WO2014119208A1 - Electrolytic membrane - Google Patents

Electrolytic membrane Download PDF

Info

Publication number
WO2014119208A1
WO2014119208A1 PCT/JP2013/084779 JP2013084779W WO2014119208A1 WO 2014119208 A1 WO2014119208 A1 WO 2014119208A1 JP 2013084779 W JP2013084779 W JP 2013084779W WO 2014119208 A1 WO2014119208 A1 WO 2014119208A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolysis
permeable membrane
ion exchange
exchange group
diaphragm
Prior art date
Application number
PCT/JP2013/084779
Other languages
French (fr)
Japanese (ja)
Inventor
健郎 井上
樋口 浩之
勇三 村木
隆史 熊野
網野 一郎
正也 西川原
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2014119208A1 publication Critical patent/WO2014119208A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a diaphragm for electrolysis.
  • a diaphragm used in the alkaline water electrolysis method for example, a diaphragm composed of a fluorinated hydrocarbon polymer having a sulfonic acid group has been proposed (Patent Document 1).
  • Patent Document 1 a diaphragm composed of a fluorinated hydrocarbon polymer having a sulfonic acid group has been proposed.
  • such a diaphragm has a large area change due to swelling of the polymer when it is incorporated into an electrolytic cell and becomes wet, and the occurrence of wrinkles, tearing, deformation, etc. becomes a problem.
  • a diaphragm containing a hydrophilic inorganic material has been proposed as a diaphragm used in the alkaline water electrolysis method (Patent Document 2).
  • This diaphragm exhibits wettability to water and has ion permeability because it is porous.
  • the wettability to alkaline water is insufficient in an electrolysis environment.
  • the increase in voltage due to the generated gas adhering to the diaphragm surface becomes a problem.
  • the diaphragm of patent document 1 also has the problem that ion permeability is inadequate.
  • the present invention has been made in order to solve the above-described conventional problems.
  • the purpose of the present invention is to provide a gas that is excellent in ion permeability, has a small area change rate during use, and is generated at an electrode during electrolysis.
  • An object of the present invention is to provide a diaphragm for electrolysis that can suppress an increase in voltage due to the adhesion of sapphire to the diaphragm surface.
  • the electrolysis membrane of the present invention is an electrolysis membrane comprising an ion permeable membrane and exhibiting wettability with respect to an aqueous potassium hydroxide solution having a concentration of 30% by weight.
  • the average pore size of the ion permeable membrane is 0.01 ⁇ m to
  • the area change rate when the ion permeable membrane is immersed in pure water is 20% or less.
  • the electric resistance value of the ion permeable membrane is 0.5 ⁇ ⁇ cm 2 or less when a potassium hydroxide aqueous solution having a temperature of 25 ° C./concentration of 30% by weight is used as an electrolyte.
  • the ion permeable membrane is composed of a polymer having a medium acid ion exchange group, a weak acid ion exchange group, a strongly basic ion exchange group, a medium basic ion exchange group, or a weak basic ion exchange group.
  • the medium acid ion exchange group, weak acid ion exchange group, strong basic ion exchange group, medium basic ion exchange group, or weak basic ion exchange group is formed by graft polymerization. Has been introduced.
  • the diaphragm for electrolysis of the present invention further comprises a porous reinforcing body disposed on one side or both sides of the ion permeable membrane.
  • the reinforcing body is disposed on both sides of the ion permeable membrane.
  • the reinforcing body is composed of a polymer having a medium acid ion exchange group, a weak acid ion exchange group, a strongly basic ion exchange group, a medium basic ion exchange group, or a weak basic ion exchange group. Yes.
  • the medium acidic ion exchange group, weak acid ion exchange group, strong basic ion exchange group, medium basic ion exchange group or weak basic ion exchange group is introduced into the reinforcing body by graft polymerization.
  • an electrochemical cell for producing hydrogen is provided.
  • the membrane for electrolysis is used in this electrochemical cell for hydrogen production.
  • the diaphragm for electrolysis of this invention has high wettability with respect to alkaline aqueous solution, and the gas produced
  • the electrolysis membrane of the present invention includes a microporous ion permeable membrane.
  • the diaphragm for electrolysis of the present invention may have a single membrane configuration having one ion permeable membrane or a laminated configuration including an ion permeable membrane.
  • a diaphragm for electrolysis with higher ion permeability can be obtained, which is useful in applications where the demand for strength is relatively low.
  • the diaphragm for electrolysis which is high intensity
  • the diaphragm for electrolysis of a laminated structure the diaphragm for electrolysis provided with a reinforcement body at least on one side of the ion permeable membrane can be mentioned.
  • FIG. 1 is a schematic cross-sectional view of a diaphragm for electrolysis according to a preferred embodiment of the present invention.
  • An electrolysis diaphragm 100 shown in FIG. 1 includes an ion permeable membrane 10 and a porous reinforcing body 20.
  • FIG. 2 is a schematic cross-sectional view of a diaphragm for electrolysis according to another preferred embodiment of the present invention.
  • An electrolysis diaphragm 100 ′ shown in FIG. 2 includes porous reinforcing bodies 20 on both sides of the ion permeable membrane 10. In the case of the laminated configuration, the reinforcing body 20 may be arranged on one side of the ion permeable membrane 10 as shown in FIG.
  • the reinforcing body 20 is disposed on both sides of the ion permeable membrane 10.
  • the diaphragm for electrolysis 100 of the present invention may be used with the ion permeable membrane 10 disposed on the anode electrode side or disposed on the cathode electrode side. May be used.
  • the ion permeable membrane 10 and the reinforcing body 20 can be laminated by heating and pressurizing using a hot press machine or a heating roll, for example.
  • the ion permeable membrane 10 and the reinforcing body 20 are laminated, and only the end of the laminated body is heated. By heating in this way, it is possible to prevent the reinforcing body 20 from being heated excessively and reducing wettability.
  • the diaphragm for electrolysis of this invention it may apply pressure from both sides with an electrode etc., and may fix the ion permeable film 10 and the reinforcement body 20.
  • the ion permeable membrane and / or the reinforcing body when the ion permeable membrane and / or the reinforcing body is formed by graft polymerization, the ion permeable membrane and the reinforcing body before grafting may be laminated by the above method, and then the grafting may be performed. .
  • the ion permeable membrane 10 is reinforced by the reinforcing body 20, has a sufficient strength as a diaphragm for electrolysis, and is excellent in short circuit prevention between electrodes. Moreover, since the reinforcement body 20 is porous as above-mentioned, it can express the said effect, without inhibiting ion permeability. Furthermore, since the ion permeable membrane 10 is reinforced as described above, the ion permeable membrane 10 can be thinned, and as a result, an electrolysis diaphragm having excellent ion permeability can be obtained.
  • the thickness of the diaphragm for electrolysis of the present invention is preferably 15 ⁇ m to 1500 ⁇ m, more preferably 35 ⁇ m to 1000 ⁇ m, and further preferably 50 ⁇ m to 500 ⁇ m.
  • the electrolysis membrane of the present invention exhibits wettability with respect to a 30% by weight potassium hydroxide aqueous solution. More specifically, in the present invention, in the case of a single membrane configuration having one ion permeable membrane, the ion permeable membrane exhibits wettability as described above, and in the case of a laminated configuration having an ion permeable membrane and a reinforcing body. The ion permeable membrane and the reinforcing body exhibit wettability as described above. Since the electrocoating membrane of the present invention exhibits wettability as described above, it is difficult for gases (hydrogen gas and oxygen gas) generated by alkaline water electrolysis to adhere, and voltage increase due to the gas can be suppressed.
  • gases hydrogen gas and oxygen gas
  • “showing wettability with respect to an aqueous potassium hydroxide solution” means that the electrocoating membrane is immersed in an aqueous potassium hydroxide solution at a temperature of 80 ° C./concentration of 30% by weight for 100 hours. Also means that wettability is not lost. Specifically, when the potassium hydroxide aqueous solution having a concentration of 30% by weight is dropped on the surface of the electrolysis capsule after being immersed in the potassium hydroxide aqueous solution as described above, the dropped potassium hydroxide aqueous solution is In this case, the electrolysis film is referred to as an electrolysis film “showing wettability to an aqueous potassium hydroxide solution”.
  • the area change rate when immersed in pure water is preferably 20% or less, more preferably 10% or less.
  • the area change rate when immersed in an aqueous potassium hydroxide solution having a concentration of 30% by weight is preferably 20% or less, more preferably 10% or less.
  • the diaphragm for electrolysis having an area change rate in such a range is less likely to be wrinkled, broken, deformed, folded, etc., and exhibits a long life and stable performance.
  • the diaphragm for electrolysis having a small area change rate can be obtained by providing a microporous ion permeable membrane having a small area change rate as described later. A method for measuring the area change rate will be described later.
  • the ion permeable membrane can transmit ions generated at the cathode electrode (for example, anions such as hydroxide ions) to the anode electrode.
  • the ion permeable membrane preferably exhibits ion permeability (anion permeability) in a potassium hydroxide aqueous solution having a concentration of 30% by weight.
  • the ion permeable membrane has an electrical resistance value of preferably 0.5 ⁇ ⁇ cm 2 or less, more preferably 0.5 ⁇ ⁇ cm 2 or less when an aqueous solution of potassium hydroxide having a temperature of 25 ° C./concentration of 30% by weight is used as an electrolyte.
  • the thickness of the ion permeable membrane is preferably 5 ⁇ m to 300 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m, and still more preferably. 5 ⁇ m to 100 ⁇ m. If it is such a range, the ion permeable film excellent in ion permeability can be obtained.
  • the thickness of the ion permeable membrane is preferably 15 ⁇ m to 300 ⁇ m, more preferably 15 ⁇ m to It is 200 ⁇ m, more preferably 15 ⁇ m to 100 ⁇ m. If it is such a range, the membrane for electrolysis which is excellent in ion permeability and has the intensity
  • the ion permeable membrane is microporous.
  • the microporous ion permeable membrane means an ion permeable membrane having pores with a pore diameter of 20 ⁇ m or less over the entire surface. Since the diaphragm for electrolysis of the present invention includes a microporous ion permeable membrane, it has very good ion permeability. In addition, since the ion permeable membrane shows wettability to alkaline water, when using the diaphragm for electrolysis, the polymer constituting the ion permeable membrane is swollen by the electrolytic solution so as to block the pores, and the membrane is passed through the diaphragm. Gas can be prevented from passing through.
  • the ion permeable membrane can be obtained by making the material constituting the ion permeable membrane microporous by any appropriate method such as a stretching method or a phase separation method.
  • the area change rate of the ion permeable membrane when immersed in pure water is 20% or less. When such an ion permeable membrane is used, wrinkles, tears, deformations, folds, etc. occur even when the dry / wet state of the ion permeable membrane is repeated by replacing the electrolyte during operation, shutdown and maintenance. It is difficult to obtain a diaphragm for electrolysis that exhibits a long life and stable performance.
  • the area change rate of the ion permeable membrane when immersed in pure water is preferably 15% or less, more preferably 10% or less, and further preferably 5% or less. The smaller the area change rate when immersed in pure water, the better.
  • the lower limit value of the area change rate is, for example, 1%.
  • the area of the microporous ion permeable membrane and the diaphragm for electrolysis means an apparent area.
  • the area of the surface defined by the four sides of the rectangle is the area of the ion-permeable membrane.
  • a small area change rate when immersed in pure water means a small area change rate when immersed in alkaline water.
  • the area change rate is preferably 20% or less, more preferably 15% or less, and even more preferably 5% or less. Particularly preferably, it is 3% or less.
  • the lower limit value of the area change rate is, for example, 0.5%.
  • an ion permeable membrane having a small area change rate can be obtained by forming a hole having a predetermined diameter as described above. More details are as follows. Since the ion permeable membrane is composed of a polymer, it swells in the electrolyte solution. However, in the conventional ion permeable membrane, the swelling of the polymer directly affects the macroscopic shape of the ion permeable membrane, and the area changes. On the other hand, in the present invention, the polymer swells and deforms, but in the in-plane direction, it deforms so as to close the hole. As a result, the area change of the ion permeable membrane itself can be suppressed.
  • the holes in the ion permeable membrane used in the present invention have a buffering effect, and as a result, the area change of the ion permeable membrane can be suppressed.
  • the pores of the ion permeable membrane are closed as described above, it is possible to obtain a diaphragm for electrolysis excellent in gas barrier properties.
  • the average pore diameter of the ion permeable membrane upon drying is 0.01 ⁇ m to 20 ⁇ m, preferably 0.03 ⁇ m to 10 ⁇ m, more preferably 0.05 ⁇ m to 1 ⁇ m, and still more preferably 0.05 ⁇ m to 0.00 ⁇ m. 5 ⁇ m. If it is such a range, the ion permeable film which is very excellent in ion permeability can be obtained. Further, if the average pore diameter of the ion permeable membrane is within the above range, the ion permeable membrane can be used when the electrolysis membrane of the present invention is used, that is, when the electrolysis membrane is immersed in alkaline water as an electrolytic solution.
  • the average pore diameter means a dried sample, that is, left in a temperature: 25 ° C., humidity: 60% environment until the weight does not change over time (for example, 12 hours or more). The diameter measured and calculated by the mercury intrusion method.
  • Examples of the material constituting the ion permeable membrane include a polymer having an anion exchangeable functional group. By having an anion exchangeable functional group, ion permeability and wettability with respect to alkaline water are imparted.
  • a polymer having an anion-exchangeable functional group a polymer having mechanical durability and chemical durability with respect to alkaline water and appropriately swelled in alkaline water is preferably used.
  • the upper limit of the degree of swelling with respect to an aqueous potassium hydroxide solution having a concentration of 30% by weight of the material (polymer) constituting the ion permeable membrane is preferably 250% or less, more preferably 150% or less, and still more preferably 100%. It is as follows. Within such a range, an ion permeable membrane having a small area change rate can be obtained.
  • the lower limit of the degree of swelling is preferably 1% or more. Within such a range, an ion permeable membrane having excellent gas barrier properties can be obtained.
  • the material (polymer) can be selected according to the degree of swelling depending on the use of the diaphragm for electrolysis.
  • a material (polymer) having a relatively low degree of swelling can be selected for applications where a lower area change rate is required, and a degree of swelling is relatively high for applications where higher gas barrier properties are required.
  • a high material (polymer) can be selected.
  • the degree of swelling means the degree of weight swelling at a liquid temperature of 25 ° C. and an immersion time of 12 hours.
  • Examples of the polymer having an anion-exchange functional group include a polymer in which an anion-exchange functional group is introduced into a skeleton resin such as a fluorine resin, an olefin resin, or an aromatic hydrocarbon resin. .
  • a polymer in which an anion exchangeable functional group is introduced into a fluororesin or an olefin resin is preferably used.
  • an olefin resin is preferably used.
  • fluororesin examples include, for example, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride, polyvinyl fluoride, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polytetrafluoroethylene.
  • ethylene-tetrafluoroethylene copolymer polyvinylidene fluoride, polyvinyl fluoride, vinylidene fluoride-hexafluoropropylene copolymer or tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer is preferable.
  • the olefin resin examples include low density polyethylene, high density polyethylene, ultra high molecular weight polyethylene, polypropylene, polybutene, polymethylpentene, and copolymers having a repeating unit constituting these compounds.
  • polypropylene, ultra high molecular weight polyethylene, low density polyethylene or high density polyethylene is preferable.
  • the viscosity average molecular weight of the ultrahigh molecular weight polyethylene used as the material constituting the ion permeable membrane is preferably 500,000 to 10,000,000, more preferably 1,000,000 to 10,000,000.
  • the said viscosity average molecular weight can be measured by the viscosity method prescribed
  • aromatic hydrocarbon resins examples include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyether ether ketone, polyether ketone, polysulfone, polystyrene, polyether sulfone, Examples include polyphenylene sulfide, polyarylate, polyetherimide, polyimide, polyamideimide, thermoplastic polyimide, and a copolymer having a repeating unit constituting these compounds.
  • the anion exchange functional group is a neutral acid ion exchange group, a weak acid ion exchange group, a strongly basic ion exchange group, a medium basic ion exchange group, or a weak basic ion exchange group. If a polymer having such a functional group is used, an ion permeable membrane having excellent wettability to alkaline water and excellent ion permeability can be obtained.
  • the medium acidic ion exchange group means a functional group having an acid dissociation constant pKa in water of 1 or more and less than 2.
  • the intermediate acidic ion exchange group include a phosphomethyl group and a phosphate group.
  • the weakly acidic ion exchange group means a functional group having an acid dissociation constant pKa in water of 2 or more, preferably 2 to 10.
  • the weakly acidic ion exchange group include a carboxylic acid group, a phenolic hydroxyl group, and a carboxymethyl group.
  • An ion permeable membrane composed of a polymer having a medium acidic group and a weakly acidic group has a wettability to alkaline water by neutralizing the intermediate acidic group and the weak acidic group with an alkali metal ion (for example, potassium). Can be improved. Note that the membrane composed of a polymer having a strongly acidic group is easily exchanged by alkali metal ions in alkaline water and the wettability with respect to alkaline water is reduced. It is not preferable.
  • the strongly basic ion exchange group means a functional group having a base dissociation constant pKb in water of less than 2.
  • the strongly basic ion exchange group include a quaternary ammonium base, a sulfonium base, a phosphonium base, a pyridinium base, and the like.
  • the medium basic ion exchange group refers to a functional group having a base dissociation constant pKb in water of 2 or more and less than 4.
  • Examples of the medium basic ion exchange group include an epichlorohydrin triethanolamine group.
  • the weakly basic ion exchange group means a functional group having a base dissociation constant pKb in water of 4 or more, preferably 4 to 10.
  • Examples of the weakly basic ion exchange group include a primary amino group, a secondary amino group, a tertiary amino group, an imidazole group, an amide group, a cyano group, and a pyridyl group.
  • Any appropriate method can be adopted as a method for introducing the anion-exchangeable functional group.
  • the method include a graft polymerization method such as a radiation graft polymerization method and a chemical initiator graft polymerization method; a monomer constituting the skeleton resin, a monomer having an anion-exchangeable functional group, and as necessary. And a method of copolymerizing with a crosslinking agent.
  • a graft polymerization method is preferably employed, and a radiation graft polymerization method is more preferably employed.
  • hydrophilicity (more specifically, wettability to alkaline water) can be obtained for a long time without impairing the properties (for example, mechanical durability, chemical durability) of the resin as the skeleton. ) Can be obtained. Furthermore, an ion permeable membrane composed of a polymer into which an anion-exchange functional group has been introduced by radiation graft polymerization loses hydrophilicity even in high-temperature alkaline water (for example, a 30 wt% potassium hydroxide aqueous solution at 80 ° C.). Absent.
  • a preferred embodiment in which the functional group is introduced by a radiation graft polymerization method will be described.
  • the resin as a skeleton is made microporous, then radiation is applied to the resin as a skeleton to generate free radicals, and then anion exchange is performed with the resin irradiated with the radiation.
  • a method pre-irradiation method in which a monomer having a functional group and / or a monomer composition containing a monomer capable of introducing an anion-exchangeable functional group is brought into contact and graft polymerization is performed using the free radical as a starting point. preferable.
  • the resin serving as the skeleton is used in a film form.
  • a film-like resin (resin that becomes a skeleton) subjected to graft polymerization is referred to as a base material.
  • a polymer radical method in which irradiation is performed in an inert gas for polymerization may be used, or a peroxide method in which irradiation is performed in the presence of oxygen for polymerization may be used.
  • the polymer radical method is preferred. If a polymer radical method is used, it can suppress that a monomer polymerizes without being graft-polymerized.
  • the radiation include ⁇ rays, ⁇ rays, ⁇ rays, electron beams, ultraviolet rays, and the like. Preferably, it is a gamma ray or an electron beam.
  • the substrate used for producing the ion permeable membrane is preferably microporous.
  • the average pore diameter of the substrate is preferably 0.01 ⁇ m to 20 ⁇ m, more preferably 0.03 ⁇ m to 10 ⁇ m, still more preferably 0.05 ⁇ m to 1 ⁇ m, and particularly preferably 0.05 ⁇ m to 0.5 ⁇ m. It is.
  • any appropriate method can be adopted as a method for making the substrate microporous.
  • a stretching method, a phase separation method, an extraction method, a melt quenching method, a chemical treatment method, a fusion method, a foaming method, a method in which these methods are appropriately combined, and the like can be adopted.
  • the stretching method or the phase separation method is preferable.
  • the stretching method is a method of making a porous film by stretching a nonporous film in a uniaxial direction or a biaxial direction at a predetermined magnification. According to the method, a uniform and excellent pore shape is obtained. Can do.
  • the phase separation method it can be easily made microporous.
  • the radiation irradiation dose in the radiation graft polymerization method is usually 1 kGy to 500 kGy (kilo gray: 1 gray corresponds to 1 J / kg energy absorption), and preferably 5 kGy to 300 kGy. If the irradiation dose is less than 1 kGy, a sufficient number of free radicals for graft polymerization may not be generated. On the other hand, if the irradiation dose is more than 500 kGy, there is a possibility that excessive crosslinking reaction or deterioration of the resin constituting the substrate proceeds.
  • the temperature during irradiation is not particularly limited, but is, for example, ⁇ 200 ° C.
  • the resin after irradiation is preferably placed at a low temperature of room temperature or lower, more preferably ⁇ 60 ° C. or lower.
  • a method in which a resin (base material) irradiated with radiation is brought into contact with a monomer composition containing a monomer having an anion-exchange functional group and / or a monomer capable of introducing an anion-exchange functional group, and graft polymerization is performed.
  • the method include a method of immersing a resin (base material) irradiated with radiation in a monomer composition.
  • monomers having an anion exchange functional group or monomers capable of introducing an anion exchange functional group may be used alone or in combination of two or more.
  • the monomer composition may be a homogeneous solution containing an organic solvent or an emulsion solution containing a water-soluble solvent (for example, water).
  • a water-soluble solvent for example, water
  • the organic solvent any appropriate solvent can be used as long as it can dissolve the monomer and can penetrate the base material.
  • the organic solvent is preferably a lower alcohol having 1 to 6 carbon atoms, more preferably a lower alcohol having 1 to 4 carbon atoms, still more preferably ethanol or methanol. Further, acetone, methyl acetate, ethyl acetate, hexane, or toluene may be used as the organic solvent.
  • the monomer composition is deoxygenated by performing vacuum degassing and bubbling with an inert gas such as nitrogen.
  • Examples of the monomer having an anion-exchange functional group include vinyl compounds having an anion-exchange functional group, and a vinyl compound represented by the following general formula (1) can be preferably used.
  • X represents a hydrogen atom or a linear or branched alkyl group.
  • the carbon number is preferably 1 to 10, more preferably 1 to 5.
  • R 1 is a linear or branched alkyl group having the above anion-exchange functional group, preferably a hydroxyl group, a carboxylic acid group, a primary amino group, a secondary amino group, a tertiary amino group, or an amide group.
  • R 1 preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 6 carbon atoms. With such a carbon number, an ion permeable membrane having excellent hydrophilicity can be obtained.
  • the monomer having an anion-exchangeable functional group examples include acrylic acid, methacrylic acid, 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, and 4-hydroxybutyl.
  • acrylic acid, methacrylic acid, 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, acrylamide or methacrylamide are preferable.
  • These monomers may be used alone or in combination of two or more.
  • a hydrophilic effect can be further enhanced by performing a neutralization treatment using an about 1 N aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, or the like.
  • Examples of the monomer capable of introducing the anion-exchange functional group include alkyl esters of styrene sulfonic acid; alkyl esters of vinyl sulfonic acid; alkyl esters of acrylic phosphonic acid; lithium salts, sodium salts, and potassium of styrene sulfonic acid.
  • Examples thereof include lithium salt, ammonium salt, lithium salt, sodium salt, potassium salt or ammonium salt of vinyl sulfonic acid; lithium salt, sodium salt, potassium salt or ammonium salt of acrylic phosphonic acid.
  • ion permeability and hydrophilicity can be imparted by hydrolyzing the ester into an acid form after graft polymerization.
  • a salt of styrene sulfonic acid, vinyl sulfonic acid or acrylic phosphonic acid after the graft polymerization, for example, by performing acid treatment with about 1 N nitric acid, hydrochloric acid or sulfuric acid, the above anion-exchangeable one can be obtained.
  • An ion permeable membrane having a functional group and exhibiting ion permeability and hydrophilicity can be obtained.
  • alkyl ester of styrene sulfonic acid examples include styrene sulfonic acid ethyl ester, styrene sulfonic acid propyl ester, styrene sulfonic acid isopropyl ester, styrene sulfonic acid n-butyl ester, styrene sulfonic acid tert butyl ester, and styrene sulfonic acid isobutyl.
  • Examples thereof include styrene sulfonic acid pentyl ester, styrene sulfonic acid neopentyl ester, styrene sulfonic acid isopentyl ester, and styrene sulfonic acid tert pentyl ester.
  • Specific examples of the alkyl ester of vinyl sulfonic acid include vinyl sulfonic acid ethyl ester and vinyl sulfonic acid methyl ester.
  • Halogenated alkylstyrene may be used as a monomer capable of introducing the anion-exchangeable functional group.
  • Specific examples of the halogenated alkyl styrene include chloromethyl styrene, bromomethyl styrene, iodomethyl styrene, chloroethyl styrene, bromoethyl styrene, iodoethyl styrene, chloropentyl styrene, bromopentyl styrene, iodopentyl styrene, chlorohexyl styrene, Examples include bromohexyl styrene, iodohexyl styrene, chloropropyl styrene, bromopropyl styrene, iodopropyl styrene
  • aqueous ammonia or alkylamine eg, diamine, triamine, tetraamine, trimethylamine, triethylamine, tributylamine, dimethylethylamine
  • Ion permeability and hydrophilicity can be imparted by subjecting the halogenated alkyl group to quaternary ammoniumation with the solution or the like.
  • an ion permeable membrane having ion permeability and hydrophilicity can be obtained by performing phosphoniumation treatment with a solution in which tributylphosphine is dissolved in alcohol and / or acetone.
  • the concentration of the monomer having an anion exchangeable functional group and the monomer capable of introducing the anion exchangeable functional group in the monomer composition is preferably 0.1% by weight to 70% by weight, more preferably 5% by weight. ⁇ 60% by weight.
  • concentration of the monomer is less than 0.1% by weight, the graft polymerization reaction may not proceed sufficiently.
  • concentration of the monomer is higher than 70% by weight, unreacted monomers may remain, leading to a decrease in yield.
  • the monomer composition may contain any appropriate monomer as long as it is a monomer copolymerizable with the monomer having an anion exchange functional group or a monomer capable of introducing an anion exchange functional group.
  • the content of other monomers is preferably 0.5% by weight to 100% by weight with respect to the total amount of the monomer having an anion exchange functional group and the monomer capable of introducing an anion exchange functional group. More preferably, it is 1 to 50% by weight.
  • the other monomer in the monomer composition may be a crosslinking agent.
  • a monomer composition containing a crosslinking agent By using a monomer composition containing a crosslinking agent, an ion permeable membrane having a crosslinked structure and excellent durability (for example, water resistance, alkali resistance, heat resistance, oxidation resistance) can be obtained.
  • the crosslinking agent include vinyl compounds having two or more vinyl groups. Specific examples of the crosslinking agent include divinylbenzene.
  • reaction temperature in the graft polymerization reaction is preferably 0 ° C. to 100 ° C., more preferably 30 ° C. to 80 ° C.
  • reaction time in the graft polymerization reaction is preferably 3 minutes to 48 hours.
  • the polymer having an anion-exchange functional group is preferably washed with an organic solvent such as toluene, methanol, isopropyl alcohol, acetone, or water, and then dried.
  • an organic solvent such as toluene, methanol, isopropyl alcohol, acetone, or water
  • the weight graft ratio of the ion-permeable membrane having an anion-exchange functional group obtained by graft polymerization is preferably 5% to 150%, more preferably 10% to 100%.
  • the weight graft ratio is a value calculated by (weight of base material after graft polymerization ⁇ weight of base material before graft polymerization) / (weight of base material before graft polymerization) ⁇ 100.
  • the grafting process for the base material constituting the ion permeable membrane constitutes the base material and the reinforcing body (or the reinforcing body constituting the ion permeable membrane). May be performed after the substrate is laminated, or may be performed before the ion permeable membrane and the reinforcing body are laminated.
  • the graft treatment is performed after laminating the base material constituting the ion permeable membrane and the reinforcing body (or the base material constituting the reinforcing body).
  • the grafting process When the grafting process is performed after laminating the base material constituting the ion permeable membrane and the base material constituting the reinforcing body, the grafting process can be simultaneously performed on both base materials.
  • the diaphragm for electrolysis which is excellent in ion permeability and shows the high wettability with respect to alkaline water can be obtained.
  • the weight graft ratio of the diaphragm for electrolysis is preferably 5% to 150%, more preferably 10% to 100%.
  • the reinforcing body is porous.
  • the form of the porous reinforcing body include a woven fabric, a nonwoven fabric, a net, a mesh, and a sintered porous membrane.
  • a sintered porous membrane is preferable. If it is a sintered porous membrane, strength and ion permeability are remarkably excellent. Examples of a method for obtaining a sintered porous film include a sintering method described in JP-A-2-214647.
  • the hole diameter of the reinforcing body is larger than the hole diameter of the ion permeable membrane.
  • the size of the holes in the reinforcement can be indirectly evaluated by the air permeability (more specifically, the size and thickness of the holes affect the air permeability).
  • the air permeability of the reinforcing body is preferably 1 cm 3 / cm 2 ⁇ second or more, more preferably 3 cm 3 / cm 2 ⁇ second or more, and further preferably 5 cm 3 / cm 2 ⁇ second or more. If it is such a range, the electrocoating membrane excellent in ion permeability can be obtained.
  • the upper limit of the air permeability of the reinforcing body is, for example, 500 cm 3 / cm 2 ⁇ sec.
  • the air permeability can be measured by Frazier method evaluation based on JIS L 1096 8.26 IA.
  • the porosity of the reinforcing body is preferably 10% to 90%, more preferably 10% to 55%, and further preferably 10% to 50%.
  • the porosity of the reinforcing body refers to a value calculated by the formula ⁇ 1- (apparent density of reinforcing body / true specific gravity of material constituting the reinforcing body) ⁇ ⁇ 100.
  • the thickness of the reinforcing body is preferably 10 ⁇ m to 1000 ⁇ m, more preferably 30 ⁇ m to 500 ⁇ m, and further preferably 50 ⁇ m to 200 ⁇ m. If it is such a range, it has sufficient intensity
  • the material constituting the reinforcing body any appropriate material can be used as long as the effects of the present invention can be obtained.
  • the polymer which has a hydrophilic functional group is mentioned, for example, Preferably the polymer which has an anion exchange functional group is mentioned.
  • the polymer having an anion-exchangeable functional group include the polymers described in the above section B. Among these, a polymer using ultrahigh molecular weight polyethylene as a resin serving as a skeleton can be preferably used.
  • the polymer preferably has a hydroxyl group, a carboxylic acid group, an amino group, an amide group, or a cyano group as an anion-exchangeable functional group.
  • an anion-exchangeable functional group in the reinforcing body can be performed by the method described in the above section B. That is, also in the reinforcing body, the anion-exchangeable functional group is preferably introduced by a graft polymerization method, and preferably by a radiation graft polymerization method.
  • the grafting process for the base material constituting the reinforcing body may be performed after the ion permeable membrane (or the base material constituting the ion permeable membrane) and the base material constituting the reinforcing body are laminated. You may carry out before laminating
  • the graft treatment is performed after laminating the ion permeable membrane (or the base material constituting the ion permeable membrane) and the base material constituting the reinforcing body.
  • the grafting process can be simultaneously performed on both base materials.
  • the air permeability of the base material used for producing the reinforcing body is preferably 1 cm 3 / cm 2 ⁇ sec or more, more preferably 3 cm 3 / cm 2 ⁇ sec or more, and further preferably 5 cm 3 / cm 2. -More than a second. If it is such a range, the electrocoating membrane excellent in ion permeability can be obtained.
  • the upper limit of the air permeability of the reinforcing body is, for example, 500 cm 3 / cm 2 ⁇ sec.
  • Examples of the form of the substrate used for producing the reinforcing body include woven fabric, non-woven fabric, net, mesh, sintered porous membrane, and the like.
  • the porosity of the base material is preferably 10% to 95%, more preferably 15% to 90%, and further preferably 15% to 75%. It is particularly preferably 15% to 70%. If it is such a range, the reinforcement which is excellent in ion permeability and excellent in the short circuit prevention performance of an electrode can be obtained.
  • the porosity of the base material is calculated by the formula ⁇ 1- (apparent density of base material / true specific gravity of the material constituting the base material) ⁇ ⁇ 100. Value.
  • the weight graft ratio of the reinforcing body having an anion-exchangeable functional group obtained by graft polymerization is preferably 5% to 150%, more preferably 10% to 100%.
  • the diaphragm for electrolysis of the present invention is excellent in ion permeability, has a small area change rate at the time of use, has high wettability with respect to an alkaline aqueous solution, and can suppress an increase in voltage.
  • Such a diaphragm for electrolysis can be suitably used for an electrochemical cell for hydrogen production.
  • an electrochemical cell for hydrogen production using the electrolysis membrane can be provided.
  • Rate of area change The diaphragm for electrolysis cut into a predetermined area is placed in an environment at a temperature of 25 ° C./humidity of 60%, and the area of the diaphragm for electrolysis after 12 hours is designated as S 0.
  • S 0. was immersed in pure water at 60 ° C., and the area of the diaphragm for electrolysis after 3 hours was set as S 1 , and the area change rate was calculated by the following formula.
  • Area change rate (%) ((S 1 ⁇ S 0 ) / S 0 ) ⁇ 100
  • the area change when immersed in pure water correlates with the area change when immersed in alkaline water.
  • the area change when immersed in pure water is more conspicuous than the area change when immersed in alkaline water. Therefore, the area change rate measured using pure water as described above is a preferable index of the area change when immersed in alkaline water.
  • (6) Electrical resistance The electrical resistance of the diaphragms for electrolysis obtained in the examples and comparative examples was measured according to JIS C 2313.
  • As the electrolytic solution an aqueous potassium hydroxide solution having a concentration of 40% by weight was used.
  • a platinum plate was used as the electrode.
  • the liquid temperature at the time of measurement was set to 25 ° C.
  • the measurement was performed after the diaphragm for electrolysis was immersed in the electrolyte for 10 minutes.
  • Alkaline water electrolysis evaluation Alkaline water electrolysis evaluation of the diaphragm for electrolysis obtained by the Example and the comparative example was performed using the H-type cell made from an acrylic resin.
  • As the electrolytic solution an aqueous potassium hydroxide solution having a concentration of 30% by weight was used, and a Ni electrode was used as the electrode.
  • the liquid temperature at the time of measurement was set to 25 ° C.
  • the current density was 0.2 A / cm 2 , the voltage when a constant current was applied continuously for 1 hour was measured, and alkaline water electrolysis was evaluated based on the average value of the measured values 50 minutes to 1 hour after the start of measurement. Went. The measurement was performed after the diaphragm for electrolysis was immersed in the electrolyte for 10 minutes.
  • (8) Gas barrier property The gas generated on the cathode side after 1 hour from the start of alkaline water electrolysis in (7) above is recovered, and the cathode is obtained by gas chromatography (manufactured by Shimadzu Corporation, trade name “GC-8A”). The gas barrier properties were evaluated by measuring the hydrogen purity of the gas generated on the side.
  • Example 1 Production of diaphragm A for electrolysis (one ion permeable membrane) A biaxially stretched microporous base material 1 made of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 1,200,000 (TODENTSU NITTO ( Free radicals were generated by irradiating a 45 kGy electron beam to a Shanghai Power Co., Ltd. product name: FIBR0SS, thickness: 16 ⁇ m, average pore size: 0.08 ⁇ m. After electron beam irradiation, it was stored at -70 ° C.
  • TODENTSU NITTO Free radicals were generated by irradiating a 45 kGy electron beam to a Shanghai Power Co., Ltd. product name: FIBR0SS, thickness: 16 ⁇ m, average pore size: 0.08 ⁇ m.
  • the graft-polymerized base material 1 was immersed in an aqueous solution of potassium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of 10% by weight with the liquid temperature maintained at 60 ° C. for 1 hour, and the graft chain portion was replaced with a potassium salt. did. Thereafter, the base material 1 is pulled up, washed with water to wash away excess potassium hydroxide, and then water on the surface portion is removed to obtain a diaphragm A for electrolysis comprising a microporous ion permeable membrane 1a having ion permeability. It was. The obtained diaphragm A for electrolysis was subjected to the above evaluations (4) to (9). The evaluation results are shown in Table 1.
  • potassium hydroxide manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 2 Preparation of diaphragm B for electrolysis (one ion permeable membrane structure) Except that the polymerization time in the graft polymerization was changed from 4 minutes to 5 minutes, the ion permeable membrane 1b ( A diaphragm B for electrolysis having a weight graft ratio of 42% was obtained. The obtained diaphragm B for electrolysis was subjected to the above evaluations (4) to (9). The evaluation results are shown in Table 1.
  • Example 3 Production of diaphragm C for electrolysis (one ion permeable membrane structure) Using acrylamide (manufactured by Wako Pure Chemical Industries, Ltd.) instead of methacrylic acid, the polymerization temperature in the graft polymerization (temperature of the polymerization solution) was 55 ° C.
  • the membrane C for electrolysis which consists of the ion permeable film 2a (weight graft ratio: 51%) was obtained like Example 1 except having changed into 60 degreeC and having changed the polymerization processing time in graft polymerization into 4 minutes for 5 minutes. .
  • the obtained diaphragm C for electrolysis was subjected to the above evaluations (4) to (9). The evaluation results are shown in Table 1.
  • Example 4 Production of diaphragm D for electrolysis (one ion permeable membrane configuration) Instead of methacrylic acid, acrylamide (manufactured by Wako Pure Chemical Industries, Ltd.) was used, and the polymerization temperature in the graft polymerization (temperature of the polymerization solution) was 55 ° C. Except that the temperature was changed to 60 ° C. and the polymerization time in the graft polymerization was changed from 4 minutes to 8 minutes, the membrane D for electrolysis composed of the ion permeable membrane 2b (weight graft ratio: 79%) was obtained in the same manner as in Example 1. . The obtained diaphragm D for electrolysis was subjected to the above evaluations (4) to (9). The evaluation results are shown in Table 1.
  • Example 5 Production of diaphragm E for electrolysis (reinforcing body 1 / ion permeable membrane 1c / reinforcing body 1) Base material 1 used in Example 1 and wet nonwoven fabric 1 for constituting the reinforcing body (Hirose Paper Co., Ltd.) Product name: HOP-15H, polyethylene / polypropylene core-sheath structure, thickness: 84 ⁇ m, air flow rate: 345 cm 3 / cm 2 ⁇ second) to be wet nonwoven fabric 1 / substrate 1 / wet nonwoven fabric 1 And three-layer laminated substrate I was obtained by heat welding using a hot roll machine heated to 150 ° C.
  • free radicals were generated by irradiating the substrate I with an electron beam of 45 kGy. After irradiation, it was stored at -70 ° C.
  • 250 g of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 250 g of methanol are added to a separable flask to prepare a mixed solution, and bubbling with nitrogen gas is performed for 1 hour while keeping the temperature at 25 ° C. Then, oxygen remaining in the mixed solution was removed.
  • the base material I irradiated with the electron beam was put into the mixed liquid, the liquid temperature was raised to 55 ° C., and the polymerization temperature was maintained for 7 minutes while maintaining the liquid temperature at 55 ° C.
  • Methacrylic acid was graft polymerized (weight graft ratio: 72%).
  • the graft-polymerized substrate I was immersed in an aqueous solution of potassium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of 10% by weight with the liquid temperature maintained at 60 ° C. for 1 hour, and the graft chain portion was converted to potassium salt. did.
  • the substrate I is pulled up, washed with water to wash away excess potassium hydroxide, and then water on the surface portion is removed to remove the ion-permeable microporous ion-permeable membrane 1c and the porous reinforcing body 1
  • An electrolysis diaphragm E was obtained.
  • the obtained diaphragm E for electrolysis was subjected to the evaluations (4) to (9). The evaluation results are shown in Table 1.
  • Example 6 Preparation of diaphragm F for electrolysis (reinforcing body 2 / ion permeable membrane 1d / reinforcing body 2)
  • sintered porous membrane 1 made of ultrahigh molecular weight polyethylene (manufactured by Nitto Denko Corporation, product) Name: sunmap, thickness: 100 ⁇ m, air flow rate: 16 cm 3 / cm 2 ⁇ second), and using a heat roll machine heated to 160 ° C., in the same manner as in Example 5, a diaphragm for electrolysis F was obtained (reinforcing body 2 / ion permeable membrane 1d / reinforcing body 2, weight graft ratio: 54%).
  • the obtained diaphragm F for electrolysis was subjected to the above evaluations (4) to (9). The evaluation results are shown in Table 1.
  • ion permeable membrane As the ion permeable membrane, a nonporous ion permeable membrane C1 (made by DuPont, trade name: Nafion 212CS, thickness: 50 ⁇ m) composed of a perfluorocarbon polymer having a sulfonic acid group is used.
  • the diaphragm for electrolysis comprised from (one ion permeable membrane 1 structure) was obtained. This diaphragm for electrolysis was subjected to the evaluations (4) to (9). The evaluation results are shown in Table 1.
  • the graft-polymerized crosslinked polyethylene film was immersed in an aqueous solution of potassium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of 10% by weight maintained at 60 ° C. for 1 hour to make the graft chain portion a potassium salt. Thereafter, the film was pulled up, washed with water to wash away excess potassium hydroxide, and then water on the surface portion was removed to obtain a diaphragm for electrolysis comprising an ion permeable membrane C2. This diaphragm for electrolysis was subjected to the evaluations (4) to (9). The evaluation results are shown in Table 1.
  • potassium hydroxide manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 3 The microporous substrate 1 used in Example 1 (manufactured by Nitto (Shanghai) Power Source Co., Ltd., trade name: FIBR0SS, thickness: 16 ⁇ m, average pore size: 0.08 ⁇ m) was directly used as a diaphragm for electrolysis. . This diaphragm for electrolysis was subjected to the evaluations (4) to (9). The evaluation results are shown in Table 1.
  • nip (polyethylene) strong net manufactured by NBC Co., Ltd.
  • the obtained ion permeable membrane C3 was subjected to the evaluations (4) and (9). The results are shown in Table 1.
  • the ion permeable membrane C3 had many irregularities on the surface and the film thickness varied from 300 ⁇ m to 1500 ⁇ m, and the area change rate, electrical resistance, alkaline water electrolysis evaluation and gas barrier property evaluation could not be performed.
  • the obtained ion permeable membrane C4 had a smooth surface and a uniform thickness of around 380 ⁇ m.
  • the obtained ion permeable membrane C4 was subjected to the evaluations (4) to (9). The evaluation results are shown in Table 1.
  • the diaphragm for electrolysis of the present invention has a small area change rate when immersed in pure water, a small electrical resistance, and can suppress an increase in voltage. Moreover, the diaphragm for electrolysis of this invention is excellent also in gas barrier property. In addition, the diaphragm for electrolysis which consists of a nonporous ion permeable film had a large area change rate (Comparative Examples 1 and 2), and the diaphragm for electrolysis which was inferior in wettability became high in the electrolysis voltage (Comparative Example 3). Moreover, when the microporous base material comprised from the polymer which does not have an anion exchange functional group is used as an ion permeable film, it is inferior to gas barrier property (comparative example 3).
  • the ion permeable membrane in the case of having a reinforcing body, the ion permeable membrane and the reinforcing body
  • the ion permeable membrane is formed by introducing an anion-exchangeable functional group by radiation graft polymerization so Even when immersed in water for a long time, wettability to alkaline water is maintained.
  • the diaphragm for electrolysis of the present invention can be suitably used as a diaphragm used in alkaline water electrolysis.

