WO2014119708A1 - Method for manufacturing glass substrate - Google Patents

Method for manufacturing glass substrate Download PDF

Info

Publication number
WO2014119708A1
WO2014119708A1 PCT/JP2014/052211 JP2014052211W WO2014119708A1 WO 2014119708 A1 WO2014119708 A1 WO 2014119708A1 JP 2014052211 W JP2014052211 W JP 2014052211W WO 2014119708 A1 WO2014119708 A1 WO 2014119708A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass substrate
partition wall
internal partition
heating element
Prior art date
Application number
PCT/JP2014/052211
Other languages
French (fr)
Japanese (ja)
Inventor
伸広 前田
裕介 塩地
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51262406&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014119708(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to CN201480006297.0A priority Critical patent/CN104955775B/en
Priority to JP2014559763A priority patent/JP5981570B2/en
Publication of WO2014119708A1 publication Critical patent/WO2014119708A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing a glass substrate by a downdraw method.
  • a down draw method is used as a method for forming glass.
  • molten glass is poured into a groove of a molded body, and then the molten glass is overflowed from the groove. The molten glass then flows down along the side of the molded body. Molten glass merges at the lower end of the molded body, and then leaves the molded body to become sheet-like glass (sheet glass).
  • sheet glass is pulled and conveyed by a roller and cooled by the atmosphere in the furnace. Thereafter, the sheet glass is cut into a desired size and further processed into a glass substrate.
  • the glass plate manufacturing apparatus described in Patent Document 1 below includes an internal partition that partitions a heating element and a molded body in the furnace chamber.
  • the heat of the molten glass in the furnace chamber is exchanged with the internal partition wall heated by the heating element mainly through radiant heat transfer. A temperature distribution will occur in the direction. For this reason, as a material of an internal partition, a thing with large heat conductivity and high homogeneity is desirable.
  • Patent Document 1 describes that, for example, a SiC plate can be used for the internal partition.
  • an object of the present invention is to provide a method for producing a glass substrate that can suppress the oxidative expansion of an internal partition wall when producing the glass substrate by a downdraw method.
  • the method for producing a glass substrate of the present invention has the following aspects.
  • a method for producing a glass substrate having a step of forming molten glass into sheet glass by a downdraw method In the molding furnace chamber, provided with a heating element, the molded body, and an internal partition that partitions the heating element and the molded body, An SiC sintered body having an open porosity of 1% or less is used for the internal partition wall, A method for producing a glass substrate, comprising: heating the molten glass flowing through the molded body through the internal partition by the heating element.
  • the said internal partition is a manufacturing method of the glass substrate of the aspect 1 whose heat conductivity is 20 W / (m * K) or more at 1200 degreeC.
  • the said molten glass is a manufacturing method of the glass substrate of the aspect 1 or 2 which is 1000 degreeC or more when the viscosity of 10 ⁇ 5 > poise.
  • the method for producing a glass substrate which is an embodiment of the present invention, when a glass substrate is produced by the downdraw method, it is possible to suppress the occurrence of problems associated with the oxidative expansion of the internal partition walls.
  • FIG. 1 is a flowchart showing a part of the glass substrate manufacturing method according to the present embodiment.
  • the glass substrate is manufactured through various processes including a melting process ST1, a clarification process ST2, a homogenization process ST3, a molding process ST4, a cooling process ST5, and a cutting process ST6.
  • the melting process ST1 a clarification process ST2, a homogenization process ST3, a molding process ST4, a cooling process ST5, and a cutting process ST6.
  • the glass raw material is heated and melted.
  • Glass raw material is a composition such as SiO 2, Al 2 O 3.
  • the completely melted glass raw material becomes molten glass.
  • the molten glass is clarified. Specifically, the gas component contained in the molten glass is released from the molten glass, or the gas component is absorbed into the molten glass.
  • the homogenization step ST3 the molten glass is homogenized.
  • the molten glass is formed into a sheet-like glass, that is, a sheet glass by a downdraw method (specifically, an overflow downdraw method).
  • the sheet glass formed in the forming step ST4 is gradually cooled.
  • the sheet glass is cooled to near room temperature.
  • the cutting step ST6 the sheet glass cooled to near room temperature is cut every predetermined length to obtain a base glass.
  • disconnected for every predetermined length is cut
  • FIG. 2 is a schematic diagram showing the glass substrate manufacturing apparatus 100.
  • the glass substrate manufacturing apparatus 100 mainly includes a melting apparatus 200 and a forming apparatus 300.
  • the dissolution apparatus 200 is an apparatus for performing the dissolution process ST1, the clarification process ST2, and the homogenization process ST3. As shown in FIG. 2, the dissolution apparatus 200 includes a dissolution tank 201, a clarification tank 202, a stirring tank 203, a first pipe 204, and a second pipe 205.
  • the melting tank 201 is a tank for melting the glass raw material.
  • the dissolution step ST1 is performed.
  • the clarification tank 202 is a tank for removing bubbles from the molten glass melted in the melting tank 201. By further heating the molten glass fed from the melting tank 201 in the clarification tank 202, defoaming of the molten glass is promoted.
  • a clarification step ST2 is performed in the clarification tank 202.
  • the stirring tank 203 stirs the molten glass with a stirrer.
  • the homogenization step ST3 is performed.
  • the first pipe 204 and the second pipe 205 are pipes made of platinum group elements or platinum group element alloys.
  • the first pipe 204 is a pipe that connects the clarification tank 202 and the stirring tank 203.
  • the second pipe 205 is a pipe that connects the stirring tank 203 and the molding apparatus 300.
  • the molding apparatus 300 is an apparatus for performing the molding process ST4 and the cooling process ST5.
  • FIG. 3 is a schematic side view showing the forming furnace chamber 30 included in the forming apparatus 300.
  • the molding apparatus 300 includes a molding furnace chamber 30 at the top.
  • the forming furnace chamber 30 includes a furnace wall 24 as an outer wall, and is partitioned from the lower furnace chamber by a partition member 20.
  • a molded body 14 and a plurality of heating elements 28 are arranged inside the molding furnace chamber 30, a molded body 14 and a plurality of heating elements 28 are arranged.
  • an internal partition wall 16 that partitions the molded body 14 and the heating element 28 is provided.
  • the molded body 14 is an apparatus for performing the molding step ST4 and is provided in the molding furnace chamber 30.
  • the formed body 14 has a function of forming the molten glass flowing from the melting apparatus 200 into a sheet-like glass substrate (sheet glass G) by an overflow down draw method.
  • the molded body 14 has a wedge-shaped cross-sectional shape cut in the vertical direction, and is composed of, for example, refractory bricks made of zircon, zirconia, YPO 4 , Al 2 O 3 , SiO 2 , SiC, SiN, and combinations thereof. ing.
  • a groove portion 18 that receives the molten glass MG flowing from the melting device 200 is formed in the upper portion of the molded body 14.
  • the side surface 14b of the molded body 14 is formed along the vertical direction so that the molten glass MG overflowed from the groove 18 flows down.
  • the inclined surface 14c of the molded body 14 has a side surface 14b so that the molten glass MG flowing down the both side surfaces 14b, 14b of the molded body 14 joins at the lowermost end portion 14d, which is the apex of the wedge-shaped cross section of the molded body 14. It is inclined with respect to.
  • the inner partition wall 16 is disposed between the heating element 28 and the molded body 14 and is disposed around the molded body 14 so as to surround the molded body 14.
  • the internal partition 16 is made of a SiC sintered body, and more specifically, is made of a high-density sintered SiC plate.
  • the internal partition 16 is preferably composed of a SiC sintered body having a SiC content of 95 wt% (wt%) or more. Further, from the viewpoint of improving the temperature uniformity of the internal partition wall 16, the thermal conductivity at 1200 ° C. is 20 W / (m ⁇ K) or more, more preferably 25 W / (m ⁇ K) or more, and further preferably 30 W / (m.
  • the SiC sintered compact which is more than K).
  • the upper limit of the thermal conductivity is, for example, 490 W / (m ⁇ K).
  • the open porosity of the SiC sintered body constituting the internal partition wall 16 is set to 1% or less.
  • the open porosity of the SiC sintered body is preferably 0.8% or less, and more preferably 0.6% or less.
  • the open porosity of the SiC sintered body is, for example, more than 0%.
  • the open porosity is a percentage of the volume of the open pore portion in the sample when the outer volume of the sample is 1, and is measured by a measurement method defined in JIS R 1634: 1998, for example. Can do.
  • a horizontal partition wall 26 is provided between the furnace wall 24 and the internal partition wall 16 to partition the space between the furnace wall 24 and the internal partition wall 16 in the lateral direction.
  • the horizontal partition wall 26 is a plate-like member that partitions the space between the furnace wall 24 of the molding furnace chamber 30 and the internal partition wall 16 into a plurality of vertically adjacent spaces.
  • zircon, zirconia, YPO 4 , Al It is a heat insulating member made of 2 O 3 , SiO 2 , SiC, SiN and combinations thereof.
  • a heating element 28 is disposed in each of the small spaces partitioned by the horizontal partition wall 26.
  • the molding furnace chamber 30 may be partitioned into a plurality of spaces, and the temperature of each partitioned space may be controlled by the heating element 28, and the position and number of the horizontal partition walls 26 are arbitrary.
  • the horizontal partition wall 26 is disposed at a position where the distance from the adjacent heating element 28 is constant at regular intervals.
  • the thickness of the horizontal partition 26 can be set arbitrarily, for example, it can be made the same as the thickness of the internal partition 16 and the thickness of the furnace wall 24.
  • the heat transfer amount transmitted by the horizontal partition wall 26 and the internal partition wall 16 is made equal by making the thickness the same, and the molten glass MG is uniformly heated in the width direction. can do.
  • the thermal conductivity of the internal partition 16 provided at a position closer to the molten glass MG is set.
  • the thermal conductivity of the horizontal partition wall 26 can be made higher.
  • the open porosity of the internal partition wall 16 can be made lower than the open porosity of the horizontal partition wall 26.
  • the thermal conductivity of the internal partition wall 16 located at the position facing the lowermost end portion 14d is set to both side surfaces 14b, 14b.
  • the open porosity of the internal partition wall 16 at the position facing the lowermost end portion 14d can be made lower than the open porosity of the internal partition wall 16 at the position facing both side surfaces 14b, 14b.
  • the heating element 28 is composed of, for example, a sheathed heater, a cartridge heater, or a ceramic heater that generates heat by resistance heating, dielectric heating, microwave heating, induction heating, etc., and the amount of generated heat (temperature) can be arbitrarily adjusted.
  • Each heating element 28 disposed in the molding furnace chamber 30 can independently control the amount of heat generated. For example, when the molten glass MG travels downward in the molding furnace chamber 30, the grooves 18 and both side surfaces of the molding body 14. A temperature gradient can be formed so that the temperature sequentially decreases toward 14b, 14b, the inclined surface 14c, and the lowermost end portion 14d. That is, the amount of heat generated by the plurality of heating elements 28 is adjusted so that the temperature of the wall surface facing the molded body 14 of the internal partition wall 16 decreases as the molten glass MG flows. Is preferred.
