WO2018106039A1 - Organic metal chemical vapor deposition device - Google Patents

Organic metal chemical vapor deposition device Download PDF

Info

Publication number
WO2018106039A1
WO2018106039A1 PCT/KR2017/014312 KR2017014312W WO2018106039A1 WO 2018106039 A1 WO2018106039 A1 WO 2018106039A1 KR 2017014312 W KR2017014312 W KR 2017014312W WO 2018106039 A1 WO2018106039 A1 WO 2018106039A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
vapor deposition
chemical vapor
protrusion
groove
Prior art date
Application number
PCT/KR2017/014312
Other languages
French (fr)
Korean (ko)
Inventor
조광일
최성철
Original Assignee
주식회사 테스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 테스 filed Critical 주식회사 테스
Priority to CN201780076172.9A priority Critical patent/CN110088356A/en
Priority claimed from KR1020170167443A external-priority patent/KR102154482B1/en
Publication of WO2018106039A1 publication Critical patent/WO2018106039A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber

Definitions

  • the present invention relates to an organometallic chemical vapor deposition apparatus.
  • the Metal Organic Chemical Vapor Deposition (MOCVD) apparatus is a thermal decomposition method on a heated substrate by supplying a Group 3 alkyl (organic metal raw material gas) and a mixed gas of a Group 5 reaction gas and a high purity carrier gas into the reaction chamber. To grow a compound semiconductor crystal.
  • the organometallic chemical vapor deposition apparatus mounts a substrate on a susceptor and injects gas from an upper surface or a side surface to grow semiconductor crystals on the substrate.
  • a process gas is disposed between the substrate W and the bottom of the accommodation groove 4 while the substrate W is seated in the accommodation groove 4 of the susceptor 2.
  • foreign substances such as particles 6 may be formed.
  • the particles 6 do not allow the wafers W to be placed in parallel. As shown in the figure, it is inclined. This acts as a factor of yield reduction when growing the thin film by generating a temperature deviation on the wafer (W) surface.
  • AlN aluminum nitride
  • AlN aluminum nitride
  • TMA trimethylaluminum
  • Al aluminum
  • N nitrogen
  • turbulence due to gas flow may occur, which may inadvertently rotate a substrate having a concave shape warp at a high temperature. This leads to a problem that it is not easy to analyze the thin film characteristics in the substrate after the growth ends.
  • a substrate having a flat surface is used instead of a general circular substrate. In this case, pinching may occur when the substrate is rotated.
  • the flat surface Wf of the substrate W and the substrate W are rotated.
  • the above-described pinching phenomenon may be intensified, and in severe cases, the substrate W may be damaged or the susceptor may be broken.
  • the present invention in order to solve the above problems, when the substrate is seated in the receiving groove of the substrate support, the organic metal that can prevent the substrate is inclined due to the particles that can be formed in the receiving groove, etc.
  • An object is to provide a chemical vapor deposition apparatus.
  • the present invention in order to solve the above problems, when the substrate is seated in the receiving groove of the substrate support to prevent the rotation of the substrate to prevent the metal from being caught or damaged in the receiving groove of the organometallic chemistry It is an object to provide a vapor deposition apparatus.
  • An object of the present invention as described above is provided with a chamber that provides a processing space in which a substrate is processed, a gas supply unit for supplying a process gas into the chamber, and an accommodation groove provided in the chamber to seat the substrate and the substrate And a substrate supporting part for heating the substrate, wherein an organic metal chemical vapor deposition apparatus is provided with a seating part in which the substrate is seated inside the receiving groove, and an intermediate groove is formed between an edge of the seating portion and the receiving groove. Is achieved.
  • the seating portion may be formed flat on the upper surface.
  • the width of the intermediate groove may be covered by 60% to 95% by the substrate.
  • the intermediate groove may be formed in an angled corner of the inside.
  • the width of the intermediate groove may be 1 to 3mm.
  • the depth of the intermediate groove on the upper surface of the seating portion may be 40 to 80% of the depth of the intermediate groove on the upper surface of the substrate support.
  • the substrate may have a flat surface at least partially along a circular circumferential surface, and may include a protrusion that protrudes inwardly from an edge of the receiving groove to prevent rotation of the substrate.
  • the flat surface of the substrate may meet the protrusion.
  • the corner region where the circumferential surface and the flat surface of the substrate meet does not meet the protrusion.
  • the circumferential angle of the protrusion relative to the center of the seating portion may be relatively smaller than the circumferential angle of the flat surface of the substrate with respect to the center of the seating portion.
  • the protrusion may be detachably provided.
  • the substrate support portion includes a heater block on which the substrate is seated and heated, the insertion groove is formed from the bottom of the heater block toward the upper portion, the inside of the insertion groove is provided with a thermocouple for measuring the temperature of the heater block Can be.
  • the height of the insertion groove in the bottom of the heater block may be 60 to 90% of the height of the heater block.
  • the present invention having the above-described configuration, by forming an intermediate groove between the seating portion in which the substrate is seated in the receiving groove of the substrate support and the inner surface of the receiving groove to induce foreign matter such as particles to be formed in the intermediate groove, When disposed in the receiving groove can be prevented from being disposed inclined.
  • FIG. 1 is a cross-sectional view showing the structure of an organometallic chemical vapor deposition apparatus according to an embodiment of the present invention
  • 4 to 8 is a plan view showing various embodiments of the protrusion formed in the receiving groove of the substrate support
  • FIG. 11 is a plan view of a substrate support of the conventional apparatus.
  • FIG. 1 is a cross-sectional view showing the structure of an organometallic chemical vapor deposition apparatus 1000 according to an embodiment of the present invention.
  • the organometallic chemical vapor deposition apparatus 1000 includes a chamber 10, a substrate support 20, a gas supply unit 30, and a reaction space forming unit 40.
  • the chamber 10 includes a chamber lead 11 covering an upper portion of the chamber, an outer wall portion 12 fastened to the chamber lead 11 and covering a side of the chamber, and a bottom flange portion forming a lower bottom surface of the chamber. (13) is provided.
  • the chamber lead 11 may be detachably fastened to the outer wall portion 12 through fastening means such as bolts, and the cooling chamber 11a may be formed in the chamber lead 11.
  • the cooling passage 11a is configured to flow a cooling medium such as a cooling water or a cooling gas, and is configured to cool the chamber 10 heated by the high temperature heat generated in the deposition process in the chamber 10.
  • the chamber lead 11 includes a sensor tube 52 serving as an optical measuring passage of the optical sensor 51 for optically measuring a thin film deposited on a substrate in the reaction space forming unit 40 to be described later. It is installed.
  • the sensor tube 52 is configured to introduce a purge gas to prevent the reaction gas from being discharged from the reaction space forming unit 40 to the sensor tube 52.
  • the outer wall portion 12 is fastened to the chamber lead 11 and is configured to cover the side of the chamber 10.
  • An exhaust hole 14 is formed in the outer wall part 12, and the exhaust hole 14 is connected to a gas exhaust line (not shown), and remains in the reaction space forming unit 40 after completion of the deposition process. It is configured to discharge the reaction gas to the outside of the chamber 10 through the exhaust hole 14 and the gas exhaust line (not shown).
  • an inner wall portion 12a may be further provided inside the outer wall portion 12.
  • the reaction space forming unit 40 is inserted into and installed in the inner wall portion 12a, and the reaction space forming unit 40 is configured to be stably installed.
  • the bottom flange 13 is provided below the chamber 10.
  • a cooling passage 13a may be formed in the bottom flange portion 13.
  • the cooling channel 13a is configured to flow a cooling medium such as a cooling water or a cooling gas, and is configured to cool the chamber 10 heated by the high temperature heat generated in the deposition process in the chamber 10.
  • the substrate support 20 on which the substrate W is seated is disposed in the chamber.
  • the substrate support unit 20 includes a heater block 21 on which the substrate W is seated and heated, a shaft 22 supporting and rotating the heater block 21, a sealing unit 23, and the heater.
  • Induction heating unit 24 for heating the block 21 is included.
  • the heater block 21 is provided with a plurality of receiving grooves 210, 220, and 230 (see FIG. 2) so that the plurality of substrates W may be seated on the upper surface.
  • thermocouple 22a is installed inside the shaft 22 to measure and control the temperature of the heater block 21 heated by the induction heating unit 24. The configuration in which the thermocouple 22a is disposed inside the heater block 21 will be described in detail later.
  • a sealing portion 23 is provided between the shaft 22 and the bottom flange portion 13 of the chamber 10 to seal a space between the rotating shaft 22 and the bottom flange portion 13. It is composed.
  • the sealing portion 23 is filled with a fluid seal, in the present embodiment, the fluid seal may be composed of a magnetic fluid seal to hermetically seal the voids with the outside by the magnetic force of the magnetic.
  • an upper portion of the sealing portion 23 surrounds the shaft 22 to prevent high temperature heat generated during the deposition process from being transferred to the chamber 10 and the sealing portion 23 ( 26) can be installed.
  • the induction heating unit 24 is formed of, for example, an induction coil surrounding the heater block 21, and is configured to heat the heater block 21 disposed inside the induction heating unit 24. do.
  • a thermal barrier 25 may be provided between the induction heating unit 24 and the heater block 21. The thermal barrier 25 not only prevents the high temperature heat of the heater block 21 heated by the induction heating unit 24 from being transferred into the chamber 10 but also the induction heating unit 24. In addition, the heater block 21 may be protected from high temperature heat.
  • the thermal barrier 25 may be formed of, for example, a ceramic material which is stable at high temperature and has high heat reflectivity.
  • the gas supply unit 30 is installed on one side of the chamber.
  • the gas supply unit 30 includes a plurality of gas supply ports (not shown) connected to a plurality of gas supply lines (not shown), and the plurality of gas supply lines process a plurality of gas supply sources (not shown). Gas is supplied.
  • the organometallic chemical vapor deposition apparatus 1000 includes a reaction space forming unit 40 installed inside the chamber 10.
  • the reaction space forming unit 40 includes an upper plate 41 installed at a side corresponding to the chamber lead, a side plate (not shown), and a lower plate 43 installed at a side corresponding to the substrate support. The side in which the reaction gas is supplied to the reaction space forming unit and the side in communication with the exhaust hole are opened.
  • One side of the reaction space forming unit 40 is coupled to the gas supply unit 30 through the inner wall portion of the chamber 10, the other side is configured to communicate with the exhaust hole 14 formed in the outer wall portion 12 do.
  • a heat shielding lead 44 may be installed on the upper plate 41 of the reaction space forming unit.
  • the heat shield 44 is installed at a position opposite to the heater block 21, is thicker than the upper plate, protrudes toward an upper surface of the heater block 21, and is seated on the heater block 21.
  • the reaction space on the substrate W can be made smaller.
  • the heat shield lead 44 is integrally fastened with the upper plate 41, and is detachably configured with the upper plate 41 to facilitate replacement.
  • the heat shield 44 may be formed of, for example, a ceramic material that is stable at high temperature and has high heat reflectivity.
  • the thermal barrier 25 surrounding the heater block 21 and the heat shield lead 44 are stably constructed at high temperature by using a ceramic material. .
  • the thermally sealed lid 44 having a high heat reflectivity can efficiently heat the substrate and reduce power consumption required for heating the substrate.
  • the organometallic chemical vapor deposition apparatus prevents the substrate from being inclined due to particles that may be formed in the receiving groove when the substrate is seated in the receiving groove of the substrate support. Configured to do so.
  • FIG. 2 is a plan view of the heater block 21, and FIG. 3 is a partial cross-sectional view of the heater block 21.
  • FIG. 3 (A) shows the receiving groove 210
  • Figure 3 (B) shows a state in which the substrate (W) is seated in the receiving groove (210).
  • the organometallic chemical vapor deposition apparatus 1000 includes accommodation grooves 210, 220, and 230 in which the substrate W is accommodated in the heater block 21.
  • the accommodation grooves 210, 220, 230 are shown in the figure three, but is not limited to this may be appropriately adjusted.
  • An intermediate groove 213 may be formed between the 210, 220, and 230.
  • the substrate W is seated on an upper surface of the seating portions 212, 222, and 232, which protrude to a predetermined length toward the inside of the accommodation grooves 210, 220, and 230, and in this case, the substrate ( The intermediate groove 213 is positioned under the edge region of W).
  • the seating portions 212, 222, and 232 have upper surfaces formed flat and the lower surface of the substrate W when the substrate W is seated on the upper surfaces of the mounting portions 212, 222, and 232. And a space between the upper surfaces of the seating parts 212, 222, and 232 does not occur. Since no space is generated between the substrate W and the seating portions 212, 222, and 232, foreign substances, such as particles and powder, may be prevented from being introduced into the process gas.
  • the intermediate groove 213 may be formed in an angled corner of the inside as shown in the figure.
  • the side cross-section of the intermediate groove 213 is formed in an angular shape in a polygonal shape, such as a square, it is very easy to form a groove having a relatively small width compared to the simple round shape without the angular shape.
  • the square angled shape has a relatively large surface area inside the intermediate groove 213 as compared to the round shape, the particles are well attached to prevent the particles from leaking to the outside of the intermediate groove 213.
  • the above-described angled edge portion of the intermediate groove 213 may also be expected to hinder the movement of the particles.
  • the edge of the substrate (W) is disposed to be as close as possible to the receiving groove (210, 220, 230). That is, the inner diameters of the receiving grooves 210, 220, and 230 are determined to be slightly larger than the outer diameter of the substrate W. In this case, as shown in the drawing, the edge of the substrate W is the intermediate diameter. Most of the width D of the groove 213 is covered.
  • the substrate W may cover 50% or more of the width D of the intermediate groove 213.
  • the substrate W may have a width D of the intermediate groove 213. 60% to 95% can be covered. When most of the width D of the intermediate groove 213 is covered by the substrate W, the amount of process gas flowing into the intermediate groove 213 may be reduced, thereby suppressing particle generation.
  • the width (D) of the intermediate groove 213, or the distance between the edge of the seating portion (212, 222, 232) and the inner surface of the receiving groove (210, 220, 230) ( D) may be approximately 1-3 mm and approximately 2 mm.
  • the depth of the middle groove 213 is the depth and (B 1) to the bottom of the intermediate groove (213) on the top surface (21a) of the heater block (21) constituting the substrate support 20, mounted It may be defined as the depth B 2 from the upper surface of the portion (212, 222, 232) to the bottom of the intermediate groove 213.
  • Depth (B 2 ) to the bottom of the can be made of approximately 40 to 80%.
  • the organometallic chemical vapor deposition apparatus is configured to prevent the substrate from being pinched or damaged by the rotation of the substrate when the substrate is seated in the receiving groove of the substrate support. .
  • the substrate look at in detail.
  • 4 to 8 are plan views illustrating various embodiments of protrusions formed in the accommodation grooves 310 of the substrate support 20. That is, in the present embodiment, the substrate W protrudes inward from the edge of the accommodation groove 310 to prevent the substrate W from rotating inside the accommodation groove 310 to prevent rotation of the substrate W. It is provided with a protrusion.
  • the substrate W has a flat surface Wf at least in part along a circular circumferential surface Ws, and a corner at an area where the circumferential surface Ws and the flat surface Wf of the substrate meet.
  • the region Wc may be formed. 4 to 8, (a) is a plan view of the receiving groove 310, and (b) is an enlarged view of the dotted line area in (a).
  • the protrusion 314 protrudes inward from an edge of the receiving groove 310.
  • the flat surface Wf may be formed on at least a portion of the substrate W along the circumference, and the protrusion 314 may be disposed to meet the flat surface Wf.
  • the corner region of the substrate meets the edge of the receiving groove so that the corner region of the substrate is pinched in the receiving groove.
  • the protrusion 314 is used to solve the above-mentioned problem.
  • substrate W is arrange
  • the circumferential angle ⁇ 2 of the protrusion 314 with respect to the center C of the seating portion 312 is the seating portion ( It is formed relatively smaller than the circumferential angle ⁇ 1 of the flat surface Wf of the substrate W with respect to the center C of 312.
  • the corner area Wc of the substrate W and the protrusion 314 may not be prevented from meeting. In this case, as described above, the corner region Wc of the substrate W may be caught in the protrusion 314.
  • the degree ⁇ 2 is formed to be relatively smaller than the circumferential angle ⁇ 1 of the flat surface Wf of the substrate W with respect to the center C of the seating portion 312.
  • the organometallic chemical vapor deposition apparatus 1000 is supplied with a process gas from the side of the substrate (W).
  • the substrate W does not rotate.
  • the substrate W is Can rotate
  • the gas injection speed of the process gas is increased to suppress parasitic reactions between the process gases, the substrate W is more easily rotated.
  • the flat surface Wf is used instead of the corner region Wc of the substrate W.
  • At least a portion of the substrate 314 may meet the protrusion 314 to prevent rotation of the substrate W as much as possible, and may further prevent the corner region Wc of the substrate W from being caught in the protrusion 314.
  • the corner region Wc where the circumferential surface Ws of the substrate W and the flat surface Wf meet is vulnerable to damage or damage.
  • the corner region Wc is the protruding portion 314.
  • the protrusion 314 may be disposed so as not to contact the substrate 314 so as to prevent damage or damage to the substrate W as much as possible.
  • the width of the intermediate groove 213 or the distance between the edge of the seating portion 312 and the inner surface of the receiving groove 310 is changed by the protrusion 314.
  • the width d 2 of the intermediate groove 213 in the region without the protrusion 314 forms approximately 1 to 3 mm as described above, whereas the intermediate groove 213 is formed in the region where the protrusion 314 is formed.
  • the width d 1 of is smaller than the width d 2 described above.
  • the width d 1 of the intermediate groove 213 may correspond to about half of the width d 2 of the intermediate groove 213 having no protrusion 314. In this case, the width d 1 of the intermediate groove 213 is kept constant in the region where the protrusion 314 is formed.
  • the 4 may prevent rotation of the substrate W.
  • the surface of the protrusion 314 and the substrate W may not be rotated. Since the edges meet, the effect of preventing jamming is low.
  • the durability of the protrusion 314 has a relatively weak characteristic.
  • FIG. 5 illustrates a protrusion 324 according to another embodiment.
  • the protrusion 324 protrudes inward from an edge of the receiving groove 310.
  • the shape of the protrusion 324 according to FIG. 5 is similar to the shape of the protrusion of FIG. 4 described above, but there are differences in the width and the length of the protrusion.
  • the width d 2 of the intermediate groove 213 in the region without the protrusion 324 forms approximately 1 to 3 mm as described above, whereas in the region where the protrusion 324 is formed,
  • the width d 3 of the intermediate groove 213 is relatively smaller than the width d 2 described above, and may correspond to about 20 to 40%. That is, the protrusion 324 of the present exemplary embodiment may protrude relatively more than the protrusion of FIG. 4.
  • the length of the protrusion 324 in the circumferential direction of the receiving groove 310 may be configured to be relatively smaller than the above-described protrusion 314 of FIG.
  • the surface of the protrusion 324 meets the surface of the substrate W when the substrate W meets the protrusion 324.
  • the degree is reduced, in particular, the degree to which the durability of the protrusion 324 is significantly improved.
  • the width d 3 of the intermediate groove 213 is relatively small in the region where the protrusion 324 is formed, the convenience of loading / unloading of the substrate or the temperature gradient characteristic of keeping the temperature of the substrate constant are illustrated. It has similar characteristics to 4.
  • the center C of the seating portion 312 may be adjusted.
  • the circumferential angle ⁇ 3 of the protrusion 324 is formed to be smaller than the circumferential angle ⁇ 1 of the flat surface Wf of the substrate W with respect to the center C of the seating portion 312. do. Since it has been described above, a repeated description thereof will be omitted.
  • FIG. 6 illustrates a protrusion 334 according to another embodiment.
  • the protrusion 334 may have a shape that protrudes in parallel when protruding from the inner side of the edge of the receiving groove 310. That is, the distance between the protrusion 334 and the seating portion 312 is not constant as shown in the figure and is constantly changing.
  • the width of the intermediate groove 213 is relatively smaller in the region in which the protrusion 334 is formed than in FIGS. 4 and 5, so that the loading / unloading convenience of the substrate is somewhat low. Temperature gradient characteristics are significantly improved.
  • the surface of the protrusion 334 and the surface of the substrate W meet, thereby reducing the pinching of the substrate and improving durability of the protrusion. Indicates.
  • the center portion C of the seating portion 312 may be adjusted.
  • the circumferential angle ⁇ 4 of the protrusion 334 is relatively smaller than the circumferential angle ⁇ 1 of the flat surface Wf of the substrate W with respect to the center C of the seating portion 312. do. Since it has been described above, a repeated description thereof will be omitted.
  • Figure 7 shows the configuration of the protrusions 354, 356 according to another embodiment.
  • a pair of protrusions 354 and 356 may be provided along the inner edge of the receiving groove 310.
  • the protrusions 354 and 356 are spaced apart from each other by a predetermined distance along the inner edge of the receiving groove 310, and the protrusions 354 and 356 have a semi-circle shape having a predetermined radius, or a curved shape, It protrudes in a curved shape or the like.
  • the loading / unloading characteristics of the substrate are relatively improved since the area in which the protrusions 354 and 356 are formed is relatively small compared with the above-described embodiments.
  • the surface of the protrusions 354 and 356 and the surface of the substrate W meet to prevent the pinching of the substrate, but the protrusions are relatively.
  • the durability of the substrate decreases and the distance between the outer circumferential surface of the substrate and the heater block 21 becomes farther, resulting in a worse temperature gradient characteristic of the substrate.
  • FIG. 8 illustrates a configuration of the protrusions 344 and 346 according to another embodiment.
  • each of the protrusions 344 and 346 according to the present embodiment is configured such that when the protrusions 344 and 346 protrude from the edge of the receiving groove 310, the lengths of both surfaces forming the protrusions 344 and 346 are different from each other.
  • the first face 344A of the first protrusion 344 is configured to be longer than the second face 344B, and likewise, the third face 346A of the second protrusion 346. Is configured to be longer than the fourth surface 346B.
  • the first surface 344A of the first protrusion 344 and the third surface 346A of the second protrusion 346 may be disposed along an imaginary line.
  • the loading / unloading characteristics of the substrate are relatively improved because the area in which the protrusions 344 and 346 are formed is relatively small compared with the above-described embodiments.
  • the surface of the protrusions 344 and 346 and the surface of the substrate W meet to prevent the jamming of the substrate and to improve durability. You lose.
  • the center C of the seating portion 312 may be removed.
  • the circumferential angle ⁇ 6 of the pair of protrusions 344 and 346 is at the circumferential angle ⁇ 1 of the flat surface Wf of the substrate W with respect to the center C of the seating portion 312. It is formed relatively smaller in comparison. Since it has been described above, a repeated description thereof will be omitted.
  • the protrusions may be detachably provided.
  • the protrusion may be made of a material different from that of the block heater.
  • the protrusion may be made of a material that is relatively superior in durability and heat resistant to the heater block.
  • thermocouple 22a for measuring the temperature of the heater block 21.
  • 9 is a cross-sectional view showing the internal configuration of the heater block 21.
  • an insertion groove 29 is formed from the bottom of the heater block 21 toward the top to mount the thermocouple 22a, and the thermocouple 22a is formed inside the insertion groove 29.
  • reference numeral 22 denotes a shaft.
  • thermocouple 22a may infer the temperature of the substrate W heated by the heater block 21 by measuring the temperature of the heater block 21. Therefore, it may be advantageous that the thermocouple 22a is disposed adjacent to the substrate W inside the heater block 21.
  • the height h 2 of the insertion groove 29 measured at the bottom of the heater block 21 is approximately equal to the height h 1 of the heater block 21, or 90
  • the thermal energy for heating the substrate (W) may be discharged to the outside of the chamber 10 through the insertion groove (29). This may lower the heating efficiency of the substrate W and may lower the quality of the thin film deposited on the substrate W.
  • the height h 2 of the insertion groove 29 at the bottom of the heater block 21 is determined to be 60% or less than the height h 1 of the heater block 21, the top surface of the heater block on which the wafer is seated This is different from the temperature of, so it is not suitable as a process feedback temperature.
  • the height h 2 of the insertion groove 29 at the bottom of the heater block 21 is determined to be about 60 to 90% of the height h 1 of the heater block 21. , Preferably about 75%.
  • thermocouple 22a is provided not to contact the upper surface of the insertion groove 29 from the inside of the insertion groove 29 as shown in the figure. Therefore, even when the heater block 21 rotates, the damage of the thermocouple 22a can be prevented.
  • thermocouple 22a is disposed inside the insertion groove 29 to measure the temperature of the heater block 21, when the environment of the upper portion of the substrate W is changed, for example, The temperature of the heater block 21 may be accurately measured in a state in which it does not change sensitively according to environmental changes such as change, pressure change, and temperature change.
  • the present invention by forming an intermediate groove between the seating portion on which the substrate is seated in the receiving groove of the substrate support and the inner surface of the receiving groove, foreign matters such as particles are formed in the intermediate groove, so that the substrate is disposed in the receiving groove. If it is, it can be prevented from being placed inclined.

