WO2016204262A1 - Ion exchange membrane for water electrolysis, and method for manufacturing said ion exchange membrane - Google Patents

Ion exchange membrane for water electrolysis, and method for manufacturing said ion exchange membrane Download PDF

Info

Publication number
WO2016204262A1
WO2016204262A1 PCT/JP2016/068049 JP2016068049W WO2016204262A1 WO 2016204262 A1 WO2016204262 A1 WO 2016204262A1 JP 2016068049 W JP2016068049 W JP 2016068049W WO 2016204262 A1 WO2016204262 A1 WO 2016204262A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
exchange membrane
porous substrate
laminated
porous
Prior art date
Application number
PCT/JP2016/068049
Other languages
French (fr)
Japanese (ja)
Inventor
健吾 織田
伸 渡辺
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2016204262A1 publication Critical patent/WO2016204262A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials

Definitions

  • the present invention relates to an ion exchange membrane for water electrolysis and a method for producing the ion exchange membrane.
  • Ion exchange membranes are used as membranes for electrodialysis used in salt production and desalting processes in the food sector, electrolyte membranes for fuel cells, and for acid recovery from acids containing metal ions generated in the steel industry. It is used industrially in many fields such as diffusion dialysis membranes.
  • a base film having a function as a reinforcing material or a support for the ion exchange resin is used, and the ion exchange resin is supported by the base film.
  • a certain film strength and film shape stability are imparted.
  • ion exchange resins have many ion exchange groups, if there is no base film, if the ion exchange membrane is immersed in an aqueous electrolyte solution, it will swell easily, resulting in a decrease in strength and shape change of the ion exchange membrane. End up.
  • An ion exchange membrane has been conventionally used as an electrolyte membrane for fuel cells, but is currently attracting attention as an electrolyte membrane for water electrolysis for producing hydrogen.
  • An electrolyte membrane for water electrolysis is required to have low membrane resistance and high gas barrier properties.
  • Water electrolysis methods include alkaline water electrolysis, cation exchange membrane water electrolysis, and anion exchange membrane water electrolysis. Among these, cation exchange membrane type water electrolysis and anion exchange membrane type water electrolysis capable of internal compression of hydrogen are attracting attention. However, pressure is applied by internal compression, and the generated hydrogen is likely to permeate the ion exchange membrane. Therefore, a higher gas barrier property is required for the ion exchange membrane.
  • a thick porous substrate film generally has a high porosity and a large pore diameter.
  • the porosity and pore diameter of the porous substrate film are large, so that the dimensional change due to swelling and shrinkage of the ion exchange resin becomes large.
  • a gap is generated between the ion exchange resin and the porous substrate film, and the gas barrier property is lowered. Therefore, it is not preferable to use a general thick porous substrate film, and an ion exchange membrane having a high gas barrier property has not been obtained.
  • Patent Document 1 discloses a liquid fuel permeability in which two cation exchange membrane layers of a low water content type and a high water content type are arranged on both side layers. Low cation exchange membranes for fuel cells have been proposed.
  • Patent Document 2 as a method for producing an ion exchange membrane used in a desalting step or an electrolyte of a fuel cell, polymerization that is a precursor of an ion exchange resin is performed on a plurality of porous resin sheets having different vertical and horizontal orientation strengths.
  • a method for producing an ion exchange membrane is disclosed in which an impregnating composition is impregnated, resin sheets are superposed so that the orientation directions intersect, and a polymerizable compound is polymerized.
  • the ion exchange membrane for a fuel cell disclosed in Patent Document 1 has a low water content type and a high water content type by laminating two ion exchange membranes of a low water content type and a high water content type and performing hot pressing.
  • hot pressing is performed at the time of production, a new disadvantage arises in that the ion exchange groups in the ion exchange membrane are decomposed at a high temperature and the membrane resistance increases. For this reason, when it uses for water electrolysis, problems, such as efficiency becoming low, will arise.
  • Patent Document 1 also describes a method in which two porous substrate films having different porosity are laminated by hot pressing and then impregnated with a polymerizable composition to be cured by polymerization. The voids of the porous substrate film are crushed by hot pressing, and the porosity is lowered, and the membrane resistance of the ion exchange membrane is increased.
