude of the input voltage except during a period in which the capacitor is fully charged. As shown in FIG. 19 (b), it is possible to maintain a constant brightness at all times.
  • the flicker-proof LED lighting device of the present invention configured as described above has the following advantages. It has a current cut-off control part to protect the switch part by cutting off the current flowing in the switch part composed of IC when over current flows due to input of the rated voltage or more.
  • the switching of the FET switch can be automatically performed according to the input voltage without configuring the input voltage sensing circuit or the input period sensing circuit.
  • the switch unit can be easily configured, an extra LED channel can be added to the same area.
  • the efficiency of the switch unit can be increased, and a combination of free LEDs can be performed.
  • 20 is a view showing the structure of an LED lighting apparatus including a circuit for reducing the flicker phenomenon in some embodiments of the present invention.
  • the LED lighting apparatus including a circuit for reducing the flicker phenomenon of the present invention includes a power supply unit 10, a rectifying circuit unit 20, a charge storage circuit unit 100, and the LED operation unit 200.
  • the power supply unit 10 supplies input power. Since the power supply unit 10 uses an AC power source, the magnitude of the input voltage changes periodically with time.
  • the rectifier circuit unit 20 receives AC input power from the power supply unit 10 and outputs the rectified rectified power.
  • the charge storing circuit unit 100 stores charge when the voltage input from the rectifying circuit unit 20 is a high voltage, and discharges the stored charge to the LED operation unit 200 when the voltage is low.
  • the LED operation unit 200 includes an LED unit 30, a switch unit 40, and a current sensing resistor 50.
  • the LED unit 30 includes a plurality of (n) LED channels connected in series, and a resistance unit 35 is connected to a lower end of the last LED channel 34.
  • the switch unit 40 includes n + 1 switches for operating the LED channel according to the input power.
  • the n switches control the operation of the LED channel according to the input power, and the n + 1th switch operates the resistor unit 35.
  • the second LED channel 32 and the first switch 41 are connected to the next stage of the first LED channel 31.
  • the third LED channel 33 and the second switch 42 are connected.
  • the LED stage 34 and the third switch 43 are connected to the third stage of the LED channel 33.
  • the resistor 35 and the switch 44 are connected to the fourth stage of the LED channel 34.
  • the fifth switch 45 is connected to the next stage of the resistor unit 35.
  • each switch is composed of a field effect transistor (FET).
  • FET field effect transistor
  • NMOS FET NMOS FET
  • the current sensing resistor 50 is connected to each of the switches 41, 42, 43, 44, and 45 included in the switch unit 40. Therefore, when current flows through the switch, the current flowing through the current sensing resistor 50 becomes the sum of the current flowing through the switch.
  • the current sensing resistor 50 may be configured as a variable resistor.
  • the LED channel is operated according to the size of the input power.
  • the corresponding LED channel is operated according to the size of the rectified power input to the LED unit 30.
  • the resistance unit 35 when the resistance unit 35 is connected to the last end of the LED unit 30 and the voltage is distributed from the resistor unit 35, when the rated voltage or more is inputted in the switch 45, By distributing the generated heat to the resistor unit 35, it prevents the excessive heat generated in the switch 45. By doing so, in the present invention, even when the input voltage is input above the rated voltage, excessive heat generated in the switch unit 40 is partially distributed in the resistor unit 35 to generate heat, thereby causing excessive heat in the switch unit 40 composed of the IC. It is possible to reduce the occurrence of this can maintain the stability of the switch unit (40).
  • the features retain the features of the embodiment of FIG. Accordingly, by redistributing the forward voltage Vf of the LED channel, even when the input voltage is changed, the heat generated by the switch unit 40 may be the same.
  • 21 is a diagram for explaining a structure and a function of a charge storage circuit unit according to an exemplary embodiment of the present invention.
  • the charge storage circuit unit 100 includes a first capacitor 101, a second capacitor 104, a first diode 105, a second diode 103, and a third diode 106.
  • a second diode 103 is connected in a forward direction between the first capacitor 101 and the second capacitor 104, and one side of the first capacitor 101 is a rectifier circuit unit 20. And a side of the second capacitor 104 is connected to ground, and the first diode 105 is connected between the node connected to the first capacitor 101 and the second diode 103 and the ground.
  • the third diode 106 is connected between the node connected to the second capacitor 104 and the second diode 103 and the LED unit 30.
  • a resistor 102 may be further connected between the node to which the first capacitor 101 and the first diode 105 are connected and the second diode 103.
  • the charge storing circuit unit 100 receives a voltage from the rectifying circuit unit 20 and stores charge. When the voltage output from the rectifying circuit unit 20 becomes lower than the voltage stored in the charge storage circuit unit 100, the stored charge is discharged to supply power to the LED operation unit 200.
  • the charge storage circuit unit 100 discharges the stored charge when the voltage output from the rectifier circuit unit 20 is low and supplies power to the LED unit 30 of the LED operation unit 200 to supply the rectifier circuit unit 20.
  • a voltage can be supplied to the LED part channel which does not operate. Therefore, the flicker phenomenon can be reduced by operating an LED channel that cannot operate even when a low input voltage is input from the power supply unit 10.
  • FIG. 21 a path in which charge is stored in the charge storage circuit unit 100 when the voltage output from the rectifier circuit unit 20 is a high voltage is illustrated by an arrow.
  • the charge storage circuit unit 100 flows a current through the first capacitor 101, the second diode 103, and the second capacitor 104, and thus the first capacitor. Electric charge is stored in the 101 and the second capacitor 104.
  • the voltage output from the rectifying circuit unit 20 is a low voltage (ie, a voltage lower than the voltage stored in the charge storage circuit unit 100)
  • the charges stored in the first capacitor 101 and the second capacitor 104 are stored. By emitting the supply voltage to the LED unit 30.
  • 22 is a diagram showing the magnitude of the voltage supplied to the LED operation unit in accordance with some embodiments of the present invention.
  • the magnitude of the voltage input to the LED operation unit 200 is changed as shown in FIG.
  • V1 refers to the maximum voltage of the input voltage
  • V2 refers to the voltage stored in the charge storage circuit unit 100.
  • the LED channel may be operated sequentially or not depending on the magnitude of the input voltage, thereby causing severe flicker.
  • the flicker phenomenon may be reduced than the conventional LED lighting apparatus by supplying the LED unit 30 with a constant voltage V2 or more.
  • the voltage V1 is the magnitude of the minimum voltage at which the LED channel 32 can operate
  • the voltage supplied to the LED unit 30 in the LED lighting apparatus including the circuit for reducing the flicker phenomenon of the present invention Since it always becomes V1 or more, the first LED channel 31 and the second LED channel 32 always operate regardless of the magnitude of the input voltage.
  • the first LED channel 31 and the second LED channel 32 in the section A is performed or not according to the magnitude of the input voltage, the first LED channel 31 and the second LED Although flicker occurs due to the channel 32, in the present invention, since the first LED channel 31 and the second LED channel 32 both operate in the sphere A, the first LED channel 31 and the second channel 32 operate. Flickering by the LED channel 32 does not occur.
  • the LED lighting device of the present invention configured as described above has the following advantages. Switching of the FET switch can be performed automatically according to the input voltage without configuring an input voltage sensing circuit or an input period sensing circuit. In addition, since the switch unit can be easily configured, an extra LED channel can be added to the same area. In addition, by adjusting and repositioning the forward voltage Vf for each LED channel, the efficiency of the switch unit can be increased, and a combination of free LEDs can be performed. In addition, by supplying the stored charge to the LED portion by the charge storage circuit portion to supply the voltage to the LED channel that can not operate at a low voltage to perform the operation to reduce the flicker phenomenon.
  • FIG. 23 is a diagram showing the structure of an LED lighting device including a circuit for removing ripple in some embodiments of the present invention.
  • the LED lighting apparatus including the circuit for removing the ripple of the present invention includes a power supply unit 10, a rectifying circuit unit 20, a ripple removing circuit unit 100, and the LED operation unit 200.
  • the power supply unit 10 supplies input power. Since the power supply unit 10 uses an AC power source, the magnitude of the input voltage changes periodically with time.
  • the rectifier circuit unit 20 receives AC input power from the power supply unit 10 and outputs the rectified rectified power.
  • the ripple removing circuit unit 100 stores charge when the voltage input from the rectifying circuit unit 20 is a high voltage and discharges the stored charge to the LED operation unit 200 when the voltage is low. As a result, as shown in FIG. 24, the voltage input to the LED operation unit 200 is input with a constant voltage without ripple.
  • the LED operation unit 200 includes an LED unit 30, a switch unit 40, and a current sensing resistor 50.
  • the LED unit 30 includes a plurality of (n) LED channels connected in series, and a resistance unit 35 is connected to a lower end of the last LED channel 34.
  • the switch unit 40 includes n + 1 switches for operating the LED channel according to the input power.
  • the n switches control the operation of the LED channel according to the input power, and the n + 1th switch operates the resistor unit 35.
  • the second LED channel 32 and the first switch 41 are connected to the next stage of the first LED channel 31.
  • the third LED channel 33 and the second switch 42 are connected.
  • the LED stage 34 and the third switch 43 are connected to the third stage of the LED channel 33.
  • the resistor 35 and the switch 44 are connected to the fourth stage of the LED channel 34.
  • the fifth switch 45 is connected to the next stage of the resistor unit 35.
  • each switch is composed of a field effect transistor (FET).
  • FET field effect transistor
  • NMOS FET NMOS FET
  • the current sensing resistor 50 is connected to each of the switches 41, 42, 43, 44, and 45 included in the switch unit 40. Therefore, when current flows through the switch, the current flowing through the current sensing resistor 50 becomes the sum of the current flowing through the switch.
  • the current sensing resistor 50 may be configured as a variable resistor.
  • the LED channel is operated according to the size of the input power.
  • the corresponding LED channel is operated according to the size of the rectified power input to the LED unit 30.
  • the resistance unit 35 when the resistance unit 35 is connected to the last end of the LED unit 30 and the voltage is distributed from the resistor unit 35, when the rated voltage or more is inputted in the switch 45, By distributing the generated heat to the resistor unit 35, it prevents the excessive heat generated in the switch 45. By doing so, in the present invention, even when the input voltage is input above the rated voltage, excessive heat generated in the switch unit 40 is partially distributed in the resistor unit 35 to generate heat, thereby causing excessive heat in the switch unit 40 composed of the IC. It is possible to reduce the occurrence of this can maintain the stability of the switch unit (40).
  • the features retain the features of the embodiment of FIG. Accordingly, by redistributing the forward voltage Vf of the LED channel, even when the input voltage is changed, the heat generated by the switch unit 40 may be the same.
  • the ripple removing circuit unit 100 when a constant voltage is input to the LED operation unit 200 by the ripple removing circuit unit 100, for example, when more than a voltage at which the LED channel 33 is capable of performing an operation, 1 is input.
  • the first LED channel 31, the second LED channel 32, and the third LED channel 33 are always in operation.
  • the fourth LED channel 34 and the resistor unit 35 may or may not perform an operation according to the magnitude of the voltage input to the LED operation unit 200.
  • FIG. 24 is a diagram illustrating a voltage input to the LED operation unit by the ripple cancellation circuit unit according to some embodiments of the present invention.
  • the ripple removing circuit unit 100 includes a resistor 101 and a capacitor 102.
  • the circuit structure of the ripple removing circuit unit 100 connects the resistor 101 between the rectifier circuit unit 20 and the LED operating unit 200, and the capacitor 102 is connected to the resistor 101 and the LED operating unit 200. Connect between node and ground. Accordingly, when the input power is input from the power supply unit 10 while rising, the charge is stored in the capacitor 102. When the input power is input from the power supply unit 10 while the input power is lowered, the charge stored in the capacitor 102 is transferred. Can be released to 200 to offset the ripple.
  • the voltage input to the LED operation unit 200 has a ripple in which the magnitude of the voltage changes with time.
  • the size of the ripple may be adjusted by adjusting the capacity of the capacitor 102.
  • the voltage input to the LED operation unit 200 has a substantially constant voltage value.
  • the ripple removing circuit unit 100 discharges the stored charge when the voltage output from the rectifying circuit unit 20 is low, and supplies power to the LED unit 30 of the LED operation unit 200.
  • a voltage can be supplied to the LED part channel which does not operate. Therefore, the flicker phenomenon can be reduced by operating an LED channel that cannot operate even when a low input voltage is input from the power supply unit 10.
  • FIG. 25 is a view illustrating brightness when there is no ripple cancellation circuit in some embodiments of the present invention
  • FIG. 26 is a view illustrating brightness when there is a ripple cancellation circuit in some embodiments of the present invention.
  • the input voltage is changed over time and the number of LED channels performing the operation is changed according to the magnitude of the input voltage, so that the brightness of the lighting is changed according to the input voltage.
  • the number of LED channels performing the operation is changed according to the magnitude of the input voltage, so that the brightness of the lighting is changed according to the input voltage.
  • V1 denotes a voltage at which the LED channel 31 performs the operation
  • V2 denotes a voltage at which the LED channel 32 performs the operation
  • V3 denotes a voltage at which the LED channel 33 operates the third channel. It refers to the voltage to perform
  • V4 refers to the voltage at which the LED channel 34 performs the operation.
  • the LED lighting apparatus is configured to include the ripple removing circuit unit 100 as in the present invention, as shown in FIG. 26, a constant input voltage from which ripple is removed is input to the LED operating unit 200 as shown in FIG. 26. It may have a brightness of the corresponding light.
  • the effect of including the ripple removing circuit unit 100 is as follows.
  • the LED channel may be operated sequentially or not depending on the magnitude of the input voltage, thereby causing severe flicker.
  • the ripple removing circuit unit 100 since the ripple removing circuit unit 100 is included, it is possible to reduce the flicker phenomenon than the conventional LED lighting apparatus by supplying the LED unit 30 with a constant voltage at all times.
  • the LED lighting device of the present invention configured as described above has the following advantages. Switching of the FET switch can be performed automatically according to the input voltage without configuring an input voltage sensing circuit or an input period sensing circuit. In addition, since the switch unit can be easily configured, an extra LED channel can be added to the same area. In addition, by adjusting and repositioning the forward voltage Vf for each LED channel, the efficiency of the switch unit can be increased, and a combination of free LEDs can be performed. In addition, by supplying the stored charge to the LED portion by the ripple elimination circuit portion to supply a voltage to the LED channel at least a certain voltage always to reduce the flicker phenomenon by operating the LED channel performing the operation at the corresponding voltage.
  • FIG. 27 is a diagram illustrating a structure of an LED lighting device that protects a switch unit through current control in some embodiments of the present invention.
  • LED lighting device to protect the switch through the current control of the present invention power supply unit 10, rectifier circuit unit 20, LED unit 30, switch unit 40, current sensing resistor 50 and current control unit 60 It includes.
  • the power supply unit 10 supplies an input voltage.
  • the rectifier circuit unit 20 receives an AC input voltage from the power supply unit 10 and outputs the rectified rectified power.
  • the LED unit 30 includes n LED channels connected in series, and the resistor unit 35 is connected to the last end of the last LED channel 34.
  • the LED unit 30 includes four LED channels 31, 32, 33, and 34. As shown in FIG. The resistor unit 35 is connected to the next stage of the last LED channel 34 of the LED channels connected in series with each other.
  • the switch unit 40 includes five switches for operating the LED channel according to the input power. Here, four switches from the first to the fourth control the operation of the LED channel according to the input power, and the fifth switch operates the resistor unit 35.
  • the second LED channel 32 and the first switch 41 are connected to the next stage of the first LED channel 31.
  • the third LED channel 33 and the second switch 42 are connected.
  • the LED stage 34 and the third switch 43 are connected to the third stage of the LED channel 33.
  • the resistor 35 and the switch 44 are connected to the fourth stage of the LED channel 34.
  • the fifth switch 45 is connected to the next stage of the resistor unit 35.
  • each switch is composed of a field effect transistor (FET).
  • FET field effect transistor
  • NMOS FET NMOS FET
  • the current sensing resistor 50 may be configured as a variable resistor.
  • the current sensing resistor 50 is connected to each of the switches 41, 42, 43, 44, and 45 included in the switch unit 40. Therefore, when current flows through the switch, the current flowing through the current sensing resistor 50 becomes the sum of the current flowing through the switch.
  • the resistance unit 35 when the resistance unit 35 is connected to the last end of the LED unit 30 and the voltage is distributed from the resistor unit 35, when the rated voltage or more is inputted in the switch 45, By distributing the generated heat to the resistor unit 35, it prevents the excessive heat generated in the switch 45. By doing so, in the present invention, even when the input voltage is input above the rated voltage, excessive heat generated in the switch unit 40 is partially distributed in the resistor unit 35 to generate heat, thereby causing excessive heat in the switch unit 40 composed of the IC. It is possible to reduce the occurrence of this can maintain the stability of the switch unit (40).
  • the current control unit 60 is configured to include a temperature sensor.
  • the current controller 60 measures the temperature of the switch unit 40 using a temperature sensor and controls the current flowing through the switch unit 40 according to the measured temperature of the switch unit 40.
  • the current control unit 60 includes a storage device such as a memory, so that the normal operating temperature range in which the switch unit 40 can operate normally may be set.
  • the current controller 60 measures the temperature of the switch unit 40 using a temperature sensor, and when the measured temperature of the switch unit 40 is outside the range of the normal operating temperature, the switches of the switch unit 40 ( 41, 42, 43, 44, and 45 may be controlled to control the current flowing through the switch unit 40.
  • the current controller 60 turns off a switch (ie, a switch through which current flows) that performs an operation among the switches 41, 42, 43, 44, and 45 of the switch unit 40. By switching to the state, it controls so that a current does not flow in the switch part 40.
  • a switch ie, a switch through which current flows
  • FIG. 28 is a diagram illustrating a current applied to an LED channel position according to an input voltage according to some embodiments of the present invention.
  • Section a of FIG. 28 is a section in which an input voltage for operating the first LED channel 31 is input. Therefore, the current of I1 flows in the first LED channel 31 and the first switch 41 in the section where the input voltage is a.
  • Section b is a section in which an input voltage for operating the second LED channel 32 is input. Therefore, the current of I2 flows in the second LED channel 32 and the second switch 42 in the section where the input voltage is b.
  • the section c is a section in which an input voltage for operating the third LED channel 33 is input. Therefore, the current of I3 flows through the third LED channel 33 and the third switch 43 in the section where the input voltage is c.
  • the d section is a section in which an input voltage for operating the fourth LED channel 34 is input. Therefore, the current of I4 flows through the fourth LED channel 34 and the fourth switch 44 in the period where the input voltage is d.
  • section a is a section in which the first switch is operated to operate the first LED channel
  • section b is a section in which the second switch is operated to operate the first LED channel and the second LED channel
  • section c is in the third switch operating.
  • the first LED channel, the second LED channel and the third LED channel is a section in operation
  • the d section is the fourth switch is operated to operate the first LED channel, the second LED channel, the third LED channel and the fourth LED channel.
  • I4 is a current flowing through the switch control unit 40 when the input voltage is input near 100% of the rated voltage. That is, the current flowing through the fourth switch 44.
  • the current I5 flows through the fifth switch 45.
  • FIG. 29 is a diagram illustrating controlling the temperature of the switch control unit by controlling the current of the switch unit in accordance with some embodiments of the present invention.
  • the dotted line of the semicircle at the lower end of Fig. 29 represents the input voltage
  • the solid stepped line represents the current of the switch unit 40 according to the input voltage.
  • the switch for operating the LED channel is also different.
  • the switch unit 40 may be damaged due to heat generation or may malfunction.
  • the current flowing through the switch unit 40 is cut off to lower the temperature of the switch unit 40.
  • a method of lowering the temperature by cutting off the current of the switch unit 40 according to the temperature of the switch unit 40 is as follows.
  • the range of the normal operating temperature of the switch unit is within T2
  • the malfunction temperature at which the switch unit causes a malfunction or an abnormality occurs is T1.
  • the malfunction temperature T1 is set in the current control unit 60.
  • the current controller 60 controls the switch through which the current of the switch controller 40 flows to cut off the current. Then, when the temperature of the switch control unit 40 drops below the normal operating temperature of T2, the current control unit 60 controls an appropriate switch for the input voltage and operates an LED channel corresponding to the input voltage by flowing a current. . Thereafter, when the temperature of the switch unit 40 rises to be above the normal operating temperature T2 and reaches the malfunctioning temperature T1, the current controller 60 controls the switch through which the current of the switch controller 40 flows to cut off the current. When the temperature of the switch controller 40 drops below the normal operating temperature of T2, the current controller 60 operates the LED channel corresponding to the input voltage again.
  • the current controller 60 controls the third switch 43 through which the I3 current flows to cut off the I3 current.
  • the current control unit 60 controls the first switch 41 corresponding to the input voltage at this time to flow the I1 current. To do that.
  • the current controller 60 controls the first switch 41 to block the I1 current from flowing.
  • the current control unit 60 controls the third switch 43 corresponding to the input voltage at this time to flow the I3 current. To do that.
  • the current controller 60 controls the fourth switch 44 to block the I4 current from flowing. Then, at the sixth point where the temperature of the switch control unit 40 decreases to reach the normal operating temperature T1, the current control unit 60 controls the switch corresponding to the input voltage at this time to flow the current.
  • the present invention may have the following features in terms of power consumption.
  • switch n From switch 1 to switch 4, when input voltage rises, voltage is canceled by forward voltage in LED channel n, and switch n is operated with the remaining voltage, and switch n is turned off when more voltage is input.
  • the power (heat) consumed by each switch increases, but the overall power consumption is within a certain system specification range.
  • the fifth switch 45 which is the last switch, when the rated voltage or more is input, excessive current flows and the consumed power (heat) exceeds the range of the system standard. Therefore, when the rated voltage or more is input, the fifth switch 45 generates excessive heat.
  • heat generated in the switch 45 may be offset by generating heat in the resistor unit 35.
  • the power consumed by each switch can be made to be almost the same level.
  • the power consumed by the nth and n + 1th switches can be made almost equal.
  • the heat generated by the switch unit 40 may be the same even when the input voltage is changed.
  • the forward voltage Vf may be freely changed for each LED channel, but the sum of all forward voltages Vf is set to match the maximum value of the input voltage.
  • the lighting apparatus of the present invention configured as described above has the following advantages. It has a temperature sensor to measure the temperature of the switch part composed of IC and controls the current flowing through the switch part to protect the temperature of the switch part not to be above the malfunctioning temperature.
  • the switching of the FET switch can be automatically performed according to the input voltage without configuring the input voltage sensing circuit or the input period sensing circuit.
  • the switch unit can be easily configured, an extra LED channel can be added to the same area.
  • the efficiency of the switch unit can be increased, and a combination of free LEDs can be performed.
  • FIG. 30 is a view illustrating a structure of an LED lighting device that protects a switch unit through current control in some embodiments of the present invention.
  • LED lighting device to protect the switch through the current control of the present invention power supply unit 10, rectifier circuit unit 20, LED unit 30, switch unit 40, current sensing resistor 50 and switch unit current blocking unit (60).
  • the power supply unit 10 supplies an input voltage.
  • the rectifier circuit unit 20 receives an AC input voltage from the power supply unit 10 and outputs the rectified rectified power.
  • the LED unit 30 includes n + 1 LED channels connected in series, and the resistor unit 36 is connected to the last end of the last LED channel 35.
  • the LED unit 30 includes five LED channels 31, 32, 33, 34, and 35.
  • the resistor unit 36 is connected in series to the next stage of the last LED channel 35 of the LED channels connected in series with each other.
  • the switch unit 40 includes four switches for operating the LED channel according to the input power source. Here, four switches from the first to the fourth control the operation of the LED channel according to the input power.
  • the first switch 41 is connected to the first LED channel 31 to operate the first LED channel 31 in the on state
  • the second switch 42 is connected to the second LED channel 32.
  • the third switch 43 is connected to the third LED channel 33 in the on state
  • the first LED channel 31, the second LED channel 32 and the third LED channel 33 are operated, and the fourth switch 44 is connected to the fourth LED channel 34 so that the first state is turned on.
  • the LED channel 31, the second LED channel 32, the third LED channel 33 and the fourth LED channel 34 are operated.
  • the last LED channel ie, the fifth LED channel 35
  • the switch current cutoff unit 60 is connected to the switch current cutoff unit 60 through the resistor unit 36.
  • the switching operation of the switching circuit unit 40 is as follows.
  • the second LED channel 32 and the first switch 41 is connected.
  • the third LED channel 33 and the second switch 42 are connected.
  • the LED stage 34 and the third switch 43 are connected to the third stage of the LED channel 33.
  • the LED channel 35 is connected to the fourth stage of the LED channel 34.
  • the resistor unit 36 is connected to the next stage of the LED channel 35.
  • each switch of the switch unit 40 is composed of a field effect transistor (FET).
  • FET field effect transistor
  • NMOS FET NMOS FET
  • the current sensing resistor 50 may be configured as a variable resistor.
  • the current sensing resistor 50 is connected to each switch 41, 42, 43, 44 included in the switch unit 40. Therefore, when current flows through the switch, the current flowing through the current sensing resistor 50 becomes the sum of the current flowing through the switch.
  • the operation of the switch unit 40 of the present invention is as follows.
  • the operating voltage is input to the gates of all the switches 41, 42, 43, and 44 so that each switch can operate (that is, current flows).
  • the operating voltage of the first switch 41 is Vgs1
  • the operating voltage of the second switch 42 is Vgs2
  • the operating voltage of the third switch 43 is Vgs3
  • the operating voltage of the fourth switch 44 is Vgs4. do.
  • Vgs1 ⁇ Vgs2 ⁇ Vgs3 ⁇ Vgs4 is satisfied.
  • Each of Vgs1, Vgs2, Vgs3, and Vgs4 is connected to the current sensing resistor 50 and is affected by the voltage across the current sensing resistor 50.
  • the switch of the switch unit 40 is automatically controlled by the voltage value applied to the current sensing resistor 50 according to the magnitude of the rectified voltage input to the LED unit 30 to operate the LED channel.
  • the switching condition is that when current flows in both neighboring switches, the voltage is generated in the current sensing resistor by the sum of the currents flowing in the two neighboring switches, and the operating voltage is changed by the voltage applied to the current sensing resistor. This means that the switch having a lower operating voltage is turned off first.
  • the input voltage is rectified by the rectifying circuit unit 20 and according to the magnitude of the rectified voltage input to the LED unit 30, the switch unit 40 by the voltage value applied to the current sensing resistor 50 through the LED unit 30. ) Switches automatically.
  • the current sensing resistor 50 is set to 10 ohms, for example.
  • ⁇ Table 3> shows the saturation current value according to the switch (FET) and the voltage applied to the current sensing resistor when the saturation current flows through the switch.
  • Id means the saturation current of the switch. It means the saturation voltage when the switch operates and current flows.
  • Vrs is the voltage across the current sense resistor.
  • the forward voltage Vf of each LED channel is 50V.
  • the first LED channel 31 is operated and the current I1 gradually flows through the first switch 41.
  • the first switch 41 has a saturation current of 20 mA and the voltage applied to the current sensing resistor 50 becomes 0.2V.
  • the switch 2 When the input voltage is more than 100V, the switch 2 has a saturation current of 40 mA and the switch 1 is completely turned off.
  • the LED channel 33 When the input voltage rises to reach 150V, the LED channel 33 is operated and the current I3 gradually flows through the switch 43. At this time, in the current sensing resistor 50, the current flows by the sum of 40 mA, which is the current flowing through the second switch 42, and the current I3 flowing through the third switch 43. Therefore, the voltage applied to the current sensing resistor 50 is gradually increased.
  • the voltage applied to the current sensing resistor 50 rises in this way, the voltage Vgs2 input to the gate of the switch 2 is relatively low, so that the switch 2 is switched from the on state to the off state.
  • the second switch 42 When the condition is entered and the voltage value of the current sensing resistor 50 gradually rises and the voltage value of Vgs2 is relatively low, the second switch 42 is turned off.
  • the third switch 43 flows a saturation current of 60 mA and the second switch 42 is completely turned off.
  • the m th switch is turned off.
  • the present invention is connected to the LED channel 35 and the resistor 36 in series next to the fourth LED channel 34 in series when the input voltage is input above the rated voltage 5 LED channel (35)
  • the resistor unit 36 distributes the heat generated by the switch unit 40 so that excessive heat is applied to the switch unit 40. Prevent it from occurring.
  • the resistance unit 36 when the resistance unit 36 is connected to the last end of the LED unit 30 and the voltage is distributed from the resistor unit 36, when the rated voltage or more is input, the fourth number in the switch unit 40.
  • the heat generated by the switch 44 is distributed to the resistor unit 36, thereby preventing excessive heat from being generated at the switch 44.
  • the present invention even when the input voltage is input above the rated voltage, excessive heat is not generated in the switch unit 40, so that the stability of the switch unit 40 composed of ICs can be maintained.
  • the present invention prevents damage to the switch unit 40 when the overcurrent is input to the switch unit 40 when the rated voltage or more is input, and the voltage above the rated voltage is continuously input to the switch unit 40.
  • the damage caused by the heat generated by the over-current is continuously input to the switch unit 40 is configured outside the switch unit current blocking unit 60 to block the flow of current to the switch unit 40.
  • the switch unit current blocking unit 60 senses a current flowing through the LED channel 35 and the resistor unit 36 and the switch unit current blocking switch 45 configured in the switch unit 40 when an overcurrent flows. ) To turn off the switch to control the current to flow through the switch unit 40.
  • the switch unit current blocking unit 60 directly controls the fourth switch 44, which is a switch through which the current of the switch unit 40 flows, to turn off the fourth switch 44 to the switch unit 40. It can also be controlled so that no current flows.
  • the overcurrent is usually generated at the switch 4, which is the last switch.
  • the switch unit current blocking unit 60 is a switch. When all the switches of the unit 40 can be controlled and an overcurrent flows through the switch unit 40, the current flows through the switch unit 40.
  • a stable operation current value capable of stably operating the switch unit 40 is set in the switch unit current interruption unit 60. Accordingly, the switch unit current blocking unit 60 senses a current flowing therein and, when an overcurrent larger than the stable operating current value flows in comparison with the set stable operating current value, shuts off the switch in which the current flows among the switches of the switch unit 40. This prevents current from flowing through the switch unit 40.
  • the switch unit current cut-off unit 60 when the stable operating current value set in the switch current cut-off unit 60 is 110 mA, when a current of 110 mA or more flows through the rated voltage or more and the switch unit current cut-off unit 60 flows, the switch unit current flows.
  • the interruption unit 60 immediately turns off the switch through which the current in the switch unit 40 flows, so that no current flows in the switch unit 40.
  • 31 is a diagram illustrating a current applied to an LED channel position according to an input voltage according to some embodiments of the present invention.
  • each LED channel 31, 32, 33, 34 has a current when more than the forward voltage (Vf) is input according to the input voltage.
  • V1 means the maximum voltage of the voltage within the rated voltage.
  • I31 is a current flowing through the first LED channel 31
  • I2 is a current flowing through the second LED channel 32
  • I3 is a current flowing through the third LED channel 33
  • I4 is a fourth LED channel 34. As shown in FIG. The current flowing in it.
  • the current flowing in the LED unit 30 is circulated in the order of I1-> I2-> I3-> I4-> I1.
  • the fifth LED channel 35 is operated so that the current I5 flows to the LED unit 30.
  • the maximum value of the voltage above the rated voltage is referred to as V2
  • the section A means the section where the rated voltage or more is input.
  • the fifth LED channel 35 is operated, and current flows through the resistor unit 36 to distribute the ignition generated by the switch unit 40 to the switch unit. To prevent excessive heat generated in 40.
  • FIG. 32 is a view showing the blocking of a current flowing in a switch section when an input voltage is input above a rated voltage according to some embodiments of the present invention.
  • the stable operation current value is set in the switch unit current blocking unit 60, and when a rated voltage or more is input, the current flowing through the LED unit 30 is sensed, and it is detected by comparing it with the stable operation current value.
  • the current value is a current larger than the stable operation current value, the current is cut off to the switch unit 40.
  • a section in which the rated voltage or more is input is referred to as A, and at this time, when the current flowing through the LED unit 30 sensed by the switch unit current blocking unit 60 is greater than the stable operating current value, the switch unit current blocking The unit 60 controls the switch of the switch unit 40 to block current from flowing. Then, when the input voltage is input within the rated voltage and the current flowing in the LED unit 30 is a current smaller than the stable operating current value, the switch unit current blocking unit 60 is the last switch (that is, switch 4 (44)). )) Is turned on again from the off state to allow current to flow through the switch unit 40 again.
  • the present invention may have the following features in terms of power consumption.
  • the forward voltage Vf of each LED channel by redistributing the forward voltage Vf of each LED channel differently, the power consumed by each switch can be made to be almost the same level. That is, the forward voltage Vf of the m + 1th LED channel may be increased from the forward voltage Vf of the mth LED channel to make the power consumed by the mth and m + 1th switches almost the same level. . By redistributing the forward voltage Vf of the LED channel in this way, the heat generated by the switch unit 40 may be the same even when the input voltage is changed.
  • the forward voltage Vf may be freely changed for each LED channel, but the sum of all forward voltages Vf is set to match the maximum value of the input voltage.
  • the lighting apparatus of the present invention configured as described above has the following advantages.
  • the switch section protects the switch section by blocking the current flowing through the switch section when an overcurrent flows to the switch section composed of ICs by inputting a current breaker.
  • the switching of the FET switch can be automatically performed according to the input voltage without configuring the input voltage sensing circuit or the input period sensing circuit.
  • the switch unit can be easily configured, an extra LED channel can be added to the same area.
  • the efficiency of the switch unit can be increased, and a combination of free LEDs can be performed.
  • 33 is a view showing the structure of an LED lighting device to protect the switch unit through the current control in some embodiments of the present invention.
  • LED lighting device to protect the switch through the current control of the present invention is the power supply unit 10, rectifier circuit unit 20, LED unit 30, switch unit 40, current sensing resistor 50 and the current switch 60 ).
  • the power supply unit 10 supplies input power.
  • the rectifier circuit unit 20 receives AC input power from the power supply unit 10 and outputs the rectified rectified power.
  • the LED unit 30 includes n LED channels connected in series, and the resistor unit 36 is connected to the last end of the last LED channel 35.
  • the LED unit 30 includes four LED channels 31, 32, 33, and 34.
  • the resistor unit 35 is connected in series to the next stage of the last LED channel 34 of the LED channels connected in series with each other.
  • the current switch 60 is connected between the resistor 35 and the last switch of the switch 40.
  • the current switch 60 is connected to the ground voltage can change the direction of the current in accordance with the internal switch operation.
  • the switch unit 40 includes four switches for operating the LED channel according to the input power source. Here, four switches from the first to the fourth control the operation of the LED channel according to the input power.
  • the first switch 41 is connected to the first LED channel 31 to operate the first LED channel 31 in the on state
  • the second switch 42 is connected to the second LED channel 32.
  • the third switch 43 is connected to the third LED channel 33 in the on state
  • the first LED channel 31, the second LED channel 32 and the third LED channel 33 are operated.
  • the fourth switch 44 is connected to the fourth LED channel 34 through the resistor unit 35 and the current changeover switch 60 so that the first switch channel 31 and the second LED channel 32 are in an on state. ) And the third LED channel 33 and the fourth LED channel 34 (when the internal switch of the current changeover switch 60 is connected to the fourth switch 44 of the switch unit 60).
  • a switching operation of the switching circuit unit 40 will be described below with reference to FIG. 33 as an example.
  • the second LED channel 32 and the first switch 41 is connected.
  • the third LED channel 33 and the second switch 42 are connected.
  • the LED stage 34 and the third switch 43 are connected to the third stage of the LED channel 33.
  • the fourth LED channel 34 is connected to the fourth switch 44 through the resistor unit 35 and the current changeover switch 60.
  • each switch of the switch unit 40 is composed of a field effect transistor (FET).
  • FET field effect transistor
  • NMOS FET NMOS FET
  • the current sensing resistor 50 may be configured as a variable resistor.
  • the current sensing resistor 50 is connected to each switch 41, 42, 43, 44 included in the switch unit 40. Therefore, when current flows through the switch, the current flowing through the current sensing resistor 50 becomes the sum of the current flowing through the switch.
  • the operation of the switch unit 40 of the present invention is as follows.
  • the operating voltage is input to the gates of all the switches 41, 42, 43, and 44 so that each switch can operate (that is, current flows).
  • the operating voltage of the first switch 41 is Vgs1
  • the operating voltage of the second switch 42 is Vgs2
  • the operating voltage of the third switch 43 is Vgs3
  • the operating voltage of the fourth switch 44 is Vgs4. do.
  • Vgs1 ⁇ Vgs2 ⁇ Vgs3 ⁇ Vgs4 is satisfied.
  • Each of Vgs1, Vgs2, Vgs3, and Vgs4 is connected to the current sensing resistor 50 and is affected by the voltage across the current sensing resistor 50.
  • the switch of the switch unit 40 is automatically controlled by the voltage value applied to the current sensing resistor 50 according to the magnitude of the rectified voltage input to the LED unit 30 to operate the LED channel.
  • the switching condition is that when current flows in both neighboring switches, the voltage is generated in the current sensing resistor by the sum of the currents flowing in the two neighboring switches, and the operating voltage is changed by the voltage applied to the current sensing resistor. This means that the switch having a lower operating voltage is turned off first.
  • the input voltage is rectified by the rectifying circuit unit 20 and according to the magnitude of the rectified voltage input to the LED unit 30, the switch unit 40 by the voltage value applied to the current sensing resistor 50 through the LED unit 30. ) Switches automatically.
  • the current sensing resistor 50 is set to 10 ohms, for example.
  • ⁇ Table 4> shows the saturation current value according to the switch (FET) and the voltage applied to the current sensing resistor when the saturation current flows through the switch.
  • Id means the saturation current of the switch. It means the saturation voltage when the switch operates and current flows.
  • Vrs is the voltage across the current sense resistor.
  • the forward voltage Vf of each LED channel is 50V.
  • the first LED channel 31 is operated and the current I1 gradually flows through the first switch 41.
  • the first switch 41 has a saturation current of 20 mA and the voltage applied to the current sensing resistor 50 becomes 0.2V.
  • the switch 2 When the input voltage is more than 100V, the switch 2 has a saturation current of 40 mA and the switch 1 is completely turned off.
  • the LED channel 33 When the input voltage rises to reach 150V, the LED channel 33 is operated and the current I3 gradually flows through the switch 43. At this time, in the current sensing resistor 50, the current flows by the sum of 40 mA, which is the current flowing through the second switch 42, and the current I3 flowing through the third switch 43. Therefore, the voltage applied to the current sensing resistor 50 is gradually increased.
  • the voltage applied to the current sensing resistor 50 rises in this way, the voltage Vgs2 input to the gate of the switch 2 is relatively low, so that the switch 2 is switched from the on state to the off state.
  • the second switch 42 When the condition is entered and the voltage value of the current sensing resistor 50 gradually rises and the voltage value of Vgs2 is relatively low, the second switch 42 is turned off.
  • the third switch 43 flows a saturation current of 60 mA and the second switch 42 is completely turned off.
  • the m th switch is turned off.
  • the resistance unit 35 is connected in series after the fourth LED channel 34 so that a current flows to the resistance unit 35 when the input voltage is input above the rated voltage.
  • the heat generated by the switch unit 40 is distributed by the resistor unit 35 to prevent excessive heat from being generated in the switch unit 40.
  • the resistor unit 35 divides the voltage to 4 times in the switch unit 40.
  • the heat generated from the switch 44 is distributed to the resistor unit 35, thereby preventing excessive heat from being generated at the switch 44.
  • the present invention prevents damage to the switch unit 40 when the overcurrent is input to the switch unit 40 when the rated voltage or more is input, and the voltage above the rated voltage is continuously input to the switch unit 40.
  • the current blocking control unit 45 for blocking the current of the switch unit 40 is configured.
  • the current cutoff control unit 45 may be configured between the current changeover switch 60 and the fourth switch 44, and between the fourth switch 44 and the current sensing resistor 50 as shown in FIG. It may be configured.
  • the current cutoff control unit 45 may be configured inside the switch unit 40 or may be configured outside the switch unit 40 between the switch unit 40 and the current sensing resistor 50.
  • the current cutoff control unit 45 senses the current flowing through the switch 4 and compares it with the set stable operating current value, and controls the current switching switch 60 when the overcurrent flows over the stable operating current value.
  • the switch is connected between the resistor unit 35 and the ground voltage to block the flow of current through the switch unit 40.
  • the stable operating current value may be set in the current cutoff control unit 45, or put a separate storage unit outside the switch unit 40 to set the stable operating current value therein, and the current cutoff control unit 45 flows.
  • the current switching switch 60 is controlled to block the flow of current to the switch unit 40.
  • 34 is a view showing that the current interruption control section is configured between the switch section and the current sensing resistor in some embodiments of the present invention.
  • the current interrupt control unit 45 may be configured between the switch unit 40 and the current sensing resistor 50.
  • the current cutoff control unit 45 When the current cutoff control unit 45 is configured outside the switch unit 40, a stable operation current value capable of stably operating the switch unit 40 may be set in the current cutoff control unit 45. To this end, the current cutoff control unit 45 may further include a memory.
  • the current cut-off control unit 45 senses the current flowing through the switch No. 4 of the switch unit 40 and compares it with the set stable operating current value, and the overcurrent greater than the stable operating current value is applied to the fourth switch 44. When flowing, the current switching switch 60 is controlled to block the flow of current to the switch unit 40.
  • the overcurrent in the switch unit 40 usually occurs at switch 4, which is the last switch, but overcurrent may occur at switches 1 to 3 as other factors.
  • the current interrupt control unit 45 when the current interrupt control unit 45 is configured between the switch unit 40 and the current sensing resistor 50, the current interrupt control unit 45 measures the current value flowing through all the switches of the switch unit 40. As shown in FIG. It can also be detected and monitored.
  • 35 is a diagram illustrating a current applied to an LED channel position according to an input voltage according to some embodiments of the present invention.
  • each LED channel 31, 32, 33, 34 has a saturation current flowing when more than the forward voltage Vf is input according to the input voltage.
  • Section a in FIG. 35 is a section in which an input voltage for operating the first LED channel 31 is input. Therefore, the current of I1 flows in the first LED channel 31 and the first switch 41 in the section where the input voltage is a.
  • Section b is a section in which an input voltage for operating the second LED channel 32 is input. Therefore, the current of I2 flows in the second LED channel 32 and the second switch 42 in the section where the input voltage is b.
  • the section c is a section in which an input voltage for operating the third LED channel 33 is input. Therefore, the current of I3 flows through the third LED channel 33 and the third switch 43 in the section where the input voltage is c.
  • the d section is a section in which an input voltage for operating the fourth LED channel 34 is input. Therefore, the current of I4 flows through the fourth LED channel 34 and the fourth switch 44 in the period where the input voltage is d.
  • section a is a section in which the first switch is operated to operate the first LED channel
  • section b is a section in which the second switch operates to operate the first LED channel and the second LED channel
  • section c is a section in which the third switch is operated.
  • the first LED channel, the second LED channel and the third LED channel is a section in operation
  • the d section is the fourth switch is operated to operate the first LED channel, the second LED channel, the third LED channel and the fourth LED channel.
  • FIG. 36 is a view showing cutoff of a current flowing in a switch unit when an input voltage is input above a rated voltage according to some embodiments of the present invention.
  • the current cutoff control unit 45 detects an overcurrent flowing through the switch unit 40 and compares the current with the stable operating current value set in the switch unit 40 when the overcurrent is greater than the stable operating current value.
  • the switch 60 is controlled to cut off the current flowing through the switch 40.
  • V1 is the maximum voltage value within the rated voltage
  • V2 is the maximum value out of the rated voltage
  • Vx is the input voltage above the rated voltage
  • Iset is the stable operating current value
  • Imax is the LED part when the input voltage is V2 ( It means the current value flowing in 30).
  • the current cutoff control unit 45 controls the current switching switch 60 to prevent current from flowing through the switch unit 40. Therefore, the current increases in the switch unit 40 only during the interval from the interval e to the interval f. In the interval f, the current does not flow in the switch 40.
  • the current cutoff control unit 45 controls the current switching switch 60 so that the current flows in the switch unit 40.
  • the present invention may have the following features in terms of power consumption.
  • the forward voltage Vf of each LED channel by redistributing the forward voltage Vf of each LED channel differently, the power consumed by each switch can be made to be almost the same level. That is, the forward voltage Vf of the m + 1th LED channel may be increased from the forward voltage Vf of the mth LED channel to make the power consumed by the mth and m + 1th switches almost the same level. . By redistributing the forward voltage Vf of the LED channel in this way, the heat generated by the switch unit 40 may be the same even when the input voltage is changed.
  • the forward voltage Vf may be freely changed for each LED channel, but the sum of all forward voltages Vf is set to match the maximum value of the input voltage.
  • the lighting apparatus of the present invention configured as described above has the following advantages. It has a current cut-off control part to protect the switch part by cutting off the current flowing in the switch part composed of IC when over current flows due to input of the rated voltage or more.
  • the switching of the FET switch can be automatically performed according to the input voltage without configuring the input voltage sensing circuit or the input period sensing circuit.
  • the switch unit can be easily configured, an extra LED channel can be added to the same area.
  • the efficiency of the switch unit can be increased, and a combination of free LEDs can be performed.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