Abstract

The present invention relates to an organic metal chemical vapor deposition device. The organic metal chemical vapor deposition device according to the present invention comprises: a chamber that provides a processing space in which a substrate is processed; a gas supply portion for supplying a process gas into the chamber; and a substrate support portion provided inside the chamber, the substrate support portion having a containing groove on which the substrate is seated, and the support supporting portion heating the substrate. A seating portion is formed inside the containing groove such that the substrate is seated thereon. A middle groove is formed between the periphery of the seating portion and the containing groove.

Description

유기금속화학기상증착장치Organometallic Chemical Vapor Deposition Equipment
본 발명은 유기금속화학기상증착장치에 대한 것이다.The present invention relates to an organometallic chemical vapor deposition apparatus.
다양한 산업분야에서 고효율의 발광다이오드(LED)가 점차 사용됨에 따라서, 품질이나 성능의 저하 없이 대량으로 생산할 수 있는 장비가 요구되고 있다. 이러한 발광 다이오드의 제조에 유기금속증착 반응기가 널리 사용되고 있다.As high-efficiency light emitting diodes (LEDs) are increasingly used in various industrial fields, equipment that can be mass-produced without degrading quality or performance is required. Organometallic deposition reactors are widely used in the manufacture of such light emitting diodes.
유기금속화학기상증착(MOCVD: Metal Organic Chemical Vapor Deposition) 장치는 3족알킬(유기금속원료가스) 및 5족 반응가스와 고순도 캐리어 가스와의 혼합가스를 반응실내에 공급하여 가열된 기판 위에서 열 분해하여 화합물 반도체 결정을 성장시키는 장치이다. 이러한 유기금속화학기상증착장치는 서셉터에 기판을 장착하여 상면 또는 측면으로부터 가스를 주입하여 기판 상부에 반도체 결정을 성장시킨다.The Metal Organic Chemical Vapor Deposition (MOCVD) apparatus is a thermal decomposition method on a heated substrate by supplying a Group 3 alkyl (organic metal raw material gas) and a mixed gas of a Group 5 reaction gas and a high purity carrier gas into the reaction chamber. To grow a compound semiconductor crystal. The organometallic chemical vapor deposition apparatus mounts a substrate on a susceptor and injects gas from an upper surface or a side surface to grow semiconductor crystals on the substrate.
한편, 도 10에 도시된 바와 같이 서셉터(2)의 수용홈(4)에 기판(W)이 안착되어 공정이 진행하는 중에 기판(W)과 수용홈(4)의 바닥 사이에 공정가스가 유입되어 파티클(6) 등과 같은 이물질이 형성될 수 있다. 이 경우, 그 다음 웨이퍼(W)에 대한 공정을 진행하기 위하여 도 10과 같이 웨이퍼(W)를 수용홈(4)에 안착시키는 경우에 파티클(6)로 인해 웨이퍼(W)가 평행하게 놓이지 못하고, 도면에 도시된 바와 같이 기울어지게 놓이게 된다. 이는 웨이퍼(W) 표면 상의 온도편차를 발생시켜 박막을 성장시키는 경우에 수율 저하의 요인으로 작용한다.Meanwhile, as shown in FIG. 10, a process gas is disposed between the substrate W and the bottom of the accommodation groove 4 while the substrate W is seated in the accommodation groove 4 of the susceptor 2. Inflow, foreign substances such as particles 6 may be formed. In this case, when the wafer W is seated in the receiving groove 4 as shown in FIG. 10 to proceed with the process for the wafer W, the particles 6 do not allow the wafers W to be placed in parallel. As shown in the figure, it is inclined. This acts as a factor of yield reduction when growing the thin film by generating a temperature deviation on the wafer (W) surface.
또한, 자외선을 방출하는 발광다이오드 및 레이저 다이오드를 제조하기 위해서는 질화알루미늄(AlN) 기반 물질을 일반적으로 사용한다. 알루미늄(Al)의 프리커서로 사용되는 TMA(Trimethylaluminium)과 질소(N)의 프리커서로 사용되는 NH3의 기생반응을 억제하기 위해서는 가스 상태로 혼재되는 시간을 최소화하는 것이 필요하다. 이를 위하여 일반적으로는 가스 분사 속도를 높이는 것이 일반적이다.In addition, aluminum nitride (AlN) based materials are generally used to fabricate light emitting diodes and laser diodes that emit ultraviolet light. In order to suppress the parasitic reaction of trimethylaluminum (TMA) used as the precursor of aluminum (Al) and NH 3 used as the precursor of nitrogen (N), it is necessary to minimize the mixing time in the gas state. To this end, it is common to increase the gas injection rate in general.
그런데, 가스 분사 속도를 높이게 되면 가스 유동에 의한 난류(turbulence)가 발생하며 이는 고온에서 오목한 형상의 휨을 갖는 기판을 의도치 않게 회전 시킬 수 있다. 이는 성장 종료 후 기판 내 박막 특성 분석이 용이하지 않은 문제를 초래하게 된다. 또한, 일반적인 원형 기판 대신 플랫면을 가지는 기판을 사용하게 되는데, 이 경우 기판이 회전하는 경우에 끼임 현상이 발생할 수 있다.However, when the gas injection speed is increased, turbulence due to gas flow may occur, which may inadvertently rotate a substrate having a concave shape warp at a high temperature. This leads to a problem that it is not easy to analyze the thin film characteristics in the substrate after the growth ends. In addition, a substrate having a flat surface is used instead of a general circular substrate. In this case, pinching may occur when the substrate is rotated.
예를 들어, 도 11과 같이 기판(W)이 서셉터의 수용홈(510)에 안착된 상태에서 회전을 하게 되면 기판(W)이 회전된 상태에서 기판(W)의 플랫면(Wf)과 원주면(Ws)이 만나는 코너영역(Wc)이 수용홈(510)의 평면부(512)에 서로 맞닿아 기판(W)의 코너영역(Wc)이 수용홈(510)의 내부에서 끼일 수 있다. 특히, 챔버 내부의 고온에 의해 기판(W)이 팽창을 하는 경우에 전술한 끼임 현상이 심화될 수 있으며, 심한 경우에는 기판(W)의 파손 또는 서셉터의 파손을 유발할 수 있다.For example, as shown in FIG. 11, when the substrate W is rotated in the receiving groove 510 of the susceptor, the flat surface Wf of the substrate W and the substrate W are rotated. The corner region Wc where the circumferential surface Ws meets the flat portion 512 of the accommodation groove 510 so that the corner region Wc of the substrate W may be caught inside the accommodation groove 510. . In particular, when the substrate W expands due to the high temperature inside the chamber, the above-described pinching phenomenon may be intensified, and in severe cases, the substrate W may be damaged or the susceptor may be broken.
본 발명은 상기와 같은 문제점을 해결하기 위하여, 기판지지부의 수용홈에 기판이 안착되는 경우에 상기 수용홈에 형성될 수 있는 파티클 등으로 인해 상기 기판이 기울어져 배치되는 것을 방지할 수 있는 유기금속화학기상증착장치를 제공하는 것을 목적으로 한다.The present invention, in order to solve the above problems, when the substrate is seated in the receiving groove of the substrate support, the organic metal that can prevent the substrate is inclined due to the particles that can be formed in the receiving groove, etc. An object is to provide a chemical vapor deposition apparatus.
본 발명은 상기와 같은 문제점을 해결하기 위하여, 기판지지부의 수용홈에 기판이 안착되는 경우에 상기 기판의 회전을 방지하여 상기 기판이 상기 수용홈에 끼이거나 파손되는 것을 방지할 수 있는 유기금속화학기상증착장치를 제공하는 것을 목적으로 한다.The present invention, in order to solve the above problems, when the substrate is seated in the receiving groove of the substrate support to prevent the rotation of the substrate to prevent the metal from being caught or damaged in the receiving groove of the organometallic chemistry It is an object to provide a vapor deposition apparatus.
상기와 같은 본 발명의 목적은 기판이 처리되는 처리공간을 제공하는 챔버, 상기 챔버 내부로 공정가스를 공급하는 가스공급부 및 상기 챔버의 내부에 구비되어 상기 기판이 안착되는 수용홈이 구비되며 상기 기판을 가열하는 기판지지부를 구비하고, 상기 수용홈의 내측에 상기 기판이 안착되는 안착부와, 상기 안착부의 가장자리와 상기 수용홈 사이에 중간홈이 형성된 것을 특징으로 하는 유기금속화학기상증착장치에 의해 달성된다.An object of the present invention as described above is provided with a chamber that provides a processing space in which a substrate is processed, a gas supply unit for supplying a process gas into the chamber, and an accommodation groove provided in the chamber to seat the substrate and the substrate And a substrate supporting part for heating the substrate, wherein an organic metal chemical vapor deposition apparatus is provided with a seating part in which the substrate is seated inside the receiving groove, and an intermediate groove is formed between an edge of the seating portion and the receiving groove. Is achieved.
여기서, 상기 안착부는 상면이 평평하게 형성될 수 있다.Here, the seating portion may be formed flat on the upper surface.
이 경우, 상기 기판이 상기 안착부에 안착되는 경우에 상기 중간홈의 폭이 상기 기판에 의해 60% 내지 95% 가려질 수 있다.In this case, when the substrate is seated on the seating portion, the width of the intermediate groove may be covered by 60% to 95% by the substrate.
또한, 상기 중간홈은 내부의 모서리가 각진 형태로 형성될 수 있다. 이 경우, 상기 중간홈의 폭은 1 내지 3mm 일 수 있다.In addition, the intermediate groove may be formed in an angled corner of the inside. In this case, the width of the intermediate groove may be 1 to 3mm.
한편, 상기 안착부의 상면에서 상기 중간홈의 깊이는 상기 기판지지부의 상면에서 상기 중간홈의 깊이에 비해 40 내지 80%일 수 있다.On the other hand, the depth of the intermediate groove on the upper surface of the seating portion may be 40 to 80% of the depth of the intermediate groove on the upper surface of the substrate support.
나아가, 상기 기판은 원형의 원주면을 따라 적어도 일부에 플랫면을 구비하고, 상기 수용홈의 가장자리에서 내측으로 돌출 형성되어 상기 기판의 회전을 방지하는 돌출부를 구비할 수 있다.Further, the substrate may have a flat surface at least partially along a circular circumferential surface, and may include a protrusion that protrudes inwardly from an edge of the receiving groove to prevent rotation of the substrate.
이때, 상기 기판의 플랫면이 상기 돌출부와 만날 수 있다. 이 경우, 상기 기판의 원주면과 상기 플랫면이 만나는 코너영역이 상기 돌출부와 만나지 않게 된다. In this case, the flat surface of the substrate may meet the protrusion. In this case, the corner region where the circumferential surface and the flat surface of the substrate meet does not meet the protrusion.
한편, 상기 안착부의 중심에 대한 상기 돌출부의 원주각도는 상기 안착부의 중심에 대한 상기 기판의 플랫면의 원주각도에 비해 상대적으로 더 작을 수 있다.Meanwhile, the circumferential angle of the protrusion relative to the center of the seating portion may be relatively smaller than the circumferential angle of the flat surface of the substrate with respect to the center of the seating portion.
나아가, 상기 돌출부는 착탈 가능하게 구비될 수 있다.Furthermore, the protrusion may be detachably provided.
한편, 상기 기판지지부는 상기 기판이 안착되고 가열되는 히터블럭을 포함하고, 상기 히터블럭의 바닥에서 상부를 향해 삽입홈이 형성되고, 상기 삽입홈의 내측에는 히터블럭의 온도를 측정하는 열전쌍이 구비될 수 있다.On the other hand, the substrate support portion includes a heater block on which the substrate is seated and heated, the insertion groove is formed from the bottom of the heater block toward the upper portion, the inside of the insertion groove is provided with a thermocouple for measuring the temperature of the heater block Can be.
또한, 상기 히터블록의 바닥에서 상기 삽입홈의 높이는 상기 히터블럭의 높이에 비해 60 내지 90%일 수 있다.In addition, the height of the insertion groove in the bottom of the heater block may be 60 to 90% of the height of the heater block.
전술한 구성을 가지는 본 발명에 따르면, 기판지지부의 수용홈에 기판이 안착되는 안착부와 수용홈의 내면 사이에 중간홈을 형성함으로써 파티클 등과 같은 이물질이 상기 중간홈에 형성되도록 유도하여, 기판이 상기 수용홈에 배치되는 경우에 기울어져 배치되는 것을 방지할 수 있다.According to the present invention having the above-described configuration, by forming an intermediate groove between the seating portion in which the substrate is seated in the receiving groove of the substrate support and the inner surface of the receiving groove to induce foreign matter such as particles to be formed in the intermediate groove, When disposed in the receiving groove can be prevented from being disposed inclined.
또한, 본 발명에 따르면 상기 기판이 안착되는 수용홈의 내측 가장자리를 따라 돌출부를 구비하여 기판의 회전을 방지함으로써 기판이 수용홈의 내부에 끼이거나 파손되는 것을 방지할 수 있다.In addition, according to the present invention by providing a protrusion along the inner edge of the receiving groove in which the substrate is seated to prevent the rotation of the substrate can be prevented from being caught or damaged inside the receiving groove.
도 1은 본 발명의 일 실시예에 따른 유기금속화학기상증착장치의 구조를 도시한 단면도,1 is a cross-sectional view showing the structure of an organometallic chemical vapor deposition apparatus according to an embodiment of the present invention,
도 2는 기판지지부의 평면도,2 is a plan view of the substrate support;
도 3은 기판지지부의 일부 단면도,3 is a partial cross-sectional view of the substrate support;
도 4 내지 도 8은 기판지지부의 수용홈에 형성된 돌출부의 다양한 실시예를 도시한 평면도,4 to 8 is a plan view showing various embodiments of the protrusion formed in the receiving groove of the substrate support;
도 9는 기판지지부의 내부 구조를 도시한 단면도,9 is a sectional view showing the internal structure of the substrate support;
도 10은 종래 장치의 기판지지부의 단면도,10 is a cross-sectional view of the substrate support of the conventional apparatus,