  • the partition member 20 is a plate-like member disposed in the vicinity of the lowermost end portion 14d of the forming body 14, for example, zircon, zirconia, YPO 4, Al 2 O 3 , SiO 2, SiC, SiN and a combination thereof It is the heat insulation member which consists of.
  • a pair of partition members 20 are provided such that the ends thereof are opposed to each other.
  • the partition member 20 is disposed so as to be horizontal on both sides in the thickness direction of the sheet glass G flowing down from the lowermost end portion 14d of the molded body 14.
  • the partition member 20 suppresses the movement of heat from the upper side to the lower side of the partition member 20 by partitioning and insulating the upper and lower atmospheres leaving a gap through which the sheet glass passes.
  • a cooling roller 22 is disposed below the partition member 20.
  • the cooling roller 22 is disposed in a furnace chamber located below the partition member 20. Moreover, the cooling roller 22 is arrange
  • the cooling roller 22 is air-cooled by, for example, an air-cooling tube passed through the inside.
  • the cooling roller 22 pulls the sheet glass G downward by transmitting the driving force of the driving motor.
  • a slow cooling furnace chamber (not shown) for performing the cooling step ST5 is provided below the forming furnace chamber 30, a slow cooling furnace chamber (not shown) for performing the cooling step ST5 is provided.
  • the slow cooling furnace chamber is partitioned into a plurality of furnace chambers along the flow of the sheet glass G, and a plurality of tension rollers are provided along the flow of the sheet glass G.
  • the pulling roller is driven by a motor and conveys the seed glass G while pulling it downward.
  • Each furnace chamber is provided with a heater for adjusting the temperature of the atmosphere around the sheet glass G. By controlling the temperature of the atmosphere around the sheet glass G using this heater, the temperature of the sheet glass G is controlled, and the sheet glass is subjected to a temperature profile that reduces the thickness deviation, warpage, and distortion of the sheet glass G. G is gradually cooled.
  • the cutting step ST6 is performed by a cutting device (not shown).
  • the cutting device is disposed below the slow cooling furnace chamber.
  • the cutting device is a device that cuts the sheet glass G flowing down in the forming device 300 in a direction perpendicular to the longitudinal surface thereof.
  • the sheet-like sheet glass G becomes a plurality of base plates having a predetermined length by being cut by a cutting device.
  • the base plate is further cut, packaged through end face processing, cleaning, and inspection, and shipped as a glass substrate.
  • the molten glass MG that has flowed through the groove 18 of the molded body 14 overflows at the top of the groove 18 and flows down along both side surfaces 14b and 14b of the molded body 14.
  • the molten glass G which flowed down along the both side surfaces 14b and 14b of the molded object 14 merges in the lowest end part 14d of the molded object 14 via the inclined surfaces 14c and 14c, and becomes the sheet glass G.
  • the sheet glass G is supplied to a slow cooling furnace chamber below the forming furnace chamber 30 through a slit-like gap between the pair of partition members 20 and 20.
  • the internal partition 16 is heated by the heating element 28, heat exchange is performed between the heated internal partition 16 and the molten glass MG flowing through the molded body 14, and the molten glass MG is cooled.
  • the atmosphere containing oxygen in the forming furnace chamber 30 is maintained at a temperature of 1000 ° C. or more, for example, about 1200 ° C., but the internal partition wall 16 is exposed to the atmosphere containing oxygen at such a high temperature,
  • the SiC sintered body constituting the partition 16 is oxidized from the portion in contact with oxygen and changed to SiO 2 .
  • the open porosity of the SiC sintered body is larger than 1%, the oxidation tends to proceed not only from the surface but also from the inside. In a place where internal oxidation has progressed, the volume increases, leading to deformation and even cracking.
  • the SiC sintered body is a material that is resistant to high temperatures and excellent in heat resistance and oxidation resistance.
  • the oxidation start temperature at which the SiC sintered body reacts with oxygen is about 700 ° C., and when this temperature is exceeded, oxidation starts, leading to deformation and further cracking. Since the temperature in the molding furnace chamber 30 is 1000 ° C. or higher as described above, the SiC sintered body is easily oxidized in the molding furnace chamber 30.
  • a SiC sintered body having an open porosity of 1% or less is used for the internal partition wall 16. Therefore, only the surface comes into contact with the high temperature atmosphere containing oxygen, and the progress of SiC oxidation inside the tissue can be suppressed. Thereby, abnormal expansion due to internal oxidation of the internal partition wall 16 is suppressed, and deformation, surface cracks, and generation of cracks can be suppressed. Therefore, it is possible to prevent the soaking effect of the internal partition wall 16 from being lowered, and to improve the quality of the glass substrate. Moreover, the lifetime of the internal partition 16 can be extended and the productivity of the glass substrate can be improved. Further, when the SiC sintered body is oxidized, the oxide SiO 2 completely covers the surface of the SiC sintered body and becomes a protective film against oxidation, so that the internal oxidation of the internal partition wall 16 can be suppressed.
  • FIG. 4 is a view for explaining the temperature distribution around the heating element 28, and is a view of the molten glass MG, the internal partition wall 16, and the heating element 18 as viewed from above in FIG.
  • the heating element 28 When the heating element 28 generates heat, the heat generated from the heating element 28 spreads in a spherical shape around the heating element 28, and in the small space surrounded by the internal partition wall 16, the horizontal partition wall 26, and the furnace wall 24, A spherical temperature distribution with a center is formed.
  • the heat spread in a spherical shape reaches the inner partition wall 16, the heat is absorbed by the inner partition wall 16, and heat is accumulated in the inner partition wall 16. Since the internal partition wall 16 has a soaking effect, the heat accumulated in the internal partition wall 16 is released in a planar shape along the side wall of the internal partition wall 16.
  • a substantially constant temperature distribution is formed along the internal partition 16 along at least the width direction of the molten glass MG. Due to the substantially constant temperature distribution along the internal partition wall 16, the temperature of the molten glass MG becomes uniform in the width direction of the molten glass MG, and the temperature of the sheet glass G is, for example, about 1150 at the lowermost end portion 14 d of the molded body 14. It becomes uniform in the width direction at °C.
  • the internal partition 16 of the present embodiment has a thermal conductivity of 20 W / (m ⁇ K) or more at 1200 ° C., more preferably 25 W / (m ⁇ K) or more, and further preferably 30 W / (m ⁇ K). ) That's it. Therefore, even if the temperature of each heating element 28 varies from place to place, the temperature of the internal partition wall 16 is less varied depending on the place in the width direction of the molten glass MG, and the temperature tends to be uniform in the width direction of the molten glass MG.
  • the soaking effect of the internal partition 16 can be improved, and the temperature of the molten glass MG flowing through the molded body 14 can be cooled more uniformly in the width direction of the molten glass MG, thereby improving the quality of the glass substrate.
  • the atmosphere between the furnace wall 24 and the internal partition wall 16 in the molding furnace chamber 30 is maintained at a required temperature by the heating element 28.
  • a horizontal partition wall 26 that partitions the molding furnace chamber 30 into a plurality of vertically adjacent spaces is provided between the furnace wall 24 of the molding furnace chamber 30 and the internal partition wall 16.
  • a plurality of heating elements 28 are provided in the plurality of spaces partitioned by the horizontal partition walls 26, and each heating element 28 can independently control the amount of heat generation.
  • the horizontal partition wall 26 is made of a material having a high heat insulating property, for example, a material having a high heat insulating property compared to the internal partition wall 16.
  • a temperature difference can be given and the quality of a glass substrate can be improved.
  • a heating element based on a temperature measured by a temperature sensor (not shown) such as a resistance temperature detector or a thermocouple installed in the molding furnace chamber 30.
  • the amount of heat generated by 28 can be adjusted. For example, when the temperature measured by the temperature sensor is the same on both side surfaces 14b and 14b of the molded body 14 and the inclined surface 14c, the amount of heat generated by the heating element 28 at a position facing the both side surfaces 14b and 14b. Or by suppressing the amount of heat generated by the heating element 28 at a position facing the inclined surface 14c, a temperature difference is caused in the flow direction in the molten glass MG flowing through the side surfaces 14b, 14b and the inclined surface 14c. Can do.
  • the manufacturing method of this embodiment is suitable when the inside of the molding furnace needs to be kept at a high temperature. Specifically, it is suitable when the inside of the molding furnace is 1000 ° C. or higher, more suitable when it is 1200 ° C. or higher, and particularly suitable when it is 1300 ° C. or higher.
  • this embodiment uses glass (molten glass) having a high high temperature viscosity. Suitable for manufacturing glass substrates.
  • the viscosity of the glass (molten glass) when the viscosity of the glass (molten glass) is 10 5 poise, it is suitable for manufacturing a glass substrate using glass (molten glass) that is 1000 ° C. or higher. Moreover, the upper limit of the temperature of a molten glass when a viscosity is 10 ⁇ 5 > poise is 1700 degreeC, for example.
  • alkali-free glass or alkali-containing glass containing a trace amount of alkali metal has high viscosity at high temperature
  • this embodiment is suitable for manufacturing a glass substrate composed of alkali-free glass or alkali-containing glass.
  • a glass substrate having the following composition range is shown by mass%. SiO 2 : 50 to 70%, Al 2 O 3 : 0 to 25%, B 2 O 3 : 1 to 15%, MgO: 0 to 10%, CaO: 0-20%, SrO: 0 to 20%, BaO: 0 to 10%, RO: Alkali-free glass containing 5 to 30% (where R is the total amount of Mg, Ca, Sr and Ba).
  • the glass substrate may be a glass containing a trace amount of alkali metal containing a trace amount of alkali metal.
  • the total of R ′ 2 O is 0.10% or more and 0.5% or less, preferably 0.20% or more and 0.5% or less (where R ′ is selected from Li, Na, and K) It is preferable that the glass substrate contains at least one kind. Of course, the total of R ′ 2 O may be less than 0.10%. That is, the present invention is suitable for manufacturing a flat panel display using an alkali-free glass or a glass substrate with a small amount of alkali.
  • the glass substrate was manufactured using the glass substrate manufacturing apparatus demonstrated in the above-mentioned embodiment.
  • As the inner partition wall high-density sintered SiC having a SiC content of 99 wt%, a thermal conductivity of 25 W / (m ⁇ K) at 1200 ° C., and an open porosity of 1% was used.
  • a glass substrate was manufactured using the glass substrate manufacturing apparatus described in the above embodiment.
  • high-density sintered SiC having a SiC content of 98 wt%, a thermal conductivity of 30 W / (m ⁇ K) at 1200 ° C., and an open porosity of 0.6% was used.
  • a glass substrate was manufactured using the glass substrate manufacturing apparatus described in the above embodiment.
  • high-density sintered SiC having a SiC content of 95 wt%, a thermal conductivity of 35 W / mK at 1200 ° C., and an open porosity of 0.5% was used.
  • Molded body 16 Internal partition wall 24 Furnace wall 26 Horizontal partition wall 28 Heating element 30 Molding furnace chamber MG Molten glass G Sheet glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Ceramic Products (AREA)

