WO2019208839A1 - 발광다이오드 조명 장치 - Google Patents

발광다이오드 조명 장치 Download PDF

Info

Publication number
WO2019208839A1
WO2019208839A1 PCT/KR2018/004678 KR2018004678W WO2019208839A1 WO 2019208839 A1 WO2019208839 A1 WO 2019208839A1 KR 2018004678 W KR2018004678 W KR 2018004678W WO 2019208839 A1 WO2019208839 A1 WO 2019208839A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
mode
led light
voltage
current
Prior art date
Application number
PCT/KR2018/004678
Other languages
English (en)
French (fr)
Inventor
문경식
권기수
이상영
안기철
Original Assignee
주식회사 실리콘웍스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 실리콘웍스 filed Critical 주식회사 실리콘웍스
Priority to PCT/KR2018/004678 priority Critical patent/WO2019208839A1/ko
Priority to US17/049,666 priority patent/US11224103B2/en
Publication of WO2019208839A1 publication Critical patent/WO2019208839A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/35Balancing circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/36Circuits for reducing or suppressing harmonics, ripples or electromagnetic interferences [EMI]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/17Operational modes, e.g. switching from manual to automatic mode or prohibiting specific operations

Definitions

  • the present invention relates to a light emitting diode illumination device, and more particularly to a light emitting diode illumination device capable of driving in a dual mode corresponding to rectified voltages having different rated voltages.
  • Lighting devices have been developed to use a light source having a high luminous efficiency with a small amount of energy for energy saving.
  • Representative light sources used in the lighting device may be a light emitting diode (LED).
  • Light emitting diodes have the advantage of being differentiated from other light sources in various factors such as energy consumption, lifetime and light quality.
  • the light emitting diode has a characteristic of being driven by a current.
  • the lighting apparatus has been developed to provide AC power to the light emitting diode in an AC DIRECT TYPE.
  • the lighting device using the light emitting diode as a light source as described above is referred to as a light emitting diode lighting device hereinafter.
  • the LED lighting apparatus is configured to convert an AC power supply into a rectified voltage and emit light by the current driving using the rectified voltage.
  • the rectified voltage means a voltage obtained by full-wave rectifying the AC voltage of the commercial AC power supply by the rectifier.
  • the LED lighting device can be exposed to various voltage environments. Therefore, the light emitting diode lighting apparatus is required to be designed to be compatible with the rectified voltages having different rated voltages.
  • the LED lighting apparatus may be used in a voltage environment that provides a rated voltage of 120V and a rated voltage of 277V, in which case it may need to be designed to support dual mode.
  • the light emitting diode lighting apparatus is required to perform current regulation and enable uniform dimming when light is emitted using a rectified voltage having a low peak level among the dual voltages according to the rated voltage.
  • the LED lighting apparatus is required to perform power regulation when emitting light using a rectified voltage having a high peak level among the dual voltages.
  • the LED lighting apparatus is required to selectively provide a bleeding function in consideration of the operating characteristics of the dimmer according to the mode when the dimmer is configured for dimming.
  • the light emitting diode lighting apparatus needs to reduce a total harmonic distortion (THD) phenomenon.
  • TDD total harmonic distortion
  • the light emitting diode lighting apparatus needs to be designed to have a specification for complexly meeting the above-mentioned needs and demands.
  • the LED lighting apparatus of the present invention can emit light in dual mode in response to rectified voltages of different rated voltages, and implements uniform dimming, current regulation and power regulation by performing current regulation or voltage regulation according to the mode. It aims to reduce the THD phenomenon.
  • the LED lighting apparatus of the present invention has another object of selectively providing a bleeding function according to a mode.
  • the LED lighting apparatus of the present invention the first LED light source and the second LED light source included in the first light source group; A third LED light source and a fourth LED light source included in the second light source group; Determine a first mode and a second mode according to the peak level of the rectified voltage, provide a mode control signal and a current control signal corresponding to the mode, wherein the peak of the rectified voltage of the second mode is higher than the first mode A mode determination unit having a level; By the current control signal, the second light source bypasses the rectified voltage to the first light source group in a first period in which the rectified voltage is less than a preset control level among the entire period of the first mode and the second mode.
  • a current controller for transmitting to the group The first balancing level is set to a different level according to the mode according to the current control signal, and when the rectified voltage is less than the first balancing level, the rectified voltage is bypassed by the first LED light source to the second LED light source.
  • a first balancing circuit for transmitting A second balancing level is set to a different level according to a mode according to the current control signal; and when the rectified voltage is less than the second balancing level, the second LED bypasses the third LED light source and transfers it to the fourth LED light source.
  • Balancing circuit in response to the mode control signal, an arrangement state of internal LED light sources is in series or parallel in response to a change in one period of the rectified voltage according to turning on and off of the first and second balancing circuits in the first mode.
  • the LED lighting apparatus of the present invention the first LED light source and the second LED light source included in the first light source group; A third LED light source and a fourth LED light source included in the second light source group; In response to the rectified voltage of the first mode having the peak level higher than the second mode, using the peak voltage along the peak level of the rectified voltage to provide a mode detection signal having a different level for each mode Circuit; By the current control signal, the rectified voltage is bypassed by the first light source group in the first period during which the rectified voltage is less than a preset control level in the entire period of the first mode and the second mode, thereby bypassing the second light source group.
  • the first balancing level is set to a different level according to the mode according to the current control signal, and when the rectified voltage is less than the first balancing level, the rectified voltage is bypassed by the first LED light source to the second LED light source.
  • a second balancing level is set to a different level according to a mode according to the current control signal; and when the rectified voltage is less than the second balancing level, the second LED bypasses the third LED light source and transfers it to the fourth LED light source.
  • Balancing circuit A first driver providing a first current path corresponding to a series or parallel connection of the first LED light source and the second LED light source in the first mode; And providing a second current path corresponding to a series or parallel connection of the third LED light source and the fourth LED light source in the first mode, and providing a third current path to the fourth LED light source in the second mode. And a second driver, wherein at least one of the first driver and the second driver provides the current control signal having a different level for each mode in response to the mode detection signal.
  • the LED lighting apparatus of the present invention can emit light in dual mode in response to rectified voltages having different peak levels. Therefore, the LED lighting apparatus has an advantage of supporting various voltage environments.
  • the LED lighting apparatus of the present invention operates in a dual mode in response to rectified voltages due to different rated voltages, and performs current regulation and uniform dimming when the peak level emits light by a low rectified voltage. In the case of emitting light by a high rectified voltage, power regulation may be performed. Therefore, the LED lighting apparatus of the present invention has the advantage of maintaining the power consumption uniformly.
  • the LED lighting apparatus of the present invention provides a bleeding function, and the bleeding function enables stable operation considering the operating characteristics of the dimmer.
  • the light emitting diode illumination device of the present invention can reduce the total harmonic distortion phenomenon by controlling the change of the drive current according to the light emission to follow the waveform of the rectified voltage.
  • FIG. 1 is a block diagram showing a preferred embodiment of the LED lighting apparatus of the present invention.
  • FIG. 2 is a detailed circuit diagram corresponding to the embodiment of FIG. 1.
  • FIG. 2 is a detailed circuit diagram corresponding to the embodiment of FIG. 1.
  • FIG. 3 is a detailed illustration of the voltage sensing unit of FIG. 1.
  • FIG. 4 is a waveform diagram illustrating determination of a second mode according to a peak voltage.
  • FIG. 5 is a waveform diagram illustrating determination of a first mode according to a peak voltage.
  • FIG. 6 is a detailed circuit diagram of a mode detector and a mode controller of FIG. 1.
  • FIG. 7 is a block diagram illustrating a configuration of a power compensator.
  • FIG. 8 is a block diagram illustrating a case where the power compensator is configured in the driver 60.
  • FIG. 9 is a circuit diagram illustrating a configuration of a mode detector.
  • 10 is a detailed circuit diagram of the driver 60 of FIG.
  • FIG. 11 is a detailed circuit diagram of the driver 65 of FIG. 2.
  • FIG. 12 is a detailed circuit diagram of a current controller for explaining the operation of the first mode.
  • FIG. 13 is a detailed circuit diagram of a current controller for explaining the operation of the second mode.
  • Fig. 14 is a block diagram illustrating the operation of the current path control circuit in the first mode.
  • Fig. 15 is a block diagram illustrating the operation of the current path control circuit in the second mode.
  • 16 is a detailed circuit diagram showing another embodiment of the current controller.
  • 17 and 18 are circuit diagrams illustrating a change in current path according to a change in rectified voltage in the first mode.
  • Fig. 19 is a waveform diagram illustrating a current change and a light emission state change in the first mode.
  • 20 to 23 are circuit diagrams illustrating a change in the current path according to the change in the rectified voltage in the second mode.
  • Fig. 24 is a waveform diagram illustrating a current change and a light emission state change in a second mode.
  • Fig. 25 is a waveform diagram illustrating operation by current regulation in the first mode.
  • Fig. 26 is a waveform diagram illustrating operation by power regulation in the second mode.
  • the light emitting diode lighting apparatus of the present invention using the light emitting diode as a light source is configured to perform a dual mode in which the rated voltage emits light by different rectified voltages.
  • Embodiments of the LED lighting apparatus of the present invention are configured to perform regulation in a different manner for each mode.
  • the dual mode may be divided into a first mode and a second mode.
  • the first mode may be defined as emitting light by a rectified voltage of 120 V
  • a second mode May be defined as light emission by a rectified voltage of a rated voltage of 277V higher than the first mode.
  • the embodiment of the present invention can emit light corresponding to the rectified voltages of rated voltage 120V and rated voltage 227V, performs current regulation corresponding to light emission in the first mode, and power regulation corresponding to light emission in the second mode. Perform.
  • Embodiments of the present invention include a power supply circuit 10 that provides a full-wave rectified rectified voltage Vin using a commercial AC power supply having a rated voltage of 120V or a rated voltage of 227V.
  • the power supply circuit 10 includes a commercial power supply VAC, a dimmer TC and a rectifier circuit 12.
  • VAC Commercial power supplies
  • the commercial AC power source may be exemplarily illustrated as having an AC voltage of rated voltage 120V or an AC voltage of rated voltage 277V.
  • the dimmer TC may control the phase of the AC voltage provided to the rectifier circuit 12 in the commercial power supply VAC.
  • the dimmer TC controls the amount of drive current supplied for emitting light by controlling the phase of an alternating voltage.
  • the dimmer TC may control the degree to which the light emitting diode illumination device emits light, that is, the brightness.
  • the rectifier circuit 12 performs full-wave rectification of the AC voltage, and outputs the rectified voltage Vin generated as a result of the full-wave rectification.
  • the rectifier circuit 12 may be configured using a bridge diode including four diodes.
  • the rectified voltage Vin has a peak level corresponding to the rated voltage 120V or corresponding to the rated voltage 277V, the phase is controlled by the dimmer TC, and full-wave rectified by the rectifier circuit 12 Has a waveform.
  • the rectified voltage Vin has a period corresponding to one half of the period of the AC voltage provided by the commercial power source (VAC). That is, the rectified voltage Vin has a waveform that rises and falls during the half period of the alternating voltage.
  • the rising or falling of the rectified voltage Vin may be understood to mean the rising or falling of the ripple component.
  • the amount of drive current for light emission is changed in response to the change in the rectified voltage Vin.
  • Embodiments of the present invention include first to fourth LED light sources LED1 to LED4 as light sources. It may be understood that the first LED light source LED1 and the second LED light source LED2 are included in the first light source group, and the third LED light source LED3 and the fourth LED light source LED4 are included in the second light source group. It can be understood to be included.
  • Each of the first LED light source LED1 to the fourth LED light source LED4 may include one light emitting diode or a plurality of light emitting diodes connected in series or in parallel.
  • each of the first LED light source LED1 to the fourth LED light source LED4 includes a plurality of light emitting diodes, light emitting diodes having the same number and the same structure, light emitting diodes having the same number and different structure, the same as the different number Light emitting diodes of different structures and light emitting diodes of different numbers and structures.
  • the first LED light source LED1 to the fourth LED light source LED4 are denoted by one light emitting diode symbol in the drawing.
  • 1 includes a mode determiner 20, balancing circuits 30 and 40, a current controller 50, and a current path providing circuit 100.
  • the mode determining unit 20, the balancing circuit 30, and the current control unit 50 are configured in parallel with the input terminal and the rectifier circuit 12 of the first LED light source LED1 of the first light source group. That is, the rectified voltage Vin is commonly applied to the first LED light source LED1, the mode determination unit 20, the balancing circuit 30, and the current control unit 50 configured in parallel.
  • the mode determination unit 20 determines the first mode and the second mode according to the peak level of the rectified voltage Vin, and provides the mode control signals M1 and M2 and the current control signals M3 and M4 corresponding to the mode.
  • the embodiment of the present invention is provided with a rectified voltage Vin corresponding to the rated voltage 120V in the first mode and a rectified voltage Vin corresponding to the rated voltage 277V in the second mode as described above. Therefore, the peak level of the rectified voltage Vin in the second mode is higher than the peak level of the rectified voltage Vin in the first mode.
  • the mode control signals M1 and M2 and the current control signals M3 and M4 have different levels depending on the mode.
  • the mode control signal M1 is provided to the switching circuits CP1 to CP4 of the current path providing circuit 100, and the mode control signal M2 is provided to the switching circuit CP4.
  • the current control signal M3 is provided to the current controller 50, and the current control signal M4 is provided to the balancing circuits 30 and 40.
  • the mode determiner 20 includes a voltage detector 22, a mode detector 24, and a mode controller 26 to provide the mode control signals M1 and M2 and the current control signals M3 and M4. .
  • the voltage sensing unit 22 provides a peak voltage corresponding to the peak level of the rectified voltage Vin.
  • the mode detector 24 receives the peak voltage and provides a mode detection signal having different levels for each mode according to the peak voltage.
  • the mode controller 26 receives the mode detection signal and generates and provides mode control signals M1 and M2 and current control signals M3 and M4 corresponding to the mode according to the mode detection signal.
  • the mode determiner 20 may further include a power compensator 28 (see FIG. 7).
  • the power compensator 28 generates a power compensation signal corresponding to the peak level of the rectified voltage Vin. And provide a power compensation signal to the current path providing circuit 100 for power regulation.
  • the power compensator 28 will be described with reference to FIG. 7 to be described later.
  • the current control unit 50 receives the current control signal M3, and regulates the rectified voltage Vin in a first period in which the rectified voltage Vin is less than a preset control level during the entire period of the first mode and the second mode by the current control signal M3. And bypass the first light source group for delivery to the second light source group.
  • the current controller 50 turns on the first bypass path that bypasses the first light source group and transfers the rectified voltage Vin to the second light source group for the entire period of the first mode in response to the current control signal M3. do.
  • the current controller 50 turns on the second bypass path that bypasses the first light source group and transfers the rectified voltage Vin to the second light source group in the first period of the second mode in response to the current control signal M3. .
  • the current controller 50 turns off the second bypass path in a period other than the first period of the second mode.
  • first bypass path and the second bypass path may be understood as current paths formed inside the current controller 50, which may be configured to share at least some components. The detailed configuration and operation of the current controller 50 will be described later with reference to FIGS. 11 and 12.
  • the balancing circuit 30 generates the comparison voltage of the first balancing level at a different level according to the mode by the current control signal M4, and converts the rectified voltage Vin to the first LED light source when the rectifying voltage Vin is less than the first balancing level of the comparison voltage. And provide a first balancing path that bypasses (LED1) and delivers to the second LED light source (LED2).
  • the balancing circuit 30 When the balancing circuit 30 provides the first balancing path, the first LED light source LED1 and the second LED light source LED2 are aligned in parallel with respect to the rectified voltage Vin. When the balancing circuit 30 blocks the bypass of the rectified voltage Vin, the first LED light source LED1 and the second LED light source LED2 are aligned in series with the rectified voltage Vin.
  • the balancing circuit 40 is configured to receive the rectified voltage Vin through the second LED light source LED2 or the current controller 50. Then, the balancing circuit 40 generates a comparison voltage of the second balancing level at a different level according to the mode according to the current control signal M4, and when the rectified voltage Vin is less than the second balancing level of the comparison voltage, the balancing voltage Vin is converted into a third voltage. And provide a second balancing path that bypasses the LED light source LED3 and delivers it to the fourth LED light source LED4.
  • the balancing circuit 40 When the balancing circuit 40 provides the second balancing path, the third LED light source LED3 and the fourth LED light source LED4 are aligned in parallel with respect to the rectified voltage Vin. When the balancing circuit 40 blocks the bypass of the rectified voltage Vin, the third LED light source LED3 and the fourth LED light source LED4 are aligned in series with the rectified voltage Vin.
  • the balancing circuits 30 and 40 set the first balancing level and the second balancing level of each comparison voltage equally by the current control signal M4 in the first mode.
  • the turn-off and turn-on time of the balancing circuits 30 and 40 may be the same during one cycle of the rectified voltage Vin, and a time point when the arrangement state of the internal LED light sources is changed in series or in parallel in the light source group. This can be the same.
  • the first balancing level and the second balancing level of the respective comparison voltages of the balancing circuits 30 and 40 may be adjusted for uniform dimming of the respective LED light sources in the first and second light source groups.
  • each of the LED light sources in the first light source group may be adjusted when the arrangement state is changed from series to parallel (or parallel to series) so that the current consumption in series light emission and the current consumption in parallel light emission are the same.
  • each of the LED light sources in the first light source group may maintain uniform brightness and implement uniform dimming. Uniform dimming may be implemented by controlling the second light source group in the same manner as the first light source group.
  • the second balancing level of the balancing circuit 40 is higher than the control level of the current controller 50 by the current control signals M3 and M4, and the first balancing level of the balancing circuit 30 is balanced. It is preferable to set higher than the second balancing level of the circuit 40.
  • the current controller 50, the balancing circuit 40, and the balancing circuit 30 may be sequentially turned off and on in response to a change in one period of the rectified voltage Vin.
  • the light emission states of the LED light sources in the first light emitting group and the second light emitting group in the first mode may have a rectified voltage Vin during one period. In response to the rising, the light emission is changed in the order of parallel light emission and serial light emission.
  • the light emission states of the LED light sources in the first light emitting group and the second light emitting group in the second mode correspond to the emission of the fourth LED light source LED4 and the second LED light source in response to the increase in the rectified voltage Vin during one period.
  • the current path providing circuit 100 includes switching circuits CP1 to CP4 and sensing resistors Rs1 and Rs2.
  • the sensing resistor Rs1 commonly connected to the switching circuits CP1 and CP2 and the sensing resistor Rs2 commonly connected to the switching circuits CP3 and CP4 have the same resistance value for convenience of description. Can be assumed to have.
  • the switching circuits CP1 to CP3 receive the mode control signal M1 and the switching circuit CP4 is configured to receive the mode control signals M1 and M2.
  • the switching circuit CP4 provides a different current path depending on the mode and the current path for the first mode is controlled by the mode control signal M1 and the current path for the second mode is configured to be controlled by the mode control signal M2. .
  • Detailed configurations of the switching circuits CP1 to CP4 will be described later with reference to FIG. 2.
  • the current path providing circuit 100 provides a current path corresponding to each of the first light source group and the second light source group in the first mode.
  • the current path providing circuit 100 provides a current path for each of the first LED light source LED1 to the fourth LED light source LED4 in the first mode, or the second LED light source LED2 and the second of the first light source group.
  • a current path is provided for the fourth LED light source LED4 of the light source group.
  • the current path providing circuit 100 provides a current path to the fourth LED light source LED4 of the second light source group in the second mode, and the current path in the second mode corresponds to a change in one period of the rectified voltage Vin.
  • the current path in the second mode corresponds to a change in one period of the rectified voltage Vin.
  • the current path providing circuit 100 may be configured using the drivers 60 and 65 as shown in FIG. 2.
  • the mode controller 26 and the power compensator 28 may be internal or external to the drivers 60 and 65.
  • the embodiment of the present invention may further include a bleeder corresponding to the configuration of the dimmer TC.
  • FIG. 2 is a circuit diagram corresponding to the embodiment of FIG. 1, and the circuit diagram of FIG. 2 may be understood that the mode controller 26 and the power compensator 28 are embedded in a driver, unlike FIG. ).
  • the voltage detector 22 of FIG. 2 may be described with reference to FIG. 3.
  • the voltage detector 22 includes an input circuit 22a, a peak detector 22b, and a capacitor C12.
  • the input circuit 22a includes series connected resistors R11 and R12 for dividing the rectified voltage Vin and a capacitor C11 connected in parallel with the resistor R12.
  • the input circuit 22a charges the capacitor C11 with a voltage obtained by dividing the rectified voltage Vin applied to the resistor R12.
  • the peak detector 22b outputs the peak voltage VPD which detected the peak level of the charging voltage of the capacitor C11.
  • the capacitor C12 stabilizes the output level of the peak voltage VPD.
  • the voltage detector 22 senses the rectified voltage Vin and outputs a peak voltage VPD corresponding to a smooth level.
  • the peak voltage VPD has a low level corresponding to the rectified voltage Vin of the rated voltage 120V and has a high level corresponding to the rectified voltage Vin of the rated voltage 277V.
  • the mode detector 24 outputs a low level mode detection signal VCDL when the level of the peak voltage VPD is high, as shown in FIG. 4, and outputs a mode detection signal VCDL of high level when the level of the peak voltage VPD is low, as shown in FIG. 5. do.
  • the voltage applied to the terminals CDL of the drivers 60 and 65 may be understood as the mode detection signal VCDL.
  • the mode detector 24 of FIG. 2 is configured such that the switch SW1 is turned on or off in accordance with the level of the peak voltage VPD, and the charge / discharge of the capacitors C14 and C15 is controlled according to the switching state of the switch SW1. .
  • the charging / discharging of the capacitors C14 and C15 is controlled to determine the mode detection signal VCDL of the terminal CDL of the drivers 60 and 65.
  • the capacitors C14 and C15 are discharged when the switch SW1 is turned on by the constant voltage inside the drivers 60 and 65, and are charged when the switch SW1 is turned off, and the capacitors C14 and C15 are charged or discharged. Provided by the detection signal VCDL.
  • the mode detector 24 may be configured to output the high level or low level mode detection signal VCDL by determining the peak voltage VPD based on the preset reference voltage VREF as shown in FIGS. 4 and 5.
  • mode detector 24 may be illustrated as shown in FIG. 6.
  • the mode detection unit 24 may be understood to correspond to those configured outside the drivers 60 and 65, and the mode control unit 26 may be understood to be configured in the drivers 60 and 65, respectively. have.
  • the mode detector 24 includes a comparator 25 for comparing the peak voltage VPD applied to the positive terminal (+) with a reference voltage VREF applied to the negative terminal ( ⁇ ), and a switch turned on or off by a comparison signal MS of the comparator. (SW1) and capacitor C14.
  • the switch SW1 and the capacitor C14 are the same as the components of the mode detector 24 of FIG. 2 and are denoted by the same reference numerals.
  • the comparator 25 compares whether the peak voltage VPD is high or low compared with the reference voltage VREF and outputs the comparison result as the comparison signal MS.
  • the comparator 25 When the peak voltage VPD is high, the comparator 25 outputs a high level comparison signal MS to turn on the switch SW1.
  • the switch SW1 When the switch SW1 is turned on, the charging voltage of the capacitor C14 is discharged, and the capacitor C14 has a low level charging voltage as shown in FIG. 4. At this time, the low level charging voltage of the capacitor C14 is provided to the mode control unit 26 as the low level mode detection signal VCDL through each terminal CDL of the drivers 60 and 65.
  • the comparator 25 When the peak voltage VPD is low, the comparator 25 outputs the low level comparison signal MS to turn off the switch SW1.
  • the switch SW1 When the switch SW1 is turned off, the capacitor C14 is charged by the constant voltage VDD, and the capacitor C14 has a high level charging voltage as shown in FIG. 5.
  • the high level charging voltage of the capacitor C14 is provided to the mode control unit 26 as the high level mode detection signal VCDL through each terminal CDL of the drivers 60 and 65.
  • the mode control unit 26 receives the mode detection signal VCDL, and corresponds to the level of the mode detection signal VCDL. M2 and current control signals M3 and M4 are output.
  • the mode determiner 20 may further include a power compensator 28 as illustrated in FIG. 7 for power regulation.
  • the power compensator 28 receives the peak voltage VPD, internally generates a power compensation signal corresponding to the level of the peak voltage VPD, and outputs a power compensation signal for power regulation of the current path formed in the second mode. Can be.
  • the power compensator 28 may be configured to provide a power compensation signal to the reference voltage generator 62 in the drivers 60 and 65 as shown in FIG. 7.
  • the reference voltage generator 62 is for providing the reference voltages VREF1 to VREF4 having different levels to the switching circuits CC0 to CC7 of the drivers 60 and 65.
  • the reference voltage VREF1 is provided to the switching circuits CC5 and CC7 and has the lowest level
  • the reference voltage VREF2 is provided to the switching circuits CC0 and CC6
  • the reference voltage VREF3 is the switching circuits CC1 and CC3.
  • the reference voltage VREF4 is provided to the switching circuits CC2 and CC4 and has the highest level. That is, the reference voltage has a gradually higher level in the order of VREF1, VREF2, VREF3, VREF4.
  • the reference voltage generator 62 varies the levels of the reference voltages VREF1 to VREF4 in response to the level change of the power compensation signal of the power compensator 28. That is, when the level of the peak voltage VPD rises as the peak level of the rectified voltage Vin increases, the reference voltage generator 62 may reduce the amount of current in response to the increase of the voltage, thereby reducing the amount of current. Decreases the level of VREF4. On the contrary, when the level of the peak voltage VPD decreases as the peak level of the rectified voltage Vin falls, the reference voltage generator 62 may increase the amount of current in response to the drop of the voltage, and thus the reference voltages VREF1 by the power compensation signal. Raise the level up to ⁇ VREF4.
  • the reference voltages VREF1 to VREF4 serve as a reference for limiting the amount of current flowing through the switching circuits CC0 to CC7, and the amount of current flowing through the switching circuits CC0 to CC7 decreases when the reference voltage increases and the reference voltage falls. If it increases.
  • the power compensator 28 provides a power compensation signal for power regulation so that the amount of current in the current path that is connected to the fourth LED light source in the second mode is affected by the fluctuation of the peak level of the rectified voltage Vin as described below. It can be controlled to correspond.
  • the peak detector 22b and the power compensator 28 may be included in the drivers 60 and 65.
  • the peak detector 22b and the power compensator 28 are configured in the driver 60.
  • the input circuit 22a is configured outside the driver 60, and the peak detector 22b is configured inside the driver 60.
  • the output of the input circuit 22a is transmitted to the peak detector 22b in the driver 60 via the terminal COMP of the driver 60.
  • the peak detector 22b may apply the peak voltage VPD to the terminal PD of the power compensator 28 and the driver 60, and the peak voltage VPD applied to the terminal PD may be charged to an external capacitor PDC. .
  • the peak voltage VPD applied to the terminal PD of the driver 60 may be transferred to the mode determination unit 24 as shown in FIG. 9 configured in another embodiment from FIG. 2.
  • the mode determination unit 24 is configured outside the driver 60 and includes the capacitor PDC, the resistor R24, the switch SW2, and the capacitor C14 of FIG. 8.
  • the resistor R24 transmits the peak voltage VPD of the capacitor PDC to the base of the switch SW2, and a capacitor C14 is formed between the emitter and the collector of the switch SW2. Then, the collector of the switch SW2 and one side of the capacitor C14 are connected to the terminal CDLY of the driver 60.
  • the switch SW2 is switched in correspondence with the level of the peak voltage VPD, and the capacitor C14 performs or charges with the voltage applied through the terminal CDLY according to the switching state of the switch SW2.
  • the voltage can be discharged through the switch SW2.
  • the mode determination unit 24 provides the mode detection signal VCDL with the voltage of the state charged or discharged to the capacitor C14 in response to the peak voltage VPD.
  • FIG. 2 includes two drivers 60 and 65.
  • the driver 60 includes terminals CH11 to CH14 for current input, a terminal CDL to which the mode detection signal VCDL is applied, a ground terminal GND for grounding, a terminal RISET for forming a current path and feedback of a sensing voltage, and an internal constant voltage. It is configured to have a terminal VA to which an input voltage is applied in order to produce a.
  • the driver 65 is also configured to have terminals CH21 to CH24 for current input, and is configured to have a terminal CDL, a ground terminal GND, a terminal RISET, and a terminal VA for the same purpose as the driver 60.
  • the drivers 60 and 65 generate a constant voltage therein corresponding to the input voltage applied through the terminal VA, and the constant voltage may be used to generate the reference voltages VREF1 to VREF4.
  • a voltage obtained by dividing the rectified voltage Vin may be used as an input voltage of the terminal VA.
  • the sensing resistors Rs1 and Rs2 are connected to the terminal RISETs of the drivers 60 and 65, respectively, and the sensing resistors Rs1 and Rs2 and the ground terminals GND of the drivers 60 and 65 are commonly connected to ground. It is configured to be.
  • the driver 60 includes switching circuits CC0, CC1, CC2, CC5 therein, the switching circuit CC0 is configured between the terminal CH12 and the terminal RISET, and the switching circuit CC1 is the terminal CH13 and the terminal RISET.
  • the switching circuit CC2 is configured between the terminal CH14 and the terminal RISET, and the switching circuit CC5 is configured between the terminal CH11 and the terminal RISET. That is, the switching circuits CC0, CC1, CC2, and CC5 have a current output side connected to the terminal RISET through a common node, and a current input side connected to the terminals CH11 to CH14, respectively.
  • the switch circuits CC0, CC1, and CC2 are controlled by the mode control signal M1 and are normally turned on in the first mode, and the switch circuit CC5 is controlled by the mode control signal M2 and is controlled. Normally turned on in 2 modes.
  • the driver 65 includes switching circuits CC6, CC3, CC4 and CC7 therein, the switching circuit CC6 is configured between the terminal CH22 and the terminal RISET, and the switching circuit CC3 is the terminal CH23 and the terminal RISET.
  • the switching circuit CC4 is configured between the terminal CH24 and the terminal RISET, and the switching circuit CC7 is configured between the terminal CH21 and the terminal RISET. That is, the switching circuits CC6, CC3, CC4 and CC7 have a current output side connected to the terminal RISET through a common node, and a current input side connected to the terminals CH21 to CH24, respectively.
  • the switching circuits CC6, CC3, and CC4 are controlled by the mode control signal M1 and are normally turned on in the first mode, and the switch circuit CC7 is controlled by the mode control signal M2 and is controlled. Normally turned on in 2 modes.
  • the switching circuit CP1 of FIG. 1 corresponds to the switching circuit CC1 of the driver 60 of FIG. 2, and the switching circuit CP2 of FIG. 1 corresponds to the driver 60 of FIG. 2.
  • 1 corresponds to the switching circuit CC2 of FIG. 1
  • the switching circuit CP3 of FIG. 1 corresponds to the switching circuit CC3 of the driver 65 of FIG. 2. Therefore, the switching circuit CC1 of the driver 60 of FIG. 2 is connected to the first LED light source LED1 through the terminal CH13, and the switching circuit CC2 of the driver 60 of FIG. 2 is provided through the terminal CH14. 2 is connected to the LED light source (LED2), the switching circuit CC3 of the driver 65 of Figure 2 is connected to the third LED light source (LED3) through the terminal CH23.
  • LED2 LED light source
  • LED3 of the driver 65 of Figure 2 is connected to the third LED light source (LED3) through the terminal CH23.
  • the switching circuit CC0 of the driver 60 is for connection to the bleeder 70 through the terminal CH12.
  • the bleeder 70 configured outside of the driver 60 receives the rectified voltage Vin and discharges current through a switching circuit CC0 that maintains turn-on during a period when the light sources, that is, the first light source and the second light source are extinguished. do.
  • the bleeder 70 is a component configured to correspond to the dimmer TC.
  • the bleeder 70 provides a current path for blocking current from flowing to the light source when the light sources are quenched by the dimmer TC.
  • the bleeder 70 provides a current path for blocking current from flowing to the light source during a period in which the light sources are extinguished during one period of the rectified voltage Vin.
  • the bleeder 70 is illustrated in FIG. 2 and omitted from FIG. 1.
  • the switching circuit CC6 of the driver 65 is connected to the terminal CH22 and is not involved in the operation of the embodiment of the present invention.
  • the embodiment of the present invention illustrates the configuration of the current path providing circuit using the drivers 60 and 65 of the same structure. As a result, the switching circuit CC0 connected to the terminal CH22 exists as a dummy channel.
  • the switching circuit CP4 of FIG. 1 corresponds to the switching circuits CC4, CC5, and CC7 of the drivers 60 and 65 of FIG. 2.
  • the switching circuit CP4 of FIG. 1 is formed by the switching circuit CC4 of FIG. 2.
  • the switching circuit CP4 of FIG. 1 is formed by the switching circuits CC5 and CC7 of FIG. 2.
  • the switching circuit CP4 of FIG. 1 is configured to be connected to the fourth LED light source LED4, and the switching circuits CC4, CC5, and CC7 of FIG. 2 are also connected to the fourth LED light source through the terminals CH11, CH24, and CH21. Commonly connected to LED4).
  • the switching circuits CC0, CC1, CC2, and CC5 of the driver 60 of FIG. 2 may be illustrated as shown in FIG. 10, and the switching circuits CC6, CC3, and CC4 of the driver 65 of FIG. 2. , CC7) may be illustrated as shown in FIG. 11.
  • the switching circuits CC0, CC1, CC2, and CC5 each include a comparator, an NMOS transistor serving as a switching element, and a switch in the same structure. More specifically, the switching circuit CC0 includes the comparator CA12 and the terminal CH12 to which the reference voltage VREF2 is applied to the non-inverting terminal and the sensing voltage of the sensing resistor Rs1 fed back through the terminal RISET is applied to the inverting terminal. Is configured between the node and the ground between the NMOS transistor QS12 and the gate of the comparator CA12 and the NMOS transistor QS12 to which the drain and the source are respectively connected to the terminal RISET and the output of the comparator CA12 is applied to the gate.
  • the switching circuit CC1 includes the comparator CA13, the terminal CH13, and the terminal RISET, to which the reference voltage VREF3 is applied to the non-inverting terminal and the sensing voltage of the sensing resistor Rs1 fed back through the terminal RISET is applied to the inverting terminal.
  • NMOS transistor QS13 to which the drain and the source are respectively connected to the gate, and the output of the comparator CA13 is applied to the gate, and is configured between the node and the ground between the gate of the comparator CA13 and the NMOS transistor QS13 and a mode control signal.
  • a switch S13 in which switching is controlled by M1.
  • the switching circuit CC2 includes the comparator CA14, the terminal CH14, and the terminal RISET, to which the reference voltage VREF4 is applied to the non-inverting terminal and the sensing voltage of the sensing resistor Rs1 fed back through the terminal RISET is applied to the inverting terminal.
  • NMOS transistor QS14 to which the drain and the source are respectively connected to the gate and the output of the comparator CA14 is applied to the gate, and is configured between the node and the ground between the gate of the comparator CA14 and the NMOS transistor QS14 and the mode control signal.
  • a switch S14 in which switching is controlled by M1.
  • the switching circuit CC5 includes the comparator CA11, the terminal CH11, and the terminal RISET, to which the reference voltage VREF1 is applied to the non-inverting terminal and the sensing voltage of the sensing resistor Rs1 fed back through the terminal RISET is applied to the inverting terminal.
  • NMOS transistor QS11 and drain and source are respectively connected to the gate and the output of comparator CA11 is applied between the node and ground between the gate of comparator CA11 and NMOS transistor QS11 and the mode control signal.
  • a switch S11 in which switching is controlled by M2.
  • the switching circuits CC6, CC3, CC4, and CC7 also include a comparator, an NMOS transistor serving as a switching element, and a switch, respectively, in the same structure. More specifically, the switching circuit CC6 includes the comparator CA22 and the terminal CH22 to which the reference voltage VREF2 is applied to the non-inverting terminal and the sensing voltage of the sensing resistor Rs2 fed back through the terminal RISET is applied to the inverting terminal. Is configured between the node and ground between the NMOS transistor QS22 and the gate of the comparator CA22 and the NMOS transistor QS22 to which the drain and the source are respectively connected to the terminal RISET and the output of the comparator CA22 is applied to the gate.