Abstract

Provided is an electrolytic membrane, the percentage change in the surface area of which during use is low. Said electrolytic membrane exhibits excellent ion permeability and makes it possible to prevent voltage increases due to gases generated at electrodes during electrolysis becoming attached to the surface of the membrane. This electrolytic membrane comprises an ion-permeable membrane and can be wetted by an aqueous solution of potassium hydroxide having a concentration of 30 wt.%. The mean pore diameter of said ion-permeable membrane is between 0.01 and 20 µm, inclusive, and when the ion-permeable membrane is immersed in purified water, the surface area thereof changes by no more than 20%. In a preferred embodiment, the electrical resistivity of the ion-permeable membrane when an aqueous solution of potassium hydroxide at a temperature of 25°C and a concentration of 40 wt.% is used as the electrolyte is no more than 0.5 Ω∙cm2.

Description

電解用隔膜Electrolysis diaphragm
 本発明は、電解用隔膜に関する。 The present invention relates to a diaphragm for electrolysis.
 従来、石油を中心としたエネルギー構図が構築されているが、石油は限りある資源であることに加えて産出可能な地域が限定されているため、今後のエネルギー事情を考慮すると、安定したエネルギーの供給方法が必要である。このようなエネルギー事情を反映し、水素は石油に代わる新しいエネルギー源として注目されている。水素の工業的製造方法として、高分子電解質を用いた水電解法が挙げられるが、これは白金のような高価な貴金属を触媒として使用するため、コストが高くなる問題がある。一方、アルカリ水電解法は、高価な貴金属触媒を使用することなく、アルカリ水を電気分解することで、安価に安定して水素を得られる方法として期待されている。 Conventionally, an energy composition centered on oil has been established, but in addition to being a limited resource, oil is limited in the areas where it can be produced. A supply method is required. Reflecting this energy situation, hydrogen is attracting attention as a new energy source to replace oil. As an industrial method for producing hydrogen, there is a water electrolysis method using a polymer electrolyte. However, since an expensive noble metal such as platinum is used as a catalyst, there is a problem that costs increase. On the other hand, the alkaline water electrolysis method is expected as a method for stably obtaining hydrogen at low cost by electrolyzing alkaline water without using an expensive noble metal catalyst.
 アルカリ水電解法に用いられる隔膜として、例えば、スルホン酸基を有するフッ化炭化水素重合体から構成される隔膜が提案されている(特許文献1)。しかし、このような隔膜は、電解槽に組み込んで湿潤状態となった際に、重合体の膨潤による面積変化が大きく、シワ、破れ、変形等の発生が問題となる。 As a diaphragm used in the alkaline water electrolysis method, for example, a diaphragm composed of a fluorinated hydrocarbon polymer having a sulfonic acid group has been proposed (Patent Document 1). However, such a diaphragm has a large area change due to swelling of the polymer when it is incorporated into an electrolytic cell and becomes wet, and the occurrence of wrinkles, tearing, deformation, etc. becomes a problem.
 また、アルカリ水電解法に用いられる隔膜として、親水性無機材料を含有する隔膜が提案されている(特許文献2)。この隔膜は、水への濡れ性を示し、多孔質であるためイオン透過性を有するが、電解環境下において、アルカリ水への濡れ性が不十分であるという問題があり、特に電解時に電極で生成したガスが隔膜表面に付着することによる電圧上昇が問題となる。また、特許文献1の隔膜は、イオン透過性が不十分であるという問題もある。 Also, a diaphragm containing a hydrophilic inorganic material has been proposed as a diaphragm used in the alkaline water electrolysis method (Patent Document 2). This diaphragm exhibits wettability to water and has ion permeability because it is porous. However, there is a problem that the wettability to alkaline water is insufficient in an electrolysis environment. The increase in voltage due to the generated gas adhering to the diaphragm surface becomes a problem. Moreover, the diaphragm of patent document 1 also has the problem that ion permeability is inadequate.
特開昭59-182984号公報JP 59-182984 A 特開2008-144262号公報JP 2008-144262 A
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、イオンの透過性に優れ、使用時の面積変化率が小さく、かつ、電解時に電極で生成したガスが隔膜表面に付着することによる電圧上昇を抑制し得る電解用隔膜を提供することにある。 The present invention has been made in order to solve the above-described conventional problems. The purpose of the present invention is to provide a gas that is excellent in ion permeability, has a small area change rate during use, and is generated at an electrode during electrolysis. An object of the present invention is to provide a diaphragm for electrolysis that can suppress an increase in voltage due to the adhesion of sapphire to the diaphragm surface.
 本発明の電解用隔膜は、イオン透過膜を備え、濃度30重量%の水酸化カリウム水溶液に対して濡れ性を示す、電解用隔膜であって、該イオン透過膜の平均孔径が0.01μm~20μmであり、かつ、該イオン透過膜を純水に浸漬した場合の面積変化率が20%以下である。
 好ましい実施形態においては、上記イオン透過膜の温度25℃/濃度30重量%の水酸化カリウム水溶液を電解液としたときの電気抵抗値が、0.5Ω・cm以下である。
 好ましい実施形態においては、上記イオン透過膜が、中酸性イオン交換基、弱酸性イオン交換基、強塩基性イオン交換基、中塩基性イオン交換基または弱塩基性イオン交換基を有するポリマーから構成される。
 好ましい実施形態においては、上記イオン透過膜において、上記中酸性イオン交換基、弱酸性イオン交換基、強塩基性イオン交換基、中塩基性イオン交換基または弱塩基性イオン交換基が、グラフト重合により導入されている。
 好ましい実施形態においては、本発明の電解用隔膜は、上記イオン透過膜の片側または両側に配置された多孔性の補強体をさらに備える。
 好ましい実施形態においては、上記補強体が、前記イオン透過膜の両側に配置されている。
 好ましい実施形態においては、上記補強体が、中酸性イオン交換基、弱酸性イオン交換基、強塩基性イオン交換基、中塩基性イオン交換基または弱塩基性イオン交換基を有するポリマーから構成されている。
 好ましい実施形態においては、上記補強体において、上記中酸性イオン交換基、弱酸性イオン交換基、強塩基性イオン交換基、中塩基性イオン交換基または弱塩基性イオン交換基が、グラフト重合により導入されている。
 本発明の別の局面によれば、水素製造用電気化学セルが提供される。この水素製造用電気化学セルには、上記電解用隔膜が用いられる。
The electrolysis membrane of the present invention is an electrolysis membrane comprising an ion permeable membrane and exhibiting wettability with respect to an aqueous potassium hydroxide solution having a concentration of 30% by weight. The average pore size of the ion permeable membrane is 0.01 μm to The area change rate when the ion permeable membrane is immersed in pure water is 20% or less.
In a preferred embodiment, the electric resistance value of the ion permeable membrane is 0.5 Ω · cm 2 or less when a potassium hydroxide aqueous solution having a temperature of 25 ° C./concentration of 30% by weight is used as an electrolyte.
In a preferred embodiment, the ion permeable membrane is composed of a polymer having a medium acid ion exchange group, a weak acid ion exchange group, a strongly basic ion exchange group, a medium basic ion exchange group, or a weak basic ion exchange group. The
In a preferred embodiment, in the ion permeable membrane, the medium acid ion exchange group, weak acid ion exchange group, strong basic ion exchange group, medium basic ion exchange group, or weak basic ion exchange group is formed by graft polymerization. Has been introduced.
In a preferred embodiment, the diaphragm for electrolysis of the present invention further comprises a porous reinforcing body disposed on one side or both sides of the ion permeable membrane.
In a preferred embodiment, the reinforcing body is disposed on both sides of the ion permeable membrane.
In a preferred embodiment, the reinforcing body is composed of a polymer having a medium acid ion exchange group, a weak acid ion exchange group, a strongly basic ion exchange group, a medium basic ion exchange group, or a weak basic ion exchange group. Yes.
In a preferred embodiment, the medium acidic ion exchange group, weak acid ion exchange group, strong basic ion exchange group, medium basic ion exchange group or weak basic ion exchange group is introduced into the reinforcing body by graft polymerization. Has been.
According to another aspect of the present invention, an electrochemical cell for producing hydrogen is provided. The membrane for electrolysis is used in this electrochemical cell for hydrogen production.
 本発明によれば、微多孔性であるイオン透過膜を備えることにより、イオン透過性に優れ、かつ、使用時の面積変化率が小さい電解用隔膜を得ることができる。また、本発明の電解用隔膜は、アルカリ水溶液に対して高い濡れ性を有し、電解時に生成したガスが表面に付着し難く、その結果、電圧上昇を抑制することができる。 According to the present invention, by providing a microporous ion permeable membrane, it is possible to obtain a diaphragm for electrolysis that is excellent in ion permeability and has a small area change rate during use. Moreover, the diaphragm for electrolysis of this invention has high wettability with respect to alkaline aqueous solution, and the gas produced | generated at the time of electrolysis cannot adhere to the surface easily, As a result, a voltage rise can be suppressed.
本発明の好ましい実施形態による電解用隔膜の概略断面図である。It is a schematic sectional drawing of the diaphragm for electrolysis by preferable embodiment of this invention. 本発明の好ましい実施形態による電解用隔膜の概略断面図である。It is a schematic sectional drawing of the diaphragm for electrolysis by preferable embodiment of this invention.
 以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。
A.電解用隔膜の全体構成
 本発明の電解用隔膜は、微多孔性のイオン透過膜を備える。
Hereinafter, although preferable embodiment of this invention is described, this invention is not limited to these embodiment.
A. Overall Structure of Electrolysis Membrane The electrolysis membrane of the present invention includes a microporous ion permeable membrane.
 本発明の電解用隔膜は、イオン透過膜を1枚有する単膜構成であってもよく、イオン透過膜を含む積層構成であってもよい。単膜構成であれば、イオン透過性がより高い電解用隔膜を得ることができ、強度に対する要求が比較的低い用途において有用である。一方、積層構成であれば、高強度、かつ、より短絡し難い電解用隔膜を得ることができる。積層構成の電解用隔膜の具体例としては、イオン透過膜の少なくとも片側に補強体を備える電解用隔膜が挙げられる。 The diaphragm for electrolysis of the present invention may have a single membrane configuration having one ion permeable membrane or a laminated configuration including an ion permeable membrane. With a single membrane configuration, a diaphragm for electrolysis with higher ion permeability can be obtained, which is useful in applications where the demand for strength is relatively low. On the other hand, if it is a laminated structure, the diaphragm for electrolysis which is high intensity | strength and cannot be short-circuited more can be obtained. As a specific example of the diaphragm for electrolysis of a laminated structure, the diaphragm for electrolysis provided with a reinforcement body at least on one side of the ion permeable membrane can be mentioned.
 図1は、本発明の好ましい実施形態による電解用隔膜の概略断面図である。図1に示す電解用隔膜100は、イオン透過膜10と多孔性の補強体20とを備える。図2は、本発明の別の好ましい実施形態による電解用隔膜の概略断面図である。図2に示す電解用隔膜100’は、イオン透過膜10の両側に多孔性の補強体20を備える。積層構成の場合において、補強体20は、図1に示すようにイオン透過膜10の片側に配置されていてもよく、図2に示すようにイオン透過膜10の両側に配置されていてもよい。好ましくは、補強体20は、イオン透過膜10の両側に配置される。このような構成であれば、反りが少なく、抵抗値等の特性に優れる電解用隔膜を得ることができる。また、補強体20がイオン透過膜10の片側に配置される場合、本発明の電解用隔膜100は、イオン透過膜10をアノード電極側に配置して用いてもよく、カソード電極側に配置して用いてもよい。イオン透過膜10と補強体20とは、例えば、ホットプレス機または加熱ロールを用いて加熱加圧して溶着させて積層させることができる。好ましくは、イオン透過膜10と補強体20とを積層し、積層体端部のみを加熱する。このようにして加熱すれば、補強体20が過度に加熱されて濡れ性が低下することを防ぐことができる。また、本発明の電解用隔膜は、隔膜として使用する際に、電極等により両側から圧力をかけて、イオン透過膜10と補強体20とを固定してもよい。また、後述のように、イオン透過膜および/または補強体がグラフト重合によって形成される場合、グラフト前のイオン透過膜と補強体とを上記方法により積層し、その後、グラフト処理を行ってもよい。 FIG. 1 is a schematic cross-sectional view of a diaphragm for electrolysis according to a preferred embodiment of the present invention. An electrolysis diaphragm 100 shown in FIG. 1 includes an ion permeable membrane 10 and a porous reinforcing body 20. FIG. 2 is a schematic cross-sectional view of a diaphragm for electrolysis according to another preferred embodiment of the present invention. An electrolysis diaphragm 100 ′ shown in FIG. 2 includes porous reinforcing bodies 20 on both sides of the ion permeable membrane 10. In the case of the laminated configuration, the reinforcing body 20 may be arranged on one side of the ion permeable membrane 10 as shown in FIG. 1 or may be arranged on both sides of the ion permeable membrane 10 as shown in FIG. . Preferably, the reinforcing body 20 is disposed on both sides of the ion permeable membrane 10. With such a configuration, it is possible to obtain a diaphragm for electrolysis that is less warped and excellent in properties such as resistance value. When the reinforcing body 20 is disposed on one side of the ion permeable membrane 10, the diaphragm for electrolysis 100 of the present invention may be used with the ion permeable membrane 10 disposed on the anode electrode side or disposed on the cathode electrode side. May be used. The ion permeable membrane 10 and the reinforcing body 20 can be laminated by heating and pressurizing using a hot press machine or a heating roll, for example. Preferably, the ion permeable membrane 10 and the reinforcing body 20 are laminated, and only the end of the laminated body is heated. By heating in this way, it is possible to prevent the reinforcing body 20 from being heated excessively and reducing wettability. Moreover, when using the diaphragm for electrolysis of this invention as a diaphragm, it may apply pressure from both sides with an electrode etc., and may fix the ion permeable film 10 and the reinforcement body 20. FIG. Further, as described later, when the ion permeable membrane and / or the reinforcing body is formed by graft polymerization, the ion permeable membrane and the reinforcing body before grafting may be laminated by the above method, and then the grafting may be performed. .
 図1または図2に示す構成であれば、イオン透過膜10が補強体20により補強されて、電解用隔膜として十分な強度を有し、かつ、電極間での短絡防止性にも優れる。また、補強体20は、上記のとおり、多孔性であるため、イオン透過性を阻害することなく上記効果を発現し得る。さらに、上記のようにイオン透過膜10が補強されるため、イオン透過膜10を薄くすることができ、その結果、イオン透過性に優れる電解用隔膜を得ることができる。 1 or 2, the ion permeable membrane 10 is reinforced by the reinforcing body 20, has a sufficient strength as a diaphragm for electrolysis, and is excellent in short circuit prevention between electrodes. Moreover, since the reinforcement body 20 is porous as above-mentioned, it can express the said effect, without inhibiting ion permeability. Furthermore, since the ion permeable membrane 10 is reinforced as described above, the ion permeable membrane 10 can be thinned, and as a result, an electrolysis diaphragm having excellent ion permeability can be obtained.
 本発明の電解用隔膜の厚みは、好ましくは15μm~1500μmであり、より好ましくは35μm~1000μmであり、さらに好ましくは50μm~500μmである。 The thickness of the diaphragm for electrolysis of the present invention is preferably 15 μm to 1500 μm, more preferably 35 μm to 1000 μm, and further preferably 50 μm to 500 μm.
 本発明の電解用膈膜は、濃度30重量%の水酸化カリウム水溶液に対して濡れ性を示す。より詳細には、本発明においては、イオン透過膜を1枚有する単膜構成の場合には該イオン透過膜が上記のように濡れ性を示し、イオン透過膜および補強体を有する積層構成の場合には、イオン透過膜と補強体とが上記のように濡れ性を示す。本発明の電解用膈膜は上記のように濡れ性を示すので、アルカリ水電解により生じたガス(水素ガスおよび酸素ガス)が付着し難く、該ガスによる電圧上昇を抑制することができる。なお、本明細書において、「水酸化カリウム水溶液に対して濡れ性を示す」とは、電解用膈膜を温度80℃/濃度30重量%の水酸化カリウム水溶液中に100時間浸漬させた場合にも、濡れ性が失われないことをいう。具体的には、上記のように水酸化カリウム水溶液中に浸漬させた後の電解用膈膜の表面に濃度30重量%の水酸化カリウム水溶液を滴下した際に、滴下した水酸化カリウム水溶液が裏面にまで到る場合、該電解用膈膜を「水酸化カリウム水溶液に対して濡れ性を示す」電解用膈膜という。 The electrolysis membrane of the present invention exhibits wettability with respect to a 30% by weight potassium hydroxide aqueous solution. More specifically, in the present invention, in the case of a single membrane configuration having one ion permeable membrane, the ion permeable membrane exhibits wettability as described above, and in the case of a laminated configuration having an ion permeable membrane and a reinforcing body. The ion permeable membrane and the reinforcing body exhibit wettability as described above. Since the electrocoating membrane of the present invention exhibits wettability as described above, it is difficult for gases (hydrogen gas and oxygen gas) generated by alkaline water electrolysis to adhere, and voltage increase due to the gas can be suppressed. In the present specification, “showing wettability with respect to an aqueous potassium hydroxide solution” means that the electrocoating membrane is immersed in an aqueous potassium hydroxide solution at a temperature of 80 ° C./concentration of 30% by weight for 100 hours. Also means that wettability is not lost. Specifically, when the potassium hydroxide aqueous solution having a concentration of 30% by weight is dropped on the surface of the electrolysis capsule after being immersed in the potassium hydroxide aqueous solution as described above, the dropped potassium hydroxide aqueous solution is In this case, the electrolysis film is referred to as an electrolysis film “showing wettability to an aqueous potassium hydroxide solution”.
 本発明の電解用隔膜は、純水に浸漬した場合の面積変化率が、好ましくは20%以下であり、より好ましくは10%以下である。また、本発明の電解用隔膜は、濃度30重量%の水酸化カリウム水溶液に浸漬した場合の面積変化率が、好ましくは20%以下であり、より好ましくは10%以下である。面積変化率がこのような範囲の電解用隔膜は、シワ、破れ、変形、折り重なり等が発生し難く、長寿命で安定した性能を発揮する。上記のように面積変化率の小さい電解用隔膜は、後述のように面積変化率が小さい微多孔性のイオン透過膜を備えることにより、得ることができる。なお、面積変化率の測定方法は、後述する。 In the diaphragm for electrolysis of the present invention, the area change rate when immersed in pure water is preferably 20% or less, more preferably 10% or less. In the diaphragm for electrolysis of the present invention, the area change rate when immersed in an aqueous potassium hydroxide solution having a concentration of 30% by weight is preferably 20% or less, more preferably 10% or less. The diaphragm for electrolysis having an area change rate in such a range is less likely to be wrinkled, broken, deformed, folded, etc., and exhibits a long life and stable performance. As described above, the diaphragm for electrolysis having a small area change rate can be obtained by providing a microporous ion permeable membrane having a small area change rate as described later. A method for measuring the area change rate will be described later.
B.イオン透過膜
 上記イオン透過膜は、カソード電極で生成されるイオン(例えば、水酸化物イオン等のアニオン)をアノード電極に透過させ得る。上記イオン透過膜は、好ましくは、濃度30重量%の水酸化カリウム水溶液中でイオン透過性(アニオン透過性)を示す。具体的には、上記イオン透過膜は、温度25℃/濃度30重量%の水酸化カリウム水溶液を電解液としたときの電気抵抗値が、好ましくは0.5Ω・cm以下であり、より好ましくは0.1Ω・cm以下であり、さらに好ましくは0.01Ω・cm~0.05Ω・cmである。本発明の電解用膈膜が積層構成の場合(すなわち、補強体を備える場合)、上記イオン透過膜の厚みは、好ましくは5μm~300μmであり、より好ましくは5μm~200μmであり、さらに好ましくは5μm~100μmである。このような範囲であれば、イオン透過性に優れるイオン透過膜を得ることができる。本発明の電解用膈膜がイオン透過膜を1枚有する単膜構成の場合、該イオン透過膜の厚み(すなわち電解用隔膜の厚み)は、好ましくは15μm~300μmであり、より好ましくは15μm~200μmであり、さらに好ましくは15μm~100μmである。このような範囲であれば、イオン透過性に優れ、かつ、実用上許容可能な強度を有する電解用膈膜を得ることができる。