  • the ion exchange membrane disclosed in Patent Document 2 has a porous resin sheet that is a highly oriented resin sheet, and a laminated porous resin sheet that is laminated so that the orientation directions thereof intersect each other. Therefore, the obtained ion exchange membrane has a high tear strength.
  • this ion exchange membrane is used for water electrolysis, swelling of the ion exchange membrane is suppressed due to the anisotropy of each porous resin sheet constituting the substrate. As a result, the membrane resistance cannot be sufficiently reduced, and the efficiency of water electrolysis becomes insufficient.
  • Comparative Example 2 of Patent Document 2 describes an example using a laminated porous resin sheet having strength anisotropy integrated by pre-pressing a porous resin sheet in advance.
  • an object of the present invention is a laminated ion exchange membrane for water electrolysis having a high gas barrier property and low membrane resistance, and a method for continuously producing the ion exchange membrane, which suppresses an increase in membrane resistance. It is another object of the present invention to provide a method for producing a laminated ion exchange membrane that does not peel even when the water content is high, such as in a liquid phase.
  • the present inventors have intensively studied to solve the above problems. As a result, by increasing the porosity of the porous substrate film, the average pore diameter, and the thickness of the porous substrate film within a specific range, an increase in membrane resistance is suppressed, and high gas barrier properties are peeled off.
  • the present inventors have found the knowledge that such a laminated ion exchange membrane is particularly useful as an ion exchange membrane for water electrolysis, and have completed the present invention.
  • an ion exchange resin is filled in the voids of a laminated porous substrate film in which a plurality of porous substrate films having a porosity of 30 to 50% and an average pore diameter of 0.01 to less than 0.1 ⁇ m are laminated.
  • An ion exchange membrane for water electrolysis wherein the total thickness of the porous base film is 50 to 200 ⁇ m, and the difference in porosity between adjacent porous base films is 10% or less, And a step of preparing a polymerizable composition comprising a polymerizable monomer and a polymerization initiator, laminating a plurality of porous substrate films to form a laminated porous substrate film, and polymerizing the laminated porous substrate film
  • a step of contacting a polymerizable composition containing a polymerizable monomer and a polymerization initiator and filling the voids of the laminated porous substrate film with the polymerizable composition to obtain an ion exchange membrane precursor, in the ion exchange membrane precursor Ion exchange tree of polymerizable composition A method for producing an ion exchange membrane for water electrolysis, comprising a step of converting to fat.
  • the present invention also relates to the use of the above-described laminated ion exchange membrane for water electrolysis, a water electrolysis apparatus using the laminated ion exchange membrane, and electrolysis of water to obtain hydrogen by electrolyzing water using the apparatus. Regarding the method.
  • the ion exchange membrane for water electrolysis of the present invention has low membrane resistance and low hydrogen permeability, it is possible to suppress the generated hydrogen from permeating the ion exchange membrane and efficiently produce high-pressure hydrogen gas. .
  • a thick laminated ion exchange having a high gas barrier property is suppressed by suppressing the increase in membrane resistance by laminating a porous substrate film having a specific porosity and average pore diameter.
  • a membrane can be produced, and a laminated ion exchange membrane suitable for water electrolysis can be obtained.
  • the most important characteristics are the porosity of the porous substrate film used when forming the laminated ion exchange membrane, the average pore diameter, and the porosity of the porous substrate film to be laminated. It is in controlling the difference. That is, by immersing a laminated porous substrate film in a polymerizable composition for an ion exchange resin, polymerizing the polymerizable composition to produce a laminated ion exchange membrane, an excessive dimensional change of the ion exchange resin And the generation of a gap between the porous substrate film and the ion exchange resin is suppressed.
  • the polymer of the polymerizable composition functions as a bonding agent, the porous substrate films are bonded to each other, and this ion exchange membrane is in an atmosphere where the water content of the ion exchange membrane is high, such as in a liquid phase, There is no peeling.
  • the ion exchange membrane for water electrolysis of the present invention has a porosity of 30 to 50% and an average pore diameter of 0.01 to less than 0.1 ⁇ m.