  • the switching circuit CC3 includes the comparator CA23, the terminal CH23, and the terminal RISET, to which the reference voltage VREF3 is applied to the non-inverting terminal and the sensing voltage of the sensing resistor Rs2 fed back through the terminal RISET is applied to the inverting terminal.
  • NMOS transistor QS23 to which the drain and the source are respectively connected to the gate and the output of the comparator CA23 is applied to the gate, and is configured between the node and the ground between the gate of the comparator CA23 and the NMOS transistor QS23 and the mode control signal.
  • a switch S23 in which switching is controlled by M1.
  • the switching circuit CC4 includes the comparator CA24, the terminal CH24, and the terminal RISET, to which the reference voltage VREF4 is applied to the non-inverting terminal and the sensing voltage of the sensing resistor Rs2 fed back through the terminal RISET is applied to the inverting terminal. And a mode control signal between the NMOS transistor QS24 and the gate between the comparator CA24 and the gate of the NMOS transistor QS24, to which the drain and the source are respectively connected and the output of the comparator CA24 is applied to the gate. And a switch S24 in which switching is controlled by M1.
  • the switching circuit CC7 includes the comparator CA21, the terminal CH21, and the terminal RISET, to which the reference voltage VREF1 is applied to the non-inverting terminal and the sensing voltage of the sensing resistor Rs2 fed back through the terminal RISET is applied to the inverting terminal.
  • NMOS transistor QS21 to which the drain and the source are respectively connected to the gate and the output of the comparator CA21 is applied to the gate, and is configured between the node and the ground between the gate of the comparator CA21 and the NMOS transistor QS21 and a mode control signal.
  • a switch S21 in which switching is controlled by M2 is included.
  • the reference voltages VREF1 to VREF4 of the driver 60 may be understood to have the same level as the reference voltages VREF1 to VREF4 of the driver 65.
  • the reference voltage VREF1 is the driving current Iin of the peak value of the rectified voltage Vin in the second mode so that the NMOS transistors QS11 and QS21 can be turned on during the second mode to provide a current path corresponding to light emission in the second mode. It is preferable to be set to have a level higher than the sensing voltage corresponding to.
  • the reference voltage VREF2 is obtained by the first LED light source LED1 of the first light source group and the third LED light source LED3 of the second light source group starting to emit light during one period of change in the rectified voltage Vin of the first mode. It is preferable to be set to have a level lower than the sensing voltage corresponding to the driving current Iin at the time. According to the level of the reference voltage VREF2, the NMOS transistors QS12 and QS22 may be turned on until the first and second light source groups emit light in the first mode.
  • the reference voltage VREF3 has a level lower than the sensing voltage corresponding to the driving current Iin when the LED light sources of the first and second light source groups emit light in series during one period of the change in the rectified voltage Vin of the first mode. Is preferably set. According to the level of the reference voltage VREF3, the NMOS transistors QS13 and QS23 may be turned on until the LED light sources of the first and second light source groups emit light in series in the first mode.
  • the reference voltage VREF4 is preferably set to have a level higher than the sensing voltage corresponding to the driving current driving current Iin of the peak value of the rectified voltage Vin in the first mode. According to the reference voltage VREF4, the NMOS transistors QS14 and QS24 may maintain turn-on for the LED light sources of the first and second light source groups to emit light in series in the first mode.
  • the comparators CA11 to CA14 and CA21 to CA24 of the switching circuits CC0 to CC7 and the NMOS transistors QS11 to QS14 and QS21 to QS24 compare the reference voltage with the sensing voltage to establish a current path. While providing current control and sensing voltage higher than the reference voltage, it blocks the current path.
  • the switches S11 to S14 and S21 to S24 of the switching circuits CC0 to CC7 switch off current paths formed by the NMOS transistors according to modes.
  • the above-described drivers 60 and 65 may be equivalently represented as shown in FIGS. 12 and 13.
  • the switches S11, S21, S12, S22, S13, S23, S14, and S24 of FIGS. 10 and 11 are equivalently represented as switching current paths in FIGS. 12 and 13.
  • Comparators of the respective switching circuits CC0 to CC7 of FIG. 11 and NMOS transistors are equivalently represented as current sources forming current paths in FIGS. 12 and 13.
  • the drivers 60, 65 in the first mode turn on the switches S12, S22, S13, S23, S14 and S24 by the mode control signal M1 corresponding to the high level mode detection signal VCDL as shown in FIG. A current path corresponding to light emission in the first mode can be provided. At this time, the switches S11 and S21 of the drivers 60 and 65 are turned off by the mode control signal M2.
  • the drivers 60 and 65 turn on the switches S11 and S21 by the mode control signal M2 corresponding to the low level mode detection signal VCDL in the second mode as shown in FIG. 13 to emit light in the second mode. It is possible to provide a corresponding current path. At this time, the switches S12, S22, S13, S23, S14, and S24 of the drivers 60 and 65 are turned off by the mode control signal M1.
  • the output terminal of the first LED light source LED1 is connected to the terminal CH13 of the driver 60, and is connected to the second LED light source LED2 through the diode D1 and the resistor R1 connected in series. do.
  • the output terminal of the second LED light source LED2 is connected to the terminal CH14 of the driver 60 while the third LED light source LED3 is connected through the diode D2, the resistor R2, and the resistor R3 connected in series. Is connected to.
  • the output terminal of the third LED light source LED3 is connected to the terminal CH23 of the driver 65 while being connected to the fourth LED light source LED4 through the diode D3 and the resistor R5 connected in series.
  • the output terminal of the fourth LED light source LED4 is connected to the terminal CH24 of the driver 65.
  • the diodes D1, D2, D3 are for blocking the flow of reverse current.
  • the resistor R1 is included in the balancing circuit 30
  • the resistors R2 and R3 are included in the current controller 50
  • the resistor R5 is included in the balancing circuit 40.
  • the first to fourth LED light sources LED1 to LED4 configured as described above are divided into a first light source group and a second light source group by the current controller 50.
  • the current controller 50 maintains turn-on for the entire period of the first mode to bypass the rectified voltage Vin to bypass the first LED light source LED1 and the second LED light source LED2, which are the first light source group, to the second light source group. Configured to deliver.
  • the current controller 50 is configured to bypass the first light source group and transfer the rectified voltage Vin to the second light source group in a first period in which the rectified voltage Vin is less than the preset control level.
  • the current controller 50 includes a load circuit including a comparison voltage providing unit 52, a comparator 54, a switch T1, a switch Q1, and resistors R2 and R3 connected in series as shown in FIG. 2. It includes.
  • the comparison voltage providing unit 52 has a first control level in the first mode in response to the current control signal M3 and provides a comparison voltage having a second control level lower than the first control level in the second mode. It is composed.
  • the comparison voltage providing unit 52 is configured between the output terminal of the rectifying circuit 12 through which the rectified voltage Vin is output and the positive terminal + of the comparator 54.
  • the comparator 54 is configured to compare the load voltage of the load circuit with the comparison voltage of the comparison voltage providing unit 52, and apply a voltage corresponding to the comparison result to the gate of the switch T3.
  • the switch T3 may be configured as an NMOS transistor, and the drain is connected to the output terminal of the rectifying circuit 12 to which the rectified voltage Vin is output, and the source is connected to the resistor R2 of the load circuit.
  • the switch T3 selectively transfers the rectified voltage Vin of the rectifier circuit 12 by the output of the comparator.
  • the switch Q1 may be configured as a PNP bipolar transistor, and a resistor R2 is connected between the emitter and the collector, and the base is connected to the resistor R4 which senses a current output from the second LED light source LED2. .
  • the resistor R4 is connected to the output terminal of the diode D4 and the driver 60 connected to the output terminal of the second LED light source LED2 to sense a current flowing from the second LED light source LED4 to the terminal CH4 of the driver 60. It is connected to a node between the terminals CH14 and applies the sensed voltage to the base of the switch Q1.
  • the diode D4 is for preventing current from flowing into the second LED light source LED2.
  • the switch Q1 is turned off by the high voltage applied to the resistor R4 when the current is output from the second LED light source LED2 and applied to the resistor R4 when the current is not output from the second LED light source LED2. Turn on by a low voltage. That is, the switch Q1 is turned on in the first mode and turned off in the second mode.
  • the load circuit includes resistors R2 and R3 connected in series between the first and second light source groups.
  • the resistor R2 is connected to the output terminal of the switch T3 and the second LED light source LED2 of the first light source group, and is configured in parallel with the switch Q1.
  • the resistance value of the load circuit is varied by the switching operation of the switch Q1, and generates a load voltage corresponding to the amount of current.
  • the load voltage described above may be applied to the negative terminal of the comparator 54 through a node between the resistor R1 and the switch T3.
  • the voltage of the node between the resistor R3 and the third LED light source LED3 of the second light source group may be provided as an operating voltage of the comparator 54.
  • the current controller 50 configured as described above is operated as shown in FIG. 14 in the first mode and as shown in FIG. 15 in the second mode.
  • the switching circuit CC2 of the driver 60 is also equivalently represented as in FIGS. 12 and 13.
  • the switching circuit CC2 of the driver 60 is turned on by the mode control signal M1.
  • the current output from the second LED light source LED2 flows to the terminal CH14 of the driver 60 while the second LED light source LED2 emits light. Therefore, switch Q1 is turned on by the current flowing from the emitter to the base. As a result, the current path for the first mode is formed to bypass the resistor R2 and through the switch Q1 and the resistor R3. Therefore, the load voltage is formed by the resistor R3.
  • the comparison voltage providing unit 52 provides the comparison terminal of the first control level at which the switch T3 is always turned on in the first mode, to the positive terminal (+) of the comparator 54.
  • the level of the comparison voltage described above is controlled by the current control signal M3 in the first mode.
  • the comparator 54 maintains a high level output because the load voltage applied to the negative terminal ( ⁇ ) is always formed at a level lower than the comparison voltage applied to the positive terminal (+). Therefore, the switch T3 is kept on by the output of the high level comparator 54.
  • the current controller 50 may provide a bypass path including the switch T3 and the resistor R3 in the first mode, and the rectified voltage Vin may be transmitted to the second light source by the current controller 50. .
  • the first LED light source LED1 of the first light source group and the third LED light source LED3 of the second light source group are connected in parallel with the rectified voltage Vin in the first mode. do.
  • the switching circuit CC2 of the driver 60 is turned off by the mode control signal M1 in the second mode.
  • the comparison voltage providing unit 52 first emits the fourth LED light source LED4 in response to the increase in the rectified voltage Vin in the second mode, and then is different from the fourth LED light source LED4 (for example, the second LED).
  • the fourth LED light source LED4 for example, the second LED.
  • a comparison voltage of a second control level lower than the load voltage provided by the resistors R2 and R3 is provided to the positive terminal + of the comparator 54.
  • the first period of the second mode may be defined as a period below the level at which the rectified voltage Vin emits only the fourth LED light source LED4.
  • the comparison voltage providing unit 52 controls the comparison voltage to have the second control level by the current control signal M3 in the second mode, and the second control level of the comparison voltage in the second mode is set as the comparison voltage in the first mode. It is set to be lower than 1 control level.
  • the comparator 54 maintains the high level output for the first period of the second mode in which the load voltage applied to the negative terminal (-) is lower than the comparison voltage applied to the positive terminal (+), and the first mode of the second mode. During the period other than the period, the low level output is maintained. Therefore, the switch T3 is turned on for the first period of the second mode and turned off for a period other than the first period of the second mode.
  • the current controller 50 provides a bypass path including the switch T3 and the resistors R2 and R3 in the first period of the second mode, and the current controller 50 during the first period of the second mode.
  • the rectified voltage Vin may be transmitted to the second light source.
  • the current controller 50 controls the amount of current flowing through the switch T3 while providing the bypass path in the first period of the second mode.
  • the amount of current flowing through the switch T3 can be regulated by changing the load voltage applied to the negative terminal (-) of the comparator 54 in accordance with the change in the rectified voltage Vin.
  • the first LED light source LED1 of the first light source group and the third LED light source LED3 of the second light source group are applied to the rectified voltage Vin during the first period of the second mode. Are connected in parallel.
  • the current controller 50 may be modified as shown in FIG.
  • the current controller 50 of FIG. 16 includes a comparison voltage providing unit 52 that provides a fixed level of comparison voltage.
  • the current controller 50 further includes resistors R50 and R52 connected in series to the output side of the switch T3, and is connected to the resistor R52 in parallel and controlled by the current control signal M3. (SW52) is further included.
  • the current controller 50 of FIG. 16 may control the load voltage by turning on or off the switch SW52 according to the mode by the above configuration.
  • the switch SW52 is turned on so that the load voltage can be maintained at a level lower than the comparison voltage.
  • the switch SW52 is turned on so that the load voltage has a lower level than the comparison voltage in the first period and is turned off so that the load voltage has a higher level than the comparison voltage in the period other than the first period.
  • the balancing circuit 30 is configured in parallel with the first LED light source LED1 of the first light source.
  • the balancing circuit 30 includes a comparison voltage providing unit 32, a comparator 34, a switch T1, and a load circuit.
  • the load circuit includes a resistor R1.
  • the comparison voltage providing unit 32 is configured to provide a comparison voltage having a first balancing level higher than the first mode in the second mode in response to the current control signal M4.
  • the comparator 34 compares the load voltage with the comparison voltage and provides an output of a level corresponding to the comparison result.
  • the switch T1 is composed of an NMOS transistor and is switched by the output of the comparator 34 applied to the gate, and the drain and the source are connected to the rectifier circuit 12 and the resistor R1, respectively.
  • the resistor R1 which is a load circuit, is configured between the first LED light source LED1 and the second LED light source LED2 in the first light source group, is connected to the output terminal of the switch T1, and receives a load voltage corresponding to the amount of current. It is configured to provide a negative terminal (-) of the comparator 34.
  • the load voltage is a node voltage between the switch T1 and the resistor R1, and the output side voltage of the resistor R1 is used as the driving voltage of the comparator 34.
  • the balancing circuit 30 performs a first balancing path including the switch T3 and the resistor R1 according to the switching operation of the switch T1 according to the change of the load voltage applied to the resistor R1 by the above-described configuration. to provide.
  • the balancing circuit 30 transfers the rectified voltage Vin to the second LED light source LED2 by bypassing the first LED light source LED1 when the rectified voltage Vin is less than the first balancing level.
  • the balancing circuit 30 may perform current regulation when providing the first balancing path in response to the change of the rectified voltage Vin in the second mode, which will be described in detail later.
  • the balancing circuit 40 is configured in parallel with the third LED light source LED3 of the second light source.
  • the balancing circuit 40 includes a comparison voltage providing unit 42, a comparator 44, a switch T2, and a load circuit.
  • the load circuit includes a resistor R5.
  • the comparison voltage providing unit 42 is configured to provide a comparison voltage having a first balancing level higher than the first mode in the second mode in response to the current control signal M4.
  • the comparator 44 compares the load voltage with the comparison voltage and provides an output of a level corresponding to the comparison result.
  • the switch T2 is composed of an NMOS transistor and is switched by the output of the comparator 44 applied to the gate, and the drain and the source are respectively provided to the resistors R3 and R5 included in the current controller 54. Connected.
  • the resistor R5 which is a load circuit, is configured between the third LED light source LED3 and the fourth LED light source LED4 in the second light source group, is connected to the output terminal of the switch T2, and receives a load voltage corresponding to the amount of current. It is configured to provide a negative terminal (-) of the comparator 44.
  • the load voltage is a node voltage between the switch T2 and the resistor R5, and the output voltage of the resistor R5 is used as the driving voltage of the comparator 44.
  • the balancing circuit 40 performs a second balancing path including the switch T2 and the resistor R5 according to the switching operation of the switch T2 according to the change of the load voltage applied to the resistor R5 by the above configuration. to provide.
  • the balancing circuit 40 passes the rectified voltage Vin to the fourth LED light source LED4 by bypassing the third LED light source LED3 when the rectified voltage Vin is less than the second balancing level.
  • the balancing circuit 40 may perform current regulation when providing the second balancing path in response to the change in the rectified voltage Vin in the second mode, which will be described in detail later.
  • the first balancing level and the second balancing level of the balancing circuit 30 and the balancing circuit 40 are equally set in the first mode by the current control signal M4.
  • the arrangement of the internal LED light sources is changed in series or in parallel.
  • the second balancing level of the balancing circuit 40 is set higher than the control level of the current controller 50, and the first balancing level of the balancing circuit 30 is the second balancing level of the balancing circuit 40. It is set higher. Therefore, in response to the rising period of one period of the rectified voltage Vin, the current control unit 50, the balancing circuit 40 and the balancing circuit 30 are sequentially turned off. Then, the balancing circuit 30, the balancing circuit 40, and the current control unit 50 are turned on in response to the falling period of one period of the rectified voltage Vin.
  • the light emission states of the LED light sources in the first light emission group and the second light emission group are changed in the order of parallel light emission and serial light emission.
  • the light emission state of the LED light sources is light emission of the fourth LED light source LED4, the second LED light source LED2 and the fourth LED light source LED4 Serial light emission of the second LED light source (LED2) to the fourth LED light source (LED4) and serial light emission of the first LED light source (LED1) to the fourth LED light source (LED4).
  • FIG. 17 illustrates a case in which LED light sources in the first light emitting group and the second light emitting group emit light in parallel in response to a rectified voltage Vin having a rated voltage of 120V in the first mode.
  • FIG. 17 illustrates the operation of the embodiment corresponding to the rectified voltage Vin below the first and second balancing levels among the change of one period of the rectified voltage Vin, wherein the balancing circuits 30 and 40 are turned on. .
  • FIG. 18 illustrates a case in which LED light sources in the first light emitting group and the second light emitting group emit light in series corresponding to the rectified voltage Vin having a rated voltage of 120V.
  • FIG. 18 illustrates the operation of the embodiment corresponding to the rectified voltage Vin equal to or greater than the first and second balancing levels during one period change of the rectified voltage Vin, wherein the balancing circuits 30 and 40 are turned off. .
  • FIG. 19 illustrates a waveform diagram of voltages and currents according to an embodiment of the present invention, as shown in FIGS. 17 and 18, in order to correspond to one period of rectified voltage Vin in a first mode.
  • Iin represents the total input current provided to the first and second light sources, that is, a driving current due to light emission.
  • the rectified voltage Vin rises from 0V to a peak value corresponding to the rated voltage 120V via the first and second balancing levels and thereafter Drop to 0V via the first and second balancing levels.
  • the balancing circuits 30 and 40 Since the balancing circuits 30 and 40 have comparison voltages of the same balancing level in the first mode, the first and second balancing paths may be turned on or off at the same time. In addition, the balancing circuits 30 and 40 maintain the turn-on of the switches T1 and T2 in response to the rectified voltage Vin forming the load voltage lower than the comparison voltage to provide the first and second balancing paths, respectively. Therefore, the balancing circuits 30 and 40 maintain the normal turn-on state in response to the initial rectified voltage Vin.
  • the current controller 50 always has a first control level of the comparison voltage in the first mode higher than the load voltage by the rectified voltage Vin in one period.
  • the current controller 50 provides a bypass path including the switch T3 and the resistors R2 and R3 by turning on the switch T3 and turning off the switch Q1 during the first mode. Therefore, the current controller 50 maintains the normal turn-on state corresponding to the rectified voltage Vin of one cycle.
  • the switching circuits CC0, CC1, CC2, CC6, CC3, and CC4 maintain turn-on by the mode control signal M1, and the switching circuits CC5 and CC7 control the mode. It is turned off by the signal M2.
  • the switching circuits CC0, CC1, CC2, CC6, CC3, and CC4 maintain normal turn-on because the reference voltages VREF2 to VREF4 are higher than the sensing voltages fed back to the initial rectified voltage Vin.
  • the balancing circuits 30 and 40, the current controller 50, and the switching circuits CC0 to CC7 of the drivers 60 and 50 maintain normal turn-on.
  • the first LED light source LED1 and the second LED light source LED2 of the first light source group are provided with the balancing voltage Vin directly supplied from the rectifying circuit 12 or turned on the balancing circuit ( Provided via 30).
  • the third LED light source LED3 and the fourth LED light source LED4 of the second light source group receive or turn on the rectified voltage Vin via the turned-on current controller 50. It is provided via the current control unit 50 and the turned-on balancing circuit 40.
  • the first light source group and the second light source group are configured in parallel to the rectified voltage Vin by the bypass path of the current controller 50.
  • the first LED light source LED1 and the second LED light source LED2 of the first light source group are configured in parallel with respect to the rectified voltage Vin by the first balancing path of the turned on balancing circuit 30.
  • the third LED light source LED3 and the fourth LED light source LED4 of the second light source group are configured in parallel with respect to the rectified voltage Vin by the second balancing path of the turned on balancing circuit 40.
  • the first LED light source LED1 to the fourth LED light source LED4 are all provided with the rectified voltage Vin in parallel.
  • the bleeder 70 provides a discharge path until the rectified voltage Vin rises to the level at which each LED light source, that is, the first LED light source LED1 to the fourth LED light source LED4, emits light.
  • the discharge path is formed to include the bleeder 70, the switching circuit CC0 of the driver 60, and the sensing resistor Rs1. That is, before the first light source and the second light source emit light, the current of the low rectified voltage Vin is transmitted to the first LED light source LED1 to the fourth LED light source LED4 by the bleeder 70. .
  • the first LED light source LED1 to the fourth LED light source LED4 When the rectified voltage Vin rises to the level at which each LED light source, that is, the first LED light source LED1 to the fourth LED light source LED4, emits light, the first LED light sources LED1 to fourth connected in parallel with the rectified voltage Vin.
  • the LED light source LED4 emits light at the same time.
  • the switching circuit CC1 of the driver 60 in response to light emission of the first LED light source LED1, the switching circuit CC1 of the driver 60 provides a current path. In response to the light emission of the second LED light source LED2, the switching circuit CC2 of the driver 60 provides a current path. In response to light emission of the first LED light source LED1 and the second LED light source LED2, the driving current Iin flows through the switching circuits CC1 and CC2 to the sensing resistor Rs1. In this case, the sensing resistor Rs1 provides a sensing voltage corresponding to the increased driving current Iin corresponding to the increased rectified voltage Vin. The sensing voltage is higher than the reference voltage VREF2 applied to the comparator CA12 of the switching circuit CC0. Therefore, the NMOS transistor QS12 is turned off by the output of the comparator CA12, and the switching circuit CC0 is turned off.
  • the switching circuit CC3 of the driver 65 provides a current path.
  • the switching circuit CC4 of the driver 65 provides a current path.
  • the driving current Iin flows through the switching circuits CC3 and CC4 to the sensing resistor Rs2.
  • the first LED light source LED1 to the fourth LED light source LED4 simultaneously start emitting light in parallel. Therefore, as shown in FIG. 19, the currents ILED1 to ILED4 of each LED light source rise simultaneously.
  • the current of each switching circuit CC1 to CC4 is a sensing resistor. It is regulated to be maintained in a constant amount by the feedback of the sensing voltages of Rs1 and Rs2.
  • the rectified voltage Vin rises to a level at which the first LED light source LED1 and the second LED light source LED2 of the first light source group can emit light in series
  • the rectified voltage Vin is applied to the resistor R1 of the balancing circuit 30.
  • the voltage that is, the load voltage rises above the first balancing level of the comparison voltage.
  • the switch T1 is turned off by the output of the comparator 34. That is, the balancing circuit 30 is turned off and does not provide a first balancing path for transmitting the rectified voltage Vin to the second LED light source LED2.
  • the rectified voltage Vin is applied at both ends of the first LED light source LED1 and the second LED light source LED2 connected in series of the first light source group.
  • the rectified voltage Vin is in a state where the first LED light source LED1 and the second LED light source LED2 of the first light source group are raised to a level at which series light emission is possible. Therefore, the first LED light source LED1 and the second LED light source LED2 emit light in series, and a current path for light emission is provided by the switching circuit CC2.
  • the sensing resistor Rs1 provides a sensing voltage corresponding to the raised driving current Iin in response to the increased rectified voltage Vin. In this case, the sensing voltage is higher than the reference voltage VREF3 applied to the comparator CA13 of the switching circuit CC1. Therefore, the NMOS transistor QS13 is turned off by the output of the comparator CA13, and the switching circuit CC1 is turned off.
  • the balancing circuit 40 is also turned off in the same way as the balancing circuit 30 and does not provide a second balancing path for transferring the rectified voltage Vin to the fourth LED light source LED2.
  • the rectified voltage Vin rises to the level at which the third LED light source LED3 and the fourth LED light source LED4 of the second light source group can emit light in series
  • the rectified voltage Vin is applied to the resistor R5 of the balancing circuit 40.
  • the voltage to be obtained that is, the load voltage rises above the second balancing level of the comparison voltage.
  • the switch T2 is turned off by the output of the comparator 44. That is, the balancing circuit 40 is turned off and does not provide a second balancing path for transmitting the rectified voltage Vin to the fourth LED light source LED4.
  • the rectified voltage Vin is applied at both ends of the third LED light source LED3 and the fourth LED light source LED4 connected in series of the second light source group.
  • the rectified voltage Vin is in a state where the third LED light source LED3 and the fourth LED light source LED4 of the second light source group are raised to a level at which series light emission is possible. Therefore, the third LED light source LED3 and the fourth LED light source LED4 emit light in series, and a current path for light emission is provided by the switching circuit CC4.
  • the sensing resistor Rs2 provides a sensing voltage corresponding to the raised driving current Iin in response to the increased rectified voltage Vin. In this case, the sensing voltage is higher than the reference voltage VREF3 applied to the comparator CA23 of the switching circuit CC3. Therefore, the NMOS transistor QS23 is turned off by the output of the comparator CA23, and the switching circuit CC3 is turned off.
  • the current of each of the switching circuits CC1 to CC4 is applied to the feedback of the sensing voltages of the sensing resistors Rs1 and Rs2 even though the rectified voltage Vin rises to the peak level and then falls while the series light emission is maintained. To maintain a constant amount.
  • the light emission state of the embodiment is changed from the series light emission of Fig. 18 to the parallel light emission of Fig. 17, and accordingly the driving current is gradually reduced.
  • the rectified voltage Vin drops to 0V, the first and second light source groups are quenched.
  • the timings for turning off and turning on the balancing circuits 30 and 40 may consume the same current when the first light source group and the second light source group are in series emission and parallel emission. .
  • the timing for turning off and turning on the balancing circuits 30 and 40 may be adjusted by setting a balancing level of the comparison voltage. Therefore, the embodiment of the present invention enables uniform dimming even if the light emission state is changed.
  • 20 to 23 show that the first LED light source LED1 to the fourth LED light source LED4 of the first light emitting group and the second light emitting group sequentially emit light in response to the rectified voltage Vin having a rated voltage of 277 V in the second mode. It is an example.
  • 24 is a waveform diagram illustrating a voltage and a current of an embodiment as the light emitting state is changed as shown in FIGS. 20 to 23.
  • the rectified voltage Vin is at 0V the second control level of the comparison voltage of the current controller 50, the second balancing level of the comparison voltage of the balancing circuit 40 and the first balancing of the comparison voltage of the balancing circuit 30.
  • the level is raised to the peak level corresponding to the rated voltage 277V and then lowered to 0V via the first balancing level, the second balancing level and the second control level.
  • the comparison voltage of the balancing circuit 40 has a second balancing level lower than the first balancing level of the comparison voltage of the balancing circuit 30, and the comparison voltage of the current controller 50 is the balancing circuit 40.
  • the second control level is set such that the current controller 50 is turned off when the rectified voltage Vin rises above the level at which the two LED light sources emit in series, and the second balancing level is set at which three LED light sources emit in series.
  • the balancing circuit 40 is set to turn off, and when the rectified voltage Vin rises above the level at which the four LED light sources emit light in series, the balancing circuit 30 turns on. Is set to off.
  • the balancing circuits 30 and 40 and the current controller 50 maintain the normal turn-on state corresponding to the initial rectified voltage Vin, similarly to the first mode.
  • the switching circuits CC0, CC1, CC2, CC6, CC3, and CC4 are turned off by the mode control signal M1, and the switching circuits CC5 and CC7 are the mode control signal. Turn-on is maintained by M2. In this case, the switching circuits CC5 and CC7 maintain normal turn-on because the reference voltages VREF1 are higher than the sensing voltage fed back to correspond to the initial rectified voltage Vin. The switching circuits CC5 and CC7 are configured to maintain turn-on even when the rectified voltage Vin rises to the peak level.
  • the current controller 50 maintains normal turn-on for the first period.
  • the first period may be understood as the period during which the rectified voltage Vin remains below the second control level.
  • the switch Q1 since no current flows from the second LED light source LED2 to the terminal CH14 of the driver 60, the switch Q1 is turned on. Therefore, the current controller 50 provides a bypass path including the switch T3 and the resistor R3 by the turn-on of the switch T3 and the turn-on of the switch Q1 during the first period of the second mode.
  • the current path is not formed until the rectified voltage Vin is raised to the level of emitting one LED light source in the second mode.
  • the fourth LED light source LED4 is applied via the normal turned-on current control unit 50 and the normal turned-on balancing circuit 40 as shown in FIG. 20. Light is emitted by the rectified voltage Vin.
  • the switching circuits CC5 and CC7 of the drivers 60 and 65 provide a current path. At this time, the driving current flows through the current path by the switching circuits CC5 and CC7 of the drivers 60 and 65.
  • the current regulation is performed by the current controller 50. More specifically, the current controller 50 controls the amount of current flowing through the switch T3 by the output of the comparator 54 when the load voltage applied to the resistor R3 increases as the rectified voltage Vin increases. . In the second mode, the current controller 50 may perform the current regulation as having a load larger than the drivers 50 and 60.
  • the current controller 50 is turned off as shown in FIG. 21. More specifically, the load voltage applied to the resistor R3 increases by the increased voltage of the rectified voltage Vin. If the load voltage is equal to or greater than the second control level of the comparison voltage, the switch T3 is turned off by the output of the comparator 54. That is, the provision of the bypass path by the current controller 50 is stopped.
  • the rectified voltage Vin is transmitted through the balancing circuit 30.
  • the second LED light source LED2 and the fourth LED light source LED4 are connected in series.
  • the second LED light source LED2 and the fourth LED light source LED4 connected in series emit light by voltages at both ends.
  • the current path is provided by the switching circuits CC5 and CC7 of the drivers 60 and 65 connected to the fourth LED light source LED4.
  • the current regulation is performed by the balancing circuit 40. More specifically, the balancing circuit 40 controls the amount of current flowing through the switch T2 by the output of the comparator 44 when the load voltage applied to the resistor R5 increases as the rectified voltage Vin increases. . In the second mode, the balancing circuit 40 may perform the current regulation as having a load greater than the drivers 50, 60.
  • the balancing circuit 40 is turned off as shown in FIG. At this time, the current controller 50 maintains turn-off. More specifically, the load voltage applied to the resistor R5 increases by the increased voltage of the rectified voltage Vin. If the load voltage is equal to or greater than the second balancing level of the comparison voltage, the switch T2 is turned off by the output of the comparator 44. That is, the provision of the second balancing path by the balancing circuit 40 is stopped.
  • the rectified voltage Vin is transmitted to the second LED light source LED2 through the balancing circuit 30 maintaining the normal turn-on state, and the second LED light source LED2 to the fourth LED light source LED4 are connected in series. do.
  • the second LED light source LED2 to the fourth LED light source LED4 connected in series emit light by voltages at both ends.
  • the current path is provided by the switching circuits CC5 and CC7 of the drivers 60 and 65 connected to the fourth LED light source LED4.
  • the current regulation is performed by the balancing circuit 30. More specifically, the balancing circuit 30 controls the amount of current flowing through the switch T1 by the output of the comparator 34 when the load voltage applied to the resistor R1 increases as the rectified voltage Vin increases. . In the second mode, the balancing circuit 30 may perform the current regulation as having a load greater than the drivers 50, 60.
  • the balancing circuit 30 is turned off as shown in FIG. At this time, the balancing circuit 40 and the current controller 50 maintain the turn off. More specifically, the load voltage applied to the resistor R1 increases by the increased voltage of the rectified voltage Vin. If the load voltage is equal to or greater than the first balancing level of the comparison voltage, the switch T1 is turned off by the output of the comparator 34. That is, the provision of the first balancing path by the balancing circuit 30 is stopped.
  • the rectified voltage Vin is directly applied to the first LED light source LED2, and the first LED light source LED1 to the fourth LED light source LED4 are connected in series.
  • the first LED light source LED1 to the fourth LED light source LED4 connected in series emit light by voltages at both ends.
  • the current path is provided by the switching circuits CC5 and CC7 of the drivers 60 and 65 connected to the fourth LED light source LED4.
  • the current regulation is performed by the switching circuits CC5 and CC7 of the drivers 60 and 65.
  • the switching circuits CC5 and CC7 of the drivers 60 and 65 output the outputs of the comparators CA11 and CA21 when the sensing voltages applied to the sensing resistors Rs1 and Rs2 increase as the rectified voltage Vin increases. This controls the amount of current flowing through the NMOS transistors QS11 and QS21.
  • the light emitting state of the embodiment is turned off from the light emitting state of FIG. 23 to the light emitting state of FIGS. 22, 21 and 20, and then the driving current is also reduced.
  • the currents ILED1 to ILED4 and the driving current Iin flowing through the LED light sources also increase and decrease in steps in response to the change of the rectified voltage Vin in one cycle.
  • the embodiment of the present invention performs the operation by the current regulation as shown in FIG. 25 in the first mode, and performs the operation by the power regulation as shown in FIG. 26 in the second mode.
  • the power compensator 28 is preferably configured to be deactivated in the first mode and activated in the second mode.
  • the embodiment of the present invention regulates the driving current Iin according to light emission by current regulation in the first mode.
  • the embodiment of the present invention is uniform regardless of the change of the rectified voltage Vin according to the change of the rated voltage. It is controlled to maintain the amount of current.
  • the embodiment of the present invention controls the driving current Iin according to light emission by power regulation in the second mode.
  • the peak voltage VPD when the peak voltage VPD is changed as the rated voltage is changed to 240 VAC, 277 VAC, and 300 VAC, an embodiment of the present invention may be used as the peak voltage VPD increases as described with reference to FIG. 7. Raise the reference voltage VREF4.
  • the embodiment of the present invention controls the driving current Iin so that the amount of current decreases in inverse proportion to the change in the peak voltage VPD. Therefore, even if the rated voltage is changed in the second mode, the power regulation to maintain the power uniformly is performed by controlling the amount of the driving current.
  • the present invention can emit light in dual mode in response to rectified voltages having different peak levels, thereby supporting various voltage environments.
  • the present invention may perform current regulation and uniform dimming when the peak level emits light due to low rectified voltage.
  • the present invention can perform power regulation when the peak level is emitted by a high rectified voltage. Therefore, the LED lighting apparatus of the present invention can operate with uniform power.
  • the light emitting diode lighting apparatus of the present invention provides a bleeding function when emitting light by a low rectified voltage, thereby enabling stable operation considering the operating characteristics of the dimmer.
  • the LED lighting apparatus of the present invention can reduce the total harmonic distortion by controlling a change in driving current according to light emission to correspond to a change in rectified voltage.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