B. Ion permeable membrane The ion permeable membrane can transmit ions generated at the cathode electrode (for example, anions such as hydroxide ions) to the anode electrode. The ion permeable membrane preferably exhibits ion permeability (anion permeability) in a potassium hydroxide aqueous solution having a concentration of 30% by weight. Specifically, the ion permeable membrane has an electrical resistance value of preferably 0.5 Ω · cm 2 or less, more preferably 0.5 Ω · cm 2 or less when an aqueous solution of potassium hydroxide having a temperature of 25 ° C./concentration of 30% by weight is used as an electrolyte. is a 0.1 [Omega · cm 2 or less, still more preferably 0.01Ω · cm 2 ~ 0.05Ω · cm 2. When the electrolysis membrane of the present invention has a laminated structure (that is, provided with a reinforcing body), the thickness of the ion permeable membrane is preferably 5 μm to 300 μm, more preferably 5 μm to 200 μm, and still more preferably. 5 μm to 100 μm. If it is such a range, the ion permeable film excellent in ion permeability can be obtained. When the electrolysis membrane of the present invention has a single membrane structure having one ion permeable membrane, the thickness of the ion permeable membrane (that is, the thickness of the electrolysis membrane) is preferably 15 μm to 300 μm, more preferably 15 μm to It is 200 μm, more preferably 15 μm to 100 μm. If it is such a range, the membrane for electrolysis which is excellent in ion permeability and has the intensity | strength which is practically acceptable can be obtained.
 上記イオン透過膜は、微多孔性である。微多孔性のイオン透過膜とは、孔径20μm以下の孔を全面にわたり有するイオン透過膜を意味する。本発明の電解用隔膜は、微多孔性のイオン透過膜を備えるため、非常に優れたイオン透過性を有する。また、イオン透過膜はアルカリ水に対して濡れ性を示すので、該電解用隔膜を使用する際には、電解液によりイオン透過膜を構成するポリマーが孔を塞ぐように膨潤して、隔膜を通じてガスが通過することを防止することができる。イオン透過膜は、該イオン透過膜を構成する材料を、例えば、延伸法、相分離法等の任意の適切な方法により微多孔性化して得ることができる。 The ion permeable membrane is microporous. The microporous ion permeable membrane means an ion permeable membrane having pores with a pore diameter of 20 μm or less over the entire surface. Since the diaphragm for electrolysis of the present invention includes a microporous ion permeable membrane, it has very good ion permeability. In addition, since the ion permeable membrane shows wettability to alkaline water, when using the diaphragm for electrolysis, the polymer constituting the ion permeable membrane is swollen by the electrolytic solution so as to block the pores, and the membrane is passed through the diaphragm. Gas can be prevented from passing through. The ion permeable membrane can be obtained by making the material constituting the ion permeable membrane microporous by any appropriate method such as a stretching method or a phase separation method.
 上記イオン透過膜は、純水に浸漬した場合の面積変化率が20%以下である。このようなイオン透過膜を用いれば、運転、停止およびメンテナンス時における電解液の入れ替えによりイオン透過膜の乾燥状態/湿潤状態が繰り返された場合においても、シワ、破れ、変形、折り重なり等が発生し難く、長寿命で安定した性能を発揮する電解用隔膜を得ることができる。上記イオン透過膜は、純水に浸漬した場合の面積変化率が、好ましくは15%以下であり、より好ましくは10%以下であり、さらに好ましくは5%以下である。純水に浸漬した場合の面積変化率は、小さいほど好ましい。該面積変化率の下限値は、例えば、1%である。なお、本明細書において、微多孔性のイオン透過膜および電解用隔膜の面積とは、見かけの面積のことをいう。例えば、イオン透過膜の平面視形状が矩形である場合、該矩形の4辺により規定される面の面積を、イオン透過膜の面積とする。 The area change rate of the ion permeable membrane when immersed in pure water is 20% or less. When such an ion permeable membrane is used, wrinkles, tears, deformations, folds, etc. occur even when the dry / wet state of the ion permeable membrane is repeated by replacing the electrolyte during operation, shutdown and maintenance. It is difficult to obtain a diaphragm for electrolysis that exhibits a long life and stable performance. The area change rate of the ion permeable membrane when immersed in pure water is preferably 15% or less, more preferably 10% or less, and further preferably 5% or less. The smaller the area change rate when immersed in pure water, the better. The lower limit value of the area change rate is, for example, 1%. In the present specification, the area of the microporous ion permeable membrane and the diaphragm for electrolysis means an apparent area. For example, when the ion-permeable membrane has a rectangular shape in plan view, the area of the surface defined by the four sides of the rectangle is the area of the ion-permeable membrane.
 上記のように純水に浸漬した場合の面積変化率が小さいことは、アルカリ水に浸漬した場合の面積変化率が小さいことを意味する。上記イオン透過膜は、濃度30重量%の水酸化カリウム水溶液に浸漬した場合の面積変化率が、好ましくは20%以下であり、より好ましくは15%以下であり、さらに好ましくは5%以下であり、特に好ましくは3%以下である。濃度30重量%の水酸化カリウム水溶液に浸漬した場合の面積変化率は、小さいほど好ましい。該面積変化率の下限値は、例えば、0.5%である。アルカリ水電解においては、電解液が強塩基性であるため、湿潤状態で電解用隔膜を組み込むことには危険が伴うが、上記イオン透過膜を備える本願発明の電解用隔膜を用いれば、乾燥状態のまま組み込んでも電解液中での面積変化率が小さいので、組み込み時の安全性を確保しつつ、安定したアルカリ水電解を行うことが可能である。 As described above, a small area change rate when immersed in pure water means a small area change rate when immersed in alkaline water. When the ion permeable membrane is immersed in an aqueous potassium hydroxide solution having a concentration of 30% by weight, the area change rate is preferably 20% or less, more preferably 15% or less, and even more preferably 5% or less. Particularly preferably, it is 3% or less. The smaller the area change rate when immersed in an aqueous potassium hydroxide solution having a concentration of 30% by weight, the better. The lower limit value of the area change rate is, for example, 0.5%. In alkaline water electrolysis, since the electrolytic solution is strongly basic, it is dangerous to incorporate the electrolytic diaphragm in a wet state, but if the electrolytic diaphragm of the present invention provided with the ion permeable membrane is used, it is in a dry state. Even if it is assembled as it is, the area change rate in the electrolytic solution is small, so that it is possible to perform stable alkaline water electrolysis while ensuring the safety at the time of incorporation.
 上記のように面積変化率の小さいイオン透過膜は、上記のように所定の径を有する孔を形成することにより得ることができる。より詳細には以下のとおりである。イオン透過膜は、ポリマーから構成されるため、電解液中で膨潤するが、従来のイオン透過膜は、ポリマーの膨潤がそのままイオン透過膜の巨視的な形状に影響して、面積が変化する。一方、本願発明においては、ポリマーが膨潤して変形するが、面内方向においては孔を塞ぐようにして変形する。その結果、イオン透過膜自体の面積変化が抑えられる。換言すれば、ポリマーの変形がイオン透過膜の形状に作用する際に、本願発明に用いられるイオン透過膜における孔は緩衝効果を奏し、その結果、該イオン透過膜の面積変化が抑えられる。また、本発明においては、上記のようにしてイオン透過膜の孔が塞がれるため、ガス遮断性に優れる電解用隔膜を得ることができる。 As described above, an ion permeable membrane having a small area change rate can be obtained by forming a hole having a predetermined diameter as described above. More details are as follows. Since the ion permeable membrane is composed of a polymer, it swells in the electrolyte solution. However, in the conventional ion permeable membrane, the swelling of the polymer directly affects the macroscopic shape of the ion permeable membrane, and the area changes. On the other hand, in the present invention, the polymer swells and deforms, but in the in-plane direction, it deforms so as to close the hole. As a result, the area change of the ion permeable membrane itself can be suppressed. In other words, when the deformation of the polymer acts on the shape of the ion permeable membrane, the holes in the ion permeable membrane used in the present invention have a buffering effect, and as a result, the area change of the ion permeable membrane can be suppressed. In the present invention, since the pores of the ion permeable membrane are closed as described above, it is possible to obtain a diaphragm for electrolysis excellent in gas barrier properties.
 上記イオン透過膜の乾燥時の平均孔径は、0.01μm~20μmであり、好ましくは0.03μm~10μmであり、より好ましくは0.05μm~1μmであり、さらに好ましくは0.05μm~0.5μmである。このような範囲であれば、イオン透過性に非常に優れるイオン透過膜を得ることができる。また、イオン透過膜の平均孔径が上記の範囲であれば、本発明の電解用膈膜の使用時、すなわち該電解用膈膜を電解液であるアルカリ水に浸漬した際に、イオン透過膜を構成する材料(ポリマー)が膨潤して、孔が塞がれるため、ガス遮断性に優れる電解用膈膜を提供することができる。さらに、上記で説明したように、イオン透過膜自体の面積変化が抑えられ得る。なお、本明細書において、平均孔径とは、乾燥した試料、すなわち、温度:25℃、湿度:60%の環境下で時間経過により重量が変化しなくなるまで(例えば、12時間以上)静置した試料について、水銀圧入法により測定・算出された径をいう。 The average pore diameter of the ion permeable membrane upon drying is 0.01 μm to 20 μm, preferably 0.03 μm to 10 μm, more preferably 0.05 μm to 1 μm, and still more preferably 0.05 μm to 0.00 μm. 5 μm. If it is such a range, the ion permeable film which is very excellent in ion permeability can be obtained. Further, if the average pore diameter of the ion permeable membrane is within the above range, the ion permeable membrane can be used when the electrolysis membrane of the present invention is used, that is, when the electrolysis membrane is immersed in alkaline water as an electrolytic solution. Since the constituent material (polymer) swells and the pores are blocked, it is possible to provide an electrolysis capsule excellent in gas barrier properties. Furthermore, as described above, the area change of the ion permeable membrane itself can be suppressed. In the present specification, the average pore diameter means a dried sample, that is, left in a temperature: 25 ° C., humidity: 60% environment until the weight does not change over time (for example, 12 hours or more). The diameter measured and calculated by the mercury intrusion method.
 上記イオン透過膜を構成する材料としては、例えば、アニオン交換性の官能基を有するポリマーが挙げられる。アニオン交換性の官能基を有することにより、イオン透過性およびアルカリ水に対する濡れ性が付与される。上記アニオン交換性の官能基を有するポリマーとしては、アルカリ水に対して機械的耐久性および化学的耐久性を有し、かつ、アルカリ水において適度に膨潤するポリマーが好ましく用いられる。 Examples of the material constituting the ion permeable membrane include a polymer having an anion exchangeable functional group. By having an anion exchangeable functional group, ion permeability and wettability with respect to alkaline water are imparted. As the polymer having an anion-exchangeable functional group, a polymer having mechanical durability and chemical durability with respect to alkaline water and appropriately swelled in alkaline water is preferably used.
 上記イオン透過膜を構成する材料(ポリマー)の濃度30重量%の水酸化カリウム水溶液に対する膨潤度の上限は、好ましくは250%以下であり、より好ましくは150%以下であり、さらに好ましくは100%以下である。このような範囲であれば、上記面積変化率が小さいイオン透過膜を得ることができる。該膨潤度の下限は、好ましくは1%以上である。このような範囲であれば、ガス遮断性に優れるイオン透過膜を得ることができる。膨潤度による材料(ポリマー)の選択は、電解用隔膜の用途に応じてなされ得る。例えば、より低い面積変化率が求められる用途に対しては、膨潤度が比較的低い材料(ポリマー)が選択され得、より高いガス遮断性が求められる用途に対しては、膨潤度が比較的高い材料(ポリマー)が選択され得る。なお、本明細書において、膨潤度とは、液温25℃、浸漬時間12時間における、重量膨潤度を意味する。 The upper limit of the degree of swelling with respect to an aqueous potassium hydroxide solution having a concentration of 30% by weight of the material (polymer) constituting the ion permeable membrane is preferably 250% or less, more preferably 150% or less, and still more preferably 100%. It is as follows. Within such a range, an ion permeable membrane having a small area change rate can be obtained. The lower limit of the degree of swelling is preferably 1% or more. Within such a range, an ion permeable membrane having excellent gas barrier properties can be obtained. The material (polymer) can be selected according to the degree of swelling depending on the use of the diaphragm for electrolysis. For example, a material (polymer) having a relatively low degree of swelling can be selected for applications where a lower area change rate is required, and a degree of swelling is relatively high for applications where higher gas barrier properties are required. A high material (polymer) can be selected. In the present specification, the degree of swelling means the degree of weight swelling at a liquid temperature of 25 ° C. and an immersion time of 12 hours.
 上記アニオン交換性の官能基を有するポリマーとしては、例えば、フッ素系樹脂、オレフィン系樹脂、芳香族炭化水素系樹脂等の骨格となる樹脂にアニオン交換性の官能基が導入されたポリマーが挙げられる。なかでも、アルカリ水に対する化学的安定性の観点から、フッ素系樹脂またはオレフィン系樹脂にアニオン交換性の官能基が導入されたポリマーが好ましく用いられる。また、アニオン交換性の官能基の導入のしやすさの観点からは、オレフィン系樹脂が好ましく用いられる。 Examples of the polymer having an anion-exchange functional group include a polymer in which an anion-exchange functional group is introduced into a skeleton resin such as a fluorine resin, an olefin resin, or an aromatic hydrocarbon resin. . Among these, from the viewpoint of chemical stability against alkaline water, a polymer in which an anion exchangeable functional group is introduced into a fluororesin or an olefin resin is preferably used. From the viewpoint of easy introduction of an anion-exchangeable functional group, an olefin resin is preferably used.
 上記フッ素系樹脂としては、例えば、エチレン-テトラフルオロエチレン共重合体、ポリフッ化ビニリデン、ポリフッ化ビニル、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリクロロトリフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン-フッ化ビニリデン共重合体等が挙げられる。なかでも好ましくは、エチレン-テトラフルオロエチレン共重合体、ポリフッ化ビニリデン、ポリフッ化ビニル、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体またはテトラフルオロエチレン-ヘキサフルオロプロピレン-フッ化ビニリデン共重合体である。 Examples of the fluororesin include, for example, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride, polyvinyl fluoride, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polytetrafluoroethylene. Examples include fluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polychlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, and the like. Among them, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride, polyvinyl fluoride, vinylidene fluoride-hexafluoropropylene copolymer or tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer is preferable.
 上記オレフィン系樹脂としては、例えば、低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、およびこれらの化合物を構成する繰り返し単位を有する共重合体等が挙げられる。なかでも好ましくは、ポリプロピレン、超高分子量ポリエチレン、低密度ポリエチレンまたは高密度ポリエチレンである。イオン透過膜を構成する材料として用いられる超高分子量ポリエチレンの粘度平均分子量は好ましくは50万~1000万であり、より好ましくは100万~1000万である。なお、上記粘度平均分子量は、ASTMD4020に規定の粘度法により測定することができる。 Examples of the olefin resin include low density polyethylene, high density polyethylene, ultra high molecular weight polyethylene, polypropylene, polybutene, polymethylpentene, and copolymers having a repeating unit constituting these compounds. Among these, polypropylene, ultra high molecular weight polyethylene, low density polyethylene or high density polyethylene is preferable. The viscosity average molecular weight of the ultrahigh molecular weight polyethylene used as the material constituting the ion permeable membrane is preferably 500,000 to 10,000,000, more preferably 1,000,000 to 10,000,000. In addition, the said viscosity average molecular weight can be measured by the viscosity method prescribed | regulated to ASTMD4020.
 上記芳香族炭化水素系樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリスルホン、ポリスチレン、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリアリーレート、ポリエーテルイミド、ポリイミド、ポリアミドイミド、熱可塑性ポリイミド、およびこれらの化合物を構成する繰り返し単位を有する共重合体等が挙げられる。 Examples of the aromatic hydrocarbon resins include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyether ether ketone, polyether ketone, polysulfone, polystyrene, polyether sulfone, Examples include polyphenylene sulfide, polyarylate, polyetherimide, polyimide, polyamideimide, thermoplastic polyimide, and a copolymer having a repeating unit constituting these compounds.
 上記アニオン交換性の官能基は、中酸性イオン交換基、弱酸性イオン交換基、強塩基性イオン交換基、中塩基性イオン交換基または弱塩基性イオン交換基である。このような官能基を有するポリマーを用いれば、アルカリ水に対する濡れ性に優れ、イオン透過性に優れるイオン透過膜を得ることができる。 The anion exchange functional group is a neutral acid ion exchange group, a weak acid ion exchange group, a strongly basic ion exchange group, a medium basic ion exchange group, or a weak basic ion exchange group. If a polymer having such a functional group is used, an ion permeable membrane having excellent wettability to alkaline water and excellent ion permeability can be obtained.
 本明細書において、中酸性イオン交換基とは、水中における酸解離定数pKaが1以上2未満の官能基をいう。中酸性イオン交換基としては、例えば、ホスホメチル基、リン酸基等が挙げられる。本明細書において、弱酸性イオン交換基とは、水中における酸解離定数pKaが2以上、好ましくは2~10の官能基をいう。弱酸性イオン交換基としては、例えば、カルボン酸基、フェノール性水酸基、カルボキシメチル基等が挙げられる。中酸性基および弱酸性基を有するポリマーから構成されるイオン透過膜は、中酸性基および弱酸性基を、アルカリ金属イオン(例えば、カリウム)で中和処理することにより、アルカリ水への濡れ性を向上させることができる。なお、強酸性基を有するポリマーから構成される膜は、該強酸性基がアルカリ水中のアルカリ金属イオンにより容易に交換され、アルカリ水に対する濡れ性が低減するため、本発明のイオン透過膜としては好ましくない。 In the present specification, the medium acidic ion exchange group means a functional group having an acid dissociation constant pKa in water of 1 or more and less than 2. Examples of the intermediate acidic ion exchange group include a phosphomethyl group and a phosphate group. In the present specification, the weakly acidic ion exchange group means a functional group having an acid dissociation constant pKa in water of 2 or more, preferably 2 to 10. Examples of the weakly acidic ion exchange group include a carboxylic acid group, a phenolic hydroxyl group, and a carboxymethyl group. An ion permeable membrane composed of a polymer having a medium acidic group and a weakly acidic group has a wettability to alkaline water by neutralizing the intermediate acidic group and the weak acidic group with an alkali metal ion (for example, potassium). Can be improved. Note that the membrane composed of a polymer having a strongly acidic group is easily exchanged by alkali metal ions in alkaline water and the wettability with respect to alkaline water is reduced. It is not preferable.
 本明細書において、強塩基性イオン交換基とは、水中における塩基解離定数pKbが2未満の官能基をいう。強塩基性イオン交換基としては、例えば、第4級アンモニウム塩基、スルホニウム塩基、ホスホニウム塩基、ピリジニウム塩基等が挙げられる。本明細書において、中塩基性イオン交換基とは、水中における塩基解離定数pKbが2以上4未満の官能基をいう。中塩基性イオン交換基としては、例えば、エピクロロヒドリントリエタノールアミン基等が挙げられる。本明細書において、弱塩基性イオン交換基とは、水中における塩基解離定数pKbが4以上、好ましくは4~10の官能基をいう。弱塩基性イオン交換基としては、例えば、第1級アミノ基、第2級アミノ基、第3級アミノ基、イミダゾール基、アミド基、シアノ基、ピリジル基等が挙げられる。 In the present specification, the strongly basic ion exchange group means a functional group having a base dissociation constant pKb in water of less than 2. Examples of the strongly basic ion exchange group include a quaternary ammonium base, a sulfonium base, a phosphonium base, a pyridinium base, and the like. In the present specification, the medium basic ion exchange group refers to a functional group having a base dissociation constant pKb in water of 2 or more and less than 4. Examples of the medium basic ion exchange group include an epichlorohydrin triethanolamine group. In the present specification, the weakly basic ion exchange group means a functional group having a base dissociation constant pKb in water of 4 or more, preferably 4 to 10. Examples of the weakly basic ion exchange group include a primary amino group, a secondary amino group, a tertiary amino group, an imidazole group, an amide group, a cyano group, and a pyridyl group.
