WO2014119955A1 - Batch deposition apparatus - Google Patents

Batch deposition apparatus Download PDF

Info

Publication number
WO2014119955A1
WO2014119955A1 PCT/KR2014/000900 KR2014000900W WO2014119955A1 WO 2014119955 A1 WO2014119955 A1 WO 2014119955A1 KR 2014000900 W KR2014000900 W KR 2014000900W WO 2014119955 A1 WO2014119955 A1 WO 2014119955A1
Authority
WO
WIPO (PCT)
Prior art keywords
process gas
inner tube
gas
chamber
deposition layer
Prior art date
Application number
PCT/KR2014/000900
Other languages
French (fr)
Korean (ko)
Inventor
연세훈
이유진
이재학
Original Assignee
주식회사 티지오테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140011304A external-priority patent/KR101555021B1/en
Application filed by 주식회사 티지오테크 filed Critical 주식회사 티지오테크
Publication of WO2014119955A1 publication Critical patent/WO2014119955A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45508Radial flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention relates to a batch deposition layer forming apparatus. More specifically, the present invention relates to a batch deposition layer forming apparatus capable of stably supplying a metal halide gas.
  • LEDs Light Emitting Diodes
  • LEDs are semiconductor light emitting devices that convert current into light and have been widely used as light sources for display images of electronic devices including information and communication devices.
  • LED lamps unlike conventional lighting such as incandescent lamps, fluorescent lamps, it is known that the efficiency of converting electrical energy into light energy can be saved up to 90%, and it is widely used as a device that can replace fluorescent lamps or incandescent bulbs. I am getting it.
  • the manufacturing process of such an LED device can be largely classified into an epi process, a chip process, and a package process.
  • the epitaxial process refers to a process for epitaxial growth of a compound semiconductor on a substrate
  • the chip process refers to a process of manufacturing an epi chip by forming electrodes on each part of the epitaxially grown substrate. It refers to a process of connecting leads to the manufactured epi chip and packaging so that light is emitted to the outside as much as possible.
  • the epi process is the most important process for determining the luminous efficiency of the LED device. This is because when the compound semiconductor is not epitaxially grown on the substrate, defects occur in the crystal and these defects act as nonradiative centers, thereby lowering the luminous efficiency of the LED device.
  • a liquid phase epitaxy (LPE), a vapor phase epitaxy (VPE), a molecular beam epitaxy (MBE), and a chemical vapor deposition (CVD) method are used.
  • LPE liquid phase epitaxy
  • VPE vapor phase epitaxy
  • MBE molecular beam epitaxy
  • CVD chemical vapor deposition
  • MOCVD metal-organic chemical vapor deposition
  • HVPE hydride vapor phase epitaxy
  • a process gas supply for supplying the process gas necessary for causing a reaction to form an epitaxial layer on the substrate is included in the apparatus for forming the epitaxial layer, wherein the process gas supply includes the process gas. It is most important to supply stably.
  • GaCl gas is supplied through the process gas supply unit as one of the process gases, and GaCl has a property of liquefying or condensing at 600 ° C or lower. Therefore, the temperature of the process gas supply unit for supplying GaCl should be maintained at a high temperature exceeding 600 ° C.
  • the process gas supply unit since the process gas supply unit is disposed outside the chamber, the temperature of the process gas supply unit is maintained at a high temperature. There was a difficulty in maintaining. Therefore, GaCl is liquefied or condensed in the process gas supply part, so that GaCl gas is not stably supplied into the chamber.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and an object thereof is to provide a process gas reaction apparatus capable of stably supplying a supply gas and a batch epitaxial layer forming apparatus including the same.
  • a batch deposition layer forming apparatus for forming a deposition layer on a plurality of substrates, the space in which the deposition layer is formed
  • a chamber providing a;
  • a heater disposed outside the chamber to apply heat to a plurality of substrates;
  • a substrate support disposed inside the chamber and in which the plurality of substrates are seated;
  • a process gas supply unit arranged to penetrate a center of the substrate support inside the chamber and supply process gas to the plurality of substrates;
  • a process gas exhaust unit configured to exhaust the process gas;
  • a process gas generating unit disposed inside the chamber and generating a first process gas by reacting a metal in the metal source with a halogen-containing gas, and supplying the first process gas to the process gas supply unit.
  • FIG. 1 is a view showing the configuration of a batch deposition layer forming apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a structure of a process gas supply unit according to an exemplary embodiment of the present invention.
  • FIG 3 is a cross-sectional view illustrating a structure of a process gas generating unit according to an embodiment of the present invention.
  • FIG. 1 is a view showing the configuration of a batch deposition layer forming apparatus according to an embodiment of the present invention.
  • the material of the substrate 10 loaded in the batch deposition layer forming apparatus is not particularly limited, and the substrate 10 may be loaded with various materials, such as glass, plastic, polymer, silicon wafer, stainless steel, and sapphire.
  • the substrate 10 may be loaded with various materials, such as glass, plastic, polymer, silicon wafer, stainless steel, and sapphire.
  • a circular sapphire substrate 10 used in the light emitting diode field will be described.
  • a batch deposition layer forming apparatus includes a chamber 110.
  • the chamber 110 may be configured to substantially seal the internal space during the process to provide a space for forming a deposition layer (epitaxial layer) on the plurality of substrates 10.
  • the chamber 110 is configured to maintain optimal process conditions, and the shape may be manufactured in a square or circular shape.
  • the material of the chamber 110 is preferably quartz, but is not necessarily limited thereto.
  • the batch deposition layer forming apparatus may include a heater 120.
  • the heater 120 may be installed outside the chamber 110 to perform a function of applying heat required in an epitaxial process to the plurality of substrates 10.
  • the heater 120 may heat the substrate 10 to a temperature of about 1,200 ° C. or more.
  • a heating method using a halogen lamp or a resistive heating element may be used to heat the substrate 10, but preferably an induction heating method may be used.
  • Induction heating refers to a method of heating a conductive object such as a metal by using electromagnetic induction.
  • the heater 120 includes a coil-type heater 120 capable of induction heating the inside of the chamber 110, and the susceptor 133 installed on the substrate support 131 includes a conductive material. Can be configured.
  • the heating of the substrate 10 using the coil heater 120 is based on the principle that the susceptor 133 including a conductive material is heated as a high frequency alternating current is applied from the coil heater 120 into the chamber 110. Can be implemented.
  • components of the batch deposition layer forming apparatus except for the susceptor 133 may be formed of non-conductors (eg, quartz). Accordingly, only the susceptor 133 is heated by the coil heater 120, thereby minimizing deposition of deposition material on the remaining components inside the chamber 110.
  • the batch deposition layer forming apparatus may include a lower support 130.
  • the lower supporter 130 may be installed inside the chamber 110 to support a plurality of substrates 10 during the epitaxial process.
  • the lower support 130 may be configured to be rotatable in the chamber 110.
  • various known rotation driving means may be employed in the lower support 130.
  • the substrate support 131 which is a component of the lower support 130, also rotates, so that the process gas is supplied in an unbiased position to the substrate 10. Can be prevented. As a result, the process gas can be more uniformly supplied on the plurality of substrates 10.
  • the lower supporter 130 may include a substrate support 131 on which the substrate 10 is mounted.
  • the substrate support 131 is preferably configured in the form of a disc for smooth rotation of the lower support 130, but is not necessarily limited thereto.
  • the substrate support 131 may be installed to be arranged in a plurality of layers.
  • the substrate support 131 of the plurality of layers may be connected and fixed to each other by the connection member 132.
  • the substrate support 131 is illustrated as having six layers in FIG. 1, the substrate support 131 is not necessarily limited thereto.
  • the number of layers of the substrate support 131 may be variously changed according to the purpose of the present invention.
  • the material of the substrate support 131 is preferably quartz, but is not necessarily limited thereto.
  • the process gas supply unit 140 supplies the process gas in a state where the process gas supply unit 140 penetrates the center of the substrate support 131 of the lower support unit 130.
  • the process gas is supplied from the center of the substrate support 131, a problem may occur in that more process gas is supplied to a position on the substrate 10 close to the center of the substrate support 131.
  • the plurality of substrates 10 mounted on the substrate support 131 may be independently rotated. In other words, while the epitaxial process is performed, each substrate 10 may be rotated in a horizontal direction with respect to the substrate support 131, but may be rotated at different rotational speeds or different rotational directions. This independent rotation of the substrate 10 may be made by the rotation of the susceptor 133 on which the substrate 10 is seated. As the substrate 10 rotates independently, the process gas can be uniformly supplied onto the plurality of substrates 10.
  • each of the substrate supports 131 may be provided with a plurality of susceptors 133.
  • the susceptor 133 may support the substrate 10 during the epitaxial process to prevent deformation of the substrate 10.
  • the number of susceptors 133 installed on each substrate support 131 may be the same as the number of substrates 10 disposed on each substrate support 131.
  • the susceptor 133 may perform a function of heating the substrate 10 together with the coil type heater 120.
  • the material of the susceptor 133 may include a conductive material, for example, amorphous carbon, diamondlike carbon, glasslike carbon, or the like, preferably graphite. (Graphite).
  • Graphite is not only excellent in strength but also excellent in conductivity and may be suitable for heating by induction heating.
  • the surface of graphite may be coated with silicon carbide (SiC). Since silicon carbide has excellent high temperature strength and hardness and high thermal conductivity, it is possible not only to prevent graphite molecules from dispersing during heating, but also to facilitate heat transfer to the substrate 10.
  • the susceptor 133 may perform a function of preventing rotation of the substrate 10 and rotating (rotating) the substrate 10 as described above, in addition to preventing deformation of the substrate 10 and heating the substrate 10.
  • various known rotation drive means may be employed in the susceptor 133.
  • the susceptor 133 preferably has the shape of a disc for smooth rotation, but is not necessarily limited thereto, and may have various shapes according to the object of the present invention.
  • the batch deposition layer forming apparatus may include a process gas supply unit 140.
  • the process gas supply unit 140 may perform a function of supplying a process gas necessary for forming an epitaxial layer into the chamber 110.
  • the process gas supply unit 140 is disposed to penetrate the center of the substrate support 131.
  • the process gas supply unit 140 is disposed to penetrate the through hole 135 formed in the center of the substrate support 131, so that the process gas supply unit 140 is supported by the substrate support 131 from the center of the substrate support 131.
  • the supply of the process gas towards the substrate 10 is characterized by its configuration.
  • the process gas supply unit 140 may be rotated while the epitaxial process is in progress.
  • various known rotation driving means may be employed in the process gas supply unit 140. Accordingly, similar to the rotation of the lower support 130, it is possible to prevent the process gas from being supplied unevenly to any position of each substrate 10. As a result, the process gas can be more uniformly supplied on the plurality of substrates 10.
  • FIG 2 is a cross-sectional view showing the structure of a process gas supply unit 140 according to an embodiment of the present invention.
  • the process gas supply unit 140 may be configured in a multi-pipe structure including a first inner tube 142 and a second inner tube 147 in the exterior 141.
  • the number of the first inner tubes 142 is illustrated as four, but is not limited thereto, and may be variously changed according to the purpose and situation of use.
  • the process gas supply unit 140 may include a plurality of gas injection holes 143 and 145.
  • the plurality of gas injection holes 143 and 145 may perform a function of injecting first and second process gases. Positions of the plurality of gas injection holes 143 and 145 may be formed to correspond to positions of the respective substrate supports 131.
  • the number of gas injection holes is not particularly limited and may be variously changed according to the object of the present invention.
  • the plurality of gas injection holes 143 and 145 are connected to the plurality of first gas injection holes 143 and the appearance 141 of the process gas supply unit 140 connected to the first inner tube 142 of the process gas supply unit 140. It can be seen as a meaning including a plurality of second gas injection holes 145.
  • the first gas injection hole 143 may inject a process gas into a hole formed at an end of the nozzle in the form of a nozzle formed on an outer wall of the first inner tube 142.
  • the first gas injection hole 143 may penetrate the hole 144 formed in the external appearance 141, and an end portion of the first gas injection hole 143 through which the process gas is injected may be exposed to the outside of the external appearance 141. have.
  • the second gas injection hole 145 is in the form of a hole formed in the exterior 141, and a space occupied by the first inner tube 142 and the second inner tube 147 of the exterior 141 through the second gas injection hole 145.
  • Process gas supplied to the internal space 146 except for may be injected to the outside.
  • the shapes of the first and second gas injection holes 143 and 145 are not limited thereto, and various modifications are possible.
  • the process gases supplied on the plurality of substrates 10 may be variously changed according to the type of epitaxial layer to be formed on the substrate 10 or the method of forming the epitaxial layer.
  • the process gases supplied on the plurality of substrates 10 may be variously changed according to the type of epitaxial layer to be formed on the substrate 10 or the method of forming the epitaxial layer.
  • gallium nitride (GaN) layer in order to form an epitaxial gallium nitride (GaN) layer on the plurality of substrates 10 by using the MOCVD method, trimethylgallium (TMG), triethylgallium (TEG), NH 3 gas, or the like may be used as the process gas. have.
  • GaCl, NH 3, H 2 gas, etc., generated by reacting Ga metal with HCl gas may be used as the process gas.
  • the process gas may be used as the process gas.
  • the process gas supply unit 140 used in the batch deposition layer forming apparatus may process process gas injected from the first gas injection hole 143 and process gas injected from the second gas injection hole 145. It is desirable to make them different. For example, in order to form an epitaxial gallium nitride layer on the plurality of substrates 10 using the MOCVD method, the first gas injection port 143 injects a TMG gas or a TEG gas, and the second gas injection port 145. ) Can be injected with NH3 gas.
  • the process gas supply part 140 of the present invention since each of the plurality of process gases is injected through the first gas injection port 143 and the second gas injection port 145, the process gas supply part before the process gas reaches the substrate ( Reaction with each other in the 140 may prevent the deposition material from being deposited on the inner wall of the process gas supply unit 140.
  • the second inner tube 147 is positioned in the center of the outer shell 141 and is used to provide a halogen-containing gas (eg, HCl) to the process gas generator 160 to be described later.
  • a halogen-containing gas eg, HCl
  • a batch deposition layer forming apparatus may include a process gas exhaust unit 150.
  • the process gas exhaust unit 150 may perform a function of exhausting the process gas to the outside of the chamber 110.
  • the process gas exhaust unit 150 may be formed in a cylindrical shape surrounding the periphery of the plurality of substrate supports 131.
  • a plurality of exhaust ports 155 for exhausting the process gas may be formed at a height corresponding to each of the substrate supports 131 in the process gas exhaust unit 150.
  • the exhaust port 155 may be formed in a slit shape, but the shape is not limited thereto.
  • the number of exhaust ports 155 may be variously changed according to the purpose of the present invention is used.
  • a suction means for sucking the process gas is connected to the outside of the process gas exhaust unit 150 to exhaust the process gas to the outside through the exhaust port 155.
  • the exhaust port 155 is preferably located near the substrate support 131.
  • a batch deposition layer forming apparatus may include a process gas generator 160.
  • the process gas generator 160 may be formed in the chamber 110, and may be located at an upper portion of the chamber 110. Therefore, the metal halogen gas generated in the process gas generator 160 may be supplied downward from the top of the process gas supply unit 140.
  • a metal source eg, Ga source
  • a halogen-containing gas eg, HCl
  • the generated metal halide gas is supplied to the process gas supply unit 140.
  • the specific structure of the process gas generator 160 will be described later.
  • a batch deposition film forming apparatus may include a baffle unit 170.
  • the baffle unit 170 may be positioned below the substrate support 131 to block the heat generated in the chamber 110 from leaking to the outside.
  • the baffle unit 170 may prevent the heat from flowing out through the lower support 130. You can block.
  • the batch deposition film forming apparatus may be configured such that the rotating unit 180 is positioned.
  • the rotating unit 180 may rotate the process gas supply unit 140 and may be positioned below the process gas supply unit 140.
  • FIG 3 is a cross-sectional view illustrating a structure of a process gas generator 160 according to an embodiment of the present invention.
  • the process gas generating unit 160 includes an inflow passage 161 through which a halogen-containing gas such as HCl supplied from the second inner tube 147 passes and a halogen-containing gas supplied from the inflow passage 161.
  • the storage unit 166 and the discharge path 164 for supplying the metal halogen gas generated by the reaction between the metal source 163 and the halogen-containing gas to the first inner tube 142 may be included.
  • the halogen-containing gas supplied upward through the second inner tube 147 of the supply gas supply unit 140 may be supplied into the process gas generator 160 through the inlet passage 161.
  • the halogen-containing gas supplied into the process gas generator 160 may be supplied to the metal source 163 through the first communicator 162a and the second communicator 162b.
  • the metal source 163 may be, for example, a Ga source.
  • the supply gas generating unit 160 may have a cylindrical shape, and the first communicating unit 162a and the second communicating unit 162b may be supplied from the inlet passage 161 located in the center of the supply gas generating unit 160.
  • the halogen-containing gas may flow along the outer circumference of the generation unit 160 to reach the metal source 163.
  • the area and time of the halogen-containing gas in contact with the metal source 163 can be increased, as compared with the case where the halogen-containing gas is in contact with the metal source 163 immediately after the inflow path 161 is introduced.
  • the probability that the halogen-containing gas reacts with the metal in the metal source 163 to become a metal halogen gas can be increased.
  • the metal source 163 is located inside the chamber 110 maintained at a high temperature by the heater 120, there is no need to use a separate heater to maintain a temperature for the reaction between the halogen-containing gas and the metal and the reaction. Easy temperature control
  • the halogen-containing gas supplied to the metal source 163 reacts with the metal included in the metal source 163 to generate a metal halogen gas, and the generated metal halogen gas is discharged through the discharge passage 164 to the first inner tube 142.
  • the halogen-containing gas flowing along the outer circumference of the process gas generator 160 reacts with the metal source 163 to form the first inner tube 142 located at the center side of the supply gas generator 160.
  • a discharge path 164 may be formed in the supply gas generating unit 160 so that the discharge path 164 may flow.
  • the metal halogen gas may be prevented from liquefying or condensing in the discharge path 164.
  • the metal halogen gas supplied to the first inner tube 142 may be injected down the inside of the first inner tube 142 and injected into the plurality of substrates 10 through the first gas injection hole 143.
  • the block 165 may be disposed in the supply gas generator 160.
  • the block 165 may be disposed in the supply gas generator 160 so that a gap is formed between the inner surface of the supply gas generator 160 and the block 165, and the gap is introduced according to the formed position.
  • the furnace 161, the first communication unit 162a, the second communication unit 162b, and the discharge path 164 may be provided.
  • the metal source 163 for generating the metal halide gas and the discharge passage 164 for supplying the metal halide gas to the process gas supply unit 140 may be located inside the chamber 110. Therefore, unlike the conventional deposition layer forming apparatus in which the element supplying the metal halogen gas is located outside the chamber, it is not necessary to separately include a heater for maintaining the reaction temperature of the metal source 163. It is easy to control the reaction temperature of the 163, it is possible to prevent the phenomenon that the metal halide gas flowing along the discharge path 164 liquefied or condensed by the low temperature. Therefore, the metal halogen gas can be stably supplied to the process gas supply unit 140.