Abstract

In a method for manufacturing a glass substrate with a down draw method, a bushing chamber (30) is provided with a heating element (28), a molding body (14) and an inner partition wall (16) that divides the heating element (28) and the molding body (14). An SiC sintered body with an open porosity of 1% or less is used for the inner partition wall (16), and molten glass (MG) which flows over the molding body (14) is heated by the heating element (28) via the inner partition wall (16). Thus, oxidation expansion of the inner partition wall (16) can be suppressed.

Description

ガラス基板の製造方法Manufacturing method of glass substrate
 本発明は、ダウンドロー法によるガラス基板の製造方法に関する。 The present invention relates to a method for producing a glass substrate by a downdraw method.
 ガラス基板の製造工程において、ガラスを成形する方法としてダウンドロー法が用いられている。ダウンドロー法では、成形体の溝に溶融ガラスを流し込んだ後、溶融ガラスを溝からオーバーフローさせる。溶融ガラスは、その後、成形体の側面に沿って流下する。溶融ガラスは、成形体の下端部で合流し、その後、成形体を離れてシート状のガラス(シートガラス)となる。シートガラスは、ローラによって下方に引っ張られて搬送され、炉内の雰囲気によって冷却される。その後、シートガラスは、所望の大きさに切断され、さらに加工されてガラス基板となる。 In the manufacturing process of a glass substrate, a down draw method is used as a method for forming glass. In the downdraw method, molten glass is poured into a groove of a molded body, and then the molten glass is overflowed from the groove. The molten glass then flows down along the side of the molded body. Molten glass merges at the lower end of the molded body, and then leaves the molded body to become sheet-like glass (sheet glass). The sheet glass is pulled and conveyed by a roller and cooled by the atmosphere in the furnace. Thereafter, the sheet glass is cut into a desired size and further processed into a glass substrate.
 下記の特許文献1に記載されたガラス板の製造装置は、炉室内の発熱体と成形体とを仕切る内部隔壁を備えている。炉室内の溶融ガラスの熱は発熱体により加熱された内部隔壁との間で主に輻射熱伝達を介して熱交換されるため、内部隔壁面に温度分布あると対向する溶融ガラスの面にも幅方向に温度分布が発生することになる。このため、内部隔壁の材質としては、熱伝導率が大きく、かつ均質度の高いものが望ましい。特許文献1では、上記内部隔壁に、例えばSiC製の板が使用できることが記載されている。 The glass plate manufacturing apparatus described in Patent Document 1 below includes an internal partition that partitions a heating element and a molded body in the furnace chamber. The heat of the molten glass in the furnace chamber is exchanged with the internal partition wall heated by the heating element mainly through radiant heat transfer. A temperature distribution will occur in the direction. For this reason, as a material of an internal partition, a thing with large heat conductivity and high homogeneity is desirable. Patent Document 1 describes that, for example, a SiC plate can be used for the internal partition.
登録実用新案第2530060号公報Registered Utility Model No. 2530060
 しかし、熱伝導率が大きくかつ均質度の高いSiC製の板を内部隔壁として用いた場合であっても、気孔率が高い材料で作られた内部隔壁の場合は、成形炉室内の高温雰囲気に長時間曝されると内部隔壁の内部に、内部の気孔によりSiが酸化してSiOが形成されることで異常膨張し、変形したり、表面に亀裂が入ったり、割れたりすることがある。このような内部隔壁の変形、表面の亀裂、割れが発生すると、内部隔壁の均熱効果が低下してガラス基板の品質が低下したり、内部隔壁の交換が必要になってガラス基板の生産性が低下したりする。
 そこで、本発明は、ダウンドロー法によってガラス基板を製造するに際し、内部隔壁の酸化膨張を抑制することができるガラス基板の製造方法を提供することを目的とする。
However, even when a SiC plate having a high thermal conductivity and high homogeneity is used as the internal partition wall, the internal partition wall made of a material with high porosity has a high temperature atmosphere in the molding furnace chamber. When exposed to a long period of time, inside the internal partition wall, Si is oxidized by the internal pores and SiO 2 is formed, which causes abnormal expansion, deformation, cracking on the surface, and cracking. . When such deformation of the internal partition walls, cracks on the surface, or cracks occur, the soaking effect of the internal partition walls decreases, and the quality of the glass substrate deteriorates or the internal partition walls need to be replaced, resulting in the productivity of the glass substrate. Or drop.
Therefore, an object of the present invention is to provide a method for producing a glass substrate that can suppress the oxidative expansion of an internal partition wall when producing the glass substrate by a downdraw method.
 本発明のガラス基板の製造方法は、以下の態様を有する。 The method for producing a glass substrate of the present invention has the following aspects.
[態様1]
 ダウンドロー法により溶融ガラスをシートガラスに成形する工程を有するガラス基板の製造方法であって、
 成形炉室に、発熱体と、前記成形体と、前記発熱体と前記成形体とを仕切る内部隔壁と、を設け、
 前記内部隔壁に開気孔率が1%以下のSiC焼結体を用い、
 前記発熱体により前記内部隔壁を介して前記成形体を流れる前記溶融ガラスを加熱することを特徴とするガラス基板の製造方法。
[Aspect 1]
A method for producing a glass substrate having a step of forming molten glass into sheet glass by a downdraw method,
In the molding furnace chamber, provided with a heating element, the molded body, and an internal partition that partitions the heating element and the molded body,
An SiC sintered body having an open porosity of 1% or less is used for the internal partition wall,
A method for producing a glass substrate, comprising: heating the molten glass flowing through the molded body through the internal partition by the heating element.
[態様2]
 前記内部隔壁は、熱伝導率が1200℃で20W/(m・K)以上である、態様1に記載のガラス基板の製造方法。
[Aspect 2]
The said internal partition is a manufacturing method of the glass substrate of the aspect 1 whose heat conductivity is 20 W / (m * K) or more at 1200 degreeC.
[態様3]
 前記溶融ガラスは、10poiseの粘度のとき、1000℃以上である、態様1又は2に記載のガラス基板の製造方法。
[Aspect 3]
The said molten glass is a manufacturing method of the glass substrate of the aspect 1 or 2 which is 1000 degreeC or more when the viscosity of 10 < 5 > poise.
[態様4]
 前記ガラス基板は、無アルカリガラス又はアルカリ微量含有ガラスである、態様1~3のいずれか1項に記載のガラス基板の製造方法。
[Aspect 4]
The method for producing a glass substrate according to any one of aspects 1 to 3, wherein the glass substrate is an alkali-free glass or a glass containing a trace amount of alkali.
[態様5]
 前記成形炉室の炉壁と前記内部隔壁との間の空間を、水平隔壁によって上下に隣接する複数の小空間に区画し、
 前記小空間の各々に前記発熱体を配置する、態様1~4のいずれか1項に記載のガラス基板の製造方法。
[Aspect 5]
The space between the furnace wall of the molding furnace chamber and the internal partition is partitioned into a plurality of small spaces adjacent to each other by a horizontal partition,
The method for producing a glass substrate according to any one of aspects 1 to 4, wherein the heating element is disposed in each of the small spaces.
[態様6]
 前記内部隔壁の前記成形体の側に面する壁面の温度は、前記熔融ガラスの流れる方向に進むにしたがって、温度が下がるように、前記発熱体の発熱量を調整する、態様5に記載のガラス基板の製造方法。
[Aspect 6]
The glass according to aspect 5, wherein a temperature of a wall surface facing the molded body side of the inner partition wall is adjusted in a calorific value of the heating element such that the temperature decreases as the molten glass proceeds in a flowing direction. A method for manufacturing a substrate.
 本発明の一態様であるガラス基板の製造方法によれば、ダウンドロー法によってガラス基板を製造するに際し、内部隔壁の酸化膨張に伴う問題の発生を抑制することができる。 According to the method for producing a glass substrate which is an embodiment of the present invention, when a glass substrate is produced by the downdraw method, it is possible to suppress the occurrence of problems associated with the oxidative expansion of the internal partition walls.
本実施形態に係るガラス基板の製造方法の一部のフローチャートである。It is a flowchart of a part of manufacturing method of the glass substrate which concerns on this embodiment. 本実施形態のガラス基板の製造方法に用いるガラス基板製造装置を示す模式図である。It is a schematic diagram which shows the glass substrate manufacturing apparatus used for the manufacturing method of the glass substrate of this embodiment. 図2に示すガラス基板製造装置に含まれる成形装置の一部を示す側面図である。It is a side view which shows a part of shaping | molding apparatus contained in the glass substrate manufacturing apparatus shown in FIG. 本実施形態の発熱体周辺の温度分布を説明する図である。It is a figure explaining the temperature distribution around the heat generating body of this embodiment.
 以下、図面を参照しながら、本実施形態のガラス基板の製造方法について説明する。
 図1は、本実施形態に係るガラス基板の製造方法の一部を示すフローチャートである。
 図1に示すように、ガラス基板は、溶解工程ST1と、清澄工程ST2と、均質化工程ST3と、成形工程ST4と、冷却工程ST5と、切断工程ST6とを含む種々の工程を経て製造される。
Hereinafter, the manufacturing method of the glass substrate of this embodiment is demonstrated, referring drawings.
FIG. 1 is a flowchart showing a part of the glass substrate manufacturing method according to the present embodiment.
As shown in FIG. 1, the glass substrate is manufactured through various processes including a melting process ST1, a clarification process ST2, a homogenization process ST3, a molding process ST4, a cooling process ST5, and a cutting process ST6. The
 溶解工程ST1では、ガラス原料を加熱して溶解する。ガラス原料は、SiO、Al等の組成からなる。完全に溶解したガラス原料は、溶融ガラスとなる。
 清澄工程ST2では、溶融ガラスを清澄する。具体的には、溶融ガラス中に含まれるガス成分を溶融ガラスから放出する、或いは、ガス成分を溶融ガラス中に吸収する。
 均質化工程ST3では、溶融ガラスを均質化する。
 成形工程ST4では、ダウンドロー法(具体的には、オーバーフローダウンドロー法)により溶融ガラスをシート状のガラス、すなわちシートガラスに成形する。
 冷却工程ST5では、成形工程ST4で成形されたシートガラスの徐冷を行う。当該冷却工程ST5において、シートガラスは、室温近くまで冷却される。
 切断工程ST6では、室温近くまで冷却されたシートガラスを、所定の長さ毎に切断して素板ガラスとする。
 なお、所定の長さ毎に切断された素板ガラスは、その後、さらに切断されて、研削・研磨、洗浄、検査が行われてガラス基板となり、液晶ディスプレイ等のフラットパネルディスプレイに使用される。
In the melting step ST1, the glass raw material is heated and melted. Glass raw material is a composition such as SiO 2, Al 2 O 3. The completely melted glass raw material becomes molten glass.
In the clarification step ST2, the molten glass is clarified. Specifically, the gas component contained in the molten glass is released from the molten glass, or the gas component is absorbed into the molten glass.
In the homogenization step ST3, the molten glass is homogenized.
In the forming step ST4, the molten glass is formed into a sheet-like glass, that is, a sheet glass by a downdraw method (specifically, an overflow downdraw method).
In the cooling step ST5, the sheet glass formed in the forming step ST4 is gradually cooled. In the cooling step ST5, the sheet glass is cooled to near room temperature.
In the cutting step ST6, the sheet glass cooled to near room temperature is cut every predetermined length to obtain a base glass.
In addition, the base glass cut | disconnected for every predetermined length is cut | disconnected further after that, grinding | polishing / polishing, washing | cleaning, and an inspection are performed, it becomes a glass substrate, and is used for flat panel displays, such as a liquid crystal display.
 次に、本実施形態のガラス基板の製造方法に用いるガラス基板製造装置について説明する。
 図2は、ガラス基板製造装置100を示す模式図である。
 ガラス基板の製造装置100は、主として、溶解装置200と、成形装置300とを有する。
Next, the glass substrate manufacturing apparatus used for the manufacturing method of the glass substrate of this embodiment is demonstrated.
FIG. 2 is a schematic diagram showing the glass substrate manufacturing apparatus 100.
The glass substrate manufacturing apparatus 100 mainly includes a melting apparatus 200 and a forming apparatus 300.
 溶解装置200は、溶解工程ST1、清澄工程ST2、及び、均質化工程ST3を行うための装置である。溶解装置200は、図2に示すように、溶解槽201、清澄槽202、攪拌槽203、第1配管204、及び、第2配管205を有する。
 溶解槽201は、ガラス原料を溶解するための槽である。溶解槽201では、溶解工程ST1を行う。
 清澄槽202は、溶解槽201で溶解された溶融ガラスから泡を除去するための槽である。溶解槽201より送り込まれた溶融ガラスを、清澄槽202でさらに加熱することで、溶融ガラスの脱泡が促進される。清澄槽202では、清澄工程ST2を行う。
 攪拌槽203は、スターラーによって溶融ガラスを攪拌する。攪拌槽203では、均質化工程ST3を行う。
 第1配管204及び第2配管205は、白金族元素又は白金族元素の合金製の配管である。第1配管204は、清澄槽202と攪拌槽203とを接続する配管である。第2配管205は、攪拌槽203と成形装置300とを接続する配管である。