본 발명은 복수개의 엘이디가 연결되어 있는 엘이디부에 저항을 연결하여 정격전압 이상이 입력되는 경우에 저항에서 열을 분산하여 발생하게 함으로써, 스위칭 IC 회로에서 발생하는 열을 감소시켜 스위칭 IC 회로를 보호하는 것이 목적이다. 이를 위해서, 전원부로부터 입력전원을 공급받아 정류된 정류전원을 출력하는 정류회로부;와 복수개의 엘이디(LED) 채널이 직렬로 연결되고 상기 엘이디 채널의 마지막 단에 저항부가 연결되어 있는 엘이디부;와 전류 센싱 저항; 및 복수개의 스위치를 포함하며, n 번째의 스위치는 n 번째의 엘이디 채널의 뒷단에 연결되어 상기 엘이디 채널의 동작을 제어하고, 상기 전류 센싱 저항에 흐르는 n 번째 스위치의 전류 및 n+1 번째 스위치의 전류의 합에 의해서 상기 n 번째의 스위치가 제어되는 스위치회로부; 를 포함하는 엘이디 조명장치가 제공된다.

Description

[규칙 제26조에 의한 보정 24.02.2014] 엘이디 조명장치
본 발명은 LED(Light Emitting Diode) 조명 장치에 관한 것으로, 입력전압에 의해서 엘이디를 동작시키는 스위치가 자동적으로 전환되고, 정격전압이상으로 전압이 입력되는 경우에 발생되는 스위칭 IC에 발생하는 발열 문제를 해결하는 조명장치에 대한 것이다.
최근에는 저전력 고효율 및 긴 수명으로 인해 엘이디 다이오드(이하, 엘이디라고 표기함)를 조명 장치에 많이 이용하고 있다.
광원으로 엘이디를 사용하기 위해서는 입력전압에 따라 엘이디를 동작시키는 스위칭 회로가 필요하다.
기존의 스위칭 회로는 전압 센싱 회로 또는 주기 센싱 회로를 포함하여 입력전압에 따라 전압의 크기 또는 전압의 입력주기를 센싱하여 엘이디에 해당하는 스위치를 제어한다. 그런데 이러한 기존의 스위칭 회로는 전압 센싱 회로 또는 주기 센싱 회로를 포함하고 있으므로, 전체 회로의 사이즈가 커지는 문제가 발생한다. 따라서 엘이디를 더 포함할 수 있는 면적이 적어진다.
또한, 스위칭 회로는 FET 로 구성되어 있는데, 이러한 FET IC는 민감한 부품이기 때문에 발명에 취약한 문제점을 가지고 있다. 여기서 입력전압이 정격전압 이상으로 입력되는 경우에는 스위칭 회로에 많은 열이 발생하는 문제가 있다. 즉, 입력 전압이 정격전압이상으로 입력되는 경우에 스위칭 회로에 높은 암페어의 전류가 흐르게 되어 스위칭 회로에 많은 발열이 발생하게 되는 문제가 있다.
미국등록특허 US6989807 에는 실시간으로 전압이 변동하는 교류입력전압에서 직렬로 연결된 복수개의 LED 그룹에 병렬로 연결된 복수개의 스위치를 조절함으로써 실시간으로 변동하는 전압에서 LED를 구동할 수 있도록 하는 특징이 언급되어 있으나, 미국등록특허 US6989807 에서도 입력 전압을 센싱하는 전압 센싱 회로가 포함되어 있어, 엘이디를 추가할 수 있는 면적이 작아지고, 정격전압이 100% 이상 입력되는 경우에는 스위칭 회로에 많은 발열이 발생하여 소모 전력이 증가하여 효율이 떨어지며, 스위칭 회로에 발생하는 높은 열로 인해서 회로의 오동작이 발생할 가능성이 커지게 된다.
본 발명이 이루고자 하는 과제는, 복수개의 엘이디가 연결되어 있는 엘이디부에 정격전압 이상이 입력되는 경우에 저항에서 열을 분산하여 발생하게 함으로써, 스위치부에서 발생하는 열을 감소시켜 스위치부를 보호하는 것이 다.
본 발명의 다른 목적은 입력전압을 센싱하는 전압 센싱회로 또는 주기 센싱회로를 구성하지 않고 스위치부를 구성하여 제한된 면적에 엘이디를 추가로 구성할 수 있도록 하는 것이다.
본 발명의 또 다른 목적은 캐패시터를 엘이디에 연결하여 flicker 현상을 방지하는 것이다.
본 발명의 또 다른 목적은 엘이디의 디밍을 경제적으로 제어하는 것이다.
본 발명의 다른 목적들은 이하의 실시예에 대한 설명을 통해 쉽게 이해될 수 있을 것이다.
본 발명의 일측면에 따르면, 입력전원을 공급하는 전원부;와 상기 전원부로부터 입력전원을 공급받아 정류된 정류전원을 출력하는 정류회로부;와 복수개의 엘이디(LED) 채널이 직렬로 연결되고 상기 엘이디 채널의 마지막 단에 저항부가 연결되어 있는 엘이디부;와 전류 센싱 저항; 및 복수개의 스위치를 포함하며, n 번째의 스위치는 n 번째의 엘이디 채널의 뒷단에 연결되어 상기 엘이디 채널의 동작을 제어하고, 상기 전류 센싱 저항에 흐르는 n 번째 스위치의 전류 및 n+1 번째 스위치의 전류의 합에 의해서 상기 n 번째의 스위치가 제어되는 스위치부; 를 포함하는 엘이디 조명장치가 제공된다.
여기서, 마지막 엘이디 채널에 저항부가 연결되어 있고 상기 스위치부에 상기 저항부와 연결되는 스위치가 포함되어 있어, 상기 저항부가 상기 스위치부에서 발생하는 열을 분배하여 감소시킬 수 있다.
여기서, 상기 엘이디 채널은 하나 이상의 엘이디를 포함할 수 있다.
여기서, n 번째 엘이디 채널은 n 번째의 스위치에서 발생하는 전력 소모를 줄이기 위해 서로 다른 순방향전압(Vf)을 가질 수 있다.
여기서, 상기 n+1 번째 스위치의 포화전류가 n 번째 스위치의 포화전류보다 높게 설정될 수 있다.
여기서, 상기 전류 센싱 저항에 걸리는 전압은 이웃하는 n 번째와 n+1 번째의 스위치에 흐르는 전류의 합에 의해서 변화되고, 상기 입력전압이 n+1 번째의 엘이디 채널의 순방향 전압(Vf)이상이 되어 상기 n+1 번째 스위치에 포화전류가 흐르게 되면, n 번째 스위치는 오프(OFF)될 수 있다.
여기서, 복수의 엘이디동작부;를 더 포함하되, 각 엘이디동작부는 상기 정류회로부, 상기 엘이디부, 상기 전류 센싱 저항: 및 상기 스위치회로부;를 포함하고 있으며, 상기 복수의 엘이디동작부는 각각 상기 전원부와 병렬로 연결될 수 있다.
여기서, 복수의 엘이디동작부는 동일한 전원부의 입력전원에 대해서 각각 서로 동일하거나 다른 전압을 출력하는 정류회로부를 포함할 수 있다.
여기서, 상기 엘이디부는 블럭으로 구성되고, 상기 엘이디 조명장치는 매트릭스 연결 구조를 가지고 있어 상기 블럭으로 구성된 상기 엘이디부가 연결되는 경우에 서로 특정의 연결 구조를 가지도록 하는 블럭 연결부;를 더 포함할 수 있다.
여기서, 상기 블럭으로 구성되어 있는 상기 엘이디부를 복수개 이용하여 각각 병렬로 연결할 수 있다.
여기서, 상기 엘이디 채널은 하나 이상의 엘이디가 포함되어 있는 블럭으로 구성될 수 있다.
여기서, 상기 엘이디부는 각각의 엘이디 채널과 각각 병렬로 연결되어 있는 캐패시터들을 더 포함할 수 있다. 나아가, 상기 캐패시터는 상기 입력전압이 병렬연결된 엘이디 채널을 동작시키지 못하는 전압으로 입력되는 경우에 병렬연결된 엘이디 채널에 전압을 공급할 수 있다.
여기서, 온도 센서를 포함하고 있어 상기 스위치회로부의 온도를 측정하고 상기 스위치회로부의 온도에 따라 상기 스위치회로부에 흐르는 전류를 제어하는 전류제어부; 를 더 포함할 수 있다. 나아가, 상기 전류제어부에는 오동작 온도가 설정되어 있고, 상기 전류제어부가 상기 스위치회로부의 온도를 측정한 결과, 상기 오동작 온도 이상이 되는 경우에 상기 스위치들을 제어하여 상기 스위치회로부에 전류가 흐르지 않도록 제어하는 것을 특징으로 하는 전류제어를 통해 스위치회로부를 보호할 수 있다.
여기서, 상기 저항부와 직렬로 연결되어 있고 흐르는 전류를 감지하여 상기 스위치 회로부에 흐르는 전류를 차단하는 스위치회로부 전류차단부;를 더 포함할 수 있다. 나아가, 상기 스위치회로부 전류차단부는 상기 스위치 회로부를 안정하게 동작시킬 수 있는 안정동작 전류값이 설정되어 있어, 상기 스위치회로부 전류차단부에 흐르는 전류가 상기 안정동작 전류값보다 커지는 경우에 상기 스위치 회로부의 스위치 중에서 전류가 흐르는 스위치를 차단시켜 상기 스위치회로부에 전류가 흐르지 않도록 하는 것을 특징으로 하는 전류제어를 통해 스위치회로부를 보호할 수 있다.
여기서, 상기 저항부와 마지막 스위치 사이에 구성되어 상기 스위치회로부에 흐르는 전류를 차단하는 전류 전환스위치; 및 상기 스위치회로부에 과전류가 흐르는 경우에 상기 전류 전환스위치를 제어하여 상기 스위치회로부로 흐르는 전류를 차단하는 전류차단제어부;를 더 포함할 수 있다. 나아가, 상기 전류차단제어부는 상기 스위치 회로부를 안정하게 동작시킬 수 있는 안정동작 전류값이 설정되어 있어, 상기 스위치회로부에 흐르는 전류가 상기 안정동작 전류값보다 커지는 경우에 상기 전류 전환스위치를 제어하여 상기 스위치회로부에 전류가 흐르지 않도록 할 수 있다.
본 발명의 다른 측면에 따르면, 전원부로부터 입력전원을 공급받아 정류된 정류전원을 출력하는 정류회로부; 복수개의 엘이디(LED) 채널이 직렬로 연결되고 상기 엘이디 채널의 마지막 단에 저항부가 연결되어 있는 엘이디부; 가변저항을 포함하여 구성되어 상기 엘이디부에 흐르는 전류를 제어하여 상기 엘이디 채널의 디밍을 제어하는 디밍제어부; 및 복수개의 스위치를 포함하며, n 번째의 스위치는 n 번째의 엘이디 채널의 뒷단에 연결되어 상기 엘이디 채널의 동작을 제어하고, 상기 가변저항에 흐르는 n 번째 스위치의 전류 및 n+1 번째 스위치의 전류의 합에 의해서 n 번째의 스위치가 제어되는 스위치회로부;를 포함하는 엘이디 조명장치가 제공된다.
여기서, 상기 디밍제어부는 디밍제어스위치를 더 포함하여 상기 스위치를 통해서 상기 가변저항의 저항값을 변화시켜서 상기 엘이디부의 상기 엘이디 채널의 동작 개수를 제어하여 디밍제어를 수행할 수 있다. 또한, 상기 디밍제어부는 디밍제어스위치를 더 포함하여 상기 스위치를 통해서 상기 가변저항의 저항값을 변화시켜서 상기 엘이디부의 상기 엘이디 채널에 흐르는 전류값을 제어하여 디밍제어를 수행할 수 있다.
본 발명의 또 다른 측면에 따르면, 전원부로부터 입력전원을 공급받아 정류된 정류전원을 출력하는 정류회로부; 상기 정류회로부로부터 전원을 공급받아 고전압인 경우에는 전하를 저장하고 저전압인 경우에는 저장된 전하를 방출하는 전하저장회로부; 복수개의 엘이디(LED) 채널이 직렬로 연결되고 상기 엘이디 채널의 마지막 단에 저항부가 연결되어 있는 엘이디부; 전류 센싱 저항: 및 복수개의 스위치를 포함하며, n 번째의 스위치는 n 번째의 엘이디 채널의 뒷단에 연결되어 상기 엘이디 채널의 동작을 제어하고, 상기 전류 센싱 저항에 흐르는 n 번째 스위치의 전류 및 n+1 번째 스위치의 전류의 합에 의해서 n 번째의 스위치가 제어되는 스위치회로부; 를 포함하는 엘이디 조명장치가 제공된다.
여기서, 상기 전하저장회로부는 제1 콘덴서, 제2 콘덴서, 제1 다이오드, 제2 다이오드, 제3 다이오드를 포함하고, 상기 제1 콘덴서와 상기 제2 콘덴서 사이에는 상기 제2 다이오드가 순방향으로 연결되고, 상기 제1 콘덴서의 일측은 상기 정류회로부의 전원전압 노드와 연결되고 상기 제2 콘덴서의 일측은 그라운드와 연결되어 있으며, 상기 제1 다이오드는 상기 제1 콘덴서와 상기 제2 다이오드가 접속하는 노드와 상기 그라운드 사이에 역방향으로 연결되어 있으며, 상기 제3 다이오드는 상기 제2 콘덴서와 상기 제2 다이오드가 접속하는 노드와 상기 엘이디부 사이에 연결되어 있어, 상기 정류회로부에서 출력되는 전압이 상기 전하저장회로부에 저장되는 전압보다 낮아지는 경우에 저장된 전하를 방출하여 상기 엘이디부에 전압을 공급할 수 있다.
본 발명의 또 다른 측면에 따르면, 전원부로부터 입력전원을 공급받아 정류된 정류전원을 출력하는 정류회로부; 상기 입력전원을 공급받아 전하를 저장하고 상기 입력전원이 감소되는 경우에 저장된 전하를 방출하여 리플이 제거된 전원을 출력하는 리플제거 회로부; 복수개의 엘이디(LED) 채널이 직렬로 연결되고 상기 엘이디 채널의 마지막 단에 저항부가 연결되어 있는 엘이디부; 전류 센싱 저항: 및 복수개의 스위치를 포함하며, n 번째의 스위치는 n 번째의 엘이디 채널의 뒷단에 연결되어 상기 엘이디 채널의 동작을 제어하고, 상기 전류 센싱 저항에 흐르는 n 번째 스위치의 전류 및 n+1 번째 스위치의 전류의 합에 의해서 n 번째의 스위치가 제어되는 스위치회로부; 를 포함하는 엘이디 조명장치가 제공된다.
여기서, 상기 리플제거회로부는 저항 및 캐패시터로 구성되어 상기 입력전원이 감소되는 경우에 상기 캐패시터에 저장된 전하를 방출하는 것을 특징으로 하는 리플을 제거하는 회로를 포함할 수 있다.
본 발명의 일부 실시예에 따르면, 스위치부의 발열을 분배하는 저항단을 구성함으로써 정격전압 이상이 입력되는 경우에도 스위치부의 과도한 발열을 방지하여 IC로 구성된 스위치부의 동작을 정상적으로 유지할 수 있는 효과가 있다.
또한, 본 발명의 일부 실시예에 따르면, 엘이디 채널의 순방향 전압을 재분배하여 스위치부에서 발생하는 소모전력을 감소시켜 효율을 증가시킬 수 있는 효과가 있다.
또한, 본 발명의 일부 실시예에 따르면, 가변저항을 이용하여 엘이디의 동작 갯수 또는 엘이디의 동작 전류를 제어하여 디밍제어를 수행할 수 있는 효과가 있다.
또한, 본 발명의 일부 실시예에 따르면, 입력 전압에 따른 플리커 현상을 감소시켜 일정한 밝기의 조명을 동작하는 효과가 있다.
또한, 본 발명의 일부 실시예에 따르면, 스위치부에 과전류가 흐르게 되는 것을 방지하여 스위치부를 보호하는 효과가 있다.
도1은 본 발명의 일부 실시예로 정격전압 이상의 전압이 입력되는 경우에 스위치부의 발열을 감소시키는 조명장치의 구조를 도시한 도면이다.
도2는 입력 전압에 따른 엘이디 채널 위치에 걸리는 전압을 나타낸 도면이고, 도3은 본 발명의 스위치부에서 발생하는 소비전력을 도시한 도면이다.
도4는 본 발명의 일부 실시예로 하나의 엘이디동작부를 포함하는 엘이디 조명장치의 구조를 도시한 도면이다.
도5는 본 발명의 일부 실시예로 엘이디동작부를 직렬로 연결한 구조를 도시한 도면이다.
도6은 본 발명의 일부 실시예로 엘이디동작부를 병렬로 연결한 구조를 도시한 도면이다.
도7은 본 발명의 일부 실시예로 입력전압의 크기에 따른 엘이디동작부를 동작을 설명하기 위한 도면이다.
도8은 본 발명의 일부 실시예로 기본적인 엘이디 조명장치의 구조를 도시한 도면이다.
도9는 본 발명의 일부 실시예로 복수의 엘이디동작부가 전원부에 연결되어 있는 구조를 도시한 도면이다.
도10은 본 발명의 일부 실시예로 하나의 엘이디부를 포함하는 엘이디 조명장치의 구조를 도시한 도면이다.
도11은 본 발명의 일부 실시예로 하나 이상의 엘이디부를 포함하는 회로구조를 도시한 도면이다.
도12와 도13은 본 발명의 일부 실시예로 하나 이상의 엘이디들을 포함하는 엘이디채널의 구조를 도시한 도면이다.
도14는 본 발명의 일부 실시예로 정격전압 이상의 전압이 입력되는 경우에 스위치부의 발열을 감소시키는 조명장치의 구조를 도시한 도면이다.
도15는 본 발명의 일부 실시예로 입력 전압에 따른 엘이디 채널 위치에 걸리는 전류를 나타낸 도면이다.
도16은 본 발명의 일부 실시예로 엘이디 채널에 흐르는 전류값을 변화시켜 디밍제어를 수행하는 것을 나타낸 도면이다.
도17은 본 발명의 일부 실시예로 엘이디 채널에 캐패시터를 병렬 연결하여 플리커 현상을 방지하는 엘이디 조명장치의 구조를 도시한 도면이다.
도18은 본 발명의 일부 실시예로 입력 전압에 따른 엘이디 채널의 동작을 설명하기 위한 도면이다.
도19는 본 발명의 일부 실시예로 입력 전압에 따른 밝기 변화를 나타낸 도면이다.
도20은 본 발명의 일부 실시예로 플리커 현상을 감소시키는 회로를 포함하는 엘이디 조명장치의 구조를 도시한 도면이다.
도21은 본 발명의 일부 실시예로 전하저장회로부의 구조 및 기능을 설명하기 위한 도면이다.
도22는 본 발명의 일부 실시예로 엘이디동작부에 공급되는 전압의 크기를 나타낸 도면이다.
도23은 본 발명의 일부 실시예로 리플을 제거하는 회로를 포함하는 엘이디 조명장치의 구조를 도시한 도면이다.
도24는 본 발명의 일부 실시예로 리플제거 회로부에 의해서 엘이디동작부로 입력되는 전압을 도시한 도면이다.
도25는 본 발명의 일부 실시예로 리플제거 회로부가 없는 경우의 밝기를 나타낸 도면이고, 도26은 본 발명의 일부 실시예로 리플제거 회로부가 있는 경우의 밝기를 나타낸 도면이다.
도27은 본 발명의 일부 실시예로 전류제어를 통해 스위치부를 보호하는 엘이디 조명장치의 구조를 도시한 도면이다.
도28은 본 발명의 일부 실시예로 입력 전압에 따른 엘이디 채널 위치에 걸리는 전류를 나타낸 도면이다.
도29는 본 발명의 일부 실시예로 스위치부의 전류를 제어하여 스위치제어부의 온도를 제어하는 것을 나타낸 도면이다.
도30은 본 발명의 일부 실시예로 전류제어를 통해 스위치부를 보호하는 엘이디 조명장치의 구조를 도시한 도면이다.
도31은 본 발명의 일부 실시예로 입력 전압에 따른 엘이디 채널 위치에 걸리는 전류를 나타낸 도면이다.
도32는 본 발명의 일부 실시예로 입력 전압이 정격전압이상으로 입력되는 경우에 스위치부에 흐르는 전류를 차단하는 것을 나타낸 도면이다.
도33은 본 발명의 일부 실시예로 전류제어를 통해 스위치부를 보호하는 엘이디 조명장치의 구조를 도시한 도면이다.
도34는 본 발명의 일부 실시예로 전류차단제어부가 스위치부와 전류 센싱 저항 사이에 구성되어 있는 것을 도시한 도면이다.
도35는 본 발명의 일부 실시예로 입력 전압에 따른 엘이디 채널 위치에 걸리는 전류를 나타낸 도면이다.
도36은 본 발명의 일부 실시예로 입력 전압이 정격전압이상으로 입력되는 경우에 스위치부에 흐르는 전류를 차단하는 것을 나타낸 도면이다.
<부호의 설명>
10 : 전원부 20 : 정류회로부
30 : 엘이디부
31,32,33,34,35,36,37 : 엘이디 채널
38 : 저항부
40 : 스위치부
41,42,43,44,45,46,47,48 : 스위치
50 : 전류 센스 저항
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 1번 및 2번 또는 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 또한 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
이하, 본 발명의 실시예를 첨부한 도면들을 참조하여 상세히 설명하기로 한다.
도1은 본 발명의 일부 실시예로 정격전압 이상의 전압이 입력되는 경우에 스위치부의 발열을 감소시키는 조명장치의 구조를 도시한 도면이다.
본 발명의 조명장치는 정류회로부(20), 엘이디부(30), 스위치부(40) 및 전류 센싱 저항(50)을 포함한다.
전원부(10)는 입력전원을 공급하고, 정류회로부(20)는 전원부(10)로부터 교류의 입력전원을 공급받아 정류된 정류전원을 출력한다.
엘이디부(30)는 직렬로 연결되어 있는 n 개의 엘이디(LED) 채널을 포함하고 있으며, 마지막 엘이디 채널의 마지막 단에는 저항부(38)가 연결되어 있다.
도1에는 예시적으로 엘이디부(30)는 7개의 엘이디 채널(31,32,33,34,35,36,37)을 포함하고 있다. 저항부(38)는 서로 직렬로 연결되어 있는 엘이디 채널의 마지막 엘이디 채널(37)의 다음단에 연결되어 있다.
스위치부(40)는 입력 전원에 따라 엘이디 채널을 동작시키기 위한 n+1 개의 스위치를 포함하고 있다. 여기서 n 개의 스위치는 입력 전원에 따라 엘이디 채널의 동작을 제어하고, n+1 번째의 스위치는 저항부(38)를 동작 시킨다.
도1을 예로 들어 설명하면, 1번 엘이디 채널(31)의 다음단에는 2번 엘이디 채널(32)과 1번 스위치(41)가 연결되어 있다. 2번 엘이디 채널(32)의 다음단에는 3번 엘이디 채널(33)과 2번 스위치(42)가 연결되어 있다. 3번 엘이디 채널(33)의 다음단에는 4번 엘이디 채널(34)과 3번 스위치(43)가 연결되어 있다. 4번 엘이디 채널(34)의 다음단에는 5번 엘이디 채널(35)과 4번 스위치(44)가 연결되어 있다. 5번 엘이디 채널(35)의 다음단에는 6번 엘이디 채널(36)과 5번 스위치(45)가 연결되어 있다. 6번 엘이디 채널(36)의 다음단에는 7번 엘이디 채널(37)과 6번 스위치(46)가 연결되어 있다. 7번 엘이디 채널(37)의 다음단에는 저항부(38)와 7번 스위치(47)가 연결되어 있다. 저항부(38)의 다음단에는 8번 스위치(46)가 연결되어 있다.
여기서 각각의 스위치는 FET(Field Effect Transistor)로 구성된다. 특히, NMOS FET 로 구성한다.
전류 센싱 저항(50)은 스위치부(40)에 포함되어 있는 각각의 스위치(41,42,43,44,45,46,47,48)와 연결되어 있다. 따라서 스위치에 전류가 흐르게 되면 전류 센싱 저항(50)에 흐르는 전류는 스위치에 흐르는 전류의 합이 된다.
본 발명에서는 입력 전원의 크기에 따라 엘이디 채널이 동작하게 된다. 엘이디부(30)로 입력되는 정류 전원의 크기에 따라 해당하는 엘이디 채널이 동작하게 된다.
본 발명의 스위치부(40)의 동작은 다음과 같다.
먼저 초기에는 모든 스위치(41,42,43,44,45,46,47,48)의 게이트에 각각의 스위치가 동작할 수 있도록(즉, 전류가 흐르도록) 동작전압을 입력한다. 여기서, Vgs1 < Vgs2 < Vgs3 < Vgs4 < Vgs5 < Vgs6 < Vgs7 인 조건을 만족한다. 각각의 Vgs1, Vgs2, Vgs3, Vgs4, Vgs5, Vgs6, Vgs7은 전류 센싱 저항(50)과 연결되어 전류 센싱 저항(50)에 걸리는 전압에 의해서 영향을 받는다.
이후에 엘이디부(30)로 입력되는 정류전압의 크기에 따라 전류 센싱 저항(50)에 걸리는 전압값에 의해서 스위치부(40)의 스위치는 자동으로 제어되어 엘이디 채널을 동작시킨다. 본 발명에서 스위칭 조건이란 이웃하는 두 스위치에 모두 전류가 흐르는 경우에, 이웃하는 두 스위치에 흐르는 전류의 합에 의해서 전류 센싱 저항에 전압이 발생하게 되고, 전류 센싱 저항에 걸리는 전압에 의해서 동작 전압이 하강하여 동작 전압이 낮은 스위치가 먼저 오프되는 것을 의미한다.
예를 들어, 전류 센싱 저항은 10옴으로 설정한다.
다음 <표1>은 스위치(FET)에 따른 포화 전류값과 스위치에 포화 전류가 흐르는 경우에 전류 센싱 저항에 걸리는 전압을 표시하고 있다.
여기서, Id는 해당 스위치의 포화전류를 의미한다. 스위치가 동작하여 전류가 흐르는 경우의 포화 전압을 의미한다. Vrs는 전류 센싱 저항에 걸리는 전압을 의미한다.
표 1
Id(mA) Vrs
1번 FET 20 0.2
2번 FET 40 0.4
3번 FET 60 0.6
4번 FET 80 0.8
5번 FET 100 1.0
6번 FET 120 1.2
7번 FET 140 1.4
8번 FET 160 1.6
또한, 각 엘이디 채널의 순방향전압(Vf)은 30V 라고 한다.
이러한 경우에 입력 전압이 상승하여 30V 근처에 이르게 되면, 1번 엘이디 채널(31)이 동작하게 되고 1번 스위치(41)를 통해서 전류(I1)가 서서히 흐르게 된다. 그리고 입력 전압이 30V 이상이 되면 1번 스위치(41)는 20mA의 포화전류가 흐르고 전류 센싱 저항에 걸리는 전압은 0.2V 가 된다.
입력 전압이 상승하여 60V 근처에 이르게 되면 2번 엘이디 채널(32)이 동작하게 되고 2번 스위치(42)를 통해서 전류(I2)가 서서히 흐르게 된다. 이때에 전류 센싱 저항(50)에서는 1번 스위치(41)에 흐르는 전류인 20mA와 2번 스위치(42)에 흐르는 전류(I2)의 합만큼 전류가 흐르게 된다. 따라서 전류 센싱 저항(50)에는 전압이 점점 높아지게 된다. 이렇게 전류 센싱 저항(50)에 걸리는 전압이 상승하게 되면 상대적으로 1번 스위치(41)의 게이트에 입력되는 전압(Vgs1)이 낮아지게 되어 1번 스위치(41)는 온 상태에서 오프 상태로 바뀌는 스위칭 조건에 들어가게 되고, 입력 전압이 점차 상승하여 2번 스위치(42)에서 흐르는 전류(I2)가 점차 증가하게 되면, 전류 센싱 저항(50)의 전압값이 점차 상승하여 Vgs1의 전압값이 낮아지게 되어 1번 스위치(41)는 오프 상태가 된다.
입력 전압이 60V 이상이 되면 2번 스위치(42)는 40mA의 포화전류가 흐르고 1번 스위치(41)는 완전히 오프 상태가 된다.
입력 전압이 상승하여 90V 근처에 이르게 되면 3번 엘이디 채널(33)이 동작하게 되고 3번 스위치(43)를 통해서 전류(I3)가 서서히 흐르게 된다. 이때에 전류 센싱 저항(50)에서는 2번 스위치(42)에 흐르는 전류인 40mA와 3번 스위치(43)에 흐르는 전류(I3)의 합만큼 전류가 흐르게 된다. 따라서 전류 센싱 저항(50)에는 전압이 점점 높아지게 된다. 이렇게 전류 센싱 저항(50)에 걸리는 전압이 상승하게 되면 상대적으로 2번 스위치(42)의 게이트에 입력되는 전압(Vgs2)이 낮아지게 되어 2번 스위치(42)는 온 상태에서 오프 상태로 바뀌는 스위칭 조건에 들어가게 되고, 전류 센싱 저항(50)의 전압값이 점차 상승하여 Vgs2의 전압값이 낮아지면 2번 스위치(42)는 오프 상태가 된다.
입력 전압이 90V 이상이 되면 3번 스위치(43)는 60mA의 포화전류가 흐르고 2번 스위치(42)는 완전히 오프 상태가 된다.
상술한 바와 같이 이렇게 입력전압에 따라 스위치는 순차적으로 n+1번 스위치에 전류가 흐르기 시작하면, n번 스위치는 오프 상태로 전환되게 된다.
입력 전압이 상승하여 210V 근처에 이르게 되면 7번 엘이디 채널(37)이 동작하게 되고, 7번 스위치(47) 및 8번 스위치(48)를 통해서 전류(I7 및 I8)가 서서히 흐르게 된다. 이때에 전류 센싱 저항(50)에서는 6번 스위치(46)에 흐르는 전류인 120mA와 7번 스위치(47) 및 8번 스위치(48)에 흐르는 전류의 합만큼 전류가 흐르게 된다. 마찬가지로 입력 전압이 210V 이상이 되면 7번 스위치(47)는 140mA의 포화전류가 흐르고 6번 스위치(46)는 완전히 오프 상태가 된다.
그런데 입력전압이 210V 이상에 되어 정격 전압보다 더 높은 전압이 입력되는 경우에는 동일한 이유로 7번 스위치(47)은 오프 상태가 되고 8번 스위치(48)만 동작하게 된다.
여기서 종래와 같이 저항부(38) 위치에 저항 대신에 엘이디가 연결되어 있다고 하면, 정격전압 이상의 입력전압이 입력되는 경우에 8번 스위치(48)에 과도한 전류가 흐르게 되어 많은 열이 발생하게 된다. 즉, 마지막 엘이디 채널을 동작시키는 스위치에 과도한 전류가 발생하게 된다. 따라서 이렇게 발생되는 과도한 열은 IC 부품으로 구성되는 스위치부(40)에 상당히 나쁜 영향을 주게 되어 부품의 고장 및 발생되는 열로 인한 효율의 저하를 가져 오게 된다.
따라서, 본 발명에서와 같이 저항부(38)를 연결하여 저항부(38)에서 전압을 분배하여 정격전압 이상이 입력되는 경우에는 8번 스위치(48)에서 발생하는 열을 저항부(38)로 분배하게 하여 8번 스위치(48)에 과도한 열이 발생하는 것을 차단해 준다. 이렇게 함으로써, 본 발명에서는 입력전압이 정격전압 이상으로 입력되는 경우에도 스위치부(40)에 과도한 열이 발생하지 않게 되어 IC 로 구성된 스위치부(40)의 안정성을 유지할 수 있다.
또한, 본 발명에서는 정류회로부(20)와 각 엘이디 채널(31, 32, 33, 34, 35, 36, 37) 사이에 캐패시터를 연결하여 플리커(flicker) 현상을 방지하도록 구성할 수도 있다.
도2는 입력 전압에 따른 엘이디 채널 위치에 걸리는 전압을 나타낸 도면이고, 도3은 본 발명의 스위치부에서 발생하는 소비전력을 나타낸 도면이다.
도2에 도시된 바와 같이 입력전압(A)에 따라 엘이디부(30)의 전압은 각 엘이디 채널의 순방향 전압에 의해서 계단식 전압(B)으로 변하게 된다. 여기서 ①은 1번 엘이디 채널이 동작하는 경우에 엘이디부(30)에 걸리는 전압이고, ②은 2번 엘이디 채널이 동작하는 경우에 엘이디부(30)에 걸리는 전압이고, ③은 3번 엘이디 채널이 동작하는 경우에 엘이디부(30)에 걸리는 전압이고, ④은 4번 엘이디 채널이 동작하는 경우에 엘이디부(30)에 걸리는 전압이고, ⑤은 5번 엘이디 채널이 동작하는 경우에 엘이디부(30)에 걸리는 전압이고, ⑥은 6번 엘이디 채널이 동작하는 경우에 엘이디부(30)에 걸리는 전압이고, ⑦은 7번 엘이디 채널이 동작하는 경우에 엘이디부(30)에 걸리는 전압이고, ⑧은 8번 스위치에 전류가 흐르는 경우에 엘이디부(30)에 걸리는 전압이다.
여기서, 정격전압 이상의 전압(예를 들어 입력 전압의 110% 이상에 해당하는 전압)이 입력되는 경우에는 엘이디부(30)에 걸리는 전압은 증가하게 된다. 이렇게 입력전압이 정격 전압 이상으로 입력되는 경우에는 엘이디단(30)에 걸리는 전압이 상승하게 되고, 이에 따라서 마지막 단에 연결되어 있는 스위치에 흐르는 전류도 상승하게 된다.
이렇게 전류가 증가하게 되면 전력은 전류의 제곱에 비례하여 증가하게 된다.
도3은 동작하는 엘이디 채널에 따라 스위치부(40)에서 발생하는 소모 전력을 도시한 것이다.
도3(a)는 엘이디 채널의 순방향 전압이 모두 일정하고 저항부(38) 대신에 엘이디를 연결한 경우에 스위치부(40)에서 발생하는 소비전력을 나타낸 도면으로 1은 1번 스위치(41)에 전류가 흐르는 경우의 소모 전력을 나타낸 것이고, 2는 2번 스위치(42)에 전류가 흐르는 경우의 소모 전력을 나타낸 것이고, 3은 3번 스위치(43)에 전류가 흐르는 경우의 소모 전력을 나타낸 것이고, 4는 4번 스위치(44)에 전류가 흐르는 경우의 소모 전력을 나타낸 것이고, 5는 5번 스위치(45)에 전류가 흐르는 경우의 소모 전력을 나타낸 것이고, 6은 6번 스위치(46)에 전류가 흐르는 경우의 소모 전력을 나타낸 것이고, 7은 7번 스위치(47)에 전류가 흐르는 경우의 소모 전력을 나타낸 것이고, 8은 8번 스위치(48)에 전류가 흐르는 경우 및 정격전압 이상이 입력되는 경우의 소모 전력을 나타낸 것이다.
1번 스위치에서 7번 스위치까지는 입력전압이 상승하는 경우에 n번 엘이디 채널에서 순방향 전압만큼 전압이 상쇄하고 남은 전압으로 n번 스위치를 동작시키고, 그 이상의 전압이 입력되는 경우에는 n번 스위치는 오프 상태로 되고, n+1번 스위치가 동작하게 되므로 각 스위치에서 소모되는 전력(열)은 증가하기는 하나, 수치 0.3을 초과하지 않는 범위이내이다. 그런데 마지막 스위치인 8번 스위치(48)는 정격전압 이상이 입력되는 경우에는 과도한 전류가 흐르게 되어 소모되는 전력(열)이 수치 1을 초과하게 된다. 따라서 정격전압이상이 입력되는 경우에 8번 스위치(48)에서는 과도한 열을 발생하게 된다.
본 발명에서는 저항부(38)을 두어 정격전압 이상이 입력되는 경우에도 저항부(38)에서 열을 발생시킴으로써 8번 스위치(48)에 발생하는 열을 상쇄시킬 수 있다.
또한, 본 발명에서는 각 엘이디 채널의 순방향전압(Vf)을 서로 다르게 재분배함으로서 각 스위치에서 소모하는 전력을 거의 동일한 수준이 되도록 만들 수 있다. 즉, n 번째 엘이디 채널의 순방향전압(Vf)보다 n+1 번째의 엘이디 채널의 순방향전압(Vf)을 증가시켜 n 번째와 n+1 번째의 스위치에서 소모되는 전력을 거의 동일한 수준으로 만들 수 있다. 이렇게 엘이디 채널의 순방향전압(Vf)를 재분배함으로서 입력전압이 변하는 경우에도 스위치부(40)에서 발생하는 열이 동일하도록 할 수 있다.
도3(b)는 각각의 엘이디 채널의 순방향전압을 재분배함으로써 입력 전압이 상승하는 경우에도 스위치부(40)에서 소모하는 전력이 수치 0.2 이하가 되도록 나타낸 도면이다. 여기서 엘이디 채널별로는 순방향전압(Vf)을 자유롭게 변경하여 배치할 수 있으나, 전체 순방향전압(Vf)의 합은 입력전압의 최대값에 맞도록 설정을 한다.
또한, 도(b)에서는 저항부(38)을 두어 입력전압이 정격전압이상인 경우에도 마지막 스위치인 8번 스위치(48)에서 소모되는 전력(열)이 다른 스위치에서 소모되는 전력과 동일하도록 한 것을 나타낸 도면이다.
이상과 같이 구성하는 본 발명의 조명장치는 다음과 같은 장점을 가지고 있다.
입력전압 센싱회로나 입력주기 센싱회로를 구성하지 않고도 FET 스위치의 스위칭을 입력전압에 따라 자동적으로 수행할 수 있다. 또한, 스위치부를 간단하게 구성할 수 있으므로 동일 면적 대비 여분의 엘이디 채널을 추가할 수 있다. 또한, 엘이디 채널별 순방향전압(Vf)을 조정하여 재배치함으로써 스위치부의 효율증대를 가져 올 수 있으며, 자유로운 엘이디의 조합을 수행할 수 있다.
한편, 이 실시예의 변형된 예에서, 잔불(ghost light)이 생기는 것을 방지하기 위해서, 1차 엘이디(31)가 제거되고, 1차 스위치(41) 위치에 잔불방지 저항(미도시)이 부가될 수도 있다. 예를 들어, 엘이디 조명장치의 온오프 스위치 위치를 나타내기 위해서 이러한 온오프 스위치가 오프되는 경우 약하게 발광되는 보조 조명이 부가될 수 있다. 이 경우 잔불방지 저항이 없는 경우, 온오프 스위치가 오프되어 있는 상태에서도 이러한 보조 조명의 발광 경로를 통해서 엘이디부(30)의 1차 엘이디(31)가 발광되는 문제가 발생될 수도 있다. 이러한 문제를 없애기 위해서, 1차 엘이디(31)를 제거하고, 1차 스위치(41) 위치에 잔불방지 저항을 부가하여 이러한 잔불방지 저항을 통해서 전류 경로를 만들어 줌으로써 잔불이 생기는 것을 방지할 수 있다. 이러한 잔불 방지 구조는 이후 실시예에도 유사하게 적용될 수 있다.
도4는 본 발명의 일부 실시예로 하나의 엘이디동작부를 포함하는 엘이디 조명장치의 구조를 도시한 도면이다.
전원부(10)는 입력전원을 공급하고, 교류전원을 이용하므로 시간에 따라 입력전압의 크기가 주기적으로 변한다. 정류회로부(20)는 전원부(10)로부터 교류의 입력전원을 공급받아 정류된 정류전원을 출력한다.
엘이디동작부는 엘이디부(30), 스위치부(40), 전류 센싱 저항(50)을 포함한다. 엘이디부(30)는 정류회로부(20)로부터 전원을 공급받아 동작을 수행하며, 복수(n)개의 엘이디(LED) 채널이 직렬로 연결되고 마지막 엘이디 채널의 하단부에 저항부(35)가 연결되어 있다.
이하에서는 설명의 편의를 위해서 n=4 라고 가정하여 설명하기로 한다.
스위치부(40)는 복수개의 스위치(41,42,43,44,45)를 포함하며, n 번째의 스위치는 n 번째의 엘이디 채널의 뒷단에 연결되어 엘이디 채널의 동작을 제어하고, 전류 센싱 저항(50)에 흐르는 n 번째 스위치의 전류 및 n+1 번째 스위치의 전류의 합에 의해서 n 번째의 스위치가 제어된다.
전류 센싱 저항(50)은 스위치부(40)에 포함되어 있는 각각의 스위치(41,42,43,44,45)와 연결되어 있다. 따라서 스위치에 전류가 흐르게 되면 전류 센싱 저항(50)에 흐르는 전류는 스위치에 흐르는 전류의 합이 된다.
도4를 예로 들어 설명하면, 1번 엘이디 채널(31)의 다음단에는 2번 엘이디 채널(32)과 1번 스위치(41)가 연결되어 있다. 2번 엘이디 채널(32)의 다음단에는 3번 엘이디 채널(33)과 2번 스위치(42)가 연결되어 있다. 3번 엘이디 채널(33)의 다음단에는 4번 엘이디 채널(34)과 3번 스위치(43)가 연결되어 있다. 4번 엘이디 채널(34)의 다음단에는 저항부(35)와 5번 스위치(44)가 연결되어 있다. 저항부(35)의 다음단에는 5번 스위치(45)가 연결되어 있다.
여기서 각각의 스위치는 FET(Field Effect Transistor)로 구성된다. 특히, NMOS FET 로 구성한다.
전류 센싱 저항(50)은 스위치부(40)에 포함되어 있는 각각의 스위치(41,42,43,44,45)와 연결되어 있다. 따라서 스위치에 전류가 흐르게 되면 전류 센싱 저항(50)에 흐르는 전류는 스위치에 흐르는 전류의 합이 된다.
전류 센싱 저항(50)은 가변저항으로 구성될 수도 있다.
본 발명에서는 입력 전원의 크기에 따라 엘이디 채널이 동작하게 된다. 엘이디부(30)로 입력되는 정류 전원의 크기에 따라 해당하는 엘이디 채널이 동작하게 된다.
본 발명의 스위치부(40)의 동작은 다음과 같다.
먼저 초기에는 모든 스위치(41,42,43,44,45)의 게이트에 각각의 스위치가 동작할 수 있도록(즉, 전류가 흐르도록) 동작 전압을 입력한다.
여기서, 1번 스위치(41)의 동작 전압을 Vgs1, 2번 스위치(42)의 동작 전압을 Vgs2, 3번 스위치(43)의 동작 전압을 Vgs3, 4번 스위치(44)의 동작 전압을 Vgs4, 5번 스위치(45)의 동작 전압을 Vgs5 라고 한다.
여기서, Vgs1 < Vgs2 < Vgs3 < Vgs4 < Vgs5 인 조건을 만족한다.
각각의 Vgs1, Vgs2, Vgs3, Vgs4, Vgs5 는 전류 센싱 저항(50)과 연결되어 전류 센싱 저항(50)에 걸리는 전압에 의해서 영향을 받는다.
이후에 엘이디부(30)로 입력되는 정류전압의 크기에 따라 전류 센싱 저항(50)에 걸리는 전압값에 의해서 스위치부(40)의 스위치는 자동으로 제어되어 엘이디 채널을 동작시킨다.
본 발명에서 스위칭 조건이란 이웃하는 두 스위치에 모두 전류가 흐르는 경우에, 이웃하는 두 스위치에 흐르는 전류의 합에 의해서 전류 센싱 저항에 전압이 발생하게 되고, 전류 센싱 저항에 걸리는 전압에 의해서 동작 전압이 하강하여 동작 전압이 낮은 스위치가 먼저 오프되는 것을 의미한다.
이후에 엘이디부(30)로 입력되는 정류전압의 크기에 따라 전류 센싱 저항(50)에 걸리는 전압값에 의해서 스위치부(40)의 스위치는 자동으로 제어되어 엘이디 채널을 동작시킨다.
본 발명에서의 전류 센싱 저항(50)은 예를 들어 10옴으로 설정한다.
다음 <표2>은 스위치(FET)에 따른 포화 전류값과 스위치에 포화 전류가 흐르는 경우에 전류 센싱 저항(50)에 걸리는 전압을 표시하고 있다.
여기서, Id는 해당 스위치의 포화전류를 의미한다. 스위치가 동작하여 전류가 흐르는 경우의 포화 전압을 의미한다. Vrs는 전류 센싱 저항(50)에 걸리는 전압을 의미한다.
표 2
Id(mA) Vrs
1번 FET 20 0.2
2번 FET 40 0.4
3번 FET 60 0.6
4번 FET 80 0.8
5번 FET 100 1.0
또한, 각 엘이디 채널의 순방향전압(Vf)은 50V 라고 한다.
이러한 경우에 입력 전압이 상승하여 50V 근처에 이르게 되면, 1번 엘이디 채널(31)이 동작하게 되고 1번 스위치(41)를 통해서 전류(I1)가 서서히 흐르게 된다. 그리고 입력 전압이 50V 이상이 되면 1번 스위치(41)는 20mA의 포화전류가 흐르고 전류 센싱 저항(50)에 걸리는 전압은 0.2V 가 된다.