Abstract

The present invention relates to a batch deposition apparatus. According to an embodiment of the present invention, which includes: a chamber for providing a space for depositing a layer on a plurality of substrates; a heater arranged on the outside of the chamber for heating the plurality of substrates; a substrate support arranged on the inside of the chamber for supporting the plurality of substrates; a process gas supply part arranged on the inside of the chamber through the center of the substrate support for supplying a process gas to the plurality of substrates; an exhaust gas part for discharging the process gas; and a process gas generation part arranged on the inside of the chamber for providing the process gas supply part with a first process gas generated by reacting a metal of a metal source with a gas containing a halogen.

Description

배치식 증착층 형성장치Batch Deposition Layer Forming Device
본 발명은 배치식 증착층 형성장치에 관한 것이다. 보다 상세하게는, 안정적으로 금속 할로겐 가스를 공급할 수 있는 배치식 증착층 형성장치에 관한 것이다.The present invention relates to a batch deposition layer forming apparatus. More specifically, the present invention relates to a batch deposition layer forming apparatus capable of stably supplying a metal halide gas.
발광 다이오드(Light Emitting Diode; LED)는 전류를 빛으로 변환시키는 반도체 발광 소자로서, 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 널리 이용되어 왔다. 특히, 백열등, 형광등 등의 재래식 조명과 달리 전기 에너지를 빛 에너지로 전환하는 효율이 높아 최고 90%까지 에너지를 절감할 수 있다는 사실이 알려지면서, 형광등이나 백열 전구를 대체할 수 있는 소자로서 널리 각광받고 있다.Light Emitting Diodes (LEDs) are semiconductor light emitting devices that convert current into light and have been widely used as light sources for display images of electronic devices including information and communication devices. In particular, unlike conventional lighting such as incandescent lamps, fluorescent lamps, it is known that the efficiency of converting electrical energy into light energy can be saved up to 90%, and it is widely used as a device that can replace fluorescent lamps or incandescent bulbs. I am getting it.
이러한 LED 소자의 제조공정은 크게 에피 공정, 칩 공정, 패키지 공정으로 분류될 수 있다. 에피 공정은 기판 상에 화합물 반도체를 에피택셜 성장(epitaxial growth)시키는 공정을 말하고, 칩 공정은 에피택셜 성장된 기판의 각 부분에 전극을 형성하여 에피 칩을 제조하는 공정을 말하며, 패키지 공정은 이렇게 제조된 에피 칩에 리드(Lead)를 연결하고 빛이 최대한 외부로 방출되도록 패키징하는 공정을 말한다.The manufacturing process of such an LED device can be largely classified into an epi process, a chip process, and a package process. The epitaxial process refers to a process for epitaxial growth of a compound semiconductor on a substrate, and the chip process refers to a process of manufacturing an epi chip by forming electrodes on each part of the epitaxially grown substrate. It refers to a process of connecting leads to the manufactured epi chip and packaging so that light is emitted to the outside as much as possible.
이러한 공정 중에서도 에피 공정은 LED 소자의 발광 효율을 결정하는 가장 핵심적인 공정이라 할 수 있다. 이는 기판 상에 화합물 반도체가 에피택셜 성장되지 않는 경우, 결정 내부에 결함이 발생하고 이러한 결함은 비발광 센터(nonradiative center)로 작용하여, LED 소자의 발광 효율을 저하시키기 때문이다.Among these processes, the epi process is the most important process for determining the luminous efficiency of the LED device. This is because when the compound semiconductor is not epitaxially grown on the substrate, defects occur in the crystal and these defects act as nonradiative centers, thereby lowering the luminous efficiency of the LED device.
이러한 에피 공정, 즉 기판 상에 에피택셜층을 형성시키는 공정에는 LPE(Liquid Phase Epitaxy), VPE(Vapor Phase Epitaxy), MBE(Molecular Beam Epitaxy), CVD(Chemical Vapor Deposition) 방법 등이 사용되고 있는데, 이 중에서도 특히 유기금속 화학기상 증착법(Metal-Organic Chemical Vapor Deposition; MOCVD) 또는 하이드라이드 기상 에피택시법(Hydride Vapor Phase Epitaxy; HVPE)이 주로 사용되고 있다.In such an epitaxial process, that is, a process of forming an epitaxial layer on a substrate, a liquid phase epitaxy (LPE), a vapor phase epitaxy (VPE), a molecular beam epitaxy (MBE), and a chemical vapor deposition (CVD) method are used. Among them, metal-organic chemical vapor deposition (MOCVD) or hydride vapor phase epitaxy (HVPE) is mainly used.
이러한 공정을 위해서, 기판 상에 에피택셜층을 형성하는 반응을 일으키는데 필요한 공정 가스를 기판 상에 공급하기 위한 공정 가스 공급부가 에피택셜층을 형성하기 위한 장치에 포함되는데, 공정 가스 공급부는 공정 가스를 안정적으로 공급하는 것이 가장 중요하다. 에피택셜층을 형성하기 위하여, 공정 가스 중 하나로서 GaCl가스가 공정 가스 공급부를 통해 공급되는데, GaCl은 600℃ 이하에서는 액화 또는 응결되는 성질을 갖고 있다. 따라서, GaCl을 공급하는 공정 가스 공급부의 온도를 600℃를 초과하는 고온으로 유지시켜야 하는데, 종래의 에피택셜층 형성장치에서는 구조상 공정 가스 공급부가 챔버 외부에 배치되었기 때문에, 공정 가스 공급부의 온도를 고온으로 유지하는데 난점이 있었다. 따라서, 공정 가스 공급부 내에서 GaCl이 액화 또는 응결되어서, GaCl 가스가 챔버 내에 안정적으로 공급되지 않는 문제점이 있었다.For this process, a process gas supply for supplying the process gas necessary for causing a reaction to form an epitaxial layer on the substrate is included in the apparatus for forming the epitaxial layer, wherein the process gas supply includes the process gas. It is most important to supply stably. In order to form the epitaxial layer, GaCl gas is supplied through the process gas supply unit as one of the process gases, and GaCl has a property of liquefying or condensing at 600 ° C or lower. Therefore, the temperature of the process gas supply unit for supplying GaCl should be maintained at a high temperature exceeding 600 ° C. In the conventional epitaxial layer forming apparatus, since the process gas supply unit is disposed outside the chamber, the temperature of the process gas supply unit is maintained at a high temperature. There was a difficulty in maintaining. Therefore, GaCl is liquefied or condensed in the process gas supply part, so that GaCl gas is not stably supplied into the chamber.
본 발명은 상기와 같은 종래 기술의 제반 문제점을 해결하기 위하여 안출된 것으로서, 공급 가스를 안정적으로 공급할 수 있는 공정 가스 반응 장치 및 이를 포함한 배치식 에피택셜층 형성장치를 제공하는 것을 그 목적으로 한다.The present invention has been made to solve the above-mentioned problems of the prior art, and an object thereof is to provide a process gas reaction apparatus capable of stably supplying a supply gas and a batch epitaxial layer forming apparatus including the same.
상기의 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 배치식 증착층 형성장치는, 복수의 기판 상에 증착층을 형성하기 위한 배치식 증착층 형성장치로서, 상기 증착층이 형성되는 공간을 제공하는 챔버; 상기 챔버 외측에 배치되고 복수의 기판에 열을 인가하는 히터; 상기 챔버 내측에 배치되고 상기 복수의 기판이 안착되는 기판 서포트; 상기 챔버 내측에 상기 기판 서포트의 중앙을 관통하도록 배치되며 상기 복수의 기판에 대하여 공정 가스를 공급하는 공정 가스 공급부; 상기 공정 가스를 배기하는 공정 가스 배기부; 및 상기 챔버 내측에 배치되고, 금속 소스 내의 금속과 할로겐 포함 가스를 반응시켜서 제1 공정 가스를 생성하고, 상기 제1 공정 가스를 상기 공정 가스 공급부로 공급하는 공정 가스 생성부를 포함하는 것을 특징으로 한다.In order to achieve the above object, a batch deposition layer forming apparatus according to an embodiment of the present invention, a batch deposition layer forming apparatus for forming a deposition layer on a plurality of substrates, the space in which the deposition layer is formed A chamber providing a; A heater disposed outside the chamber to apply heat to a plurality of substrates; A substrate support disposed inside the chamber and in which the plurality of substrates are seated; A process gas supply unit arranged to penetrate a center of the substrate support inside the chamber and supply process gas to the plurality of substrates; A process gas exhaust unit configured to exhaust the process gas; And a process gas generating unit disposed inside the chamber and generating a first process gas by reacting a metal in the metal source with a halogen-containing gas, and supplying the first process gas to the process gas supply unit. .
본 발명에 따르면, 복수의 기판 상에 균일하게 에피택셜층을 형성시킬 수 있게 된다.According to the present invention, it is possible to form an epitaxial layer uniformly on a plurality of substrates.
도 1은 본 발명의 일 실시예에 따른 배치식 증착층 형성장치의 구성을 나타내는 도면이다.1 is a view showing the configuration of a batch deposition layer forming apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 공정 가스 공급부의 구조를 나타내는 단면도이다.2 is a cross-sectional view illustrating a structure of a process gas supply unit according to an exemplary embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 공정 가스 생성부의 구조를 나타내는 단면도이다.3 is a cross-sectional view illustrating a structure of a process gas generating unit according to an embodiment of the present invention.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현 될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일 또는 유사한 기능을 지칭한다.DETAILED DESCRIPTION The following detailed description of the invention refers to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein may be embodied in other embodiments without departing from the spirit and scope of the invention with respect to one embodiment. In addition, it is to be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled. Like reference numerals in the drawings refer to the same or similar functions throughout the several aspects.