  • the laminated ion exchange membrane and the ion exchange membrane for water electrolysis may be used synonymously, but the use of the laminated ion exchange membrane is not limited.
  • ⁇ Porous substrate film> In the porous base film, a large number of fine pores penetrating from the front surface to the back surface are formed.
  • the average pore diameter can be measured by a half dry method in accordance with ASTM-F316-86, and is 0.01 to less than 0.1 ⁇ m, and preferably 0.015 to 0.09 ⁇ m.
  • the porosity was calculated by the following formula, measuring the volume (Vcm 3 ) and mass (Ug) of the porous substrate film, and setting the density of the material of the porous substrate film as X (g / cm 3 ). Value.
  • Porosity [(V ⁇ U / X) / V] ⁇ 100 [%]
  • the porosity needs to be 30 to 50%, preferably 33 to 47%.
  • the thickness of each porous substrate film is generally 5 to 100 ⁇ m, preferably 10 to 50 ⁇ m, more preferably 10 to 40 ⁇ m.
  • the total thickness of the porous substrate film is 50 to 200 ⁇ m.
  • the total thickness of the porous substrate film is the thickness of the laminated porous substrate film in which a plurality of porous substrate films are laminated.
  • the number of porous substrate films is not particularly limited as long as it is 2 or more, but is preferably 2 to 5, more preferably 2 to 3.
  • the width of the porous substrate film is not particularly limited, but is 200 to 1500 mm in consideration of availability and production.
  • the difference in porosity between adjacent porous substrate films is 10% or less, preferably 0 to 8%, more preferably 0 to 4%.
  • the difference in porosity is obtained from (AB) from the porosity A of a film having a large porosity and the porosity B of a small film.
  • the difference of the porosity of adjacent porous base films should just be 10% or less, and the difference of the porosity between films which are not adjacent is 10%. % May be exceeded.
  • the difference in porosity between the first layer and the second layer and the difference in porosity between the second layer and the third layer should be 10% or less.
  • the difference in porosity between the first layer and the third layer may exceed 10%.
  • it is preferable that the difference in the porosity of all the porous substrate films is 10% or less.
  • the porous substrate film may be formed of various thermoplastic resins, but when used as a substrate film of an ion exchange membrane, a thermoplastic resin having no ion exchange group, for example, polychlorinated Vinyl chloride resins such as vinyl, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-olefin copolymer; polyamide resins such as nylon 6 and nylon 66; ethylene, propylene, 1- Preferred are olefin polymers or copolymers such as butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 4-methyl-1-pentene, 5-methyl-1-heptene, and the porosity. An olefin polymer or copolymer that is easy to control the average pore diameter and excellent in flexibility is more preferable, and polyethylene is most preferable. That.
  • a thermoplastic resin having no ion exchange group for example, polychlorinated Vinyl
  • the porous substrate film may be stretched or unstretched, but in general, the ion exchange membrane is improved in strength and the hydrogen permeability is suppressed by increasing the crystallinity of the film. From such a viewpoint, it is preferable that the film is stretched in a uniaxial or biaxial direction. Moreover, it is preferable that the orientation direction of each porous base film in the laminated porous base film is aligned.
  • the orientation direction being uniform means that the angle formed by the orientation direction of each porous substrate film (in the case of a biaxially stretched film, the direction in which the stretching ratio is high) is within ⁇ 10 °. Say. When the alignment direction is aligned, the ion exchange membrane is easily swelled and the membrane resistance is lower than when the alignment direction is not aligned.
  • the porous substrate film as described above is described in a method known per se, for example, in JP-A-9-216964, JP-A-9-235399, JP-A 2002-338721, and the like. It can be formed by a method. That is, a film having a predetermined thickness is formed by extrusion molding or the like using a resin composition in which an additive for pore formation is blended with a thermoplastic resin for film formation (for example, polyethylene), and then stretch-molded if necessary. Thereafter, an additive added to the obtained film is removed by extraction with an organic solvent, dissolution with an acid or alkali, and the like, whereby a film having a large number of target pores can be obtained.