입력 전압이 상승하여 100V 근처에 이르게 되면 2번 엘이디 채널(32)이 동작하게 되고 2번 스위치(42)를 통해서 전류(I2)가 서서히 흐르게 된다. 이때에 전류 센싱 저항(50)에서는 1번 스위치(41)에 흐르는 전류인 20mA와 2번 스위치(42)에 흐르는 전류(I2)의 합만큼 전류가 흐르게 된다. 따라서 전류 센싱 저항(50)의 전압이 점점 높아지게 된다. 이렇게 전류 센싱 저항(50)에 걸리는 전압이 상승하게 되면 상대적으로 1번 스위치(41)의 게이트에 입력되는 전압(Vgs1)이 낮아지게 되어 1번 스위치(41)는 온 상태에서 오프 상태로 바뀌는 스위칭 조건에 들어가게 되고, 입력 전압이 점차 상승하여 2번 스위치(42)에서 흐르는 전류(I2)가 점차 증가하게 되면, 전류 센싱 저항(50)에 걸리는 전압이 점차 상승하여 상대적으로 Vgs1의 전압값이 낮아지게 되어 1번 스위치(41)는 오프 상태가 된다.
입력 전압이 100V 이상이 되면 2번 스위치(42)는 40mA의 포화전류가 흐르고 1번 스위치(41)는 완전히 오프 상태가 된다.
입력 전압이 상승하여 150V 근처에 이르게 되면 3번 엘이디 채널(33)이 동작하게 되고 3번 스위치(43)를 통해서 전류(I3)가 서서히 흐르게 된다. 이때에 전류 센싱 저항(50)에서는 2번 스위치(42)에 흐르는 전류인 40mA와 3번 스위치(43)에 흐르는 전류(I3)의 합만큼 전류가 흐르게 된다. 따라서, 전류 센싱 저항(50)에 걸리는 전압이 점점 높아지게 된다. 이렇게 전류 센싱 저항(50)에 걸리는 전압이 상승하게 되면 상대적으로 2번 스위치(42)의 게이트에 입력되는 전압(Vgs2)이 낮아지게 되어 2번 스위치(42)는 온 상태에서 오프 상태로 바뀌는 스위칭 조건에 들어가게 되고, 전류 센싱 저항(50)의 전압값이 점차 상승하여 Vgs2의 전압값이 상대적으로 낮아지면 2번 스위치(42)는 오프 상태가 된다.
입력 전압이 150V 이상이 되면 3번 스위치(43)는 60mA의 포화전류가 흐르고 2번 스위치(42)는 완전히 오프 상태가 된다.
상술한 바와 같이 이렇게 입력전압에 따라 스위치는 순차적으로 n+1번 스위치에 전류가 흐르기 시작하면, n번 스위치는 오프 상태로 전환되게 된다.
입력 전압이 상승하여 200V 근처에 이르게 되면 4번 엘이디 채널(34)이 동작하게 되고, 3번 스위치(43) 및 4번 스위치(44)를 통해서 전류(I3 및 I4)가 서서히 흐르게 된다. 이때에 전류 센싱 저항(50)에서는 3번 스위치(43)에 흐르는 전류인 60mA와 4번 스위치(44) 및 5번 스위치(45)에 흐르는 전류의 합만큼 전류가 흐르게 된다. 마찬가지로 입력 전압이 200V 이상이 되면 4번 스위치(44)는 80mA의 포화전류가 흐르고 3번 스위치(43)는 완전히 오프 상태가 된다.
그런데 입력전압이 정격 전압보다 더 높은 전압이 입력되는 경우(예를 들어 250V 정도의 전압)에는 동일한 이유로 4번 스위치(44)은 오프 상태가 되고 5번 스위치(45)만 동작하게 된다.
여기서 종래와 같이 저항부(35) 위치에 저항 대신에 엘이디 채널이 연결되어 있다고 가정하면, 정격전압 이상의 입력전압이 입력되는 경우에 5번 스위치(45)에 과도한 전류가 흐르게 되어 많은 열이 발생하게 된다. 즉, 마지막 엘이디 채널을 동작시키는 스위치에 과도한 전류가 발생하게 된다. 따라서 이렇게 발생되는 과도한 열은 IC 부품으로 구성되는 스위치부(40)에 상당히 나쁜 영향을 주게 되어 부품의 고장 및 발생되는 열로 인한 효율의 저하를 가져 오게 된다.
따라서, 본 발명에서와 같이 엘이디부(30)의 마지막 단에 저항부(35)를 연결하여 저항부(35)에서 전압을 분배하여 정격전압 이상이 입력되는 경우에는 5번 스위치(45)에서 발생하는 열을 저항부(35)로 분배하게 하여, 5번 스위치(45)에 과도한 열이 발생하는 것을 차단해 준다. 이렇게 함으로써, 본 발명에서는 입력전압이 정격전압 이상으로 입력되는 경우에도 스위치부(40)에 발생하는 과도한 열을 저항부(35)에서 일부 분배하여 발열함으로써 IC 로 구성된 스위치부(40)에 과도한 열이 발생하는 것을 줄이게 되어 스위치부(40)의 안정성을 유지할 수 있다.
또한, 본 발명은 전력 소모면에서 다음과 같은 특징을 가질 수 있다.
1번 스위치에서 4번 스위치까지는 입력전압이 상승하는 경우에 n번 엘이디 채널에서 순방향 전압만큼 전압이 상쇄하고 남은 전압으로 n번 스위치를 동작시키고, 그 이상의 전압이 입력되는 경우에는 n번 스위치는 오프 상태로 되고, n+1번 스위치가 동작하게 되므로 각 스위치에서 소모되는 전력(열)은 증가하기는 하나, 전체적인 전력의 소모는 일정한 시스템 규격 범위이내이다. 그런데 마지막 스위치인 5번 스위치(45)는 정격전압 이상이 입력되는 경우에는 과도한 전류가 흐르게 되어 소모되는 전력(열)이 시스템의 규격의 범위를 초과하게 된다. 따라서 정격전압이상이 입력되는 경우에 5번 스위치(45)에서는 과도한 열을 발생하게 된다.
본 발명에서는 저항부(35)을 두어 정격전압 이상이 입력되는 경우에도 저항부(35)에서 열을 발생시킴으로써 5번 스위치(45)에 발생하는 열을 상쇄시킬 수 있다.
또한, 본 발명에서는 각 엘이디 채널의 순방향전압(Vf)을 서로 다르게 재분배함으로서 각 스위치에서 소모하는 전력을 거의 동일한 수준이 되도록 만들 수 있다. 즉, n 번째 엘이디 채널의 순방향전압(Vf)보다 n+1 번째의 엘이디 채널의 순방향전압(Vf)을 증가시켜 n 번째와 n+1 번째의 스위치에서 소모되는 전력을 거의 동일한 수준으로 만들 수 있다. 이렇게 엘이디 채널의 순방향전압(Vf)를 재분배함으로서 입력전압이 변하는 경우에도 스위치부(40)에서 발생하는 열이 동일하도록 할 수 있다.
여기서 엘이디 채널별로는 순방향전압(Vf)을 자유롭게 변경하여 배치할 수 있으나, 전체 순방향전압(Vf)의 합은 입력전압의 최대값에 맞도록 설정을 한다.
도5는 본 발명의 일부 실시예로 엘이디동작부를 직렬로 연결한 구조를 도시한 도면이다.
본 발명에서는 엘이디동작부를 도5에 도시된 바와 같이 직렬로 연결하여 구성할 수 있다.
도5에서는 서로 직렬로 연결되어 있는 2개의 엘이디동작부(100, 200)를 포함하는 엘이디 조명장치를 나타내고 있다.
각각의 엘이디동작부(100,200)는 도4에서 상술한 바와 같이 엘이디부(30), 스위치부(40) 및 전류 센싱 저항(50)을 포함하고 있다.
도5와 같이 엘이디동작부(100,200)를 직렬로 연결하는 경우에 입력전압의 최대전압을 Vmax 라고 하고, 첫번째 엘이디 동작부(100)와 두번째 엘이디 동작부(200)의 엘이디부에는 모두 동일한 순방향전압(Vf)을 가지는 엘이디를 사용한다고 하면, 첫번째 엘이디 동작부(100)는 입력전압의 (1/2)*Vmax 범위내에서 스위칭 동작을 수행하고, 두번째 엘이디동작부(200)는 입력전압의 (1/2)*Vmax 이상의 전압에서 스위칭 동작을 수행된다.
입력 전압의 최대값이 220V라고 하면, 입력전압이 110V 이내인 경우에는 첫번째 엘이디동작부(100)의 엘이디부(30) 및 스위치부(40)의 스위칭 동작이 도4에서 상술한 바와 같이 동작을 수행한다.
즉, 입력 전압이 110V ~ 220V 사이에서는 첫번째 엘이디동작부(100)의 모든 엘이디 채널은 동작하여 빛을 발산하고, 두번째 엘이디동작부(200)의 엘이디부(30) 및 스위치부(40)의 스위칭 동작이 도4에서 상술한 바와 같이 동작을 수행한다.
만일 첫번째 엘이디 동작부(100)와 두번째 엘이디 동작부(200)의 엘이디부에 서로 다른 순방향전압(Vf)을 가지는 엘이디가 사용된다고 하면, 각각의 엘이디 동작부(100, 200)가 동작하는 입력 전압의 범위는 각 엘이디동작부(100,200)가 가지고 있는 순방향전압(Vf)의 크기에 따라 달라지게 된다.
도5에서와 같이 엘이디동작부(100,200)를 직렬로 연결하게 되면, 입력전압이 일정 전압의 크기 이상에서는 하나의 엘이디동작부를 이용하는 것보다 2배의 밝기를 이용할 수 있다.
도6은 본 발명의 일부 실시예로 엘이디동작부를 병렬로 연결한 구조를 도시한 도면이다.
본 발명에서는 엘이디동작부를 도6에 도시된 바와 같이 병렬로 연결하여 구성할 수 있다.
도6에서는 서로 병렬로 연결되어 있는 2개의 엘이디동작부(300, 400)를 포함하는 엘이디 조명장치를 나타내고 있다.
각각의 엘이디동작부(300,400)는 도4에서 상술한 바와 같이 엘이디부(30), 스위치부(40) 및 전류 센싱 저항(50)을 포함하고 있고, 각각의 엘이디동작부(300, 400)의 스위치부(40)의 스위칭 동작 및 엘이디부(30)의 동작은 도4에서 상술한 바와 동일하다.
도6과 같이 엘이디동작부(300, 400)를 병렬로 연결하는 경우에 첫번째 엘이디 동작부(300)와 두번째 엘이디 동작부(400)의 엘이디부에는 모두 동일한 순방향전압(Vf)을 가지는 엘이디를 사용한다고 하면, 입력전압(V)의 크기에 따라 첫번째 엘이디 동작부(300)와 두번째 엘이디동작부(400)는 각각 독립적으로 동일한 입력전압의 크기에서 동일한 동작을 수행한다.
즉, 동일한 입력전압의 범위내에서 첫번째 엘이디동작부(300)의 엘이디부(30) 및 스위치부(40)의 스위칭 동작과 두번째 엘이디동작부(400)의 엘이디부(30) 및 스위치부(40)의 스위칭 동작은 도4에서 상술한 바와 같이 서로 동일하게 동작을 수행한다.
만일 첫번째 엘이디 동작부(300)와 두번째 엘이디 동작부(400)의 엘이디부에 서로 다른 순방향전압(Vf)을 가지는 엘이디가 사용된다고 하면, 각각의 엘이디 동작부(300, 400)가 동작하는 입력 전압의 범위는 각 엘이디동작부(300, 400)가 가지고 있는 순방향전압(Vf)의 크기에 따라 달라지게 된다.
도6에서와 같이 엘이디동작부(300, 400)를 병렬로 연결하게 되면 동일한 전원에서 하나의 엘이디동작부를 이용하는 것보다 2배의 밝기를 가지게 된다.
도7은 본 발명의 일부 실시예로 입력전압의 크기에 따른 엘이디동작부를 동작을 설명하기 위한 도면이다.
V1을 첫번째 엘이디동작부의 모든 엘이디 채널이 동작하는 입력 전압의 크기라고 하고 V2를 입력전압의 최대값이라고 한다.
만일, 도5에서와 같이 첫번째 엘이디동작부(100)와 두번째 엘이디동작부(200)를 직렬로 연결하면, 입력전압이 V1 크기 이내에서는 첫번째 엘이디동작부(100)만 도4에서 설명한 바와 같이 동작하게 된다. 그리고, 입력전압이 V1 크기 이상이 되면 첫번째 엘이디동작부(100)의 엘이디부(30)의 엘이디 채널은 모두 동작(발광)을 하게 되고, 두번째 엘이디동작부(200)는 입력 전압의 크기에 따라 도4에서 설명한 바와 같이 동작하게 된다.
따라서 구간 A에서는 첫번째 엘이디동작부(100)만이 도4에서 상술한 바와 같은 스위칭 동작을 수행하여 입력전압의 크기에 따라 해당 엘이디 채널이 동작을 하게 된다. 구간 B에서는 첫번째 엘이디동작부(100)의 모든 엘이디 채널은 동작을 수행하고, 두번째 엘이디동작부(200)만이 도4에서 상술한 바와 같은 스위칭 동작을 수행하여 입력전압의 크기에 따라 해당 엘이디 채널이 동작을 하게 된다.
만일, 도6에서와 같이 첫번째 엘이디동작부(300)와 두번째 엘이디동작부(400)를 병렬로 연결하면, 입력전압의 크기에 따라 첫번째 엘이디동작부(300)와 두번째 엘이디동작부(400)는 동일한 입력전압의 크기에서 도4에서 설명한 바와 같은 동작을 동일하게 수행한다.
이상과 같이 구성하는 본 발명의 엘이디 조명장치는 다음과 같은 장점을 가지고 있다.
입력전압 센싱회로나 입력주기 센싱회로를 구성하지 않고도 FET 스위치의 스위칭을 입력전압에 따라 자동적으로 수행할 수 있다. 또한, 스위치부를 간단하게 구성할 수 있으므로 동일 면적 대비 여분의 엘이디 채널을 추가할 수 있다. 또한, 엘이디 채널별 순방향전압(Vf)을 조정하여 재배치 함으로써 스위치부의 효율증대를 가져 올 수 있으며, 자유로운 엘이디의 조합을 수행할 수 있다. 또한, 복수개의 엘이디동작부를 직렬로 연결하면 n 번째의 엘이디동작부가 동작을 수행하는 구간에서는 엘디이동작부를 하나만 사용할 때 보다 n 배의 밝기를 이용할 수 있다. 또한, m개의 엘이디동작부를 병렬로 연결하면 엘디이동작부를 하나만 사용할 때 보다 입력전압의 크기에 상관없이 항상 m 배의 밝기를 이용할 수 있다.
도8은 본 발명의 일부 실시예로 기본적인 엘이디 조명장치의 구조를 도시한 도면이다.
이 실시예의 조명장치는 전원부(10)로부터 전원을 공급받는 엘이디동작부(100)를 포함한다. 여기서 엘이디동작부(100)가 복수개로 구성되어 전원부(10)와 각각 병렬로 연결될 수 있으나, 도8에서는 엘이디동작부(100)의 동작의 설명을 위해서 하나의 엘이디동작부(100)가 전원부(10)에 연결되어 있는 것을 예로 들어 설명하기로 한다.
전원부(10)는 입력전원을 공급한다. 전원부(10)는 교류전원을 이용하므로 시간에 따라 입력전압의 크기가 주기적으로 변한다.
엘이디동작부(100)는 정류회로부(20), 엘이디부(30), 스위치부(40), 전류 센싱 저항(50)을 포함한다.
정류회로부(20)는 전원부(10)로부터 교류의 입력전원을 공급받아 정류된 정류전원을 출력한다.
엘이디부(30)는 정류회로부(20)로부터 전원을 공급받아 동작을 수행하며, 복수(n)개의 엘이디(LED) 채널이 직렬로 연결되고 마지막 엘이디 채널의 하단부에 저항부(35)가 연결되어 있다.
이하에서는 설명의 편의를 위해서 n=4 라고 가정하여 설명하기로 한다.
스위치부(40)는 복수개의 스위치(41,42,43,44,45)를 포함하며, n 번째의 스위치는 n 번째의 엘이디 채널의 뒷단에 연결되어 엘이디 채널의 동작을 제어하고, 전류 센싱 저항에 흐르는 n 번째 스위치의 전류 및 n+1 번째 스위치의 전류의 합에 의해서 n 번째의 스위치가 제어된다.
전류 센싱 저항(50)은 스위치부(40)에 포함되어 있는 각각의 스위치(41,42,43,44,45)와 연결되어 있다. 따라서 스위치에 전류가 흐르게 되면 전류 센싱 저항(50)에 흐르는 전류는 스위치에 흐르는 전류의 합이 된다.
도8을 예로 들어 설명하면, 1번 엘이디 채널(31)의 다음단에는 2번 엘이디 채널(32)과 1번 스위치(41)가 연결되어 있다. 2번 엘이디 채널(32)의 다음단에는 3번 엘이디 채널(33)과 2번 스위치(42)가 연결되어 있다. 3번 엘이디 채널(33)의 다음단에는 4번 엘이디 채널(34)과 3번 스위치(43)가 연결되어 있다. 4번 엘이디 채널(34)의 다음단에는 저항부(35)와 5번 스위치(44)가 연결되어 있다. 저항부(35)의 다음단에는 5번 스위치(45)가 연결되어 있다.
여기서 각각의 스위치는 FET(Field Effect Transistor)로 구성된다. 특히, NMOS FET 로 구성한다.
전류 센싱 저항(50)은 스위치부(40)에 포함되어 있는 각각의 스위치(41,42,43,44,45)와 연결되어 있다. 따라서 스위치에 전류가 흐르게 되면 전류 센싱 저항(50)에 흐르는 전류는 스위치에 흐르는 전류의 합이 된다.
전류 센싱 저항(50)은 가변저항으로 구성될 수도 있다.
본 발명에서는 입력 전원의 크기에 따라 엘이디 채널이 동작하게 된다. 엘이디부(30)로 입력되는 정류 전원의 크기에 따라 해당하는 엘이디 채널이 동작하게 된다.
이 실시예에 따른 스위치부(40), 전류 센싱 저항(50), 저항부(35)의 동작은 전술한 도 4의 설명을 그대로 참조할 수 있다.
이에 따르면, 본 발명에서와 같이 엘이디부(30)의 마지막 단에 저항부(35)를 연결하여 저항부(35)에서 전압을 분배하여 정격전압 이상이 입력되는 경우에는 5번 스위치(45)에서 발생하는 열을 저항부(35)로 분배하게 하여, 5번 스위치(45)에 과도한 열이 발생하는 것을 차단해 준다. 이렇게 함으로써, 본 발명에서는 입력전압이 정격전압 이상으로 입력되는 경우에도 스위치부(40)에 발생하는 과도한 열을 저항부(35)에서 일부 분배하여 발열함으로써 IC 로 구성된 스위치부(40)에 과도한 열이 발생하는 것을 줄이게 되어 스위치부(40)의 안정성을 유지할 수 있다.
또한, 이 실시예에서 전력 소모면에서 특징은 도 4의 실시예의 특징을 그대로 갖게 된다. 이에 따르면, 엘이디 채널의 순방향전압(Vf)를 재분배함으로서 입력전압이 변하는 경우에도 스위치부(40)에서 발생하는 열이 동일하도록 할 수 있다.
도9는 본 발명의 일부 실시예로 복수의 엘이디동작부가 전원부에 연결되어 있는 구조를 도시한 도면이다.
본 발명에서는 도9에 도시된 바와 같이 엘이디동작부를 전원부(10)에 각각 병렬로 연결하여 구성할 수 있다.
도9에서는 서로 병렬로 연결되어 있는 3개의 엘이디동작부(100_1, 100_2, 100_3)를 포함하는 엘이디 조명장치를 나타내고 있다.
각각의 엘이디동작부(100_1, 100_2, 100_3)는 도8에서 상술한 바와 같이 정류회로부(20), 엘이디부(30), 스위치부(40) 및 전류 센싱 저항(50)을 포함하고 있고, 각각의 엘이디동작부(100_1, 100_2, 100_3)의 스위치부(40)의 스위칭 동작 및 엘이디부(30)의 동작은 도8에서 상술한 바와 동일하다.
도9와 같이 엘이디동작부(100_1, 100_2, 100_3)를 병렬로 연결하는 경우에 첫번째 엘이디동작부(100_1)와 두번째 엘이디동작부(100_2) 및 세번째 엘이디동작부(100_3)의 엘이디부에는 모두 동일한 순방향전압(Vf)을 가지는 엘이디를 사용한다고 하면, 입력전압(V)의 크기에 따라 첫번째 엘이디동작부(100_1)와 두번째 엘이디동작부(100_2) 및 세번째 엘이디동작부(100_3)는 각각 독립적으로 동일한 입력전압의 크기에서 동일한 동작을 수행한다.
만일 첫번째 엘이디동작부(100_1)와 두번째 엘이디동작부(100_2) 및 세번째 엘이디동작부(100_3)의 엘이디부에 서로 다른 순방향전압(Vf)을 가지는 엘이디가 사용된다고 하면, 각각의 엘이디동작부(100_1, 100_2, 100_3)가 동작하는 입력 전압의 범위는 각 엘이디동작부(100_1, 100_2, 100_3)에 사용되는 엘이디부의 엘이디들의 순방향전압(Vf)의 크기에 따라 달라지게 된다.
도9에서와 같이 3개의 엘이디동작부(100_1, 100_2, 100_3)를 병렬로 연결하게 되면 동일한 전원에서 하나의 엘이디동작부(100)를 이용하는 것보다 3배의 밝기를 가지게 된다.
본 발명에서는 엘이디동작부(100_1, 100_2, 100_3)를 각각 블럭구조로 구성하고 각각의 블럭을 사용자의 편의에 따라 원하는 블럭 갯수를 연결함으로써 자동적으로 스위칭이 이루어지는 조명장치로 보다 넓은 범위에서 이용할 수 있다. 예를 들어 야구장이나 축구장 같은 경기장의 조명으로 사용하는 경우에 본 발명에서와 같이 엘이디동작부를 운동장의 모든 범위를 커버 할 수 있는 갯수로 구성하는 경우에 보다 간편하고 쉽게 경기장의 조명으로 사용할 수 있는 특징을 가지고 있다.
복수의 엘이디동작부(100_1, 100_2, 100_3)에 포함되어 있는 정류회로부는 서로 동일한 정류회로부로 구성되어 있을 수도 있고, 서로 다른 출력 전압범위를 가지는 정류회로부로 구성되어 있을 수도 있다.
복수의 엘이디동작부(100_1, 100_2, 100_3)가 서로 동일한 정류회로부를 포함하는 경우에는 전원부(10)에서 출력되는 입력전압에 따라서 복수의 엘이디동작부(100_1, 100_2, 100_3) 각각은 모두 동일한 조명특성을 가지게 된다. 그러나, 복수의 엘이디동작부(100_1, 100_2, 100_3)가 서로 다른 정류회로부를 포함하는 경우에는 전원부(10)에서 출력되는 입력전압에 따라서 복수의 엘이디동작부(100_1, 100_2, 100_3) 각각은 모두 다른 조명특성을 가지게 된다. 따라서, 조명의 특성이 서로 다르게 필요한 지역(범위)에서는 복수의 엘이디동작부(100_1, 100_2, 100_3)가 서로 다른 정류회로부를 포함하도록 하여 해당 지역에 맞는 조명특성을 가지도록 구성할 수 있다.
이상과 같이 구성하는 본 발명의 엘이디 조명장치는 다음과 같은 장점을 가지고 있다. 입력전압 센싱회로나 입력주기 센싱회로를 구성하지 않고도 FET 스위치의 스위칭을 입력전압에 따라 자동적으로 수행할 수 있다. 또한, 스위치부를 간단하게 구성할 수 있으므로 동일 면적 대비 여분의 엘이디 채널을 추가할 수 있다. 또한, 엘이디 채널별 순방향전압(Vf)을 조정하여 재배치 함으로써 스위치부의 효율증대를 가져 올 수 있으며, 자유로운 엘이디의 조합을 수행할 수 있다. 또한, 엘이디동작부를 블럭으로 구성함으로서 블럭을 연결하는 구조로 용이하게 조명을 확장할 수 있는 특징을 가질 수 있다. 또한, m개의 엘이디동작부를 병렬로 연결하면 엘디이동작부를 하나만 사용할 때 보다 입력전압의 크기에 상관없이 항상 m 배의 밝기를 이용할 수 있다. 또한, 각각의 엘이디동작부의 정류회로부를 서로 다른 특성을 정류회로특성을 가지게 하여 조명을 확장하는 경우에 확장되는 지역에 맞는 조명을 이용할 수 있는 특징이 있다.
도10은 본 발명의 일부 실시예로 하나의 엘이디부를 포함하는 엘이디 조명장치의 구조를 도시한 도면이다.
전원부(10)는 입력전원을 공급하고, 교류전원을 이용하므로 시간에 따라 입력전압의 크기가 주기적으로 변한다. 정류회로부(20)는 전원부(10)로부터 교류의 입력전원을 공급받아 정류된 정류전원을 출력한다.
엘이디부(30)는 정류회로부(20)로부터 전원을 공급받아 동작을 수행하며, 복수(n)개의 엘이디(LED) 채널이 직렬로 연결되고 마지막 엘이디 채널의 하단부에 저항부(35)가 연결되어 있다.
이하에서는 설명의 편의를 위해서 n=4 라고 가정하여 설명하기로 한다.
스위치부(40)는 복수개의 스위치(41,42,43,44,45)를 포함하며, n 번째의 스위치는 n 번째의 엘이디 채널의 뒷단에 연결되어 엘이디 채널의 동작을 제어하고, 전류 센싱 저항에 흐르는 n 번째 스위치의 전류 및 n+1 번째 스위치의 전류의 합에 의해서 n 번째의 스위치가 제어된다.
전류 센싱 저항(50)은 스위치부(40)에 포함되어 있는 각각의 스위치(41,42,43,44,45)와 연결되어 있다. 따라서 스위치에 전류가 흐르게 되면 전류 센싱 저항(50)에 흐르는 전류는 스위치에 흐르는 전류의 합이 된다.
도10을 예로 들어 설명하면, 1번 엘이디 채널(31)의 다음단에는 2번 엘이디 채널(32)과 1번 스위치(41)가 연결되어 있다. 2번 엘이디 채널(32)의 다음단에는 3번 엘이디 채널(33)과 2번 스위치(42)가 연결되어 있다. 3번 엘이디 채널(33)의 다음단에는 4번 엘이디 채널(34)과 3번 스위치(43)가 연결되어 있다. 4번 엘이디 채널(34)의 다음단에는 저항부(35)와 5번 스위치(44)가 연결되어 있다. 저항부(35)의 다음단에는 5번 스위치(45)가 연결되어 있다.
여기서 각각의 스위치는 FET(Field Effect Transistor)로 구성된다. 특히, NMOS FET 로 구성한다.
전류 센싱 저항(50)은 스위치부(40)에 포함되어 있는 각각의 스위치(41,42,43,44,45)와 연결되어 있다. 따라서 스위치에 전류가 흐르게 되면 전류 센싱 저항(50)에 흐르는 전류는 스위치에 흐르는 전류의 합이 된다.
전류 센싱 저항(50)은 가변저항으로 구성될 수도 있다.
본 발명에서는 입력 전원의 크기에 따라 엘이디 채널이 동작하게 된다. 엘이디부(30)로 입력되는 정류 전원의 크기에 따라 해당하는 엘이디 채널이 동작하게 된다.
이 실시예에 따른 스위치부(40), 전류 센싱 저항(50), 저항부(35)의 동작은 전술한 도 4의 설명을 그대로 참조할 수 있다.
이에 따르면, 본 발명에서와 같이 엘이디부(30)의 마지막 단에 저항부(35)를 연결하여 저항부(35)에서 전압을 분배하여 정격전압 이상이 입력되는 경우에는 5번 스위치(45)에서 발생하는 열을 저항부(35)로 분배하게 하여, 5번 스위치(45)에 과도한 열이 발생하는 것을 차단해 준다. 이렇게 함으로써, 본 발명에서는 입력전압이 정격전압 이상으로 입력되는 경우에도 스위치부(40)에 발생하는 과도한 열을 저항부(35)에서 일부 분배하여 발열함으로써 IC 로 구성된 스위치부(40)에 과도한 열이 발생하는 것을 줄이게 되어 스위치부(40)의 안정성을 유지할 수 있다.
또한, 이 실시예에서 전력 소모면에서 특징은 도 4의 실시예의 특징을 그대로 갖게 된다. 이에 따르면, 엘이디 채널의 순방향전압(Vf)를 재분배함으로서 입력전압이 변하는 경우에도 스위치부(40)에서 발생하는 열이 동일하도록 할 수 있다.
도11은 본 발명의 일부 실시예로 하나 이상의 엘이디부를 포함하는 회로구조를 도시한 도면이다.
본 발명에서는 엘이디부(30)를 블럭으로 구성할 수 있다. 따라서, 블럭으로 구성된 엘이디부(30)는 복수개를 이용하여 도11에 도시되어 있는 바와 같이 병렬로 연결하여 병렬 구조로 구성된 엘이디부를 가지는 조명장치를 구성할 수 있다.
이를 위해서 본원 발명의 블럭으로 구성된 엘이디부를 포함하는 엘이디 조명장치는 매트릭스 연결 구조를 가지고 있는 블럭 연결부가 구성되어 있다.
블럭으로 구성된 엘이디부(30)는 일정한 연결구조를 가지는 블럭 구조로 형성되어 있어 블럭 연결부에 끼움씩으로 연결될 수 있다. 즉, 블럭 연결부의 블럭으로 구성된 엘이디부(30)를 끼우고 블럭 연결부의 매트릭스 구조를 원하는 회로 구조를 가지도록 연결하여 원하는 회로구조를 가지도록 할 수 있다. 예를 들어 도11에서 도시되어 있는 바와 같이 블럭 연결부는 복수의 병렬 연결 구조를 가지도록 연결되어 있고 엘이디부(30)를 해당 위치에 끼워줌으로서 블럭으로 구성된 엘이디부(30_1, 30_2, 30_3)가 서로 병렬 연결 구조를 가지도록 할 수 있다.
도11에서와 같이 엘이디부(30_1, 30_2, 30_3)를 서로 병렬로 연결하는 경우에 동일한 입력전압이 입력되는 경우에 하나의 엘이디부(30)로 구성된 조명장치에 비해서 3배 밝기를 가지는 조명장치를 구성할 수 있다.
도11에서는 엘이디부를 블럭으로 구성하여 블럭 연결부에 연결하는 것을 예로 들어 설명하였으나, 엘이디 채널을 블럭으로 구성하고 블럭 연결부에 연결하여 원하는 회로를 구성할 수도 있다.
도12와 도13은 본 발명의 일부 실시예로 하나 이상의 엘이디들을 포함하는 엘이디채널의 구조를 도시한 도면이다.
도11에서는 엘이디부(30)를 블럭으로 구성하여 하나 이상의 엘이디부(30)를 병렬로 연결하여 조명의 밝기가 증대되는 회로 구조를 설명하였으나, 각각의 엘이디 채널(31,32,33,34)을 블럭으로 구성하고, 하나 이상의 엘이디 채널(31,32,33,34)을 매트릭스 연결 구조를 가지는 블럭 연결부에 연결하여 원하는 조명 밝기와 조명색을 가지는 조명장치를 구성할 수도 있다.
예를 들어 도12와 같이 직렬로 연결된 4개의 엘이디를 포함하는 엘이디 채널(31)을 하나의 블럭으로 구성할 수 있다.
또는 예를 들어 도13과 같이 직렬로 연결된 4개의 엘이디를 하나의 그룹으로 하고 4개의 엘이디를 포함하는 그룹을 각각 병렬 연결하는 구조를 가지는 엘이디부(32)로 구성할 수도 있다.
이렇게 엘이디를 포함하는 구성을 블럭으로 구성함으로써 입력전압이 110V 또는 220V 에 따라서 해당 입력전압에 따른 엘이디 블럭을 구성할 수 있다. 즉, 입력전압의 크기에 따라 최대 효율을 가지는 엘이디 회로를 손쉽게 구현할 수 있다.
여기서 각각의 블럭들은 서로 다른 조명 색을 가지도록 구성할 수도 있다.
이상과 같이 구성하는 본 발명의 엘이디 조명장치는 다음과 같은 장점을 가지고 있다. 입력전압 센싱회로나 입력주기 센싱회로를 구성하지 않고도 FET 스위치의 스위칭을 입력전압에 따라 자동적으로 수행할 수 있다. 또한, 스위치부를 간단하게 구성할 수 있으므로 동일 면적 대비 여분의 엘이디 채널을 추가할 수 있다. 또한, 엘이디 채널별 순방향전압(Vf)을 조정하여 재배치함으로써 스위치부의 효율증대를 가져 올 수 있으며, 자유로운 엘이디의 조합을 수행할 수 있다. 또한, 복수개의 엘이디동작부를 직렬로 연결하면 n 번째의 엘이디동작부가 동작을 수행하는 구간에서는 엘디이동작부를 하나만 사용할 때 보다 n 배의 밝기를 이용할 수 있다. 또한, 블럭으로 구성된 엘이디 채널 또는 엘이디부를 블럭 연결부에 연결함으로써 원하는 조명 밝기나 조명 색을 가지는 조명장치의 회로를 용이하게 구현할 수 있다.
도14는 본 발명의 일부 실시예로 정격전압 이상의 전압이 입력되는 경우에 스위치부의 발열을 감소시키는 조명장치의 구조를 도시한 도면이다.
본 발명의 정격전압 이상의 전압이 입력되는 경우에 스위치부의 발열을 감소시키는 조명장치는 전원부(10), 정류회로부(20), 엘이디부(30), 스위치부(40) 및 디밍제어부(50)을 포함한다.
전원부(10)는 입력전원을 공급하고, 정류회로부(20)는 전원부(10)로부터 교류의 입력전원을 공급받아 정류된 정류전원을 출력한다.
엘이디부(30)는 직렬로 연결되어 있는 n 개의 엘이디(LED) 채널을 포함하고 있으며, 마지막 엘이디 채널(34)의 마지막 단에는 저항부(35)가 연결되어 있다.
도14에는 엘이디부(30)는 예시적으로 4개의 엘이디 채널(31,32,33,34)을 포함하고 있다. 저항부(35)은 서로 직렬로 연결되어 있는 엘이디 채널의 마지막 엘이디 채널(34)의 다음단에 연결되어 있다.
스위치부(40)는 입력 전원에 따라 엘이디 채널을 동작시키기 위한 n+1 개의 스위치를 포함하고 있다. 여기서 n 개의 스위치는 입력 전원에 따라 엘이디 채널의 동작을 제어하고, n+1 번째의 스위치는 저항부(35)를 동작 시킨다.
도14를 예로 들어 설명하면, 1번 엘이디 채널(31)의 다음단에는 2번 엘이디 채널(32)과 1번 스위치(41)가 연결되어 있다. 2번 엘이디 채널(32)의 다음단에는 3번 엘이디 채널(33)과 2번 스위치(42)가 연결되어 있다. 3번 엘이디 채널(33)의 다음단에는 4번 엘이디 채널(34)과 3번 스위치(43)가 연결되어 있다. 4번 엘이디 채널(34)의 다음단에는 저항부(35)와 5번 스위치(44)가 연결되어 있다. 저항부(35)의 다음단에는 5번 스위치(45)가 연결되어 있다.
여기서 각각의 스위치는 FET(Field Effect Transistor)로 구성된다. 특히, NMOS FET 로 구성한다.
디밍제어부(50)는 가변저항(51)을 포함하여 구성된다.
가변저항(51)은 스위치부(40)에 포함되어 있는 각각의 스위치(41,42,43,44,45)와 연결되어 있다. 따라서 스위치에 전류가 흐르게 되면 전류 가변 저항(51)에 흐르는 전류는 스위치에 흐르는 전류의 합이 된다.
디밍제어부(50)에는 도면에 도시되어 있지는 않으나 가변저항(51)의 저항값을 제어하는 스위치를 더 포함하여 구성된다.
본 발명에서는 입력 전원의 크기에 따라 엘이디 채널이 동작하게 된다. 엘이디부(30)로 입력되는 정류 전원의 크기에 따라 해당하는 엘이디 채널이 동작하게 된다.
이 실시예에 따른 스위치부(40), 전류 센싱 저항(50), 저항부(35)의 동작은 전술한 도 4의 설명을 그대로 참조할 수 있다.
이에 따르면, 본 발명에서와 같이 엘이디부(30)의 마지막 단에 저항부(35)를 연결하여 저항부(35)에서 전압을 분배하여 정격전압 이상이 입력되는 경우에는 5번 스위치(45)에서 발생하는 열을 저항부(35)로 분배하게 하여, 5번 스위치(45)에 과도한 열이 발생하는 것을 차단해 준다. 이렇게 함으로써, 본 발명에서는 입력전압이 정격전압 이상으로 입력되는 경우에도 스위치부(40)에 발생하는 과도한 열을 저항부(35)에서 일부 분배하여 발열함으로써 IC 로 구성된 스위치부(40)에 과도한 열이 발생하는 것을 줄이게 되어 스위치부(40)의 안정성을 유지할 수 있다.
도15는 본 발명의 일부 실시예로 입력 전압에 따른 엘이디 채널 위치에 걸리는 전류를 나타낸 도면이다.
도15에 상술한 바와 같이 각각의 엘이디 채널(31,32,33,34)은 입력전압에 따라 순방향전압(Vf)이상이 입력되면 포화전류가 흐르게 된다.
도15의 a 구간은 첫번째 엘이디채널(31)을 동작시키는 입력전압이 입력되는 구간이다. 따라서, 입력전압이 a인 구간에서는 첫번째 엘이디채널(31) 및 첫번째 스위치(41)에는 I1의 전류가 흐르게 된다.
b 구간은 두번째 엘이디채널(32)을 동작시키는 입력전압이 입력되는 구간이다. 따라서, 입력전압이 b인 구간에서는 두번째 엘이디채널(32) 및 두번째 스위치(42)에는 I2의 전류가 흐르게 된다.
c 구간은 세번째 엘이디채널(33)을 동작시키는 입력전압이 입력되는 구간이다. 따라서, 입력전압이 c인 구간에서는 세번째 엘이디채널(33) 및 세번째 스위치(43)에는 I3의 전류가 흐르게 된다.
d 구간은 네번째 엘이디채널(34)을 동작시키는 입력전압이 입력되는 구간이다. 따라서, 입력전압이 d인 구간에서는 네번째 엘이디채널(34) 및 네번째 스위치(44)에는 I4의 전류가 흐르게 된다.
도15에서는 a 구간은 첫번째 스위치가 동작하여 첫번째 엘이디 채널이 동작을 하는 구간이고, b 구간은 두번째 스위치가 동작하여 첫번째 엘이디 채널 및 두번째 엘이디 채널이 동작을 하는 구간이고, c 구간은 세번째 스위치가 동작하여 첫번째 엘이디 채널과 두번째 엘이디 채널 및 세번째 엘이디 채널이 동작을 하는 구간이고, d 구간은 네번째 스위치가 동작하여 첫번째 엘이디 채널과 두번째 엘이디 채널과 세번째 엘이디 채널 및 네번째 엘이디 채널이 동작을 하는 구간이다.
본 발명에서 디밍제어를 수행하는 방법은 다음과 같은 두 가지 방법을 이용한다.
첫번째로, 디빙제어부(50)에 포함되어 있는 가변저항(51)의 저항값을 제어하여 n 번째 및 n+1번째의 스위치를 동작을 제어하여, n 번째 및 n+1번째의 엘이디채널의 동작을 제어함으로써 디밍제어를 수행할 수 있다.
즉, 가변저항(51)의 저항값을 제어하여 엘이디 채널의 동작 갯수를 제어할 수 있다. 따라서 입력전압에 관계없이 가변저항(51)의 저항값을 제어하여 동작하는 스위치의 순번을 제어함으로써 동작을 하는 엘이디 채널의 갯수를 제어할 수 있다.
따라서, 밝은 조명이 필요한 경우에는 가변 저항값을 낮춰서 동작하는 스위치의 순번을 높게 하여 동작을 수행하는 엘이디 채널의 갯수를 많게 함으로써 조명을 밝게 할 수 있으며, 어두운 조명이 필요한 경우에는 가변 저항값을 높여서 동작하는 스위치의 순번을 낮게 하여 동작을 수행하는 엘이디 채널의 갯수를 적게 함으로써 조명을 어둡게 할 수 있다.
즉, 입력전압의 구간에 관계없이 동작을 수행하는 엘이디 갯수를 제어하여 디밍 제어를 수행할 수 있다.
두번째로, 디빙제어부(50)에 포함되어 있는 가변저항(51)의 저항값을 제어하여 n 번째의 스위치에 흐르는 전류의 값을 제어하여, n 번째의 스위치를 통해서 동작을 수행하는 엘이디 채널에 흐르는 전류값을 변화시켜 디밍제어를 수행할 수 있다.
두번째 방법을 통한 디밍 제어는 도16에서 후술하기로 한다.
도16은 본 발명의 일부 실시예로 엘이디 채널에 흐르는 전류값을 변화시켜 디밍제어를 수행하는 것을 나타낸 도면이다.
본 발명에서는 디빙제어부(50)에 포함되어 있는 가변저항(51)의 저항값을 제어하여 n 번째의 스위치에 흐르는 전류의 값을 제어하여, n 번째의 스위치를 통해서 동작을 수행하는 모든 엘이디 채널에 흐르는 전류값을 변화시켜 디밍제어를 수행할 수 있다.
n 번째의 스위치를 통해서 동작을 수행하는 엘이디 채널에 흐르는 전류를 I 라고 하면, 본 발명에서는 가변 저항(51)의 저항값을 변화시켜 엘이디 채널에 흐르는 전류 I 의 전류값을 Ivmax 에서 Ivmin 의 범위내에서 변화시킬 수 있다.
즉, 밝은 조명이 필요한 경우에는 가변 저항값을 낮춰서 엘이디 채널의 동작 전류값을 Ivmax 로 하여 엘이디 채널의 디밍을 밝게 제어할 수 있고, 어두운 조명이 필요한 경우에는 가변 저항값을 높여서 엘이디 채널의 동작 전류값을 Ivmin 로 하여 엘이디 채널의 디밍을 어둡게 할 수 있다.
또한, 본 발명은 전력 소모면에서 다음과 같은 특징을 가질 수 있다.
1번 스위치에서 4번 스위치까지는 입력전압이 상승하는 경우에 n번 엘이디 채널에서 순방향 전압만큼 전압이 상쇄하고 남은 전압으로 n번 스위치를 동작시키고, 그 이상의 전압이 입력되는 경우에는 n번 스위치는 오프 상태로 되고, n+1번 스위치가 동작하게 되므로 각 스위치에서 소모되는 전력(열)은 증가하기는 하나, 전체적인 전력의 소모는 일정한 시스템 규격 범위이내이다. 그런데 마지막 스위치인 5번 스위치(45)는 정격전압 이상이 입력되는 경우에는 과도한 전류가 흐르게 되어 소모되는 전력(열)이 시스템의 규격의 범위를 초과하게 된다. 따라서 정격전압이상이 입력되는 경우에 5번 스위치(45)에서는 과도한 열을 발생하게 된다.
본 발명에서는 저항부(35)을 두어 정격전압 이상이 입력되는 경우에도 저항부(35)에서 열을 발생시킴으로써 5번 스위치(45)에 발생하는 열을 상쇄시킬 수 있다.
또한, 본 발명에서는 각 엘이디 채널의 순방향전압(Vf)을 서로 다르게 재분배함으로서 각 스위치에서 소모하는 전력을 거의 동일한 수준이 되도록 만들 수 있다. 즉, n 번째 엘이디 채널의 순방향전압(Vf)보다 n+1 번째의 엘이디 채널의 순방향전압(Vf)을 증가시켜 n 번째와 n+1 번째의 스위치에서 소모되는 전력을 거의 동일한 수준으로 만들 수 있다. 이렇게 엘이디 채널의 순방향전압(Vf)를 재분배함으로서 입력전압이 변하는 경우에도 스위치부(40)에서 발생하는 열이 동일하도록 할 수 있다.
여기서 엘이디 채널별로는 순방향전압(Vf)을 자유롭게 변경하여 배치할 수 있으나, 전체 순방향전압(Vf)의 합은 입력전압의 최대값에 맞도록 설정을 한다.
이상과 같이 구성하는 본 발명의 조명장치는 다음과 같은 장점을 가지고 있다. 입력전압 센싱회로나 입력주기 센싱회로를 구성하지 않고도 FET 스위치의 스위칭을 입력전압에 따라 자동적으로 수행할 수 있다. 또한, 스위치부를 간단하게 구성할 수 있으므로 동일 면적 대비 여분의 엘이디 채널을 추가할 수 있다. 또한, 엘이디 채널별 순방향전압(Vf)을 조정하여 재배치함으로써 스위치부의 효율증대를 가져 올 수 있으며, 자유로운 엘이디의 조합을 수행할 수 있다.
도17은 본 발명의 일부 실시예로 엘이디 채널에 캐패시터를 병렬 연결하여 플리커 현상을 방지하는 엘이디 조명장치의 구조를 도시한 도면이다.
본 발명의 플리커 현상을 방지하는 엘이디 조명장치는 전원부(10), 정류회로부(20), 엘이디부(30), 스위치부(40), 전류 센싱 저항(50)을 포함한다.
전원부(10)는 입력전압을 공급한다. 정류회로부(20)는 전원부(10)로부터 교류의 입력전압을 공급받아 정류된 정류전원을 출력한다.