[본 발명의 바람직한 실시예][Preferred Embodiments of the Invention]
이하 첨부된 도면을 참조하여 본 발명의 구성을 상세하게 설명하도록 한다.Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 배치식 증착층 형성장치의 구성을 나타내는 도면이다.1 is a view showing the configuration of a batch deposition layer forming apparatus according to an embodiment of the present invention.
먼저, 배치식 증착층 형성장치에 로딩되는 기판(10)의 재질은 특별히 제한되지 않으며 글래스, 플라스틱, 폴리머, 실리콘 웨이퍼, 스테인레스 스틸, 사파이어 등 다양한 재질의 기판(10)이 로딩될 수 있다. 이하에서는 발광 다이오드 분야에서 사용되는 원형의 사파이어 기판(10)을 상정하여 설명한다.First, the material of the substrate 10 loaded in the batch deposition layer forming apparatus is not particularly limited, and the substrate 10 may be loaded with various materials, such as glass, plastic, polymer, silicon wafer, stainless steel, and sapphire. Hereinafter, a circular sapphire substrate 10 used in the light emitting diode field will be described.
도 1을 참조하면, 본 발명의 일 실시예에 따른 배치식 증착층 형성장치는 챔버(110)를 포함하여 구성된다. 챔버(110)는 공정이 수행되는 동안 실질적으로 내부 공간이 밀폐되도록 구성되어 복수의 기판(10) 상에 증착층(에피택셜층)이 형성되기 위한 공간을 제공하는 기능을 수행할 수 있다. 이러한 챔버(110)는 최적의 공정 조건을 유지하도록 구성되며, 형태는 사각형 또는 원형의 형태로 제조될 수 있다. 챔버(110)의 재질은 석영(quartz)인 것이 바람직하나 반드시 이에 한정되는 것은 아니다.Referring to FIG. 1, a batch deposition layer forming apparatus according to an embodiment of the present invention includes a chamber 110. The chamber 110 may be configured to substantially seal the internal space during the process to provide a space for forming a deposition layer (epitaxial layer) on the plurality of substrates 10. The chamber 110 is configured to maintain optimal process conditions, and the shape may be manufactured in a square or circular shape. The material of the chamber 110 is preferably quartz, but is not necessarily limited thereto.
도 1을 더 참조하면, 본 발명의 일 실시예에 따른 배치식 증착층 형성장치는 히터(120)를 포함하여 구성될 수 있다. 히터(120)는 챔버(110)의 외부에 설치되어 복수의 기판(10)에 에피택셜 공정에서 필요한 열을 인가하는 기능을 수행할 수 있다. 기판(10) 상에서 원활한 에피택셜 성장이 이루어지기 위하여 히터(120)는 기판(10)을 약 1,200℃ 이상의 온도까지 가열할 수 있다.Referring to FIG. 1, the batch deposition layer forming apparatus according to an embodiment of the present invention may include a heater 120. The heater 120 may be installed outside the chamber 110 to perform a function of applying heat required in an epitaxial process to the plurality of substrates 10. In order to achieve smooth epitaxial growth on the substrate 10, the heater 120 may heat the substrate 10 to a temperature of about 1,200 ° C. or more.
본 발명에서는 기판(10)을 가열하기 위하여 할로겐 램프 또는 저항식 발열체를 이용한 가열 방식을 이용할 수도 있으나 바람직하게는 유도 가열 방식을 이용할 수 있다. 유도 가열(induction heating) 방식이란 전자기 유도를 이용하여 금속과 같은 전도성 물체를 가열시키는 방식을 일컫는다. 유도 가열 방식을 이용하기 위하여 히터(120)는 챔버(110) 내부를 유도 가열할 수 있는 코일형 히터(120)로 구성되고 기판 서포트(131)에 설치되는 서셉터(133)는 도전성 물질을 포함하여 구성될 수 있다. 코일형 히터(120)를 이용한 기판(10)의 가열은 코일형 히터(120)에서 챔버(110) 내부로 고주파 교류 전류가 인가됨에 따라 도전성 물질을 포함하는 서셉터(133)가 가열되는 원리에 의해 구현될 수 있다.In the present invention, a heating method using a halogen lamp or a resistive heating element may be used to heat the substrate 10, but preferably an induction heating method may be used. Induction heating refers to a method of heating a conductive object such as a metal by using electromagnetic induction. In order to use the induction heating method, the heater 120 includes a coil-type heater 120 capable of induction heating the inside of the chamber 110, and the susceptor 133 installed on the substrate support 131 includes a conductive material. Can be configured. The heating of the substrate 10 using the coil heater 120 is based on the principle that the susceptor 133 including a conductive material is heated as a high frequency alternating current is applied from the coil heater 120 into the chamber 110. Can be implemented.
이처럼 유도 가열 방식을 이용하여 기판(10)을 가열하는 경우, 서셉터(133)를 제외한 배치식 증착층 형성장치의 구성 요소들은 부도체(예를 들면, 석영)로 구성될 수 있다. 이에 따라 코일형 히터(120)에 의하여 서셉터(133)만 가열되게 되므로 챔버(110) 내부의 나머지 구성요소들에 증착 물질이 피착되는 것을 최소화할 수 있게 된다.When the substrate 10 is heated using the induction heating method as described above, components of the batch deposition layer forming apparatus except for the susceptor 133 may be formed of non-conductors (eg, quartz). Accordingly, only the susceptor 133 is heated by the coil heater 120, thereby minimizing deposition of deposition material on the remaining components inside the chamber 110.
도 1을 더 참조하면, 본 발명의 일 실시예에 따른 배치식 증착층 형성장치는 하부 지지부(130)를 포함하여 구성될 수 있다. 하부 지지부(130)는 챔버(110) 내부에 설치되어 에피택셜 공정이 이루어지는 동안 복수의 기판(10)을 지지하는 기능을 수행할 수 있다.Referring to FIG. 1, the batch deposition layer forming apparatus according to an embodiment of the present invention may include a lower support 130. The lower supporter 130 may be installed inside the chamber 110 to support a plurality of substrates 10 during the epitaxial process.
하부 지지부(130)는 챔버(110) 내에서 회전 가능하도록 구성될 수 있다. 하부 지지부(130)의 회전을 가능하게 하기 위하여 공지의 여러 가지 회전 구동 수단이 하부 지지부(130)에 채용될 수 있다. 하부 지지부(130)가 챔버(110) 내에서 회전됨에 따라 하부 지지부(130)의 구성요소인 기판 서포트(131)도 회전하게 되는데 이에 따라 공정 가스가 기판(10)의 임의의 위치에 편중되게 공급되는 것을 방지할 수 있게 된다. 결과적으로 복수의 기판(10) 상에 보다 균일하게 공정 가스를 공급할 수 있게 된다.The lower support 130 may be configured to be rotatable in the chamber 110. In order to enable rotation of the lower support 130, various known rotation driving means may be employed in the lower support 130. As the lower support 130 is rotated in the chamber 110, the substrate support 131, which is a component of the lower support 130, also rotates, so that the process gas is supplied in an unbiased position to the substrate 10. Can be prevented. As a result, the process gas can be more uniformly supplied on the plurality of substrates 10.
도 1을 참조하면, 하부 지지부(130)는 기판(10)이 안착되는 기판 서포트(131)를 포함하여 구성될 수 있다. 도시한 바와 같이, 기판 서포트(131)는 하부 지지부(130)의 원활한 회전을 위하여 원판의 형태로 구성되는 것이 바람직하나 반드시 이에 한정되는 것은 아니다.Referring to FIG. 1, the lower supporter 130 may include a substrate support 131 on which the substrate 10 is mounted. As shown, the substrate support 131 is preferably configured in the form of a disc for smooth rotation of the lower support 130, but is not necessarily limited thereto.
도 1을 더 참조하면, 기판 서포트(131)는 복수층으로 배열되게 설치되는 것이 바람직하며, 이 경우 복수층의 기판 서포트(131)는 연결 부재(132)에 의하여 서로 연결되어 고정될 수 있다. 도 1에서는 기판 서포트(131)가 6 층인 것으로 도시되어 있으나 반드시 이에 한정되는 것은 아니며, 기판 서포트(131)의 층 수는 본 발명이 이용되는 목적에 따라 다양하게 변경될 수 있다. 기판 서포트(131)의 재질은 석영인 것이 바람직하나 반드시 이에 한정되는 것은 아니다.Referring to FIG. 1, the substrate support 131 may be installed to be arranged in a plurality of layers. In this case, the substrate support 131 of the plurality of layers may be connected and fixed to each other by the connection member 132. Although the substrate support 131 is illustrated as having six layers in FIG. 1, the substrate support 131 is not necessarily limited thereto. The number of layers of the substrate support 131 may be variously changed according to the purpose of the present invention. The material of the substrate support 131 is preferably quartz, but is not necessarily limited thereto.
후술하는 바와 같이, 본 발명에서는 공정 가스 공급부(140)가 하부 지지부(130)의 기판 서포트(131) 중앙을 관통한 상태에서 공정 가스를 공급한다. 이러한 경우 공정 가스가 기판 서포트(131)의 중심부에서 공급됨에 따라 기판 서포트(131)의 중심부와 가까운 기판(10) 상의 위치에 공정 가스가 더 많이 공급되게 되는 문제점이 발생할 수 있다. 이러한 문제점을 해결하기 위하여, 기판 서포트(131)에 안착된 복수의 기판(10)은 독립적으로 회전될 수 있다. 다시 말하면, 에피택셜 공정이 이루어지는 동안 각 기판(10)은 기판 서포트(131)에 대하여 수평 방향으로 회전되되 서로 다른 회전 속도 또는 서로 다른 회전 방향으로 회전될 수 있다. 이러한 기판(10)의 독립적인 회전은 기판(10)이 안착되는 서셉터(133)의 회전에 의하여 이루어질 수 있다. 기판(10)이 독립적으로 회전함에 따라 공정 가스가 복수의 기판(10) 상에 균일하게 공급될 수 있게 된다.As described later, in the present invention, the process gas supply unit 140 supplies the process gas in a state where the process gas supply unit 140 penetrates the center of the substrate support 131 of the lower support unit 130. In this case, as the process gas is supplied from the center of the substrate support 131, a problem may occur in that more process gas is supplied to a position on the substrate 10 close to the center of the substrate support 131. In order to solve this problem, the plurality of substrates 10 mounted on the substrate support 131 may be independently rotated. In other words, while the epitaxial process is performed, each substrate 10 may be rotated in a horizontal direction with respect to the substrate support 131, but may be rotated at different rotational speeds or different rotational directions. This independent rotation of the substrate 10 may be made by the rotation of the susceptor 133 on which the substrate 10 is seated. As the substrate 10 rotates independently, the process gas can be uniformly supplied onto the plurality of substrates 10.