  • a resin composition in which an additive for pore formation is blended with a thermoplastic resin for film formation (for example, polyethylene), and then stretch-molded if necessary.
  • an additive added to the obtained film is removed by extraction with an organic solvent, dissolution with an acid or alkali, and the like, whereby a film
  • the ion exchange resin filled in the voids of the porous substrate film may be a known one, for example, an ion exchange group that expresses ion exchange ability in a hydrocarbon-based or fluorine-based resin, specifically, A cation exchange group or an anion exchange group is introduced.
  • an anion exchange type ion exchange resin that has an alkaline reaction field and can use relatively inexpensive iron, cobalt, nickel, or an alloy thereof as an electrode is preferable.
  • hydrocarbon-based resin examples include styrene-based resins and acrylic resins
  • fluorine-based material examples include perfluorocarbon-based resins.
  • an ion exchange resin since hydrogen permeability is low and it can be obtained at low cost, a resin obtained by introducing an ion exchange group into a hydrocarbon resin is preferable.
  • the hydrocarbon-based resin is a resin that does not substantially contain a carbon-fluorine bond, and that most of the main chain and side chain bonds constituting the resin are composed of carbon-carbon bonds. To tell. That is, a small amount of other atoms such as oxygen, nitrogen, silicon, sulfur, boron, and phosphorus are interposed between the carbon-carbon bonds constituting the main chain and the side chain by ether bond, ester bond, amide bond, siloxane bond, etc. You may do it.
  • the atoms bonded to the main chain and the side chain need not all be hydrogen atoms, and if the amount is small, other atoms such as chlorine, bromine, fluorine, iodine, etc., or substituents containing other atoms It may be replaced.
  • the ion exchange group described above is a functional group that can be negatively or positively charged in an aqueous solution.
  • a cation exchange group examples thereof include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group.
  • sulfonic acid groups that are strongly acidic groups are preferred.
  • the counter cation is preferably a hydrogen ion.
  • anion exchange groups include primary to tertiary amino groups, quaternary ammonium groups, pyridyl groups, imidazole groups, and quaternary pyridinium groups. Generally, quaternary ammoniums that are strongly basic are used. Groups and quaternary pyridinium groups are preferred.
  • the counter anion is preferably carbonate ion, bicarbonate ion, hydroxide ion or the like.
  • Laminated ion exchange membranes in which voids in the laminated porous substrate film are filled with ion exchange resin are used without limitation for various applications like ordinary ion exchange membranes, but have low membrane resistance and hydrogen permeability.
  • it is preferably used as an ion exchange membrane for water electrolysis incorporated in an electrolysis apparatus for electrolyzing water to obtain hydrogen.
  • the ion exchange membrane for water electrolysis of the present invention prepares a polymerizable composition (hereinafter also simply referred to as a polymerizable composition) containing a polymerizable monomer and a polymerization initiator for forming the ion exchange resin.
  • a polymerizable composition hereinafter also simply referred to as a polymerizable composition
  • the ion-exchange membrane precursor (step of preparing the ion-exchange membrane precursor), and the ion-exchange membrane precursor in the ion-exchange membrane precursor It is produced by using the polymerizable composition as an ion exchange resin (ion exchange resin forming step).
  • the polymerizable composition is a composition for forming an ion exchange resin.
  • the polymerizable composition is a polymerizable monomer having a functional group capable of introducing an ion exchange group (functional group for introducing an exchange group) or a polymerizable monomer having an ion exchange group (hereinafter referred to as a polymerizable monomer). These monomers may be referred to as “basic polymerizable monomer components”), and may further contain a crosslinkable polymerizable monomer.
  • the polymerizable composition is prepared by mixing these components and a polymerization initiator.
  • the polymerizable monomer is not particularly limited as long as it is a monomer that can produce the above-described hydrocarbon-based or fluorine-based resin. Therefore, there is no limitation as long as it is a hydrocarbon-based or fluorine-based polymerizable monomer used as a monomer for forming an ion exchange resin or its precursor resin, and a polymerizable monomer having a functional group for introducing an exchange group.
  • a hydrocarbon-based or fluorine-based polymerizable monomer used as a monomer for forming an ion exchange resin or its precursor resin
  • a polymerizable monomer having a functional group for introducing an exchange group for introducing an exchange group.