엘이디부(30)는 직렬로 연결되어 있는 n개의 엘이디(LED) 채널을 포함하고 있으며, 마지막 엘이디 채널(35)의 마지막 단에는 저항부(36)가 연결되어 있다. 또한 각각의 엘이디 채널은 캐패시터가 병렬 연결되어 있는 구조를 가지고 있다.
스위치부(40)는 n+1개의 스위치를 포함하고 있다. m 번 스위치는 m 번 엘이디 채널의 뒷단에 연결되어 있고 마지막 스위치는 상기 저항부의 뒷단에 연결되어 있다. 여기서 n 과 m은 자연수를 의미한다.
이하 설명의 편의를 위해서 n=4 라고 가정하고 설명을 하기로 한다.
도17을 예로 들어 설명하면, 1번 엘이디 채널(31)의 다음단에는 2번 엘이디 채널(32)과 1번 스위치(41)가 연결되어 있다. 2번 엘이디 채널(32)의 다음단에는 3번 엘이디 채널(33)과 2번 스위치(42)가 연결되어 있다. 3번 엘이디 채널(33)의 다음단에는 4번 엘이디 채널(34)과 3번 스위치(43)가 연결되어 있다. 4번 엘이디 채널(34)의 다음단에는 저항부(35)와 4번 스위치(44)가 연결되어 있다. 저항부(35)의 다음단에는 5번 스위치(45)가 연결되어 있다.
여기서 스위치부(40)의 각각의 스위치는 FET(Field Effect Transistor)로 구성된다. 특히, NMOS FET 로 구성한다.
전류 센싱 저항(50)은 가변저항으로 구성할 수도 있다.
전류 센싱 저항(50)은 스위치부(40)에 포함되어 있는 각각의 스위치(41,42,43,44,45)와 연결되어 있다. 따라서, 스위치에 전류가 흐르게 되면 전류 센싱 저항(50)에 흐르는 전류는 스위치에 흐르는 전류의 합이 된다.
본 발명의 스위치부(40)는 엘이디 채널에 병렬 연결된 각각의 캐패시터(36,37,38,39)가 완전히 충전되기 전에는 다음과 같이 동작한다.
이 실시예에 따른 스위치부(40), 전류 센싱 저항(50), 저항부(35)의 동작은 전술한 도 4의 설명을 그대로 참조할 수 있다.
이에 따르면, 본 발명에서와 같이 엘이디부(30)의 마지막 단에 저항부(35)를 연결하여 저항부(35)에서 전압을 분배하여 정격전압 이상이 입력되는 경우에는 5번 스위치(45)에서 발생하는 열을 저항부(35)로 분배하게 하여, 5번 스위치(45)에 과도한 열이 발생하는 것을 차단해 준다. 이렇게 함으로써, 본 발명에서는 입력전압이 정격전압 이상으로 입력되는 경우에도 스위치부(40)에 발생하는 과도한 열을 저항부(35)에서 일부 분배하여 발열함으로써 IC 로 구성된 스위치부(40)에 과도한 열이 발생하는 것을 줄이게 되어 스위치부(40)의 안정성을 유지할 수 있다.
이상은 엘이디 채널에 병렬 연결된 각각의 캐패시터(36,37,38,39)가 완전히 충전되기 전의 경우에 대한 스위치부(40)의 스위칭 방법을 설명하였다.
이후 입력전압이 상승하여 각각의 캐패시터(36,37,38,39)가 완전히 충전이 되면, 입력전압이 낮아지는 경우에도 캐패시터에 충전된 전압으로 병렬 연결된 엘이디 채널에 전원을 공급할 수 있다.
즉, 종래의 조명장치에서는 입력전압이 200V 미만인 경우에는 4번 엘이디 채널(34)이 동작하지 않았으나, 본 발명에서는 4번 엘이디 채널(34)과 병렬 연결되어 있는 4번 캐패시터(39)에 충전되어 있는 전압으로 4번 엘이디 채널(34)에 전압을 공급해 동작시킬 수 있다.
또한, 입력전압이 150V 미만인 경우에는 3번 엘이디 채널(33)이 동작하지 않았으나, 본 발명에서는 3번 엘이디 채널(33)과 병렬 연결되어 있는 3번 캐패시터(38)에 충전되어 있는 전압으로 3번 엘이디 채널(33)에 전압을 공급하여 동작시킬 수 있다.
또한, 입력전압이 100V 미만인 경우에는 2번 엘이디 채널(32)이 동작하지 않았으나, 본 발명에서는 2번 엘이디 채널(32)과 병렬 연결되어 있는 2번 캐패시터(37)에 충전되어 있는 전압으로 2번 엘이디 채널(32)에 전압을 공급하여 동작시킬 수 있다.
또한, 입력전압이 50V 미만인 경우에는 1번 엘이디 채널(31)이 동작하지 않았으나, 본 발명에서는 1번 엘이디 채널(31)과 병렬 연결되어 있는 1번 캐패시터(36)에 충전되어 있는 전압으로 1번 엘이디 채널(31)에 전압을 공급하여 동작시킬 수 있다.
본 발명에서는 엘이디 패널과 병렬 연결되어 있는 캐패시터가 일단 완전히 충전이 되면, 입력전압이 해당 엘이디 채널을 동작시킬 수 있는 전압에 이르지 못하는 경우에도 캐패시터에 충전되어 있는 전압으로 해당 엘이디 채널에 전압을 공급하여 엘이디 채널을 동작시킬 수 있다.
따라서, 입력전압에 관계없이 모든 엘이디 채널을 동작시킬 수 있어 플리커(flicker) 현상을 방지할 수 있다.
도18은 본 발명의 일부 실시예로 입력 전압에 따른 엘이디 채널의 동작을 설명하기 위한 도면이다.
상술한 바와 같이 각각의 엘이디 채널(31,32,33,34)은 입력전압에 따라 순방향전압(Vf)이상이 입력되면 전류가 흐르게 된다.
도18에서 V1은 1번 엘이디 채널(31)이 동작할 수 있는 전압을 의미하고, V2은 2번 엘이디 채널(32)이 동작할 수 있는 전압을 의미하고, V3은 3번 엘이디 채널(33)이 동작할 수 있는 전압을 의미하고, V4은 4번 엘이디 채널(34)이 동작할 수 있는 전압을 의미하고, V5은 정격전압이상의 전압을 의미한다.
도18의 I1은 1번 엘이디채널(31)에 흐르는 전류이고, I2는 2번 엘이디채널(32)에 흐르는 전류이고, I3은 3번 엘이디채널(33)에 흐르는 전류이고, I4은 4번 엘이디채널(34)에 흐르는 전류이고, I5은 저항부(35)와 5번 스위치(45)에 흐르는 전류이다.
입력전류에 따른 전류의 방향은 캐패시터들이 완전히 충전되기 전에는 각각의 캐패시터들을 통해 전류가 흐르나, 충전이 완료된 캐패시터를 통해서는 더 이상의 전류가 흐르지 않고 병렬 연결된 엘이디 채널을 통해 전류가 흐르게 된다.
구간 a와 i에서는 입력전압이 V1과 V2 사이에서 입력이 되어 1번 엘이디 채널(31)이 동작하게 된다. 이 경우 1번 스위치(41)를 통해서 전류 Il이 흐르게 된다.
구간 b와 h 에서는 입력전압이 V2과 V3 사이에서 입력이 되어 2번 엘이디 채널(32)이 동작하게 된다. 이 경우 2번 스위치(42)를 통해서 전류 I2가 흐르게 된다.
구간 c와 g에서는 입력전압이 V3과 V4 사이에서 입력이 되어 3번 엘이디 채널(33)이 동작하게 된다. 이 경우 3번 스위치(43)를 통해서 전류 I3가 흐르게 된다.
구간 d와 f에서는 입력전압이 V4과 V5 사이에서 입력이 되어 4번 엘이디 채널(34)이 동작하게 된다. 이 경우 4번 스위치(44)를 통해서 전류 I4가 흐르게 된다.
구간 e에서는 입력전압이 정격전압 이상의 전압이 입력이 되어 저항부(35)와 5번 스위치(45)를 통해서 전류 I5가 흐르게 된다.
종래의 조명장치에서는 구간 a와 i에서는 1번 엘이디 채널(31)만 동작하고, 구간 b와 h 에서는 1번 엘이디 채널(31)과 2번 엘이디 채널(32)이 동작하고, 구간 c와 g에서는 1번 엘이디 채널(31)과 2번 엘이디 채널(32) 및 3번 엘이디 채널(33)이 동작하고, 구간 d와 f에서는 1번 엘이디 채널(31)과 2번 엘이디 채널(32), 3번 엘이디 채널(33) 및 4번 엘이디 채널(33)이 동작한다. 따라서 입력전압의 크기에 따라 순차적으로 엘이디 채널이 동작하거나 동작을 안하게 되어 플리커(flicker) 현상이 발생한다.
즉, 종래에는 입력전압이 해당 엘이디 채널을 동작시킬 수 있는 전압에 이르게 되는 경우에만 해당 엘이디 채널이 동작을 하나, 본 발명에서는 캐패시터에 전압이 충분히 충전되어 있는 경우에는 각 엘이디 채널과 병렬 연결되어 있는 캐패시터에서 해당 엘이디 채널에 전압을 공급하므로 입력전압에 상관없이 모든 엘이디 채널이 동작을 수행할 수 있다.
도19는 본 발명의 일부 실시예로 입력 전압에 따른 밝기 변화를 나타낸 도면이다.
도19(a)는 종래의 조명장치의 입력전압에 따른 밝기를 나타낸 도면이다.
종래의 조명장치는 입력전압에 따라 동작을 수행하는 엘이디 채널이 변하게 되므로 입력전압의 구간에 따라 동작을 수행하는 엘이디 채널이 변하게 되어 밝기가 변하게 된다. 즉, 도19(a)에 도시되어 있는 바와 같이 밝기가 계단식으로 변하게 된다.
도19(b)는 본 발명의 플리커 방지 엘이디 조명장치의 입력전압에 따른 밝기를 나타낸 도면이다.
본 발명의 플리커 방지 엘이디 조명장치는 엘이디 채널과 병렬 연결된 캐패시터에서 전압을 공급받을 수 있으므로, 캐패시터가 완전히 충전되는 구간을 제외하고는 입력전압의 크기에 관계없이 모든 엘이디 채널이 동작을 수행할 수 있으므로, 도19(b)에 도시되어 있는 바와 같이 항상 일정한 밝기를 유지할 수 있다.
이상과 같이 구성하는 본 발명의 플리커 방지 엘이디 조명장치는 다음과 같은 장점을 가지고 있다. 전류차단제어부를 두어 정격전압 이상이 입력되어 과전류가 흐르는 경우에 IC로 구성된 스위치부에 흐르는 전류를 차단하여 스위치부를 보호한다. 또한, 입력전압 센싱회로나 입력주기 센싱회로를 구성하지 않고도 FET 스위치의 스위칭을 입력전압에 따라 자동적으로 수행할 수 있다. 또한, 스위치부를 간단하게 구성할 수 있으므로 동일 면적 대비 여분의 엘이디 채널을 추가할 수 있다. 또한, 엘이디 채널별 순방향전압(Vf)을 조정하여 재배치 함으로써 스위치부의 효율증대를 가져 올 수 있으며, 자유로운 엘이디의 조합을 수행할 수 있다.
도20은 본 발명의 일부 실시예로 플리커 현상을 감소시키는 회로를 포함하는 엘이디 조명장치의 구조를 도시한 도면이다.
본 발명의 플리커 현상을 감소시키는 회로를 포함하는 엘이디 조명장치는 전원부(10), 정류회로부(20), 전하저장회로부(100), 및 엘이디동작부(200)를 포함한다.
전원부(10)는 입력전원을 공급한다. 전원부(10)는 교류전원을 이용하므로 시간에 따라 입력전압의 크기가 주기적으로 변한다. 정류회로부(20)는 전원부(10)로부터 교류의 입력전원을 공급받아 정류된 정류전원을 출력한다.
전하저장회로부(100)는 정류회로부(20)로부터 입력되는 전압이 고전압인 경우에는 전하를 저장하고 저전압인 경우에는 저장된 전하를 엘이디동작부(200)로 방출하는 기능을 수행한다.
전하저장회로부(100)의 상세한 구조 및 기능은 도21에서 후술하기로 한다.
엘이디동작부(200)는 엘이디부(30), 스위치부(40), 전류 센싱 저항(50)을 포함한다.
엘이디부(30)는 직렬로 연결되어 있는 복수(n)개의 엘이디(LED) 채널을 포함하고 있으며, 마지막 엘이디 채널(34)의 하단에는 저항부(35)가 연결되어 있다.
스위치부(40)는 입력 전원에 따라 엘이디 채널을 동작시키기 위한 n+1 개의 스위치를 포함하고 있다. 여기서 n 개의 스위치는 입력 전원에 따라 엘이디 채널의 동작을 제어하고, n+1 번째의 스위치는 저항부(35)를 동작시킨다.
이하에서는 설명의 편의를 위해서 n=4 라고 가정하여 설명하기로 한다.
도20을 예로 들어 설명하면, 1번 엘이디 채널(31)의 다음단에는 2번 엘이디 채널(32)과 1번 스위치(41)가 연결되어 있다. 2번 엘이디 채널(32)의 다음단에는 3번 엘이디 채널(33)과 2번 스위치(42)가 연결되어 있다. 3번 엘이디 채널(33)의 다음단에는 4번 엘이디 채널(34)과 3번 스위치(43)가 연결되어 있다. 4번 엘이디 채널(34)의 다음단에는 저항부(35)와 5번 스위치(44)가 연결되어 있다. 저항부(35)의 다음단에는 5번 스위치(45)가 연결되어 있다.
여기서 각각의 스위치는 FET(Field Effect Transistor)로 구성된다. 특히, NMOS FET 로 구성한다.
전류 센싱 저항(50)은 스위치부(40)에 포함되어 있는 각각의 스위치(41,42,43,44,45)와 연결되어 있다. 따라서 스위치에 전류가 흐르게 되면 전류 센싱 저항(50)에 흐르는 전류는 스위치에 흐르는 전류의 합이 된다.
전류 센싱 저항(50)은 가변저항으로 구성될 수도 있다.
본 발명에서는 입력 전원의 크기에 따라 엘이디 채널이 동작하게 된다. 엘이디부(30)로 입력되는 정류 전원의 크기에 따라 해당하는 엘이디 채널이 동작하게 된다.
이 실시예에 따른 스위치부(40), 전류 센싱 저항(50), 저항부(35)의 동작은 전술한 도 4의 설명을 그대로 참조할 수 있다.
이에 따르면, 본 발명에서와 같이 엘이디부(30)의 마지막 단에 저항부(35)를 연결하여 저항부(35)에서 전압을 분배하여 정격전압 이상이 입력되는 경우에는 5번 스위치(45)에서 발생하는 열을 저항부(35)로 분배하게 하여, 5번 스위치(45)에 과도한 열이 발생하는 것을 차단해 준다. 이렇게 함으로써, 본 발명에서는 입력전압이 정격전압 이상으로 입력되는 경우에도 스위치부(40)에 발생하는 과도한 열을 저항부(35)에서 일부 분배하여 발열함으로써 IC 로 구성된 스위치부(40)에 과도한 열이 발생하는 것을 줄이게 되어 스위치부(40)의 안정성을 유지할 수 있다.
또한, 이 실시예에서 전력 소모면에서 특징은 도 4의 실시예의 특징을 그대로 갖게 된다. 이에 따르면, 엘이디 채널의 순방향전압(Vf)를 재분배함으로서 입력전압이 변하는 경우에도 스위치부(40)에서 발생하는 열이 동일하도록 할 수 있다.
도21은 본 발명의 일부 실시예로 전하저장회로부의 구조 및 기능을 설명하기 위한 도면이다.
전하저장회로부(100)는 제1 콘덴서(101), 제2 콘덴서(104), 제1 다이오드(105), 제2 다이오드(103), 제3 다이오드(106)를 포함하여 구성된다.
전하저장회로부(100)의 회로구조는 제1 콘덴서(101)와 제2 콘덴서(104) 사이에는 제2 다이오드(103)가 순방향으로 연결되고, 제1 콘덴서(101)의 일측은 정류회로부(20)의 전원전압 노드와 연결되고 제2 콘덴서(104)의 일측은 그라운드와 연결되어 있으며, 제1 다이오드(105)는 제1 콘덴서(101)와 제2 다이오드(103)가 접속하는 노드와 그라운드 사이에 역방향으로 연결되어 있으며, 제3 다이오드(106)는 제2 콘덴서(104)와 제2 다이오드(103)가 접속하는 노드와 엘이디부(30) 사이에 연결되어 있다. 여기서 제1 콘덴서(101)와 제1 다이오드(105)가 접속하는 노드와 제2 다이오드(103) 사이에 저항(102)이 더 연결될 수도 있다.
전하저장회로부(100)는 정류회로부(20)로부터 전압을 입력받아 전하를 저장한다. 그리고, 정류회로부(20)로부터 출력되는 전압이 전하저장회로부(100)에 저장되는 전압보다 낮아지는 경우에 저장된 전하를 방출하여 엘이디동작부(200)에 전원을 공급한다.
이렇게 전하저장회로부(100)는 정류회로부(20)로부터 출력되는 전압이 낮은 전압이 경우에 저장된 전하를 방출하여 엘이디동작부(200)의 엘이디부(30)에 전원을 공급함으로써 정류회로부(20)로부터 낮은 전압이 출력되는 경우에 동작을 하지 못하는 엘이디부 채널에 전압을 공급할 수 있다. 따라서, 전원부(10)로부터 낮은 입력 전압이 입력되는 경우에도 동작을 하지 못하는 엘이디 채널을 동작시킴으로써 플리커 현상을 감소시킬 수 있는 효과가 있다.
도21에서는 정류회로부(20)로부터 출력되는 전압이 고전압인 경우에 전하저장회로부(100)에 전하가 저장되는 경로를 화살표로 도시하고 있다. 전하저장회로부(100)는 정류회로부(20)로부터 출력되는 전압이 고전압인 경우에 제1 콘덴서(101), 제2 다이오드(103) 및 제2 콘덴서(104)를 통해 전류가 흐르게 되어 제1 콘덴서(101) 및 제2 콘덴서(104)에 전하가 저장되게 된다. 그리고, 정류회로부(20)로부터 출력되는 전압이 저전압인 경우(즉, 전하저장회로부(100)에 저장된 전압보다 낮은 전압인 경우)에는 제1 콘덴서(101) 및 제2 콘덴서(104)에 저장된 전하를 방출하여 엘이디부(30)에 전압을 공급하게 된다.
도22는 본 발명의 일부 실시예로 엘이디동작부에 공급되는 전압의 크기를 나타낸 도면이다.
본 발명에서는 엘이디동작부(200)에 입력되는 전압의 크기는 도22에 도시한 바와 같이 변하게 된다.
여기서, V1은 입력 전압의 최대 전압을 의미하고 V2는 전하저장회로부(100)에 저장되는 전압을 의미한다.
전하저장회로부(100)가 포함되어 있지 않은 종래의 엘이디 조명장치의 경우에는 엘이디 채널은 입력전압의 크기에 따라 순차적으로 동작을 하거나 안하게 되어 플리커 현상이 심하게 발생할 수 있다.
그런데 본원 발명에서는 전하저장회로부(100)가 포함되어 있어 항상 일정한 전압(V2) 이상을 엘이디부(30)에 공급하여 줌으로써 종래의 엘이디 조명장치보다는 플리커 현상을 감소시킬 수가 있다.
예를 들어 전압 V1가 2번 엘이디 채널(32)이 동작할 수 있는 최소 전압의 크기라고 하면, 본 발명의 플리커 현상을 감소시키는 회로를 포함하는 엘이디 조명장치에서는 엘이디부(30)에 공급되는 전압이 항상 V1 이상이 되므로 입력전압의 크기에 관계없이 항상 1번 엘이디 채널(31)과 2번 엘이디 채널(32)는 동작을 수행한다.
즉, 종래의 엘이디 조명장치에서는 구간 A 에서 1번 엘이디 채널(31) 및 2번 엘이디 채널(32)은 입력 전압의 크기에 따라 동작을 수행하거나 안하게 되어 1번 엘이디 채널(31) 및 2번 엘이디 채널(32)에 의한 플리커 현상이 발생하였으나, 본원 발명에서는 구가 A 에서 1번 엘이디 채널(31) 및 2번 엘이디 채널(32)이 모두 동작을 수행하므로 1번 엘이디 채널(31) 및 2번 엘이디 채널(32)에 의한 플리커 현상은 발생하지 않는다.
단, 구간 B 에서는 종래의 엘이디 조명장치와 동일하게 3번 엘이디 채널(33) 및 4번 엘이디 채널(34)에 의한 플리커 현상은 발생하게 된다.
이상과 같이 구성하는 본 발명의 엘이디 조명장치는 다음과 같은 장점을 가지고 있다. 입력전압 센싱회로나 입력주기 센싱회로를 구성하지 않고도 FET 스위치의 스위칭을 입력전압에 따라 자동적으로 수행할 수 있다. 또한, 스위치부를 간단하게 구성할 수 있으므로 동일 면적 대비 여분의 엘이디 채널을 추가할 수 있다. 또한, 엘이디 채널별 순방향전압(Vf)을 조정하여 재배치 함으로써 스위치부의 효율증대를 가져 올 수 있으며, 자유로운 엘이디의 조합을 수행할 수 있다. 또한, 전하저장회로부를 두어 저장된 전하를 엘이디부에 공급함으로써 낮은 전압에서 동작을 하지 못하는 엘이디 채널에 전압을 공급하여 동작을 수행하도록 하여 플리커 현상을 감소시킬 수 있다.
도23은 본 발명의 일부 실시예로 리플을 제거하는 회로를 포함하는 엘이디 조명장치의 구조를 도시한 도면이다.
본 발명의 리플을 제거하는 회로를 포함하는 엘이디 조명장치는 전원부(10), 정류회로부(20), 리플제거 회로부(100), 및 엘이디동작부(200)를 포함한다.
전원부(10)는 입력전원을 공급한다. 전원부(10)는 교류전원을 이용하므로 시간에 따라 입력전압의 크기가 주기적으로 변한다. 정류회로부(20)는 전원부(10)로부터 교류의 입력전원을 공급받아 정류된 정류전원을 출력한다.
리플제거 회로부(100)는 정류회로부(20)로부터 입력되는 전압이 고전압인 경우에는 전하를 저장하고 저전압인 경우에는 저장된 전하를 엘이디동작부(200)로 방출하는 기능을 수행한다. 이에 의해서 엘이디동작부(200)로 입력되는 전압은 도24에서 도시된 바와 같이 리플이 제거된 일정한 전압이 입력된다.
엘이디동작부(200)는 엘이디부(30), 스위치부(40), 전류 센싱 저항(50)을 포함한다.
엘이디부(30)는 직렬로 연결되어 있는 복수(n)개의 엘이디(LED) 채널을 포함하고 있으며, 마지막 엘이디 채널(34)의 하단에는 저항부(35)가 연결되어 있다.
스위치부(40)는 입력 전원에 따라 엘이디 채널을 동작시키기 위한 n+1 개의 스위치를 포함하고 있다. 여기서 n 개의 스위치는 입력 전원에 따라 엘이디 채널의 동작을 제어하고, n+1 번째의 스위치는 저항부(35)를 동작시킨다.
이하에서는 설명의 편의를 위해서 n=4 라고 가정하여 설명하기로 한다.
도23을 예로 들어 설명하면, 1번 엘이디 채널(31)의 다음단에는 2번 엘이디 채널(32)과 1번 스위치(41)가 연결되어 있다. 2번 엘이디 채널(32)의 다음단에는 3번 엘이디 채널(33)과 2번 스위치(42)가 연결되어 있다. 3번 엘이디 채널(33)의 다음단에는 4번 엘이디 채널(34)과 3번 스위치(43)가 연결되어 있다. 4번 엘이디 채널(34)의 다음단에는 저항부(35)와 5번 스위치(44)가 연결되어 있다. 저항부(35)의 다음단에는 5번 스위치(45)가 연결되어 있다.
여기서 각각의 스위치는 FET(Field Effect Transistor)로 구성된다. 특히, NMOS FET 로 구성한다.
전류 센싱 저항(50)은 스위치부(40)에 포함되어 있는 각각의 스위치(41,42,43,44,45)와 연결되어 있다. 따라서 스위치에 전류가 흐르게 되면 전류 센싱 저항(50)에 흐르는 전류는 스위치에 흐르는 전류의 합이 된다.
전류 센싱 저항(50)은 가변저항으로 구성될 수도 있다.
본 발명에서는 입력 전원의 크기에 따라 엘이디 채널이 동작하게 된다. 엘이디부(30)로 입력되는 정류 전원의 크기에 따라 해당하는 엘이디 채널이 동작하게 된다.
이 실시예에 따른 스위치부(40), 전류 센싱 저항(50), 저항부(35)의 동작은 전술한 도 4의 설명을 그대로 참조할 수 있다.
이에 따르면, 본 발명에서와 같이 엘이디부(30)의 마지막 단에 저항부(35)를 연결하여 저항부(35)에서 전압을 분배하여 정격전압 이상이 입력되는 경우에는 5번 스위치(45)에서 발생하는 열을 저항부(35)로 분배하게 하여, 5번 스위치(45)에 과도한 열이 발생하는 것을 차단해 준다. 이렇게 함으로써, 본 발명에서는 입력전압이 정격전압 이상으로 입력되는 경우에도 스위치부(40)에 발생하는 과도한 열을 저항부(35)에서 일부 분배하여 발열함으로써 IC 로 구성된 스위치부(40)에 과도한 열이 발생하는 것을 줄이게 되어 스위치부(40)의 안정성을 유지할 수 있다.
또한, 이 실시예에서 전력 소모면에서 특징은 도 4의 실시예의 특징을 그대로 갖게 된다. 이에 따르면, 엘이디 채널의 순방향전압(Vf)를 재분배함으로서 입력전압이 변하는 경우에도 스위치부(40)에서 발생하는 열이 동일하도록 할 수 있다.
상술한 스위치부(40)의 각각의 스위치(41,42,43,44,45)들의 동작 및 이에 의한 엘이디 채널(31,32,33,34)과 저항부(35)의 동작은 엘이디동작부(200)에 입력되는 입력전압의 크기에 따라 수행된다.
따라서, 리플제거 회로부(100)에 의해서 일정한 전압이 엘이디동작부(200)에 입력되는 경우에, 예를 들어 3번 엘이디 채널(33)이 동작을 수행할 수 있는 전압 이상이 입력되는 경우에는 1번 엘이디 채널(31), 2번 엘이디 채널(32), 3번 엘이디 채널(33)은 항상 동작을 수행하게 된다. 4번 엘이디 채널(34) 및 저항부(35)는 엘이디동작부(200)에 입력되는 전압의 크기에 따라 동작을 수행하거나 동작을 수행 안하게 된다.
도24는 본 발명의 일부 실시예로 리플제거 회로부에 의해서 엘이디동작부로 입력되는 전압을 도시한 도면이다.
리플제거 회로부(100)는 저항(101)과 콘덴서(102)를 포함하여 구성된다.
리플제거 회로부(100)의 회로구조는 저항(101)을 정류회로부(20)와 엘이디동작부(200) 사이에 연결하고 콘덴서(102)는 저항(101)과 엘이디동작부(200)가 연결되는 노드와 그라운드 사이에 연결한다. 이에 따라서 전원부(10)로부터 입력전원이 상승하면서 입력되면 콘덴서(102)에 전하가 저장되고 전원부(10)로부터 입력전원이 하강하면서 입력되는 경우에는 콘덴서(102)에 저장되어 있는 전하를 엘이디동작부(200)로 방출하여 리플을 상쇄시킬 수 있다.
도24는 엘이디동작부(200)로 입력되는 전압으로 리플제거 회로부(100)에서 출력되는 전하로 인해서 전압값이 거의 일정한 전압으로 입력되게 된다.
리플제거 회로부(100)가 없는 경우에는 점선으로 표시된 바와 같이 엘이디동작부(200)로 입력되는 전압은 시간에 따라 전압의 크기가 변하게 되는 리플을 가지게 된다.
여기서 콘덴서(102)의 용량을 조절하여 리플의 크기를 조정할 수도 있다. 예를 들어 용량이 큰 콘덴서(102)를 사용하게 되면 엘이디동작부(200)로 입력되는 전압은 거의 일정한 전압값을 가지게 된다.
이렇게 리플제거 회로부(100)는 정류회로부(20)로부터 출력되는 전압이 낮은 전압이 경우에 저장된 전하를 방출하여 엘이디동작부(200)의 엘이디부(30)에 전원을 공급함으로써 정류회로부(20)로부터 낮은 전압이 출력되는 경우에 동작을 하지 못하는 엘이디부 채널에 전압을 공급할 수 있다. 따라서, 전원부(10)로부터 낮은 입력 전압이 입력되는 경우에도 동작을 하지 못하는 엘이디 채널을 동작시킴으로써 플리커 현상을 감소시킬 수 있는 효과가 있다.
도25는 본 발명의 일부 실시예로 리플제거 회로부가 없는 경우의 밝기를 나타낸 도면이고, 도26은 본 발명의 일부 실시예로 리플제거 회로부가 있는 경우의 밝기를 나타낸 도면이다.
본 발명에서와 같은 리플제거 회로부(100)가 없는 엘이디 조명장치는 입력전압이 시간에 따라 변하게 되고 입력전압의 크기에 따라 동작을 수행하는 엘이디 채널의 수가 달라지게 되어 입력전압에 따라 조명의 밝기가 변하게 되는 단점이 있다.
V1은 1번 엘이디 채널(31)이 동작을 수행하는 전압을 의미하고, V2은 2번 엘이디 채널(32)이 동작을 수행하는 전압을 의미하고, V3은 3번 엘이디 채널(33)이 동작을 수행하는 전압을 의미하고, V4은 4번 엘이디 채널(34)이 동작을 수행하는 전압을 의미한다. 본 발명에서 리플제거 회로부(100)를 제거하는 경우에 입력전압의 크기에 따라 동작을 수행하는 엘이디 채널의 수가 변하게 된다. 즉, 리플제거 회로부(100)를 제거된 엘이디 조명장치의 밝기는 빗금으로 표시된 면적과 같이 변하게 된다. 입력전압이 V4이 경우에 밝기의 면적이 가장 넓으므로 가장 밝은 조명을 나타내게 되고 입력전압이 V4 -> V3 -> V2 -> V1로 리플을 가지며 변하게 되면 조명의 밝기는 감소하게 된다.
본 발명에서와 같이 리플제거 회로부(100)를 포함하여 엘이디 조명장치를 구성하는 경우에는 도26과 같이 엘이디동작부(200)로 리플이 제거된 일정한 입력전압이 입력되게 되어 도26에서 빗금친 면적에 해당하는 조명의 밝기를 가질 수 있다.
도26에서는 엘이디동작부(200)로 입력되는 전압이 V4 이상으로 가정한 경우로 항상 모든 엘이디 채널이 동작을 수행하여 일정한 밝기를 나타내고 있다.
본 발명에서 리플제거 회로부(100)를 포함하여 구성하는 경우의 효과는 다음과 같다.
리플제거 회로부(100)가 포함되어 있지 않은 종래의 엘이디 조명장치의 경우에는 엘이디 채널은 입력전압의 크기에 따라 순차적으로 동작을 하거나 안하게 되어 플리커 현상이 심하게 발생할 수 있다. 그런데 본원 발명에서는 리플제거 회로부(100)가 포함되어 있어 항상 일정한 전압 이상을 엘이디부(30)에 공급하여 줌으로써 종래의 엘이디 조명장치보다는 플리커 현상을 감소시킬 수가 있다.
이상과 같이 구성하는 본 발명의 엘이디 조명장치는 다음과 같은 장점을 가지고 있다. 입력전압 센싱회로나 입력주기 센싱회로를 구성하지 않고도 FET 스위치의 스위칭을 입력전압에 따라 자동적으로 수행할 수 있다. 또한, 스위치부를 간단하게 구성할 수 있으므로 동일 면적 대비 여분의 엘이디 채널을 추가할 수 있다. 또한, 엘이디 채널별 순방향전압(Vf)을 조정하여 재배치 함으로써 스위치부의 효율증대를 가져 올 수 있으며, 자유로운 엘이디의 조합을 수행할 수 있다. 또한, 리플제거 회로부를 두어 저장된 전하를 엘이디부에 공급함으로써 일정한 전압 이상을 항상 엘이디 채널에 전압을 공급하여 해당 전압에서 동작을 수행하는 엘이디 채널이 동작을 수행하도록 하여 플리커 현상을 감소시킬 수 있다.
도27은 본 발명의 일부 실시예로 전류제어를 통해 스위치부를 보호하는 엘이디 조명장치의 구조를 도시한 도면이다.
본 발명의 전류제어를 통해 스위치부를 보호하는 엘이디 조명장치는 전원부(10), 정류회로부(20), 엘이디부(30), 스위치부(40), 전류 센싱 저항(50) 및 전류제어부(60)을 포함한다.
전원부(10)는 입력전압을 공급한다. 정류회로부(20)는 전원부(10)로부터 교류의 입력전압을 공급받아 정류된 정류전원을 출력한다.
엘이디부(30)는 직렬로 연결되어 있는 n 개의 엘이디(LED) 채널을 포함하고 있으며, 마지막 엘이디 채널(34)의 마지막 단에는 저항부(35)가 연결되어 있다.
이하 설명의 편의를 위해서 n=4 라고 가정하고 설명을 하기로 한다.
도27에는 엘이디부(30)는 4개의 엘이디 채널(31,32,33,34)을 포함하고 있다. 저항부(35)은 서로 직렬로 연결되어 있는 엘이디 채널의 마지막 엘이디 채널(34)의 다음단에 연결되어 있다.
스위치부(40)는 입력 전원에 따라 엘이디 채널을 동작시키기 위한 5 개의 스위치를 포함하고 있다. 여기서 첫번째부터 네번째까지의 4개의 스위치는 입력 전원에 따라 엘이디 채널의 동작을 제어하고, 5 번째의 스위치는 저항부(35)를 동작 시킨다.
도27을 예로 들어 설명하면, 1번 엘이디 채널(31)의 다음단에는 2번 엘이디 채널(32)과 1번 스위치(41)가 연결되어 있다. 2번 엘이디 채널(32)의 다음단에는 3번 엘이디 채널(33)과 2번 스위치(42)가 연결되어 있다. 3번 엘이디 채널(33)의 다음단에는 4번 엘이디 채널(34)과 3번 스위치(43)가 연결되어 있다. 4번 엘이디 채널(34)의 다음단에는 저항부(35)와 5번 스위치(44)가 연결되어 있다. 저항부(35)의 다음단에는 5번 스위치(45)가 연결되어 있다.
여기서 각각의 스위치는 FET(Field Effect Transistor)로 구성된다. 특히, NMOS FET 로 구성한다.
전류 센싱 저항(50)은 가변저항으로 구성할 수도 있다.
전류 센싱 저항(50)은 스위치부(40)에 포함되어 있는 각각의 스위치(41,42,43,44,45)와 연결되어 있다. 따라서 스위치에 전류가 흐르게 되면 전류 센싱 저항(50)에 흐르는 전류는 스위치에 흐르는 전류의 합이 된다.
이 실시예에 따른 스위치부(40), 전류 센싱 저항(50), 저항부(35)의 동작은 전술한 도 4의 설명을 그대로 참조할 수 있다.
이에 따르면, 본 발명에서와 같이 엘이디부(30)의 마지막 단에 저항부(35)를 연결하여 저항부(35)에서 전압을 분배하여 정격전압 이상이 입력되는 경우에는 5번 스위치(45)에서 발생하는 열을 저항부(35)로 분배하게 하여, 5번 스위치(45)에 과도한 열이 발생하는 것을 차단해 준다. 이렇게 함으로써, 본 발명에서는 입력전압이 정격전압 이상으로 입력되는 경우에도 스위치부(40)에 발생하는 과도한 열을 저항부(35)에서 일부 분배하여 발열함으로써 IC 로 구성된 스위치부(40)에 과도한 열이 발생하는 것을 줄이게 되어 스위치부(40)의 안정성을 유지할 수 있다.
전류제어부(60)는 온도센서를 포함하여 구성된다.
전류제어부(60)는 온도센서를 이용하여 스위치부(40)의 온도를 측정하고 스위치부(40)의 측정온도에 따라 스위치부(40)에 흐르는 전류를 제어한다.
또한, 전류제어부(60)에는 메모리와 같은 저장장치가 포함되어 있어 스위치부(40)가 정상 동작을 할 수 있는 정상동작 온도 범위가 설정되어 있을 수 있다.
전류제어부(60)는 스위치부(40)의 온도를 온도센서를 이용하여 측정하고 측정된 스위치부(40)의 온도가 정상동작 온도의 범위를 벗어나는 경우에, 스위치부(40)의 스위치들(41,42,43,44,45)을 제어하여 스위치부(40)에 흐르는 전류를 제어할 수 있다.
예를 들어, 전류제어부(60)에 설정되어 있는 정상동작 온도 범위가 섭씨 0~80도라고 하고, 측정된 스위치부(40)의 온도가 섭씨 85도라고 하면, 측정된 스위치부(40)의 온도가 정상동작 온도의 범위를 벗어나 있으므로, 전류제어부(60)는 스위치부(40)의 스위치들(41,42,43,44,45) 중에서 동작을 수행하는 스위치(즉, 전류가 흐르는 스위치)를 오프 상태로 전환하여 스위치부(40)에 전류가 흐르지 않도록 제어한다.
도28은 본 발명의 일부 실시예로 입력 전압에 따른 엘이디 채널 위치에 걸리는 전류를 나타낸 도면이다.
도28에 상술한 바와 같이 각각의 엘이디 채널(31,32,33,34)은 입력전압에 따라 순방향전압(Vf)이상이 입력되면 포화전류가 흐르게 된다.
도28의 a 구간은 첫번째 엘이디채널(31)을 동작시키는 입력전압이 입력되는 구간이다. 따라서, 입력전압이 a인 구간에서는 첫번째 엘이디채널(31) 및 첫번째 스위치(41)에는 I1의 전류가 흐르게 된다.
b 구간은 두번째 엘이디채널(32)을 동작시키는 입력전압이 입력되는 구간이다. 따라서, 입력전압이 b인 구간에서는 두번째 엘이디채널(32) 및 두번째 스위치(42)에는 I2의 전류가 흐르게 된다.
c 구간은 세번째 엘이디채널(33)을 동작시키는 입력전압이 입력되는 구간이다. 따라서, 입력전압이 c인 구간에서는 세번째 엘이디채널(33) 및 세번째 스위치(43)에는 I3의 전류가 흐르게 된다.
d 구간은 네번째 엘이디채널(34)을 동작시키는 입력전압이 입력되는 구간이다. 따라서, 입력전압이 d인 구간에서는 네번째 엘이디채널(34) 및 네번째 스위치(44)에는 I4의 전류가 흐르게 된다.
도28에서는 a 구간은 첫번째 스위치가 동작하여 첫번째 엘이디 채널이 동작을 하는 구간이고, b 구간은 두번째 스위치가 동작하여 첫번째 엘이디 채널 및 두번째 엘이디 채널이 동작을 하는 구간이고, c 구간은 세번째 스위치가 동작하여 첫번째 엘이디 채널과 두번째 엘이디 채널 및 세번째 엘이디 채널이 동작을 하는 구간이고, d 구간은 네번째 스위치가 동작하여 첫번째 엘이디 채널과 두번째 엘이디 채널과 세번째 엘이디 채널 및 네번째 엘이디 채널이 동작을 하는 구간이다.
여기서 I4는 입력전압이 정격전압의 100% 근처로 입력되는 경우의 스위치제어부(40)에 흐르는 전류이다. 즉, 네번째 스위치(44)에 흐르는 전류이다.
여기서 만일 입력전압이 정격전압보다 더 높은 전압(즉 정격전압의 100% 이상의 전압)이 입력되는 경우에는 다섯번째 스위치(45)을 통해서 전류(I5)가 흐르게 된다.
도28에서는 입력전압이 정격전압의 100% 이내에서 입력되는 경우로 엘이디부(30) 및 스위치제어부(40)에 흐르는 전류는 도28에 도시된 바와 같이 입력전압에 따라 단계적으로 변하게 된다.
도29는 본 발명의 일부 실시예로 스위치부의 전류를 제어하여 스위치제어부의 온도를 제어하는 것을 나타낸 도면이다.
도29의 하단부의 반원의 점선은 입력전압을 나타낸 것이고 계단식의 실선은 입력전압에 따른 스위치부(40)의 전류를 나타낸 것이다.
도28에서 상술한 바와 같이 입력전압의 구간에 따라 동작하는 엘이디 채널이 다르므로 엘이디 채널을 동작시키는 스위치도 달라진다.
입력전압이 첫번째 엘이디 채널을 동작시킬 수 없는 전압 구간을 제외하고는 스위치부(40)에는 항상 전류가 흐르게 되므로 스위치부(40)는 입력전압이 입력되는 시간이 지남에 따라 온도가 상승하게 된다.
그런데 이렇게 스위치부(40)의 온도가 지속적으로 상승하여 어느 순간 이상의 온도가 되면 스위치부(40)는 발열로 인한 손상을 입게 되거나 오동작을 할 수 있다.
따라서, 본 발명에서는 스위치부(40)의 온도를 측정하여 정상동작 온도 이상이 되면 스위치부(40)에 흐르는 전류를 차단하여 스위치부(40)의 온도를 낮춘다.
도29를 이용하여 스위치부(40)의 온도에 따라 스위치부(40)의 전류를 차단하여 온도를 낮추는 방법을 설명하면 다음과 같다.
먼저, 스위치부의 정상동작 온도의 범위를 T2 이내라고 하고, 스위치부의 오동작을 유발하거나 이상이 발생하는 오동작 온도를 T1 이라고 가정한다. 그리고, 전류제어부(60)에는 오동작 온도(T1)가 설정되어 있다고 가정한다.
엘이디부(30)에 입력전압이 입력되어 스위치부(40)에 전류가 흐르기 시작하면 스위치부(40)의 온도는 도29에 도시된 바와 같이 상승한다.
스위치부(40)의 온도가 상승하여 정상동작 온도인 T2 이상이 되어 오동작 온도인 T1에 이르게 되면, 전류제어부(60)는 스위치제어부(40)의 전류가 흐르는 스위치를 제어하여 전류를 차단한다. 이후 스위치제어부(40)의 온도가 떨어져서 정상동작 온도인 T2 이하로 되면 전류제어부(60)는 입력되는 입력전압의 크기에 맞는 스위치를 제어하여 전류를 흐르게 하여 입력전압에 상응하는 엘이디 채널을 동작 시킨다. 이후, 스위치부(40)의 온도가 상승하여 정상동작 온도인 T2 이상이 되어 오동작 온도인 T1에 이르게 되면, 전류제어부(60)는 스위치제어부(40)의 전류가 흐르는 스위치를 제어하여 전류를 차단하고 스위치제어부(40)의 온도가 떨어져서 정상동작 온도인 T2 이하로 되면 전류제어부(60)는 입력되는 입력전압에 상응하는 엘이디 채널을 다시 동작시킨다.
이상의 전류제어부(60)의 동작을 도29를 이용하여 설명하면 다음과 같다.
입력전압이 입력되고 스위치제어부(40)의 온도가 상승하여 오동작 온도인 T1에 도달하는 1번 지점에서 전류제어부(60)는 I3 전류가 흐르는 세번째 스위치(43)을 제어하여 I3 전류를 차단한다. 그리고, 스위치제어부(40)의 온도가 하강하여 정상동작 온도인 T1 에 이르게 되는 2번 지점에서 전류제어부(60)는 이때 입력되는 입력 전압에 상응하는 첫번째 스위치(41)을 제어하여 I1 전류를 흐르도록 한다.
이후, 스위치제어부(40)의 온도가 상승하여 오동작 온도인 T1에 도달하는 3번 지점에서 전류제어부(60)는 첫번째 스위치(41)을 제어하여 I1 전류가 흐르지 못하게 차단한다. 그리고, 스위치제어부(40)의 온도가 하강하여 정상동작 온도인 T1 에 이르게 되는 4번 지점에서 전류제어부(60)는 이때 입력되는 입력 전압에 상응하는 세번째 스위치(43)을 제어하여 I3 전류를 흐르도록 한다.
이후, 스위치제어부(40)의 온도가 상승하여 오동작 온도인 T1에 도달하는 5번 지점에서 전류제어부(60)는 네번째 스위치(44)을 제어하여 I4 전류가 흐르지 못하게 차단한다. 그리고, 스위치제어부(40)의 온도가 하강하여 정상동작 온도인 T1 에 이르게 되는 6번 지점에서 전류제어부(60)는 이때 입력되는 입력 전압에 상응하는 스위치를 제어하여 해당 전류를 흐르도록 한다.
또한, 본 발명은 전력 소모면에서 다음과 같은 특징을 가질 수 있다.