도 1을 더 참조하면, 각각의 기판 서포트(131)에는 복수의 서셉터(133)가 설치될 수 있다. 서셉터(133)는 에피택셜 공정이 진행되는 동안 기판(10)을 지지하여 기판(10)의 변형을 방지하는 기능을 수행할 수 있다. 각각의 기판 서포트(131)에 설치되는 서셉터(133)의 개수는 각각의 기판 서포트(131)에 배치되는 기판(10)의 개수와 동일할 수 있다.Referring to FIG. 1, each of the substrate supports 131 may be provided with a plurality of susceptors 133. The susceptor 133 may support the substrate 10 during the epitaxial process to prevent deformation of the substrate 10. The number of susceptors 133 installed on each substrate support 131 may be the same as the number of substrates 10 disposed on each substrate support 131.
서셉터(133)는 기판(10)의 변형을 방지하는 기능 외에도 앞서 언급한 바와 같이 코일형 히터(120)와 함께 기판(10)을 가열하는 기능을 수행할 수 있다. 이를 위하여, 서셉터(133)의 재질은 도전성 물질, 예를 들면 비정질 카본(amorphous carbon), 다이아몬드성 카본(diamondlike carbon), 유리성 카본(glasslike carbon) 등을 포함할 수 있으나, 바람직하게는 그래파이트(Graphite)일 수 있다. 그래파이트는 강도가 뛰어날 뿐만 아니라 도전성이 우수하여 유도 가열 방식으로 가열되기에 적합할 수 있다. 이처럼 서셉터(133)가 그래파이트로 구성되는 경우 그래파이트의 표면은 탄화규소(SiC)로 코팅될 수 있다. 탄화규소는 고온 강도 및 경도가 우수하며 열전도율이 높기 때문에 가열 중에 그래파이트 분자가 분산되는 것을 방지할 수 있을 뿐만 아니라 기판(10)으로의 열 전달이 용이하게 이루어지도록 할 수 있다.In addition to the function of preventing deformation of the substrate 10, the susceptor 133 may perform a function of heating the substrate 10 together with the coil type heater 120. To this end, the material of the susceptor 133 may include a conductive material, for example, amorphous carbon, diamondlike carbon, glasslike carbon, or the like, preferably graphite. (Graphite). Graphite is not only excellent in strength but also excellent in conductivity and may be suitable for heating by induction heating. As such, when the susceptor 133 is made of graphite, the surface of graphite may be coated with silicon carbide (SiC). Since silicon carbide has excellent high temperature strength and hardness and high thermal conductivity, it is possible not only to prevent graphite molecules from dispersing during heating, but also to facilitate heat transfer to the substrate 10.
서셉터(133)는 기판(10)의 변형 방지 및 기판(10)의 가열 기능 외에도 앞서 언급한 바와 같이 기판(10)의 회전(자전)이 이루어지도록 하는 기능을 수행할 수 있다. 이를 위하여 공지의 여러 가지 회전 구동 수단이 서셉터(133)에 채용될 수 있다. 또한, 서셉터(133)는 원활한 회전을 위하여 원판의 형상을 가지는 것이 바람직하나 반드시 이에 한정되는 것은 아니며 본 발명이 이용되는 목적에 따라 다양한 형상을 가질 수 있다.The susceptor 133 may perform a function of preventing rotation of the substrate 10 and rotating (rotating) the substrate 10 as described above, in addition to preventing deformation of the substrate 10 and heating the substrate 10. To this end, various known rotation drive means may be employed in the susceptor 133. In addition, the susceptor 133 preferably has the shape of a disc for smooth rotation, but is not necessarily limited thereto, and may have various shapes according to the object of the present invention.
도 1을 더 참조하면, 본 발명의 일 실시예에 따른 배치식 증착층 형성장치는 공정 가스 공급부(140)를 포함하여 구성될 수 있다. 공정 가스 공급부(140)는 챔버(110) 내부로 에피택셜층 형성을 위해 필요한 공정 가스를 공급하는 기능을 수행할 수 있다.Referring to FIG. 1, the batch deposition layer forming apparatus according to an embodiment of the present invention may include a process gas supply unit 140. The process gas supply unit 140 may perform a function of supplying a process gas necessary for forming an epitaxial layer into the chamber 110.
도 1에 도시된 바와 같이, 본 발명에서는 공정 가스 공급부(140)가 기판 서포트(131)의 중앙을 관통하도록 배치되는 것을 구성상의 특징으로 한다. 다시 말하면, 공정 가스 공급부(140)가 기판 서포트(131)의 중앙에 형성된 관통홀(135)을 관통하게 배치됨으로써, 기판 서포트(131)의 중심부로부터 기판 서포트(131)에 의하여 지지되고 있는 복수의 기판(10)을 향하여 공정 가스를 공급하는 것을 구성 상의 특징으로 한다. 이러한 구성을 채용함으로써 본 발명에서는 복수의 기판(10) 상에 균일하게 공정 가스를 공급할 수 있게 되기 때문에 복수의 기판(10) 상에 동일한 품질 및 규격을 가지는 에피택셜층을 형성할 수 있게 된다.As shown in FIG. 1, in the present invention, the process gas supply unit 140 is disposed to penetrate the center of the substrate support 131. In other words, the process gas supply unit 140 is disposed to penetrate the through hole 135 formed in the center of the substrate support 131, so that the process gas supply unit 140 is supported by the substrate support 131 from the center of the substrate support 131. The supply of the process gas towards the substrate 10 is characterized by its configuration. By adopting such a configuration, in the present invention, the process gas can be uniformly supplied to the plurality of substrates 10, and thus the epitaxial layer having the same quality and standard can be formed on the plurality of substrates 10. FIG.
또한, 에피택셜 공정이 진행되는 동안 공정 가스 공급부(140)는 회전될 수 있다. 공정 가스 공급부(140)의 회전을 위하여 공지의 여러 가지 회전 구동 수단이 공정 가스 공급부(140)에 채용될 수 있다. 이에 따라 하부 지지부(130)의 회전과 유사하게 공정 가스가 각 기판(10)의 임의의 위치에 편중되게 공급되는 것을 방지할 수 있게 된다. 결과적으로 복수의 기판(10) 상에 보다 균일하게 공정 가스를 공급할 수 있게 된다.In addition, the process gas supply unit 140 may be rotated while the epitaxial process is in progress. In order to rotate the process gas supply unit 140, various known rotation driving means may be employed in the process gas supply unit 140. Accordingly, similar to the rotation of the lower support 130, it is possible to prevent the process gas from being supplied unevenly to any position of each substrate 10. As a result, the process gas can be more uniformly supplied on the plurality of substrates 10.
이하에서는, 본 발명의 일 실시예에 따른 배치식 증착층 형성장치(100)에 사용되는 공정 가스 공급부(140)의 구조를 구체적으로 설명한다.Hereinafter, the structure of the process gas supply unit 140 used in the batch deposition layer forming apparatus 100 according to an embodiment of the present invention will be described in detail.
도 2는 본 발명의 일 실시예에 따른 공정 가스 공급부(140)의 구조를 나타내는 단면도이다.2 is a cross-sectional view showing the structure of a process gas supply unit 140 according to an embodiment of the present invention.
도 2를 참조하면, 공정 가스 공급부(140)는 외관(141) 내에 제1 내관(142) 및 제2 내관(147)으로 이루어지는 다중 관 구조로 구성될 수 있다. 본 실시예에서 제1 내관(142)의 개수가 4개인 것을 예시하고 있지만, 이에 한정될 것은 아니고 이용되는 목적과 상황에 따라 다양하게 변경될 수 있다. 공정 가스 공급부(140)는 복수의 가스 분사구(143, 145)를 포함하여 구성될 수 있다. 복수의 가스 분사구(143, 145)는 제1 및 제2 공정 가스를 분사하는 기능을 수행할 수 있다. 복수의 가스 분사구(143, 145)의 위치는 각각의 기판 서포트(131)의 위치에 대응되도록 형성될 수 있다. 가스 분사구의 개수는 특별하게 한정되지 아니하며 본 발명이 이용되는 목적에 따라 다양하게 변경될 수 있다.Referring to FIG. 2, the process gas supply unit 140 may be configured in a multi-pipe structure including a first inner tube 142 and a second inner tube 147 in the exterior 141. In the present exemplary embodiment, the number of the first inner tubes 142 is illustrated as four, but is not limited thereto, and may be variously changed according to the purpose and situation of use. The process gas supply unit 140 may include a plurality of gas injection holes 143 and 145. The plurality of gas injection holes 143 and 145 may perform a function of injecting first and second process gases. Positions of the plurality of gas injection holes 143 and 145 may be formed to correspond to positions of the respective substrate supports 131. The number of gas injection holes is not particularly limited and may be variously changed according to the object of the present invention.