도 11은 종래 장치의 기판지지부의 평면도이다.11 is a plan view of a substrate support of the conventional apparatus.
이하, 도면을 참조하여 본 발명의 실시예들에 따른 유기금속화학기상증착장치에 대해서 상세하게 살펴보도록 한다.Hereinafter, an organic metal chemical vapor deposition apparatus according to embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 유기금속화학기상증착장치(1000)의 구조를 도시한 단면도이다.1 is a cross-sectional view showing the structure of an organometallic chemical vapor deposition apparatus 1000 according to an embodiment of the present invention.
도 1을 참조하면, 상기 유기금속화학기상증착장치(1000)는 챔버(10)와, 기판지지부(20)와, 가스공급부(30)와, 반응공간형성유닛(40)을 구비한다.Referring to FIG. 1, the organometallic chemical vapor deposition apparatus 1000 includes a chamber 10, a substrate support 20, a gas supply unit 30, and a reaction space forming unit 40.
상기 챔버(10)는 챔버의 상부를 덮는 챔버리드(11)와, 상기 챔버리드(11)에 체결되며 챔버의 측부를 덮는 외부벽부(12)와, 챔버의 하부 바닥면을 형성하는 바닥플랜지부(13)를 구비한다.The chamber 10 includes a chamber lead 11 covering an upper portion of the chamber, an outer wall portion 12 fastened to the chamber lead 11 and covering a side of the chamber, and a bottom flange portion forming a lower bottom surface of the chamber. (13) is provided.
상기 챔버리드(11)는 상기 외부벽부(12)에 볼트 등의 체결수단을 통해 분리가능하게 체결될 수 있으며, 상기 챔버리드(11)에는 냉각유로(11a)를 형성할 수 있다. 상기 냉각유로(11a)에는 냉각수 또는 냉각가스 등 냉각매체가 유동되도록 구성되어, 상기 챔버(10) 내의 증착공정에서 발생하는 고온의 열에 의해 가열된 상기 챔버(10)를 냉각시키도록 구성된다.The chamber lead 11 may be detachably fastened to the outer wall portion 12 through fastening means such as bolts, and the cooling chamber 11a may be formed in the chamber lead 11. The cooling passage 11a is configured to flow a cooling medium such as a cooling water or a cooling gas, and is configured to cool the chamber 10 heated by the high temperature heat generated in the deposition process in the chamber 10.
또한, 상기 챔버리드(11)에는 후술하는 반응공간형성유닛(40)내에서 기판상에 증착되는 박막을 광학적으로 측정하기 위한 광학센서(51)의 광측정 통로로서 기능하는 센서튜브(52)가 설치되어 있다. 여기서, 상기 센서튜브(52)에는 퍼지가스를 도입하여 상기 반응공간형성유닛(40)으로부터 반응가스가 상기 센서튜브(52)로 배출되는 것을 방지하도록 구성된다.In addition, the chamber lead 11 includes a sensor tube 52 serving as an optical measuring passage of the optical sensor 51 for optically measuring a thin film deposited on a substrate in the reaction space forming unit 40 to be described later. It is installed. Here, the sensor tube 52 is configured to introduce a purge gas to prevent the reaction gas from being discharged from the reaction space forming unit 40 to the sensor tube 52.
상기 외부벽부(12)는 상기 챔버리드(11)에 체결되며, 상기 챔버(10)의 측부를 덮도록 구성된다. 상기 외부벽부(12)에는 배기홀(14)이 형성되며, 상기 배기홀(14)은 가스배기라인(미도시)에 연결되어, 증착공정의 완료후에 상기 반응공간형성유닛(40)에 잔류하는 반응가스를 상기 배기홀(14)과 상기 가스배기라인(미도시)을 통해 상기 챔버(10)의 외부로 배출하도록 구성된다.The outer wall portion 12 is fastened to the chamber lead 11 and is configured to cover the side of the chamber 10. An exhaust hole 14 is formed in the outer wall part 12, and the exhaust hole 14 is connected to a gas exhaust line (not shown), and remains in the reaction space forming unit 40 after completion of the deposition process. It is configured to discharge the reaction gas to the outside of the chamber 10 through the exhaust hole 14 and the gas exhaust line (not shown).
또한, 상기 외부벽부(12)의 내부에는 내부벽부(12a)를 더욱 구비할 수 있다. 상기 내부벽부(12a)에는 상기 반응공간형성유닛(40)이 삽입 관통하여 설치되어, 상기 반응공간형성유닛(40)이 안정적으로 설치될 수 있도록 구성된다.In addition, an inner wall portion 12a may be further provided inside the outer wall portion 12. The reaction space forming unit 40 is inserted into and installed in the inner wall portion 12a, and the reaction space forming unit 40 is configured to be stably installed.
상기 챔버(10)의 하부에는 바닥플랜지부(13)가 마련된다. 상기 바닥플랜지부(13)에는 냉각유로(13a)를 형성할 수 있다. 상기 냉각유로(13a)에는 냉각수 또는 냉각가스 등 냉각매체가 유동되도록 구성되어, 상기 챔버(10) 내의 증착공정에서 발생하는 고온의 열에 의해 가열된 상기 챔버(10)를 냉각시키도록 구성된다.The bottom flange 13 is provided below the chamber 10. A cooling passage 13a may be formed in the bottom flange portion 13. The cooling channel 13a is configured to flow a cooling medium such as a cooling water or a cooling gas, and is configured to cool the chamber 10 heated by the high temperature heat generated in the deposition process in the chamber 10.
상기 챔버 내부에는 기판(W)이 안착되는 기판지지부(20)가 배치된다. 상기 기판지지부(20)는, 기판(W)이 안착되고 가열되는 히터블럭(21)과, 상기 히터블럭(21)을 지지하며 회전시키는 샤프트(22)와, 씰링부(23)와, 상기 히터블럭(21)을 가열하는 유도가열부(24)를 포함한다.The substrate support 20 on which the substrate W is seated is disposed in the chamber. The substrate support unit 20 includes a heater block 21 on which the substrate W is seated and heated, a shaft 22 supporting and rotating the heater block 21, a sealing unit 23, and the heater. Induction heating unit 24 for heating the block 21 is included.
상기 히터블럭(21)은, 상부면에 복수의 기판(W)이 안착될 수 있도록 복수의 수용홈(210, 220, 230)(도 2 참조)이 마련되어 있다. The heater block 21 is provided with a plurality of receiving grooves 210, 220, and 230 (see FIG. 2) so that the plurality of substrates W may be seated on the upper surface.
상기 샤프트(22)는 일끝단은 상기 히터블럭(21)에 연결되고, 타끝단은 상기 챔버(10)의 상기 바닥플랜지부(13)를 관통하여 상기 챔버(10)의 외부에 배치된 회전구동부(미도시)에 연결되어, 상기 히터블럭(21)을 지지하면서 회전시키도록 구성되어 있다. 상기 샤프트(22)의 내부에는 열전쌍(22a)이 설치되어 상기 유도가열부(24)에 의해 가열되는 상기 히터블럭(21)의 온도를 측정하여 제어할 수 있도록 구성된다. 상기 열전쌍(22a)이 상기 히터블럭(21)의 내부에 배치되는 구성에 대해서는 이후에 상세히 살펴본다.One end of the shaft 22 is connected to the heater block 21, and the other end of the shaft 22 penetrates the bottom flange 13 of the chamber 10 to be disposed outside the chamber 10. It is connected to (not shown), it is configured to rotate while supporting the heater block 21. A thermocouple 22a is installed inside the shaft 22 to measure and control the temperature of the heater block 21 heated by the induction heating unit 24. The configuration in which the thermocouple 22a is disposed inside the heater block 21 will be described in detail later.
상기 샤프트(22)와 상기 챔버(10)의 상기 바닥플랜지부(13) 사이에는 씰링부(23)가 마련되어, 회전하는 상기 샤프트(22)와 상기 바닥플랜지부(13) 사이의 공간을 밀봉하도록 구성된다. 상기 씰링부(23)에는 유체씨일이 충진되며, 본 실시예에 있어서 상기 유체씨일은 마그네틱의 자력에 의해 외부와의 공극을 기밀하게 밀봉하는 자성유체씨일로 구성될 수 있다.A sealing portion 23 is provided between the shaft 22 and the bottom flange portion 13 of the chamber 10 to seal a space between the rotating shaft 22 and the bottom flange portion 13. It is composed. The sealing portion 23 is filled with a fluid seal, in the present embodiment, the fluid seal may be composed of a magnetic fluid seal to hermetically seal the voids with the outside by the magnetic force of the magnetic.
또한, 상기 씰링부(23)의 상부에는 상기 샤프트(22)를 둘러싸며 증착공정 과정에서 발생하는 고온의 열이 상기 챔버(10) 및 상기 씰링부(23)로 전달되는 것을 방지하는 단열부(26)를 설치할 수 있다.In addition, an upper portion of the sealing portion 23 surrounds the shaft 22 to prevent high temperature heat generated during the deposition process from being transferred to the chamber 10 and the sealing portion 23 ( 26) can be installed.
한편 상기 유도가열부(24)는, 예를 들면 상기 히터블럭(21)을 둘러싸는 인덕션 코일로 형성되어, 상기 유도가열부(24)의 내측에 배치된 상기 히터블럭(21)을 가열하도록 구성된다. 상기 유도가열부(24)와 상기 히터블럭(21)과의 사이에는 열적 배리어(25)를 구비할 수 있다. 상기 열적배리어(25)는 상기 유도가열부(24)에 의해 가열된 상기 히터블럭(21) 의 고온의 열이 상기 챔버(10) 내부로 전달되는 것을 방지할 뿐만 아니라 상기 유도가열부(24)도 상기 히터블럭(21)의 고온의 열로부터 보호할 수 있다. 본 실시예에 있어서, 상기 열적 배리어(25)는 예를 들면 고온에 안정적이고 열반사율이 높은 세라믹 소재로 형성될 수 있다.Meanwhile, the induction heating unit 24 is formed of, for example, an induction coil surrounding the heater block 21, and is configured to heat the heater block 21 disposed inside the induction heating unit 24. do. A thermal barrier 25 may be provided between the induction heating unit 24 and the heater block 21. The thermal barrier 25 not only prevents the high temperature heat of the heater block 21 heated by the induction heating unit 24 from being transferred into the chamber 10 but also the induction heating unit 24. In addition, the heater block 21 may be protected from high temperature heat. In the present embodiment, the thermal barrier 25 may be formed of, for example, a ceramic material which is stable at high temperature and has high heat reflectivity.
한편, 상기 챔버의 일측에는 가스공급부(30)가 설치된다. 상기 가스공급부(30)는 복수의 가스공급라인(미도시)에 각각 연결되는 복수의 가스공급포트(미도시)를 구비하며, 상기 복수의 가스공급라인에는 복수의 가스공급원(미도시)으로부터 공정가스가 공급된다. On the other hand, the gas supply unit 30 is installed on one side of the chamber. The gas supply unit 30 includes a plurality of gas supply ports (not shown) connected to a plurality of gas supply lines (not shown), and the plurality of gas supply lines process a plurality of gas supply sources (not shown). Gas is supplied.
한편, 본 발명에 의한 유기금속화학기상증착장치(1000)는 상기 챔버(10)의 내부에 설치되는 반응공간형성유닛(40)을 구비한다.Meanwhile, the organometallic chemical vapor deposition apparatus 1000 according to the present invention includes a reaction space forming unit 40 installed inside the chamber 10.
상기 반응공간형성유닛(40)은 상기 챔버리드에 대응하는 측에 설치되는 상부판(41)과, 측부판(미도시)과, 상기 기판지지부에 대응하는 측에 설치되는 하부판(43)을 포함하며, 상기 반응공간형성유닛에 반응가스가 공급되는 측과 상기 배기홀에 연통되는 측이 개구된다.The reaction space forming unit 40 includes an upper plate 41 installed at a side corresponding to the chamber lead, a side plate (not shown), and a lower plate 43 installed at a side corresponding to the substrate support. The side in which the reaction gas is supplied to the reaction space forming unit and the side in communication with the exhaust hole are opened.
상기 반응공간형성유닛(40)의 일측은 상기 챔버(10)의 내부벽부를 관통하여 상기 가스공급부(30)에 체결되고, 타측은 상기 외부벽부(12)에 형성된 배기홀(14)에 연통하도록 구성된다.One side of the reaction space forming unit 40 is coupled to the gas supply unit 30 through the inner wall portion of the chamber 10, the other side is configured to communicate with the exhaust hole 14 formed in the outer wall portion 12 do.
상기 반응공간형성유닛의 상기 상부판(41)에는 열차폐리드(44)를 설치할 수 있다. 상기 열차폐리드(44)는 상기 히터블럭(21)에 대향하는 위치에 설치되며, 상기 상부판보다 두껍고, 상기 히터블럭(21)의 상부면을 향하여 돌출되어, 상기 히터블럭(21)에 안착된 기판(W) 위의 반응공간을 더욱 작게 형성할 수 있다.A heat shielding lead 44 may be installed on the upper plate 41 of the reaction space forming unit. The heat shield 44 is installed at a position opposite to the heater block 21, is thicker than the upper plate, protrudes toward an upper surface of the heater block 21, and is seated on the heater block 21. The reaction space on the substrate W can be made smaller.
또한, 상기 열차폐리드(44)는 상기 상부판(41)과 일체형으로 체결되며, 교체가 용이하도록 상기 상부판(41)과 분리가능하게 구성된다. 또한, 상기 열차폐리드(44)는, 예를 들면 고온에 안정적이고 열반사율이 높은 세라믹의 재질로 형성될 수 있다.In addition, the heat shield lead 44 is integrally fastened with the upper plate 41, and is detachably configured with the upper plate 41 to facilitate replacement. In addition, the heat shield 44 may be formed of, for example, a ceramic material that is stable at high temperature and has high heat reflectivity.
상기 챔버(10) 내부의 온도는 1000℃ 이상의 고온에 이르기 때문에 상기 히터블럭(21)을 감싸고 있는 열적 배리어(25)와 상기 열차폐리드(44)를 세라믹 소재를 이용함으로 고온에 안정적으로 구성한다. 이로써, 열반사율이 높은 상기 열차폐리드(44)에 의해 기판을 효율적으로 가열함과 동시에 기판의 가열에 소요되는 소비전력을 효율적으로 저감시킬 수 있다. 또한, 기판상에 박막이 성장하는 과정에서 증착공정의 화학적 반응에 의해 부산물이 집중적으로 발생하는 위치에 상기 열차폐리드를 설치하여 부품의 교체주기를 연장함으로써 생산효율을 향상시킬 수 있다.Since the temperature inside the chamber 10 reaches a high temperature of 1000 ° C. or higher, the thermal barrier 25 surrounding the heater block 21 and the heat shield lead 44 are stably constructed at high temperature by using a ceramic material. . As a result, the thermally sealed lid 44 having a high heat reflectivity can efficiently heat the substrate and reduce power consumption required for heating the substrate. In addition, in the process of growing the thin film on the substrate by the chemical reaction of the deposition process by installing the heat shield in the position where the by-products are concentrated, it is possible to improve the production efficiency by extending the replacement cycle of the parts.