The dissolution apparatus 200 is an apparatus for performing the dissolution process ST1, the clarification process ST2, and the homogenization process ST3. As shown in FIG. 2, the dissolution apparatus 200 includes a dissolution tank 201, a clarification tank 202, a stirring tank 203, a first pipe 204, and a second pipe 205.
The melting tank 201 is a tank for melting the glass raw material. In the dissolution tank 201, the dissolution step ST1 is performed.
The clarification tank 202 is a tank for removing bubbles from the molten glass melted in the melting tank 201. By further heating the molten glass fed from the melting tank 201 in the clarification tank 202, defoaming of the molten glass is promoted. In the clarification tank 202, a clarification step ST2 is performed.
The stirring tank 203 stirs the molten glass with a stirrer. In the stirring tank 203, the homogenization step ST3 is performed.
The first pipe 204 and the second pipe 205 are pipes made of platinum group elements or platinum group element alloys. The first pipe 204 is a pipe that connects the clarification tank 202 and the stirring tank 203. The second pipe 205 is a pipe that connects the stirring tank 203 and the molding apparatus 300.
 成形装置300は、成形工程ST4、及び、冷却工程ST5を行うための装置である。
 図3は、成形装置300に含まれる成形炉室30を示す概略の側面図である。
 成形装置300は、図3に示すように、最上部に成形炉室30を備えている。成形炉室30は、外壁として炉壁24を備え、仕切り部材20によって下側の炉室と区画されている。成形炉室30の内部には、成形体14と、複数の発熱体28とが配置されている。成形体14の周囲には、成形体14と発熱体28とを仕切る内部隔壁16が設けられている。
The molding apparatus 300 is an apparatus for performing the molding process ST4 and the cooling process ST5.
FIG. 3 is a schematic side view showing the forming furnace chamber 30 included in the forming apparatus 300.
As shown in FIG. 3, the molding apparatus 300 includes a molding furnace chamber 30 at the top. The forming furnace chamber 30 includes a furnace wall 24 as an outer wall, and is partitioned from the lower furnace chamber by a partition member 20. Inside the molding furnace chamber 30, a molded body 14 and a plurality of heating elements 28 are arranged. Around the molded body 14, an internal partition wall 16 that partitions the molded body 14 and the heating element 28 is provided.
 成形体14は、成形工程ST4を行うための装置であり、成形炉室30に設けられている。成形体14は、溶解装置200から流れてくる溶融ガラスを、オーバーフローダウンドロー法によりシート状のガラス基板(シートガラスG)に成形する機能を有する。成形体14は、垂直方向に切断した断面形状が楔形形状を有し、例えば、ジルコン、ジルコニア、YPO、Al、SiO、SiC、SiN及びそれらの組合せからなる耐火レンガにより構成されている。成形体14の上部には、溶解装置200から流れてくる溶融ガラスMGを受け入れる溝部18が形成されている。成形体14の側面14bは、溝部18からオーバーフローした溶融ガラスMGが流下するように、鉛直方向に沿って形成されている。成形体14の傾斜面14cは、成形体14の両側面14b,14bを流下した溶融ガラスMGが、成形体14の楔形形状の断面の頂点である最下端部14dで合流するように、側面14bに対して傾斜している。 The molded body 14 is an apparatus for performing the molding step ST4 and is provided in the molding furnace chamber 30. The formed body 14 has a function of forming the molten glass flowing from the melting apparatus 200 into a sheet-like glass substrate (sheet glass G) by an overflow down draw method. The molded body 14 has a wedge-shaped cross-sectional shape cut in the vertical direction, and is composed of, for example, refractory bricks made of zircon, zirconia, YPO 4 , Al 2 O 3 , SiO 2 , SiC, SiN, and combinations thereof. ing. A groove portion 18 that receives the molten glass MG flowing from the melting device 200 is formed in the upper portion of the molded body 14. The side surface 14b of the molded body 14 is formed along the vertical direction so that the molten glass MG overflowed from the groove 18 flows down. The inclined surface 14c of the molded body 14 has a side surface 14b so that the molten glass MG flowing down the both side surfaces 14b, 14b of the molded body 14 joins at the lowermost end portion 14d, which is the apex of the wedge-shaped cross section of the molded body 14. It is inclined with respect to.
 内部隔壁16は、発熱体28と成形体14との間に配置され、成形体14を取り囲むように、成形体14の周囲に配置されている。内部隔壁16はSiC焼結体で構成されており、より詳しくは、高密度の焼結SiCの板で構成されている。内部隔壁16は、SiCの含有率が95wt%(重量%)以上のSiC焼結体で構成されていることが好ましい。また、内部隔壁16の温度の均一性を高める観点から、熱伝導率が1200℃で20W/(m・K)以上、より好ましくは25W/(m・K)以上、さらに好ましくは30W/(m・K)以上であるSiC焼結体を用いることが好ましい。上記熱伝導率の上限は、例えば490W/(m・K)とする。また、内部隔壁16の酸化膨張を防止する観点から、内部隔壁16を構成するSiC焼結体の開気孔率は1%以下とする。SiC焼結体の開気孔率は、好ましくは0.8%以下であり、さらに好ましくは、0.6%以下である。また、SiC焼結体の開気孔率は、例えば0%超とする。ここで、開気孔率とは、試料の外形容積を1とした場合、この中に占める開気孔部分の容積の百分比であり、例えば、JIS R 1634:1998に規定される測定方法により測定することができる。 The inner partition wall 16 is disposed between the heating element 28 and the molded body 14 and is disposed around the molded body 14 so as to surround the molded body 14. The internal partition 16 is made of a SiC sintered body, and more specifically, is made of a high-density sintered SiC plate. The internal partition 16 is preferably composed of a SiC sintered body having a SiC content of 95 wt% (wt%) or more. Further, from the viewpoint of improving the temperature uniformity of the internal partition wall 16, the thermal conductivity at 1200 ° C. is 20 W / (m · K) or more, more preferably 25 W / (m · K) or more, and further preferably 30 W / (m. -It is preferable to use the SiC sintered compact which is more than K). The upper limit of the thermal conductivity is, for example, 490 W / (m · K). Further, from the viewpoint of preventing the oxidative expansion of the internal partition wall 16, the open porosity of the SiC sintered body constituting the internal partition wall 16 is set to 1% or less. The open porosity of the SiC sintered body is preferably 0.8% or less, and more preferably 0.6% or less. Further, the open porosity of the SiC sintered body is, for example, more than 0%. Here, the open porosity is a percentage of the volume of the open pore portion in the sample when the outer volume of the sample is 1, and is measured by a measurement method defined in JIS R 1634: 1998, for example. Can do.
 炉壁24と内部隔壁16との間には、炉壁24と内部隔壁16との間の空間を横方向に仕切る水平隔壁26が設けられている。水平隔壁26は、成形炉室30の炉壁24と内部隔壁16との間の空間を、上下に隣接した複数の空間に仕切る板状の部材であり、例えば、ジルコン、ジルコニア、YPO、Al、SiO、SiC、SiN及びそれらの組合せからなる断熱部材である。水平隔壁26によって区画された小空間にはそれぞれ発熱体28が配置されている。成形炉室30を複数の空間に仕切り、仕切った各空間の温度を発熱体28により制御できればよく、水平隔壁26を配置する位置、数は、任意である。例えば、一定間隔ごと、隣り合う発熱体28からの距離が一定になる位置等に水平隔壁26を配置する。また、水平隔壁26の厚さは、任意に設定でき、例えば、内部隔壁16の厚さと同一、炉壁24の厚さと同一にすることもできる。水平隔壁26と内部隔壁16とが同一の材料である場合、厚さを同一にすることにより、水平隔壁26及び内部隔壁16が伝える伝熱量を等しくし、溶融ガラスMGを幅方向に均一に加熱することができる。また、内部隔壁16及び水平隔壁26にSiC焼結体を用いる場合、溶融ガラスMGを幅方向に均一に加熱するために、溶融ガラスMGにより近い位置に設けられた内部隔壁16の熱伝導率を、水平隔壁26の熱伝導率より高くすることもできる。また、内部隔壁16の開気孔率を、水平隔壁26の開気孔率より低くすることもできる。また、成形体14の最下端部14dに位置する溶融ガラスMGの温度の均一性を高めるために、最下端部14dに対向する位置にある内部隔壁16の熱伝導率を、両側面14b,14bに対向する位置にある内部隔壁16の熱伝導率より高くすることもできる。また、最下端部14dに対向する位置にある内部隔壁16の開気孔率を、両側面14b,14bに対向する位置にある内部隔壁16の開気孔率より低くすることもできる。 A horizontal partition wall 26 is provided between the furnace wall 24 and the internal partition wall 16 to partition the space between the furnace wall 24 and the internal partition wall 16 in the lateral direction. The horizontal partition wall 26 is a plate-like member that partitions the space between the furnace wall 24 of the molding furnace chamber 30 and the internal partition wall 16 into a plurality of vertically adjacent spaces. For example, zircon, zirconia, YPO 4 , Al It is a heat insulating member made of 2 O 3 , SiO 2 , SiC, SiN and combinations thereof. A heating element 28 is disposed in each of the small spaces partitioned by the horizontal partition wall 26. The molding furnace chamber 30 may be partitioned into a plurality of spaces, and the temperature of each partitioned space may be controlled by the heating element 28, and the position and number of the horizontal partition walls 26 are arbitrary. For example, the horizontal partition wall 26 is disposed at a position where the distance from the adjacent heating element 28 is constant at regular intervals. Moreover, the thickness of the horizontal partition 26 can be set arbitrarily, for example, it can be made the same as the thickness of the internal partition 16 and the thickness of the furnace wall 24. When the horizontal partition wall 26 and the internal partition wall 16 are made of the same material, the heat transfer amount transmitted by the horizontal partition wall 26 and the internal partition wall 16 is made equal by making the thickness the same, and the molten glass MG is uniformly heated in the width direction. can do. Moreover, when using a SiC sintered compact for the internal partition 16 and the horizontal partition 26, in order to heat the molten glass MG uniformly in the width direction, the thermal conductivity of the internal partition 16 provided at a position closer to the molten glass MG is set. The thermal conductivity of the horizontal partition wall 26 can be made higher. Further, the open porosity of the internal partition wall 16 can be made lower than the open porosity of the horizontal partition wall 26. Further, in order to improve the uniformity of the temperature of the molten glass MG located at the lowermost end portion 14d of the molded body 14, the thermal conductivity of the internal partition wall 16 located at the position facing the lowermost end portion 14d is set to both side surfaces 14b, 14b. It is also possible to make it higher than the thermal conductivity of the internal partition wall 16 at the position opposite to. Further, the open porosity of the internal partition wall 16 at the position facing the lowermost end portion 14d can be made lower than the open porosity of the internal partition wall 16 at the position facing both side surfaces 14b, 14b.
 発熱体28は、例えば、抵抗加熱、誘電加熱、マイクロ波加熱、誘導加熱によって発熱するシーズヒータ、カートリッジヒータ、あるいはセラミックヒータ等から構成され、発熱量(温度)を任意に調整できる。成形炉室30に配置された各発熱体28は、発熱量を独立して制御でき、例えば、熔融ガラスMGが成形炉室30内を下方に進むときに、成形体14の溝部18、両側面14b,14b、傾斜面14c、最下端部14dへと順次温度が下がるように、温度勾配を形成することができる。すなわち、内部隔壁16の成形体14の側に面する壁面の温度は、熔融ガラスMGの流れる方向に進むにしたがって、温度が下がるように、複数の発熱体28の発熱量は調整される、ことが好ましい。 The heating element 28 is composed of, for example, a sheathed heater, a cartridge heater, or a ceramic heater that generates heat by resistance heating, dielectric heating, microwave heating, induction heating, etc., and the amount of generated heat (temperature) can be arbitrarily adjusted. Each heating element 28 disposed in the molding furnace chamber 30 can independently control the amount of heat generated. For example, when the molten glass MG travels downward in the molding furnace chamber 30, the grooves 18 and both side surfaces of the molding body 14. A temperature gradient can be formed so that the temperature sequentially decreases toward 14b, 14b, the inclined surface 14c, and the lowermost end portion 14d. That is, the amount of heat generated by the plurality of heating elements 28 is adjusted so that the temperature of the wall surface facing the molded body 14 of the internal partition wall 16 decreases as the molten glass MG flows. Is preferred.