본 발명은 발광다이오드 조명 장치를 개시하며, 제1 광원 그룹에 포함되는 제1 LED 광원 및 제2 LED 광원, 제2 광원 그룹에 포함되는 제3 LED 광원 및 제4 LED 광원, 모드를 판단하는 모드 검출 회로, 제1 광원 그룹과 제2 광원 그룹의 직렬 및 병렬 연결을 위한 전류 제어부, 각 광원 그룹 별 직렬 및 병렬 연결을 위한 밸런싱 회로들 및 전류 경로 제공을 위한 전류 경로 제공 회로를 포함하며, 정류 전압의 변화와 모드의 변경에 따라 다양한 상태로 발광을 수행한다.

Description

발광다이오드 조명 장치
본 발명은 발광다이오드 조명 장치에 관한 것으로, 보다 상세하게는 정격 전압이 상이한 정류 전압들에 대응하여 듀얼 모드로 구동할 수 있는 발광다이오드 조명 장치에 관한 것이다.
조명 장치는 에너지 절감을 위하여 적은 양의 에너지로 높은 발광 효율을 갖는 광원을 이용하도록 개발되고 있다. 조명 장치에 이용되는 대표적인 광원은 발광다이오드(LED)가 예시될 수 있다.
발광다이오드는 에너지 소비량, 수명 및 광질 등과 같은 다양한 요소에서 다른 광원들과 차별화되는 이점을 갖는다. 발광다이오드는 전류에 의하여 구동되는 특성을 갖는다.
상기한 전류 구동 특성을 만족시키기 위하여, 조명 장치는 교류 다이렉트 방식(AC DIRECT TYPE)으로 교류 전원을 발광다이오드에 제공하도록 개발된 바 있다. 상기와 같이 발광다이오드를 광원으로 이용하는 조명 장치는 이하에서 발광다이오드 조명 장치라 한다.
발광다이오드 조명 장치는 교류 전원을 정류 전압으로 변환하고 정류 전압을 이용한 전류 구동에 의하여 발광다이오드가 발광하도록 구성된다. 정류 전압은 상용 교류 전원의 교류 전압을 정류기에 의해 전파 정류된 전압을 의미한다.
발광다이오드 조명 장치는 다양한 전압 환경에 노출될 수 있다. 그러므로, 발광다이오드 조명 장치는 정격 전압이 상이한 정류 전압들에 대응하여 호환성을 갖도록 설계될 것이 요구된다. 예시적으로, 발광다이오드 조명 장치는 정격 전압 120V와 정격 전압 277V를 제공하는 전압 환경에 이용될 수 있으며, 이 경우 듀얼 모드를 지원할 수 있도록 설계될 필요가 있다.
그리고, 발광다이오드 조명 장치는 상기한 정격 전압에 의한 듀얼 전압 중 피크 레벨이 낮은 정류 전압을 이용하여 발광하는 경우 전류 레귤레이션을 수행하고 유니폼 디밍(Uniform Dimming)이 가능하도록 요구된다.
또한, 발광다이오드 조명 장치는 듀얼 전압 중 피크 레벨이 높은 정류 전압을 이용하여 발광하는 경우 파워 레귤레이션을 수행하도록 요구된다.
또한, 발광다이오드 조명 장치는 디밍을 위하여 디머를 구성한 경우 디머의 동작 특성을 고려한 블리딩 기능을 모드에 따라 선택적으로 제공할 수 있도록 요구된다.
그리고, 발광다이오드 조명 장치는 전고조파왜곡(THD: Total Harmonic Distortion) 현상을 저감시킬 필요가 있다.
따라서, 발광다이오드 조명 장치는 상기한 필요들과 요구들을 복합적으로 충족시키기 위한 사양을 갖도록 설계될 필요가 있다.
본 발명의 발광다이오드 조명 장치는 상이한 정격 전압에 의한 정류 전압들에 대응하여 듀얼 모드로 발광할 수 있고, 모드에 따라 전류 레귤레이션 또는 전압 레귤레이션을 수행함으로써 유니폼 디밍, 전류 레귤레이션 및 파워 레귤레이션을 구현하고, THD 현상을 저감시킴을 목적으로 한다.
그리고, 본 발명의 발광 다이오드 조명 장치는 모드에 따라 블리딩 기능을 선택적으로 제공함을 다른 목적으로 한다.
본 발명의 발광다이오드 조명 장치는, 제1 광원 그룹에 포함되는 제1 LED 광원 및 제2 LED 광원; 제2 광원 그룹에 포함되는 제3 LED 광원 및 제4 LED 광원; 정류 전압의 피크 레벨에 따라 제1 모드 및 제2 모드를 판단하며, 모드에 대응하는 모드 제어 신호와 전류 제어 신호를 제공하고, 상기 제2 모드의 상기 정류 전압이 상기 제1 모드보다 높은 상기 피크 레벨을 갖는 모드 판단부; 상기 전류 제어 신호에 의하여, 상기 제1 모드의 전체 기간과 상기 제2 모드 중 상기 정류 전압이 미리 설정된 제어 레벨 미만인 제1 기간에 상기 정류 전압을 상기 제1 광원 그룹을 바이패스하여 상기 제2 광원 그룹에 전달하는 전류 제어부; 상기 전류 제어 신호에 의하여 모드에 따라 다른 레벨로 제1 밸런싱 레벨이 설정되며, 상기 정류 전압이 상기 제1 밸런싱 레벨 미만인 경우 상기 정류 전압을 상기 제1 LED 광원을 바이패스하여 상기 제2 LED 광원에 전달하는 제1 밸런싱 회로; 상기 전류 제어 신호에 의하여 모드에 따라 다른 레벨로 제2 밸런싱 레벨이 설정되며, 상기 정류 전압이 상기 제2 밸런싱 레벨 미만인 경우 상기 제3 LED 광원을 바이패스하여 상기 제4 LED 광원으로 전달하는 제2 밸런싱 회로; 및 상기 모드 제어 신호에 대응하여, 상기 제1 모드에서 상기 제1 및 제2 밸런싱 회로의 턴온 및 턴오프에 따라 상기 정류 전압의 한 주기의 변화에 대응하여 내부 LED 광원들의 배열 상태가 직렬 또는 병렬로 변경되는 상기 제1 광원 그룹 및 상기 제2 광원 그룹 각각의 발광에 대응하여 변경되는 제1 전류 경로를 상기 제1 LED 광원 내지 상기 제4 LED 광원에 제공하고, 상기 제2 모드에서 상기 전류 제어부, 상기 제2 밸런싱 회로 및 상기 제1 밸런싱 회로의 순차적인 턴오프 및 턴온에 따라 상기 정류 전압의 한 주기의 변화에 대응하여 직렬 연결 상태가 변경되는 상기 제1 LED 광원 내지 상기 제4 LED 광원의 발광에 대응한 제2 전류 경로를 상기 제4 LED 광원에 제공하는 전류 경로 제공 회로;를 포함함을 특징으로 한다.
또한, 본 발명의 발광다이오드 조명 장치는, 제1 광원 그룹에 포함되는 제1 LED 광원 및 제2 LED 광원; 제2 광원 그룹에 포함되는 제3 LED 광원 및 제4 LED 광원; 제1 모드의 정류 전압이 제2 모드보다 높은 상기 피크 레벨을 갖는 것에 대응하여, 상기 정류 전압의 상기 피크 레벨을 따르는 피크 전압을 이용하여 모드 별로 서로 다른 레벨을 갖는 모드 검출 신호를 제공하는 모드 검출 회로; 전류 제어 신호에 의하여, 상기 제1 모드의 전체 기간과 상기 제2 모드 중 상기 정류 전압이 미리 설정된 제어 레벨 미만인 제1 기간에 상기 정류 전압을 상기 제1 광원 그룹을 바이패스하여 상기 제2 광원 그룹에 전달하는 전류 제어부; 상기 전류 제어 신호에 의하여 모드에 따라 다른 레벨로 제1 밸런싱 레벨이 설정되며, 상기 정류 전압이 상기 제1 밸런싱 레벨 미만인 경우 상기 정류 전압을 상기 제1 LED 광원을 바이패스하여 상기 제2 LED 광원에 전달하는 제1 밸런싱 회로; 상기 전류 제어 신호에 의하여 모드에 따라 다른 레벨로 제2 밸런싱 레벨이 설정되며, 상기 정류 전압이 상기 제2 밸런싱 레벨 미만인 경우 상기 제3 LED 광원을 바이패스하여 상기 제4 LED 광원으로 전달하는 제2 밸런싱 회로; 상기 제1 모드에서 상기 제1 LED 광원 및 상기 제2 LED 광원의 직렬 또는 병렬 연결에 대응한 제1 전류 경로를 제공하는 제1 드라이버; 및 상기 제1 모드에서 상기 제3 LED 광원 및 상기 제4 LED 광원의 직렬 또는 병렬 연결에 대응한 제2 전류 경로를 제공하고, 상기 제2 모드에서 상기 제4 LED 광원에 제3 전류 경로를 제공하는 제2 드라이버;를 포함하며, 상기 제1 드라이버 및 상기 제2 드라이버 중 적어도 하나는 상기 모드 검출 신호에 대응하여 모드 별로 다른 레벨을 갖는 상기 전류 제어 신호를 제공함을 특징으로 한다.
본 발명의 발광다이오드 조명 장치는 피크 레벨이 다른 정류 전압들에 대응하여 듀얼 모드로 발광할 수 있다. 그러므로, 발광다이오드 조명 장치는 다양한 전압 환경을 지원할 수 있는 이점이 있다.
또한, 본 발명의 발광다이오드 조명 장치는 상이한 정격 전압에 의한 정류 전압들에 대응하여 듀얼 모드로 동작하며, 피크 레벨이 낮은 정류 전압에 의해 발광하는 경우 전류 레귤레이션 및 유니폼 디밍을 수행하며, 피크 레벨이 높은 정류 전압에 의해 발광하는 경우 파워 레귤레이션을 수행할 수 있다. 그러므로, 본 발명의 발광다이오드 조명 장치는 파워 소모를 균일하게 유지할 수 있는 이점이 있다.
또한, 본 발명의 발광다이오드 조명 장치는 블리딩 기능을 제공하며, 브리딩 기능에 의하여 디머의 동작 특성을 고려한 안정적인 동작이 가능하다.
또한, 본 발명의 발광다이오드 조명 장치는 발광에 따른 구동 전류의 변화를 정류 전압의 파형을 따라가도록 제어함으로써 전고조파왜곡 현상을 저감시킬 수 있다.
도 1은 본 발명의 발광다이오드 조명 장치의 바람직한 실시예를 나타내는 블록도.
도 2는 도 1의 실시예에 대응한 상세 회로도.
도 3은 도 1의 전압 감지부의 상세 예시도.
도 4는 피크 전압에 따른 제2 모드의 판단을 설명하는 파형도.
도 5는 피크 전압에 따른 제1 모드의 판단을 설명하는 파형도.
도 6은 도 1의 모드 검출부와 모드 제어부의 상세 회로도.
도 7은 파워 보상부의 구성을 예시한 블록도.
도 8은 파워 보상부가 드라이버(60)에 구성되는 경우를 예시한 블록도.
도 9는 모드 검출부의 구성을 예시한 회로도.
도 10은 도 2의 드라이버(60)의 상세 회로도.
도 11은 도 2의 드라이버(65)의 상세 회로도.
도 12는 제1 모드의 동작을 설명하기 위한 전류 제어부의 상세 회로도.
도 13은 제2 모드의 동작을 설명하기 위한 전류 제어부의 상세 회로도.
도 14는 제1 모드의 전류 경로 제어 회로의 동작을 설명하는 블록도.
도 15는 제2 모드의 전류 경로 제어 회로의 동작을 설명하는 블록도.
도 16은 전류 제어부의 다른 실시예를 나타내는 상세 회로도.
도 17 및 도 18은 제1 모드에서 정류 전압의 변화에 따른 전류 경로의 변화를 설명하는 회로도.
도 19는 제1 모드의 전류 변화 및 발광 상태 변화를 설명하는 파형도.
도 20 내지 도 23은 제2 모드에서 정류 전압의 변화에 따른 전류 경로의 변화를 설명하는 회로도.
도 24는 제2 모드의 전류 변화 및 발광 상태 변화를 설명하는 파형도.
도 25는 제1 모드의 전류 레귤레이션에 의한 동작을 설명하는 파형도.
도 26는 제2 모드의 파워 레귤레이션에 의한 동작을 설명하는 파형도.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 명세서 및 특허청구범위에 사용된 용어는 통상적이거나 사전적 의미로 한정되어 해석되지 아니하며, 본 발명의 기술적 사항에 부합하는 의미와 개념으로 해석되어야 한다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예이며, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원 시점에서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있다.
발광다이오드를 광원으로 이용하는 본 발명의 발광다이오드 조명 장치는 정격 전압이 다른 정류 전압들에 의해 발광하는 듀얼 모드를 수행하도록 구성된다. 본 발명의 발광다이오드 조명 장치의 실시예는 모드 별로 상이한 방식으로 레귤레이션을 수행하도록 구성된다.
본 발명의 실시예에 의한 듀얼 모드는 제1 모드와 제2 모드로 구분될 수 있고, 예시적으로, 제1 모드는 정격 전압 120V의 정류 전압에 의해 발광하는 것으로 정의할 수 있고, 제2 모드는 제1 모드보다 높은 정격 전압 277V의 정류 전압에 의해 발광하는 것으로 정의할 수 있다.
본 발명의 실시예는 정격 전압 120V와 정격 전압 227V의 정류 전압들에 대응하여 발광할 수 있으며, 제1 모드에서 발광에 대응한 전류 레귤레이션을 수행하고, 제2 모드에서 발광에 대응한 파워 레귤레이션을 수행한다.
도 1을 참조하여, 본 발명의 실시예의 구성을 설명한다.
본 발명의 실시예는 정격 전압 120V 또는 정격 전압 227V의 상용 교류 전원을 이용하여 전파 정류된 정류 전압 Vin을 제공하는 전원 회로(10)를 포함한다.
전원 회로(10)는 상용 전원(VAC), 디머(TC) 및 정류 회로(12)를 포함한다.
상용 전원(VAC)은 전력 계통의 상용 교류 전원을 공급한다. 상용 교류 전원은 예시적으로 정격 전압 120V의 교류 전압 또는 정격 전압 277V의 교류 전압을 갖는 것으로 예시될 수 있다.
디머(TC)는 상용 전원(VAC)에서 정류 회로(12)에 제공되는 교류 전압의 위상을 제어할 수 있다. 디머(TC)는 교류 전압의 위상을 제어함으로써 발광을 위해 공급하는 구동 전류의 양을 제어한다. 그 결과, 디머(TC)는 발광다이오드 조명 장치가 발광하는 정도 즉 밝기를 제어할 수 있다.
정류 회로(12)는 교류 전압을 전파 정류하며, 전파 정류한 결과로 생성된 정류 전압 Vin을 출력한다. 예시적으로, 정류 회로(12)는 4 개의 다이오드를 포함하는 브릿지 다이오드를 이용하여 구성될 수 있다. 그리고, 디머(TC)에서 교류 전압의 위상이 제어된 경우, 정류 회로(12)는 위상이 제어된 교류 전압을 전파 정류한 정류 전압 Vin을 출력한다.
전원 회로(10)에 의하여, 정류 전압 Vin은 정격 전압 120V에 대응하거나 정격 전압 277V에 대응하는 피크 레벨을 가지며, 디머(TC)에 의해 위상이 제어되고, 정류 회로(12)에 의해 전파 정류된 파형을 갖는다.
정류 전압 Vin은 상용 전원(VAC)에서 제공되는 교류 전압의 주기의 1/2에 해당하는 주기를 갖는다. 즉, 정류 전압 Vin은 교류 전압의 1/2 주기 동안 상승 및 하강하는 파형을 갖는다. 본 발명의 실시예에서 정류 전압 Vin의 상승 또는 하강은 리플 성분의 상승 또는 하강을 의미하는 것으로 이해될 수 있다. 발광을 위한 구동 전류의 양은 정류 전압 Vin의 변화에 대응하여 변화된다.
본 발명의 실시예는 광원으로서 제1 내지 제4 LED 광원(LED1~LED4)을 포함한다. 제1 LED 광원(LED1) 및 제2 LED 광원(LED2)은 제1 광원 그룹에 포함되는 것으로 이해될 수 있으며, 제3 LED 광원(LED3) 및 제4 LED 광원(LED4)은 제2 광원 그룹에 포함되는 것으로 이해될 수 있다.
제1 LED 광원(LED1) 내지 제4 LED 광원(LED4) 각각은 하나의 발광 다이오드 또는 직렬 또는 병렬 연결된 복수의 발광 다이오드를 포함할 수 있다. 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4) 각각은 복수의 발광 다이오드를 포함하는 경우, 동일한 수와 동일한 구조의 발광 다이오드들, 동일한 수와 상이한 구조의 발광다이오드들, 상이한 수와 동일한 구조의 발광 다이오드들 및 상이한 수와 상이한 구조의 발광 다이오드들을 포함할 수 있다. 설명의 편의를 위하여, 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)은 하나의 발광 다이오드 부호로 도면에 표기한다.
그리고, 도 1의 실시예는 모드 판단부(20), 밸런싱 회로들(30, 40), 전류 제어부(50) 및 전류 경로 제공 회로(100)를 포함한다.
이 중, 모드 판단부(20), 밸런싱 회로(30) 및 전류 제어부(50)는 제1 광원 그룹의 제1 LED 광원(LED1)의 입력단과 정류 회로(12)에 대하여 병렬로 구성된다. 즉, 정류 전압 Vin은 병렬로 구성된 제1 LED 광원(LED1), 모드 판단부(20), 밸런싱 회로(30) 및 전류 제어부(50)에 공통으로 인가된다.
모드 판단부(20)는 정류 전압 Vin의 피크 레벨에 따라 제1 모드 및 제2 모드를 판단하며, 모드에 대응하는 모드 제어 신호들 M1, M2와 전류 제어 신호들 M3, M4를 제공한다.
본 발명의 실시예는 상술한 바와 같이 제1 모드에서 정격 전압 120V에 대응하는 정류 전압 Vin이 제공되고 제2 모드에서 정격 전압 277V에 대응하는 정류 전압 Vin이 제공된다. 그러므로, 제2 모드의 정류 전압 Vin의 피크 레벨은 제1 모드의 정류 전압 Vin의 피크 레벨보다 높다.
모드 제어 신호들 M1, M2와 전류 제어 신호들 M3, M4는 모드에 따라 각각 다른 레벨을 갖는다.
모드 제어 신호 M1은 전류 경로 제공 회로(100)의 스위칭 회로들(CP1 ~ CP4)에 제공되고, 모드 제어 신호 M2는 스위칭 회로(CP4)에 제공된다. 그리고, 전류 제어 신호 M3는 전류 제어부(50)에 제공되고, 전류 제어 신호 M4는 밸런싱 회로들(30, 40)에 제공된다.
모드 판단부(20)는 상기한 모드 제어 신호들 M1, M2와 전류 제어 신호들 M3, M4를 제공하기 위하여, 전압 감지부(22), 모드 검출부(24) 및 모드제어부(26)를 포함한다.
전압 감지부(22)는 정류 전압 Vin의 피크 레벨에 대응하는 피크 전압을 제공한다. 모드 검출부(24)는 피크 전압을 수신하며 피크 전압에 따라 모드 별로 서로 다른 레벨을 갖는 모드 검출 신호를 제공한다. 그리고, 모드 제어부(26)는 모드 검출 신호를 수신하며 모드 검출 신호에 의하여 모드에 대응하는 모드 제어 신호들 M1, M2와 전류 제어 신호들 M3, M4를 생성 및 제공한다.
그리고, 모드 판단부(20)는 파워 보상부(28)를 더 포함할 수 있다.(도 7 참조), 파워 보상부(28)는 정류 전압 Vin의 피크 레벨에 대응하는 파워 보상 신호를 생성하며 파워 레귤레이션을 위하여 파워 보상 신호를 전류 경로 제공 회로(100)에 제공하도록 구성된다. 상기한 파워 보상부(28)는 후술하는 도 7을 참조하여 설명한다.
전류 제어부(50)는 전류 제어 신호 M3를 수신하며, 전류 제어 신호 M3에 의하여, 제1 모드의 전체 기간과 제2 모드 중 정류 전압 Vin이 미리 설정된 제어 레벨 미만인 제1 기간에 정류 전압 Vin을 제1 광원 그룹을 바이패스하여 제2 광원 그룹에 전달하도록 구성된다.
보다 구체적으로, 전류 제어부(50)는 전류 제어 신호 M3에 대응하여 제1 모드의 전체 기간 동안 정류 전압 Vin을 제1 광원 그룹을 바이패스하여 제2 광원 그룹에 전달하는 제1 바이패스 경로를 턴온한다.
그리고, 전류 제어부(50)는 전류 제어 신호 M3에 대응하여 제2 모드의 제1 기간에 정류 전압 Vin을 제1 광원 그룹을 바이패스하여 제2 광원 그룹에 전달하는 제2 바이패스 경로를 턴온한다. 그리고, 전류 제어부(50)는 제2 모드의 제1 기간 이외의 기간에 제2 바이패스 경로를 턴오프한다.
여기에서, 제1 바이패스 경로와 제2 바이패스 경로는 전류 제어부(50) 내부에 형성되는 전류 경로로 이해될 수 있으며, 이들은 적어도 일부 부품들을 공유하도록 구성될 수 있다. 상기한 전류 제어부(50)의 상세한 구성 및 동작은 도 11 및 도 12를 참조하여 후술한다.
밸런싱 회로(30)는 전류 제어 신호 M4에 의하여 모드에 따라 다른 레벨로 제1 밸런싱 레벨의 비교 전압을 생성하며, 정류 전압 Vin이 비교 전압의 제1 밸런싱 레벨 미만인 경우 정류 전압 Vin을 제1 LED 광원(LED1)을 바이패스하여 제2 LED 광원(LED2)에 전달하는 제1 밸런싱 경로를 제공하도록 구성된다.
밸런싱 회로(30)가 제1 밸런싱 경로를 제공하는 경우, 제1 LED 광원(LED1)과 제2 LED 광원(LED2)은 정류 전압 Vin에 대하여 병렬로 정렬된다. 밸런싱 회로(30)가 정류 전압 Vin의 바이패스를 차단하는 경우, 제1 LED 광원(LED1)과 제2 LED 광원(LED2)은 정류 전압 Vin에 대하여 직렬로 정렬된다.
밸런싱 회로(40)는 제2 LED 광원(LED2)이나 전류 제어부(50)를 통하여 정류 전압 Vin을 전달받도록 구성된다. 그리고, 밸런싱 회로(40)는 전류 제어 신호 M4에 의하여 모드에 따라 다른 레벨로 제2 밸런싱 레벨의 비교 전압을 생성하며, 정류 전압 Vin이 비교 전압의 제2 밸런싱 레벨 미만인 경우 정류 전압 Vin을 제3 LED 광원(LED3)을 바이패스하여 제4 LED 광원(LED4)으로 전달하는 제2 밸런싱 경로를 제공하도록 구성된다.
밸런싱 회로(40)가 제2 밸런싱 경로를 제공하는 경우, 제3 LED 광원(LED3)과 제4 LED 광원(LED4)은 정류 전압 Vin에 대하여 병렬로 정렬된다. 밸런싱 회로(40)가 정류 전압 Vin의 바이패스를 차단하는 경우, 제3 LED 광원(LED3)과 제4 LED 광원(LED4)은 정류 전압 Vin에 대하여 직렬로 정렬된다.
여기에서, 밸런싱 회로들(30, 40)은 제1 모드에서 전류 제어 신호 M4에 의하여 각 비교 전압의 제1 밸런싱 레벨과 제2 밸런싱 레벨을 동일하게 설정한다. 이 경우, 정류 전압 Vin의 한 주기의 변화 중 밸런싱 회로들(30, 40)의 턴오프 및 턴온 시점이 동일해질 수 있고, 광원 그룹 단위로 내부 LED 광원들의 배열 상태가 직렬 또는 병렬로 변경되는 시점이 동일해질 수 있다.
밸런싱 회로들(30, 40)의 각 비교 전압의 제1 밸런싱 레벨과 제2 밸런싱 레벨은 제1 및 제2 광원 그룹 내의 각 LED 광원들의 유니폼 디밍을 위하여 조절될 수 있다. 예시적으로, 제1 광원 그룹 내의 각 LED 광원들은 직렬 발광 시의 전류 소모량과 병렬 발광 시의 전류 소모량이 동일하도록 직렬에서 병렬(또는 병렬에서 직렬)로 배열 상태가 변경되는 시점이 조절될 수 있으며, 그 결과 제1 광원 그룹 내의 각 LED 광원들은 균일한 밝기를 유지하며 유니폼 디밍을 구현할 수 있다. 제2 광원 그룹도 제1 광원 그룹과 동일한 방법으로 제어됨으로써 유니폼 디밍을 구현할 수 있다.
그리고, 제2 모드에서 전류 제어 신호들 M3, M4에 의하여, 밸런싱 회로(40)의 제2 밸런싱 레벨이 전류 제어부(50)의 제어 레벨보다 높고, 밸런싱 회로(30)의 제1 밸런싱 레벨이 밸런싱 회로(40)의 제2 밸런싱 레벨보다 높게 설정됨이 바람직하다. 그 결과, 정류 전압 Vin의 한 주기의 변화에 대응하여 전류 제어부(50), 밸런싱 회로(40) 및 밸런싱 회로(30)가 순차적으로 턴오프 및 턴온될 수 있다.
상기한 밸런싱 회로들(30, 40)의 구체적인 구성 및 동작은 후술한다.