1번 스위치에서 4번 스위치까지는 입력전압이 상승하는 경우에 n번 엘이디 채널에서 순방향 전압만큼 전압이 상쇄하고 남은 전압으로 n번 스위치를 동작시키고, 그 이상의 전압이 입력되는 경우에는 n번 스위치는 오프 상태로 되고, n+1번 스위치가 동작하게 되므로 각 스위치에서 소모되는 전력(열)은 증가하기는 하나, 전체적인 전력의 소모는 일정한 시스템 규격 범위이내이다. 그런데 마지막 스위치인 5번 스위치(45)는 정격전압 이상이 입력되는 경우에는 과도한 전류가 흐르게 되어 소모되는 전력(열)이 시스템의 규격의 범위를 초과하게 된다. 따라서 정격전압이상이 입력되는 경우에 5번 스위치(45)에서는 과도한 열을 발생하게 된다.
본 발명에서는 저항부(35)을 두어 정격전압 이상이 입력되는 경우에도 저항부(35)에서 열을 발생시킴으로써 5번 스위치(45)에 발생하는 열을 상쇄시킬 수 있다.
또한, 본 발명에서는 각 엘이디 채널의 순방향전압(Vf)을 서로 다르게 재분배함으로서 각 스위치에서 소모하는 전력을 거의 동일한 수준이 되도록 만들 수 있다. 즉, n 번째 엘이디 채널의 순방향전압(Vf)보다 n+1 번째의 엘이디 채널의 순방향전압(Vf)을 증가시켜 n 번째와 n+1 번째의 스위치에서 소모되는 전력을 거의 동일한 수준으로 만들 수 있다. 이렇게 엘이디 채널의 순방향전압(Vf)를 재분배함으로서 입력전압이 변하는 경우에도 스위치부(40)에서 발생하는 열이 동일하도록 할 수 있다.
여기서 엘이디 채널별로는 순방향전압(Vf)을 자유롭게 변경하여 배치할 수 있으나, 전체 순방향전압(Vf)의 합은 입력전압의 최대값에 맞도록 설정을 한다.
이상과 같이 구성하는 본 발명의 조명장치는 다음과 같은 장점을 가지고 있다. 온도센서를 두어 IC로 구성된 스위치부의 온도를 측정하여 스위치부에 흐르는 전류를 제어하여 항상 스위치부의 온도를 오동작 온도이상이 되지 않도록 보호한다. 또한, 입력전압 센싱회로나 입력주기 센싱회로를 구성하지 않고도 FET 스위치의 스위칭을 입력전압에 따라 자동적으로 수행할 수 있다. 또한, 스위치부를 간단하게 구성할 수 있으므로 동일 면적 대비 여분의 엘이디 채널을 추가할 수 있다. 또한, 엘이디 채널별 순방향전압(Vf)을 조정하여 재배치 함으로써 스위치부의 효율증대를 가져 올 수 있으며, 자유로운 엘이디의 조합을 수행할 수 있다.
도30은 본 발명의 일부 실시예로 전류제어를 통해 스위치부를 보호하는 엘이디 조명장치의 구조를 도시한 도면이다.
본 발명의 전류제어를 통해 스위치부를 보호하는 엘이디 조명장치는 전원부(10), 정류회로부(20), 엘이디부(30), 스위치부(40), 전류 센싱 저항(50) 및 스위치부 전류차단부(60)을 포함한다.
전원부(10)는 입력전압을 공급한다. 정류회로부(20)는 전원부(10)로부터 교류의 입력전압을 공급받아 정류된 정류전원을 출력한다.
엘이디부(30)는 직렬로 연결되어 있는 n+1개의 엘이디(LED) 채널을 포함하고 있으며, 마지막 엘이디 채널(35)의 마지막 단에는 저항부(36)가 연결되어 있다.
이하 설명의 편의를 위해서 n=4 라고 가정하고 설명을 하기로 한다.
도30에는 엘이디부(30)는 5개의 엘이디 채널(31,32,33,34,35)을 포함하고 있다. 저항부(36)은 서로 직렬로 연결되어 있는 엘이디 채널의 마지막 엘이디 채널(35)의 다음단에 직렬 연결되어 있다.
스위치부(40)는 입력 전원에 따라 엘이디 채널을 동작시키기 위한 4 개의 스위치를 포함하고 있다. 여기서 첫번째부터 네번째까지의 4개의 스위치는 입력 전원에 따라 엘이디 채널의 동작을 제어한다.
즉, 첫번째 스위치(41)은 첫번째 엘이디 채널(31)과 연결되어 있어 온(on)상태인 경우에 첫번째 엘이디 채널(31)을 동작시키고, 두번째 스위치(42)은 두번째 엘이디 채널(32)과 연결되어 있어 온(on)상태인 경우에 첫번째 엘이디 채널(31)과 두번째 엘이디 채널(32)을 동작시키고, 세번째 스위치(43)은 세번째 엘이디 채널(33)과 연결되어 있어 온(on)상태인 경우에 첫번째 엘이디 채널(31)과 두번째 엘이디 채널(32)과 세번째 엘이디 채널(33)을 동작시키고, 네번째 스위치(44)은 네번째 엘이디 채널(34)과 연결되어 있어 온(on)상태인 경우에 첫번째 엘이디 채널(31)과 두번째 엘이디 채널(32)과 세번째 엘이디 채널(33)과 네번째 엘이디 채널(34)을 동작시킨다.
여기서 마지막 엘이디 채널(즉, 다섯번째 엘이디 채널(35))은 저항부(36)을 통해 스위치부 전류차단부(60)와 연결되어 있다.
도30을 예로 들어 스위칭 회로부(40)의 스위칭 동작을 설명하면 다음과 같다.
1번 엘이디 채널(31)의 다음단에는 2번 엘이디 채널(32)과 1번 스위치(41)가 연결되어 있다. 2번 엘이디 채널(32)의 다음단에는 3번 엘이디 채널(33)과 2번 스위치(42)가 연결되어 있다. 3번 엘이디 채널(33)의 다음단에는 4번 엘이디 채널(34)과 3번 스위치(43)가 연결되어 있다. 4번 엘이디 채널(34)의 다음단에는 5번 엘이디 채널(35)이 연결되어 있다. 저항부(36)는 5번 엘이디 채널(35)의 다음단에 연결되어 있다.
여기서 스위치부(40)의 각각의 스위치는 FET(Field Effect Transistor)로 구성된다. 특히, NMOS FET 로 구성한다.
전류 센싱 저항(50)은 가변저항으로 구성할 수도 있다.
전류 센싱 저항(50)은 스위치부(40)에 포함되어 있는 각각의 스위치(41,42,43,44)와 연결되어 있다. 따라서, 스위치에 전류가 흐르게 되면 전류 센싱 저항(50)에 흐르는 전류는 스위치에 흐르는 전류의 합이 된다.
본 발명의 스위치부(40)의 동작은 다음과 같다.
먼저 초기에는 모든 스위치(41,42,43,44)의 게이트에 각각의 스위치가 동작 할 수 있도록(즉, 전류가 흐르도록) 동작 전압을 입력한다.
여기서, 1번 스위치(41)의 동작 전압을 Vgs1, 2번 스위치(42)의 동작 전압을 Vgs2, 3번 스위치(43)의 동작 전압을 Vgs3, 4번 스위치(44)의 동작 전압을 Vgs4라고 한다.
여기서, Vgs1 < Vgs2 < Vgs3 < Vgs4 인 조건을 만족한다.
각각의 Vgs1, Vgs2, Vgs3, Vgs4 는 전류 센싱 저항(50)과 연결되어 전류 센싱 저항(50)에 걸리는 전압에 의해서 영향을 받는다.
이후에 엘이디부(30)로 입력되는 정류전압의 크기에 따라 전류 센싱 저항(50)에 걸리는 전압값에 의해서 스위치부(40)의 스위치는 자동으로 제어되어 엘이디 채널을 동작시킨다.
본 발명에서 스위칭 조건이란 이웃하는 두 스위치에 모두 전류가 흐르는 경우에, 이웃하는 두 스위치에 흐르는 전류의 합에 의해서 전류 센싱 저항에 전압이 발생하게 되고, 전류 센싱 저항에 걸리는 전압에 의해서 동작 전압이 하강하여 동작 전압이 낮은 스위치가 먼저 오프되는 것을 의미한다.
이후에 입력전압이 정류회로부(20)에서 정류되어 엘이디부(30)로 입력되는 정류전압의 크기에 따라 엘이디부(30)를 통해 전류 센싱 저항(50)에 걸리는 전압값에 의해서 스위치부(40)의 스위치는 자동으로 스위칭 된다.
본 발명에서는 전류 센싱 저항(50)은 예를 들어 10옴으로 설정한다.
다음 <표3>은 스위치(FET)에 따른 포화 전류값과 스위치에 포화 전류가 흐르는 경우에 전류 센싱 저항에 걸리는 전압을 표시하고 있다.
여기서, Id는 해당 스위치의 포화전류를 의미한다. 스위치가 동작하여 전류가 흐르는 경우의 포화 전압을 의미한다. Vrs는 전류 센싱 저항에 걸리는 전압을 의미한다.
표 3
Id(mA) Vrs
1번 FET 20 0.2
2번 FET 40 0.4
3번 FET 60 0.6
4번 FET 80 0.8
또한, 각 엘이디 채널의 순방향전압(Vf)은 50V 라고 한다.
이러한 경우에 입력 전압이 상승하여 50V 근처에 이르게 되면, 1번 엘이디 채널(31)이 동작하게 되고 1번 스위치(41)를 통해서 전류(I1)가 서서히 흐르게 된다. 그리고 입력 전압이 50V 이상이 되면 1번 스위치(41)는 20mA의 포화전류가 흐르고 전류 센싱 저항(50)에 걸리는 전압은 0.2V 가 된다.
입력 전압이 상승하여 100V 근처에 이르게 되면 2번 엘이디 채널(32)이 동작하게 되고 2번 스위치(42)를 통해서 전류(I2)가 서서히 흐르게 된다. 이때에 전류 센싱 저항(50)에서는 1번 스위치(41)에 흐르는 전류인 20mA와 2번 스위치(42)에 흐르는 전류(I2)의 합만큼 전류가 흐르게 된다. 따라서 전류 센싱 저항(50)에는 전압이 점점 높아지게 된다. 이렇게 전류 센싱 저항(50)에 걸리는 전압이 상승하게 되면 상대적으로 1번 스위치(41)의 게이트에 입력되는 전압(Vgs1)이 낮아지게 되어 1번 스위치(41)는 온 상태에서 오프 상태로 바뀌는 스위칭 조건에 들어가게 되고, 입력 전압이 점차 상승하여 2번 스위치(42)에서 흐르는 전류(I2)가 점차 증가하게 되면, 전류 센싱 저항(50)에 걸리는 전압이 점차 상승하고 상대적으로 Vgs1의 전압값이 낮아지게 되어 1번 스위치(41)는 오프 상태가 된다.
입력 전압이 100V 이상이 되면 2번 스위치(42)는 40mA의 포화전류가 흐르고 1번 스위치(41)는 완전히 오프 상태가 된다.
입력 전압이 상승하여 150V 근처에 이르게 되면 3번 엘이디 채널(33)이 동작하게 되고 3번 스위치(43)를 통해서 전류(I3)가 서서히 흐르게 된다. 이때에 전류 센싱 저항(50)에서는 2번 스위치(42)에 흐르는 전류인 40mA와 3번 스위치(43)에 흐르는 전류(I3)의 합만큼 전류가 흐르게 된다. 따라서, 전류 센싱 저항(50)에 걸리는 전압이 점점 높아지게 된다. 이렇게 전류 센싱 저항(50)에 걸리는 전압이 상승하게 되면 상대적으로 2번 스위치(42)의 게이트에 입력되는 전압(Vgs2)이 낮아지게 되어 2번 스위치(42)는 온 상태에서 오프 상태로 바뀌는 스위칭 조건에 들어가게 되고, 전류 센싱 저항(50)의 전압값이 점차 상승하여 Vgs2의 전압값이 상대적으로 낮아지면 2번 스위치(42)는 오프 상태가 된다.
입력 전압이 150V 이상이 되면 3번 스위치(43)는 60mA의 포화전류가 흐르고 2번 스위치(42)는 완전히 오프 상태가 된다.
상술한 바와 같이 이렇게 입력전압에 따라 스위치는 순차적으로 m+1번째 스위치에 전류가 흐르기 시작하면, m번째 스위치는 오프 상태로 전환되게 된다.
입력 전압이 상승하여 200V 근처에 이르게 되면 4번 엘이디 채널(34)이 동작하게 되고, 3번 스위치(43) 및 4번 스위치(44)를 통해서 전류(I3 및 I4)가 서서히 흐르게 된다. 이때에 전류 센싱 저항(50)에서는 3번 스위치(43)에 흐르는 전류인 60mA와 4번 스위치(44) 및 5번 스위치(45)에 흐르는 전류의 합만큼 전류가 흐르게 된다. 마찬가지로 입력 전압이 200V 이상이 되면 4번 스위치(44)는 80mA의 포화전류가 흐르고 3번 스위치(43)는 완전히 오프 상태가 된다.
여기서 정격전압을 200V라고 할 때, 입력전압이 정격전압 이상으로 입력되는 경우에는 4번 스위치(44)에 스위치가 정상 동작을 수행할 수 있는 전류 이상의 전류가 흐를 수 있게 되어 스위치 과도한 전류가 흐르게 되고 이에 따라서 스위치에 많은 발열이 발생하게 된다. 이렇게 4번 스위치(44)에 많은 발열이 발생하게 되면, FET 로 이루어져 IC 로 구성되는 스위치부(40)에 치명적인 손상을 줄 수 있다.
따라서, 본 발명은 4번 엘이디 채널(34) 다음단에 5번 엘이디 채널(35)과 저항부(36)를 직렬로 연결하여 입력 전압이 정격전압 이상으로 입력되는 경우에 5번 엘이디 채널(35)을 통해서 저항부(36)로 전류가 흐르도록 해서 정격전압 이상이 입력되는 경우에 스위치부(40)에서 발생되는 열을 저항부(36)에서 분배하도록 하여 스위치부(40)에 과도한 열이 발생되는 것을 방지한다.
즉, 본 발명에서와 같이 엘이디부(30)의 마지막 단에 저항부(36)를 연결하여 저항부(36)에서 전압을 분배하여 정격전압 이상이 입력되는 경우에는 스위치부(40) 내의 4번 스위치(44)에서 발생하는 열을 저항부(36)로 분배하게 하여, 4번 스위치(44)에 과도한 열이 발생하는 것을 차단해 준다. 이렇게 함으로써, 본 발명에서는 입력전압이 정격전압 이상으로 입력되는 경우에도 스위치부(40)에 과도한 열이 발생하지 않게 되어 IC 로 구성된 스위치부(40)의 안정성을 유지할 수 있다.
또한, 본 발명은 정격전압 이상이 입력되는 경우에 스위치부(40)에 과전류가 입력되어 스위치부(40)가 손상이 발생하는 것을 방지 및 정격전압 이상의 전압이 지속적으로 입력되어 스위치부(40)에 과전류가 지속적으로 입력되어 발열로 인한 손상을 방지하기 위해서, 스위치부(40)에 전류가 흐르는 것을 차단하는 스위치부 전류차단부(60)를 스위치부(40) 외부에 구성한다.
스위치부 전류차단부(60)는 5번 엘이디 채널(35)과 저항부(36)를 통해 흐르는 전류를 감지하여 과전류가 흐르는 경우에 스위치부(40)내에 구성되어 있는 스위치부 전류 차단스위치(45)를 제어하여 스위치를 오프(off)시켜 스위치부(40)에 전류가 흐르지 않도록 제어한다.
여기서, 스위치부 전류차단부(60)는 스위치부(40)의 전류가 흐르는 스위치인 4번 스위치(44)를 직접 제어하여 4번 스위치(44)를 오프(off)시켜 스위치부(40)에 전류가 흐르지 않도록 제어할 수도 있다.
스위치부(40)에서 과전류는 보통 마지막 스위치인 4번 스위치(44)에서 발생하나, 그 외 다른 요인으로 1번 내지 3번 스위치에서 과전류가 발생할 수도 있으므로, 스위치부 전류차단부(60)는 스위치부(40)의 모든 스위치를 제어할 수 있어 스위치부(40)에 과전류가 흐르게 되면, 스위치부(40)에 전류가 흐르는 것을 차단할 수도 있다.
상기의 동작을 위해서 스위치부 전류차단부(60)에는 스위치부(40)를 안정하게 동작시킬 수 있는 안정동작 전류값이 설정되어 있다. 따라서, 스위치부 전류차단부(60)는 흐르는 전류를 감지하여 설정된 안정동작 전류값과 비교하여 안정동작 전류값보다 큰 과전류가 흐르는 경우에는, 스위치부(40)의 스위치 중에서 전류가 흐르는 스위치를 차단시켜 스위치부(40)에 전류가 흐르지 않도록 한다.
예를 들어, 스위치부 전류차단부(60)에 설정되어 있는 안정동작 전류값이 110mA라고 하면, 정격전압 이상이 입력되어 스위치부 전류차단부(60)에 110mA 이상의 전류가 흐르게 되면, 스위치부 전류차단부(60)는 즉시, 스위치부(40)의 전류가 흐르는 스위치를 오프(off) 시켜, 스위치부(40)에 전류가 흐르지 않도록 한다.
도31은 본 발명의 일부 실시예로 입력 전압에 따른 엘이디 채널 위치에 걸리는 전류를 나타낸 도면이다.
상술한 바와 같이 각각의 엘이디 채널(31,32,33,34)은 입력전압에 따라 순방향전압(Vf)이상이 입력되면 전류가 흐르게 된다.
도31에서 V1은 정격전압 이내의 전압의 최대전압을 의미한다.
도31의 I1은 첫번째 엘이디채널(31)에 흐르는 전류이고, I2는 두번째 엘이디채널(32)에 흐르는 전류이고, I3은 세번째 엘이디채널(33)에 흐르는 전류이고, I4은 네번째 엘이디채널(34)에 흐르는 전류이다.
입력전압이 정격전압 이내에서 입력되는 경우에는 상술한 바와 같이 엘이디 부(30)에 흐르는 전류는 I1 -> I2 -> I3 -> I4 -> I1 순으로 순환하게 된다.
그런데 정격전압 이상이 입력되는 경우에는 다섯번째 엘이디 채널(35)이 동작하여 엘이디부(30)에는 전류 I5 가 흐르게 된다.
도31에서 정격전압 이상의 전압의 최대치를 V2 라고 하고, 구간 A 는 정격전압 이상이 입력되는 구간을 의미한다.
즉, 입력전압이 정격전압 이상이 입력되는 구간 A 에서는 다섯번째 엘이디 채널(35)이 동작하게 되고, 저항부(36)에 전류가 흐르게 되어 스위치부(40)에 발생하는 발염을 분배하여 스위치부(40)에 발생하는 과도한 열을 방지한다.
도32는 본 발명의 일부 실시예로 입력 전압이 정격전압이상으로 입력되는 경우에 스위치부에 흐르는 전류를 차단하는 것을 나타낸 도면이다.
상술한 바와 같이 스위치부 전류차단부(60)에는 안정동작 전류값이 설정되어 있고 정격전압 이상이 입력되는 경우에 엘이디부(30)에 흐르는 전류를 감지하고 이를 안정동작 전류값과 비교하여 감지된 전류값이 안정동작 전류값보다 큰 전류인 경우에 스위치부(40)에 전류를 차단한다.
도32에서 정격 전압 이상이 입력되는 구간을 A 라 하고, 이때 스위치부 전류차단부(60)에서 감지된 엘이디부(30)에 흐르는 전류가 안정동작 전류값보다 큰 전류인 경우에 스위치부 전류차단부(60)는 스위치부(40)의 스위치를 제어하여 전류를 흐르지 못하도록 차단한다. 그리고, 입력전압이 정격전압 이내에서 입력되어 엘이디부(30)에 흐르는 전류가 안정동작 전류값보다 작은 전류인 경우에, 스위치부 전류차단부(60)는 마지막 스위치(즉, 4번 스위치(44))를 오프(off) 상태에서 다시 온(on) 상태로 두어 스위치부(40)에 다시 전류를 흐르도록 한다.
따라서, 구간 A 에서 스위치부 전류차단부(60)에서 감지되는 엘이디부(30)에 흐르는 전류가 안정동작 전류값보다 큰 전류라고 하면, 스위치부(30)에 흐르는 전류의 변화는 도32에서 빗금친 부분에서만 전류가 흐르게 된다.
즉, 스위치부(40)에 손상을 줄 수 있는 정격전압이 입력되는 구간 A에서는 스위치부(40)에는 전류가 흐르지 않게 된다.
또한, 본 발명은 전력 소모면에서 다음과 같은 특징을 가질 수 있다.
1번 스위치에서 4번 스위치까지는 입력전압이 상승하는 경우에 m번 엘이디 채널에서 순방향 전압만큼 전압이 상쇄하고 남은 전압으로 m번 스위치를 동작시키고, 그 이상의 전압이 입력되는 경우에는 m번 스위치는 오프 상태로 되고, m+1번 스위치가 동작하게 되므로 각 스위치에서 소모되는 전력(열)은 증가하기는 하나, 전체적인 전력의 소모는 일정한 시스템 규격 범위이내이다.
또한, 본 발명에서는 각 엘이디 채널의 순방향전압(Vf)을 서로 다르게 재분배함으로서 각 스위치에서 소모하는 전력을 거의 동일한 수준이 되도록 만들 수 있다. 즉, m 번째 엘이디 채널의 순방향전압(Vf)보다 m+1 번째의 엘이디 채널의 순방향전압(Vf)을 증가시켜 m 번째와 m+1 번째의 스위치에서 소모되는 전력을 거의 동일한 수준으로 만들 수 있다. 이렇게 엘이디 채널의 순방향전압(Vf)를 재분배함으로서 입력전압이 변하는 경우에도 스위치부(40)에서 발생하는 열이 동일하도록 할 수 있다.
여기서 엘이디 채널별로는 순방향전압(Vf)을 자유롭게 변경하여 배치할 수 있으나, 전체 순방향전압(Vf)의 합은 입력전압의 최대값에 맞도록 설정을 한다.
이상과 같이 구성하는 본 발명의 조명장치는 다음과 같은 장점을 가지고 있다. 스위치부 전류차단부를 구성하여 정격전압 이상이 입력되어 IC로 구성된 스위치부에 과전류가 흐르는 경우에 스위치부에 흐르는 전류를 차단하여 스위치부를 보호한다. 또한, 입력전압 센싱회로나 입력주기 센싱회로를 구성하지 않고도 FET 스위치의 스위칭을 입력전압에 따라 자동적으로 수행할 수 있다. 또한, 스위치부를 간단하게 구성할 수 있으므로 동일 면적 대비 여분의 엘이디 채널을 추가할 수 있다. 또한, 엘이디 채널별 순방향전압(Vf)을 조정하여 재배치 함으로써 스위치부의 효율증대를 가져 올 수 있으며, 자유로운 엘이디의 조합을 수행할 수 있다.
도33은 본 발명의 일부 실시예로 전류제어를 통해 스위치부를 보호하는 엘이디 조명장치의 구조를 도시한 도면이다.
본 발명의 전류제어를 통해 스위치부를 보호하는 엘이디 조명장치는 전원부(10), 정류회로부(20), 엘이디부(30), 스위치부(40), 전류 센싱 저항(50) 및 전류 전환스위치(60)를 포함한다.
전원부(10)는 입력전원을 공급한다. 정류회로부(20)는 전원부(10)로부터 교류의 입력전원을 공급받아 정류된 정류전원을 출력한다.
엘이디부(30)는 직렬로 연결되어 있는 n개의 엘이디(LED) 채널을 포함하고 있으며, 마지막 엘이디 채널(35)의 마지막 단에는 저항부(36)가 연결되어 있다.
이하 설명의 편의를 위해서 n=4 라고 가정하고 설명을 하기로 한다.
도33에는 엘이디부(30)는 4개의 엘이디 채널(31,32,33,34)을 포함하고 있다. 저항부(35)은 서로 직렬로 연결되어 있는 엘이디 채널의 마지막 엘이디 채널(34)의 다음단에 직렬 연결되어 있다.
전류 전환스위치(60)는 저항부(35)와 스위치부(40)의 마지막 스위치 사이에 연결되어 있다. 그리고, 전류 전환스위치(60)는 그라운드 전압과 연결되어 있어 내부의 스위치 동작에 따라서 전류의 방향을 변화시킬 수 있다.
스위치부(40)는 입력 전원에 따라 엘이디 채널을 동작시키기 위한 4 개의 스위치를 포함하고 있다. 여기서 첫번째부터 네번째까지의 4개의 스위치는 입력 전원에 따라 엘이디 채널의 동작을 제어한다.
즉, 첫번째 스위치(41)은 첫번째 엘이디 채널(31)과 연결되어 있어 온(on)상태인 경우에 첫번째 엘이디 채널(31)을 동작시키고, 두번째 스위치(42)은 두번째 엘이디 채널(32)과 연결되어 있어 온(on)상태인 경우에 첫번째 엘이디 채널(31)과 두번째 엘이디 채널(32)을 동작시키고, 세번째 스위치(43)은 세번째 엘이디 채널(33)과 연결되어 있어 온(on)상태인 경우에 첫번째 엘이디 채널(31)과 두번째 엘이디 채널(32)과 세번째 엘이디 채널(33)을 동작시킨다.
네번째 스위치(44)은 저항부(35)와 전류 전환스위치(60)를 통해서 네번째 엘이디 채널(34)과 연결되어 있어 온(on)상태인 경우에 첫번째 엘이디 채널(31)과 두번째 엘이디 채널(32)과 세번째 엘이디 채널(33)과 네번째 엘이디 채널(34)을 동작시킨다.(단, 전류 전환스위치(60)의 내부 스위치가 스위치부(60)의 네번째 스위치(44)와 연결되어 있는 경우)
도33을 예로 들어 스위칭 회로부(40)의 스위칭 동작을 설명하면 다음과 같다.
1번 엘이디 채널(31)의 다음단에는 2번 엘이디 채널(32)과 1번 스위치(41)가 연결되어 있다. 2번 엘이디 채널(32)의 다음단에는 3번 엘이디 채널(33)과 2번 스위치(42)가 연결되어 있다. 3번 엘이디 채널(33)의 다음단에는 4번 엘이디 채널(34)과 3번 스위치(43)가 연결되어 있다. 4번 엘이디 채널(34)은 저항부(35)와 전류 전환스위치(60)를 통해서 4번 스위치(44)가 연결되어 있다.
여기서 스위치부(40)의 각각의 스위치는 FET(Field Effect Transistor)로 구성된다. 특히, NMOS FET 로 구성한다.
전류 센싱 저항(50)은 가변저항으로 구성할 수도 있다.
전류 센싱 저항(50)은 스위치부(40)에 포함되어 있는 각각의 스위치(41,42,43,44)와 연결되어 있다. 따라서, 스위치에 전류가 흐르게 되면 전류 센싱 저항(50)에 흐르는 전류는 스위치에 흐르는 전류의 합이 된다.
본 발명의 스위치부(40)의 동작은 다음과 같다.
먼저 초기에는 모든 스위치(41,42,43,44)의 게이트에 각각의 스위치가 동작 할 수 있도록(즉, 전류가 흐르도록) 동작 전압을 입력한다.
여기서, 1번 스위치(41)의 동작 전압을 Vgs1, 2번 스위치(42)의 동작 전압을 Vgs2, 3번 스위치(43)의 동작 전압을 Vgs3, 4번 스위치(44)의 동작 전압을 Vgs4 라고 한다.
여기서, Vgs1 < Vgs2 < Vgs3 < Vgs4 인 조건을 만족한다.
각각의 Vgs1, Vgs2, Vgs3, Vgs4 는 전류 센싱 저항(50)과 연결되어 전류 센싱 저항(50)에 걸리는 전압에 의해서 영향을 받는다.
이후에 엘이디부(30)로 입력되는 정류전압의 크기에 따라 전류 센싱 저항(50)에 걸리는 전압값에 의해서 스위치부(40)의 스위치는 자동으로 제어되어 엘이디 채널을 동작시킨다.
본 발명에서 스위칭 조건이란 이웃하는 두 스위치에 모두 전류가 흐르는 경우에, 이웃하는 두 스위치에 흐르는 전류의 합에 의해서 전류 센싱 저항에 전압이 발생하게 되고, 전류 센싱 저항에 걸리는 전압에 의해서 동작 전압이 하강하여 동작 전압이 낮은 스위치가 먼저 오프되는 것을 의미한다.
이후에 입력전압이 정류회로부(20)에서 정류되어 엘이디부(30)로 입력되는 정류전압의 크기에 따라 엘이디부(30)를 통해 전류 센싱 저항(50)에 걸리는 전압값에 의해서 스위치부(40)의 스위치는 자동으로 스위칭 된다.
본 발명에서는 전류 센싱 저항(50)은 예를 들어 10옴으로 설정한다.
다음 <표4>은 스위치(FET)에 따른 포화 전류값과 스위치에 포화 전류가 흐르는 경우에 전류 센싱 저항에 걸리는 전압을 표시하고 있다.
여기서, Id는 해당 스위치의 포화전류를 의미한다. 스위치가 동작하여 전류가 흐르는 경우의 포화 전압을 의미한다. Vrs는 전류 센싱 저항에 걸리는 전압을 의미한다.
표 4
Id(mA) Vrs
1번 FET 20 0.2
2번 FET 40 0.4
3번 FET 60 0.6
4번 FET 80 0.8
또한, 각 엘이디 채널의 순방향전압(Vf)은 50V 라고 한다.
이러한 경우에 입력 전압이 상승하여 50V 근처에 이르게 되면, 1번 엘이디 채널(31)이 동작하게 되고 1번 스위치(41)를 통해서 전류(I1)가 서서히 흐르게 된다. 그리고 입력 전압이 50V 이상이 되면 1번 스위치(41)는 20mA의 포화전류가 흐르고 전류 센싱 저항(50)에 걸리는 전압은 0.2V 가 된다.
입력 전압이 상승하여 100V 근처에 이르게 되면 2번 엘이디 채널(32)이 동작하게 되고 2번 스위치(42)를 통해서 전류(I2)가 서서히 흐르게 된다. 이때에 전류 센싱 저항(50)에서는 1번 스위치(41)에 흐르는 전류인 20mA와 2번 스위치(42)에 흐르는 전류(I2)의 합만큼 전류가 흐르게 된다. 따라서 전류 센싱 저항(50)에는 전압이 점점 높아지게 된다. 이렇게 전류 센싱 저항(50)에 걸리는 전압이 상승하게 되면 상대적으로 1번 스위치(41)의 게이트에 입력되는 전압(Vgs1)이 낮아지게 되어 1번 스위치(41)는 온 상태에서 오프 상태로 바뀌는 스위칭 조건에 들어가게 되고, 입력 전압이 점차 상승하여 2번 스위치(42)에서 흐르는 전류(I2)가 점차 증가하게 되면, 전류 센싱 저항(50)에 걸리는 전압이 점차 상승하고 상대적으로 Vgs1의 전압값이 낮아지게 되어 1번 스위치(41)는 오프 상태가 된다.
입력 전압이 100V 이상이 되면 2번 스위치(42)는 40mA의 포화전류가 흐르고 1번 스위치(41)는 완전히 오프 상태가 된다.
입력 전압이 상승하여 150V 근처에 이르게 되면 3번 엘이디 채널(33)이 동작하게 되고 3번 스위치(43)를 통해서 전류(I3)가 서서히 흐르게 된다. 이때에 전류 센싱 저항(50)에서는 2번 스위치(42)에 흐르는 전류인 40mA와 3번 스위치(43)에 흐르는 전류(I3)의 합만큼 전류가 흐르게 된다. 따라서, 전류 센싱 저항(50)에 걸리는 전압이 점점 높아지게 된다. 이렇게 전류 센싱 저항(50)에 걸리는 전압이 상승하게 되면 상대적으로 2번 스위치(42)의 게이트에 입력되는 전압(Vgs2)이 낮아지게 되어 2번 스위치(42)는 온 상태에서 오프 상태로 바뀌는 스위칭 조건에 들어가게 되고, 전류 센싱 저항(50)의 전압값이 점차 상승하여 Vgs2의 전압값이 상대적으로 낮아지면 2번 스위치(42)는 오프 상태가 된다.
입력 전압이 150V 이상이 되면 3번 스위치(43)는 60mA의 포화전류가 흐르고 2번 스위치(42)는 완전히 오프 상태가 된다.
상술한 바와 같이 이렇게 입력전압에 따라 스위치는 순차적으로 m+1번째 스위치에 전류가 흐르기 시작하면, m번째 스위치는 오프 상태로 전환되게 된다.
입력 전압이 상승하여 200V 근처에 이르게 되면 4번 엘이디 채널(34)이 동작하게 되고, 3번 스위치(43) 및 4번 스위치(44)를 통해서 전류(I3 및 I4)가 서서히 흐르게 된다. 이때에 전류 센싱 저항(50)에서는 3번 스위치(43)에 흐르는 전류인 60mA와 4번 스위치(44)에 흐르는 전류의 합만큼 전류가 흐르게 된다. 마찬가지로 입력 전압이 200V 이상이 되면 4번 스위치(44)는 80mA의 포화전류가 흐르고 3번 스위치(43)는 완전히 오프 상태가 된다.
여기서 정격전압을 200V라고 할 때, 입력전압이 정격전압 이상으로 입력되는 경우에는 4번 스위치(44)에 스위치가 정상 동작을 수행할 수 있는 전류 이상의 전류가 흐를 수 있게 되어 스위치 과도한 전류가 흐르게 되고 이에 따라서 스위치에 많은 발열이 발생하게 된다. 이렇게 4번 스위치(44)에 많은 발열이 발생하게 되면, FET 로 이루어져 IC 로 구성되는 스위치부(40)에 치명적인 손상을 줄 수 있다.
따라서, 본 발명은 4번 엘이디 채널(34) 다음단에 저항부(35)를 직렬로 연결하여 입력 전압이 정격전압 이상으로 입력되는 경우에 저항부(35)로 전류가 흐르도록 해서 정격전압 이상이 입력되는 경우에 스위치부(40)에서 발생되는 열을 저항부(35)에서 분배하도록 하여 스위치부(40)에 과도한 열이 발생되는 것을 방지한다.
즉, 본 발명에서와 같이 엘이디부(30)의 마지막 단에 저항부(35)를 연결하여 정격전압 이상이 입력되는 경우에는 저항부(35)에서 전압을 분배하여 스위치부(40) 내의 4번 스위치(44)에서 발생하는 열을 저항부(35)로 분배하게 하여, 4번 스위치(44)에 과도한 열이 발생하는 것을 차단해 준다. 이렇게 함으로써, 본 발명에서는 입력전압이 정격전압 이상으로 입력되는 경우에도 스위치부(40)에 과도한 열이 발생하지 않게 되어 IC 로 구성된 스위치부(40)의 안정성을 유지할 수 있다.
또한, 본 발명은 정격전압 이상이 입력되는 경우에 스위치부(40)에 과전류가 입력되어 스위치부(40)가 손상이 발생하는 것을 방지 및 정격전압 이상의 전압이 지속적으로 입력되어 스위치부(40)에 과전류가 지속적으로 입력되어 발열로 인한 손상을 방지하기 위해서, 스위치부(40)의 전류를 차단하는 전류차단제어부(45)를 구성한다.
전류차단제어부(45)는 전류 전환스위치(60)와 4번 스위치(44) 사이에 구성될 수 있으며, 도33에 도시되어 있는 바와 같이 4번 스위치(44)와 전류 센싱 저항(50) 사이에 구성될 수도 있다.
또한, 전류차단제어부(45)는 스위치부(40) 내부에 구성될 수도 있고, 스위치부(40)와 전류 센싱 저항(50) 사이의 스위치부(40) 외부에 구성될 수도 있다.
전류차단제어부(45)는 4번 스위치(44)에 흐르는 전류를 감지하고 이를 설정되어 있는 안정동작 전류값과 비교하여 안정동작 전류값 이상의 과전류가 흐르는 경우에는 전류 전환스위치(60)를 제어하여 내부 스위치를 저항부(35)와 그라운드 전압 사이로 연결하여 스위치부(40)에 전류가 흐르는 것을 차단한다.
여기서, 안정동작 전류값은 전류차단제어부(45)에 설정되어 있을 수도 있고, 스위치부(40)의 외부에 별도의 저장부를 두어 여기에 안정동작 전류값을 설정하고 전류차단제어부(45)는 흐르는 전류값을 감지하여 안정동작 전류값보다 전류값이 커지는 경우에는 전류 전환스위치(60)를 제어하여 스위치부(40)로 전류가 흐르는 것을 차단한다.
정격전압 이상이 입력전압이 입력되어 스위치부(40)에 과전류가 흐르게 되는 경우에, 스위치부(40)의 전류를 차단하는 것은 도36에서 자세히 설명하기로 한다.
도34는 본 발명의 일부 실시예로 전류차단제어부가 스위치부와 전류 센싱 저항 사이에 구성되어 있는 것을 도시한 도면이다.
전류차단제어부(45)는 도34에 도시된 바와 같이 스위치부(40)와 전류 센싱 저항(50) 사이에 구성되어 있을 수도 있다.
전류차단제어부(45)가 스위치부(40) 외부에 구성되는 경우에 스위치부(40)를 안정하게 동작시킬 수 있는 안정동작 전류값은 전류차단제어부(45)에 설정되어 있을 수 있다. 이를 위해서 전류차단제어부(45)는 메모리를 더 포함하여 구성될 수 있다.
전류차단제어부(45)는 스위치부(40)의 4번 스위치(44)에 흐르는 전류를 감지하고 이를 설정되어 있는 안정동작 전류값과 비교하여 안정동작 전류값 이상의 과전류가 4번 스위치(44)에 흐르는 경우에는 전류 전환스위치(60)를 제어하여 스위치부(40)에 전류가 흐르는 것을 차단한다.
스위치부(40)에서 과전류는 보통 마지막 스위치인 4번 스위치(44)에서 발생하나, 그 외 다른 요인으로 1번 내지 3번 스위치에서 과전류가 발생할 수도 있다. 도34와 같이 전류차단제어부(45)가 스위치부(40)와 전류 센싱 저항(50) 사이에 구성되는 경우에는, 전류차단제어부(45)는 스위치부(40)의 모든 스위치에 흐르는 전류값을 감지하여 모니터링 할 수도 있다.
도35는 본 발명의 일부 실시예로 입력 전압에 따른 엘이디 채널 위치에 걸리는 전류를 나타낸 도면이다.
도33에 상술한 바와 같이 각각의 엘이디 채널(31,32,33,34)은 입력전압에 따라 순방향전압(Vf)이상이 입력되면 포화전류가 흐르게 된다.
도35의 a 구간은 첫번째 엘이디채널(31)을 동작시키는 입력전압이 입력되는 구간이다. 따라서, 입력전압이 a인 구간에서는 첫번째 엘이디채널(31) 및 첫번째 스위치(41)에는 I1의 전류가 흐르게 된다.
b 구간은 두번째 엘이디채널(32)을 동작시키는 입력전압이 입력되는 구간이다. 따라서, 입력전압이 b인 구간에서는 두번째 엘이디채널(32) 및 두번째 스위치(42)에는 I2의 전류가 흐르게 된다.
c 구간은 세번째 엘이디채널(33)을 동작시키는 입력전압이 입력되는 구간이다. 따라서, 입력전압이 c인 구간에서는 세번째 엘이디채널(33) 및 세번째 스위치(43)에는 I3의 전류가 흐르게 된다.
d 구간은 네번째 엘이디채널(34)을 동작시키는 입력전압이 입력되는 구간이다. 따라서, 입력전압이 d인 구간에서는 네번째 엘이디채널(34) 및 네번째 스위치(44)에는 I4의 전류가 흐르게 된다.
도35에서는 a 구간은 첫번째 스위치가 동작하여 첫번째 엘이디 채널이 동작을 하는 구간이고, b 구간은 두번째 스위치가 동작하여 첫번째 엘이디 채널 및 두번째 엘이디 채널이 동작을 하는 구간이고, c 구간은 세번째 스위치가 동작하여 첫번째 엘이디 채널과 두번째 엘이디 채널 및 세번째 엘이디 채널이 동작을 하는 구간이고, d 구간은 네번째 스위치가 동작하여 첫번째 엘이디 채널과 두번째 엘이디 채널과 세번째 엘이디 채널 및 네번째 엘이디 채널이 동작을 하는 구간이다.
도36은 본 발명의 일부 실시예로 입력 전압이 정격전압이상으로 입력되는 경우에 스위치부에 흐르는 전류를 차단하는 것을 나타낸 도면이다.
상술한 바와 같이 전류차단제어부(45)는 스위치부(40)에 흐르는 과전류를 감지하여 설정되어 있는 안정동작 전류값과 비교하여 스위치부(40)에 안정동작 전류값이상의 과전류가 흐르는 경우에는 전류 전환스위치(60)를 제어하여 스위치부(40)에 흐르는 전류를 차단한다.
이러한 동작을 도36을 이용해 설명하면 다음과 같다.
먼저, V1은 정격전압 이내의 최대 전압값, V2는 정격전압을 벗어나는 전압의 최대값, Vx 는 정격전압 이상의 입력전압, Iset는 안정동작 전류값, Imax는 입력전압이 V2 인 경우의 엘이디부(30)에 흐르는 전류값을 의미한다.
입력 전압이 정격전압 이내에서 입력되는 경우에는 도35에서 설명한 바와 같이 스위치부(40)에 흐르는 전류는 I1 -> I2 -> I3 -> I4 -> I1 순서로 변화하며 동작을 수행한다.
그런데, 입력전압이 정격전압을 벗어나는 전압 Vx(V1과 V2 사이의 전압)로 입력되는 경우에는 도36에 도시되어 있는 바와 같이 4번 스위치(44)에 흐르는 전류 I4가 증가하게 된다.
이렇게 증가하는 전류 I4가 설정되어 있는 안정동작 전류값인 Iset 에 이르게 되면, 전류차단제어부(45)는 전류 전환스위치(60)을 제어하여 스위치부(40)에 전류가 흐르지 못하도록 한다. 따라서, 스위치부(40)에는 e 구간에서 f 구간을 뺀 구간 동안에만 전류가 증가하다가, 구간 f 에서는 스위치부(40)는 전류가 흐르지 않게 된다.
도36에서 입력전압이 증가하여 정격전압 이상이 입력되는 경우에는 스위치부(40)에 흐르는 전류는 빗금친 영역에 해당한다. 도36에 도시된 바와 같이 구간 f 에서는 스위치부(40)에는 전류가 흐르지 않게 된다.
전압 Vx이 감소하여 엘이디부(30)에 흐르는 전류가 감소하여 Iset 이하로 떨어지게 되면 전류차단제어부(45)는 전류 전환스위치(60)을 제어하여 스위치부(40)에 전류가 흐르도록 한다.
또한, 본 발명은 전력 소모면에서 다음과 같은 특징을 가질 수 있다.
1번 스위치에서 4번 스위치까지는 입력전압이 상승하는 경우에 m번 엘이디 채널에서 순방향 전압만큼 전압이 상쇄하고 남은 전압으로 m번 스위치를 동작시키고, 그 이상의 전압이 입력되는 경우에는 m번 스위치는 오프 상태로 되고, m+1번 스위치가 동작하게 되므로 각 스위치에서 소모되는 전력(열)은 증가하기는 하나, 전체적인 전력의 소모는 일정한 시스템 규격 범위이내이다.
또한, 본 발명에서는 각 엘이디 채널의 순방향전압(Vf)을 서로 다르게 재분배함으로서 각 스위치에서 소모하는 전력을 거의 동일한 수준이 되도록 만들 수 있다. 즉, m 번째 엘이디 채널의 순방향전압(Vf)보다 m+1 번째의 엘이디 채널의 순방향전압(Vf)을 증가시켜 m 번째와 m+1 번째의 스위치에서 소모되는 전력을 거의 동일한 수준으로 만들 수 있다. 이렇게 엘이디 채널의 순방향전압(Vf)를 재분배함으로서 입력전압이 변하는 경우에도 스위치부(40)에서 발생하는 열이 동일하도록 할 수 있다.
여기서 엘이디 채널별로는 순방향전압(Vf)을 자유롭게 변경하여 배치할 수 있으나, 전체 순방향전압(Vf)의 합은 입력전압의 최대값에 맞도록 설정을 한다.
이상과 같이 구성하는 본 발명의 조명장치는 다음과 같은 장점을 가지고 있다. 전류차단제어부를 두어 정격전압 이상이 입력되어 과전류가 흐르는 경우에 IC로 구성된 스위치부에 흐르는 전류를 차단하여 스위치부를 보호한다. 또한, 입력전압 센싱회로나 입력주기 센싱회로를 구성하지 않고도 FET 스위치의 스위칭을 입력전압에 따라 자동적으로 수행할 수 있다. 또한, 스위치부를 간단하게 구성할 수 있으므로 동일 면적 대비 여분의 엘이디 채널을 추가할 수 있다. 또한, 엘이디 채널별 순방향전압(Vf)을 조정하여 재배치 함으로써 스위치부의 효율증대를 가져 올 수 있으며, 자유로운 엘이디의 조합을 수행할 수 있다.
상기에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (27)