한편, 전술한 바와 같이 본 발명에 따른 유기금속화학기상증착장치는 기판지지부의 수용홈에 기판이 안착되는 경우에 상기 수용홈에 형성될 수 있는 파티클 등으로 인해 상기 기판이 기울어져 배치되는 것을 방지할 수 있도록 구성된다.Meanwhile, as described above, the organometallic chemical vapor deposition apparatus according to the present invention prevents the substrate from being inclined due to particles that may be formed in the receiving groove when the substrate is seated in the receiving groove of the substrate support. Configured to do so.
도 2는 히터블럭(21)의 평면도이고, 도 3은 히터블럭(21)의 일부 단면도이다. 도 3의 (A)는 수용홈(210)을 도시하며, 도 3의 (B)는 상기 수용홈(210)에 기판(W)이 안착된 상태를 도시한다.2 is a plan view of the heater block 21, and FIG. 3 is a partial cross-sectional view of the heater block 21. As shown in FIG. 3 (A) shows the receiving groove 210, Figure 3 (B) shows a state in which the substrate (W) is seated in the receiving groove (210).
도 2 및 도 3을 참조하면, 본 발명에 따른 유기금속화학기상증착장치(1000)는 상기 히터블럭(21)에 상기 기판(W)이 수용되는 수용홈(210, 220, 230)을 구비한다. 상기 수용홈(210, 220, 230)은 도면에는 3개로 도시되지만, 이에 한정되지 않으며 적절히 조절될 수 있다.2 and 3, the organometallic chemical vapor deposition apparatus 1000 according to the present invention includes accommodation grooves 210, 220, and 230 in which the substrate W is accommodated in the heater block 21. . The accommodation grooves 210, 220, 230 are shown in the figure three, but is not limited to this may be appropriately adjusted.
한편, 상기 수용홈(210, 220, 230)의 내측에는 상기 기판(W)이 안착되는 안착부(212, 222, 232)와, 상기 안착부(212, 222, 232)의 가장자리와 상기 수용홈(210, 220, 230) 사이에 중간홈(213)이 형성될 수 있다.Meanwhile, inside the receiving grooves 210, 220, and 230, seating parts 212, 222, and 232 on which the substrate W is mounted, edges of the seating parts 212, 222, and 232, and the receiving grooves. An intermediate groove 213 may be formed between the 210, 220, and 230.
즉, 상기 수용홈(210, 220, 230)의 내측에 상부를 향해 소정 길이로 돌출 형성된 상기 안착부(212, 222, 232)의 상면에 상기 기판(W)이 안착되며, 이 경우 상기 기판(W)의 가장자리 영역의 하부에 상기 중간홈(213)이 위치하게 된다. That is, the substrate W is seated on an upper surface of the seating portions 212, 222, and 232, which protrude to a predetermined length toward the inside of the accommodation grooves 210, 220, and 230, and in this case, the substrate ( The intermediate groove 213 is positioned under the edge region of W).
이때, 상기 안착부(212, 222, 232)는 그 상면이 평평하게 형성되어 상기 안착부(212, 222, 232)의 상면에 상기 기판(W)이 안착되는 경우에 상기 기판(W)의 하면과 상기 안착부(212, 222, 232)의 상면 사이에 공간이 발생하지 않도록 한다. 상기 기판(W)와 상기 안착부(212, 222, 232) 사이에 공간이 발생하지 않으므로 공정가스가 유입되어 파티클, 파우더 등의 이물질이 생기는 것을 방지할 수 있다.In this case, the seating portions 212, 222, and 232 have upper surfaces formed flat and the lower surface of the substrate W when the substrate W is seated on the upper surfaces of the mounting portions 212, 222, and 232. And a space between the upper surfaces of the seating parts 212, 222, and 232 does not occur. Since no space is generated between the substrate W and the seating portions 212, 222, and 232, foreign substances, such as particles and powder, may be prevented from being introduced into the process gas.
또한, 상기 중간홈(213)은 도면에 도시된 바와 같이 내부의 모서리가 각진 형태로 형성될 수 있다. 이 경우, 상기 중간홈(213)의 측단면이 사각형 등의 다각형 형태로 각진 형태로 형성되어, 각진 형태가 없는 단순히 둥근 형태에 비해 상대적으로 작은 폭을 가지는 홈을 형성하기 매우 용이하다. 또한 사각형으로 각진 형태는 둥근 형태에 비하여 중간홈(213) 안쪽에 상대적으로 넓은 표면적을 가지게 되므로 파티클이 잘 부착되어 중간홈(213)의 외부로 파티클이 누출되지 않도록 할 수 있다. 나아가, 전술한 중간홈(213)의 각진 모서리 부분이 파티클의 이동을 방해하는 효과 또한 기대할 수 있다. In addition, the intermediate groove 213 may be formed in an angled corner of the inside as shown in the figure. In this case, the side cross-section of the intermediate groove 213 is formed in an angular shape in a polygonal shape, such as a square, it is very easy to form a groove having a relatively small width compared to the simple round shape without the angular shape. In addition, since the square angled shape has a relatively large surface area inside the intermediate groove 213 as compared to the round shape, the particles are well attached to prevent the particles from leaking to the outside of the intermediate groove 213. Furthermore, the above-described angled edge portion of the intermediate groove 213 may also be expected to hinder the movement of the particles.
결국, 도 3의 (b)에 도시된 바와 같이 공정가스가 상기 기판(W)의 하부로 유입되는 경우에도 파티클 등의 이물질의 대부분은 상기 중간홈(213)의 내측에 형성된다. 특히 상기 중간홈(213)의 모서리가 각진 형태로 형성됨에 따라 상기 파티클 등이 상기 각진 모서리를 따라 상승하여 이동하지 못하고 상기 중간홈(213)의 바닥면에 모이게 된다. 따라서, 종래와 같이 상기 기판(W)이 안착되는 면에 파티클 등이 형성되지 않으므로 상기 기판(W)이 상기 수용홈(210, 220, 230)의 내부에 안착되는 경우에 상기 기판(W)이 기울어지는 것을 방지할 수 있다.As a result, as shown in FIG. 3B, even when the process gas flows into the lower portion of the substrate W, most of the foreign substances such as particles are formed inside the intermediate groove 213. Particularly, as the corners of the intermediate grooves 213 are formed in an angular shape, the particles, etc., may not rise and move along the angled corners, but are collected on the bottom surface of the intermediate grooves 213. Therefore, since particles are not formed on the surface on which the substrate W is seated as in the related art, when the substrate W is seated inside the receiving grooves 210, 220, and 230, the substrate W is The tilt can be prevented.
한편, 상기 기판(W)이 상기 안착부(212, 222, 232)의 상면에 안착되는 경우에 상기 기판(W)의 가장자리는 상기 수용홈(210, 220, 230)에 최대한 인접하도록 배치된다. 즉, 상기 수용홈(210, 220, 230)의 내부 직경은 상기 기판(W)의 외경에 비해 약간 크도록 결정된다.이 경우, 상기 기판(W)의 가장자리가 도면에 도시된 바와 같이 상기 중간홈(213)의 폭(D)을 대부분 가리게 된다. 예를 들어, 상기 기판(W)은 상기 중간홈(213)의 폭(D)의 50% 이상을 가릴 수 있으며, 바람직하게 상기 기판(W)은 상기 중간홈(213)의 폭(D)의 60% 내지 95%정도를 가릴 수 있다. 상기 기판(W)에 의해 상기 중간홈(213)의 폭(D)의 대부분이 가려지는 경우에 상기 중간홈(213)으로 유입되는 공정가스의 양을 줄일 수 있어 파티클 발생을 억제할 수 있다.On the other hand, when the substrate (W) is seated on the upper surface of the seating portion (212, 222, 232) the edge of the substrate (W) is disposed to be as close as possible to the receiving groove (210, 220, 230). That is, the inner diameters of the receiving grooves 210, 220, and 230 are determined to be slightly larger than the outer diameter of the substrate W. In this case, as shown in the drawing, the edge of the substrate W is the intermediate diameter. Most of the width D of the groove 213 is covered. For example, the substrate W may cover 50% or more of the width D of the intermediate groove 213. Preferably, the substrate W may have a width D of the intermediate groove 213. 60% to 95% can be covered. When most of the width D of the intermediate groove 213 is covered by the substrate W, the amount of process gas flowing into the intermediate groove 213 may be reduced, thereby suppressing particle generation.
본 발명자의 실험에 따르면, 상기 중간홈(213)의 폭(D), 또는 상기 안착부(212, 222, 232)의 가장자리와 상기 수용홈(210, 220, 230)의 내측면 사이의 거리(D)는 대략 1 내지 3mm 일 수 있으며, 대략 2mm 일 수 있다.According to the experiment of the present inventors, the width (D) of the intermediate groove 213, or the distance between the edge of the seating portion (212, 222, 232) and the inner surface of the receiving groove (210, 220, 230) ( D) may be approximately 1-3 mm and approximately 2 mm.
또한, 상기 중간홈(213)의 깊이는 상기 기판지지부(20)를 구성하는 히터블럭(21)의 상면(21a)에서 상기 중간홈(213)의 바닥까지의 깊이(B1)와, 상기 안착부(212, 222, 232)의 상면에서 상기 중간홈(213)의 바닥까지의 깊이(B2)로 정의될 수 있다. 이 경우, 상기 히터블럭(21)의 상면(21a)에서 상기 중간홈(213)의 바닥까지의 깊이(B1)에 대한 상기 안착부(212, 222, 232)의 상면에서 상기 중간홈(213)의 바닥까지의 깊이(B2)는 대략 40 내지 80%로 이루어질 수 있다.The depth of the middle groove 213 is the depth and (B 1) to the bottom of the intermediate groove (213) on the top surface (21a) of the heater block (21) constituting the substrate support 20, mounted It may be defined as the depth B 2 from the upper surface of the portion (212, 222, 232) to the bottom of the intermediate groove 213. In this case, the intermediate groove 213 on the upper surface of the seating portion 212, 222, 232 with respect to the depth B 1 from the upper surface 21a of the heater block 21 to the bottom of the intermediate groove 213. Depth (B 2 ) to the bottom of the can be made of approximately 40 to 80%.
본 발명자의 실험에 따르면 상기 중간홈(213)의 깊이가 전술한 바와 같이 결정되는 경우에 상기 중간홈(213)에 의한 파티클 유도 효과가 제일 우수함을 알 수 있었다.According to the experiment of the present inventors, when the depth of the intermediate groove 213 is determined as described above, it can be seen that the particle induction effect by the intermediate groove 213 is the best.
한편, 본 발명에 따른 유기금속화학기상증착장치는 기판지지부의 수용홈에 기판이 안착되는 경우에 상기 기판의 회전을 방지하여 상기 기판이 상기 수용홈에 끼이거나 파손되는 것을 방지할 수 있도록 구성된다. 이하, 구체적으로 살펴본다.On the other hand, the organometallic chemical vapor deposition apparatus according to the present invention is configured to prevent the substrate from being pinched or damaged by the rotation of the substrate when the substrate is seated in the receiving groove of the substrate support. . Hereinafter, look at in detail.
도 4 내지 도 8은 기판지지부(20)의 수용홈(310)에 형성된 돌출부의 다양한 실시예를 도시한 평면도이다. 즉, 본 실시예에서는 상기 기판(W)이 상기 수용홈(310)의 내측에서 회전하는 것을 방지하기 위하여 상기 수용홈(310)의 가장자리에서 내측으로 돌출 형성되어 상기 기판(W)의 회전을 방지하는 돌출부를 구비하게 된다. 이 경우, 상기 기판(W)은 원형의 원주면(Ws)을 따라 적어도 일부에 플랫면(Wf)을 구비하고, 상기 기판의 원주면(Ws)과 상기 플랫면(Wf)이 만나는 영역에 코너영역(Wc)이 형성될 수 있다. 도 4 내지 도 8의 각 도면에서 (a) 도면은 수용홈(310)의 평면도, (b) 도면은 (a) 도면에서 점선 영역의 확대도이다.4 to 8 are plan views illustrating various embodiments of protrusions formed in the accommodation grooves 310 of the substrate support 20. That is, in the present embodiment, the substrate W protrudes inward from the edge of the accommodation groove 310 to prevent the substrate W from rotating inside the accommodation groove 310 to prevent rotation of the substrate W. It is provided with a protrusion. In this case, the substrate W has a flat surface Wf at least in part along a circular circumferential surface Ws, and a corner at an area where the circumferential surface Ws and the flat surface Wf of the substrate meet. The region Wc may be formed. 4 to 8, (a) is a plan view of the receiving groove 310, and (b) is an enlarged view of the dotted line area in (a).
도 4를 참조하면, 상기 돌출부(314)는 상기 수용홈(310)의 가장자리에서 내측으로 돌출 형성된다. 이때, 상기 기판(W)은 전술한 바와 같이 원주를 따라 적어도 일부에 플랫면(Wf)이 형성되며, 상기 돌출부(314)는 상기 플랫면(Wf)과 만나도록 배치될 수 있다. Referring to FIG. 4, the protrusion 314 protrudes inward from an edge of the receiving groove 310. In this case, as described above, the flat surface Wf may be formed on at least a portion of the substrate W along the circumference, and the protrusion 314 may be disposed to meet the flat surface Wf.
즉, 종래기술에서는 상기 기판의 코너영역이 상기 수용홈의 가장자리와 만나게 되어 상기 기판의 코너영역이 상기 수용홈에 끼이게 되는데, 본 발명에서는 전술한 문제점을 해결하기 위하여 상기 돌출부(314)가 상기 기판(W)의 플랫면(Wf)가 만나도록 배치된다. 따라서, 본 발명에서는 상기 기판(W)의 코너영역(Wc)이 상기 돌출부(314)와 만나지 않게 되어 상기 코너영역(Wc)이 상기 돌출부(314)에 끼이는 경우를 방지할 수 있다.That is, in the prior art, the corner region of the substrate meets the edge of the receiving groove so that the corner region of the substrate is pinched in the receiving groove. In the present invention, the protrusion 314 is used to solve the above-mentioned problem. The flat surface Wf of the board | substrate W is arrange | positioned so that it may meet. Therefore, in the present invention, the corner region Wc of the substrate W does not meet the protrusion 314, thereby preventing the corner region Wc from being caught in the protrusion 314.
이를 위하여, 상기 기판(W)이 상기 안착부(312)에 안착되는 경우에 상기 안착부(312)의 중심(C)에 대한 상기 돌출부(314)의 원주각도(θ2)는 상기 안착부(312)의 중심(C)에 대한 상기 기판(W)의 플랫면(Wf)의 원주각도(θ1)에 비해 상대적으로 더 작게 형성된다. To this end, when the substrate W is seated on the seating portion 312, the circumferential angle θ 2 of the protrusion 314 with respect to the center C of the seating portion 312 is the seating portion ( It is formed relatively smaller than the circumferential angle θ 1 of the flat surface Wf of the substrate W with respect to the center C of 312.