  • an ion exchange resin as a polymerizable monomer having a monomer and an ion exchange group, those conventionally used can be used without limitation.
  • examples of the hydrocarbon polymerizable monomer having a functional group for introducing a cation exchange group include styrene, vinyl toluene, vinyl xylene, ⁇ -methyl styrene, vinyl naphthalene, ⁇ -halogenated styrenes, and the like. it can.
  • hydrocarbon polymerizable monomers having an anion exchange group-introducing functional group examples include styrene, bromobutyl styrene, vinyl toluene, chloromethyl styrene, vinyl pyridine, vinyl imidazole, ⁇ -methyl styrene, vinyl naphthalene, and the like. It is done. Styrene and the like can be used for introducing a cation exchange group or an anion exchange group.
  • the ion exchange group introduced into the hydrocarbon polymerizable monomer having a functional group for introducing a cation or anion exchange group described above is a functional group that can be negatively or positively charged in an aqueous solution.
  • an exchange group a sulfonic acid group, a carboxylic acid group, a phosphonic acid group and the like can be mentioned, and a sulfonic acid group which is a strongly acidic group is generally preferable.
  • anion exchange groups include primary to tertiary amino groups, quaternary ammonium groups, pyridyl groups, imidazole groups, and quaternary pyridinium groups. Generally, quaternary ammoniums that are strongly basic are used. Groups and quaternary pyridinium groups are preferred.
  • Hydrocarbon polymerizable monomers having a cation exchange group include sulfonic acid polymerizable monomers such as ⁇ -halogenated vinyl sulfonic acid, styrene sulfonic acid, and vinyl sulfonic acid, methacrylic acid, acrylic acid, anhydrous Examples thereof include carboxylic acid polymerizable monomers such as maleic acid, phosphonic acid polymerizable monomers such as vinyl phosphoric acid, salts and esters thereof, and the like.
  • hydrocarbon polymerizable monomer having an anion exchange group examples include amine polymerizable monomers such as vinylbenzyltrimethylamine, [4- (4-vinylphenyl) -methyl] -trimethylamine, and vinylbenzyltriethylamine. And nitrogen-containing heterocyclic polymerizable monomers such as vinyl pyridine and vinyl imidazole, and salts and esters thereof.
  • the target laminated ion exchange membrane becomes an ion exchange resin when the polymerization step described later is completed.
  • an ion exchange resin is obtained by carrying out an ion exchange group introduction step after the polymerization step, and the desired laminated ion exchange A membrane can be obtained.
  • crosslinkable polymerizable monomer is used for densifying the ion exchange resin, and is not particularly limited, for example, divinylbenzene, Examples include divinyl sulfone, butadiene, chloroprene, divinyl biphenyl, trivinylbenzenes, divinyl naphthalene, diallylamine, divinyl pyridine and the like.
  • Such a crosslinkable polymerizable monomer is generally preferably 0.1 to 50 parts by weight, more preferably 1 to 40 parts by weight with respect to 100 parts by weight of the basic polymerizable monomer component described above. .
  • polymerizable monomer having a functional group for introducing an exchange group the polymerizable monomer having an ion exchange group, and a crosslinkable polymerizable monomer
  • these polymerizable monomers are optionally used.
  • Another polymerizable monomer copolymerizable with the monomer may be added.
  • examples of such other polymerizable monomers include styrene, acrylonitrile, methylstyrene, acrolein, methyl vinyl ketone, vinyl biphenyl, and the like.
  • Styrene is also a polymerizable monomer having a functional group for introducing an exchange group, but a part of the functional group may remain without introducing an exchange group.
  • Styrene and the like into which no exchange group is introduced are regarded as other polymerizable monomers.
  • the polymerizable composition contains a polymerization initiator together with the polymerizable monomer.
  • a polymerization initiator conventionally known polymerization initiators are used without particular limitation. Specifically, octanoyl peroxide, lauroyl peroxide, t-butyl peroxy-2-ethylhexanoate, benzoyl peroxide, t-butyl peroxyisobutyrate, t-butyl peroxylaurate, t- Organic peroxides such as hexyl peroxybenzoate and di-t-butyl peroxide are used.