  1. 전원부로부터 입력전원을 공급받아 정류된 정류전원을 출력하는 정류회로부;
    복수개의 엘이디(LED) 채널이 직렬로 연결되고 상기 엘이디 채널의 마지막 단에 저항부가 연결되어 있는 엘이디부;
    전류 센싱 저항; 및
    복수개의 스위치를 포함하며, n 번째의 스위치는 n 번째의 엘이디 채널의 뒷단에 연결되어 상기 엘이디 채널의 동작을 제어하고, 상기 전류 센싱 저항에 흐르는 n 번째 스위치의 전류 및 n+1 번째 스위치의 전류의 합에 의해서 상기 n 번째의 스위치가 제어되는 스위치회로부; 를 포함하는 엘이디 조명장치.
  2. 제1항에 있어서,
    마지막 엘이디 채널에 저항부가 연결되어 있고 상기 스위치회로부에 상기 저항부와 연결되는 스위치가 포함되어 있어, 상기 저항부가 상기 스위치회로부에서 발생하는 열을 분배하여 감소시키는 엘이디 조명장치.
  3. 제1항에 있어서,
    상기 엘이디 채널은 하나 이상의 엘이디를 포함하고 있는 엘이디 조명장치.
  4. 제1항에 있어서,
    n 번째 엘이디 채널은 n 번째의 스위치에서 발생하는 전력 소모를 줄이기 위해 서로 다른 순방향전압(Vf)을 가지는 엘이디 조명장치.
  5. 제1항에 있어서,
    상기 n+1 번째 스위치의 포화전류가 n 번째 스위치의 포화전류보다 높게 설정되어 있는 엘이디 조명장치.
  6. 제1항에 있어서,
    상기 전류 센싱 저항에 걸리는 전압은 이웃하는 n 번째와 n+1 번째의 스위치에 흐르는 전류의 합에 의해서 변화되고,
    상기 입력전압이 n+1 번째의 엘이디 채널의 순방향 전압(Vf)이상이 되어 상기 n+1 번째 스위치에 포화전류가 흐르게 되면, n 번째 스위치는 오프(OFF)되는 엘이디 조명장치.
  7. 제1항에 있어서,
    복수개의 엘이디동작부;를 더 포함하되,
    각 엘이디동작부는 상기 엘이디부, 상기 전류 센싱 저항, 및 상기 스위치회로부를 포함하고,
    상기 복수개의 엘이디동작부는 서로 직렬로 연결되어 있어 특정 입력전압 이상에서는 하나의 엘이디동작부를 사용하는 것보다 더 밝은 조명을 이용할 수 있는,
    엘이디 조명장치.
  8. 제1항에 있어서,
    복수의 엘이디동작부;를 더 포함하되,
    각 엘이디동작부는 상기 정류회로부, 상기 엘이디부, 상기 전류 센싱 저항: 및 상기 스위치회로부;를 포함하고 있으며,
    상기 복수의 엘이디동작부는 각각 상기 전원부와 병렬로 연결되는, 엘이디 조명장치.
  9. 제8항에 있어서,
    복수의 엘이디동작부는 동일한 전원부의 입력전원에 대해서 각각 서로 동일하거나 다른 전압을 출력하는 정류회로부를 포함하는 것을 특징으로 하는 복수의 엘이디동작부를 포함하는 엘이디 조명장치.
  10. 제1항에 있어서,
    상기 엘이디부는 블럭으로 구성되고,
    매트릭스 연결 구조를 가지고 있어 상기 블럭으로 구성된 상기 엘이디부가 연결되는 경우에 서로 특정의 연결 구조를 가지도록 하는 블럭 연결부;를 더 포함하는, 엘이디 조명장치.
  11. 제10항에 있어서,
    상기 블럭으로 구성되어 있는 상기 엘이디부를 복수개 이용하여 각각 병렬로 연결하는 엘이디 조명장치.
  12. 제10항에 있어서,
    상기 엘이디 채널은 하나 이상의 엘이디가 포함되어 있는 블럭으로 구성되어 있는 엘이디 조명장치.
  13. 제1항에 있어서,
    상기 엘이디부는 각각의 엘이디 채널과 각각 병렬로 연결되어 있는 캐패시터들을 더 포함하는 엘이디 조명장치.
  14. 제13항에 있어서,
    상기 캐패시터는 상기 입력전압이 병렬연결된 엘이디 채널을 동작시키지 못하는 전압으로 입력되는 경우에 병렬연결된 엘이디 채널에 전압을 공급하는 것을 특징으로 하는 플리커 방지 엘이디 조명장치.
  15. 제1항에 있어서,
    온도 센서를 포함하고 있어 상기 스위치회로부의 온도를 측정하고 상기 스위치회로부의 온도에 따라 상기 스위치회로부에 흐르는 전류를 제어하는 전류제어부; 를 더 포함하는 엘이디 조명장치.
  16. 제15항에 있어서,
    상기 전류제어부에는 오동작 온도가 설정되어 있고, 상기 전류제어부가 상기 스위치회로부의 온도를 측정한 결과, 상기 오동작 온도 이상이 되는 경우에 상기 스위치들을 제어하여 상기 스위치회로부에 전류가 흐르지 않도록 제어하는 것을 특징으로 하는 전류제어를 통해 스위치회로부를 보호하는 엘이디 조명장치.
  17. 제1항에 있어서,
    상기 저항부와 직렬로 연결되어 있고 흐르는 전류를 감지하여 상기 스위치 회로부에 흐르는 전류를 차단하는 스위치회로부 전류차단부;를 더 포함하는 엘이디 조명장치.
  18. 제17항에 있어서,
    상기 스위치회로부 전류차단부는 상기 스위치 회로부를 안정하게 동작시킬 수 있는 안정동작 전류값이 설정되어 있어, 상기 스위치회로부 전류차단부에 흐르는 전류가 상기 안정동작 전류값보다 커지는 경우에 상기 스위치 회로부의 스위치 중에서 전류가 흐르는 스위치를 차단시켜 상기 스위치회로부에 전류가 흐르지 않도록 하는, 엘이디 조명장치.
  19. 제1항에 있어서,
    상기 저항부와 마지막 스위치 사이에 구성되어 상기 스위치회로부에 흐르는 전류를 차단하는 전류 전환스위치; 및
    상기 스위치회로부에 과전류가 흐르는 경우에 상기 전류 전환스위치를 제어하여 상기 스위치회로부로 흐르는 전류를 차단하는 전류차단제어부;를 더 포함하는 엘이디 조명장치.
  20. 제19항에 있어서,
    상기 전류차단제어부는 상기 스위치 회로부를 안정하게 동작시킬 수 있는 안정동작 전류값이 설정되어 있어, 상기 스위치회로부에 흐르는 전류가 상기 안정동작 전류값보다 커지는 경우에 상기 전류 전환스위치를 제어하여 상기 스위치회로부에 전류가 흐르지 않도록 하는 엘이디 조명장치.
  21. 전원부로부터 입력전원을 공급받아 정류된 정류전원을 출력하는 정류회로부;
    복수개의 엘이디(LED) 채널이 직렬로 연결되고 상기 엘이디 채널의 마지막 단에 저항부가 연결되어 있는 엘이디부;
    가변저항을 포함하여 구성되어 상기 엘이디부에 흐르는 전류를 제어하여 상기 엘이디 채널의 디밍을 제어하는 디밍제어부; 및
    복수개의 스위치를 포함하며, n 번째의 스위치는 n 번째의 엘이디 채널의 뒷단에 연결되어 상기 엘이디 채널의 동작을 제어하고, 상기 가변저항에 흐르는 n 번째 스위치의 전류 및 n+1 번째 스위치의 전류의 합에 의해서 n 번째의 스위치가 제어되는 스위치회로부;를 포함하는 엘이디 조명장치.
  22. 제21항에 있어서,
    상기 디밍제어부는 디밍제어스위치를 더 포함하여 상기 스위치를 통해서 상기 가변저항의 저항값을 변화시켜서 상기 엘이디부의 상기 엘이디 채널의 동작 개수를 제어하여 디밍제어를 수행하는 엘이디 조명장치.
  23. 제21항에 있어서,
    상기 디밍제어부는 디밍제어스위치를 더 포함하여 상기 스위치를 통해서 상기 가변저항의 저항값을 변화시켜서 상기 엘이디부의 상기 엘이디 채널에 흐르는 전류값을 제어하여 디밍제어를 수행하는 엘이디 조명장치.
  24. 전원부로부터 입력전원을 공급받아 정류된 정류전원을 출력하는 정류회로부;
    상기 정류회로부로부터 전원을 공급받아 고전압인 경우에는 전하를 저장하고 저전압인 경우에는 저장된 전하를 방출하는 전하저장회로부;
    복수개의 엘이디(LED) 채널이 직렬로 연결되고 상기 엘이디 채널의 마지막 단에 저항부가 연결되어 있는 엘이디부;
    전류 센싱 저항: 및
    복수개의 스위치를 포함하며, n 번째의 스위치는 n 번째의 엘이디 채널의 뒷단에 연결되어 상기 엘이디 채널의 동작을 제어하고, 상기 전류 센싱 저항에 흐르는 n 번째 스위치의 전류 및 n+1 번째 스위치의 전류의 합에 의해서 n 번째의 스위치가 제어되는 스위치회로부;를 포함하는 엘이디 조명장치.
  25. 제24항에 있어서,
    상기 전하저장회로부는 제1 콘덴서, 제2 콘덴서, 제1 다이오드, 제2 다이오드, 제3 다이오드를 포함하고, 상기 제1 콘덴서와 상기 제2 콘덴서 사이에는 상기 제2 다이오드가 순방향으로 연결되고, 상기 제1 콘덴서의 일측은 상기 정류회로부의 전원전압 노드와 연결되고 상기 제2 콘덴서의 일측은 그라운드와 연결되어 있으며, 상기 제1 다이오드는 상기 제1 콘덴서와 상기 제2 다이오드가 접속하는 노드와 상기 그라운드 사이에 역방향으로 연결되어 있으며, 상기 제3 다이오드는 상기 제2 콘덴서와 상기 제2 다이오드가 접속하는 노드와 상기 엘이디부 사이에 연결되어 있어, 상기 정류회로부에서 출력되는 전압이 상기 전하저장회로부에 저장되는 전압보다 낮아지는 경우에 저장된 전하를 방출하여 상기 엘이디부에 전압을 공급하는 엘이디 조명장치.
  26. 전원부로부터 입력전원을 공급받아 정류된 정류전원을 출력하는 정류회로부;
    상기 입력전원을 공급받아 전하를 저장하고 상기 입력전원이 감소되는 경우에 저장된 전하를 방출하여 리플이 제거된 전원을 출력하는 리플제거 회로부;
    복수개의 엘이디(LED) 채널이 직렬로 연결되고 상기 엘이디 채널의 마지막 단에 저항부가 연결되어 있는 엘이디부;
    전류 센싱 저항: 및
    복수개의 스위치를 포함하며, n 번째의 스위치는 n 번째의 엘이디 채널의 뒷단에 연결되어 상기 엘이디 채널의 동작을 제어하고, 상기 전류 센싱 저항에 흐르는 n 번째 스위치의 전류 및 n+1 번째 스위치의 전류의 합에 의해서 n 번째의 스위치가 제어되는 스위치회로부; 를 포함하는 엘이디 조명장치.
  27. 제26항에 있어서,
    상기 리플제거회로부는 저항 및 캐패시터로 구성되어 상기 입력전원이 감소되는 경우에 상기 캐패시터에 저장된 전하를 방출하는 엘이디 조명장치.
PCT/KR2014/000998 2013-02-05 2014-02-05 엘이디 조명장치 WO2014123360A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/765,610 US9491825B2 (en) 2013-02-05 2014-02-05 LED lighting device
CN201480007145.2A CN104969663B (zh) 2013-02-05 2014-02-05 Led照明装置
US15/245,538 US9918363B2 (en) 2013-02-05 2016-08-24 LED lighting device
US15/721,898 US10206256B2 (en) 2013-02-05 2017-09-30 LED lighting device
US15/876,448 US10362649B2 (en) 2013-02-05 2018-01-22 LED lighting device
US16/219,430 US20190132914A1 (en) 2013-02-05 2018-12-13 Led lighting device