그리고, 상술한 밸런싱 회로들(30, 40)과 전류 제어부(50)의 구성에 의하여, 제1 모드에서 제1 발광 그룹과 제2 발광 그룹 내의 LED 광원들의 발광 상태는 한 주기 중 정류 전압 Vin이 상승하는 것에 대응하여 병렬 발광 및 직렬 발광의 순으로 변경된다. 그리고, 상기 제2 모드에서 제1 발광 그룹과 제2 발광 그룹 내의 LED 광원들의 발광 상태는 한 주기 중 정류 전압 Vin이 상승하는 것에 대응하여 제4 LED 광원(LED4)의 발광, 제2 LED 광원(LED2) 및 제4 LED 광원(LED2)의 직렬 발광, 제2 LED 광원(LED2) 내지 제4 LED 광원(LED4)의 직렬 발광 및 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)의 직렬 발광의 순으로 변경된다.
한편, 전류 경로 제공 회로(100)는 스위칭 회로들(CP1 ~ CP4) 및 센싱 저항들(Rs1, Rs2)을 포함한다. 여기에서, 스위칭 회로들(CP1, CP2)에 공통으로 연결되는 센싱 저항(Rs1)과 스위칭 회로들(CP3, CP4)에 공통으로 연결되는 센싱 저항(Rs2)은 설명의 편의를 위하여 동일한 저항값을 갖는 것으로 가정할 수 있다.
스위칭 회로들(CP1~CP3)은 모드 제어 신호 M1를 수신하고, 스위칭 회로(CP4)는 모드 제어 신호들 M1, M2를 수신하도록 구성된다. 스위칭 회로(CP4)는 모드에 따라 다른 전류 경로를 제공하며 제1 모드를 위한 전류 경로는 모드 제어 신호 M1에 의해 제어되고, 제2 모드를 위한 전류 경로는 모드 제어 신호 M2에 의해 제어되도록 구성된다. 상기한 스위칭 회로들(CP1~CP4)의 상세한 구성은 도 2를 참조하여 후술한다.
전류 경로 제공 회로(100)는 제1 모드에서 제1 광원 그룹 및 제2 광원 그룹 각각에 대응하여 전류 경로를 제공한다. 전류 경로 제공 회로(100)는 제1 모드에서 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4) 각각에 대하여 전류 경로를 제공하거나 제1 광원 그룹의 제2 LED 광원(LED2) 및 제2 광원 그룹의 제4 LED 광원(LED4)에 대하여 전류 경로를 제공한다.
그리고, 전류 경로 제공 회로(100)는 제2 모드에서 전류 경로를 제2 광원 그룹의 제4 LED 광원(LED4)에 제공하며, 제2 모드의 전류 경로는 정류 전압 Vin의 한 주기의 변화에 대응한 전류 제어부(50) 및 밸런싱 회로들(30, 40)의 순차적인 턴오프 및 턴온에 따라 직렬 연결 상태가 변경되는 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)의 발광에 대응하여 제공된다.
도 1의 구성에서, 전류 경로 제공 회로(100)는 도 2와 같이 드라이버들(60, 65)을 이용하여 구성될 수 있다. 모드 제어부(26) 및 파워 보상부(28)는 각 드라이버(60, 65)에 내장되거나 외장될 수 있다.
그리고, 본 발명의 실시예는 디머(TC)의 구성에 대응하여 블리더를 더 포함할 수 있다.
도 2는 도 1의 실시예에 대응한 회로도이며, 도 2의 회로도는 도 1과 달리 모드 제어부(26) 및 파워 보상부(28)가 드라이버에 내장된 것으로 이해될 수 있으며, 블리더(70)를 포함한다.
도 2의 전압 감지부(22)는 도 3을 참조하여 설명할 수 있다.
전압 감지부(22)는 입력 회로(22a), 피크 디텍터(22b) 및 캐패시터(C12)를 포함한다.
입력 회로(22a)는 정류 전압 Vin을 분압하는 직렬 연결된 저항들(R11, R12)과 저항(R12)에 병렬로 연결된 캐패시터(C11)를 포함한다. 상기한 입력 회로(22a)는 저항(R12)에 인가된 정류 전압 Vin이 분압된 전압을 캐패시터(C11)에 충전한다.
피크 디텍터(22b)는 캐패시터(C11)의 충전 전압의 피크 레벨을 검출한 피크 전압 VPD을 출력한다. 그리고, 캐패시터(C12)는 피크 전압 VPD의 출력 레벨을 안정시킨다.
상기한 전압 감지부(22)는 정류 전압 Vin을 센싱 및 평활한 레벨에 대응하는 피크 전압 VPD을 출력한다. 피크 전압 VPD는 정격 전압 120V의 정류 전압 Vin에 대응하여 낮은 레벨을 가지며, 정격 전압 277V의 정류 전압 Vin에 대응하여 높은 레벨을 갖는다.
모드 검출부(24)는 도 4와 같이 피크 전압 VPD의 레벨이 높은 경우 로우 레벨의 모드 검출 신호 VCDL을 출력하고, 도 5와 같이 피크 전압 VPD의 레벨이 낮은 경우 하이 레벨의 모드 검출 신호 VCDL를 출력한다.
도 2에서 드라이버들(60, 65)의 단자 CDL에 각각 인가되는 전압이 모드 검출 신호 VCDL로 이해될 수 있다.
도 2의 모드 검출부(24)는 피크 전압 VPD의 레벨에 따라 스위치(SW1)가 턴온 또는 턴오프되고 스위치(SW1)의 스위칭 상태에 따라 캐패시터들(C14, C15)의 충방전이 제어되도록 구성된다. 캐패시터들(C14, C15)의 충방전이 제어됨으로써 드라이버들(60, 65)의 단자 CDL의 모드 검출 신호 VCDL가 결정된다. 캐패시터들(C14, C15)은 드라이버들(60, 65) 내부의 정전압에 의해 스위치(SW1)가 턴온된 경우 방전되고 스위치(SW1)가 턴오프된 경우 충전되며 충전 또는 방전된 상태의 전압을 모드 검출 신호 VCDL로 제공한다.
그러나, 모드 검출부(24)는 도 4 및 도 5와 같이 미리 설정된 기준 전압 VREF를 기준으로 피크 전압 VPD을 판단함으로써 하이 레벨 또는 로우 레벨의 모드 검출 신호 VCDL를 출력하도록 구성될 수 있다.
또한, 모드 검출부(24)는 도 6과 같이 예시될 수 있다.
도 6에서, 모드 검출부(24)는 드라이버들(60, 65)의 외부에 구성된 것에 상응하는 것으로 이해될 수 있고, 모드 제어부(26)는 드라이버들(60, 65) 내에 각각 구성된 것으로 이해될 수 있다.
모드 검출부(24)는 포지티브 단자(+)에 인가되는 피크 전압 VPD와 네가티브 단자(-)에 인가되는 기준 전압 VREF을 비교하는 비교기(25), 비교기의 비교 신호 MS에 의하여 턴온 또는 턴오프되는 스위치(SW1) 및 캐패시터(C14)를 포함한다. 여기에서, 스위치(SW1) 및 캐패시터(C14)는 도 2의 모드 검출부(24)의 부품과 동일한 것이므로 동일 부호로 표시한다.
비교기(25)는 피크 전압 VPD가 기준 전압 VREF과 비교하여 높은지 낮은지 비교하고 비교 결과를 비교 신호 MS로 출력한다.
피크 전압 VPD가 높은 경우, 비교기(25)는 하이 레벨의 비교 신호 MS를 출력하여 스위치(SW1)를 턴온한다. 스위치(SW1)가 턴온되면 캐패시터(C14)의 충전 전압은 방전되며, 캐패시터(C14)는 도 4와 같이 로우 레벨의 충전 전압을 갖는다. 이때, 캐패시터(C14)의 로우 레벨의 충전 전압이 로우 레벨의 모드 검출 신호 VCDL로서 드라이버들(60, 65)의 각 단자 CDL를 통하여 모드 제어부(26)에 제공된다.
피크 전압 VPD가 낮은 경우, 비교기(25)는 로우 레벨의 비교 신호 MS를 출력하여 스위치(SW1)를 턴오프한다. 스위치(SW1)가 턴오프되면 정전압 VDD에 의해 캐패시터(C14)는 충전되며, 캐패시터(C14)는 도 5와 같이 하이 레벨의 충전 전압을 갖는다. 이때, 캐패시터(C14)의 하이 레벨의 충전 전압이 하이 레벨의 모드 검출 신호 VCDL로서 드라이버들(60, 65)의 각 단자 CDL를 통하여 모드 제어부(26)에 제공된다.
모드 제어부(26)는 모드 검출 신호 VCDL을 수신하며, 모드 검출 신호 VCDL의 레벨에 대응하여 모드 제어 신호들 M1. M2 및 전류 제어 신호 M3, M4를 출력한다.
한편, 모드 판단부(20)는 파워 레귤레이션을 위하여 도 7과 같이 파워 보상부(28)를 더 포함할 수 있다.
파워 보상부(28)는 피크 전압 VPD를 수신하고, 피크 전압 VPD의 레벨에 대응하는 파워 보상 신호를 내부에서 생성하며, 제2 모드에서 형성되는 전류 경로의 파워 레귤레이션을 위하여 파워 보상 신호를 출력할 수 있다.
예시적으로, 파워 보상부(28)는 도 7과 같이 드라이버들(60, 65) 내의 기준 전압 생성부(62)에 파워 보상 신호를 제공하도록 구성될 수 있다.
기준 전압 생성부(62)는 드라이버들(60, 65)에 구성되는 스위칭 회로들(CC0~CC7)에 서로 다른 레벨의 기준 전압 VREF1~VREF4을 제공하기 위한 것이다. 기준 전압 VREF1은 스위칭 회로들(CC5, CC7)에 제공되는 것으로 가장 낮은 레벨을 가지며, 기준 전압 VREF2는 스위칭 회로들(CC0, CC6)에 제공되는 것이고, 기준 전압 VREF3은 스위칭 회로들(CC1, CC3)에 제공되는 것이며, 기준 전압 VREF4는 스위칭 회로들(CC2, CC4)에 제공되는 것으로 가장 높은 레벨을 갖는다. 즉, 기준 전압은 VREF1, VREF2, VREF3, VREF4의 순으로 점차 높은 레벨을 갖는다.
기준 전압 생성부(62)는 파워 보상부(28)의 파워 보상 신호의 레벨 변화에 대응하여 기준 전압들 VREF1~VREF4의 레벨을 가변한다. 즉, 정류 전압 Vin의 피크 레벨이 상승함에 따라 피크 전압 VPD의 레벨이 상승하면, 기준 전압 생성부(62)는 전압이 상승한 것에 대응하여 전류양을 줄이기 위하여 파워 보상 신호에 의하여 기준 전압들 VREF1~VREF4의 레벨을 내린다. 반대로, 정류 전압 Vin의 피크 레벨이 하강함에 따라 피크 전압 VPD의 레벨이 하강하면, 기준 전압 생성부(62)는 전압이 하강한 것에 대응하여 전류양을 늘이기 위하여 파워 보상 신호에 의하여 기준 전압들 VREF1~VREF4의 레벨을 올린다.
기준 전압들 VREF1~VREF4은 스위칭 회로들(CC0~CC7)을 흐르는 전류양을 제한하는 기준으로 작용하며, 스위칭 회로들(CC0~CC7)을 흐르는 전류양은 기준 전압이 상승하는 경우 줄어들며 기준 전압이 하강하는 경우 늘어난다.
결과적으로, 파워 보상부(28)는 파워 레귤레이션을 위하여 파워 보상 신호를 제공함으로써 후술되는 바와 같이 제2 모드에서 제4 LED 광원에 연결되는 전류 경로의 전류양이 정류 전압 Vin의 피크 레벨의 변동에 대응하도록 제어할 수 있다.
한편, 도 8과 같이, 피크 디텍터(22b)와 파워 보상부(28)가 드라이버들(60, 65)에 포함되도록 구성될 수 있다. 설명의 편의를 위하여 드라이버(60)에 피크 디텍터(22b)와 파워 보상부(28)가 구성된 것으로 설명한다.
이 경우, 전압 감지부(22)의 구성 요소 중, 입력 회로(22a)는 드라이버(60)의 외부에 구성되며, 피크 디텍터(22b)는 드라이버(60) 내부에 구성된다. 그리고, 입력 회로(22a)의 출력은 드라이버(60)의 단자 COMP를 통하여 드라이버(60) 내의 피크 디텍터(22b)에 전달된다.
피크 디텍터(22b)는 피크 전압 VPD을 파워 보상부(28)와 드라이버(60)의 단자 PD에 인가할 수 있으며, 단자 PD에 인가되는 피크 전압 VPD은 외부의 캐패시터(PDC)에 충전될 수 있다.
드라이버(60)의 단자 PD에 인가되는 피크 전압 VPD는 도 2와 다른 실시예로 구성되는 도 9와 같이 모드 판단부(24)에 전달될 수 있다.
도 9를 참조하면, 모드 판단부(24)는 드라이버(60)의 외부에 구성되며, 도 8의 캐패시터(PDC), 저항(R24), 스위치(SW2) 및 캐패시터(C14)를 포함한다.
저항(R24)은 캐패시터(PDC)의 피크 전압 VPD를 스위치(SW2)의 베이스에 전달하고, 스위치(SW2)의 에미터와 콜렉서 사이에 캐패시터(C14)가 구성된다. 그리고, 스위치(SW2)의 콜렉터와 캐패시터(C14)의 일측은 드라이버(60)의 단자 CDLY에 연결된다.
상기한 구성에 의하여, 스위치(SW2)는 피크 전압 VPD의 레벨에 대응하여 스위칭되며, 스위치(SW2)의 스위칭 상태에 따라 캐패시터(C14)는 단자 CDLY를 통하여 인가되는 전압에 의한 충전을 수행하거나 충전 전압을 스위치(SW2)를 통하여 방전할 수 있다.
그러므로, 모드 판단부(24)는 피크 전압 VPD에 대응하여 캐패시터(C14)에 충전 또는 방전된 상태의 전압을 모드 검출 신호 VCDL로 제공한다.
한편, 도 2의 실시예는 두 개의 드라이버(60, 65)를 포함한다.
드라이버(60)는 전류 입력을 위한 단자들 CH11~CH14, 모드 검출 신호 VCDL이 인가되는 단자 CDL, 접지를 위한 접지 단자(GND), 전류 경로를 형성하고 센싱 전압의 피드백을 위한 단자 RISET 및 내부 정전압을 생성하기 위하여 입력 전압이 인가되는 단자 VA를 갖도록 구성된다. 그리고, 드라이버(65)도 전류 입력을 위한 단자들 CH21~CH24를 갖도록 구성되며, 드라이버(60)와 동일한 용도의 단자 CDL, 접지 단자(GND), 단자 RISET 및 단자 VA를 갖도록 구성된다.
상기한 구성에서, 드라이버들(60, 65)은 단자 VA를 통하여 인가되는 입력 전압에 대응하여 내부에 정전압을 생성하며, 정전압은 기준 전압들 VREF1~VREF4을 생성하는데 이용될 수 있다. 정류 전압 Vin을 분압한 전압이 단자 VA의 입력 전압으로 이용될 수 있다.
드라이버들(60, 65)의 단자 RISET들에는 각각 센싱 저항(Rs1, Rs2)이 연결되고, 센싱 저항들(Rs1, Rs2) 및 드라이버들(60, 65)의 접지 단자 GND는 공통으로 접지에 연결되도록 구성된다.
드라이버(60)는 내부에 스위칭 회로들(CC0, CC1, CC2, CC5)을 포함하며, 스위칭 회로(CC0)는 단자 CH12와 단자 RISET 사이에 구성되고, 스위칭 회로(CC1)는 단자 CH13과 단자 RISET 사이에 구성되며, 스위칭 회로(CC2)는 단자 CH14와 단자 RISET 사이에 구성되고, 스위칭 회로(CC5)는 단자 CH11과 단자 RISET 사이에 구성된다. 즉, 스위칭 회로들(CC0, CC1, CC2, CC5)은 전류 출력측이 공통 노드를 통하여 단자 RISET에 연결되며, 전류 입력측이 각각 단자들 CH11~CH14에 연결된다.
그리고, 스위치 회로들(CC0, CC1, CC2)는 모드 제어 신호 M1에 의해 스위칭 동작이 제어되고 제1 모드에서 노멀 턴온되며, 스위치 회로(CC5)는 모드 제어 신호 M2에 의해 스위칭 동작이 제어되고 제2 모드에서 노멀 턴온된다.
드라이버(65)는 내부에 스위칭 회로들(CC6, CC3, CC4, CC7)을 포함하며, 스위칭 회로(CC6)는 단자 CH22와 단자 RISET 사이에 구성되고, 스위칭 회로(CC3)는 단자 CH23과 단자 RISET 사이에 구성되며, 스위칭 회로(CC4)는 단자 CH24와 단자 RISET 사이에 구성되고, 스위칭 회로(CC7)는 단자 CH21과 단자 RISET 사이에 구성된다. 즉, 스위칭 회로들(CC6, CC3, CC4, CC7)은 전류 출력측이 공통 노드를 통하여 단자 RISET에 연결되며, 전류 입력측이 각각 단자들 CH21~CH24에 연결된다.
그리고, 스위치 회로들(CC6, CC3, CC4)는 모드 제어 신호 M1에 의해 스위칭 동작이 제어되고 제1 모드에서 노멀 턴온되며, 스위치 회로(CC7)는 모드 제어 신호 M2에 의해 스위칭 동작이 제어되고 제2 모드에서 노멀 턴온된다.
도 1과 도 2를 대비하면, 도 1의 스위칭 회로(CP1)는 도 2의 드라이버(60)의 스위칭 회로(CC1)에 대응하고, 도 1의 스위칭 회로(CP2)는 도 2의 드라이버(60)의 스위칭 회로(CC2)에 대응하며, 도 1의 스위칭 회로(CP3)는 도 2의 드라이버(65)의 스위칭 회로(CC3)에 대응한다. 그러므로, 도 2의 드라이버(60)의 스위칭 회로(CC1)는 단자 CH13을 통하여 제1 LED 광원(LED1)에 연결되고, 도 2의 드라이버(60)의 스위칭 회로(CC2)는 단자 CH14를 통하여 제2 LED 광원(LED2)에 연결되며, 도 2의 드라이버(65)의 스위칭 회로(CC3)는 단자 CH23를 통하여 제3 LED 광원(LED3)에 연결된다.
드라이버(60)의 스위칭 회로(CC0)는 단자 CH12를 통하여 블리더(70)에 연결을 위한 것이다. 드라이버(60)의 외부에 구성되는 블리더(70)는 정류 전압 Vin을 수신하고, 광원들 즉 제1 광원 및 제2 광원이 소광되는 기간에 턴온을 유지하는 스위칭 회로(CC0)를 전류를 방전한다. 상기한 블리더(70)는 디머(TC)에 대응하여 구성되는 부품이다. 블리더(70)는 디머(TC)에 의해 광원들이 소광된 경우 광원으로 전류가 흐르는 것을 차단하기 위한 전류 경로를 제공한다. 또한, 블리더(70)는 정류 전압 Vin의 한 주기 중 광원들이 소광되는 기간에 광원으로 전류가 흐르는 것을 차단하기 위한 전류 경로를 제공한다. 상기한 블리더(70)는 도 2에 도시하고 도 1에 도시를 생략하였다.
드라이버(65)의 스위칭 회로(CC6)는 단자 CH22에 연결되며, 본 발명의 실시예의 동작에 관여하지 않는다. 본 발명의 실시예는 동일한 구조의 드라이버들(60, 65)을 이용하여 전류 경로 제공 회로를 구성한 것을 예시한다. 그에 따라 단자 CH22에 연결된 스위칭 회로(CC0)는 더미 채널로 존재한다.
한편, 도 1의 스위칭 회로(CP4)는 도 2의 드라이버들(60, 65)의 스위칭 회로들(CC4, CC5, CC7)에 대응한다.
제1 모드에서, 도 1의 스위칭 회로(CP4)는 도 2의 스위칭 회로(CC4)에 의해 형성된다. 그리고, 제2 모드에서, 도 1의 스위칭 회로(CP4)는 도 2의 스위칭 회로들(CC5, CC7)에 의해 형성된다.
도 1의 스위칭 회로(CP4)는 제4 LED 광원(LED4)에 연결되도록 구성되며, 도 2의 스위칭 회로들(CC4, CC5, CC7)도 단자들 CH11, CH24, CH21을 통하여 제4 LED 광원(LED4)에 공통으로 연결된다.
구체적으로, 도 2의 드라이버(60)의 스위칭 회로들(CC0, CC1, CC2, CC5)은 도 10과 같이 예시될 수 있고, 도 2의 드라이버(65)의 스위칭 회로들(CC6, CC3, CC4, CC7)은 도 11과 같이 예시될 수 있다.
도 10을 참조하면, 스위칭 회로들(CC0, CC1, CC2, CC5)은 비교기, 스위칭 소자인 NMOS 트랜지스터 및 스위치를 각각 동일한 구조로 포함한다. 보다 구체적으로, 스위칭 회로(CC0)는 기준전압 VREF2이 비반전단에 인가되고 단자(RISET)를 통하여 피드백되는 센싱 저항(Rs1)의 센싱 전압이 반전단에 인가되는 비교기(CA12), 단자(CH12)와 단자(RISET)에 드레인과 소스가 각각 연결되고 게이트에 비교기(CA12)의 출력이 인가되는 NMOS 트랜지스터(QS12) 및 비교기(CA12)와 NMOS 트랜지스터(QS12)의 게이트 사이의 노드와 접지 사이에 구성되며 모드 제어 신호 M1에 의해 스위칭이 제어되는 스위치(S12)를 포함한다. 스위칭 회로(CC1)는 기준전압 VREF3이 비반전단에 인가되고 단자(RISET)를 통하여 피드백되는 센싱 저항(Rs1)의 센싱 전압이 반전단에 인가되는 비교기(CA13), 단자(CH13)와 단자(RISET)에 드레인과 소스가 각각 연결되고 게이트에 비교기(CA13)의 출력이 인가되는 NMOS 트랜지스터(QS13) 및 비교기(CA13)와 NMOS 트랜지스터(QS13)의 게이트 사이의 노드와 접지 사이에 구성되며 모드 제어 신호 M1에 의해 스위칭이 제어되는 스위치(S13)를 포함한다. 스위칭 회로(CC2)는 기준전압 VREF4이 비반전단에 인가되고 단자(RISET)를 통하여 피드백되는 센싱 저항(Rs1)의 센싱 전압이 반전단에 인가되는 비교기(CA14), 단자(CH14)와 단자(RISET)에 드레인과 소스가 각각 연결되고 게이트에 비교기(CA14)의 출력이 인가되는 NMOS 트랜지스터(QS14) 및 비교기(CA14)와 NMOS 트랜지스터(QS14)의 게이트 사이의 노드와 접지 사이에 구성되며 모드 제어 신호 M1에 의해 스위칭이 제어되는 스위치(S14)를 포함한다. 스위칭 회로(CC5)는 기준전압 VREF1이 비반전단에 인가되고 단자(RISET)를 통하여 피드백되는 센싱 저항(Rs1)의 센싱 전압이 반전단에 인가되는 비교기(CA11), 단자(CH11)와 단자(RISET)에 드레인과 소스가 각각 연결되고 게이트에 비교기(CA11)의 출력이 인가되는 NMOS 트랜지스터(QS11) 및 비교기(CA11)와 NMOS 트랜지스터(QS11)의 게이트 사이의 노드와 접지 사이에 구성되며 모드 제어 신호 M2에 의해 스위칭이 제어되는 스위치(S11)를 포함한다.
도 11을 참조하면, 스위칭 회로들(CC6, CC3, CC4, CC7)도 비교기, 스위칭 소자인 NMOS 트랜지스터 및 스위치를 각각 동일한 구조로 포함한다. 보다 구체적으로, 스위칭 회로(CC6)는 기준전압 VREF2이 비반전단에 인가되고 단자(RISET)를 통하여 피드백되는 센싱 저항(Rs2)의 센싱 전압이 반전단에 인가되는 비교기(CA22), 단자(CH22)와 단자(RISET)에 드레인과 소스가 각각 연결되고 게이트에 비교기(CA22)의 출력이 인가되는 NMOS 트랜지스터(QS22) 및 비교기(CA22)와 NMOS 트랜지스터(QS22)의 게이트 사이의 노드와 접지 사이에 구성되며 모드 제어 신호 M1에 의해 스위칭이 제어되는 스위치(S22)를 포함한다. 스위칭 회로(CC3)는 기준전압 VREF3이 비반전단에 인가되고 단자(RISET)를 통하여 피드백되는 센싱 저항(Rs2)의 센싱 전압이 반전단에 인가되는 비교기(CA23), 단자(CH23)와 단자(RISET)에 드레인과 소스가 각각 연결되고 게이트에 비교기(CA23)의 출력이 인가되는 NMOS 트랜지스터(QS23) 및 비교기(CA23)와 NMOS 트랜지스터(QS23)의 게이트 사이의 노드와 접지 사이에 구성되며 모드 제어 신호 M1에 의해 스위칭이 제어되는 스위치(S23)를 포함한다. 스위칭 회로(CC4)는 기준전압 VREF4이 비반전단에 인가되고 단자(RISET)를 통하여 피드백되는 센싱 저항(Rs2)의 센싱 전압이 반전단에 인가되는 비교기(CA24), 단자(CH24)와 단자(RISET)에 드레인과 소스가 각각 연결되고 게이트에 비교기(CA24)의 출력이 인가되는 NMOS 트랜지스터(QS24) 및 비교기(CA24)와 NMOS 트랜지스터(QS24)의 게이트 사이의 노드와 접지 사이에 구성되며 모드 제어 신호 M1에 의해 스위칭이 제어되는 스위치(S24)를 포함한다. 스위칭 회로(CC7)는 기준전압 VREF1이 비반전단에 인가되고 단자(RISET)를 통하여 피드백되는 센싱 저항(Rs2)의 센싱 전압이 반전단에 인가되는 비교기(CA21), 단자(CH21)와 단자(RISET)에 드레인과 소스가 각각 연결되고 게이트에 비교기(CA21)의 출력이 인가되는 NMOS 트랜지스터(QS21) 및 비교기(CA21)와 NMOS 트랜지스터(QS21)의 게이트 사이의 노드와 접지 사이에 구성되며 모드 제어 신호 M2에 의해 스위칭이 제어되는 스위치(S21)를 포함한다.