 仕切り部材20は、成形体14の最下端部14dの近傍に配置される板状の部材であり、例えば、ジルコン、ジルコニア、YPO、Al、SiO、SiC、SiN及びそれらの組合せからなる断熱部材である。仕切り部材20は、先端が互いに対向するように一対設けられている。仕切り部材20は、成形体14の最下端部14dから流下していくシートガラスGの厚み方向の両側に、水平となるように配置されている。仕切り部材20は、シートガラスが通過する隙間を残してその上下の雰囲気を仕切り、断熱することにより、仕切り部材20の上側から下側への熱の移動を抑制している。仕切り部材20の下方には、冷却ローラ22が配置されている。 The partition member 20 is a plate-like member disposed in the vicinity of the lowermost end portion 14d of the forming body 14, for example, zircon, zirconia, YPO 4, Al 2 O 3 , SiO 2, SiC, SiN and a combination thereof It is the heat insulation member which consists of. A pair of partition members 20 are provided such that the ends thereof are opposed to each other. The partition member 20 is disposed so as to be horizontal on both sides in the thickness direction of the sheet glass G flowing down from the lowermost end portion 14d of the molded body 14. The partition member 20 suppresses the movement of heat from the upper side to the lower side of the partition member 20 by partitioning and insulating the upper and lower atmospheres leaving a gap through which the sheet glass passes. A cooling roller 22 is disposed below the partition member 20.
 冷却ローラ22は、仕切り部材20の下方に位置する炉室に配置されている。また、冷却ローラ22は、シートガラスGの厚み方向の両側に、且つ、その幅方向の両端部分に対向するように配置されている。冷却ローラ22は、例えば、内部に通された空冷管により空冷されている。シートガラスGは、冷却ローラ22を通る際に、空冷された冷却ローラ22に接触する幅方向の両端部分の表裏面が冷却される。これにより、当該両端部の粘度は、所定値以上、例えば、109.0poise(10poise=1Pa・秒)以上に調整される。冷却ローラ22は、駆動モータによる駆動力が伝達されることにより、シートガラスGを下方に引っ張る。 The cooling roller 22 is disposed in a furnace chamber located below the partition member 20. Moreover, the cooling roller 22 is arrange | positioned so as to oppose the both ends of the thickness direction of the sheet glass G, and the both ends of the width direction. The cooling roller 22 is air-cooled by, for example, an air-cooling tube passed through the inside. When the sheet glass G passes through the cooling roller 22, the front and back surfaces of both end portions in the width direction in contact with the air-cooled cooling roller 22 are cooled. Thereby, the viscosity of the both ends is adjusted to a predetermined value or more, for example, 10 9.0 poise (10 poise = 1 Pa · sec) or more. The cooling roller 22 pulls the sheet glass G downward by transmitting the driving force of the driving motor.
 成形炉室30の下方には、冷却工程ST5を行う不図示の徐冷炉室が設けられている。徐冷炉室は、シートガラスGの流れに沿って複数の炉室に区画され、シートガラスGの流れに沿って複数の引張りローラが設けられている。引張りローラはモータにより駆動され、シードガラスGを下方に引張りながら搬送する。また、各炉室には、シートガラスGの周囲の雰囲気の温度を調節するためのヒータが設けられている。このヒータを用いてシートガラスGの周囲の雰囲気の温度を制御することにより、シートガラスGの温度を制御し、シートガラスGの板厚偏差、反り、歪、を低減する温度プロファイルに従って、シートガラスGを徐冷する。 Below the forming furnace chamber 30, a slow cooling furnace chamber (not shown) for performing the cooling step ST5 is provided. The slow cooling furnace chamber is partitioned into a plurality of furnace chambers along the flow of the sheet glass G, and a plurality of tension rollers are provided along the flow of the sheet glass G. The pulling roller is driven by a motor and conveys the seed glass G while pulling it downward. Each furnace chamber is provided with a heater for adjusting the temperature of the atmosphere around the sheet glass G. By controlling the temperature of the atmosphere around the sheet glass G using this heater, the temperature of the sheet glass G is controlled, and the sheet glass is subjected to a temperature profile that reduces the thickness deviation, warpage, and distortion of the sheet glass G. G is gradually cooled.
 切断工程ST6は、不図示の切断装置によって行う。切断装置は、徐冷炉室の下方に配置されている。切断装置は、成形装置300において流下するシートガラスGを、その長手面に対して垂直な方向に切断する装置である。シート状のシートガラスGは、切断装置によって切断されることで、所定の長さを有する複数の素板となる。素板はさらに切断され、端面加工、洗浄、検査を経て梱包され、ガラス基板として出荷される。 The cutting step ST6 is performed by a cutting device (not shown). The cutting device is disposed below the slow cooling furnace chamber. The cutting device is a device that cuts the sheet glass G flowing down in the forming device 300 in a direction perpendicular to the longitudinal surface thereof. The sheet-like sheet glass G becomes a plurality of base plates having a predetermined length by being cut by a cutting device. The base plate is further cut, packaged through end face processing, cleaning, and inspection, and shipped as a glass substrate.
 次に、本実施形態の作用について説明する。
 成形工程ST4において、成形体14の溝部18を流れた溶融ガラスMGは、当該溝部18の頂部においてオーバーフローし、成形体14の両側面14b,14bに沿って流下する。そして、成形体14の両側面14b,14bを沿って流下した溶融ガラスGは、傾斜面14c,14cを経て、成形体14の最下端部14dで合流してシートガラスGとなる。シートガラスGは、一対の仕切り部材20,20の間のスリット状の隙間を通して、成形炉室30の下方の徐冷炉室に供給される。
Next, the operation of this embodiment will be described.
In the molding step ST4, the molten glass MG that has flowed through the groove 18 of the molded body 14 overflows at the top of the groove 18 and flows down along both side surfaces 14b and 14b of the molded body 14. And the molten glass G which flowed down along the both side surfaces 14b and 14b of the molded object 14 merges in the lowest end part 14d of the molded object 14 via the inclined surfaces 14c and 14c, and becomes the sheet glass G. The sheet glass G is supplied to a slow cooling furnace chamber below the forming furnace chamber 30 through a slit-like gap between the pair of partition members 20 and 20.
 このとき、発熱体28により内部隔壁16が加熱され、加熱された内部隔壁16と成形体14を流れる溶融ガラスMGとの間で熱交換が行われ、溶融ガラスMGは冷却される。 At this time, the internal partition 16 is heated by the heating element 28, heat exchange is performed between the heated internal partition 16 and the molten glass MG flowing through the molded body 14, and the molten glass MG is cooled.
 成形炉室30内の酸素を含む雰囲気は、1000℃以上、例えば1200℃程度の温度に保たれるが、内部隔壁16がこのような高い温度で酸素を含む雰囲気に曝されることで、内部隔壁16を構成するSiC焼結体は酸素に接する部分から酸化されSiOに変化する。このとき、SiC焼結体の開気孔率が1%よりも大きいと、表面からだけでなく内部からも酸化が進行しやすくなる。内部酸化が進行した場所では体積が増すため、変形や更には割れにつながることになる。特に、高温粘性が高い、無アルカリガラスやアルカリ金属を微量含んだアルカリ微量含有ガラスを成形炉室30で形成する場合、成形炉室30内の温度を、従来より高温に保つ必要がある。成形炉室30内の温度を従来より高くすると、内部隔壁16の変形が促進され、割れにつながる。SiC焼結体は、高温に強く、また、耐熱性や耐酸化性に優れる材料である。しかし、SiC焼結体が酸素と反応する酸化開始温度は、約700℃であり、この温度以上になると酸化が始まり、変形や更には割れにつながる。成形炉室30内の温度は、上述したように1000℃以上であるため、SiC焼結体は、成形炉室30内において酸化され易い。 The atmosphere containing oxygen in the forming furnace chamber 30 is maintained at a temperature of 1000 ° C. or more, for example, about 1200 ° C., but the internal partition wall 16 is exposed to the atmosphere containing oxygen at such a high temperature, The SiC sintered body constituting the partition 16 is oxidized from the portion in contact with oxygen and changed to SiO 2 . At this time, if the open porosity of the SiC sintered body is larger than 1%, the oxidation tends to proceed not only from the surface but also from the inside. In a place where internal oxidation has progressed, the volume increases, leading to deformation and even cracking. In particular, when forming the alkali-free glass or alkali-containing glass containing a trace amount of alkali metal in the molding furnace chamber 30 with high high-temperature viscosity, it is necessary to keep the temperature in the molding furnace chamber 30 higher than before. When the temperature in the molding furnace chamber 30 is higher than the conventional temperature, the deformation of the internal partition wall 16 is promoted, leading to cracking. The SiC sintered body is a material that is resistant to high temperatures and excellent in heat resistance and oxidation resistance. However, the oxidation start temperature at which the SiC sintered body reacts with oxygen is about 700 ° C., and when this temperature is exceeded, oxidation starts, leading to deformation and further cracking. Since the temperature in the molding furnace chamber 30 is 1000 ° C. or higher as described above, the SiC sintered body is easily oxidized in the molding furnace chamber 30.
 本実施形態においては、内部隔壁16に開気孔率が1%以下であるSiC焼結体を用いる。そのため、酸素を含む高温の雰囲気と接するのは表面のみとなり、組織内部にSiCの酸化が進行することを抑制することができる。これにより、内部隔壁16の内部酸化による異常膨張が抑制され、変形、表面の亀裂、割れの発生を抑制することができる。したがって、内部隔壁16の均熱効果が低下することを防止して、ガラス基板の品質を向上させることができる。また、内部隔壁16の寿命を延長し、ガラス基板の生産性を改善することができる。また、SiC焼結体が酸化すると、酸化物であるSiOがSiC焼結体表面を完全に覆って酸化に対する保護膜となるため、内部隔壁16の内部の酸化を抑制することができる。 In the present embodiment, a SiC sintered body having an open porosity of 1% or less is used for the internal partition wall 16. Therefore, only the surface comes into contact with the high temperature atmosphere containing oxygen, and the progress of SiC oxidation inside the tissue can be suppressed. Thereby, abnormal expansion due to internal oxidation of the internal partition wall 16 is suppressed, and deformation, surface cracks, and generation of cracks can be suppressed. Therefore, it is possible to prevent the soaking effect of the internal partition wall 16 from being lowered, and to improve the quality of the glass substrate. Moreover, the lifetime of the internal partition 16 can be extended and the productivity of the glass substrate can be improved. Further, when the SiC sintered body is oxidized, the oxide SiO 2 completely covers the surface of the SiC sintered body and becomes a protective film against oxidation, so that the internal oxidation of the internal partition wall 16 can be suppressed.
 また、成形体14上の溶融ガラスMGは、発熱体28と直接熱交換するのではなく、内部隔壁16を介する。したがって、各発熱体28の温度が場所によりばらついていても、内部隔壁16の均熱効果により成形体14上の溶融ガラスMGの温度にはほとんどその温度ばらつきの影響を及ぼすことがない。図4は、発熱体28周辺の温度分布を説明する図であり、溶融ガラスMGと内部隔壁16と発熱体18を、図3の上方から下方に見た図である。発熱体28が発熱すると、発熱体28から出た熱は発熱体28を中心として球状に広がっていき、内部隔壁16と水平隔壁26と炉壁24で囲まれた小空間では、発熱体28を中心とした球状の温度分布が形成される。球状に広がった熱が内部隔壁16に達すると、内部隔壁16に熱が吸収され、内部隔壁16には熱が蓄積される。内部隔壁16には均熱効果があるため、内部隔壁16に蓄積された熱は、内部隔壁16の側壁に沿って平面状に放出される。このため、内部隔壁16内の空間では、内部隔壁16に沿って、少なくとも溶融ガラスMGの幅方向に沿ってほぼ一定の温度分布が形成される。この内部隔壁16に沿ったほぼ一定の温度分布により、溶融ガラスMGの温度が溶融ガラスMGの幅方向で均一になり、成形体14の最下端部14dにおいて、シートガラスGの温度が例えば約1150℃で幅方向に均一になる。 Further, the molten glass MG on the molded body 14 does not directly exchange heat with the heating element 28 but passes through the internal partition wall 16. Therefore, even if the temperature of each heating element 28 varies from place to place, the temperature variation of the molten glass MG on the molded body 14 is hardly affected by the soaking effect of the internal partition wall 16. FIG. 4 is a view for explaining the temperature distribution around the heating element 28, and is a view of the molten glass MG, the internal partition wall 16, and the heating element 18 as viewed from above in FIG. When the heating element 28 generates heat, the heat generated from the heating element 28 spreads in a spherical shape around the heating element 28, and in the small space surrounded by the internal partition wall 16, the horizontal partition wall 26, and the furnace wall 24, A spherical temperature distribution with a center is formed. When the heat spread in a spherical shape reaches the inner partition wall 16, the heat is absorbed by the inner partition wall 16, and heat is accumulated in the inner partition wall 16. Since the internal partition wall 16 has a soaking effect, the heat accumulated in the internal partition wall 16 is released in a planar shape along the side wall of the internal partition wall 16. For this reason, in the space in the internal partition 16, a substantially constant temperature distribution is formed along the internal partition 16 along at least the width direction of the molten glass MG. Due to the substantially constant temperature distribution along the internal partition wall 16, the temperature of the molten glass MG becomes uniform in the width direction of the molten glass MG, and the temperature of the sheet glass G is, for example, about 1150 at the lowermost end portion 14 d of the molded body 14. It becomes uniform in the width direction at ℃.