 上記アニオン交換性の官能基を導入する方法としては、任意の適切な方法が採用され得る。該方法としては、例えば、放射線グラフト重合法、化学開始剤グラフト重合法等のグラフト重合による方法;上記骨格となる樹脂を構成するモノマーと、アニオン交換性の官能基を有するモノマーと、必要に応じて架橋剤とを共重合させる方法等が挙げられる。好ましくはグラフト重合法が採用され、より好ましくは放射線グラフト重合法が採用される。放射線グラフト重合法を用いれば、上記骨格となる樹脂の特性(例えば、機械的耐久性、化学的耐久性)を損なうことなく、長期的に親水性(より具体的には、アルカリ水に対する濡れ性)を維持し得る透過膜を得ることができる。さらに、放射線グラフト重合によりアニオン交換性の官能基が導入されたポリマーから構成されるイオン透過膜は、高温のアルカリ水(例えば、80℃の30重量%水酸化カリウム水溶液)中でも、親水性を失わない。以下、アニオン交換性の官能基を導入する方法の代表例として、放射線グラフト重合法により該官能基を導入する好ましい実施形態を説明する。 Any appropriate method can be adopted as a method for introducing the anion-exchangeable functional group. Examples of the method include a graft polymerization method such as a radiation graft polymerization method and a chemical initiator graft polymerization method; a monomer constituting the skeleton resin, a monomer having an anion-exchangeable functional group, and as necessary. And a method of copolymerizing with a crosslinking agent. A graft polymerization method is preferably employed, and a radiation graft polymerization method is more preferably employed. By using the radiation graft polymerization method, hydrophilicity (more specifically, wettability to alkaline water) can be obtained for a long time without impairing the properties (for example, mechanical durability, chemical durability) of the resin as the skeleton. ) Can be obtained. Furthermore, an ion permeable membrane composed of a polymer into which an anion-exchange functional group has been introduced by radiation graft polymerization loses hydrophilicity even in high-temperature alkaline water (for example, a 30 wt% potassium hydroxide aqueous solution at 80 ° C.). Absent. Hereinafter, as a typical example of a method for introducing an anion-exchangeable functional group, a preferred embodiment in which the functional group is introduced by a radiation graft polymerization method will be described.
 上記放射線グラフト重合法としては、骨格となる上記樹脂を微多孔性化した後、該骨格となる樹脂に放射線を照射してフリーラジカルを生成させた後、放射線が照射された樹脂と、アニオン交換性の官能基を有するモノマーおよび/またはアニオン交換性の官能基を導入し得るモノマーを含むモノマー組成物とを接触させ、該フリーラジカルを起点としてグラフト重合させる方法(前照射法)を用いることが好ましい。骨格となる樹脂とモノマーとを共存させた状態に放射線を照射してグラフト重合させる方法(同時照射法)に比べて、モノマー同士の重合が抑制されて、グラフト重合に寄与するモノマーの量が多くなり、モノマーの利用率が優れるからである。好ましくは、上記の骨格となる樹脂は、フィルム状で用いられる。なお、本明細書において、グラフト重合に供されるフィルム状の樹脂(骨格となる樹脂)を基材と称する。 In the radiation graft polymerization method, the resin as a skeleton is made microporous, then radiation is applied to the resin as a skeleton to generate free radicals, and then anion exchange is performed with the resin irradiated with the radiation. A method (pre-irradiation method) in which a monomer having a functional group and / or a monomer composition containing a monomer capable of introducing an anion-exchangeable functional group is brought into contact and graft polymerization is performed using the free radical as a starting point. preferable. Compared with the method of graft polymerization by irradiating radiation in the coexistence of the resin and the monomer that forms the skeleton (simultaneous irradiation method), the polymerization of the monomers is suppressed and the amount of the monomer contributing to the graft polymerization is large. This is because the utilization rate of the monomer is excellent. Preferably, the resin serving as the skeleton is used in a film form. In this specification, a film-like resin (resin that becomes a skeleton) subjected to graft polymerization is referred to as a base material.
 上記前照射法としては、不活性ガス中で放射線を照射し重合するポリマーラジカル法を用いてもよく、酸素存在下で放射線を照射し重合するパーオキサイド法を用いてもよい。好ましくは、ポリマーラジカル法である。ポリマーラジカル法を用いれば、モノマーがグラフト重合されずにポリマー化することを抑制することができる。上記放射線としては、例えば、α線、β線、γ線、電子線、紫外線などが挙げられる。好ましくは、γ線または電子線である。 As the pre-irradiation method, a polymer radical method in which irradiation is performed in an inert gas for polymerization may be used, or a peroxide method in which irradiation is performed in the presence of oxygen for polymerization may be used. The polymer radical method is preferred. If a polymer radical method is used, it can suppress that a monomer polymerizes without being graft-polymerized. Examples of the radiation include α rays, β rays, γ rays, electron beams, ultraviolet rays, and the like. Preferably, it is a gamma ray or an electron beam.
 上記イオン透過膜の作製に用いられる基材は、微多孔性であることが好ましい。該基材の平均孔径は、好ましくは0.01μm~20μmであり、より好ましくは0.03μm~10μmであり、さらに好ましくは0.05μm~1μmであり、特に好ましくは0.05μm~0.5μmである。 The substrate used for producing the ion permeable membrane is preferably microporous. The average pore diameter of the substrate is preferably 0.01 μm to 20 μm, more preferably 0.03 μm to 10 μm, still more preferably 0.05 μm to 1 μm, and particularly preferably 0.05 μm to 0.5 μm. It is.
 上記基材を微多孔性化する方法としては、任意の適切な方法が採用され得る。例えば、延伸法、相分離法、抽出法、溶融急冷法、化学処理法、融着法、発泡法、およびこれらの方法を適宜組み合わせた方法等が採用され得る。なかでも、好ましくは延伸法または相分離法である。延伸法は、無孔フィルムを所定の倍率にて一軸方向または二軸方向に延伸して多孔性化する方法であり、該方法によれば、均一、かつ、連続性に優れる孔形状を得ることができる。また、相分離法によれば、簡便に微多孔性化させることができる。 Any appropriate method can be adopted as a method for making the substrate microporous. For example, a stretching method, a phase separation method, an extraction method, a melt quenching method, a chemical treatment method, a fusion method, a foaming method, a method in which these methods are appropriately combined, and the like can be adopted. Among them, the stretching method or the phase separation method is preferable. The stretching method is a method of making a porous film by stretching a nonporous film in a uniaxial direction or a biaxial direction at a predetermined magnification. According to the method, a uniform and excellent pore shape is obtained. Can do. Moreover, according to the phase separation method, it can be easily made microporous.
 上記放射線グラフト重合法における放射線照射線量は、通常1kGy~500kGy(キログレイ:1グレイは1J/kgエネルギー吸収に相当する)であり、好ましくは5kGy~300kGyである。照射線量が1kGyより少ないとグラフト重合に十分な数のフリーラジカルが生成されないおそれがある。また、照射線量が500kGyより多いと基材を構成する樹脂の過剰な架橋反応や劣化が進むおそれがある。照射時の温度は特に制限されないが、例えば、-200℃~60℃であり、好ましくは-200℃~25℃程度である。照射時および照射後の環境温度が基材を構成する樹脂のガラス転移温度より高すぎると生成したフリーラジカルが失活するおそれがある。照射後の樹脂は、好ましくは常温以下、より好ましくは-60℃以下の低温下に置くことが好ましい。 The radiation irradiation dose in the radiation graft polymerization method is usually 1 kGy to 500 kGy (kilo gray: 1 gray corresponds to 1 J / kg energy absorption), and preferably 5 kGy to 300 kGy. If the irradiation dose is less than 1 kGy, a sufficient number of free radicals for graft polymerization may not be generated. On the other hand, if the irradiation dose is more than 500 kGy, there is a possibility that excessive crosslinking reaction or deterioration of the resin constituting the substrate proceeds. The temperature during irradiation is not particularly limited, but is, for example, −200 ° C. to 60 ° C., preferably about −200 ° C. to 25 ° C. If the environmental temperature at the time of irradiation and after irradiation is too higher than the glass transition temperature of the resin constituting the substrate, the generated free radicals may be deactivated. The resin after irradiation is preferably placed at a low temperature of room temperature or lower, more preferably −60 ° C. or lower.
 放射線が照射された樹脂(基材)と、アニオン交換性の官能基を有するモノマーおよび/またはアニオン交換性の官能基を導入し得るモノマーを含むモノマー組成物とを接触させて、グラフト重合させる方法としては、例えば、放射線が照射された樹脂(基材)をモノマー組成物中に浸漬させる方法が挙げられる。上記モノマー組成物中、アニオン交換性の官能基を有するモノマーまたはアニオン交換性の官能基を導入し得るモノマーは、単独で、または2種以上組み合わせて用いてもよい。 A method in which a resin (base material) irradiated with radiation is brought into contact with a monomer composition containing a monomer having an anion-exchange functional group and / or a monomer capable of introducing an anion-exchange functional group, and graft polymerization is performed. Examples of the method include a method of immersing a resin (base material) irradiated with radiation in a monomer composition. In the monomer composition, monomers having an anion exchange functional group or monomers capable of introducing an anion exchange functional group may be used alone or in combination of two or more.
 上記モノマー組成物は、有機溶媒を含む均一系溶液であってもよく、水溶性溶媒(例えば、水)を含むエマルジョン溶液であってもよい。上記有機溶媒としては、モノマーを溶解することができ、かつ、基材に浸透し得る溶媒であれば、任意の適切な溶媒を用いることができる。有機溶媒としては、好ましくは炭素数が1~6の低級アルコール、より好ましくは炭素数が1~4の低級アルコール、さらに好ましくはエタノールまたはメタノールが挙げられる。また、有機溶剤として、アセトン、酢酸メチル、酢酸エチル、ヘキサンまたはトルエンを用いてもよい。好ましくは、上記モノマー組成物は、減圧脱気、窒素などの不活性ガスによるバブリングを行い、脱酸素される。 The monomer composition may be a homogeneous solution containing an organic solvent or an emulsion solution containing a water-soluble solvent (for example, water). As the organic solvent, any appropriate solvent can be used as long as it can dissolve the monomer and can penetrate the base material. The organic solvent is preferably a lower alcohol having 1 to 6 carbon atoms, more preferably a lower alcohol having 1 to 4 carbon atoms, still more preferably ethanol or methanol. Further, acetone, methyl acetate, ethyl acetate, hexane, or toluene may be used as the organic solvent. Preferably, the monomer composition is deoxygenated by performing vacuum degassing and bubbling with an inert gas such as nitrogen.
 上記アニオン交換性の官能基を有するモノマーとしては、例えば、アニオン交換性の官能基を有するビニル系化合物が挙げられ、下記一般式(1)で表されるビニル系化合物が好ましく用いられ得る。
  HC=C(X)R   ・・・(1)
 Xは水素原子、または直鎖状もしくは分岐状のアルキル基を表す。Xがアルキル基の場合、その炭素数は、好ましくは1~10であり、より好ましくは1~5である。Rは上記アニオン交換性の官能基を有する直鎖状または分岐状のアルキル基であり、好ましくはヒドロキシル基、カルボン酸基、1級アミノ基、2級アミノ基、3級アミノ基、アミド基、シアノ基、4級アンモニウム塩基、イミダゾール基、ピリジル基および/または4級ピリジニウム塩基を有する直鎖状または分岐状のアルキル基である。Rは、炭素数が、好ましくは1~20であり、より好ましくは1~10であり、さらに好ましくは1~6である。このような炭素数であれば、親水性に優れるイオン透過膜を得ることができる。
Examples of the monomer having an anion-exchange functional group include vinyl compounds having an anion-exchange functional group, and a vinyl compound represented by the following general formula (1) can be preferably used.
H 2 C═C (X) R 1 (1)
X represents a hydrogen atom or a linear or branched alkyl group. When X is an alkyl group, the carbon number is preferably 1 to 10, more preferably 1 to 5. R 1 is a linear or branched alkyl group having the above anion-exchange functional group, preferably a hydroxyl group, a carboxylic acid group, a primary amino group, a secondary amino group, a tertiary amino group, or an amide group. , A cyano group, a quaternary ammonium base, an imidazole group, a pyridyl group and / or a linear or branched alkyl group having a quaternary pyridinium base. R 1 preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 6 carbon atoms. With such a carbon number, an ion permeable membrane having excellent hydrophilicity can be obtained.
 上記アニオン交換性の官能基を有するモノマーの具体例としては、アクリル酸、メタクリル酸、2-ヒドロキシメチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシメチルメタクリレート、2-ヒドロキシエチルメタクリレート、酢酸ビニル、アリルアミン、アクリルアミド、メタクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノエチルアクリレートアクリル酸2-(ジメチルアミノ)エチル、N-(2-ヒドロキシエチル)アクリルアミド、アクリロイルモルフォリン、N-イソプロピルアクリルアミド、アクリロニトリル、メタクリロニトリル、1-ビニルイミダゾール、2-ビニルピリジン、4-ビニルピリジン、メチルビニルピリジン、エチルビニルピリジン、ビニルピロリドン、ビニルカルバゾール、アミノスチレン、アルキルアミノスチレン、ジアルキルアミノスチレン、トリアルキルアミノスチレン、ビニルベンジルトリメチルアンモニウムクロリド等が挙げられる。なかでも好ましくは、アクリル酸、メタクリル酸、2-ヒドロキシメチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシメチルメタクリレート、2-ヒドロキシエチルメタクリレート、アクリルアミドまたはメタクリルアミドである。これらのモノマーは、単独で、または2種以上組み合わせて用いてもよい。また、グラフト重合した後、例えば、約1規定の水酸化ナトリウム水溶液、水酸化カリウム水溶液等を用いて中和処理を行うことにより、更に親水化効果を高めることができる。 Specific examples of the monomer having an anion-exchangeable functional group include acrylic acid, methacrylic acid, 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, and 4-hydroxybutyl. Acrylate, 2-hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, vinyl acetate, allylamine, acrylamide, methacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, N, N-dimethylaminopropylacrylamide, N, N -Dimethylaminoethyl acrylate 2- (dimethylamino) ethyl acrylate, N- (2-hydroxyethyl) acrylamide, acryloylmorpholine, N-isopropyla Kurylamide, acrylonitrile, methacrylonitrile, 1-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, methylvinylpyridine, ethylvinylpyridine, vinylpyrrolidone, vinylcarbazole, aminostyrene, alkylaminostyrene, dialkylaminostyrene, trialkyl Aminostyrene, vinylbenzyltrimethylammonium chloride, etc. are mentioned. Of these, acrylic acid, methacrylic acid, 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, acrylamide or methacrylamide are preferable. These monomers may be used alone or in combination of two or more. Further, after the graft polymerization, for example, a hydrophilic effect can be further enhanced by performing a neutralization treatment using an about 1 N aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, or the like.
 上記アニオン交換性の官能基を導入し得るモノマーをとしては、例えば、スチレンスルホン酸のアルキルエステル;ビニルスルホン酸のアルキルエステル;アクリルホスホン酸のアルキルエステル;スチレンスルホン酸のリチウム塩、ナトリウム塩、カリウム塩またはアンモニウム塩;ビニルスルホン酸のリチウム塩、ナトリウム塩、カリウム塩またはアンモニウム塩;アクリルホスホン酸のリチウム塩、ナトリウム塩、カリウム塩またはアンモニウム塩等が挙げられる。スチレンスルホン酸、ビニルスルホン酸またはアクリルホスホン酸のアルキルエステルを用いる場合、グラフト重合した後、エステルを加水分解して酸型とすることにより、イオン透過性および親水性を付与することができる。スチレンスルホン酸、ビニルスルホン酸またはアクリルホスホン酸の塩を用いる場合は、グラフト重合した後、例えば約1規定の硝酸、塩酸または硫酸等を用いて、酸処理を行うことにより、上記アニオン交換性の官能基を有してイオン透過性および親水性を示すイオン透過膜を得ることができる。 Examples of the monomer capable of introducing the anion-exchange functional group include alkyl esters of styrene sulfonic acid; alkyl esters of vinyl sulfonic acid; alkyl esters of acrylic phosphonic acid; lithium salts, sodium salts, and potassium of styrene sulfonic acid. Examples thereof include lithium salt, ammonium salt, lithium salt, sodium salt, potassium salt or ammonium salt of vinyl sulfonic acid; lithium salt, sodium salt, potassium salt or ammonium salt of acrylic phosphonic acid. When an alkyl ester of styrene sulfonic acid, vinyl sulfonic acid, or acrylic phosphonic acid is used, ion permeability and hydrophilicity can be imparted by hydrolyzing the ester into an acid form after graft polymerization. In the case of using a salt of styrene sulfonic acid, vinyl sulfonic acid or acrylic phosphonic acid, after the graft polymerization, for example, by performing acid treatment with about 1 N nitric acid, hydrochloric acid or sulfuric acid, the above anion-exchangeable one can be obtained. An ion permeable membrane having a functional group and exhibiting ion permeability and hydrophilicity can be obtained.
 上記スチレンスルホン酸のアルキルエステルの具体例としては、スチレンスルホン酸エチルエステル、スチレンスルホン酸プロピルエステル、スチレンスルホン酸イソプロピルエステル、スチレンスルホン酸n-ブチルエステル、スチレンスルホン酸tertブチルエステル、スチレンスルホン酸イソブチルエステル、スチレンスルホン酸ペンチルエステル、スチレンスルホン酸ネオペンチルエステル、スチレンスルホン酸イソペンチルエステル、スチレンスルホン酸tertペンチルエステル等が挙げられる。ビニルスルホン酸のアルキルエステルの具体例としては、ビニルスルホン酸エチルエステル、ビニルスルホン酸メチルエステル等が挙げられる。 Specific examples of the alkyl ester of styrene sulfonic acid include styrene sulfonic acid ethyl ester, styrene sulfonic acid propyl ester, styrene sulfonic acid isopropyl ester, styrene sulfonic acid n-butyl ester, styrene sulfonic acid tert butyl ester, and styrene sulfonic acid isobutyl. Examples thereof include styrene sulfonic acid pentyl ester, styrene sulfonic acid neopentyl ester, styrene sulfonic acid isopentyl ester, and styrene sulfonic acid tert pentyl ester. Specific examples of the alkyl ester of vinyl sulfonic acid include vinyl sulfonic acid ethyl ester and vinyl sulfonic acid methyl ester.
 上記アニオン交換性の官能基を導入し得るモノマーとして、ハロゲン化アルキルスチレンを用いてもよい。ハロゲン化アルキルスチレンの具体例としては、クロロメチルスチレン、ブロモメチルスチレン、ヨードメチルスチレン、クロロエチルスチレン、ブロモエチルスチレン、ヨードエチルスチレン、クロロペンチルスチレン、ブロモペンチルスチレン、ヨードペンチルスチレン、クロロヘキシルスチレン、ブロモヘキシルスチレン、ヨードヘキシルスチレン、クロロプロピルスチレン、ブロモプロピルスチレン、ヨードプロピルスチレン、クロロブチルスチレン、ブロモブチルスチレン、ヨードブチルスチレン等が挙げられる。ハロゲン化アルキルスチレンを用いる場合、グラフト重合した後、例えば、アンモニア水、またはアルキルアミン(例えば、ジアミン、トリアミン、テトラアミン、トリメチルアミン、トリエチルアミン、トリブチルアミン、ジメチルエチルアミン)をアルコール、アセトンおよび/または水に溶解させた溶液等でハロゲン化アルキル基の4級アンモニウム化処理を行うことでイオン透過性および親水性を付与することができる。また、例えばトリブチルホスフィンをアルコールおよび/またはアセトンに溶解させた溶液で、ホスホニウム化処理を行うことで、イオン透過性および親水性を有するイオン透過膜を得ることができる。 Halogenated alkylstyrene may be used as a monomer capable of introducing the anion-exchangeable functional group. Specific examples of the halogenated alkyl styrene include chloromethyl styrene, bromomethyl styrene, iodomethyl styrene, chloroethyl styrene, bromoethyl styrene, iodoethyl styrene, chloropentyl styrene, bromopentyl styrene, iodopentyl styrene, chlorohexyl styrene, Examples include bromohexyl styrene, iodohexyl styrene, chloropropyl styrene, bromopropyl styrene, iodopropyl styrene, chlorobutyl styrene, bromobutyl styrene, and iodobutyl styrene. When halogenated alkylstyrene is used, after graft polymerization, for example, aqueous ammonia or alkylamine (eg, diamine, triamine, tetraamine, trimethylamine, triethylamine, tributylamine, dimethylethylamine) is dissolved in alcohol, acetone and / or water. Ion permeability and hydrophilicity can be imparted by subjecting the halogenated alkyl group to quaternary ammoniumation with the solution or the like. For example, an ion permeable membrane having ion permeability and hydrophilicity can be obtained by performing phosphoniumation treatment with a solution in which tributylphosphine is dissolved in alcohol and / or acetone.
 上記モノマー組成物におけるアニオン交換性の官能基を有するモノマーおよびアニオン交換性の官能基を導入し得るモノマーの濃度は、好ましくは0.1重量%~70重量%であり、より好ましくは5重量%~60重量%である。該モノマーの濃度が0.1重量%未満の場合、グラフト重合反応が十分に進行しないおそれがある。また、該モノマーの濃度が70重量%より高い場合、未反応モノマーが残存し歩留まりの低下を招くおそれがある。 The concentration of the monomer having an anion exchangeable functional group and the monomer capable of introducing the anion exchangeable functional group in the monomer composition is preferably 0.1% by weight to 70% by weight, more preferably 5% by weight. ~ 60% by weight. When the concentration of the monomer is less than 0.1% by weight, the graft polymerization reaction may not proceed sufficiently. On the other hand, when the concentration of the monomer is higher than 70% by weight, unreacted monomers may remain, leading to a decrease in yield.
 上記モノマー組成物中に、その他のモノマーが含まれていてもよい。その他のモノマーとしては、上記アニオン交換性の官能基を有するモノマーまたはアニオン交換性の官能基を導入し得るモノマーと共重合可能なモノマーであれば、任意の適切なモノマーが用いられ得る。その他のモノマーの含有割合は、上記アニオン交換性の官能基を有するモノマーおよびアニオン交換性の官能基を導入し得るモノマーの合計量に対して、好ましくは0.5重量%~100重量%であり、より好ましくは1重量%~50重量%である。 Other monomer may be contained in the monomer composition. As the other monomer, any appropriate monomer can be used as long as it is a monomer copolymerizable with the monomer having an anion exchange functional group or a monomer capable of introducing an anion exchange functional group. The content of other monomers is preferably 0.5% by weight to 100% by weight with respect to the total amount of the monomer having an anion exchange functional group and the monomer capable of introducing an anion exchange functional group. More preferably, it is 1 to 50% by weight.