  • Such a polymerization initiator is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of all polymerizable monomer components to be used.
  • the polymerizable composition may further contain an acid trapping agent.
  • an acid may be generated.
  • hydrochloric acid is generated when chloromethylstyrene or the like is converted to quaternary ammonium. Since the acid may be gasified during the polymerization to generate bubbles in the polymer, it is preferably neutralized with an acid trapping agent.
  • the acid trapping agent for example, epoxy compounds, (amines, ammonium salts) and the like are preferably used.
  • a matrix resin can be blended as necessary in order to adjust the viscosity.
  • matrix resins examples include ethylene-propylene copolymers, saturated aliphatic hydrocarbon polymers such as polybutylene, styrene polymers such as styrene-butadiene copolymers, and polyvinyl chloride.
  • various comonomers for example, vinyl toluene, vinyl xylene, chlorostyrene, chloromethyl styrene, ⁇ -methyl styrene, ⁇ -halogenated styrene, ⁇ , ⁇ , ⁇ '-trihalogenated styrene, etc.
  • monoolefins such as ethylene and butylene, and conjugated diolefins such as butadiene and isoprene
  • These matrix resins are used in such an amount that the polymerizable composition has a viscosity such that the polymerizable composition can be quickly filled and held in the voids of the porous base film without causing dripping or the like.
  • Ion exchange membrane precursor production process In this step, after laminating a plurality of porous substrate films to form a laminated porous substrate film, the polymerizable composition is brought into contact with the laminated porous substrate film, and the polymerizable composition is introduced into the voids. An ion exchange membrane precursor is produced by filling the product. By carrying out like this, the air layer by a bubble etc. becomes difficult to produce between each porous base film which comprises a laminated porous base film.
  • the temperature at the time of laminating the porous base film is about 5 to 40 ° C.
  • the pressure is about 0 to 0.05 MPa, and the films are stacked without impairing the porosity.
  • the pressure applied at the time of lamination is about the tension when passing through a line roll 3 described later, and the plurality of films are in a state where they can be easily peeled off.
  • the polymerizable composition impregnated in the laminated porous substrate film is polymerized, and the porous substrate film constituting the laminated porous substrate film Is bonded via a polymer and does not peel off.
  • the difference in porosity between adjacent porous substrate films is set to 10% or less.
  • the difference in porosity between adjacent porous substrate films exceeds 10%, the swelling rate of each layer of the laminated porous substrate film filled with the ion exchange resin when the ion exchange membrane is used is different.
  • the counter-ion is ion-exchanged, it peels off at the interface between the porous substrate films.
  • a stretched porous substrate film is used as the porous substrate film, it is preferable to align the layers in the orientation direction.
  • the filling of the polymerizable composition into the voids is preferably carried out by dipping, but can also be carried out by spraying or the like instead of dipping.
  • Ion exchange resin forming step After obtaining an ion exchange membrane precursor in which the polymerizable composition is filled in the voids of the laminated porous substrate film 4 as described above, the polymerizable composition is used as an ion exchange resin, and the present invention is intended. This is an ion exchange membrane for water electrolysis.
  • the ion exchange membrane precursor is polymerized.
  • the polymerization is preferably carried out under pressure.
  • a polymerizable monomer having an ion exchange group is used as a basic polymerizable monomer component of the polymerizable composition filled in the ion exchange membrane precursor, the intended water electrolysis is performed by polymerization. An ion exchange membrane is obtained.
  • a monomer having a functional group for introducing an exchange group is used as the basic polymerizable monomer component, an ion exchange group is introduced after the polymerization.
  • the laminated porous base film does not join the porous base films by heat fusion or the like, and the polymerizable composition in the ion exchange membrane precursor (fills the voids of each porous base film)
  • the polymerized composition is polymerized under pressure, whereby the laminated porous substrate film is joined and integrated simultaneously with the formation of the ion exchange resin (or its precursor resin), and each porous group
  • the material films are firmly bonded to each other.
  • the laminated porous substrate film is not heat-sealed.