상기한 구성에서, 드라이버(60)의 기준 전압들 VREF1~VREF4은 드라이버(65)의 기준전압들 VREF1 ~ VREF4과 동일한 레벨을 갖는 것으로 이해될 수 있다.
기준 전압 VREF1은 제2 모드에서 발광에 대응한 전류 경로의 제공을 위하여 제2 모드 동안 NMOS 트랜지스터들(QS11, QS21)이 턴온을 유지할 수 있도록, 제2 모드의 정류 전압 Vin의 피크치의 구동 전류 Iin에 대응한 센싱 전압보다 높은 레벨을 갖도록 설정됨이 바람직하다.
그리고, 기준 전압 VREF2은 제1 모드의 정류 전압 Vin의 한 주기의 변화 기간 중 제1 광원 그룹의 제1 LED 광원(LED1)과 제2 광원 그룹의 제3 LED 광원(LED3)이 발광을 시작하는 시점의 구동 전류 Iin에 대응한 센싱 전압보다 낮은 레벨을 갖도록 설정됨이 바람직하다. 상기한 기준 전압 VREF2의 레벨에 따라 NMOS 트랜지스터들(QS12, QS22)은 제1 모드에서 제1 및 제2 광원 그룹이 발광하기 전까지 턴온을 유지할 수 있다.
그리고, 기준 전압 VREF3은 제1 모드의 정류 전압 Vin의 한 주기의 변화 기간 중 제1 및 제2 광원 그룹의 LED 광원들이 직렬로 발광하는 시점의 구동 전류 Iin에 대응한 센싱 전압보다 낮은 레벨을 갖도록 설정됨이 바람직하다. 상기한 기준 전압 VREF3의 레벨에 따라 NMOS 트랜지스터들(QS13, QS23)은 제1 모드에서 제1 및 제2 광원 그룹의 LED 광원들이 직렬로 발광하기 전까지 턴온을 유지할 수 있다.
그리고, 기준 전압 VREF4는 제1 모드의 정류 전압 Vin의 피크치의 구동 전류 구동 전류 Iin에 대응한 센싱 전압보다 높은 레벨을 갖도록 설정됨이 바람직하다. 상기한 기준 전압 VREF4에 따라 NMOS 트랜지스터들(QS14, QS24)은 제1 모드에서 제1 및 제2 광원 그룹의 LED 광원들이 직렬로 발광을 위하여 턴온을 유지할 수 있다.
도 10 및 도 11에서, 스위칭 회로들(CC0~CC7)의 비교기(CA11~CA14, CA21~CA24)와 NMOS 트랜지스터(QS11~QS14, QS21~QS24)는 기준 전압과 센싱 전압을 비교하여 전류 경로를 제공하면서 전류 제어를 수행하고 기준 전압보다 센싱 전압이 높으면 전류 경로를 차단하는 동작을 수행한다. 그리고, 스위칭 회로들(CC0~CC7)의 스위치(S11~S14, S21~S24)는 모드에 따라 NMOS 트랜지스터를 턴오프함으로써 NMOS 트랜지스터에 의해 형성되는 전류 경로를 스위칭하는 동작을 수행한다.
상술한 드라이버들(60, 65)은 도 12 및 도 13과 같이 등가적으로 표현될 수 있다. 여기에서, 도 10 및 도 11의 스위치들(S11, S21, S12, S22, S13, S23, S14, S24)은 도 12 및 도 13에서 전류 경로를 스위칭하는 것으로 등가적으로 표현하였고, 도 10 및 도 11의 각 스위칭 회로들(CC0~CC7)의 비교기, NMOS 트랜지스터는 도 12 및 도 13에서 전류 경로를 형성하는 전류원으로서 등가적으로 표현하였다.
드라이버들(60, 65)은 제1 모드에서 도 12와 같이 하이 레벨의 모드 검출 신호 VCDL에 대응하는 모드 제어 신호 M1에 의해 스위치들(S12, S22, S13, S23, S14, S24)을 턴온함으로써 제1 모드의 발광에 대응한 전류 경로를 제공할 수 있다. 이때, 드라이버들(60, 65)의 스위치들(S11, S21)은 모드 제어 신호 M2에 의해 턴오프된다.
또한, 드라이버들(60, 65)은 제2 모드에서 도 13과 같이 로우 레벨의 모드 검출 신호 VCDL에 대응하는 모드 제어 신호 M2에 의해 스위치들(S11, S21)을 턴온함으로써 제2 모드의 발광에 대응한 전류 경로를 제공할 수 있다. 이때, 드라이버들(60, 65)의 스위치들(S12, S22, S13, S23, S14, S24)은 모드 제어 신호 M1에 의해 턴오프된다.
한편, 도 2에서 제1 LED 광원(LED1)의 출력단이 드라이버(60)의 단자(CH13)에 연결되는 한편 직렬 연결된 다이오드(D1) 및 저항(R1)을 통하여 제2 LED 광원(LED2)에 연결된다. 그리고, 제2 LED 광원(LED2)의 출력단은 드라이버(60)의 단자(CH14)에 연결되는 한편 직렬 연결된 다이오드(D2), 저항(R2) 및 저항(R3)을 통하여 제3 LED 광원(LED3)에 연결된다. 그리고, 제3 LED 광원(LED3)의 출력단은 드라이버(65)의 단자(CH23)에 연결되는 한편 직렬 연결된 다이오드(D3) 및 저항(R5)을 통하여 제4 LED 광원(LED4)에 연결된다. 제4 LED 광원(LED4)의 출력단은 드라이버(65)의 단자(CH24)에 연결된다.
상기한 바에서, 다이오드들(D1, D2, D3)은 역방향 전류의 흐름을 차단하기 위한 것이다. 그리고, 저항(R1)은 밸런싱 회로(30)에 포함되는 것이고, 저항들(R2, R3)은 전류 제어부(50)에 포함되는 것이며, 저항(R5)은 밸런싱 회로(40)에 포함되는 것이다.
상술한 바와 같이 구성된 제1 내지 제4 LED 광원(LED1~LED4)은 전류 제어부(50)에 의해 제1 광원 그룹과 제2 광원 그룹으로 구분된다.
전류 제어부(50)는 제1 모드의 전체 기간 동안 턴온을 유지하여 정류 전압 Vin을 제1 광원 그룹인 제1 LED 광원(LED1) 및 제2 LED 광원(LED2)을 바이패스하여 제2 광원 그룹에 전달하도록 구성된다. 그리고, 전류 제어부(50)는 제2 모드 중 정류 전압 Vin이 정류 전압이 미리 설정된 제어 레벨 미만인 제1 기간에 정류 전압 Vin을 제1 광원 그룹을 바이패스하여 제2 광원 그룹에 전달하도록 구성된다.
이를 위하여, 전류 제어부(50)는 도 2와 같이 비교 전압 제공부(52), 비교기(54), 스위치(T1), 스위치(Q1) 및 직렬 연결된 저항들(R2, R3)을 포함하는 부하 회로를 포함한다.
여기에서, 비교 전압 제공부(52)는 전류 제어 신호 M3에 대응하여 제1 모드에 제1 제어 레벨을 가지며 제2 모드에서 상기 제1 제어 레벨보다 낮은 제2 제어 레벨을 갖는 비교 전압을 제공하도록 구성된다. 상기한 비교 전압 제공부(52)는 정류 전압 Vin이 출력되는 정류 회로(12)의 출력단과 비교기(54)의 포지티브 단자(+) 사이에 구성된다.
비교기(54)는 부하 회로의 부하 전압과 비교 전압 제공부(52)의 비교 전압을 비교하고, 비교 결과에 대응하는 전압을 스위치(T3)의 게이트에 인가하도록 구성된다.
스위치(T3)는 NMOS 트랜지스터로 구성될 수 있으며, 드레인이 정류 전압 Vin이 출력되는 정류 회로(12)의 출력단에 연결되고, 소스가 부하 회로의 저항(R2)에 연결되도록 구성된다. 상기한 구성에 의해서, 스위치(T3)는 비교기의 출력에 의하여 정류 회로(12)의 정류 전압 Vin을 선택적으로 전달한다.
스위치(Q1)는 PNP 바이폴라 트랜지스터로 구성될 수 있으며, 에미터와 콜렉터 간에 저항(R2)이 연결되며, 베이스는 제2 LED 광원(LED2)에서 출력되는 전류를 센싱하는 저항(R4)에 연결된다. 저항(R4)은 제2 LED 광원(LED4)에서 드라이버(60)의 단자(CH4)로 흐르는 전류를 센싱하기 위하여 제2 LED 광원(LED2)의 출력단에 연결된 다이오드(D4)와 드라이버(60)의 단자(CH14) 사이의 노드에 연결되며, 센싱한 전압을 스위치(Q1)의 베이스에 인가한다. 여기에서, 다이오드(D4)는 전류가 제2 LED 광원(LED2)으로 흐르는 것을 방지하기 위한 것이다.
스위치(Q1)는 제2 LED 광원(LED2)에서 전류가 출력되면 저항(R4)에 인가되는 높은 전압에 의하여 턴오프되고 제2 LED 광원(LED2)에서 전류가 출력되지 않으면 저항(R4)에 인가되는 낮은 전압에 의하여 턴온된다. 즉, 스위치(Q1)는 제1 모드에서 턴온되고 제2 모드에서 턴오프된다.
부하 회로는 제1 광원 그룹과 제2 광원 그룹 사이에 직렬로 연결된 저항들(R2, R3)을 포함한다. 여기에서, 저항(R2)은 스위치(T3)의 출력단과 제1 광원 그룹의 제2 LED 광원(LED2)에 연결되며, 스위치(Q1)와 병렬로 구성된다.
상기한 구성에 의하여 부하 회로의 저항값은 스위치(Q1)의 스위칭 동작에 의하여 가변되며, 전류량에 대응하는 부하 전압을 생성한다. 상기한 부하 전압은 저항(R1)과 스위치(T3) 사이의 노드를 통하여 비교기(54)의 네가티브 단자에 인가될 수 있다. 그리고, 저항(R3)과 제2 광원 그룹의 제3 LED 광원(LED3) 간의 노드의 전압은 비교기(54)의 동작 전압으로 제공될 수 있다.
상기와 같이 구성된 전류 제어부(50)는 제1 모드에서 도 14와 같이 동작되며 제2 모드에서 도 15와 같이 동작된다. 도 14 및 도 15에서, 드라이버(60)의 스위칭 회로(CC2)도 도 12 및 도 13과 같이 등가적으로 표현한다.
도 14를 참조하면, 제1 모드에서 드라이버(60)의 스위칭 회로(CC2)는 모드 제어 신호 M1에 의해 턴온된다.
제1 모드에서, 제2 LED 광원(LED2)이 발광하는 동안 제2 LED 광원(LED2)에서 출력되는 전류는 드라이버(60)의 단자(CH14)로 흐른다. 그러므로, 스위치(Q1)는 에미터에서 베이스로 흐르는 전류에 의하여 턴온된다. 결국, 제1 모드를 위한 전류 경로는 저항(R2)을 바이패스하며 스위치(Q1)와 저항(R3)을 통하도록 형성된다. 그러므로, 부하 전압은 저항(R3)에 의하여 형성된다.
비교 전압 제공부(52)는 제1 모드에서 스위치(T3)가 항상 턴온을 유지할 수 있는 제1 제어 레벨의 비교 전압을 비교기(54)의 포지티브 단자(+)에 제공한다. 상기한 비교 전압의 레벨은 제1 모드의 전류 제어 신호 M3에 의해 제어된다.
그러므로, 비교기(54)는 네가티브 단자(-)에 인가되는 부하 전압이 포지티브 단자(+)에 인가되는 비교 전압보다 항상 낮은 레벨로 형성되므로 하이 레벨의 출력을 유지한다. 그러므로, 스위치(T3)는 하이 레벨의 비교기(54)의 출력에 의하여 턴온을 유지한다.
따라서, 전류 제어부(50)는 제1 모드에서 스위치(T3)와 저항(R3)을 포함하는 바이패스 경로를 제공하며, 전류 제어부(50)에 의하여 정류 전압 Vin이 제2 광원으로 전달될 수 있다.
상기한 전류 제어부(50)의 동작에 의하여, 제1 모드에서 제1 광원 그룹의 제1 LED 광원(LED1)과 제2 광원 그룹의 제3 LED 광원(LED3)은 정류 전압 Vin에 대하여 병렬로 연결된다.
도 15를 참조하면, 제2 모드에서 드라이버(60)의 스위칭 회로(CC2)는 모드 제어 신호 M1에 의해 턴오프된다.
즉, 제2 모드에서 제2 LED 광원(LED2)에서 드라이버(60)의 단자(CH14)로 전류가 흐르지 않는다. 그러므로, 스위치(Q1)는 에미터에서 베이스로 전류가 흐르지 않아서 턴오프된다. 결국, 제2 모드에서 부하 전압은 저항들(R2, R3)에 의해 형성된다.
비교 전압 제공부(52)는 제2 모드에서 정류 전압 Vin의 상승에 대응하여 가장 먼저 제4 LED 광원(LED4)이 발광한 후 제4 LED 광원(LED4)과 다른 LED 광원(예시적으로 제2 LED 광원(LED2))이 직렬로 발광을 시작하는 때 저항들(R2, R3)에 의해 제공되는 부하 전압보다 낮은 제2 제어 레벨의 비교 전압을 비교기(54)의 포지티브 단자(+)에 제공한다. 즉 제2 모드의 제1 기간은 정류 전압 Vin의 레벨이 제4 LED 광원(LED4)만 발광시키는 레벨 이하의 기간으로 정의될 수 있다.
비교 전압 제공부(52)는 제2 모드의 전류 제어 신호 M3에 의해 제2 제어 레벨을 갖도록 비교 전압을 제어하며, 제2 모드의 비교 전압의 제2 제어 레벨은 제1 모드의 비교 전압으 제1 제어 레벨보다 낮도록 설정된다.
비교기(54)는 네가티브 단자(-)에 인가되는 부하 전압이 포지티브 단자(+)에 인가되는 비교 전압보다 낮은 제2 모드의 제1 기간 동안 하이 레벨의 출력을 유지하고, 제2 모드의 제1 기간 이외의 기간에는 로우 레벨의 출력을 유지한다. 그러므로, 스위치(T3)는 제2 모드의 제1 기간 동안 턴온되고, 제2 모드의 제1 기간 이외의 기간에는 턴오프된다.
따라서, 전류 제어부(50)는 제2 모드의 제1 기간에 스위치(T3)와 저항들(R2, R3)을 포함하는 바이패스 경로를 제공하며, 제2 모드의 제1 기간 동안 전류 제어부(50)에 의하여 정류 전압 Vin이 제2 광원으로 전달될 수 있다.
전류 제어부(50)는 제2 모드의 제1 기간에 바이패스 경로를 제공하는 동안 스위치(T3)를 흐르는 전류양을 제어한다. 스위치(T3)를 흐르는 전류양은 비교기(54)의 네가티브 단자(-)에 인가되는 부하 전압이 정류 전압 Vin의 변화를 따라 변화되는 것에 의해 레귤레이션될 수 있다.
상기한 전류 제어부(50)의 동작에 의하여, 제2 모드의 제1 기간 동안 제1 광원 그룹의 제1 LED 광원(LED1)과 제2 광원 그룹의 제3 LED 광원(LED3)은 정류 전압 Vin에 대하여 병렬로 연결된다.
한편, 전류 제어부(50)는 도 16과 같이 변형 실시될 수 있다.
도 16의 전류 제어부(50)는 고정된 레벨의 비교 전압을 제공하는 비교 전압 제공부(52)를 포함한다. 그리고, 전류 제어부(50)는 스위치(T3)의 출력측에 직렬로 연결된 저항들(R50, R52)를 더 포함하며, 저항(R52)에 병렬로 연결되며 전류 제어 신호 M3에 의해 스위칭이 제어되는 스위치(SW52)를 더 포함한다.
도 16의 전류 제어부(50)는 상기한 구성에 의하여 모드에 따른 스위치(SW52)의 턴온 또는 턴오프로 부하 전압을 제어할 수 있다.
제1 모드에서 스위치(SW52)는 부하 전압이 비교 전압보다 낮은 레벨을 유지할 수 있도록 턴온된다.
제2 모드에서 스위치(SW52)는 제1 기간에 부하 전압이 비교 전압보다 낮은 레벨을 갖도록 턴온되고 제1 기간 이외의 기간에 부하 전압이 비교 전압보다 높은 레벨을 갖도록 턴오프된다.
한편, 도 2의 밸런싱 회로들(30, 40)의 구성을 살펴본다.
밸런싱 회로(30)는 제1 광원의 제1 LED 광원(LED1)과 병렬로 구성된다. 밸런싱 회로(30)는 비교 전압 제공부(32), 비교기(34), 스위치(T1) 및 부하 회로를 포함한다. 여기에서, 부하 회로는 저항(R1)을 포함한다.
비교 전압 제공부(32)는 전류 제어 신호 M4에 대응하여 제2 모드에서 제1 모드보다 높은 제1 밸런싱 레벨을 갖는 비교 전압을 제공하도록 구성된다.
그리고, 비교기(34)는 부하 전압과 비교 전압을 비교하며 비교 결과에 대응하는 레벨의 출력을 제공한다.
그리고, 스위치(T1)는 NMOS 트랜지스터로 구성되며 게이트에 인가되는 비교기(34)의 출력에 의하여 스위칭되고, 드레인과 소스는 정류 회로(12)와 저항(R1)에 각각 연결된다.
부하 회로인 저항(R1)은 제1 광원 그룹 내의 제1 LED 광원(LED1)과 제2 LED 광원(LED2) 사이에 구성되며, 스위치(T1)의 출력단과 연결되고, 전류량에 대응하는 부하 전압을 비교기(34)의 네가티브 단자(-)에 제공하도록 구성된다. 부하 전압은 스위치(T1)과 저항(R1) 간의 노드 전압이며, 저항(R1)의 출력측 전압은 비교기(34)의 구동 전압으로 이용된다.
밸런싱 회로(30)는 상기한 구성에 의하여 저항(R1)에 인가되는 부하 전압의 변화에 따른 스위치(T1)의 스위칭 동작에 따라 스위치(T3)와 저항(R1)을 포함하는 제1 밸런싱 경로를 제공한다. 밸런싱 회로(30)는 정류 전압 Vin이 제1 밸런싱 레벨 미만인 경우 정류 전압 Vin을 제1 LED 광원(LED1)을 바이패스하여 제2 LED 광원(LED2)에 전달한다.
밸런싱 회로(30)는 제2 모드에 정류 전압 Vin의 변화에 대응하여 제1 밸런싱 경로를 제공하는 경우 전류 레귤레이션을 수행할 수 있으며, 이에 대한 구체적인 설명은 후술한다.
또한, 밸런싱 회로(40)는 제2 광원의 제3 LED 광원(LED3)과 병렬로 구성된다. 밸런싱 회로(40)는 비교 전압 제공부(42), 비교기(44), 스위치(T2) 및 부하 회로를 포함한다. 여기에서, 부하 회로는 저항(R5)을 포함한다.
비교 전압 제공부(42)는 전류 제어 신호 M4에 대응하여 제2 모드에서 제1 모드보다 높은 제1 밸런싱 레벨을 갖는 비교 전압을 제공하도록 구성된다.
그리고, 비교기(44)는 부하 전압과 비교 전압을 비교하며 비교 결과에 대응하는 레벨의 출력을 제공한다.
그리고, 스위치(T2)는 NMOS 트랜지스터로 구성되며 게이트에 인가되는 비교기(44)의 출력에 의하여 스위칭되고, 드레인과 소스는 전류 제어부(54)에 포함된 저항(R3)과 저항(R5)에 각각 연결된다.
부하 회로인 저항(R5)은 제2 광원 그룹 내의 제3 LED 광원(LED3)과 제4 LED 광원(LED4) 사이에 구성되며, 스위치(T2)의 출력단과 연결되고, 전류량에 대응하는 부하 전압을 비교기(44)의 네가티브 단자(-)에 제공하도록 구성된다. 부하 전압은 스위치(T2)와 저항(R5) 간의 노드 전압이며, 저항(R5)의 출력측 전압은 비교기(44)의 구동 전압으로 이용된다.
밸런싱 회로(40)는 상기한 구성에 의하여 저항(R5)에 인가되는 부하 전압의 변화에 따른 스위치(T2)의 스위칭 동작에 따라 스위치(T2)와 저항(R5)을 포함하는 제2 밸런싱 경로를 제공한다. 밸런싱 회로(40)는 정류 전압 Vin이 제2 밸런싱 레벨 미만인 경우 정류 전압 Vin을 제3 LED 광원(LED3)을 바이패스하여 제4 LED 광원(LED4)에 전달한다.
밸런싱 회로(40)는 제2 모드에 정류 전압 Vin의 변화에 대응하여 제2 밸런싱 경로를 제공하는 경우 전류 레귤레이션을 수행할 수 있으며, 이에 대한 구체적인 설명은 후술한다.
밸런싱 회로(30)와 밸런싱 회로(40)의 제1 밸런싱 레벨과 제2 밸런싱 레벨은 전류 제어 신호 M4에 의하여 제1 모드에서 동일하게 설정된다.이 경우, 제1 광원 그룹과 제2 광원 그룹 단위로 내부 LED 광원들의 배열 상태가 직렬 또는 병렬로 변경된다.
제2 모드에서, 밸런싱 회로(40)의 제2 밸런싱 레벨이 전류 제어부(50)의 제어 레벨보다 높게 설정되고, 밸런싱 회로(30)의 제1 밸런싱 레벨이 밸런싱 회로(40)의 제2 밸런싱 레벨보다 높게 설정된다. 그러므로, 정류 전압 Vin의 한 주기 중 상승 기간에 대응하여, 전류 제어부(50), 밸런싱 회로(40) 및 밸런싱 회로(30)가 순차적으로 턴오프된다. 그리고, 정류 전압 Vin의 한 주기 중 하강 기간에 대응하여, 밸런싱 회로(30), 밸런싱 회로(40) 및 전류 제어부(50)가 손차적으로 턴온된다.
제1 모드에서, 정류 전압 Vin의 한 주기 중 상승에 대응하여, 제1 발광 그룹과 제2 발광 그룹 내의 LED 광원들의 발광 상태가 병렬 발광, 직렬 발광의 순으로 변경된다.
그리고, 제2 모드에서, 정류 전압 Vin의 한 주기 중 상승에 대응하여, LED 광원들의 발광 상태는 제4 LED 광원(LED4)의 발광, 제2 LED 광원(LED2) 및 제4 LED 광원(LED4)의 직렬 발광, 제2 LED 광원(LED2) 내지 제4 LED 광원(LED4)의 직렬 발광 및 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)의 직렬 발광의 순으로 변경된다.
상술한 바와 같이 구성되는 본 발명의 실시예의 제1 모드에 대응한 동작을 도 17 내지 도 19를 참조하여 설명한다.
도 17은 제1 모드에서 정격 전압 120V의 정류 전압 Vin에 대응하여 제1 발광 그룹과 제2 발광 그룹 내의 LED 광원들이 병렬 발광하는 경우를 예시한 것이다. 도 17은 정류 전압 Vin의 한 주기의 변화 중 제1 및 제2 밸런싱 레벨 미만의 정류 전압 Vin에 대응하는 실시예의 동작을 설명하기 위한 것이며, 이때, 밸런싱 회로들(30, 40)은 턴온 상태이다.
도 18은 정격 전압 120V의 정류 전압 Vin에 대응하여 제1 발광 그룹 및 제2 발광 그룹 내의 LED 광원들이 직렬 발광하는 경우를 예시한 것이다. 도 18은 정류 전압 Vin의 한 주기의 변화 중 제1 및 제2 밸런싱 레벨 이상의 정류 전압 Vin에 대응하는 실시예의 동작을 설명하기 위한 것이며, 이때, 밸런싱 회로들(30, 40)은 턴오프 상태이다.
도 19는 본 발명의 실시예가 제1 모드에서 한 주기의 정류 전압 Vin에 대응하여 도 17 및 도 18과 같이 순차적으로 동작함에 따른 전압과 전류의 파형도를 예시한 것이다. 도 19에서 Iin은 제1 및 제2 광원에 제공되는 총 입력 전류 즉 발광에 의한 구동 전류를 표현한다.
상기한 도 17 내지 도 19를 참조하여 설명되는 본 발명의 실시예의 제1 모드에서 정류 전압 Vin은 0V에서 제1 및 제2 밸런싱 레벨을 경유하여 정격 전압 120V에 해당하는 피크치로 상승하고 그 후 제1 및 제2 밸런싱 레벨을 경유하여 0V로 하강한다.
밸런싱 회로들(30, 40)은 제1 모드에서 동일한 밸런싱 레벨의 비교 전압을 가지므로, 동일한 시점에 제1 및 제2 밸런싱 경로를 턴온 또는 턴오프할 수 있다. 그리고, 밸런싱 회로들(30, 40)은 부하 전압을 비교 전압보다 낮게 형성하는 정류 전압 Vin에 대응하여 스위치들(T1, T2)의 턴온을 유지하여 각각 제1 및 제2 밸런싱 경로를 제공한다. 그러므로, 밸런싱 회로들(30, 40)은 초기의 정류 전압 Vin에 대응하여 노멀 턴온 상태를 유지한다.