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
KR20130012835 2013-02-05
KR10-2013-0012835 2013-02-05
KR20130056435A KR101490231B1 (ko) 2013-05-20 2013-05-20 전류제어를 통해 스위치회로부를 보호하는 엘이디 조명장치
KR20130056433A KR101490230B1 (ko) 2013-05-20 2013-05-20 전류제어를 통해 스위치회로부를 보호하는 엘이디 조명장치.
KR1020130056436A KR101553342B1 (ko) 2013-05-20 2013-05-20 스위칭 회로내의 전류제어를 통해 스위치회로부를 보호하는 엘이디 조명장치
KR10-2013-0056433 2013-05-20
KR10-2013-0056435 2013-05-20
KR1020130056432A KR101595846B1 (ko) 2013-05-20 2013-05-20 디밍제어 엘이디 조명장치
KR10-2013-0056436 2013-05-20
KR20130056437A KR101490232B1 (ko) 2013-05-20 2013-05-20 플리커 방지 엘이디 조명장치
KR10-2013-0056437 2013-05-20
KR10-2013-0056432 2013-05-20
KR10-2013-0084816 2013-07-18
KR1020130084812A KR101568751B1 (ko) 2013-07-18 2013-07-18 플리커 현상을 감소시키는 회로를 포함하는 엘이디 조명장치
KR1020130084816A KR101568752B1 (ko) 2013-07-18 2013-07-18 복수의 엘이디동작부를 포함하는 엘이디 조명장치
KR1020130084814A KR20150010178A (ko) 2013-07-18 2013-07-18 리플을 제거하는 회로를 포함하는 엘이디 조명장치
KR1020130084813A KR20150010177A (ko) 2013-07-18 2013-07-18 하나 이상의 엘이디동작부를 포함하는 엘이디 조명장치
KR1020130084815A KR101568746B1 (ko) 2013-07-18 2013-07-18 블럭으로 구성된 엘이디부를 포함하는 엘이디 조명장치
KR10-2013-0084814 2013-07-18
KR10-2013-0084812 2013-07-18
KR10-2013-0084813 2013-07-18
KR10-2013-0084815 2013-07-18
KR10-2013-0099825 2013-08-22
KR1020130099825A KR20140100386A (ko) 2013-02-05 2013-08-22 디밍제어 엘이디 조명장치