 また、本実施形態の内部隔壁16は、熱伝導率が1200℃で20W/(m・K)以上であり、より好ましくは25W/(m・K)以上、さらに好ましくは30W/(m・K)以上である。したがって、各発熱体28の温度が場所によりばらついていても、内部隔壁16の温度は溶融ガラスMGの幅方向で場所によるばらつきが少なくなり、温度が溶融ガラスMGの幅方向で均一になりやすい。すなわち、内部隔壁16の均熱効果を向上させ、成形体14を流れる溶融ガラスMGの温度を溶融ガラスMGの幅方向でより均一に冷却して、ガラス基板の品質を向上させることができる。 Further, the internal partition 16 of the present embodiment has a thermal conductivity of 20 W / (m · K) or more at 1200 ° C., more preferably 25 W / (m · K) or more, and further preferably 30 W / (m · K). ) That's it. Therefore, even if the temperature of each heating element 28 varies from place to place, the temperature of the internal partition wall 16 is less varied depending on the place in the width direction of the molten glass MG, and the temperature tends to be uniform in the width direction of the molten glass MG. That is, the soaking effect of the internal partition 16 can be improved, and the temperature of the molten glass MG flowing through the molded body 14 can be cooled more uniformly in the width direction of the molten glass MG, thereby improving the quality of the glass substrate.
 成形炉室30内の炉壁24と内部隔壁16との間の雰囲気は、発熱体28によって所要温度に保たれる。一方、成形体14を流れる溶融ガラスMGは流下に伴い、徐々に温度を下げる必要がある。 The atmosphere between the furnace wall 24 and the internal partition wall 16 in the molding furnace chamber 30 is maintained at a required temperature by the heating element 28. On the other hand, it is necessary to gradually lower the temperature of the molten glass MG flowing through the molded body 14 as it flows down.
 本実施形態では、成形炉室30の炉壁24と内部隔壁16との間に、成形炉室30を上下に隣接する複数の空間に仕切る水平隔壁26を設けている。水平隔壁26で仕切られた複数の空間には複数の発熱体28が設けられ、各発熱体28は、発熱量を独立して制御できる。水平隔壁26は、断熱性の高い材料、例えば、内部隔壁16に比べて断熱性の高い材料で構成されている。これにより、成形体の表面を流下する溶融ガラスの対向面である内部隔壁面の温度を流下方向で任意に変えることができるようになり、溶融ガラスに対して、溶融ガラスの流下方向で所望の温度差をつけることができ、ガラス基板の品質を向上させることができる。なお、溶融ガラスに流下方向で所望の温度差をつけるために、成形炉室30に設置された測温抵抗体、熱電対等の温度センサ(図示せず)が計測した温度に基づいて、発熱体28の発熱量を調整することもできる。例えば、温度センサで計測した温度が、成形体14の両側面14b,14bと、傾斜面14cとで同一である場合には、両側面14b,14bに対向する位置にある発熱体28の発熱量を増加する、または、傾斜面14cに対向する位置になる発熱体28の発熱量を抑制することにより、両側面14b,14b及び傾斜面14cを流れる熔融ガラスMGにおいて流下方向で温度差をつけることができる。 In this embodiment, a horizontal partition wall 26 that partitions the molding furnace chamber 30 into a plurality of vertically adjacent spaces is provided between the furnace wall 24 of the molding furnace chamber 30 and the internal partition wall 16. A plurality of heating elements 28 are provided in the plurality of spaces partitioned by the horizontal partition walls 26, and each heating element 28 can independently control the amount of heat generation. The horizontal partition wall 26 is made of a material having a high heat insulating property, for example, a material having a high heat insulating property compared to the internal partition wall 16. As a result, the temperature of the inner partition wall surface, which is the facing surface of the molten glass flowing down the surface of the molded body, can be arbitrarily changed in the flowing direction. A temperature difference can be given and the quality of a glass substrate can be improved. In addition, in order to make a desired temperature difference in the flow direction in the molten glass, a heating element based on a temperature measured by a temperature sensor (not shown) such as a resistance temperature detector or a thermocouple installed in the molding furnace chamber 30. The amount of heat generated by 28 can be adjusted. For example, when the temperature measured by the temperature sensor is the same on both side surfaces 14b and 14b of the molded body 14 and the inclined surface 14c, the amount of heat generated by the heating element 28 at a position facing the both side surfaces 14b and 14b. Or by suppressing the amount of heat generated by the heating element 28 at a position facing the inclined surface 14c, a temperature difference is caused in the flow direction in the molten glass MG flowing through the side surfaces 14b, 14b and the inclined surface 14c. Can do.
 本実施形態の製造方法は、成形炉内を、高温に保つ必要がある場合に適している。具体的には、成形炉内が1000℃以上である場合に適しており、1200℃以上である場合にさらに適しており、1300℃以上である場合に特に適している。
 高温粘性が大きいガラス(熔融ガラス)を用いてガラス基板を製造する場合には、成形炉内を高温に保つ必要があるので、本実施形態は、高温粘性が大きいガラス(溶融ガラス)を用いてガラス基板を製造する際に適している。具体的には、本実施形態では、ガラス(溶融ガラス)の粘度が10poiseのとき、1000℃以上であるガラス(溶融ガラス)を用いてガラス基板を製造する際に適している。また、粘度が10poiseのときの溶融ガラスの温度の上限は、例えば1700℃である。
The manufacturing method of this embodiment is suitable when the inside of the molding furnace needs to be kept at a high temperature. Specifically, it is suitable when the inside of the molding furnace is 1000 ° C. or higher, more suitable when it is 1200 ° C. or higher, and particularly suitable when it is 1300 ° C. or higher.
When manufacturing a glass substrate using glass (molten glass) having a high high temperature viscosity, it is necessary to keep the inside of the molding furnace at a high temperature, so this embodiment uses glass (molten glass) having a high high temperature viscosity. Suitable for manufacturing glass substrates. Specifically, in this embodiment, when the viscosity of the glass (molten glass) is 10 5 poise, it is suitable for manufacturing a glass substrate using glass (molten glass) that is 1000 ° C. or higher. Moreover, the upper limit of the temperature of a molten glass when a viscosity is 10 < 5 > poise is 1700 degreeC, for example.
 また、無アルカリガラスやアルカリ金属を微量含んだアルカリ微量含有ガラスは、高温粘性が高いので、本実施形態は、無アルカリガラスやアルカリ微量含有ガラスから構成されるガラス基板を製造する場合に適している。無アルカリガラスの一例として、質量%で表示して、以下の組成範囲のガラス基板が挙げられる。
SiO:50~70%、
Al:0~25%、
:1~15%、
MgO:0~10%、
CaO:0~20%、
SrO:0~20%、
BaO:0~10%、
RO:5~30%(ただし、RはMg、Ca、Sr及びBaの合量)、を含有する無アルカリガラス。
 なお、上述したように、ガラス基板はアルカリ金属を微量含んだアルカリ微量含有ガラスであってもよい。アルカリ金属を含有させる場合、R’Oの合計が0.10%以上0.5%以下、好ましくは0.20%以上0.5%以下(ただし、R’はLi、Na及びKから選ばれる少なくとも1種であり、ガラス基板が含有するものである)含むことが好ましい。勿論、R’Oの合計が0.10%未満でもよい。すなわち、本発明は、無アルカリガラスやアルカリ微量のガラス基板が使用されるフラットパネルディスプレイを製造する場合に適している。
In addition, since alkali-free glass or alkali-containing glass containing a trace amount of alkali metal has high viscosity at high temperature, this embodiment is suitable for manufacturing a glass substrate composed of alkali-free glass or alkali-containing glass. Yes. As an example of the alkali-free glass, a glass substrate having the following composition range is shown by mass%.
SiO 2 : 50 to 70%,
Al 2 O 3 : 0 to 25%,
B 2 O 3 : 1 to 15%,
MgO: 0 to 10%,
CaO: 0-20%,
SrO: 0 to 20%,
BaO: 0 to 10%,
RO: Alkali-free glass containing 5 to 30% (where R is the total amount of Mg, Ca, Sr and Ba).
As described above, the glass substrate may be a glass containing a trace amount of alkali metal containing a trace amount of alkali metal. When an alkali metal is contained, the total of R ′ 2 O is 0.10% or more and 0.5% or less, preferably 0.20% or more and 0.5% or less (where R ′ is selected from Li, Na, and K) It is preferable that the glass substrate contains at least one kind. Of course, the total of R ′ 2 O may be less than 0.10%. That is, the present invention is suitable for manufacturing a flat panel display using an alkali-free glass or a glass substrate with a small amount of alkali.
 以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更してもよい。 As mentioned above, although embodiment of this invention was described in detail, this invention is not limited to the said embodiment, You may change and change variously in the range which does not deviate from the main point of this invention.
[実施例]
 上述の実施形態において説明したガラス基板製造装置を用いて、ガラス基板を製造した。内部隔壁として、SiCの含有率が99wt%であり、熱伝導率が1200℃で25W/(m・K)であり、開気孔率が1%である高密度の焼結SiCを用いた。
 内部隔壁の使用を開始して2年以内では、内部隔壁の酸化膨張により変形する事例は見られず、ガラス基板を安定して製造することができた。
 上述の実施形態において説明したガラス基板の製造装置を用いて、ガラス基板を製造した。内部隔壁として、SiCの含有率が98wt%であり、熱伝導率が1200℃で30W/(m・K)であり、開気孔率が0.6%である高密度の焼結SiCを用いた。
 上述の実施形態において説明したガラス基板の製造装置を用いて、ガラス基板を製造した。内部隔壁として、SiCの含有率が95wt%であり、熱伝導率が1200℃で35W/mKであり、開気孔率が0.5%である高密度の焼結SiCを用いた。
 内部隔壁の使用を開始して3年以内では、内部隔壁の酸化膨張により変形する事例は見られず、ガラス基板を安定して製造することができた。
[比較例]
 内部隔壁としてSiCの含有率が74wt%であり、熱伝導率が350℃で12.6W/(m・K)であり、開気孔率が14.6%である窒ケイ素結合SiCを用いた以外は、実施例と同様にガラス基板を製造した。
 内部隔壁の使用を開始してから約18ヶ月後に、内部隔壁の酸化膨張による変形が許容できないほど大きくなり、内部隔壁の交換が必要になるものが30%程度の頻度で発生した。
 以上の結果から、上記実施形態の効果は明確である。
[Example]
The glass substrate was manufactured using the glass substrate manufacturing apparatus demonstrated in the above-mentioned embodiment. As the inner partition wall, high-density sintered SiC having a SiC content of 99 wt%, a thermal conductivity of 25 W / (m · K) at 1200 ° C., and an open porosity of 1% was used.
Within 2 years since the use of the internal partition wall was started, there was no case of deformation due to oxidative expansion of the internal partition wall, and the glass substrate could be stably manufactured.
A glass substrate was manufactured using the glass substrate manufacturing apparatus described in the above embodiment. As the inner partition wall, high-density sintered SiC having a SiC content of 98 wt%, a thermal conductivity of 30 W / (m · K) at 1200 ° C., and an open porosity of 0.6% was used. .
A glass substrate was manufactured using the glass substrate manufacturing apparatus described in the above embodiment. As the internal partition wall, high-density sintered SiC having a SiC content of 95 wt%, a thermal conductivity of 35 W / mK at 1200 ° C., and an open porosity of 0.5% was used.
Within 3 years from the start of use of the internal partition wall, there was no case of deformation due to oxidative expansion of the internal partition wall, and the glass substrate could be stably manufactured.
[Comparative example]
Other than using silicon nitride-bonded SiC having an SiC content of 74 wt% as an internal partition, a thermal conductivity of 12.6 W / (m · K) at 350 ° C., and an open porosity of 14.6% Manufactured the glass substrate like the Example.
About 18 months after the start of use of the internal partition wall, deformation due to oxidative expansion of the internal partition wall became unacceptably large, and it was necessary to replace the internal partition wall with a frequency of about 30%.
From the above results, the effect of the embodiment is clear.
14 成形体
16 内部隔壁
24 炉壁
26 水平隔壁
28 発熱体
30 成形炉室
MG 溶融ガラス
G シートガラス
14 Molded body 16 Internal partition wall 24 Furnace wall 26 Horizontal partition wall 28 Heating element 30 Molding furnace chamber MG Molten glass G Sheet glass