전류 제어부(50)는 제1 모드에서 비교 전압의 제1 제어 레벨이 한 주기의 정류 전압 Vin에 의한 부하 전압보다 항상 높다. 그리고, 제1 모드에서 발광이 유지되는 경우 제2 LED 광원(LED2)에서 드라이버(60)의 단자(CH14)로 전류 흐름이 유지되고, 스위치(Q1)는 턴오프된다. 그러므로, 전류 제어부(50)는 제1 모드 동안 스위치(T3)의 턴온 및 스위치(Q1)의 턴오프에 의해 스위치(T3) 및 저항들(R2, R3)을 포함하는 바이패스 경로를 제공한다. 그러므로, 전류 제어부(50)는 한 주기의 정류 전압 Vin에 대응하여 노멀 턴온 상태를 유지한다.
그리고, 드라이버들(60, 65)에서, 스위칭 회로들(CC0, CC1, CC2, CC6, CC3, CC4)는 모드 제어 신호 M1에 의해 턴온을 유지하고, 스위칭 회로들(CC5, CC7)은 모드 제어 신호 M2에 의해 턴오프된다. 이때, 스위칭 회로들(CC0, CC1, CC2, CC6, CC3, CC4)은 초기의 정류 전압 Vin에 대응하여 기준 전압들 VREF2~VREF4이 피드백되는 센싱 전압보다 높으므로 노멀 턴온을 유지한다.
즉, 초기의 정류 전압 Vin에 대응하여, 밸런싱 회로들(30, 40), 전류 제어부(50) 및 드라이버들(60, 50)의 스위칭 회로들(CC0~CC7)은 노멀 턴온을 유지한다.
그러므로, 초기의 정류 전압 Vin에 대응하여, 제1 광원 그룹의 제1 LED 광원(LED1) 및 제2 LED 광원(LED2)은 정류 전압 Vin을 정류 회로(12)로부터 직접 제공받거나 턴온된 밸런싱 회로(30)를 경유하여 제공받는다. 또한, 초기의 정류 전압 Vin에 대응하여, 제2 광원 그룹의 제3 LED 광원(LED3) 및 제4 LED 광원(LED4)은 정류 전압 Vin을 턴온된 전류 제어부(50)를 경유하여 제공받거나 또는 턴온된 전류 제어부(50) 및 턴온된 밸런싱 회로(40)를 경유하여 제공받는다.
결국, 제1 광원 그룹과 제2 광원 그룹이 전류 제어부(50)의 바이패스 경로에 의해 정류 전압 Vin에 대하여 병렬로 구성된다. 그리고, 제1 광원 그룹의 제1 LED 광원(LED1)과 제2 LED 광원(LED2)은 턴온된 밸런싱 회로(30)의 제1 밸런싱 경로에 의해 정류 전압 Vin에 대하여 병렬로 구성된다. 그리고, 제2 광원 그룹의 제3 LED 광원(LED3)과 제4 LED 광원(LED4)은 턴온된 밸런싱 회로(40)의 제2 밸런싱 경로에 의해 정류 전압 Vin에 대하여 병렬로 구성된다.
즉, 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)은 모두 병렬로 정류 전압 Vin을 제공받는다.
정류 전압 Vin이 각각의 LED 광원 즉 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)을 발광시키는 레벨로 상승하기 전까지, 블리더(70)는 방전 경로를 제공한다. 이 경우, 방전 경로는 블리더(70), 드라이버(60)의 스위칭 회로(CC0) 및 센싱 저항(Rs1)을 포함하도록 형성된다. 즉, 제1 광원과 제2 광원이 발광하기 전, 낮은 정류 전압 Vin에 의한 전류가 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)에 전달되는 것이 블리더(70)에 의해 차단된다.
정류 전압 Vin이 각각의 LED 광원 즉 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)을 발광시키는 레벨로 상승하면, 정류 전압 Vin에 대하여 병렬로 연결된 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)은 동시에 발광한다.
보다 구체적으로 설명하면, 제1 LED 광원(LED1)의 발광에 대응하여, 드라이버(60)의 스위칭 회로(CC1)가 전류 경로를 제공한다. 그리고, 제2 LED 광원(LED2)의 발광에 대응하여, 드라이버(60)의 스위칭 회로(CC2)가 전류 경로를 제공한다. 제1 LED 광원(LED1)과 제2 LED 광원(LED2)의 발광에 대응하여 구동 전류 Iin가 스위칭 회로들(CC1, CC2)를 거쳐서 센싱 저항(Rs1)으로 흐른다. 이때, 센싱 저항(Rs1)은 상승된 정류 전압 Vin에 대응하여 상승된 구동 전류 Iin에 대응하는 센싱 전압을 제공한다. 센싱 전압은 스위칭 회로(CC0)의 비교기(CA12)에 인가되는 기준 전압 VREF2보다 높다. 그러므로, 비교기(CA12)의 출력에 의해 NMOS 트랜지스터(QS12)가 턴오프되며, 스위칭 회로(CC0)는 턴오프된다.
또한, 제3 LED 광원(LED3)의 발광에 대응하여, 드라이버(65)의 스위칭 회로(CC3)가 전류 경로를 제공한다. 그리고, 제4 LED 광원(LED4)의 발광에 대응하여, 드라이버(65)의 스위칭 회로(CC4)가 전류 경로를 제공한다. 제3 LED 광원(LED3)과 제4 LED 광원(LED4)의 발광에 대응하여 구동 전류 Iin가 스위칭 회로들(CC3, CC4)를 거쳐서 센싱 저항(Rs2)으로 흐른다.
제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)은 병렬로 동시에 발광을 시작한다. 그러므로, 도 19와 같이 각 LED 광원의 전류들(ILED1~ILED4)은 동시에 상승한다.
상기와 같이, 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)이 모두 병렬로 연결되어 발광한 후 정류 전압 Vin이 상승하여도, 각 스위칭 회로들(CC1~CC4)의 전류는 센싱 저항들(Rs1, Rs2)의 센싱 전압의 피드백에 의해 일정한 양으로 유지되도록 레귤레이션된다.
그 후, 정류 전압 Vin이 제1 광원 그룹의 제1 LED 광원(LED1)과 제2 LED 광원(LED2)이 직렬 발광이 가능한 레벨로 상승하면, 밸런싱 회로(30)의 저항(R1)에 인가되는 전압 즉, 부하 전압이 비교 전압의 제1 밸런싱 레벨 이상으로 상승한다. 부하 전압이 비교 전압 이상으로 상승하면, 비교기(34)의 출력에 의해 스위치(T1)가 턴오프된다. 즉, 밸런싱 회로(30)는 턴오프되며 제2 LED 광원(LED2)에 정류 전압 Vin을 전달하는 제1 밸런싱 경로를 제공하지 않는다.
그러므로, 정류 전압 Vin은 제1 광원 그룹의 직렬 연결된 제1 LED 광원(LED1)과 제2 LED 광원(LED2)의 양단에 인가된다.
이때, 정류 전압 Vin은 제1 광원 그룹의 제1 LED 광원(LED1)과 제2 LED 광원(LED2)이 직렬 발광이 가능한 레벨로 상승된 상태이다. 그러므로, 제1 LED 광원(LED1)과 제2 LED 광원(LED2)이 직렬 발광하고, 발광을 위한 전류 경로는 스위칭 회로(CC2)에 의해 제공된다. 센싱 저항(Rs1)은 상승된 정류 전압 Vin에 대응하여 상승된 구동 전류 Iin에 대응하는 센싱 전압을 제공한다. 이때, 센싱 전압은 스위칭 회로(CC1)의 비교기(CA13)에 인가되는 기준 전압 VREF3보다 높다. 그러므로, 비교기(CA13)의 출력에 의해 NMOS 트랜지스터(QS13)가 턴오프되며, 스위칭 회로(CC1)는 턴오프된다.
또한, 밸런싱 회로(40)도 밸런싱 회로(30)와 동일하게 턴오프되며 제4 LED 광원(LED2)에 정류 전압 Vin을 전달하는 제2 밸런싱 경로를 제공하지 않는다.
보다 구체적으로, 정류 전압 Vin이 제2 광원 그룹의 제3 LED 광원(LED3)과 제4 LED 광원(LED4)이 직렬 발광이 가능한 레벨로 상승하면, 밸런싱 회로(40)의 저항(R5)에 인가되는 전압 즉, 부하 전압이 비교 전압의 제2 밸런싱 레벨 이상으로 상승한다. 부하 전압이 비교 전압 이상으로 상승하면, 비교기(44)의 출력에 의해 스위치(T2)가 턴오프된다. 즉, 밸런싱 회로(40)는 턴오프되며 제4 LED 광원(LED4)에 정류 전압 Vin을 전달하는 제2 밸런싱 경로를 제공하지 않는다.
그러므로, 정류 전압 Vin은 제2 광원 그룹의 직렬 연결된 제3 LED 광원(LED3)과 제4 LED 광원(LED4)의 양단에 인가된다.
이때, 정류 전압 Vin은 제2 광원 그룹의 제3 LED 광원(LED3)과 제4 LED 광원(LED4)이 직렬 발광이 가능한 레벨로 상승된 상태이다. 그러므로, 제3 LED 광원(LED3)과 제4 LED 광원(LED4)이 직렬 발광하고, 발광을 위한 전류 경로는 스위칭 회로(CC4)에 의해 제공된다. 센싱 저항(Rs2)은 상승된 정류 전압 Vin에 대응하여 상승된 구동 전류 Iin에 대응하는 센싱 전압을 제공한다. 이때, 센싱 전압은 스위칭 회로(CC3)의 비교기(CA23)에 인가되는 기준 전압 VREF3보다 높다. 그러므로, 비교기(CA23)의 출력에 의해 NMOS 트랜지스터(QS23)가 턴오프되며, 스위칭 회로(CC3)는 턴오프된다.
상기한 밸런싱 회로들(30, 40)의 제1 및 제2 밸런싱 경로의 턴오프는 동시에 발생하며, 제1 LED 광원(LED1) 및 제2 LED 광원(LED2)의 직렬 발광 및 제3 LED 광원 및 제4 LED 광원(LED4)의 직렬 발광은 동시에 시작된다. 그러므로, 도 19와 같이 각 LED 광원의 전류들(ILED1~ILED4)은 정류 전압 Vin의 상승된 레벨에 대응하여 동시에 더 상승한다.
상기와 같이, 직렬 발광이 유지되는 동안 정류 전압 Vin이 피크 레벨까지 상승하고 그 후 하강하여도 각 스위칭 회로들(CC1~CC4)의 전류는 센싱 저항들(Rs1, Rs2)의 센싱 전압의 피드백에 의해 일정한 양으로 유지되도록 레귤레이션된다.
정류 전압 Vin이 피크 레벨에서 점차 하강하면, 실시예의 발광 상태는 도 18의 직렬 발광에서 도 17의 병렬 발광으로 변경되며, 그에 따라 구동 전류도 단계적으로 줄어든다. 그리고, 정류 전압 Vin이 0V까지 하강하면, 제1 및 제2 광원 그룹은 소광한다.
상기한 과정에서, 밸런싱 회로들(30, 40)은 제1 광원 그룹과 제2 광원 그룹이 직렬 발광과 병렬 발광일 때 동일한 전류를 소모할 수 있도록 턴오프 및 턴온을 위한 타이밍이 설정될 수 있다. 상기한 밸런싱 회로들(30, 40)의 턴오프 및 턴온을 위한 타이밍은 비교 전압의 밸런싱 레벨의 설정에 의해 조정될 수 있다. 그러므로, 본 발명의 실시예는 발광 상태가 변경되어도 유니폼 디밍이 가능한다.
한편, 본 발명의 실시예의 제2 모드에 대응한 동작을 도 20 내지 도 24를 참조하여 설명한다.
도 20 내지 도 23은 제2 모드에서 정격 전압 277V의 정류 전압 Vin에 대응하여 제1 발광 그룹과 제2 발광 그룹의 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)이 순차 발광하는 경우를 예시한 것이다. 그리고, 도 24는 도 20 내지 도 23과 같이 발광 상태가 변경됨에 따른 실시예의 전압 및 전류를 설명하는 파형도이다.
제2 모드에서 정류 전압 Vin은 0V에서 전류 제어부(50)의 비교 전압의 제2 제어 레벨, 밸런싱 회로(40)의 비교 전압의 제2 밸런싱 레벨 및 밸런싱 회로(30)의 비교 전압의 제1 밸런싱 레벨을 경유하여 정격 전압 277V에 해당하는 피크 레벨로 상승하고 그 후 제1 밸런싱 레벨, 제2 밸런싱 레벨 및 제2 제어 레벨을 경유하여 0V로 하강한다.
제2 모드에서, 밸런싱 회로(40)의 비교 전압은 밸런싱 회로(30)의 비교 전압의 제1 밸런싱 레벨보다 낮은 제2 밸런싱 레벨을 가지며, 전류 제어부(50)의 비교 전압은 밸런싱 회로(40)의 비교 전압의 제2 밸런싱 레벨보다 낮은 제2 제어 레벨을 갖는다.
여기에서, 제2 제어 레벨은 두 개의 LED 광원이 직렬 발광하는 레벨 이상으로 정류 전압 Vin이 상승하면 전류 제어부(50)가 턴오프되도록 설정되며, 제2 밸런싱 레벨은 세 개의 LED 광원이 직렬 발광하는 레벨 이상으로 정류 전압 Vin이 상승하면 밸런싱 회로(40)가 턴오프되도록 설정되고, 제1 밸런싱 레벨은 네 개의 LED 광원이 직렬 발광하는 레벨 이상으로 정류 전압 Vin이 상승하면 밸런싱 회로(30)가 턴오프되도록 설정된다.
밸런싱 회로들(30, 40) 및 전류 제어부(50)는 제1 모드와 동일하게 초기의 정류 전압 Vin에 대응하여 노멀 턴온 상태를 유지한다.
그리고, 드라이버들(60, 65)에서, 스위칭 회로들(CC0, CC1, CC2, CC6, CC3, CC4)은 모드 제어 신호 M1에 의해 턴오프되고, 스위칭 회로들(CC5, CC7)은 모드 제어 신호 M2에 의해 턴온이 유지된다. 이때, 스위칭 회로들(CC5, CC7)은 초기의 정류 전압 Vin에 대응하여 기준 전압들 VREF1이 피드백되는 센싱 전압보다 높으므로 노멀 턴온을 유지한다. 그리고, 스위칭 회로들(CC5, CC7)은 정류 전압 Vin이 피크 레벨까지 상승하여도 턴온을 유지하도록 구성된다.
즉, 제2 모드에서 제1 발광 그룹과 제2 발광 그룹의 LED 광원들 중 제4 LED 광원(LED4)에만 스위칭 회로들(CC5, CC7)에 의한 전류 경로가 제공된다.
그리고, 제2 모드에서, 전류 제어부(50)는 제1 기간 동안 노멀 턴온을 유지한다. 여기에서, 제1 기간은 정류 전압 Vin이 제2 제어 레벨 미만을 유지하는 기간으로 이해될 수 있다. 그리고, 제2 모드에서 제2 LED 광원(LED2)에서 드라이버(60)의 단자(CH14)로 전류 흐름이 형성되지 않으므로 스위치(Q1)는 턴온된다. 그러므로, 전류 제어부(50)는 제2 모드의 제1 기간 동안 스위치(T3)의 턴온 및 스위치(Q1)의 턴온에 의해 스위치(T3) 및 저항(R3)을 포함하는 바이패스 경로를 제공한다.
상술한 바에 의해, 본 발명의 실시예는 제2 모드에서 정류 전압 Vin이 하나의 LED 광원을 발광시키는 레벨로 상승되기 전까지 전류 경로는 형성되지 않는다.
정류 전압 Vin이 하나의 LED 광원을 발광시키는 레벨로 상승하면, 제4 LED 광원(LED4)은 도 20과 같이 노멀 턴온된 전류 제어부(50) 및 노멀 턴온된 밸런싱 회로(40)를 경유하여 인가되는 정류 전압 Vin에 의하여 발광한다.
제4 LED 광원(LED4)가 발광하면, 드라이버(60, 65)의 스위칭 회로(CC5, CC7)가 전류 경로를 제공한다. 이때, 구동 전류가 드라이버(60, 65)의 스위칭 회로(CC5, CC7)에 의한 전류 경로를 통하여 흐른다.
제4 LED 광원(LED4)이 발광한 상태에서 정류 전압 Vin이 상승하는 경우, 전류 레귤레이션은 전류 제어부(50)에 의해 수행된다. 보다 구체적으로, 전류 제어부(50)는 정류 전압 Vin의 상승에 따라 저항(R3)에 인가되는 부하 전압이 상승하면, 비교기(54)의 출력에 의해 스위치(T3)를 통하여 흐르는 전류양을 제어한다. 제2 모드에서, 전류 제어부(50)는 드라이버들(50, 60)보다 큰 부하를 가짐에 따라 상기한 전류 레귤레이션을 수행할 수 있다.
그 후, 정류 전압 Vin이 두 개의 직렬 연결된 LED 광원을 발광시키는 레벨로 상승하면, 도 21과 같이 전류 제어부(50)는 턴오프된다. 보다 구체적으로, 정류 전압 Vin의 상승된 전압에 의해 저항(R3)에 인가되는 부하 전압이 상승한다. 부하 전압이 비교 전압의 제2 제어 레벨 이상이면, 비교기(54)의 출력에 의해 스위치(T3)가 턴오프된다. 즉, 전류 제어부(50)에 의한 바이패스 경로의 제공이 중지된다.
그 결과, 정류 전압 Vin은 밸런싱 회로(30)를 통하여 전달된다. 결과적으로, 밸런싱 회로들(30, 40)이 노멀 턴온 상태를 유지하므로, 제2 LED 광원(LED2)과 제4 LED 광원(LED4)이 직렬로 연결된다. 상기와 같이 직렬 연결된 제2 LED 광원(LED2)과 제4 LED 광원(LED4)은 양단 전압에 의해 발광한다.
이때, 전류 경로는 제4 LED 광원(LED4)에 연결된 드라이버(60, 65)의 스위칭 회로(CC5, CC7)에 의해 제공된다.
제2 LED 광원(LED2) 및 제4 LED 광원(LED4)이 직렬 발광한 상태에서 정류 전압 Vin이 상승하는 경우, 전류 레귤레이션은 밸런싱 회로(40)에 의해 수행된다. 보다 구체적으로, 밸런싱 회로(40)는 정류 전압 Vin의 상승에 따라 저항(R5)에 인가되는 부하 전압이 상승하면, 비교기(44)의 출력에 의해 스위치(T2)를 통하여 흐르는 전류양을 제어한다. 제2 모드에서, 밸런싱 회로(40)는 드라이버들(50, 60)보다 큰 부하를 가짐에 따라 상기한 전류 레귤레이션을 수행할 수 있다.
그 후, 정류 전압 Vin이 세 개의 직렬 연결된 LED 광원을 발광시키는 레벨로 상승하면, 도 22와 같이 밸런싱 회로(40)는 턴오프된다. 이때, 전류 제어부(50)는 턴오프를 유지한다. 보다 구체적으로, 정류 전압 Vin의 상승된 전압에 의해 저항(R5)에 인가되는 부하 전압이 상승한다. 부하 전압이 비교 전압의 제2 밸런싱 레벨 이상이면, 비교기(44)의 출력에 의해 스위치(T2)가 턴오프된다. 즉, 밸런싱 회로(40)에 의한 제2 밸런싱 경로의 제공이 중지된다.
그 결과, 정류 전압 Vin은 노멀 턴온 상태를 유지하는 밸런싱 회로(30)를 통하여 제2 LED 광원(LED2)에 전달되며, 제2 LED 광원(LED2) 내지 제4 LED 광원(LED4)이 직렬로 연결된다. 상기와 같이 직렬 연결된 제2 LED 광원(LED2) 내지 제4 LED 광원(LED4)은 양단 전압에 의해 발광한다.
이때, 전류 경로는 제4 LED 광원(LED4)에 연결된 드라이버(60, 65)의 스위칭 회로(CC5, CC7)에 의해 제공된다.
제2 LED 광원(LED2) 내지 제4 LED 광원(LED4)이 직렬 발광한 상태에서 정류 전압 Vin이 상승하는 경우, 전류 레귤레이션은 밸런싱 회로(30)에 의해 수행된다. 보다 구체적으로, 밸런싱 회로(30)는 정류 전압 Vin의 상승에 따라 저항(R1)에 인가되는 부하 전압이 상승하면, 비교기(34)의 출력에 의해 스위치(T1)를 통하여 흐르는 전류양을 제어한다. 제2 모드에서, 밸런싱 회로(30)는 드라이버들(50, 60)보다 큰 부하를 가짐에 따라 상기한 전류 레귤레이션을 수행할 수 있다.
그 후, 정류 전압 Vin이 네 개의 직렬 연결된 LED 광원을 발광시키는 레벨로 상승하면, 도 23과 같이 밸런싱 회로(30)는 턴오프된다. 이때, 밸런싱 회로(40) 및 전류 제어부(50)는 턴오프를 유지한다. 보다 구체적으로, 정류 전압 Vin의 상승된 전압에 의해 저항(R1)에 인가되는 부하 전압이 상승한다. 부하 전압이 비교 전압의 제1 밸런싱 레벨 이상이면, 비교기(34)의 출력에 의해 스위치(T1)가 턴오프된다. 즉, 밸런싱 회로(30)에 의한 제1 밸런싱 경로의 제공이 중지된다.
그 결과, 정류 전압 Vin은 제1 LED 광원(LED2)에 직접 인가되며, 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)이 직렬로 연결된다. 상기와 같이 직렬 연결된 제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)은 양단 전압에 의해 발광한다.
이때, 전류 경로는 제4 LED 광원(LED4)에 연결된 드라이버(60, 65)의 스위칭 회로(CC5, CC7)에 의해 제공된다.
제1 LED 광원(LED1) 내지 제4 LED 광원(LED4)이 직렬 발광한 상태에서 정류 전압 Vin이 상승하는 경우, 전류 레귤레이션은 드라이버(60, 65)의 스위칭 회로(CC5, CC7)에 의해 수행된다. 보다 구체적으로, 드라이버(60, 65)의 스위칭 회로(CC5, CC7)는 정류 전압 Vin의 상승에 따라 센싱 저항(Rs1, Rs2)에 인가되는 센싱 전압이 상승하면, 비교기(CA11, CA21)의 출력에 의해 NMOS 트랜지스터(QS11, QS21)를 통하여 흐르는 전류양을 제어한다.
정류 전압 Vin이 피크 레벨에 도달한 후 점차 하강하면, 실시예의 발광 상태는 도 23의 발광 상태에서 도 22, 도 21 및 도 20의 발광 상태로 변경된 후 소광되며, 그에 따라 구동 전류도 줄어든다.
상기한 도 20 내지 도 23과 같이, LED 광원들을 흐르는 전류(ILED1~ILED4) 및 구동 전류(Iin)도 한 주기의 정류 전압 Vin의 변화에 대응하여 단계적으로 증가하다가 감소한다.
한편, 본 발명의 실시예는 제1 모드에서 도 25와 같은 전류 레귤레이션에 의한 동작을 수행하며, 제2 모드에서 도 26과 같은 파워 레귤레이션에 의한 동작을 수행한다.
이를 위하여, 파워 보상부(28)가 제1 모드에서 비활성화되고 제2 모드에서 활성화되도록 구성됨이 바람직하다.
구체적으로, 본 발명의 실시예는 제1 모드에서 전류 레귤레이션에 의해 발광에 따른 구동 전류 Iin를 레귤레이션한다. 예시적으로, 도 25와 같이, 정격 전압이 110VAC, 120VAC 및 130VAC로 변경됨에 따라 피크 전압 VPD이 변경되어도, 본 발명의 실시예는 정격 전압의 변화에 따른 정류 전압 Vin의 변화에 무관하게 균일한 전류양을 유지하도록 제어된다.
그리고, 본 발명의 실시예는 제2 모드에서 파워 레귤레이션에 의해 발광에 따른 구동 전류 Iin를 제어한다. 예시적으로, 도 26과 같이, 정격 전압이 240VAC, 277VAC 및 300VAC로 변경됨에 따라 피크 전압 VPD이 변경되면, 본 발명의 실시예는 도 7을 참조하여 설명된 바와 같이 피크 전압 VPD의 상승에 따라 기준 전압 VREF4를 상승시킨다. 그 결과, 본 발명의 실시예는 피크 전압 VPD의 변화와 반비례하게 전류양이 줄어들도록 구동 전류 Iin를 제어한다. 그러므로, 제2 모드에서 정격 전압이 변화되어도 구동 전류의 양이 제어됨으로써 파워를 균일하게 유지하는 파워 레귤레이션이 수행된다.
상술한 바에 의하여, 본 발명은 피크 레벨이 다른 정류 전압들에 대응하여 듀얼 모드로 발광할 수 있어서 다양한 전압 환경을 지원할 수 있다.
그리고, 본 발명은 피크 레벨이 낮은 정류 전압에 의해 발광하는 경우 전류 레귤레이션을 수행하고 유니폼 디밍을 수행할 수 있다. 또한, 본 발명은 피크 레벨이 높은 정류 전압에 의해 발광하는 경우 파워 레귤레이션을 수행할 수 있다. 그러므로, 본 발명의 발광다이오드 조명 장치는 균일한 파워로 동작할 수 있다.
그리고, 본 발명의 발광다이오드 조명 장치는 낮은 정류 전압에 의해 발광하는 경우 블리딩 기능을 제공함으로써 디머의 동작 특성을 고려한 안정적인 동작이 가능하다.
그리고, 본 발명의 발광다이오드 조명 장치는 발광에 따른 구동 전류의 변화를 정류 전압의 변화에 대응하도록 제어함으로써 전고조파왜곡 현상을 저감시킬 수 있다.