여기서 복수의 가스 분사구(143, 145)는 공정 가스 공급부(140)의 제1 내관(142)과 연결되는 복수의 제1 가스 분사구(143) 및 공정 가스 공급부(140)의 외관(141)과 연결되는 복수의 제2 가스 분사구(145)를 포함하는 의미로 볼 수 있다. 본 실시예에서는 제1 가스 분사구(143)는 제1 내관(142) 외벽에 형성된 노즐 형태로서 노즐의 단부에 형성된 홀에서 공정 가스를 분사할 수 있다. 제1 가스 분사구(143)는 외관(141)에 형성된 홀(144)을 관통할 수 있으며, 공정 가스가 분사되는 제1 가스 분사구(143)의 단부는 외관(141)의 외부에 노출되게 할 수 있다. 그리고, 제2 가스 분사구(145)는 외관(141)에 형성된 홀 형태로서, 제2 가스 분사구(145)를 통해 외관(141) 중 제1 내관(142) 및 제2 내관(147)이 차지하는 공간을 제외한 내부 공간(146)에 공급된 공정 가스가 외부로 분사될 수 있다. 하지만, 제1 및 제2 가스 분사구(143, 145)의 형태는 이에 한정되는 것은 아니며, 다양한 변형이 가능하다.Here, the plurality of gas injection holes 143 and 145 are connected to the plurality of first gas injection holes 143 and the appearance 141 of the process gas supply unit 140 connected to the first inner tube 142 of the process gas supply unit 140. It can be seen as a meaning including a plurality of second gas injection holes 145. In the present exemplary embodiment, the first gas injection hole 143 may inject a process gas into a hole formed at an end of the nozzle in the form of a nozzle formed on an outer wall of the first inner tube 142. The first gas injection hole 143 may penetrate the hole 144 formed in the external appearance 141, and an end portion of the first gas injection hole 143 through which the process gas is injected may be exposed to the outside of the external appearance 141. have. In addition, the second gas injection hole 145 is in the form of a hole formed in the exterior 141, and a space occupied by the first inner tube 142 and the second inner tube 147 of the exterior 141 through the second gas injection hole 145. Process gas supplied to the internal space 146 except for may be injected to the outside. However, the shapes of the first and second gas injection holes 143 and 145 are not limited thereto, and various modifications are possible.
한편, 복수의 기판(10) 상에 공급되는 공정 가스는 기판(10) 상에 형성하려는 에피택셜층의 종류 또는 그 형성 방법에 따라 다양하게 변경될 수 있다. 예를 들어, MOCVD법을 이용하여 복수의 기판(10) 상에 에피택셜 질화갈륨(GaN)층을 형성시키기 위해서는, TMG(trimethylgallium), TEG(triethylgallium), NH3 가스 등이 공정 가스로 이용될 수 있다. 또한, HVPE법을 이용하여 복수의 기판(10) 상에 에피택셜 질화갈륨(GaN)층을 형성시키기 위해서는 Ga 금속과 HCl 가스가 반응하여 생성된 GaCl, NH3, H2 가스 등이 공정 가스로 이용될 수 있다.Meanwhile, the process gases supplied on the plurality of substrates 10 may be variously changed according to the type of epitaxial layer to be formed on the substrate 10 or the method of forming the epitaxial layer. For example, in order to form an epitaxial gallium nitride (GaN) layer on the plurality of substrates 10 by using the MOCVD method, trimethylgallium (TMG), triethylgallium (TEG), NH 3 gas, or the like may be used as the process gas. have. In addition, in order to form an epitaxial gallium nitride (GaN) layer on the plurality of substrates 10 using the HVPE method, GaCl, NH 3, H 2 gas, etc., generated by reacting Ga metal with HCl gas, may be used as the process gas. Can be.
본 발명의 일 실시예에 따른 배치식 증착층 형성장치에 사용되는 공정 가스 공급부(140)는 제1 가스 분사구(143)에서 분사하는 공정 가스와 제2 가스 분사구(145)에서 분사하는 공정 가스를 서로 다르게 하는 것이 바람직하다. 예를 들어, MOCVD법을 이용하여 복수의 기판(10) 상에 에피택셜 질화갈륨 층을 형성시키기 위해서, 제1 가스 분사구(143)에서는 TMG 가스 또는 TEG 가스를 분사하고, 제2 가스 분사구(145)에서는 NH3 가스를 분사하도록 할 수 있다. 본 발명의 공정 가스 공급부(140)에 의하면, 복수의 공정 가스 각각이 제1 가스 분사구(143)와 제2 가스 분사구(145)를 통하여 분사되기 때문에, 공정 가스가 기판에 이르기 전 공정 가스 공급부(140) 내에서 서로 반응하여 공정 가스 공급부(140) 내벽에 증착 물질이 피착되도록 하는 것을 방지할 수 있다.The process gas supply unit 140 used in the batch deposition layer forming apparatus according to an exemplary embodiment of the present invention may process process gas injected from the first gas injection hole 143 and process gas injected from the second gas injection hole 145. It is desirable to make them different. For example, in order to form an epitaxial gallium nitride layer on the plurality of substrates 10 using the MOCVD method, the first gas injection port 143 injects a TMG gas or a TEG gas, and the second gas injection port 145. ) Can be injected with NH3 gas. According to the process gas supply part 140 of the present invention, since each of the plurality of process gases is injected through the first gas injection port 143 and the second gas injection port 145, the process gas supply part before the process gas reaches the substrate ( Reaction with each other in the 140 may prevent the deposition material from being deposited on the inner wall of the process gas supply unit 140.
제2 내관(147)은 외관(141) 내의 중앙부에 위치하며, 후술할 공정 가스 생성부(160)에 할로겐 포함 가스(예를 들어, HCl)을 제공하기 위한 것이다.The second inner tube 147 is positioned in the center of the outer shell 141 and is used to provide a halogen-containing gas (eg, HCl) to the process gas generator 160 to be described later.
도 1을 참조하면, 본 발명의 일 실시예에 따른 배치식 증착층 형성장치는 공정 가스 배기부(150)를 포함하여 구성될 수 있다. 공정 가스 배기부(150)는 챔버(110) 외부로 공정 가스를 배기하는 기능을 수행할 수 있다. 공정 가스 배기부(150)는 복수의 기판 서포트(131)의 주변을 둘러싸는 원통 형상으로 형성될 수 있다. 공정 가스 배기부(150)에서 기판 서포트(131) 각각에 대응되는 높이에는 공정 가스를 배기하기 위한 복수의 배기구(155)가 형성될 수 있다. 배기구(155)는 슬릿(slit) 형상으로 형성될 수 있으나, 그 형상은 이에 한정될 것은 아니다. 또한, 배기구(155)의 개수는 본 발명이 이용되는 목적에 따라 다양하게 변경될 수 있다.Referring to FIG. 1, a batch deposition layer forming apparatus according to an exemplary embodiment of the present invention may include a process gas exhaust unit 150. The process gas exhaust unit 150 may perform a function of exhausting the process gas to the outside of the chamber 110. The process gas exhaust unit 150 may be formed in a cylindrical shape surrounding the periphery of the plurality of substrate supports 131. A plurality of exhaust ports 155 for exhausting the process gas may be formed at a height corresponding to each of the substrate supports 131 in the process gas exhaust unit 150. The exhaust port 155 may be formed in a slit shape, but the shape is not limited thereto. In addition, the number of exhaust ports 155 may be variously changed according to the purpose of the present invention is used.
공정 가스 배기부(150)의 외부에는 공정 가스를 흡입할 수 있는 흡입 수단이 연결되어, 공정 가스를 배기구(155)를 통해 외부로 배기할 수 있다. 배기구(155)는 기판 서포트(131) 근처에 위치하는 것이 바람직하다. 이러한 구성을 채용함으로써 공정 가스의 흐름, 즉 제1 및 제2 가스 분사구(143, 145)에서 분사된 공정 가스가 챔버(110) 내부를 순환하지 아니하고 바로 배기구(155)로 유입되도록 하는 흐름을 형성할 수 있으므로 공정에 필요한 양을 초과하는 공정 가스가 기판(10)에 공급되는 것을 최소화할 수 있게 된다. 결과적으로 복수의 기판(10) 상에 보다 균일하게 공정 가스를 공급할 수 있게 된다. 배기구(155)는 공정 가스의 균일한 흐름을 위하여 수평 방향으로 서로 일정한 간격을 가지면서 배치되는 것이 바람직하다. A suction means for sucking the process gas is connected to the outside of the process gas exhaust unit 150 to exhaust the process gas to the outside through the exhaust port 155. The exhaust port 155 is preferably located near the substrate support 131. By employing such a configuration, the flow of the process gas, that is, the process gas injected from the first and second gas injection ports 143 and 145 is formed to flow directly into the exhaust port 155 without circulating inside the chamber 110. As a result, it is possible to minimize the supply of the process gas in excess of the amount required for the process to the substrate 10. As a result, the process gas can be more uniformly supplied on the plurality of substrates 10. The exhaust ports 155 may be disposed at regular intervals from each other in the horizontal direction for uniform flow of the process gas.
도 1을 참조하면, 본 발명의 일 실시예에 따른 배치식 증착층 형성장치는 공정 가스 생성부(160)를 포함하여 구성될 수 있다. 공정 가스 생성부(160)는 챔버(110) 내부에 형성될 수 있으며, 바람직하게는 챔버(110) 내부 중 상부에 위치할 수 있다. 따라서, 공정 가스 생성부(160)에서 생성된 금속 할로겐 가스가 공정 가스 공급부(140)의 상단에서부터 아래로 공급되도록 할 수 있다. 공정 가스 생성부(160)에서는 금속 소스(예를 들어, Ga 소스)와 할로겐 포함 가스(예를 들어, HCl)가 반응하여 공정 가스 중 하나인 금속 할로겐 가스(예를 들어, GaCl)가 생성된다. 생성된 금속 할로겐 가스는 공정 가스 공급부(140)에 공급된다. 공정 가스 생성부(160)의 구체적인 구성에 대해서는 후술한다.Referring to FIG. 1, a batch deposition layer forming apparatus according to an exemplary embodiment of the present invention may include a process gas generator 160. The process gas generator 160 may be formed in the chamber 110, and may be located at an upper portion of the chamber 110. Therefore, the metal halogen gas generated in the process gas generator 160 may be supplied downward from the top of the process gas supply unit 140. In the process gas generator 160, a metal source (eg, Ga source) and a halogen-containing gas (eg, HCl) react to generate a metal halogen gas (eg, GaCl), which is one of the process gases. . The generated metal halide gas is supplied to the process gas supply unit 140. The specific structure of the process gas generator 160 will be described later.
도 1을 참조하면, 본 발명의 일 실시예에 따른 배치식 증착막 형성장치는 배플부(170)를 포함하여 구성될 수 있다. 배플부(170)는 기판 서포트(131)의 하부에 위치하여, 챔버(110) 내에서 발생한 열이 외부로 유출되는 것을 차단할 수 있으며, 특히 하부 지지부(130)를 통해 열이 외부로 유출되는 것을 차단할 수 있다.Referring to FIG. 1, a batch deposition film forming apparatus according to an embodiment of the present invention may include a baffle unit 170. The baffle unit 170 may be positioned below the substrate support 131 to block the heat generated in the chamber 110 from leaking to the outside. In particular, the baffle unit 170 may prevent the heat from flowing out through the lower support 130. You can block.