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/765,610 A-371-Of-International US9491825B2 (en) 2013-02-05 2014-02-05 LED lighting device
US15/245,538 Continuation US9918363B2 (en) 2013-02-05 2016-08-24 LED lighting device

Publications (1)

Publication Number Publication Date
WO2014123360A1 true WO2014123360A1 (ko) 2014-08-14

Family

ID=51299908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000998 WO2014123360A1 (ko) 2013-02-05 2014-02-05 엘이디 조명장치

Country Status (1)

Country Link
WO (1) WO2014123360A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040077211A (ko) * 2003-02-28 2004-09-04 삼성전자주식회사 표시 장치용 광원의 구동 장치
KR20060120508A (ko) * 2005-05-20 2006-11-27 세이코 인스트루 가부시키가이샤 발광 다이오드 구동 회로
WO2009128654A2 (ko) * 2008-04-17 2009-10-22 (주)파워에이앤디 균등부하제어회로를 포함한 복수의 조명용 엘이디 제어 장치
WO2012081878A2 (ko) * 2010-12-16 2012-06-21 Lee Dong-Won 교류 구동 엘이디 조명장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040077211A (ko) * 2003-02-28 2004-09-04 삼성전자주식회사 표시 장치용 광원의 구동 장치
EP1458224A2 (en) * 2003-02-28 2004-09-15 Samsung Electronics Co., Ltd. Controlling a light source
KR20060120508A (ko) * 2005-05-20 2006-11-27 세이코 인스트루 가부시키가이샤 발광 다이오드 구동 회로
WO2009128654A2 (ko) * 2008-04-17 2009-10-22 (주)파워에이앤디 균등부하제어회로를 포함한 복수의 조명용 엘이디 제어 장치
WO2012081878A2 (ko) * 2010-12-16 2012-06-21 Lee Dong-Won 교류 구동 엘이디 조명장치

Similar Documents

Publication Publication Date Title
WO2012081878A2 (ko) 교류 구동 엘이디 조명장치
WO2021137664A1 (en) Display module and driving method thereof
WO2013100736A1 (en) Led luminescence apparatus
WO2010137921A2 (en) Led driver
WO2012153947A9 (ko) Led 구동 장치 및 이를 이용한 led 구동 방법
WO2016093534A1 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2014104843A1 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2020213997A1 (ko) 전압 또는 전류를 보상하는 장치
WO2020153560A1 (ko) 인버터 장치 및 이를 포함하는 인버터 패널
WO2019172643A1 (ko) 전원 장치
WO2018139838A1 (ko) 조명 구동 장치 및 이의 조명 구동 방법
WO2017171182A1 (ko) 풍력 발전 시스템의 컨버터 구동 장치 및 컨버터 제어 장치, 풍력 발전 시스템의 스위칭 소자 모듈 구동 장치 및 스위칭 소자 모듈 제어 장치
WO2014123360A1 (ko) 엘이디 조명장치
WO2022139083A1 (ko) 오동작을 감지할 수 있는 능동형 전류 보상 장치
WO2019208839A1 (ko) 발광다이오드 조명 장치
WO2018131948A1 (ko) 경화 장치
WO2020055136A1 (ko) 전원 공급 시스템의 제어방법
WO2020055079A1 (ko) 전원 공급 시스템
WO2020055080A1 (ko) 전원 공급 시스템
WO2021221461A1 (ko) 누전 및 지락시 감전 및 화재를 방지하는 장치, 방법 및 배전시스템
WO2022191343A1 (ko) 무선 전력 전송 장치 및 이를 구비하는 무선 전력 시스템
WO2020055019A1 (ko) 전원 공급 장치 및 전원 공급 시스템
WO2020055078A1 (ko) 전원 공급 장치 및 전원 공급 시스템
WO2024072093A1 (ko) 엘이디 구동 장치 및 그를 포함하는 엘이디 조명 장치
WO2020153559A1 (ko) 인버터 장치 및 이를 포함하는 전력변환장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14765610

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749015

Country of ref document: EP

Kind code of ref document: A1