Claims (6)

  1.  ダウンドロー法により溶融ガラスをシートガラスに成形する工程を有するガラス基板の製造方法であって、
     成形炉室に、発熱体と、前記成形体と、前記発熱体と前記成形体とを仕切る内部隔壁と、を設け、
     前記内部隔壁に開気孔率が1%以下のSiC焼結体を用い、
     前記発熱体により前記内部隔壁を介して前記成形体を流れる前記溶融ガラスを加熱することを特徴とするガラス基板の製造方法。
    A method for producing a glass substrate having a step of forming molten glass into sheet glass by a downdraw method,
    In the molding furnace chamber, provided with a heating element, the molded body, and an internal partition that partitions the heating element and the molded body,
    An SiC sintered body having an open porosity of 1% or less is used for the internal partition wall,
    A method for producing a glass substrate, comprising: heating the molten glass flowing through the molded body through the internal partition by the heating element.
  2.  前記内部隔壁は、熱伝導率が1200℃で20W/(m・K)以上である、請求項1に記載のガラス基板の製造方法。 The method for producing a glass substrate according to claim 1, wherein the internal partition wall has a thermal conductivity of 20 W / (m · K) or more at 1200 ° C.
  3.  前記溶融ガラスは、10poiseの粘度のとき、1000℃以上である、請求項1又は2に記載のガラス基板の製造方法。 The said molten glass is a manufacturing method of the glass substrate of Claim 1 or 2 which is 1000 degreeC or more when the viscosity of 10 < 5 > poise.
  4.  前記ガラス基板は、無アルカリガラス又はアルカリ微量含有ガラスである、請求項1~3のいずれか1項に記載のガラス基板の製造方法。 The method for producing a glass substrate according to any one of claims 1 to 3, wherein the glass substrate is an alkali-free glass or a glass containing a trace amount of alkali.
  5.  前記成形炉室の炉壁と前記内部隔壁との間の空間を、水平隔壁によって上下に隣接する複数の小空間に区画し、
     前記小空間の各々に前記発熱体を配置する、請求項1~4のいずれか1項に記載のガラス基板の製造方法。
    The space between the furnace wall of the molding furnace chamber and the internal partition is partitioned into a plurality of small spaces adjacent to each other by a horizontal partition,
    The method for manufacturing a glass substrate according to any one of claims 1 to 4, wherein the heating element is disposed in each of the small spaces.
  6.  前記内部隔壁の前記成形体の側に面する壁面の温度は、前記熔融ガラスの流れる方向に進むにしたがって、温度が下がるように、前記発熱体の発熱量を調整する、請求項5に記載のガラス基板の製造方法。 The temperature of the wall surface facing the molded body side of the internal partition wall is adjusted as the amount of heat generated by the heating element so that the temperature decreases as the molten glass proceeds in the flowing direction. A method for producing a glass substrate.
PCT/JP2014/052211 2013-01-31 2014-01-31 Method for manufacturing glass substrate WO2014119708A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480006297.0A CN104955775B (en) 2013-01-31 2014-01-31 The manufacturing method of glass substrate
JP2014559763A JP5981570B2 (en) 2013-01-31 2014-01-31 Manufacturing method of glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013016968 2013-01-31
JP2013-016968 2013-07-25