도 1을 참조하면, 본 발명의 일 실시예에 따른 배치식 증착막 형성장치는 회전부(180)가 위치하도록 구성될 수 있다. 회전부(180)는 공정 가스 공급부(140)의 회전이 가능하도록 하며, 공정 가스 공급부(140)의 하부에 위치할 수 있다.Referring to FIG. 1, the batch deposition film forming apparatus according to an embodiment of the present invention may be configured such that the rotating unit 180 is positioned. The rotating unit 180 may rotate the process gas supply unit 140 and may be positioned below the process gas supply unit 140.
도 3은 본 발명의 일 실시예에 따른 공정 가스 생성부(160)의 구조를 나타내는 단면도이다.3 is a cross-sectional view illustrating a structure of a process gas generator 160 according to an embodiment of the present invention.
도 3을 참조하면, 공정 가스 생성부(160)에는 제2 내관(147)으로부터 공급된 HCl과 같은 할로겐 포함 가스가 지나가는 유입로(161), 유입로(161)로부터 공급된 할로겐 포함 가스가 지나는 제1 소통부(162a), 제1 소통부(162a)와 연결된 제2 소통부(162b), 제2 소통부(162b)를 통과한 할로겐 포함 가스와 반응하는 금속 소스(163)가 담긴 금속 소스 저장부(166), 금속 소스(163)와 할로겐 포함 가스가 반응하여 생성된 금속 할로겐 가스를 제1 내관(142)으로 공급하는 배출로(164)가 포함될 수 있다.Referring to FIG. 3, the process gas generating unit 160 includes an inflow passage 161 through which a halogen-containing gas such as HCl supplied from the second inner tube 147 passes and a halogen-containing gas supplied from the inflow passage 161. A metal source containing a metal source 163 reacting with a halogen-containing gas passing through the first communication unit 162a, the second communication unit 162b connected to the first communication unit 162a, and the second communication unit 162b. The storage unit 166 and the discharge path 164 for supplying the metal halogen gas generated by the reaction between the metal source 163 and the halogen-containing gas to the first inner tube 142 may be included.
공급 가스 공급부(140)의 제2 내관(147)을 통해 상향 공급되는 할로겐 포함 가스는 유입로(161)를 통해 공정 가스 생성부(160) 내로 공급될 수 있다. 공정 가스 생성부(160) 내로 공급된 할로겐 포함 가스는 제1 소통부(162a)와 제2 소통부(162b)를 통해 금속 소스(163)에 공급될 수 있다. 금속 소스(163)는, 예를 들어, Ga 소스일 수 있다. 공급 가스 생성부(160)는 원통 형상일 수 있으며, 제1 소통부(162a)와 제2 소통부(162b)는 공급 가스 생성부(160)의 중앙에 위치하는 유입로(161)로부터 공급 가스 생성부(160)의 외측 둘레를 따라서 할로겐 포함 가스가 흘러서 금속 소스(163)에 도달하도록 형성될 수 있다. 이러한 구성에 의하여, 할로겐 포함 가스가 유입로(161)에서 유입되는 즉시 금속 소스(163)와 접하는 경우에 비해, 할로겐 포함 가스가 금속 소스(163)와 접하는 면적과 시간을 늘일 수 있다. 따라서, 본 발명의 일 실시예에 따르면, 할로겐 포함 가스가 금속 소스(163) 내의 금속과 반응하여 금속 할로겐 가스로 될 확률이 높아질 수 있다. 또한, 금속 소스(163)는 히터(120)에 의해서 고온으로 유지되는 챔버(110) 내부에 위치하므로, 할로겐 포함 가스와 금속이 반응하기 위한 온도를 유지하기 위하여 별도의 히터를 사용할 필요가 없으며 반응온도 제어가 용이하다.The halogen-containing gas supplied upward through the second inner tube 147 of the supply gas supply unit 140 may be supplied into the process gas generator 160 through the inlet passage 161. The halogen-containing gas supplied into the process gas generator 160 may be supplied to the metal source 163 through the first communicator 162a and the second communicator 162b. The metal source 163 may be, for example, a Ga source. The supply gas generating unit 160 may have a cylindrical shape, and the first communicating unit 162a and the second communicating unit 162b may be supplied from the inlet passage 161 located in the center of the supply gas generating unit 160. The halogen-containing gas may flow along the outer circumference of the generation unit 160 to reach the metal source 163. By such a configuration, the area and time of the halogen-containing gas in contact with the metal source 163 can be increased, as compared with the case where the halogen-containing gas is in contact with the metal source 163 immediately after the inflow path 161 is introduced. Thus, according to one embodiment of the present invention, the probability that the halogen-containing gas reacts with the metal in the metal source 163 to become a metal halogen gas can be increased. In addition, since the metal source 163 is located inside the chamber 110 maintained at a high temperature by the heater 120, there is no need to use a separate heater to maintain a temperature for the reaction between the halogen-containing gas and the metal and the reaction. Easy temperature control
금속 소스(163)에 공급된 할로겐 포함 가스는 금속 소스(163)에 포함된 금속과 반응하여 금속 할로겐 가스를 생성하고, 생성된 금속 할로겐 가스는 배출로(164)를 통해 제1 내관(142)으로 공급될 수 있다. 공정 가스 생성부(160)의 외측 둘레를 따라서 흐른 할로겐 포함 가스가 금속 소스(163)와 반응하여 형성된 금속 할로겐 가스가 공급 가스 생성부(160)의 중앙 측에 위치하는 제1 내관(142)을 향하여 흐를 수 있도록 배출로(164)가 공급 가스 생성부(160) 내에 형성될 수 있다. 금속 할로겐 가스가 공정 가스 공급부(140)로 공급되기 위한 배출로(164)가 챔버(110) 내부에 위치하므로, 배출로(164) 내에서 금속 할로겐 가스가 액화 또는 응결되는 것을 방지할 수 있다. 제1 내관(142)으로 공급된 금속 할로겐 가스는 제1 내관(142) 내부를 타고 내려가서 제1 가스 분사구(143)를 통해 복수의 기판(10)에 분사될 수 있다.The halogen-containing gas supplied to the metal source 163 reacts with the metal included in the metal source 163 to generate a metal halogen gas, and the generated metal halogen gas is discharged through the discharge passage 164 to the first inner tube 142. Can be supplied. The halogen-containing gas flowing along the outer circumference of the process gas generator 160 reacts with the metal source 163 to form the first inner tube 142 located at the center side of the supply gas generator 160. A discharge path 164 may be formed in the supply gas generating unit 160 so that the discharge path 164 may flow. Since the discharge path 164 for supplying the metal halogen gas to the process gas supply unit 140 is located inside the chamber 110, the metal halogen gas may be prevented from liquefying or condensing in the discharge path 164. The metal halogen gas supplied to the first inner tube 142 may be injected down the inside of the first inner tube 142 and injected into the plurality of substrates 10 through the first gas injection hole 143.
한편, 공급 가스 생성부(160) 내부에는 유입로(161), 제1 소통부(162a), 제2 소통부(162b) 및 배출로(164)를 형성하기 위하여, 블록(165)이 배치될 수 있다. 즉, 공급 가스 생성부(160)의 내면과 블록(165)과의 사이에 간극이 형성되도록 공급 가스 생성부(160) 내부에 블록(165)이 배치될 수 있으며, 간극은 형성된 위치에 따라서 유입로(161), 제1 소통부(162a), 제2 소통부(162b) 및 배출로(164)로 될 수 있다.Meanwhile, in order to form the inflow path 161, the first communication unit 162a, the second communication unit 162b, and the discharge path 164, the block 165 may be disposed in the supply gas generator 160. Can be. That is, the block 165 may be disposed in the supply gas generator 160 so that a gap is formed between the inner surface of the supply gas generator 160 and the block 165, and the gap is introduced according to the formed position. The furnace 161, the first communication unit 162a, the second communication unit 162b, and the discharge path 164 may be provided.
본 발명에 의하면, 금속 할로겐 가스를 생성하기 위한 금속 소스(163)와 금속 할로겐 가스를 공정 가스 공급부(140)로 공급하는 배출로(164)가 챔버(110) 내부에 위치할 수 있다. 따라서, 금속 할로겐 가스를 공급하는 요소가 챔버의 외부에 위치하는 종래의 증착층 형성장치와는 달리, 금속 소스(163)의 반응 온도를 유지하기 위한 히터를 별도로 구비할 필요가 없고, 금속 소스(163)의 반응 온도 제어가 용이하며, 배출로(164)를 따라 흐르는 금속 할로겐 가스가 저온에 의하여 액화 또는 응결되는 현상을 방지할 수 있다. 그러므로, 금속 할로겐 가스가 공정 가스 공급부(140)에 안정적으로 공급될 수 있다.According to the present invention, the metal source 163 for generating the metal halide gas and the discharge passage 164 for supplying the metal halide gas to the process gas supply unit 140 may be located inside the chamber 110. Therefore, unlike the conventional deposition layer forming apparatus in which the element supplying the metal halogen gas is located outside the chamber, it is not necessary to separately include a heater for maintaining the reaction temperature of the metal source 163. It is easy to control the reaction temperature of the 163, it is possible to prevent the phenomenon that the metal halide gas flowing along the discharge path 164 liquefied or condensed by the low temperature. Therefore, the metal halogen gas can be stably supplied to the process gas supply unit 140.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.Although the present invention has been shown and described with reference to preferred embodiments as described above, it is not limited to the above embodiments and various modifications made by those skilled in the art without departing from the spirit of the present invention. Modifications and variations are possible. Such modifications and variations are intended to fall within the scope of the invention and the appended claims.
[부호의 설명][Description of the code]
110: 챔버110: chamber
120: 히터120: heater
130: 하부 지지부130: lower support
140: 공정 가스 공급부140: process gas supply
150: 공정 가스 배기부150: process gas exhaust
160: 공정 가스 생성부160: process gas generating unit