만약에 상기 안착부(312)의 중심(C)에 대한 상기 돌출부(314)의 원주각도(θ2)가 상기 안착부(312)의 중심(C)에 대한 상기 기판(W)의 플랫면(Wf)의 원주각도(θ1)에 비해 상대적으로 더 크다면, 상기 기판(W)의 코너영역(Wc)과 상기 돌출부(314)가 만나는 것을 방지할 수 없게 된다. 이 경우, 전술한 바와 같이 상기 기판(W)의 코너영역(Wc)이 상기 돌출부(314)에 끼이는 현상이 발생할 수 있다. If the circumferential angle θ 2 of the protrusion 314 with respect to the center C of the seating portion 312 is the flat surface of the substrate W with respect to the center C of the seating portion 312 If it is relatively larger than the circumferential angle θ 1 of Wf, the corner area Wc of the substrate W and the protrusion 314 may not be prevented from meeting. In this case, as described above, the corner region Wc of the substrate W may be caught in the protrusion 314.
따라서, 본 발명에서는 상기 기판(W)의 코너영역(Wc)이 상기 돌출부(314)에 끼이는 것을 방지하기 위하여, 상기 안착부(312)의 중심(C)에 대한 상기 돌출부(314)의 원주각도(θ2)를 상기 안착부(312)의 중심(C)에 대한 상기 기판(W)의 플랫면(Wf)의 원주각도(θ1)에 비해 상대적으로 더 작도록 형성한다.Accordingly, in the present invention, the circumferential angle of the protrusion 314 with respect to the center C of the seating portion 312 in order to prevent the corner region Wc of the substrate W from being caught in the protrusion 314. The degree θ 2 is formed to be relatively smaller than the circumferential angle θ 1 of the flat surface Wf of the substrate W with respect to the center C of the seating portion 312.
한편, 본 발명에 따른 유기금속화학기상증착장치(1000)는 상기 기판(W)의 측면에서 공정가스가 공급된다. 상기 공정가스가 상기 기판(W)의 위쪽 또는 아래쪽에서 공급되면 상기 기판(W)이 회전하지 않지만, 본 발명과 같이 상기 기판(W)의 측면에서 상기 공정가스가 공급되면 상기 기판(W)이 회전할 수 있다. 특히, 공정가스들 사이의 기생반응을 억제하기 위하여 상기 공정가스의 가스분사속도를 높이게 되면 상기 기판(W)은 더욱 회전하기 쉽다.On the other hand, the organometallic chemical vapor deposition apparatus 1000 according to the present invention is supplied with a process gas from the side of the substrate (W). When the process gas is supplied from above or below the substrate W, the substrate W does not rotate. However, when the process gas is supplied from the side surface of the substrate W as in the present invention, the substrate W is Can rotate In particular, when the gas injection speed of the process gas is increased to suppress parasitic reactions between the process gases, the substrate W is more easily rotated.
따라서, 본 발명에 따른 유기금속화학기상증착장치(1000)에서는 상기 기판(W)의 측면에서 공정가스가 공급되는 경우에도 상기 기판(W)의 코너영역(Wc)이 아닌 플랫면(Wf)의 적어도 일부가 상기 돌출부(314)와 만나게 되어 상기 기판(W)의 회전을 최대한 방지하며, 나아가 상기 기판(W)의 코너영역(Wc)이 상기 돌출부(314)에 끼이는 것을 방지할 수 있다. 또한, 상기 기판(W)의 원주면(Ws)과 상기 플랫면(Wf)이 만나는 코너영역(Wc)이 파손 또는 손상에 취약한데, 본 발명에서는 상기 코너영역(Wc)이 상기 돌출부(314)와 만나지 않도록 상기 돌출부(314)가 배치되어 상기 기판(W)의 손상 또는 파손을 최대한 방지할 수 있다. Therefore, in the organometallic chemical vapor deposition apparatus 1000 according to the present invention, even when the process gas is supplied from the side surface of the substrate W, the flat surface Wf is used instead of the corner region Wc of the substrate W. At least a portion of the substrate 314 may meet the protrusion 314 to prevent rotation of the substrate W as much as possible, and may further prevent the corner region Wc of the substrate W from being caught in the protrusion 314. In addition, the corner region Wc where the circumferential surface Ws of the substrate W and the flat surface Wf meet is vulnerable to damage or damage. In the present invention, the corner region Wc is the protruding portion 314. The protrusion 314 may be disposed so as not to contact the substrate 314 so as to prevent damage or damage to the substrate W as much as possible.
한편, 상기 돌출부(314)에 의해 상기 중간홈(213)의 폭, 또는 상기 안착부(312)의 가장자리와 상기 수용홈(310)의 내측면 사이의 거리는 변화하게 된다.Meanwhile, the width of the intermediate groove 213 or the distance between the edge of the seating portion 312 and the inner surface of the receiving groove 310 is changed by the protrusion 314.
상기 돌출부(314)가 없는 영역에서 상기 중간홈(213)의 폭(d2)은 전술한 바와 같이 대략 1 내지 3mm를 형성하는데 반해, 상기 돌출부(314)가 형성된 영역에서 상기 중간홈(213)의 폭(d1)은 전술한 폭(d2)에 비해 상대적으로 작게 된다. 상기 돌출부(314)가 형성된 영역에서 상기 중간홈(213)의 폭(d1)은 대략 돌출부(314)가 없는 중간홈(213)의 폭(d2)의 절반 정도에 해당할 수 있다. 이 경우, 상기 돌출부(314)가 형성된 영역에서 상기 중간홈(213)의 폭(d1)은 일정하게 유지된다.The width d 2 of the intermediate groove 213 in the region without the protrusion 314 forms approximately 1 to 3 mm as described above, whereas the intermediate groove 213 is formed in the region where the protrusion 314 is formed. The width d 1 of is smaller than the width d 2 described above. In the region where the protrusion 314 is formed, the width d 1 of the intermediate groove 213 may correspond to about half of the width d 2 of the intermediate groove 213 having no protrusion 314. In this case, the width d 1 of the intermediate groove 213 is kept constant in the region where the protrusion 314 is formed.
도 4의 실시예에 따른 구성은 기판(W)의 회전을 방지할 수 있지만, 상기 기판(W)이 상기 돌출부(314)와 만나는 경우에 상기 돌출부(314)의 면과 상기 기판(W)의 모서리가 만나게 되어 끼임 현상 방지 효과는 낮게 된다. 또한, 상기 돌출부(314)의 내구성이 상대적으로 약한 특성을 갖는다.4 may prevent rotation of the substrate W. However, when the substrate W meets the protrusion 314, the surface of the protrusion 314 and the substrate W may not be rotated. Since the edges meet, the effect of preventing jamming is low. In addition, the durability of the protrusion 314 has a relatively weak characteristic.
도 5는 다른 실시예에 따른 돌출부(324)를 도시한다.5 illustrates a protrusion 324 according to another embodiment.
도 5를 참조하면, 상기 돌출부(324)는 상기 수용홈(310)의 가장자리에서 내측으로 돌출 형성된다. 도 5에 따른 돌출부(324)의 형상은 전술한 도 4의 돌출부의 형상과 유사하지만, 그 폭 및 돌출 길이에 있어 차이가 있다.Referring to FIG. 5, the protrusion 324 protrudes inward from an edge of the receiving groove 310. The shape of the protrusion 324 according to FIG. 5 is similar to the shape of the protrusion of FIG. 4 described above, but there are differences in the width and the length of the protrusion.
즉, 본 실시예에서 상기 돌출부(324)가 없는 영역에서 상기 중간홈(213)의 폭(d2)은 전술한 바와 같이 대략 1 내지 3mm를 형성하는데 반해, 상기 돌출부(324)가 형성된 영역에서 상기 중간홈(213)의 폭(d3)은 전술한 폭(d2)에 비해 상대적으로 작으며, 대략 20 내지 40% 정도에 해당할 수 있다. 즉, 전술한 도 4의 돌출부에 비해 본 실시예의 돌출부(324)가 상대적으로 더 많이 돌출한 형태라 할 수 있다. 한편, 상기 수용홈(310)의 원주방향에 따른 상기 돌출부(324)의 길이는 상대적으로 전술한 도 4의 돌출부(314)에 비해 더 작도록 구성될 수 있다.That is, in the present embodiment, the width d 2 of the intermediate groove 213 in the region without the protrusion 324 forms approximately 1 to 3 mm as described above, whereas in the region where the protrusion 324 is formed, The width d 3 of the intermediate groove 213 is relatively smaller than the width d 2 described above, and may correspond to about 20 to 40%. That is, the protrusion 324 of the present exemplary embodiment may protrude relatively more than the protrusion of FIG. 4. On the other hand, the length of the protrusion 324 in the circumferential direction of the receiving groove 310 may be configured to be relatively smaller than the above-described protrusion 314 of FIG.
도 5에 따른 구성은 도 4에 따른 구성에 비해, 상기 기판(W)이 상기 돌출부(324)와 만나는 경우에 상기 돌출부(324)의 면과 상기 기판(W)의 면이 만나게 되어 기판의 끼임 정도가 줄어들며, 특히, 돌출부(324)의 내구성이 현저히 개선된 정도를 나타낸다. 하지만, 상기 돌출부(324)가 형성된 영역에서 상기 중간홈(213)의 폭(d3)이 상대적으로 작게 되어 기판의 로딩/언로딩의 편의성이나 기판의 온도가 일정하게 유지되는 온도 구배 특성은 도 4와 유사한 특성을 갖는다.In the configuration according to FIG. 5, when the substrate W meets the protrusion 324, the surface of the protrusion 324 meets the surface of the substrate W when the substrate W meets the protrusion 324. The degree is reduced, in particular, the degree to which the durability of the protrusion 324 is significantly improved. However, since the width d 3 of the intermediate groove 213 is relatively small in the region where the protrusion 324 is formed, the convenience of loading / unloading of the substrate or the temperature gradient characteristic of keeping the temperature of the substrate constant are illustrated. It has similar characteristics to 4.
한편, 도 5에 따른 돌출부(324)에 대해서도 전술한 실시예와 유사하게 상기 기판(W)이 상기 안착부(312)에 안착되는 경우에 상기 안착부(312)의 중심(C)에 대한 상기 돌출부(324)의 원주각도(θ3)는 상기 안착부(312)의 중심(C)에 대한 상기 기판(W)의 플랫면(Wf)의 원주각도(θ1)에 비해 상대적으로 더 작게 형성된다. 이에 대해서는 앞서서 상술하였으므로 반복적인 설명은 생략한다.On the other hand, similarly to the above-described embodiment of the protrusion 324 according to FIG. 5, when the substrate W is seated on the seating portion 312, the center C of the seating portion 312 may be adjusted. The circumferential angle θ 3 of the protrusion 324 is formed to be smaller than the circumferential angle θ 1 of the flat surface Wf of the substrate W with respect to the center C of the seating portion 312. do. Since it has been described above, a repeated description thereof will be omitted.
도 6은 또 다른 실시예에 따른 돌출부(334)를 도시한다.6 illustrates a protrusion 334 according to another embodiment.
도 6을 참조하면, 본 실시예에 따른 돌출부(334)는 상기 수용홈(310)의 가장자리의 내측에서 돌출하는 경우에 평행하게 돌출한 형태를 가지게 된다. 즉, 상기 돌출부(334)와 상기 안착부(312) 사이의 거리는 도면에 도시된 바와 같이 일정하지 않고 지속적으로 변화하게 된다. Referring to FIG. 6, the protrusion 334 according to the present exemplary embodiment may have a shape that protrudes in parallel when protruding from the inner side of the edge of the receiving groove 310. That is, the distance between the protrusion 334 and the seating portion 312 is not constant as shown in the figure and is constantly changing.
도 6에 따른 실시예의 경우, 전술한 도 4 및 도 5에 비해 상기 돌출부(334)가 형성된 영역에서 상기 중간홈(213)의 폭이 상대적으로 작게 되어 기판의 로딩/언로딩 편의성은 다소 낮으나, 온도 구배 특성이 현저히 개선된다. 또한, 상기 기판(W)이 상기 돌출부(334)와 만나는 경우에 상기 돌출부(334)의 면과 상기 기판(W)의 면이 만나게 되어 기판의 끼임 현상도 상대적으로 줄어들고 돌출부의 내구성도 개선된 특성을 나타낸다.In the case of the embodiment according to FIG. 6, the width of the intermediate groove 213 is relatively smaller in the region in which the protrusion 334 is formed than in FIGS. 4 and 5, so that the loading / unloading convenience of the substrate is somewhat low. Temperature gradient characteristics are significantly improved. In addition, when the substrate W meets the protrusion 334, the surface of the protrusion 334 and the surface of the substrate W meet, thereby reducing the pinching of the substrate and improving durability of the protrusion. Indicates.
한편, 도 6에 따른 돌출부(334)에 대해서도 전술한 실시예와 유사하게 상기 기판(W)이 상기 안착부(312)에 안착되는 경우에 상기 안착부(312)의 중심(C)에 대한 상기 돌출부(334)의 원주각도(θ4)는 상기 안착부(312)의 중심(C)에 대한 상기 기판(W)의 플랫면(Wf)의 원주각도(θ1)에 비해 상대적으로 더 작게 형성된다. 이에 대해서는 앞서서 상술하였으므로 반복적인 설명은 생략한다.On the other hand, similarly to the above-described embodiment for the protrusion 334 according to FIG. 6, when the substrate W is seated on the seating portion 312, the center portion C of the seating portion 312 may be adjusted. The circumferential angle θ 4 of the protrusion 334 is relatively smaller than the circumferential angle θ 1 of the flat surface Wf of the substrate W with respect to the center C of the seating portion 312. do. Since it has been described above, a repeated description thereof will be omitted.
한편 도 7은 또 다른 실시예에 따른 돌출부(354, 356)의 구성을 도시한다.On the other hand, Figure 7 shows the configuration of the protrusions 354, 356 according to another embodiment.
도 7을 참조하면, 본 실시예에 따른 돌출부(354, 356)는 상기 수용홈(310)의 가장자리 내측을 따라 한 쌍이 구비된다.Referring to FIG. 7, a pair of protrusions 354 and 356 according to the present exemplary embodiment may be provided along the inner edge of the receiving groove 310.