Publications (1)

Publication Number Publication Date
WO2014119708A1 true WO2014119708A1 (en) 2014-08-07

Family

ID=51262406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052211 WO2014119708A1 (en) 2013-01-31 2014-01-31 Method for manufacturing glass substrate

Country Status (4)

Country Link
JP (1) JP5981570B2 (en)
CN (2) CN104955775B (en)
TW (1) TWI576318B (en)
WO (1) WO2014119708A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107602153A (en) * 2017-08-03 2018-01-19 彩虹(合肥)液晶玻璃有限公司 A kind of method that SiC plate surfaces oxide layer quickly thickens
TW202017873A (en) * 2017-08-17 2020-05-16 美商康寧公司 Enclosures for glass forming apparatuses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527891A (en) * 2007-05-18 2010-08-19 コーニング インコーポレイテッド Method and apparatus for minimizing inclusions in glass manufacturing processes
WO2011145387A1 (en) * 2010-05-21 2011-11-24 日本碍子株式会社 Si-SiC-BASED COMPOSITE MATERIAL AND PROCESS FOR PRODUCTION THEREOF, HONEYCOMB STRUCTURE, HEAT-CONDUCTIVE MATERIAL, AND HEAT EXCHANGER
JP2013001608A (en) * 2011-06-17 2013-01-07 Nippon Electric Glass Co Ltd Production apparatus of glass, and method for producing glass using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799375B2 (en) * 2004-06-30 2010-09-21 Poco Graphite, Inc. Process for the manufacturing of dense silicon carbide
US8490432B2 (en) * 2009-11-30 2013-07-23 Corning Incorporated Method and apparatus for making a glass sheet with controlled heating
TWI535672B (en) * 2010-05-28 2016-06-01 康寧公司 Composite isopipe
TWI454435B (en) * 2011-03-31 2014-10-01 Avanstrate Inc Glass plate manufacturing method
CN102674661A (en) * 2012-03-31 2012-09-19 彩虹显示器件股份有限公司 Temperature control method of glass plate shaping zone of overflow drop-down device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527891A (en) * 2007-05-18 2010-08-19 コーニング インコーポレイテッド Method and apparatus for minimizing inclusions in glass manufacturing processes
WO2011145387A1 (en) * 2010-05-21 2011-11-24 日本碍子株式会社 Si-SiC-BASED COMPOSITE MATERIAL AND PROCESS FOR PRODUCTION THEREOF, HONEYCOMB STRUCTURE, HEAT-CONDUCTIVE MATERIAL, AND HEAT EXCHANGER
JP2013001608A (en) * 2011-06-17 2013-01-07 Nippon Electric Glass Co Ltd Production apparatus of glass, and method for producing glass using the same

Also Published As

Publication number Publication date
JPWO2014119708A1 (en) 2017-01-26
CN104955775B (en) 2018-06-26
CN104955775A (en) 2015-09-30
JP5981570B2 (en) 2016-08-31
CN108409110A (en) 2018-08-17
TW201437155A (en) 2014-10-01
TWI576318B (en) 2017-04-01

Similar Documents

Publication Publication Date Title
RU2458887C2 (en) Fusion-cast brick having high content of zirconium dioxide
KR101300934B1 (en) Method and apparatus for making glass sheet
JP5456789B2 (en) Glass substrate manufacturing apparatus and glass substrate manufacturing method
KR101300980B1 (en) Glass substrate production method
KR101971755B1 (en) Apparatus for producing molten glass, method for producing molten glass, and method for producing plate glass using said apparatus and method
KR101608896B1 (en) Method and apparatus for making glass sheet
WO2017110212A1 (en) Plate glass manufacturing apparatus and plate glass manufacturing method
WO2014050825A1 (en) Method for production of glass substrate
KR20150063947A (en) Apparatus for manufacturing float glass and method for manufacturing float glass
JP5981570B2 (en) Manufacturing method of glass substrate
JP2014198656A (en) Method and apparatus for production of glass plate
JP6675849B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
JP6675850B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2013139342A (en) Method for manufacturing glass sheet
JP7090844B2 (en) Manufacturing method of glass articles and glass substrate group
TW201111312A (en) Molten glass manufacturing device, molten glass manufacturing method, and sheet glass manufacturing method using the device and the method
JP6489783B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
WO2018211975A1 (en) Glass article production method and melting furnace
JP6577215B2 (en) Manufacturing method of glass substrate
JP5232332B2 (en) Manufacturing method of glass plate
JP2015124112A (en) Glass substrate manufacturing method, and glass substrate manufacturing apparatus
JP2022034527A (en) Float glass manufacturing apparatus and float glass manufacturing method
CN114075031A (en) Float glass manufacturing device and float glass manufacturing method
JP2015160796A (en) Method and apparatus for manufacturing glass plate
JP2017178726A (en) Production method of glass substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745958

Country of ref document: EP

Kind code of ref document: A1