Claims (11)

  1. 복수의 기판 상에 증착층을 형성하기 위한 배치식 증착층 형성장치로서,A batch deposition layer forming apparatus for forming a deposition layer on a plurality of substrates,
    상기 증착층이 형성되는 공간을 제공하는 챔버;A chamber providing a space in which the deposition layer is formed;
    상기 챔버 외측에 배치되고 복수의 기판에 열을 인가하는 히터;A heater disposed outside the chamber to apply heat to a plurality of substrates;
    상기 챔버 내측에 배치되고 상기 복수의 기판이 안착되는 기판 서포트;A substrate support disposed inside the chamber and in which the plurality of substrates are seated;
    상기 챔버 내측에 상기 기판 서포트의 중앙을 관통하도록 배치되며 상기 복수의 기판에 대하여 공정 가스를 공급하는 공정 가스 공급부;A process gas supply unit arranged to penetrate a center of the substrate support inside the chamber and supply process gas to the plurality of substrates;
    상기 공정 가스를 배기하는 공정 가스 배기부; 및A process gas exhaust unit configured to exhaust the process gas; And
    상기 챔버 내측에 배치되고, 금속 소스 내의 금속과 할로겐 포함 가스를 반응시켜서 제1 공정 가스를 생성하고, 상기 제1 공정 가스를 상기 공정 가스 공급부로 공급하는 공정 가스 생성부A process gas generation unit disposed inside the chamber to generate a first process gas by reacting a metal in the metal source with a halogen-containing gas, and supplying the first process gas to the process gas supply unit;
    를 포함하는 것을 특징으로 하는 배치식 증착층 형성장치.Batch deposition layer forming apparatus comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 공정 가스 생성부는 상기 공정 가스 공급부의 상단에 위치하는 것을 특징으로 하는 배치식 증착층 형성장치.The process gas generating unit is a batch deposition layer forming apparatus, characterized in that located on top of the process gas supply.
  3. 제2항에 있어서,The method of claim 2,
    상기 공정 가스 공급부는 제1 내관과 제2 내관을 포함하고,The process gas supply unit includes a first inner tube and a second inner tube,
    상기 제2 내관에는 상기 공정 가스 생성부에 공급되기 위한 상기 할로겐 포함 가스가 상기 공정 가스 생성부를 향해 흐르고, 상기 제1 내관에는 상기 공정 가스 생성부로부터 공급되는 상기 제1 공정 가스가 흐르는 것을 특징으로 하는 배치식 증착층 형성장치.The halogen-containing gas to be supplied to the process gas generating unit flows through the second inner tube toward the process gas generating unit, and the first process gas supplied from the process gas generating unit flows through the first inner tube. Batch deposition layer forming apparatus.
  4. 제3항에 있어서,The method of claim 3,
    상기 공정 가스 생성부는,The process gas generating unit,
    상기 제2 내관에 흐르는 상기 할로겐 포함 가스가 상기 공정 가스 생성부 내로 유입되기 위한 유입로;An inflow path for introducing the halogen-containing gas flowing in the second inner tube into the process gas generating unit;
    상기 유입로를 통해 유입된 상기 할로겐 포함 가스를 금속 소스로 인도하기 위한 소통부;A communication unit for guiding the halogen-containing gas introduced through the inflow path to a metal source;
    상기 금속 소스를 저장하기 위한 금속 소스 저장부; 및A metal source storage for storing the metal source; And
    상기 할로겐 포함 가스와 상기 금속 소스 내의 금속이 반응하여 생성된 상기 제1 공정 가스를 상기 제1 내관으로 배출하기 위한 배출로A discharge path for discharging the first process gas generated by the reaction of the halogen-containing gas and the metal in the metal source to the first inner tube
    를 포함하는 것을 특징으로 하는 배치식 증착층 형성장치.Batch deposition layer forming apparatus comprising a.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 소통부는 상기 유입로에서 유입된 상기 할로겐 포함 가스가 상기 공정 가스 생성부의 외측 둘레를 따라서 흘러서 상기 금속 소스에 도달하도록 형성되는 것을 특징으로 하는 배치식 증착층 형성장치.And the communication unit is formed such that the halogen-containing gas introduced from the inflow passage flows along an outer circumference of the process gas generating unit to reach the metal source.
  6. 제5항에 있어서,The method of claim 5,
    상기 유입로, 상기 소통부 및 상기 배출로를 형성하기 위하여, 상기 공정 가스 생성부 내에 블록이 배치되는 것을 특징으로 하는 배치식 증착층 형성장치.And a block is disposed in the process gas generating unit to form the inflow passage, the communication portion, and the discharge passage.
  7. 제3항에 있어서,The method of claim 3,
    상기 공정 가스 공급부에는, 상기 제1 내관을 통해 공급되는 상기 제1 공정 가스를 분사하는 제1 가스 분사구와, 상기 외관 중 상기 제1 내관 및 상기 제2 내관이 차지하는 공간을 제외한 공간을 통해 공급되는 제2 공정 가스를 분사하는 제2 가스 분사구를 포함하는 것을 특징으로 하는 배치식 증착층 형성장치.The process gas supply unit is supplied through a first gas injection hole for injecting the first process gas supplied through the first inner tube, and a space excluding the space occupied by the first inner tube and the second inner tube in the outer tube. And a second gas injection hole for injecting a second process gas.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 제1 가스 분사구는 상기 내관 외벽에 형성된 노즐 형태로서 상기 외관에 형성된 홀을 관통하고, 상기 제1 가스 분사구의 단부는 상기 외관의 외부에 노출되는 것을 특징으로 하는 배치식 증착층 형성장치.And the first gas injection hole passes through a hole formed in the exterior as a nozzle formed on the outer wall of the inner tube, and an end portion of the first gas injection port is exposed to the outside of the exterior.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 제2 가스 분사구는 상기 외관에 형성된 홀 형태인 것을 특징으로 하는 배치식 증착층 형성장치.The second gas injection hole is a batch deposition layer forming apparatus, characterized in that the hole shape formed in the outer appearance.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 제1 공정 가스와 상기 제2 공정 가스의 종류는 서로 다른 것을 특징으로 하는 배치식 증착층 형성장치.And the first and second process gases are different from each other.
  11. 제3항에 있어서,The method of claim 3,
    상기 제1 내관은 복수 개인 것을 특징으로 하는 배치식 증착층 형성장치.The first inner tube is a plurality of batch deposition layer forming apparatus, characterized in that.
PCT/KR2014/000900 2013-02-01 2014-02-03 Batch deposition apparatus WO2014119955A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0011869 2013-02-01
KR20130011869 2013-02-01
KR10-2014-0011304 2014-01-29
KR1020140011304A KR101555021B1 (en) 2013-02-01 2014-01-29 Batch Type Deposition Film Forming Apparatus