상기 돌출부(354, 356)는 상기 수용홈(310)의 가장자리 내측을 따라 소정 거리 이격되어 한 쌍이 구비되며, 상기 돌출부(354, 356)는 대략 소정의 반경을 가지는 반원 형상, 또는 곡선진 형상, 커브진(curved) 형상 등으로 돌출 형성된다.The protrusions 354 and 356 are spaced apart from each other by a predetermined distance along the inner edge of the receiving groove 310, and the protrusions 354 and 356 have a semi-circle shape having a predetermined radius, or a curved shape, It protrudes in a curved shape or the like.
이 경우, 전술한 실시예들과 비교하여 상기 돌출부(354, 356)가 형성된 영역이 상대적으로 작기 때문에 기판의 로딩/언로딩 특성이 상대적으로 좋아진다. 또한, 상기 기판(W)이 상기 돌출부(354, 356)와 만나는 경우에 상기 돌출부(354, 356)의 면과 상기 기판(W)의 면이 만나게 되어 기판의 끼임 현상이 방지되지만, 상대적으로 돌출부의 내구성이 떨어지며 기판의 외주면과 상기 히터블럭(21) 사이의 거리가 멀어져서 기판의 온도구배 특성이 나빠지게 된다.In this case, the loading / unloading characteristics of the substrate are relatively improved since the area in which the protrusions 354 and 356 are formed is relatively small compared with the above-described embodiments. In addition, when the substrate W meets the protrusions 354 and 356, the surface of the protrusions 354 and 356 and the surface of the substrate W meet to prevent the pinching of the substrate, but the protrusions are relatively. The durability of the substrate decreases and the distance between the outer circumferential surface of the substrate and the heater block 21 becomes farther, resulting in a worse temperature gradient characteristic of the substrate.
한편, 도 7과 같이 한 쌍의 돌출부(354, 356)를 구비하는 경우에도 상기 기판(W)이 상기 안착부(312)에 안착되는 경우에 상기 안착부(312)의 중심(C)에 대한 상기 한 쌍의 돌출부(354, 356)의 원주각도(θ5)는 상기 안착부(312)의 중심(C)에 대한 상기 기판(W)의 플랫면(Wf)의 원주각도(θ1)에 비해 상대적으로 더 작게 형성된다. 이에 대해서는 앞서서 상술하였으므로 반복적인 설명은 생략한다.Meanwhile, even when the pair of protrusions 354 and 356 are provided as illustrated in FIG. 7, when the substrate W is seated on the seating portion 312, the center C of the seating portion 312 may not be formed. in Fig wonjugak of projections (354, 356) of the pair (θ 5) are also wonjugak of the flat surface (Wf) of the substrate (W) relative to the center (C) of the seating unit (312), (θ 1) It is formed relatively smaller in comparison. Since it has been described above, a repeated description thereof will be omitted.
도 8은 또 다른 실시예에 따른 돌출부(344, 346)의 구성을 도시한다.8 illustrates a configuration of the protrusions 344 and 346 according to another embodiment.
도 8을 참조하면, 본 실시예에 따른 돌출부(344, 346)는 전술한 도 7의 실시예와 유사하게 한 쌍이 구비된다. 다만, 본 실시예에 따른 돌출부(344, 346)의 각각은 상기 수용홈(310)의 가장자리에서 돌출하는 경우에 상기 돌출부(344, 346)를 형성하는 양 면의 길이가 서로 다르도록 구성된다.Referring to FIG. 8, the protrusions 344 and 346 according to the present embodiment are provided with a pair similar to the embodiment of FIG. 7 described above. However, each of the protrusions 344 and 346 according to the present exemplary embodiment is configured such that when the protrusions 344 and 346 protrude from the edge of the receiving groove 310, the lengths of both surfaces forming the protrusions 344 and 346 are different from each other.
즉, 도면에 도시된 바와 같이 제1 돌출부(344)의 제1 면(344A)은 제2 면(344B)에 비해 더 길도록 구성되며, 마찬가지로 제2 돌출부(346)의 제3 면(346A)은 제4 면(346B)에 비해 더 길도록 구성된다. 또한, 상기 제1 돌출부(344)의 제1 면과(344A) 제2 돌출부(346)의 제3 면(346A)은 가상의 선을 따라 배치될 수 있다.That is, as shown in the figure, the first face 344A of the first protrusion 344 is configured to be longer than the second face 344B, and likewise, the third face 346A of the second protrusion 346. Is configured to be longer than the fourth surface 346B. In addition, the first surface 344A of the first protrusion 344 and the third surface 346A of the second protrusion 346 may be disposed along an imaginary line.
이 경우, 전술한 실시예들과 비교하여 상기 돌출부(344, 346)가 형성된 영역이 상대적으로 작기 때문에 기판의 로딩/언로딩 특성이 상대적으로 좋아진다. 또한, 상기 기판(W)이 상기 돌출부(344, 346)와 만나는 경우에 상기 돌출부(344, 346)의 면과 상기 기판(W)의 면이 만나게 되어 기판의 끼임 현상이 방지되고, 내구성도 좋아지게 된다.In this case, the loading / unloading characteristics of the substrate are relatively improved because the area in which the protrusions 344 and 346 are formed is relatively small compared with the above-described embodiments. In addition, when the substrate W meets the protrusions 344 and 346, the surface of the protrusions 344 and 346 and the surface of the substrate W meet to prevent the jamming of the substrate and to improve durability. You lose.
한편, 도 8과 같이 한 쌍의 돌출부(344, 346)를 구비하는 경우에도 상기 기판(W)이 상기 안착부(312)에 안착되는 경우에 상기 안착부(312)의 중심(C)에 대한 상기 한 쌍의 돌출부(344, 346)의 원주각도(θ6)는 상기 안착부(312)의 중심(C)에 대한 상기 기판(W)의 플랫면(Wf)의 원주각도(θ1)에 비해 상대적으로 더 작게 형성된다. 이에 대해서는 앞서서 상술하였으므로 반복적인 설명은 생략한다.Meanwhile, even when the pair of protrusions 344 and 346 are provided as shown in FIG. 8, when the substrate W is seated on the seating portion 312, the center C of the seating portion 312 may be removed. The circumferential angle θ 6 of the pair of protrusions 344 and 346 is at the circumferential angle θ 1 of the flat surface Wf of the substrate W with respect to the center C of the seating portion 312. It is formed relatively smaller in comparison. Since it has been described above, a repeated description thereof will be omitted.
한편, 전술한 도 4 내지 도 8에 따른 돌출부의 구성은 상기 수용홈에 일체로 형성될 수도 있지만, 상기 돌출부는 착탈 가능하게 구비될 수 있다. 이 경우, 상기 돌출부는 상기 블록히터와 다른 재질로 구성될 수 있다. 예를 들어, 상기 돌출부는 상기 히터블럭에 비해 내구성이 상대적으로 우수하고, 열에 잘 견디는 재질로 제작될 수 있다. 이와 같이, 상기 돌출부가 착탈 가능하게 구성되는 경우에 향후에 기판지지부의 보수 등을 하는 경우에 보다 빠른 시간에 용이하게 보수하는 것이 가능해진다.On the other hand, although the configuration of the above-described protrusions according to FIGS. 4 to 8 may be integrally formed in the receiving groove, the protrusions may be detachably provided. In this case, the protrusion may be made of a material different from that of the block heater. For example, the protrusion may be made of a material that is relatively superior in durability and heat resistant to the heater block. Thus, when the said protrusion part is comprised so that attachment or detachment is possible, it becomes possible to repair easily in a quick time, when repairing a board | substrate support part etc. in the future.
한편, 전술한 바와 같이 기판지지부(20)의 상기 히터블럭(21)의 내측에는 히터블럭(21)의 온도를 측정하는 열전쌍(22a)이 구비된다. 도 9는 히터블럭(21)의 내부 구성을 도시한 단면도이다.On the other hand, as described above, the inside of the heater block 21 of the substrate support 20 is provided with a thermocouple 22a for measuring the temperature of the heater block 21. 9 is a cross-sectional view showing the internal configuration of the heater block 21.
도 9를 참조하면, 상기 열전쌍(22a)을 장착하기 위하여 상기 히터블럭(21)의 바닥에서 상부를 향해 삽입홈(29)이 형성되고, 상기 삽입홈(29)의 내부에 상기 열전쌍(22a)이 구비된다. 도 9에서 도면번호 '22'는 샤프트를 도시한다.Referring to FIG. 9, an insertion groove 29 is formed from the bottom of the heater block 21 toward the top to mount the thermocouple 22a, and the thermocouple 22a is formed inside the insertion groove 29. Is provided. In Fig. 9, reference numeral 22 denotes a shaft.
이때, 상기 열전쌍(22a)은 상기 히터블럭(21)의 온도를 측정하여, 상기 히터블럭(21)에 의해 가열되는 상기 기판(W)의 온도를 유추할 수 있다. 따라서, 상기 열전쌍(22a)은 상기 히터블럭(21)의 내부에서 상기 기판(W)에 인접하여 배치되는 것이 유리할 수 있다. 그런데, 이러한 배치를 위하여 상기 히터블럭(21)의 바닥에서 측정되는 상기 삽입홈(29)의 높이(h2)를 상기 히터블럭(21)의 높이(h1)와 대략 유사하게 하거나, 또는 90 % 정도 이상으로 결정하게 되면, 상기 기판(W)을 가열하기 위한 열에너지가 상기 삽입홈(29)을 통해 챔버(10)의 외부로 배출될 수 있다. 이는 기판(W)의 가열 효율을 떨어뜨려 기판(W)에 증착되는 박막의 품질을 저하시킬 수 있다. 또한, 히터블럭(21)의 바닥에서 상기 삽입홈(29)의 높이(h2)는 상기 히터블럭(21)의 높이(h1)에 비해 60% 이하로 결정할 경우 웨이퍼가 안착하는 히터블럭 상면의 온도와 차이가 커 공정 피드백 온도로서 적합치 않은 단점이 있다.In this case, the thermocouple 22a may infer the temperature of the substrate W heated by the heater block 21 by measuring the temperature of the heater block 21. Therefore, it may be advantageous that the thermocouple 22a is disposed adjacent to the substrate W inside the heater block 21. However, for this arrangement, the height h 2 of the insertion groove 29 measured at the bottom of the heater block 21 is approximately equal to the height h 1 of the heater block 21, or 90 When determined to be about% or more, the thermal energy for heating the substrate (W) may be discharged to the outside of the chamber 10 through the insertion groove (29). This may lower the heating efficiency of the substrate W and may lower the quality of the thin film deposited on the substrate W. In addition, when the height h 2 of the insertion groove 29 at the bottom of the heater block 21 is determined to be 60% or less than the height h 1 of the heater block 21, the top surface of the heater block on which the wafer is seated This is different from the temperature of, so it is not suitable as a process feedback temperature.
따라서, 본 실시예에서는 상기 히터블럭(21)의 바닥에서 상기 삽입홈(29)의 높이(h2)는 상기 히터블럭(21)의 높이(h1)에 비해 대략 60 내지 90% 정도로 결정하며, 바람직하게 75% 정도로 결정할 수 있다.Therefore, in the present embodiment, the height h 2 of the insertion groove 29 at the bottom of the heater block 21 is determined to be about 60 to 90% of the height h 1 of the heater block 21. , Preferably about 75%.
이러한 구성에서는 상기 삽입홈(29)의 높이(h2)가 상기 히터블럭(21)의 높이(h1)에 비해 대략 90 % 이하이므로, 상기 기판(W)을 가열하기 위한 열에너지가 상기 삽입홈(29)을 통해 배출되는 것을 억제할 수 있다. 또한, 상기 열전쌍(22a)은 도면에 도시된 바와 같이 상기 삽입홈(29)의 내측에서 상기 삽입홈(29)의 상면에 닿지 않게 구비된다. 따라서, 상기 히터블럭(21)이 회전하는 경우에도 상기 열전쌍(22a)의 손상을 방지할 수 있다. 나아가, 상기 열전쌍(22a)은 상기 삽입홈(29)의 내측에 배치되어 상기 히터블럭(21)의 온도를 측정하게 되므로, 상기 기판(W) 상부의 환경이 바뀌는 경우, 예를 들어 공정가스의 변화, 압력 변화, 온도 변화 등의 환경 변화에 따라 민감하게 바뀌지 않는 상태로 상기 히터블럭(21)의 온도를 정확하게 측정할 수 있다.In this configuration, since the height h 2 of the insertion groove 29 is about 90% or less than the height h 1 of the heater block 21, the thermal energy for heating the substrate W is the insertion groove. The discharge through (29) can be suppressed. In addition, the thermocouple 22a is provided not to contact the upper surface of the insertion groove 29 from the inside of the insertion groove 29 as shown in the figure. Therefore, even when the heater block 21 rotates, the damage of the thermocouple 22a can be prevented. Furthermore, since the thermocouple 22a is disposed inside the insertion groove 29 to measure the temperature of the heater block 21, when the environment of the upper portion of the substrate W is changed, for example, The temperature of the heater block 21 may be accurately measured in a state in which it does not change sensitively according to environmental changes such as change, pressure change, and temperature change.
상기에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.Although the above has been described with reference to a preferred embodiment of the present invention, those skilled in the art to various modifications and changes to the present invention without departing from the spirit and scope of the invention described in the claims described below You can do it. Therefore, it should be seen that all modifications included in the technical scope of the present invention are basically included in the scope of the claims of the present invention.
본 발명에 따르면, 기판지지부의 수용홈에 기판이 안착되는 안착부와 수용홈의 내면 사이에 중간홈을 형성함으로써 파티클 등과 같은 이물질이 상기 중간홈에 형성되도록 유도하여, 기판이 상기 수용홈에 배치되는 경우에 기울어져 배치되는 것을 방지할 수 있다.According to the present invention, by forming an intermediate groove between the seating portion on which the substrate is seated in the receiving groove of the substrate support and the inner surface of the receiving groove, foreign matters such as particles are formed in the intermediate groove, so that the substrate is disposed in the receiving groove. If it is, it can be prevented from being placed inclined.
또한, 본 발명에 따르면 상기 기판이 안착되는 수용홈의 내측 가장자리를 따라 돌출부를 구비하여 기판의 회전을 방지함으로써 기판이 수용홈의 내부에 끼이거나 파손되는 것을 방지할 수 있다.In addition, according to the present invention by providing a protrusion along the inner edge of the receiving groove in which the substrate is seated to prevent the rotation of the substrate can be prevented from being caught or damaged inside the receiving groove.