 上記モノマー組成物中のその他のモノマーは架橋剤であってもよい。架橋剤を含むモノマー組成物を用いることにより、架橋構造を有し耐久性(例えば、耐水性、耐アルカリ性、耐熱性、耐酸化性)に優れるイオン透過膜を得ることができる。架橋剤としては、例えば、ビニル基を2つ以上有するビニル系化合物が挙げられる。架橋剤の具体例としては、ジビニルベンゼン等が挙げられる。 The other monomer in the monomer composition may be a crosslinking agent. By using a monomer composition containing a crosslinking agent, an ion permeable membrane having a crosslinked structure and excellent durability (for example, water resistance, alkali resistance, heat resistance, oxidation resistance) can be obtained. Examples of the crosslinking agent include vinyl compounds having two or more vinyl groups. Specific examples of the crosslinking agent include divinylbenzene.
 放射線が照射された基材とモノマー組成物とを接触させる際の温度(グラフト重合反応における反応温度)は、好ましくは0℃~100℃、より好ましくは30℃~80℃である。放射線が照射された基材とモノマー組成物とを接触させる時間(グラフト重合反応における反応時間)は、好ましくは3分~48時間である。 The temperature at which the substrate irradiated with radiation and the monomer composition are brought into contact (reaction temperature in the graft polymerization reaction) is preferably 0 ° C. to 100 ° C., more preferably 30 ° C. to 80 ° C. The time for contacting the substrate irradiated with radiation and the monomer composition (reaction time in the graft polymerization reaction) is preferably 3 minutes to 48 hours.
 グラフト重合反応させた後、アニオン交換性の官能基を有するポリマーを、トルエン、メタノール、イソプロピルアルコール、アセトン等の有機溶媒または水で洗浄し、その後、乾燥することが好ましい。 After the graft polymerization reaction, the polymer having an anion-exchange functional group is preferably washed with an organic solvent such as toluene, methanol, isopropyl alcohol, acetone, or water, and then dried.
 グラフト重合により得られたアニオン交換性の官能基を有するイオン透過膜の重量グラフト率は、好ましくは5%~150%であり、より好ましくは10%~100%である。なお、本明細書において重量グラフト率とは、(グラフト重合後の基材の重量-グラフト重合前の基材の重量)/(グラフト重合前の基材の重量)×100で算出される値をいう。 The weight graft ratio of the ion-permeable membrane having an anion-exchange functional group obtained by graft polymerization is preferably 5% to 150%, more preferably 10% to 100%. In this specification, the weight graft ratio is a value calculated by (weight of base material after graft polymerization−weight of base material before graft polymerization) / (weight of base material before graft polymerization) × 100. Say.
 本発明の電解用隔膜が、イオン透過膜と補強体とを備える場合、イオン透過膜を構成する基材に対するグラフト処理は、イオン透過膜を構成する基材と補強体(または補強体を構成する基材)とを積層した後に行ってもよく、イオン透過膜と補強体とを積層する前に行ってもよい。好ましくは、イオン透過膜を構成する基材と補強体(または補強体を構成する基材)とを積層した後に、グラフト処理が行われる。イオン透過膜を構成する基材と補強体を構成する基材とを積層した後にグラフト処理が行われる場合、両基材に対して同時にグラフト処理が行われ得る。このように両基材に対して同時にグラフト処理を行えば、イオン透過性に優れ、アルカリ水に対して高い濡れ性を示す電解用隔膜を得ることができる。両基材に対して、同時にグラフト処理が行われる場合、電解用隔膜の重量グラフト率は、好ましくは5%~150%であり、より好ましくは10%~100%である。 When the diaphragm for electrolysis of the present invention includes an ion permeable membrane and a reinforcing body, the grafting process for the base material constituting the ion permeable membrane constitutes the base material and the reinforcing body (or the reinforcing body constituting the ion permeable membrane). May be performed after the substrate is laminated, or may be performed before the ion permeable membrane and the reinforcing body are laminated. Preferably, the graft treatment is performed after laminating the base material constituting the ion permeable membrane and the reinforcing body (or the base material constituting the reinforcing body). When the grafting process is performed after laminating the base material constituting the ion permeable membrane and the base material constituting the reinforcing body, the grafting process can be simultaneously performed on both base materials. Thus, if the graft | grafting process is simultaneously performed with respect to both base materials, the diaphragm for electrolysis which is excellent in ion permeability and shows the high wettability with respect to alkaline water can be obtained. When grafting is performed on both substrates simultaneously, the weight graft ratio of the diaphragm for electrolysis is preferably 5% to 150%, more preferably 10% to 100%.
C.補強体
 上記補強体は、多孔性である。多孔性の補強体の形態としては、例えば、織布、不織布、ネット、メッシュ、焼結多孔膜等が挙げられる。好ましくは焼結多孔膜である。焼結多孔膜であれば、強度およびイオン透過性が顕著に優れる。焼結多孔膜を得る方法としては、例えば、特開平2-214647号公報に記載された焼結法が挙げられる。
C. Reinforcing body The reinforcing body is porous. Examples of the form of the porous reinforcing body include a woven fabric, a nonwoven fabric, a net, a mesh, and a sintered porous membrane. A sintered porous membrane is preferable. If it is a sintered porous membrane, strength and ion permeability are remarkably excellent. Examples of a method for obtaining a sintered porous film include a sintering method described in JP-A-2-214647.
 上記補強体の孔径は、上記イオン透過膜の孔径よりも大きい。補強体の孔の大きさは通気度により間接的に評価され得る(より詳細には、孔の大きさと厚みとが通気度に影響する)。上記補強体の通気度は、好ましくは1cm/cm・秒以上であり、より好ましくは3cm/cm・秒以上であり、さらに好ましくは5cm/cm・秒以上である。このような範囲であれば、イオン透過性に優れる電解用膈膜を得ることができる。上記補強体の通気度の上限は、例えば、500cm/cm・秒である。通気度が500cm/cm・秒以上を超えると、補強体の強度が低下するおそれがある。なお、本明細書において通気度は、JIS L 1096 8.26 I Aに基づくフラジール法評価により測定することができる。 The hole diameter of the reinforcing body is larger than the hole diameter of the ion permeable membrane. The size of the holes in the reinforcement can be indirectly evaluated by the air permeability (more specifically, the size and thickness of the holes affect the air permeability). The air permeability of the reinforcing body is preferably 1 cm 3 / cm 2 · second or more, more preferably 3 cm 3 / cm 2 · second or more, and further preferably 5 cm 3 / cm 2 · second or more. If it is such a range, the electrocoating membrane excellent in ion permeability can be obtained. The upper limit of the air permeability of the reinforcing body is, for example, 500 cm 3 / cm 2 · sec. If the air permeability exceeds 500 cm 3 / cm 2 · sec or more, the strength of the reinforcing body may be reduced. In the present specification, the air permeability can be measured by Frazier method evaluation based on JIS L 1096 8.26 IA.
 上記補強体の気孔率は、好ましくは10%~90%であり、より好ましくは10%~55%であり、さらに好ましくは10%~50%である。なお、補強体の気孔率とは、{1-(補強体の見掛け密度/補強体を構成する材料の真比重)}×100の式で算出される値をいう。 The porosity of the reinforcing body is preferably 10% to 90%, more preferably 10% to 55%, and further preferably 10% to 50%. The porosity of the reinforcing body refers to a value calculated by the formula {1- (apparent density of reinforcing body / true specific gravity of material constituting the reinforcing body)} × 100.
 上記補強体の厚みは、好ましくは10μm~1000μmであり、より好ましくは30μm~500μmであり、さらに好ましくは50μm~200μmである。このような範囲であれば、補強体として十分な強度を有し、かつ、電極の短絡を防止することができる。 The thickness of the reinforcing body is preferably 10 μm to 1000 μm, more preferably 30 μm to 500 μm, and further preferably 50 μm to 200 μm. If it is such a range, it has sufficient intensity | strength as a reinforcement body and can prevent the short circuit of an electrode.
 上記補強体を構成する材料としては、本発明の効果が得られる限りにおいて、任意の適切な材料が用いられ得る。上記多孔性補強体を構成する材料としては、例えば、親水性官能基を有するポリマーが挙げられ、好ましくはアニオン交換性の官能基を有するポリマーが挙げられる。アニオン交換性の官能基を有するポリマーとしては、上記B項で説明したポリマーが挙げられる。なかでも、骨格となる樹脂として超高分子量ポリエチレンを用いたポリマーが好ましく用いられ得る。補強体においては、該ポリマーが、アニオン交換性の官能基として、ヒドロキシル基、カルボン酸基、アミノ基、アミド基またはシアノ基を有することが好ましい。 As the material constituting the reinforcing body, any appropriate material can be used as long as the effects of the present invention can be obtained. As a material which comprises the said porous reinforcement body, the polymer which has a hydrophilic functional group is mentioned, for example, Preferably the polymer which has an anion exchange functional group is mentioned. Examples of the polymer having an anion-exchangeable functional group include the polymers described in the above section B. Among these, a polymer using ultrahigh molecular weight polyethylene as a resin serving as a skeleton can be preferably used. In the reinforcing body, the polymer preferably has a hydroxyl group, a carboxylic acid group, an amino group, an amide group, or a cyano group as an anion-exchangeable functional group.
 上記補強体においてのアニオン交換性の官能基の導入は、上記B項で説明したような方法により行うことができる。すなわち、上記補強体においても、アニオン交換性の官能基の導入は、グラフト重合法により行うことが好ましく、放射線グラフト重合法により行うことが好ましい。補強体を構成する基材に対するグラフト処理は、イオン透過膜(またはイオン透過膜を構成する基材)と補強体を構成する基材とを積層した後に行ってもよく、イオン透過膜と補強体とを積層する前に行ってもよい。好ましくは、イオン透過膜(またはイオン透過膜を構成する基材)と補強体を構成する基材とを積層した後に、グラフト処理が行われる。イオン透過膜を構成する基材と補強体を構成する基材とを積層した後にグラフト処理が行われる場合、両基材に対して同時にグラフト処理が行われ得る。 The introduction of an anion-exchangeable functional group in the reinforcing body can be performed by the method described in the above section B. That is, also in the reinforcing body, the anion-exchangeable functional group is preferably introduced by a graft polymerization method, and preferably by a radiation graft polymerization method. The grafting process for the base material constituting the reinforcing body may be performed after the ion permeable membrane (or the base material constituting the ion permeable membrane) and the base material constituting the reinforcing body are laminated. You may carry out before laminating | stacking. Preferably, the graft treatment is performed after laminating the ion permeable membrane (or the base material constituting the ion permeable membrane) and the base material constituting the reinforcing body. When the grafting process is performed after laminating the base material constituting the ion permeable membrane and the base material constituting the reinforcing body, the grafting process can be simultaneously performed on both base materials.
 上記補強体の作製に用いられる基材の通気度は、好ましくは1cm/cm・秒以上であり、より好ましくは3cm/cm・秒以上であり、さらに好ましくは5cm/cm・秒以上である。このような範囲であれば、イオン透過性に優れる電解用膈膜を得ることができる。上記補強体の通気度の上限は、例えば、500cm/cm・秒である。 The air permeability of the base material used for producing the reinforcing body is preferably 1 cm 3 / cm 2 · sec or more, more preferably 3 cm 3 / cm 2 · sec or more, and further preferably 5 cm 3 / cm 2. -More than a second. If it is such a range, the electrocoating membrane excellent in ion permeability can be obtained. The upper limit of the air permeability of the reinforcing body is, for example, 500 cm 3 / cm 2 · sec.
 上記補強体の作製に用いられる基材の形態としては、例えば、織布、不織布、ネット、メッシュ、焼結多孔膜等が挙げられる。 Examples of the form of the substrate used for producing the reinforcing body include woven fabric, non-woven fabric, net, mesh, sintered porous membrane, and the like.
 上記補強体においては、基材(グラフト重合前の補強体)の気孔率は、好ましくは10%~95%であり、より好ましくは15%~90%であり、さらに好ましくは15%~75%であり、特に好ましくは15%~70%である。このような範囲であれば、イオン透過性に優れ、かつ、電極の短絡防止性能に優れる補強体を得ることができる。なお、本明細書において、基材(グラフト重合前の補強体)の気孔率とは、{1-(基材の見掛け密度/基材を構成する材料の真比重)}×100の式で算出される値をいう。 In the reinforcing body, the porosity of the base material (reinforcing body before graft polymerization) is preferably 10% to 95%, more preferably 15% to 90%, and further preferably 15% to 75%. It is particularly preferably 15% to 70%. If it is such a range, the reinforcement which is excellent in ion permeability and excellent in the short circuit prevention performance of an electrode can be obtained. In this specification, the porosity of the base material (reinforcing body before graft polymerization) is calculated by the formula {1- (apparent density of base material / true specific gravity of the material constituting the base material)} × 100. Value.
 グラフト重合により得られたアニオン交換性の官能基を有する補強体の、重量グラフト率は、好ましくは5%~150%であり、より好ましくは10%~100%である。 The weight graft ratio of the reinforcing body having an anion-exchangeable functional group obtained by graft polymerization is preferably 5% to 150%, more preferably 10% to 100%.
 上記のように、本発明の電解用隔膜は、イオン透過性に優れ、使用時の面積変化率が小さく、アルカリ水溶液に対して高い濡れ性を有して電圧上昇を抑制することができる。このような電解用隔膜は、水素製造用電気化学セルに好適に用いられ得る。本発明の別の局面によれば、上記電解用隔膜を用いた水素製造用電気化学セルが提供され得る。 As described above, the diaphragm for electrolysis of the present invention is excellent in ion permeability, has a small area change rate at the time of use, has high wettability with respect to an alkaline aqueous solution, and can suppress an increase in voltage. Such a diaphragm for electrolysis can be suitably used for an electrochemical cell for hydrogen production. According to another aspect of the present invention, an electrochemical cell for hydrogen production using the electrolysis membrane can be provided.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。実施例における評価方法は以下のとおりである。また、実施例において、特に明記しない限り、「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. The evaluation methods in the examples are as follows. In Examples, unless otherwise specified, “parts” and “%” are based on weight.
(1)厚みの測定
 厚みはデジタルアップライトゲージR1-205(尾崎製作所社製;測定子:Φ5mm、測定力:1.1N以下)を使用した。特に断りがない場合は、25℃±2℃、65±20%RHでの測定値である。
(2)平均孔経の測定
 実施例および比較例で用いた基材の平均孔径は、水銀圧入装置を用いた水銀圧入法により求めた。
(3)通気度
 実施例および比較例で用いた基材の通気度は、JIS L 1096 8.26 I A法に基づくフラジール法に準じて測定した。
(4)水酸化カリウム水溶液に対する濡れ性
 80℃に維持された濃度30重量%の水酸化カリウム水溶液中に、電解用隔膜を100時間浸漬した。その後、電解用隔膜を引き上げ、残存した水酸化カリウム水溶液を十分に洗浄、除去した後、乾燥させた。次いで、電解用隔膜の一方の面(裏面)にpH試験紙(アズワン社製、品番「1-1745-01」)をあてておき、他方の面(表面)から濃度30重量%の水酸化カリウム水溶液1滴(約50mg)を滴下した。滴下して1分間経過した後、該水酸化カリウム水溶液が裏面まで到り、pH試験紙が変色した場合は、濡れ性ありと判断した。
(5)面積変化率
 所定の面積に裁断した電解用隔膜を温度25℃/湿度60%の環境下に置き、12時間経過した後の該電解用隔膜の面積をSとし、また、同サンプルを、60℃の純水中に浸漬し、3時間経過した後の該電解用隔膜の面積をSとして、下記式により、面積変化率を算出した。
 面積変化率(%)=((S-S)/S)×100
 なお、純水に浸漬した場合の面積変化は、アルカリ水に浸漬した場合の面積変化と相関がある。また、純水に浸漬した場合の面積変化は、アルカリ水に浸漬した場合の面積変化よりも顕著である。したがって、上記のように純水を用いて測定した面積変化率は、アルカリ水に浸漬した場合の面積変化の好ましい指標となる。
(6)電気抵抗
 実施例および比較例で得られた電解用隔膜の電気抵抗を、JIS C 2313に準じて測定した。電解液は、濃度40重量%の水酸化カリウム水溶液を用いた。電極としては、白金板を用いた。測定時の液温は25℃に設定した。測定は、電解用隔膜を電解液に10分間浸漬させた後に行った。
(7)アルカリ水電解評価
 実施例および比較例で得られた電解用隔膜のアルカリ水電解評価は、アクリル樹脂製のH型セルを用いて行った。電解液は、濃度30重量%の水酸化カリウム水溶液を用い、電極としては、Ni電極を用いた。測定時の液温は25℃に設定した。電流密度を0.2A/cmとし、定電流を1時間連続して印加した時の電圧を測定し、測定開始から50分後~1時間後における測定値の平均値により、アルカリ水電解評価を行った。測定は、電解用隔膜を電解液に10分間浸漬させた後に行った。
(8)ガス遮断性
 上記(7)におけるアルカリ水電解を開始して1時間後にカソード側に発生したガスを回収し、ガスクロマトグラフィー(島津製作所社製、商品名「GC-8A」)によりカソード側に発生したガスの水素純度を測定することにより、ガス遮断性を評価した。表1中、該水素純度が99.9%以上である場合を○、99.9%未満である場合を×とする。
(9)平滑性
 実施例および比較例で得られた電解用隔膜において無作為に選んだ9点の厚みを測定し、該厚みの平均値に対する、最厚部の厚さと最薄部の厚さとの差の割合で平滑性を評価した。表1中、最厚部の厚さと最薄部の厚さとの差が、(厚み平均値×30%)以下の場合を○、(厚み平均値×30%)より大きい場合を×とした。
(1) Measurement of thickness Digital upright gauge R1-205 (manufactured by Ozaki Seisakusho; measuring element: Φ5 mm, measuring force: 1.1 N or less) was used for the thickness. Unless otherwise specified, the measured values are at 25 ° C. ± 2 ° C. and 65 ± 20% RH.
(2) Measurement of average pore diameter The average pore diameter of the base materials used in Examples and Comparative Examples was determined by a mercury intrusion method using a mercury intrusion apparatus.
(3) Air permeability The air permeability of the substrates used in Examples and Comparative Examples was measured according to the Frazier method based on JIS L 1096 8.26 IA method.
(4) Wettability with respect to aqueous potassium hydroxide solution The diaphragm for electrolysis was immersed in an aqueous potassium hydroxide solution having a concentration of 30% by weight maintained at 80 ° C. for 100 hours. Thereafter, the diaphragm for electrolysis was pulled up, and the remaining potassium hydroxide aqueous solution was sufficiently washed and removed, and then dried. Next, a pH test paper (product number “1-1745-01” manufactured by ASONE Co., Ltd.) is applied to one side (back side) of the diaphragm for electrolysis, and potassium hydroxide having a concentration of 30% by weight from the other side (front side). One drop (about 50 mg) of the aqueous solution was added dropwise. One minute after dropping, when the potassium hydroxide aqueous solution reached the back surface and the pH test paper was discolored, it was judged that there was wettability.
(5) Rate of area change The diaphragm for electrolysis cut into a predetermined area is placed in an environment at a temperature of 25 ° C./humidity of 60%, and the area of the diaphragm for electrolysis after 12 hours is designated as S 0. Was immersed in pure water at 60 ° C., and the area of the diaphragm for electrolysis after 3 hours was set as S 1 , and the area change rate was calculated by the following formula.
Area change rate (%) = ((S 1 −S 0 ) / S 0 ) × 100
In addition, the area change when immersed in pure water correlates with the area change when immersed in alkaline water. Moreover, the area change when immersed in pure water is more conspicuous than the area change when immersed in alkaline water. Therefore, the area change rate measured using pure water as described above is a preferable index of the area change when immersed in alkaline water.
(6) Electrical resistance The electrical resistance of the diaphragms for electrolysis obtained in the examples and comparative examples was measured according to JIS C 2313. As the electrolytic solution, an aqueous potassium hydroxide solution having a concentration of 40% by weight was used. A platinum plate was used as the electrode. The liquid temperature at the time of measurement was set to 25 ° C. The measurement was performed after the diaphragm for electrolysis was immersed in the electrolyte for 10 minutes.
(7) Alkaline water electrolysis evaluation Alkaline water electrolysis evaluation of the diaphragm for electrolysis obtained by the Example and the comparative example was performed using the H-type cell made from an acrylic resin. As the electrolytic solution, an aqueous potassium hydroxide solution having a concentration of 30% by weight was used, and a Ni electrode was used as the electrode. The liquid temperature at the time of measurement was set to 25 ° C. The current density was 0.2 A / cm 2 , the voltage when a constant current was applied continuously for 1 hour was measured, and alkaline water electrolysis was evaluated based on the average value of the measured values 50 minutes to 1 hour after the start of measurement. Went. The measurement was performed after the diaphragm for electrolysis was immersed in the electrolyte for 10 minutes.
(8) Gas barrier property The gas generated on the cathode side after 1 hour from the start of alkaline water electrolysis in (7) above is recovered, and the cathode is obtained by gas chromatography (manufactured by Shimadzu Corporation, trade name “GC-8A”). The gas barrier properties were evaluated by measuring the hydrogen purity of the gas generated on the side. In Table 1, the case where the hydrogen purity is 99.9% or more is marked with ◯, and the case where it is less than 99.9% is marked with x.