Publications (1)

Publication Number Publication Date
WO2014119955A1 true WO2014119955A1 (en) 2014-08-07

Family

ID=51262603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000900 WO2014119955A1 (en) 2013-02-01 2014-02-03 Batch deposition apparatus

Country Status (1)

Country Link
WO (1) WO2014119955A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160289833A1 (en) * 2015-03-31 2016-10-06 Tokyo Electron Limited Vertical Heat Treatment Apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260734A (en) * 1998-03-12 1999-09-24 Nec Corp Manufacture of semiconductor device
KR20030088409A (en) * 2003-10-30 2003-11-19 주식회사 테라텍 Batch type ashing apparatus using remote plasma
US20060258157A1 (en) * 2005-05-11 2006-11-16 Weimer Ronald A Deposition methods, and deposition apparatuses
KR20110098443A (en) * 2010-02-26 2011-09-01 주식회사 티지솔라 An apparatus of forming metal nitride layer for light emitting diode
KR20110103630A (en) * 2010-03-15 2011-09-21 주식회사 티지솔라 Batch type apparatus for forming epitaxial layer and method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260734A (en) * 1998-03-12 1999-09-24 Nec Corp Manufacture of semiconductor device
KR20030088409A (en) * 2003-10-30 2003-11-19 주식회사 테라텍 Batch type ashing apparatus using remote plasma
US20060258157A1 (en) * 2005-05-11 2006-11-16 Weimer Ronald A Deposition methods, and deposition apparatuses
KR20110098443A (en) * 2010-02-26 2011-09-01 주식회사 티지솔라 An apparatus of forming metal nitride layer for light emitting diode
KR20110103630A (en) * 2010-03-15 2011-09-21 주식회사 티지솔라 Batch type apparatus for forming epitaxial layer and method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160289833A1 (en) * 2015-03-31 2016-10-06 Tokyo Electron Limited Vertical Heat Treatment Apparatus

Similar Documents

Publication Publication Date Title
WO2011037377A2 (en) Batch-type epitaxial layer forming device and a method for forming the same
WO2014003437A1 (en) Gas supply unit for supplying multiple gases, and method for manufacturing same
WO2012036499A2 (en) Thin film deposition apparatus
US6547876B2 (en) Apparatus for growing epitaxial layers on wafers by chemical vapor deposition
KR20110103630A (en) Batch type apparatus for forming epitaxial layer and method for the same
KR101462259B1 (en) Batch type apparatus for forming deposition layer
WO2016047972A2 (en) Apparatus for manufacturing film and method for manufacturing film using same
WO2014119955A1 (en) Batch deposition apparatus
KR101378801B1 (en) Batch type apparatus for forming epitaxial layer which includes a gas supply unit passing through a substrate support on which a plurality of substrates are placed
KR101625008B1 (en) Unit for supplying process gas
KR101555021B1 (en) Batch Type Deposition Film Forming Apparatus
KR101350779B1 (en) Gas Supplying Unit and Batch Type Apparatus for Forming Epitaxial Layer Having the Same
KR101505184B1 (en) Deposition Film Forming Apparatus Including Rotating Members
KR101505183B1 (en) Deposition Film Forming Apparatus Including Rotating Members
KR101525504B1 (en) Batch type apparatus for forming epitaxial layer inclding a gas supply unit passing through a substrate support
JP2016135899A (en) Vapor deposited film forming apparatus including rotating member
WO2018106039A1 (en) Organic metal chemical vapor deposition device
KR20120029795A (en) Thin film deposition apparatus
KR101552229B1 (en) Deposition Film Forming Apparatus Including Rotating Members
KR101477785B1 (en) Substrate Support Unit And Deposition Film Forming Apparatus Including Guide Members
KR20140135852A (en) Emiconductor manufacturing apparatus
KR20170043802A (en) Deposition Film Forming Apparatus
KR20150000224A (en) Metal Halogen Gas Forming Unit And Deposition Film Forming Apparatus Comprising The Same
KR20150075935A (en) Susceptor and apparatus for chemical vapor deposition using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745351

Country of ref document: EP

Kind code of ref document: A1