Claims (13)

  1. 기판이 처리되는 처리공간을 제공하는 챔버;A chamber providing a processing space in which the substrate is processed;
    상기 챔버 내부로 공정가스를 공급하는 가스공급부; 및A gas supply unit supplying a process gas into the chamber; And
    상기 챔버의 내부에 구비되어 상기 기판이 안착되는 수용홈이 구비되며 상기 기판을 가열하는 기판지지부;를 구비하고,A substrate support part provided in the chamber and having a receiving groove in which the substrate is seated and heating the substrate;
    상기 수용홈의 내측에 상기 기판이 안착되는 안착부와, 상기 안착부의 가장자리와 상기 수용홈 사이에 중간홈이 형성된 것을 특징으로 하는 유기금속화학기상증착장치.An organometallic chemical vapor deposition apparatus, characterized in that the mounting portion on which the substrate is mounted inside the receiving groove, and an intermediate groove formed between the edge of the mounting portion and the receiving groove.
  2. 제1항에 있어서,The method of claim 1,
    상기 안착부는 상면이 평평하게 형성되는 것을 특징으로 하는 유기금속화학기상증착장치.Organometallic chemical vapor deposition apparatus, characterized in that the seating portion is formed flat on the upper surface.
  3. 제1항에 있어서,The method of claim 1,
    상기 기판이 상기 안착부에 안착되는 경우에 상기 중간홈의 폭이 상기 기판에 의해 60% 내지 95% 가려지는 것을 특징으로 하는 유기금속화학기상증착장치.When the substrate is seated on the seating portion, the organic metal chemical vapor deposition apparatus, characterized in that the width of the intermediate groove is covered by the substrate 60% to 95%.
  4. 제1항에 있어서,The method of claim 1,
    상기 중간홈은 내부의 모서리가 각진 형태로 형성되는 것을 특징으로 하는 유기금속화학기상증착장치.The intermediate groove is an organometallic chemical vapor deposition apparatus, characterized in that the inner corner is formed in an angular form.
  5. 제1항에 있어서,The method of claim 1,
    상기 중간홈의 폭은 1 내지 3mm 인 것을 특징으로 하는 유기금속화학기상증착장치.Organometallic chemical vapor deposition apparatus, characterized in that the width of the intermediate groove is 1 to 3mm.
  6. 제5항에 있어서,The method of claim 5,
    상기 안착부의 상면에서 상기 중간홈의 깊이는 상기 기판지지부의 상면에서 상기 중간홈의 깊이에 비해 40 내지 80%인 것을 특징으로 하는 유기금속화학기상증착장치.The depth of the intermediate groove in the upper surface of the seating portion is organic metal chemical vapor deposition apparatus, characterized in that 40 to 80% of the depth of the intermediate groove on the upper surface of the substrate support.
  7. 제1항에 있어서,The method of claim 1,
    상기 기판은 원형의 원주면을 따라 적어도 일부에 플랫면을 구비하고, 상기 수용홈의 가장자리에서 내측으로 돌출 형성되어 상기 기판의 회전을 방지하는 돌출부를 구비하는 것을 특징으로 하는 유기금속화학기상증착장치.The substrate has an organic metal chemical vapor deposition apparatus having a flat surface on at least a portion along a circular circumferential surface and protruding inwardly from the edge of the receiving groove to prevent rotation of the substrate. .
  8. 제8항에 있어서,The method of claim 8,
    상기 기판의 플랫면이 상기 돌출부와 만나는 것을 특징으로 하는 유기금속화학기상증착장치.Organometallic chemical vapor deposition apparatus, characterized in that the flat surface of the substrate meets the protrusion.
  9. 제8항에 있어서,The method of claim 8,
    상기 기판의 원주면과 상기 플랫면이 만나는 코너영역이 상기 돌출부와 만나지 않는 것을 특징으로 하는 유기금속화학기상증착장치.And a corner region where the circumferential surface and the flat surface of the substrate meet each other does not meet the protrusion.
  10. 제9항에 있어서,The method of claim 9,
    상기 안착부의 중심에 대한 상기 돌출부의 원주각도는 상기 안착부의 중심에 대한 상기 기판의 플랫면의 원주각도에 비해 상대적으로 더 작은 것을 특징으로 하는 유기금속화학기상증착장치.The circumferential angle of the protrusion relative to the center of the seating portion is relatively smaller than the circumferential angle of the flat surface of the substrate relative to the center of the seating portion.
  11. 제7항에 있어서,The method of claim 7, wherein
    상기 돌출부는 착탈 가능하게 구비되는 것을 특징으로 하는 유기금속화학기상증착장치.Organometallic chemical vapor deposition apparatus, characterized in that the protrusion is detachably provided.
  12. 제1항에 있어서,The method of claim 1,
    상기 기판지지부는 상기 기판이 안착되고 가열되는 히터블럭을 포함하고,The substrate support portion includes a heater block on which the substrate is seated and heated,
    상기 히터블럭의 바닥에서 상부를 향해 삽입홈이 형성되고, 상기 삽입홈의 내측에는 히터블럭의 온도를 측정하는 열전쌍이 구비되는 것을 특징으로 하는 유기금속화학기상증착장치.An insertion groove is formed from the bottom of the heater block toward the top, and the inside of the insertion groove is an organometallic chemical vapor deposition apparatus, characterized in that the thermocouple for measuring the temperature of the heater block is provided.
  13. 제12항에 있어서,The method of claim 12,
    상기 히터블록의 바닥에서 상기 삽입홈의 높이는 상기 히터블럭의 높이에 비해 60 내지 90%인 것을 특징으로 하는 유기금속화학기상증착장치.The height of the insertion groove in the bottom of the heater block is an organometallic chemical vapor deposition apparatus, characterized in that 60 to 90% of the height of the heater block.
PCT/KR2017/014312 2016-12-08 2017-12-07 Organic metal chemical vapor deposition device WO2018106039A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780076172.9A CN110088356A (en) 2016-12-08 2017-12-07 Metalorganic chemical vapor deposition device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0167139 2016-12-08
KR20160167139 2016-12-08
KR10-2017-0167443 2017-12-07
KR1020170167443A KR102154482B1 (en) 2016-12-08 2017-12-07 Metal organic chemical vapor deposition apparatus