(9) Smoothness The thickness of 9 points randomly selected in the diaphragms for electrolysis obtained in Examples and Comparative Examples was measured, and the thickness of the thickest part and the thickness of the thinnest part with respect to the average value of the thicknesses. The smoothness was evaluated by the ratio of the difference. In Table 1, the case where the difference between the thickness of the thickest part and the thickness of the thinnest part was (thickness average value × 30%) or less was marked as “◯”, and the case where it was larger than (thickness average value × 30%).
[実施例1]電解用隔膜A(イオン透過膜1枚構成)の作製
 粘度平均分子量が120万の超高分子量ポリエチレンからなる二軸延伸された微多孔性の基材1に(東電化日東(上海)電能源社製、商品名:FIBR0SS、厚さ:16μm、平均孔径:0.08μm)に、45kGyの電子線を照射することで、フリーラジカルを生成させた。電子線照射後、-70℃にて保管を行った。
 次いで、セパラブルフラスコにメタクリル酸(和光純薬工業社製)250gと、メタノール(和光純薬工業社製)250gとを投入して混合液を調製し、温度を25℃に保ったまま窒素ガスによるバブリングを1時間行うことで、混合液に残存している酸素を除去した。
 該混合液に、上記の電子線を照射した基材1を投入し、液温を55℃まで昇温させ、液温を55℃に維持させながら、4分間重合処理を行い、基材1にメタクリル酸をグラフト重合させた(重量グラフト率:32%)。
 次いで、グラフト重合させた基材1を、液温を60℃に保った濃度10重量%の水酸化カリウム(和光純薬工業社製)水溶液に1時間浸漬して、グラフト鎖部分をカリウム塩とした。その後、該基材1を引き上げて、水洗して余分な水酸化カリウムを洗い流した後、表面部分の水分を除き、イオン透過性を有する微多孔のイオン透過膜1aからなる電解用隔膜Aを得た。
 得られた電解用隔膜Aを、上記評価(4)~(9)に供した。評価結果を表1に示す。
[Example 1] Production of diaphragm A for electrolysis (one ion permeable membrane) A biaxially stretched microporous base material 1 made of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 1,200,000 (TODENTSU NITTO ( Free radicals were generated by irradiating a 45 kGy electron beam to a Shanghai Power Co., Ltd. product name: FIBR0SS, thickness: 16 μm, average pore size: 0.08 μm. After electron beam irradiation, it was stored at -70 ° C.
Next, 250 g of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 250 g of methanol (manufactured by Wako Pure Chemical Industries, Ltd.) were added to the separable flask to prepare a mixed solution, and nitrogen gas was maintained while maintaining the temperature at 25 ° C. Oxygen remaining in the mixed solution was removed by performing bubbling for 1 hour.
The base material 1 irradiated with the electron beam is put into the mixed liquid, the liquid temperature is raised to 55 ° C., and the polymerization temperature is kept at 55 ° C. for 4 minutes to perform the polymerization treatment. Methacrylic acid was graft polymerized (weight graft ratio: 32%).
Next, the graft-polymerized base material 1 was immersed in an aqueous solution of potassium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of 10% by weight with the liquid temperature maintained at 60 ° C. for 1 hour, and the graft chain portion was replaced with a potassium salt. did. Thereafter, the base material 1 is pulled up, washed with water to wash away excess potassium hydroxide, and then water on the surface portion is removed to obtain a diaphragm A for electrolysis comprising a microporous ion permeable membrane 1a having ion permeability. It was.
The obtained diaphragm A for electrolysis was subjected to the above evaluations (4) to (9). The evaluation results are shown in Table 1.
[実施例2]電解用隔膜B(イオン透過膜1枚構成)の作製
 グラフト重合における重合処理時間4分間を、5分間に変えた以外は、実施例1と同様にして、イオン透過膜1b(重量グラフト率:42%)からなる電解用隔膜Bを得た。得られた電解用隔膜Bを、上記評価(4)~(9)に供した。評価結果を表1に示す。
[Example 2] Preparation of diaphragm B for electrolysis (one ion permeable membrane structure) Except that the polymerization time in the graft polymerization was changed from 4 minutes to 5 minutes, the ion permeable membrane 1b ( A diaphragm B for electrolysis having a weight graft ratio of 42% was obtained. The obtained diaphragm B for electrolysis was subjected to the above evaluations (4) to (9). The evaluation results are shown in Table 1.
[実施例3]電解用隔膜C(イオン透過膜1枚構成)の作製
 メタクリル酸に代えてアクリルアミド(和光純薬工業社製)を用い、グラフト重合における重合温度(重合液の温度)55℃を60℃に変え、グラフト重合における重合処理時間4分間を5分間に変えた以外は、実施例1と同様にしてイオン透過膜2a(重量グラフト率:51%)からなる電解用隔膜Cを得た。得られた電解用隔膜Cを、上記評価(4)~(9)に供した。評価結果を表1に示す。
[Example 3] Production of diaphragm C for electrolysis (one ion permeable membrane structure) Using acrylamide (manufactured by Wako Pure Chemical Industries, Ltd.) instead of methacrylic acid, the polymerization temperature in the graft polymerization (temperature of the polymerization solution) was 55 ° C. The membrane C for electrolysis which consists of the ion permeable film 2a (weight graft ratio: 51%) was obtained like Example 1 except having changed into 60 degreeC and having changed the polymerization processing time in graft polymerization into 4 minutes for 5 minutes. . The obtained diaphragm C for electrolysis was subjected to the above evaluations (4) to (9). The evaluation results are shown in Table 1.
[実施例4]電解用隔膜D(イオン透過膜1枚構成)の作製
 メタクリル酸に代えてアクリルアミド(和光純薬工業社製)を用い、グラフト重合における重合温度(重合液の温度)55℃を60℃に変え、グラフト重合における重合処理時間4分間を8分間に変えた以外は、実施例1と同様にしてイオン透過膜2b(重量グラフト率:79%)からなる電解用隔膜Dを得た。得られた電解用隔膜Dを、上記評価(4)~(9)に供した。評価結果を表1に示す。
[Example 4] Production of diaphragm D for electrolysis (one ion permeable membrane configuration) Instead of methacrylic acid, acrylamide (manufactured by Wako Pure Chemical Industries, Ltd.) was used, and the polymerization temperature in the graft polymerization (temperature of the polymerization solution) was 55 ° C. Except that the temperature was changed to 60 ° C. and the polymerization time in the graft polymerization was changed from 4 minutes to 8 minutes, the membrane D for electrolysis composed of the ion permeable membrane 2b (weight graft ratio: 79%) was obtained in the same manner as in Example 1. . The obtained diaphragm D for electrolysis was subjected to the above evaluations (4) to (9). The evaluation results are shown in Table 1.
[実施例5]電解用隔膜E(補強体1/イオン透過膜1c/補強体1)の作製
 実施例1で用いた基材1と、補強体を構成するための湿式不織布1(廣瀬製紙社製、商品名:HOP-15H、ポリエチレン/ポリプロピレンの芯鞘構造、厚さ:84μm、通気量:345cm/cm・秒)とを、湿式不織布1/基材1/湿式不織布1となるように、150℃に加熱された熱ロール機を用いて熱溶着し、三層積層基材Iを得た。
 次いで、該基材Iに、45kGyの電子線を照射することで、フリーラジカルを生成させた。照射後、-70℃にて保管を行った。
 次いで、セパラブルフラスコにメタクリル酸(和光純薬工業社製)250gと、メタノール250gとを投入して混合液を調製し、温度を25℃に保ったまま窒素ガスによるバブリングを1時間行うことで、混合液に残存している酸素を除去した。
 該混合液に、上記の電子線を照射した基材Iを投入し、液温を55℃まで昇温させ、液温を55℃に維持させながら、7分間重合処理を行い、基材Iにメタクリル酸をグラフト重合させた(重量グラフト率:72%)。
 次いで、グラフト重合させた基材Iを、液温を60℃に保った濃度10重量%の水酸化カリウム(和光純薬工業社製)水溶液に1時間浸漬して、グラフト鎖部分をカリウム塩とした。その後、該基材Iを引き上げて、水洗して余分な水酸化カリウムを洗い流した後、表面部分の水分を除き、イオン透過性を有する微多孔のイオン透過膜1cと多孔性の補強体1からなる電解用隔膜Eを得た。
 得られた電解用隔膜Eを、上記評価(4)~(9)に供した。評価結果を表1に示す。
[Example 5] Production of diaphragm E for electrolysis (reinforcing body 1 / ion permeable membrane 1c / reinforcing body 1) Base material 1 used in Example 1 and wet nonwoven fabric 1 for constituting the reinforcing body (Hirose Paper Co., Ltd.) Product name: HOP-15H, polyethylene / polypropylene core-sheath structure, thickness: 84 μm, air flow rate: 345 cm 3 / cm 2 · second) to be wet nonwoven fabric 1 / substrate 1 / wet nonwoven fabric 1 And three-layer laminated substrate I was obtained by heat welding using a hot roll machine heated to 150 ° C.
Next, free radicals were generated by irradiating the substrate I with an electron beam of 45 kGy. After irradiation, it was stored at -70 ° C.
Next, 250 g of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 250 g of methanol are added to a separable flask to prepare a mixed solution, and bubbling with nitrogen gas is performed for 1 hour while keeping the temperature at 25 ° C. Then, oxygen remaining in the mixed solution was removed.
The base material I irradiated with the electron beam was put into the mixed liquid, the liquid temperature was raised to 55 ° C., and the polymerization temperature was maintained for 7 minutes while maintaining the liquid temperature at 55 ° C. Methacrylic acid was graft polymerized (weight graft ratio: 72%).
Next, the graft-polymerized substrate I was immersed in an aqueous solution of potassium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of 10% by weight with the liquid temperature maintained at 60 ° C. for 1 hour, and the graft chain portion was converted to potassium salt. did. Thereafter, the substrate I is pulled up, washed with water to wash away excess potassium hydroxide, and then water on the surface portion is removed to remove the ion-permeable microporous ion-permeable membrane 1c and the porous reinforcing body 1 An electrolysis diaphragm E was obtained.
The obtained diaphragm E for electrolysis was subjected to the evaluations (4) to (9). The evaluation results are shown in Table 1.
[実施例6]電解用隔膜F(補強体2/イオン透過膜1d/補強体2)の作製
 湿式不織布1に代えて、超高分子量ポリエチレンからなる焼結多孔膜1(日東電工社製、商品名:サンマップ、厚さ:100μm、通気量:16cm/cm・秒)を用い、160℃に加熱された熱ロール機を用いた以外は、実施例5と同様にして、電解用隔膜Fを得た(補強体2/イオン透過膜1d/補強体2、重量グラフト率:54%)。得られた電解用隔膜Fを、上記評価(4)~(9)に供した。評価結果を表1に示す。
[Example 6] Preparation of diaphragm F for electrolysis (reinforcing body 2 / ion permeable membrane 1d / reinforcing body 2) In place of wet nonwoven fabric 1, sintered porous membrane 1 made of ultrahigh molecular weight polyethylene (manufactured by Nitto Denko Corporation, product) Name: sunmap, thickness: 100 μm, air flow rate: 16 cm 3 / cm 2 · second), and using a heat roll machine heated to 160 ° C., in the same manner as in Example 5, a diaphragm for electrolysis F was obtained (reinforcing body 2 / ion permeable membrane 1d / reinforcing body 2, weight graft ratio: 54%). The obtained diaphragm F for electrolysis was subjected to the above evaluations (4) to (9). The evaluation results are shown in Table 1.
[比較例1]
 イオン透過膜として、スルホン酸基を有するパーフルオロカーボン重合体から構成される無孔性のイオン透過膜C1(デュポン社製、商品名:ナフィオン212CS、厚さ:50μm)を用い、該イオン透過膜C1から構成される電解用隔膜(イオン透過膜1枚構成)を得た。この電解用隔膜を、上記評価(4)~(9)に供した。評価結果を表1に示す。
[Comparative Example 1]
As the ion permeable membrane, a nonporous ion permeable membrane C1 (made by DuPont, trade name: Nafion 212CS, thickness: 50 μm) composed of a perfluorocarbon polymer having a sulfonic acid group is used. The diaphragm for electrolysis comprised from (one ion permeable membrane 1 structure) was obtained. This diaphragm for electrolysis was subjected to the evaluations (4) to (9). The evaluation results are shown in Table 1.
[比較例2]
 無孔性のポリエチレンフィルムに100kGyの電子線照射による架橋処理を施して得られた架橋ポリエチレンフィルム(厚さ30μm)に75kGyの電子線を照射し、フリーラジカルを生成した。次いで、このフリーラジカルが生成した架橋ポリエチレンフィルムを液温が70℃に維持されたメタクリル酸(和光純薬社製)のメタノール溶液(濃度:60重量%)に2時間浸漬し、上記架橋ポリエチレンフィルムにメタクリル酸をグラフト重合(重量グラフト率:41%)させた。次いで、グラフト重合させた架橋ポリエチレンフィルムを、60℃に維持した濃度10重量%の水酸化カリウム(和光純薬製)水溶液に1時間浸漬してグラフト鎖部分をカリウム塩とした。その後、フィルムを引き上げ、水洗して余分な水酸化カリウムを洗い流した後、表面部分の水分を除き、イオン透過膜C2からなる電解用隔膜を得た。この電解用隔膜を、上記評価(4)~(9)に供した。評価結果を表1に示す。
[Comparative Example 2]
A cross-linked polyethylene film (thickness 30 μm) obtained by subjecting a non-porous polyethylene film to a cross-linking treatment by 100 kGy electron beam irradiation was irradiated with a 75 kGy electron beam to generate free radicals. Next, the crosslinked polyethylene film produced by free radicals was immersed in a methanol solution (concentration: 60% by weight) of methacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) whose liquid temperature was maintained at 70 ° C. for 2 hours, and the crosslinked polyethylene film Then, methacrylic acid was graft polymerized (weight graft ratio: 41%). Subsequently, the graft-polymerized crosslinked polyethylene film was immersed in an aqueous solution of potassium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of 10% by weight maintained at 60 ° C. for 1 hour to make the graft chain portion a potassium salt. Thereafter, the film was pulled up, washed with water to wash away excess potassium hydroxide, and then water on the surface portion was removed to obtain a diaphragm for electrolysis comprising an ion permeable membrane C2. This diaphragm for electrolysis was subjected to the evaluations (4) to (9). The evaluation results are shown in Table 1.
[比較例3]
 実施例1で用いた微多孔性の基材1(東電化日東(上海)電能源社製、商品名:FIBR0SS、厚さ:16μm、平均孔径:0.08μm)をそのまま電解用隔膜として用いた。この電解用隔膜を、上記評価(4)~(9)に供した。評価結果を表1に示す。
[Comparative Example 3]
The microporous substrate 1 used in Example 1 (manufactured by Nitto (Shanghai) Power Source Co., Ltd., trade name: FIBR0SS, thickness: 16 μm, average pore size: 0.08 μm) was directly used as a diaphragm for electrolysis. . This diaphragm for electrolysis was subjected to the evaluations (4) to (9). The evaluation results are shown in Table 1.
[比較例4]
 初めに1-メチル-2-ピロリドン(和光純薬社製)30gと、フッ化カルシウム(和光純薬社製)12gとを混合してホモミキサーで十分に撹拌した。ここにポリスルホン(BASF社製、商品名「ULTRASON S6010」)4g、を添加して60℃に加温し、再度十分に撹拌、溶解した後、脱泡して懸濁液を調製した。
 200メッシュ、厚み190μmのポリエチレン網(ニップ(ポリエチレン)強力網、NBC社製)を、伸長状態で、底面に設置した10cm×10cmのガラス製の枠体上に、上記懸濁液10mlを流し込んだ。その後、懸濁液を流し込んだ枠体ごと25℃の純水中に浸漬し、室温で10分間放置して1-メチル-2-ピロリドンを抽出した。その後、凝固したシート状物を枠体より剥離し、さらに25℃の純水中で30分間洗浄し、25℃で風乾後、80℃の乾燥機で30分間乾燥し、シート状のイオン透過膜C3を得た。得られたイオン透過膜C3を、上記評価(4)および(9)に供した。結果を表1に示す。なお、このイオン透過膜C3は、表面に凹凸が多く見られ、膜厚みが300μm~1500μmとばらついており、面積変化率、電気抵抗、アルカリ水電解評価およびガス遮断性の評価はできなかった。
[Comparative Example 4]
First, 30 g of 1-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) and 12 g of calcium fluoride (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and sufficiently stirred with a homomixer. 4 g of polysulfone (trade name “ULTRASON S6010” manufactured by BASF Corporation) was added thereto, heated to 60 ° C., sufficiently stirred and dissolved again, and then defoamed to prepare a suspension.
A 200 mesh, 190 μm thick polyethylene net (nip (polyethylene) strong net, manufactured by NBC Co., Ltd.) was stretched, and 10 ml of the suspension was poured onto a 10 cm × 10 cm glass frame placed on the bottom. . Thereafter, the frame into which the suspension was poured was immersed in pure water at 25 ° C. and left at room temperature for 10 minutes to extract 1-methyl-2-pyrrolidone. Thereafter, the solidified sheet-like material is peeled off from the frame, further washed in pure water at 25 ° C. for 30 minutes, air-dried at 25 ° C., and then dried in a dryer at 80 ° C. for 30 minutes to obtain a sheet-like ion permeable membrane. C3 was obtained. The obtained ion permeable membrane C3 was subjected to the evaluations (4) and (9). The results are shown in Table 1. The ion permeable membrane C3 had many irregularities on the surface and the film thickness varied from 300 μm to 1500 μm, and the area change rate, electrical resistance, alkaline water electrolysis evaluation and gas barrier property evaluation could not be performed.
[比較例5]
 初めに1-メチル-2-ピロリドン(和光純薬社製)30gと、フッ化カルシウム(和光純薬社製)24gとを混合してホモミキサーで十分に撹拌した。ここにポリスルホン(BASF社製、商品名「ULTRASON S6010」)8g、を添加して60℃に加温し、再度十分に撹拌、溶解した後、脱泡して懸濁液を調製した。
 次いで、ガラス板にベーカー式アプリケータを用いて、ギャップ300μmで上記懸濁液を塗布した。この上に200メッシュ、厚み190μmのポリエチレン網(ニップ(ポリエチレン)強力網、NBC社製)を載せ、ハンドローラーにて面圧を加えてメッシュに懸濁液を十分に浸みこませた。その後、同じ様にベーカー式アプリケータを用いて、ギャップ400μmで再度上記懸濁液を塗布した。その後、ガラス板ごと25℃の純水中に浸漬し、室温で10分間放置して1-メチル-2-ピロリドンを抽出した。凝固したシート状物を剥離し、さらにこれを25℃の純水中で30分間洗浄し、25℃で風乾後、80℃の乾燥機で30分間乾燥し、シート状のイオン透過膜C4を得た。得られたイオン透過膜C4は、表面が平滑で、膜厚みが380μm前後で均一であった。得られたイオン透過膜C4を、上記評価(4)~(9)に供した。評価結果を表1に示す。
[Comparative Example 5]
First, 30 g of 1-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) and 24 g of calcium fluoride (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and sufficiently stirred with a homomixer. 8 g of polysulfone (manufactured by BASF, trade name “ULTRASON S6010”) was added thereto, heated to 60 ° C., sufficiently stirred and dissolved again, and defoamed to prepare a suspension.
Next, the suspension was applied to a glass plate with a gap of 300 μm using a Baker type applicator. A 200 mesh, 190 μm thick polyethylene net (nip (polyethylene) strong net, manufactured by NBC)) was placed on this, and surface pressure was applied by a hand roller to sufficiently immerse the suspension in the mesh. Thereafter, the suspension was applied again at a gap of 400 μm using a Baker type applicator in the same manner. Thereafter, the glass plate was immersed in pure water at 25 ° C. and left at room temperature for 10 minutes to extract 1-methyl-2-pyrrolidone. The solidified sheet is peeled off, further washed in pure water at 25 ° C. for 30 minutes, air-dried at 25 ° C., and then dried in a dryer at 80 ° C. for 30 minutes to obtain a sheet-like ion permeable membrane C4. It was. The obtained ion permeable membrane C4 had a smooth surface and a uniform thickness of around 380 μm. The obtained ion permeable membrane C4 was subjected to the evaluations (4) to (9). The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明の電解用隔膜は、純水に浸漬した場合の面積変化率が小さく、電気抵抗が小さく、電圧上昇を抑制し得る。また、本発明の電解用隔膜は、ガス遮断性にも優れる。なお、無孔性のイオン透過膜からなる電解用隔膜は、面積変化率が大きく(比較例1、2)、濡れ性に劣る電解用隔膜は、電解電圧が高くなった(比較例3)。また、イオン透過膜としてアニオン交換性の官能基を有さないポリマーから構成される微多孔性の基材を用いた場合、ガス遮断性に劣る(比較例3)。 As is apparent from Table 1, the diaphragm for electrolysis of the present invention has a small area change rate when immersed in pure water, a small electrical resistance, and can suppress an increase in voltage. Moreover, the diaphragm for electrolysis of this invention is excellent also in gas barrier property. In addition, the diaphragm for electrolysis which consists of a nonporous ion permeable film had a large area change rate (Comparative Examples 1 and 2), and the diaphragm for electrolysis which was inferior in wettability became high in the electrolysis voltage (Comparative Example 3). Moreover, when the microporous base material comprised from the polymer which does not have an anion exchange functional group is used as an ion permeable film, it is inferior to gas barrier property (comparative example 3).
 また、本発明の電解用隔膜においては、イオン透過膜(補強体を有する場合は、イオン透過膜および補強体)は、放射線グラフト重合によりアニオン交換性の官能基を導入することで、高温のアルカリ水に長時間浸漬しても、アルカリ水に対する濡れ性が維持される。 Further, in the diaphragm for electrolysis of the present invention, the ion permeable membrane (in the case of having a reinforcing body, the ion permeable membrane and the reinforcing body) is formed by introducing an anion-exchangeable functional group by radiation graft polymerization so Even when immersed in water for a long time, wettability to alkaline water is maintained.
 本発明の電解用隔膜は、アルカリ水電解法に用いられる隔膜として好適に用いられ得る。 The diaphragm for electrolysis of the present invention can be suitably used as a diaphragm used in alkaline water electrolysis.
 10       イオン透過膜
 20       補強体
 100、100’ 電解用隔膜
DESCRIPTION OF SYMBOLS 10 Ion permeable membrane 20 Reinforcement body 100, 100 'Electrolyte diaphragm