  • excess polymerizable composition exudes to the interface of the porous substrate film due to pressurization during polymerization.
  • Polymerization is carried out in a state in which the polymerizable composition leached at the base film interface and the polymerizable composition filled in the gaps of the porous base film are continuous.
  • an ion exchange resin or a precursor resin thereof
  • the resin obtained by polymerization of the polymerizable composition becomes a bonding agent without peeling at the interface of each porous substrate film, and the laminated porous substrate film is joined and integrated. .
  • the pressurization and polymerization of the ion exchange membrane precursor may be performed so that peeling at the interface of the porous substrate film does not occur.
  • the ion exchange membrane precursor laminated porous substrate film
  • the ion exchange membrane precursor is released from the mold. It is good to superpose
  • a film having heat resistance that can withstand polymerization described later and that can be easily peeled off after polymerization is used.
  • an appropriate film may be selected from the above films according to the type of monomer component in the polymerizable composition and used as a releasable film.
  • a polyester film such as polyethylene terephthalate (PET) is most preferable from the viewpoint of heat resistance and peelability.
  • the pressurizing pressure may generally be about 0.1 to 1.0 MPa.
  • the pressurization may be performed by a press, but isotropic pressurization using an inert gas such as nitrogen as a pressure medium is preferable from the viewpoint of maintaining the porosity of the base film.
  • the polymerization temperature is a temperature lower than the melting point of the thermoplastic resin forming the laminated porous substrate film, and may be any temperature that does not impair the orientation and porosity of the porous substrate film. Generally, it is in the range of about 40 to 100 ° C. in the case of a polyolefin film. That is, by performing polymerization by heating to such a temperature range, the porous substrate films can be polymerized without causing heat fusion. At this time, the polymerization may be performed in a state where a part of the porous substrate film is dissolved in the polymerizable composition. As a result, the bonding strength of the porous substrate film can be increased, and the membrane strength can be further improved.
  • the polymerization time varies depending on the polymerization temperature and the like, but is generally about 3 to 20 hours.
  • an ion exchange resin is formed by the above-described polymerization.
  • An ion exchange membrane for water electrolysis is obtained.
  • the resin obtained by the above polymerization does not have an ion exchange group.
  • the introduction of the ion exchange group is carried out by a method known per se.
  • a treatment such as sulfonation, chlorosulfonation, phosphoniumation, hydrolysis, and the like.
  • an exchange membrane it is carried out by a process such as amination or alkylation.
  • the introduction of the ion exchange group is performed after the polymerization of the ion exchange membrane precursor, and is performed after the release film is peeled off when it is sandwiched between the release films and polymerized under pressure.
  • the film thickness of the obtained laminated ion exchange membrane is preferably 50 to 220 ⁇ m, more preferably 50 to 180 ⁇ m, although it depends on the thickness of the laminated porous substrate film and the type and amount of the introduced ion exchange resin.
  • the manufacturing method mentioned above can also be implemented using what was cut
  • FIG. 1 shows an example of a process for producing an ion exchange membrane for water electrolysis in which two porous substrate films are laminated using such a long sheet.
  • the porous substrate films 2a and 2b are unwound from the raw rolls 1a and 1b around which the porous substrate films 2a and 2b are wound, and finally wound on the take-up roll 6.
  • a porous substrate film is laminated on the roll 3 to obtain a laminated porous substrate film 4.
  • the laminated porous substrate film 4 passes through a polymerizable composition immersion tank 9 containing a polymerizable composition provided between the line roll 3 and the take-up roll 6, and the polymerizable property in the tank 9 is reached. Immerse in the composition. By this immersion, an ion exchange membrane precursor 4 ′ in which the polymerizable composition is filled in the voids of the laminated porous substrate film 4 is obtained, and is wound around the winding roll 6 in the form of such a precursor. .
  • filling of the polymerizable composition into the voids is performed by dipping, but it is also possible to carry out by spray coating or the like instead of dipping.
  • spray coating or the like By performing such an operation while laminating the porous base film and winding it on the take-up roll 6, the polymerizable composition can be sufficiently filled in the voids of the laminated porous base film 4. .