Publications (1)

Publication Number Publication Date
WO2018106039A1 true WO2018106039A1 (en) 2018-06-14

Family

ID=62492055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014312 WO2018106039A1 (en) 2016-12-08 2017-12-07 Organic metal chemical vapor deposition device

Country Status (1)

Country Link
WO (1) WO2018106039A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319623A (en) * 2003-04-14 2004-11-11 Shin Etsu Handotai Co Ltd Susceptor and vapor phase growing apparatus
KR20080069694A (en) * 2000-12-22 2008-07-28 에이에스엠 아메리카, 인코포레이티드 A method of manufacturing a substrate holder
KR20100031110A (en) * 2007-06-28 2010-03-19 도쿄엘렉트론가부시키가이샤 Placement table structure and heat treatment device
JP2010147080A (en) * 2008-12-16 2010-07-01 Shin Etsu Handotai Co Ltd Susceptor for vapor deposition, vapor deposition apparatus, and manufacturing method of epitaxial wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080069694A (en) * 2000-12-22 2008-07-28 에이에스엠 아메리카, 인코포레이티드 A method of manufacturing a substrate holder
JP2004319623A (en) * 2003-04-14 2004-11-11 Shin Etsu Handotai Co Ltd Susceptor and vapor phase growing apparatus
KR20060002975A (en) * 2003-04-14 2006-01-09 신에쯔 한도타이 가부시키가이샤 Susceptor and vapor growth device
KR20100031110A (en) * 2007-06-28 2010-03-19 도쿄엘렉트론가부시키가이샤 Placement table structure and heat treatment device
JP2010147080A (en) * 2008-12-16 2010-07-01 Shin Etsu Handotai Co Ltd Susceptor for vapor deposition, vapor deposition apparatus, and manufacturing method of epitaxial wafer

Similar Documents

Publication Publication Date Title
US9556522B2 (en) High throughput multi-wafer epitaxial reactor
WO2010101369A2 (en) Gas distribution apparatus, and substrate-processing apparatus comprising same
WO2011129492A1 (en) Gas injection unit and a thin-film vapour-deposition device and method using the same
US9920451B2 (en) High throughput multi-wafer epitaxial reactor
WO2011037377A2 (en) Batch-type epitaxial layer forming device and a method for forming the same
WO2012036499A2 (en) Thin film deposition apparatus
WO2013147481A1 (en) Apparatus and cluster equipment for selective epitaxial growth
WO2018236201A1 (en) Substrate supporting apparatus
US20110073039A1 (en) Semiconductor deposition system and method
US6547876B2 (en) Apparatus for growing epitaxial layers on wafers by chemical vapor deposition
JP5042966B2 (en) Tray, vapor phase growth apparatus and vapor phase growth method
WO2013022127A1 (en) Mocvd apparatus
WO2016047972A2 (en) Apparatus for manufacturing film and method for manufacturing film using same
WO2018106039A1 (en) Organic metal chemical vapor deposition device
US20150368830A1 (en) One-piece injector assembly and one-piece exhaust liner
KR101722915B1 (en) Apparatus for mocvd
KR20170006841A (en) Apparatus for mocvd
KR101651880B1 (en) Apparatus for mocvd
JP3429101B2 (en) Barrel type vapor phase growth equipment
WO2022010105A1 (en) Deposition apparatus
US9982346B2 (en) Movable liner assembly for a deposition zone in a CVD reactor
KR20110093008A (en) Apparatus for mocvd
KR102154482B1 (en) Metal organic chemical vapor deposition apparatus
WO2018190519A1 (en) Reactor for chemical vapor deposition and chemical vapor deposition apparatus comprising same
WO2014119955A1 (en) Batch deposition apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878177

Country of ref document: EP

Kind code of ref document: A1