Claims (9)

  1.  イオン透過膜を備え、濃度30重量%の水酸化カリウム水溶液に対して濡れ性を示す、電解用隔膜であって、
     該イオン透過膜の平均孔径が0.01μm~20μmであり、かつ、該イオン透過膜を純水に浸漬した場合の面積変化率が20%以下である、
     電解用隔膜。
    A diaphragm for electrolysis comprising an ion permeable membrane and exhibiting wettability with respect to an aqueous potassium hydroxide solution having a concentration of 30% by weight,
    The average pore diameter of the ion permeable membrane is 0.01 μm to 20 μm, and the area change rate when the ion permeable membrane is immersed in pure water is 20% or less.
    Diaphragm for electrolysis.
  2.  前記イオン透過膜の温度25℃/濃度30重量%の水酸化カリウム水溶液を電解液としたときの電気抵抗値が、0.5Ω・cm以下である、請求項1に記載の電解用隔膜。 The diaphragm for electrolysis of Claim 1 whose electrical resistance value is 0.5 ohm * cm < 2 > or less when using the potassium hydroxide aqueous solution whose temperature of the said ion permeable film is 25 degreeC / concentration 30 weight% as electrolyte solution.
  3.  前記イオン透過膜が、中酸性イオン交換基、弱酸性イオン交換基、強塩基性イオン交換基、中塩基性イオン交換基または弱塩基性イオン交換基を有するポリマーから構成される、請求項1または2に記載の電解用隔膜。 The ion permeable membrane is composed of a polymer having a medium acidic ion exchange group, a weak acid ion exchange group, a strong basic ion exchange group, a medium basic ion exchange group, or a weak basic ion exchange group. The diaphragm for electrolysis of 2.
  4.  前記イオン透過膜において、前記中酸性イオン交換基、弱酸性イオン交換基、強塩基性イオン交換基、中塩基性イオン交換基または弱塩基性イオン交換基が、グラフト重合により導入されている、請求項3に記載の電解用隔膜。 In the ion permeable membrane, the medium acid ion exchange group, weak acid ion exchange group, strong basic ion exchange group, medium basic ion exchange group or weak basic ion exchange group is introduced by graft polymerization. Item 4. The diaphragm for electrolysis according to item 3.
  5.  前記イオン透過膜の片側または両側に配置された多孔性の補強体をさらに備える、請求項1から4のいずれかに記載の電解用隔膜。 The membrane for electrolysis according to any one of claims 1 to 4, further comprising a porous reinforcing body disposed on one side or both sides of the ion permeable membrane.
  6.  前記補強体が、前記イオン透過膜の両側に配置されている、請求項5に記載のアルカリ水電解用隔膜。 The membrane for alkaline water electrolysis according to claim 5, wherein the reinforcing body is disposed on both sides of the ion permeable membrane.
  7.  前記補強体が、中酸性イオン交換基、弱酸性イオン交換基、強塩基性イオン交換基、中塩基性イオン交換基または弱塩基性イオン交換基を有するポリマーから構成されている、請求項5または6に記載の電解用隔膜。 The said reinforcement body is comprised from the polymer which has a moderately acidic ion exchange group, a weakly acidic ion exchange group, a strongly basic ion exchange group, a medium basic ion exchange group, or a weakly basic ion exchange group. The diaphragm for electrolysis of 6.
  8.  前記補強体において、前記中酸性イオン交換基、弱酸性イオン交換基、強塩基性イオン交換基、中塩基性イオン交換基または弱塩基性イオン交換基が、グラフト重合により導入されている、請求項7に記載の電解用隔膜。 In the reinforcing body, the medium acid ion exchange group, weak acid ion exchange group, strong basic ion exchange group, medium basic ion exchange group or weak basic ion exchange group is introduced by graft polymerization. The diaphragm for electrolysis of 7.
  9.  請求項1から8のいずれかに記載の電解用隔膜を用いた、水素製造用電気化学セル。
     