Claims (20)

  1. 제1 광원 그룹에 포함되는 제1 LED 광원 및 제2 LED 광원;
    제2 광원 그룹에 포함되는 제3 LED 광원 및 제4 LED 광원;
    정류 전압의 피크 레벨에 따라 제1 모드 및 제2 모드를 판단하며, 모드에 대응하는 모드 제어 신호와 전류 제어 신호를 제공하고, 상기 제2 모드의 상기 정류 전압이 상기 제1 모드보다 높은 상기 피크 레벨을 갖는 모드 판단부;
    상기 전류 제어 신호에 의하여, 상기 정류 전압이 미리 설정된 제어 레벨 미만인 제1 기간에 상기 정류 전압을 상기 제1 광원 그룹을 바이패스하여 상기 제2 광원 그룹에 전달하는 전류 제어부;
    상기 전류 제어 신호에 의하여 모드에 따라 다른 레벨로 제1 밸런싱 레벨이 설정되며, 상기 정류 전압이 상기 제1 밸런싱 레벨 미만인 경우 상기 정류 전압을 상기 제1 LED 광원을 바이패스하여 상기 제2 LED 광원에 전달하는 제1 밸런싱 회로;
    상기 전류 제어 신호에 의하여 모드에 따라 다른 레벨로 제2 밸런싱 레벨이 설정되며, 상기 정류 전압이 상기 제2 밸런싱 레벨 미만인 경우 상기 제3 LED 광원을 바이패스하여 상기 제4 LED 광원으로 전달하는 제2 밸런싱 회로; 및
    상기 모드 제어 신호에 대응하여, 상기 제1 모드에서 상기 제1 및 제2 밸런싱 회로의 턴온 및 턴오프에 따라 상기 정류 전압의 한 주기의 변화에 대응하여 내부 LED 광원들의 배열 상태가 직렬 또는 병렬로 변경되는 상기 제1 광원 그룹 및 상기 제2 광원 그룹 각각의 발광에 대응하여 변경되는 제1 전류 경로를 상기 제1 LED 광원 내지 상기 제4 LED 광원에 제공하고, 상기 제2 모드에서 상기 전류 제어부, 상기 제2 밸런싱 회로 및 상기 제1 밸런싱 회로의 순차적인 턴오프 및 턴온에 따라 상기 정류 전압의 한 주기의 변화에 대응하여 직렬 연결 상태가 변경되는 상기 제1 LED 광원 내지 상기 제4 LED 광원의 발광에 대응한 제2 전류 경로를 상기 제4 LED 광원에 제공하는 전류 경로 제공 회로;를 포함함을 특징으로 하는 발광다이오드 조명 장치.
  2. 제1 항에 있어서,
    상기 제1 모드에서, 상기 전류 제어 신호에 의하여 상기 제1 밸런싱 레벨과 상기 제2 밸런싱 레벨은 동일하게 설정됨으로써 상기 정류 전압의 한 주기의 변화에 대응한 상기 제1 밸런싱 회로와 상기 제2 밸런싱 회로의 턴오프 및 턴온에 의해 광원 그룹 단위로 내부 LED 광원들의 배열 상태가 직렬 또는 병렬로 변경되며;
    상기 제2 모드에서, 상기 전류 제어 신호에 의하여 상기 제2 밸런싱 레벨이 상기 제어 레벨보다 높고 상기 제1 밸런싱 레벨이 상기 제2 밸런싱 레벨보다 높게 설정됨으로써, 상기 정류 전압의 한 주기 중 상승 기간에 대응하여 상기 전류 제어부, 상기 제2 밸런싱 회로 및 상기 제1 밸런싱 회로가 순차적으로 턴오프되는 발광 다이오드 조명 장치.
  3. 제2 항에 있어서,
    상기 제1 모드에서 한 주기 내에서 상기 정류 전압이 상승하는 것에 대응하여, 상기 제1 발광 그룹과 상기 제2 발광 그룹 내의 LED 광원들의 발광 상태가 병렬 발광 및 직렬 발광의 순으로 변경되고; 그리고,
    상기 제2 모드에서 한 주기 내에서 상기 정류 전압이 상승하는 것에 대응하여, LED 광원들의 발광 상태가 상기 제4 LED 광원의 발광, 상기 제2 LED 광원 및 상기 제4 LED 광원의 직렬 발광, 상기 제2 LED 광원 내지 상기 제4 LED 광원의 직렬 발광 및 상기 제1 LED 광원 내지 제4 LED 광원의 직렬 발광의 순으로 변경되는 발광다이오드 조명 장치.
  4. 제1 항에 있어서, 상기 전류 경로 제공 회로는,
    상기 제1 모드에서, 상기 모드 제어 신호에 대응하여 상기 제1 전류 경로의 턴온 및 상기 제2 전류 경로의 턴오프를 수행하고, 상기 제1 내지 제4 LED 광원에 대응하는 기준 전압들과 발광에 대응한 구동 전류를 피드백한 센싱 전압을 비교함으로써 상기 제1 전류 경로에 대한 전류 레귤레이션을 수행하고; 그리고,
    상기 제2 모드에서, 상기 모드 제어 신호에 대응하여 상기 제1 전류 경로의 턴오프 및 상기 제2 전류 경로의 턴온을 수행하고, 상기 정류 전압의 상기 피크 레벨에 대응하여 상기 제2 전류 경로의 전류양을 제어함으로써 파워 레귤레이션을 수행하는; 발광다이오드 조명 장치.
  5. 제4 항에 있어서, 상기 모드 판단부는,
    상기 피크 레벨에 대응하는 파워 보상 신호를 생성하며 상기 파워 레귤레이션을 위하여 상기 파워 보상 신호를 상기 전류 경로 제공 회로에 제공하는 파워 보상부;를 포함하는 발광다이오드 조명 장치.
  6. 제5 항에 있어서,
    상기 전류 경로 제공 회로는 상기 파워 보상 신호에 의하여 상기 피크 레벨의 상승과 하강에 대응하도록 상기 제2 전류 경로에 대응한 기준 전압을 가변하고, 가변되는 상기 기준 전압과 발광에 대응한 상기 구동 전류를 피드백한 센싱 전압을 비교함으로써 상기 제2 전류 경로의 전류양을 제어하는 발광다이오드 조명 장치.
  7. 제1 항에 있어서, 상기 모드 판단부는,
    상기 정류 전압의 상기 피크 레벨에 대응하는 피크 전압을 제공하는 전압 감지부;
    상기 피크 전압에 따라 모드 별로 서로 다른 레벨을 갖는 모드 검출 신호를 제공하는 모드 검출부; 및
    상기 모드 검출 신호에 의하여 모드에 대응하는 상기 모드 제어 신호와 상기 전류 제어 신호를 제공하는 모드 제어부;를 포함하는 발광다이오드 조명 장치.
  8. 제1 항에 있어서, 상기 전류 제어부는,
    상기 제1 모드의 전체 기간 동안 상기 전류 제어 신호에 대응하여 상기 정류 전압을 상기 제1 광원 그룹을 바이패스하여 상기 제2 광원 그룹에 전달하는 제1 바이패스 경로를 턴온하고; 그리고,
    상기 제2 모드의 상기 제1 기간에 상기 정류 전압을 상기 제1 광원 그룹을 바이패스하여 상기 제2 광원 그룹에 전달하는 제2 바이패스 경로를 턴온하고 상기 제2 모드의 상기 제1 기간 이외의 기간에 상기 제2 바이패스 경로를 턴오프하는; 발광다이오드 조명 장치.
  9. 제1 항에 있어서, 상기 전류 제어부는,
    상기 전류 제어 신호에 대응하여 상기 제1 모드에 제1 제어 레벨을 가지며 상기 제2 모드에서 상기 제1 제어 레벨보다 낮은 제2 제어 레벨을 갖는 비교 전압을 제공하는 비교 전압 제공부;
    부하 전압과 상기 비교 전압을 비교하는 비교기;
    상기 비교기의 출력에 의하여 상기 정류 전압을 선택적으로 전달하는 제1 스위치;
    상기 제1 모드에서 턴온되고 상기 제2 모드에서 턴오프되는 제2 스위치; 및
    상기 제1 광원 그룹과 상기 제2 광원 그룹 사이에 직렬로 연결된 제1 저항 및 제2 저항을 포함하며, 상기 제1 저항은 상기 제1 스위치의 출력단과 상기 제1 광원 그룹에 연결되며 상기 제2 스위치와 병렬로 구성되고, 전류량에 대응하는 상기 부하 전압을 제공하는 부하 회로;를 포함하며,
    상기 제1 모드에 대응하여 상기 제1 스위치, 상기 제2 스위치 및 상기 제2 저항을 포함하는 제1 바이패스 경로를 제공하고, 상기 제2 모드의 상기 제1 기간에 대응하여 상기 제1 스위치, 상기 제1 저항 및 상기 제2 저항을 포함하는 제2 바이패스 경로를 제공하는 발광다이오드 조명 장치.
  10. 제1 항에 있어서, 상기 제1 밸런싱 회로와 제2 밸런싱 회로 각각은,
    상기 전류 제어 신호에 대응하여 상기 제2 모드에서 상기 제1 모드보다 높은 밸런싱 레벨을 갖는 비교 전압을 제공하는 비교 전압 제공부;
    부하 전압과 상기 비교 전압을 비교하는 비교기;
    상기 비교기의 출력에 의하여 스위칭이 제어되는 스위치; 및
    광원 그룹 내의 LED 광원들 사이에 구성되며 상기 스위치의 출력단과 연결되고, 전류량에 대응하는 상기 부하 전압을 제공하는 부하 회로;를 포함하며,
    상기 부하 전압의 변화에 따른 상기 스위치의 동작에 따라 상기 스위치와 상기 부하 회로를 포함하는 밸런싱 경로를 제공하는 발광다이오드 조명 장치.
  11. 제1 광원 그룹에 포함되는 제1 LED 광원 및 제2 LED 광원;
    제2 광원 그룹에 포함되는 제3 LED 광원 및 제4 LED 광원;
    정류 전압의 피크 레벨을 따르는 피크 전압을 이용하여 모드 별로 서로 다른 레벨을 갖는 모드 검출 신호를 제공하는 모드 검출 회로;
    전류 제어 신호에 의하여, 상기 정류 전압이 미리 설정된 제어 레벨 미만인 제1 기간에 상기 정류 전압을 상기 제1 광원 그룹을 바이패스하여 상기 제2 광원 그룹에 전달하는 전류 제어부;
    상기 전류 제어 신호에 의하여 모드에 따라 다른 레벨로 제1 밸런싱 레벨이 설정되며, 상기 정류 전압이 상기 제1 밸런싱 레벨 미만인 경우 상기 정류 전압을 상기 제1 LED 광원을 바이패스하여 상기 제2 LED 광원에 전달하는 제1 밸런싱 회로;
    상기 전류 제어 신호에 의하여 모드에 따라 다른 레벨로 제2 밸런싱 레벨이 설정되며, 상기 정류 전압이 상기 제2 밸런싱 레벨 미만인 경우 상기 제3 LED 광원을 바이패스하여 상기 제4 LED 광원으로 전달하는 제2 밸런싱 회로;
    제1 모드에서 상기 제1 LED 광원 및 상기 제2 LED 광원의 직렬 또는 병렬 연결에 대응한 제1 전류 경로를 제공하는 제1 드라이버; 및
    상기 제1 모드에서 상기 제3 LED 광원 및 상기 제4 LED 광원의 직렬 또는 병렬 연결에 대응한 제2 전류 경로를 제공하고, 상기 정류 전압의 피크 레벨이 상기 제1 모드보다 높은 제2 모드에서 상기 제4 LED 광원에 제3 전류 경로를 제공하는 제2 드라이버;를 포함하며,
    상기 제1 드라이버 및 상기 제2 드라이버 중 적어도 하나는 상기 모드 검출 신호에 대응하여 모드 별로 다른 레벨을 갖는 상기 전류 제어 신호를 제공함을 특징으로 하는 발광다이오드 조명 장치.
  12. 제11 항에 있어서,
    상기 제1 모드에서, 상기 전류 제어 신호에 의하여 상기 제1 밸런싱 레벨과 상기 제2 밸런싱 레벨은 동일하게 설정됨으로써 상기 정류 전압의 한 주기의 변화에 대응한 상기 제1 밸런싱 회로와 상기 제2 밸런싱 회로의 턴오프 및 턴온에 의해 광원 그룹 단위로 내부 LED 광원들의 배열 상태가 직렬 또는 병렬로 변경되며; 그리고,
    상기 제2 모드에서, 상기 전류 제어 신호에 의하여 상기 제2 밸런싱 레벨이 상기 제어 레벨보다 높고 상기 제1 밸런싱 레벨이 상기 제2 밸런싱 레벨보다 높게 설정됨으로써, 상기 정류 전압의 한 주기 중 상승 기간에 대응하여 상기 전류 제어부, 상기 제2 밸런싱 회로 및 상기 제1 밸런싱 회로가 순차적으로 턴오프되는 발광 다이오드 조명 장치.
  13. 제12 항에 있어서,
    상기 제1 모드에서 한 주기 내에서 상기 정류 전압이 상승하는 것에 대응하여, 상기 제1 발광 그룹과 상기 제2 발광 그룹 내의 LED 광원들의 발광 상태가 병렬 발광 및 직렬 발광의 순으로 발광 상태가 변경되고; 그리고,
    상기 제2 모드에서 한 주기 내에서 상기 정류 전압이 상승하는 것에 대응하여, LED 광원들의 발광 상태가 상기 제4 LED 광원의 발광, 상기 제2 LED 광원 및 상기 제4 LED 광원의 직렬 발광, 상기 제2 LED 광원 내지 상기 제4 LED 광원의 직렬 발광 및 상기 제1 LED 광원 내지 제4 LED 광원의 직렬 발광의 순으로 변경되는 발광다이오드 조명 장치.
  14. 제11 항에 있어서,
    상기 제1 드라이버와 상기 제2 드라이버는, 상기 모드 검출 신호에 대응하여 모드 별로 다른 레벨을 갖는 모드 제어 신호를 생성하는 모드 제어부를 포함하며, 상기 제1 모드에서 상기 모드 제어 신호에 대응하여 상기 제1 및 제2 전류 경로의 턴온 및 상기 제3 전류 경로의 턴오프를 수행하고, 상기 제1 내지 제4 LED 광원에 대응하는 기준 전압들과 발광에 대응한 구동 전류를 피드백한 센싱 전압을 비교함으로써 상기 제1 및 제2 전류 경로에 대한 전류 레귤레이션을 수행하고;
    상기 제1 드라이버와 상기 제2 드라이버는 상기 제2 모드에서 상기 모드 제어 신호에 대응하여 상기 제1 및 제2 전류 경로의 턴오프 및 상기 제3 전류 경로의 턴온을 수행하며; 그리고,
    상기 제2 드라이버는 상기 제2 모드에서 상기 정류 전압의 상기 피크 레벨에 대응하여 상기 제3 전류 경로의 전류양을 제어함으로써 파워 레귤레이션을 수행하는; 발광다이오드 조명 장치.
  15. 제14 항에 있어서, 상기 제2 드라이버는,
    상기 피크 전압에 대응하여 파워 보상 신호를 생성하며, 상기 파워 보상 신호에 따라 상기 제4 LED 광원에 대응하는 기준 전압을 가변시키는 파워 보상부를 포함하고,
    가변되는 상기 기준 전압과 상기 제3 전류 경로의 구동 전류에 대응하는 센싱 전압을 비교함으로써 상기 제3 전류 경로의 전류양을 제어하는 상기 파워 레귤레이션을 수행하는 발광다이오드 조명 장치.
  16. 제11 항에 있어서, 상기 모드 검출 회로는,
    상기 정류 전압의 상기 피크 레벨에 대응하는 상기 피크 전압을 제공하는 전압 감지부; 및
    상기 피크 전압에 따라 모드 별로 서로 다른 레벨을 갖는 상기 모드 검출 신호를 제공하는 모드 검출부;를 포함하는 발광다이오드 조명 장치.
  17. 제11 항에 있어서, 상기 전류 제어부는,
    상기 제1 모드의 전체 기간 동안 상기 전류 제어 신호에 대응하여 상기 정류 전압을 상기 제1 광원 그룹을 바이패스하여 상기 제2 광원 그룹에 전달하는 제1 바이패스 경로를 턴온하고; 그리고,
    상기 제2 모드의 상기 제1 기간에 상기 정류 전압을 상기 제1 광원 그룹을 바이패스하여 상기 제2 광원 그룹에 전달하는 제2 바이패스 경로를 턴온하고 상기 제2 모드의 상기 제1 기간 이외의 기간에 상기 제2 바이패스 경로를 턴오프하는; 발광다이오드 조명 장치.
  18. 제11 항에 있어서, 상기 전류 제어부는,
    상기 전류 제어 신호에 대응하여 상기 제1 모드에 제1 제어 레벨을 가지며 상기 제2 모드에서 상기 제1 제어 레벨보다 낮은 제2 제어 레벨을 갖는 비교 전압을 제공하는 비교 전압 제공부;
    부하 전압과 상기 비교 전압을 비교하는 비교기;
    상기 비교기의 출력에 의하여 상기 정류 전압을 선택적으로 전달하는 제1 스위치;
    상기 제1 모드에서 턴온되고 상기 제2 모드에서 턴오프되는 제2 스위치; 및
    상기 제1 광원 그룹과 상기 제2 광원 그룹 사이에 직렬로 연결된 제1 저항 및 제2 저항을 포함하며, 상기 제1 저항은 상기 제1 스위치의 출력단과 상기 제1 광원 그룹에 연결되며 상기 제2 스위치와 병렬로 구성되고, 전류량에 대응하는 상기 부하 전압을 제공하는 부하 회로;를 포함하며,
    상기 제1 모드에 대응하여 상기 제1 스위치, 상기 제2 스위치 및 상기 제2 저항을 포함하는 제1 바이패스 경로를 제공하고, 상기 제2 모드의 상기 제1 기간에 대응하여 상기 제1 스위치, 상기 제1 저항 및 상기 제2 저항을 포함하는 제2 바이패스 경로를 제공하는 발광다이오드 조명 장치.
  19. 제11 항에 있어서, 상기 제1 밸런싱 회로와 제2 밸런싱 회로 각각은,
    상기 전류 제어 신호에 대응하여 상기 제2 모드에서 상기 제1 모드보다 높은 밸런싱 레벨을 갖는 비교 전압을 제공하는 비교 전압 제공부;
    부하 전압과 상기 비교 전압을 비교하는 비교기;
    상기 비교기의 출력에 의하여 스위칭이 제어되는 스위치; 및
    광원 그룹 내의 LED 광원들 사이에 구성되며 상기 스위치의 출력단과 연결되고, 전류량에 대응하는 상기 부하 전압을 제공하는 부하 회로;를 포함하며,
    상기 부하 전압의 변화에 따른 상기 스위치의 동작에 따라 상기 스위치와 상기 부하 회로를 포함하는 밸런싱 경로를 제공하는 발광다이오드 조명 장치.
  20. 제11 항에 있어서,
    상기 정류 전압이 인가되는 블리더를 더 포함하며,
    상기 제1 드라이버는 상기 제1 모드에 한하여 상기 블리더에 상기 제1 광원 그룹의 소광 기간에 턴온을 유지하는 제4 전류 경로를 더 제공하는 발광다이오드 조명 장치.
PCT/KR2018/004678 2018-04-23 2018-04-23 발광다이오드 조명 장치 WO2019208839A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2018/004678 WO2019208839A1 (ko) 2018-04-23 2018-04-23 발광다이오드 조명 장치
US17/049,666 US11224103B2 (en) 2018-04-23 2018-04-23 LED lighting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/004678 WO2019208839A1 (ko) 2018-04-23 2018-04-23 발광다이오드 조명 장치