    An electrochemical cell for hydrogen production using the electrolyzing membrane according to claim 1.
PCT/JP2013/084779 2013-01-31 2013-12-26 Electrolytic membrane WO2014119208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-017350 2013-01-31
JP2013017350A JP2014148709A (en) 2013-01-31 2013-01-31 Electrolytic diaphragm

Publications (1)

Publication Number Publication Date
WO2014119208A1 true WO2014119208A1 (en) 2014-08-07

Family

ID=51261932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084779 WO2014119208A1 (en) 2013-01-31 2013-12-26 Electrolytic membrane

Country Status (2)

Country Link
JP (1) JP2014148709A (en)
WO (1) WO2014119208A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190085470A1 (en) * 2017-09-20 2019-03-21 Kabushiki Kaisha Toshiba Electrochemical reaction device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7320520B2 (en) * 2018-09-21 2023-08-03 旭化成株式会社 Method for manufacturing electrolytic cell, laminate, electrolytic cell, and method for operating electrolytic cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739185A (en) * 1980-08-15 1982-03-04 Asahi Glass Co Ltd Cation exchange membrane for electrolysis
JPS61106640A (en) * 1984-10-30 1986-05-24 Toa Nenryo Kogyo Kk Hydrophilic microporous polyethylene membrane
JPS61130347A (en) * 1984-11-30 1986-06-18 Asahi Glass Co Ltd Novel double-layered diaphragm for electrolysis
JPS62101637A (en) * 1985-10-30 1987-05-12 Meidensha Electric Mfg Co Ltd Porous membrane rendered ion-exchangeable
JPH09194609A (en) * 1996-01-25 1997-07-29 Sumitomo Electric Ind Ltd Ion-exchange membrane and its preparation
WO2013180072A1 (en) * 2012-05-31 2013-12-05 日東電工株式会社 Diaphragm for alkaline water electrolysis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739185A (en) * 1980-08-15 1982-03-04 Asahi Glass Co Ltd Cation exchange membrane for electrolysis
JPS61106640A (en) * 1984-10-30 1986-05-24 Toa Nenryo Kogyo Kk Hydrophilic microporous polyethylene membrane
JPS61130347A (en) * 1984-11-30 1986-06-18 Asahi Glass Co Ltd Novel double-layered diaphragm for electrolysis
JPS62101637A (en) * 1985-10-30 1987-05-12 Meidensha Electric Mfg Co Ltd Porous membrane rendered ion-exchangeable
JPH09194609A (en) * 1996-01-25 1997-07-29 Sumitomo Electric Ind Ltd Ion-exchange membrane and its preparation
WO2013180072A1 (en) * 2012-05-31 2013-12-05 日東電工株式会社 Diaphragm for alkaline water electrolysis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190085470A1 (en) * 2017-09-20 2019-03-21 Kabushiki Kaisha Toshiba Electrochemical reaction device
EP3460103A1 (en) * 2017-09-20 2019-03-27 Kabushiki Kaisha Toshiba Electrochemical reaction device
US10883180B2 (en) 2017-09-20 2021-01-05 Kabushiki Kaisha Toshiba Electrochemical reaction device

Also Published As

Publication number Publication date
JP2014148709A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2013180072A1 (en) Diaphragm for alkaline water electrolysis
JP3218291B2 (en) Battery diaphragm
JP5942210B2 (en) Membrane for redox flow secondary battery and redox flow secondary battery using the same
US7514481B2 (en) Polymer electrolytes crosslinked by e-beam
EP3065209B1 (en) Polymer electrolyte film
JP2014012889A (en) Ion permeable diaphragm
JP5579365B2 (en) Anion exchange membrane and method for producing the same
US9620802B2 (en) Fuel cell membrane electrode assembly and method for producing the same, and fuel cell
US20190176098A1 (en) Ion-exchange membrane
WO2014119207A1 (en) Electrolytic membrane
JP5893511B2 (en) Diaphragm for alkaline water electrolysis
WO2014119208A1 (en) Electrolytic membrane
JP5158353B2 (en) Fuel cell electrolyte membrane and method for producing fuel cell electrolyte membrane / electrode assembly
JP5164149B2 (en) Cation exchange membrane and method for producing the same
WO2016204262A1 (en) Ion exchange membrane for water electrolysis, and method for manufacturing said ion exchange membrane
WO2016002227A1 (en) Liquid fuel cell partitioning membrane and membrane-electrode-assembly provided with same
JP4645794B2 (en) Solid polymer electrolyte membrane and fuel cell
RU2523464C2 (en) Method of manufacturing polymer ion-exchange membrane by radiation-chemical method
CN117597194A (en) Anion exchange membrane and method for producing same
JP2016015285A (en) Barrier membrane for alkali type liquid fuel battery and membrane-electrode assembly using the same
WO2015030025A1 (en) Method for manufacturing diaphragm for alkaline water electrolysis, and diaphragm for alkaline water electrolysis
JP2016015286A (en) Separation membrane for liquid fuel cell and membrane-electrode assembly including the same
WO2021193161A1 (en) Anion exchange membrane and method for producing same
JP2006172764A (en) Manufacturing method of electrolyte film
US20080044710A1 (en) Electrolyte Membrane Having Excellent Adhesion To Electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874098

Country of ref document: EP

Kind code of ref document: A1