Publications (1)

Publication Number Publication Date
WO2019208839A1 true WO2019208839A1 (ko) 2019-10-31

Family

ID=68294896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004678 WO2019208839A1 (ko) 2018-04-23 2018-04-23 발광다이오드 조명 장치

Country Status (2)

Country Link
US (1) US11224103B2 (ko)
WO (1) WO2019208839A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108990199B (zh) * 2018-05-25 2021-08-06 矽力杰半导体技术(杭州)有限公司 可控硅调光器的检测电路及方法
WO2024149746A1 (en) * 2023-01-12 2024-07-18 Signify Holding B.V. Hot swapping protection circuit for lighting products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110380B1 (ko) * 2010-12-16 2012-02-24 이동원 교류 구동 엘이디 조명장치
KR101582450B1 (ko) * 2015-08-13 2016-01-21 주식회사 실리콘웍스 조명 장치
KR20160096524A (ko) * 2015-02-05 2016-08-16 서울반도체 주식회사 고효율 led 조명장치 및 이의 led 구동 회로
KR20160116527A (ko) * 2015-03-30 2016-10-10 주식회사 실리콘웍스 조명 장치 및 그의 제어 회로
KR101825213B1 (ko) * 2014-05-21 2018-03-22 주식회사 루멘스 Led 구동 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109168A (ja) * 2008-10-30 2010-05-13 Fuji Electric Systems Co Ltd Led駆動装置、led駆動方法および照明装置
US20120206047A1 (en) * 2011-02-10 2012-08-16 3M Innovative Properties Company Current sensing transistor ladder driver for light emitting diodes
US9450505B2 (en) * 2012-01-20 2016-09-20 Osram Gmbh Optoelectronic component device
US8742682B1 (en) * 2012-11-28 2014-06-03 Analog Integrations Corporation AC driven lighting systems capable of avoiding dark zone
US9504109B2 (en) * 2013-12-17 2016-11-22 Altoran Chips & Systems Balanced AC direct driver lighting system with a valley fill circuit and a light balancer
EP3193565B1 (en) * 2014-09-12 2019-11-27 Citizen Electronics Co., Ltd Led driving circuit
US10624167B2 (en) * 2015-06-12 2020-04-14 Signify Holding B.V. AC-LED with hybrid LED channels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110380B1 (ko) * 2010-12-16 2012-02-24 이동원 교류 구동 엘이디 조명장치
KR101825213B1 (ko) * 2014-05-21 2018-03-22 주식회사 루멘스 Led 구동 장치
KR20160096524A (ko) * 2015-02-05 2016-08-16 서울반도체 주식회사 고효율 led 조명장치 및 이의 led 구동 회로
KR20160116527A (ko) * 2015-03-30 2016-10-10 주식회사 실리콘웍스 조명 장치 및 그의 제어 회로
KR101582450B1 (ko) * 2015-08-13 2016-01-21 주식회사 실리콘웍스 조명 장치

Also Published As

Publication number Publication date
US11224103B2 (en) 2022-01-11
US20210243863A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
WO2012081878A2 (ko) 교류 구동 엘이디 조명장치
WO2014104843A1 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2014104776A1 (ko) Led 연속구동을 위한 led 구동회로, 이를 포함하는 led 조명장치 및 구동방법
WO2016093534A1 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2013100736A1 (en) Led luminescence apparatus
WO2013039361A1 (en) Illumination apparatus including semiconductor light emitting diodes
WO2012144800A2 (ko) Led 구동 장치 및 이를 이용한 led 구동 방법
WO2011013906A2 (ko) 발광 장치를 위한 조광 장치
WO2010104297A2 (ko) 능동형 정전력 공급장치
WO2013162308A1 (ko) Led 디머, 이를 포함하는 led 조명장치 및 led 조명장치의 디밍 제어 방법
WO2014133349A2 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2016182206A2 (ko) 조명 장치 및 그의 구동 회로
WO2010137921A2 (en) Led driver
WO2019172643A1 (ko) 전원 장치
WO2015180136A1 (zh) 调光开关及其调光方法
WO2016060465A2 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2019208839A1 (ko) 발광다이오드 조명 장치
WO2018194201A1 (ko) 교류전원의 위상각 제어 통신을 이용한 기기 제어 장치 및 방법
WO2016104940A1 (ko) 발광 소자 구동 장치
WO2014189284A1 (ko) 발광 다이오드 조명 장치의 제어 회로 및 전압 생성 방법
WO2015020463A1 (ko) 전원 장치
WO2012161528A2 (ko) 엘이디 구동 제어 장치 및 이의 구동 전류 제어 방법
WO2011159048A2 (ko) Led 형광 램프
WO2015026096A1 (ko) 전원 장치
WO2009113784A2 (ko) 엘이디 구동장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916207

Country of ref document: EP

Kind code of ref document: A1