  • the releasable film 7 is wound on the take-up roll 6 from the releasable film original fabric roll 8 via a nip roll (pressure roll) 5.
  • a nip roll pressure roll
  • the ion exchange membrane precursor 4 ′ and the release film 7 are simultaneously wound on the winding roll 6.
  • the ion exchange membrane precursor 4 ′ is held on the take-up roll 6 while being held between the release film 7 and pressed by the roll pressure. Therefore, in the polymerization described below, an excess polymerizable composition present at the interface of the porous substrate film by pressurization by the nip roll 5 (generally about 0.1 to 1.0 MPa) is placed in the voids of the film. Polymerization is carried out in the pressed state, and the occurrence of resin accumulation is effectively prevented.
  • the ion exchange membrane precursor 4 ′ in which the polymerizable composition is filled in the voids of the laminated porous substrate film 4 is heated under pressure in a polymerization apparatus such as a heating oven while being wound around the take-up roll 6.
  • a polymerization apparatus such as a heating oven
  • the intended laminated ion exchange membrane can be obtained upon completion of this polymerization.
  • an ion exchange group is introduced after the completion of the polymerization.
  • the laminated ion exchange membrane thus formed is appropriately cut into an appropriate size and used or sold as an ion exchange membrane for water electrolysis.
  • the laminated ion exchange membrane is preferably used as an ion exchange membrane for water electrolysis that is incorporated in an electrolysis apparatus for electrolyzing water and obtaining hydrogen because it has low membrane resistance and hydrogen permeability and high bonding strength. .
  • the membrane resistance of the laminated ion exchange membrane is a value measured by the method of the examples described later, preferably about 10 to 30 m ⁇ ⁇ cm 2 , more preferably about 10 to 20 m ⁇ ⁇ cm 2.
  • the hydrogen permeability is preferably 4000 to 9000 cc / m 2 ⁇ 24 hr ⁇ atm, more preferably 4000 to 7000 cc / m 2 ⁇ 24 hr ⁇ atm.
  • the bonding strength is preferably 350 to 1500 gf / cm, more preferably 500 to 1500 gf / cm.
  • the laminated ion exchange membrane has a relatively thick film thickness, a relatively low porosity of the base film, and a small average pore diameter, so that it has excellent gas barrier properties and low hydrogen permeability.
  • the membrane resistance is expected to increase, but the membrane resistance is not as great as predicted. This cause is not theoretically constrained at all, but can be estimated as follows.
  • the porous film is considered to have a small pore diameter and a low porosity in the surface layer (skin layer) as compared with the inside of the film.
  • the interface between the skin layer and the electrolytic solution is a rate-determining process for conductivity when measuring the membrane resistance.
  • ions enter the ion exchange membrane through the skin layer, they are easily affected by the pore diameter and porosity of the skin layer. Further, when laminating the porous film, since the treatment such as thermocompression bonding and welding is usually performed, the pore diameter of the skin layer becomes smaller and the porosity also decreases, resulting in an increase in membrane resistance. However, in the present invention, when the porous film is laminated, since the lamination is performed under the condition that the porosity can be maintained, an increase in the membrane resistance is suppressed. On the other hand, gas permeability is significantly affected by the size of the gap between the base film and the ion exchange resin.
  • the substrate film filled with the ion exchange resin is controlled to have a specific range of porosity (average pore diameter, porosity), and further, the difference in the porosity of adjacent substrate films is reduced. And no gap between the ion exchange resin and high gas barrier properties. Furthermore, since the porous substrate film constituting the laminated porous substrate film is bonded via the ion exchange resin, high bonding strength can be obtained.
  • the ion exchange membrane for water electrolysis of the present invention is composed of the above laminated ion exchange membrane, and has low membrane resistance and low hydrogen permeability, so that it suppresses the generated hydrogen from passing through the ion exchange membrane, High-pressure hydrogen gas can be efficiently produced by cation exchange membrane type or anion exchange membrane type water electrolysis capable of internal compression.
  • the water electrolysis apparatus of the present invention includes an anode and a cathode, and has the above-described laminated ion exchange membrane between the anode and the cathode.
  • the water electrolysis apparatus is not particularly limited as long as it has the above basic structure, and includes various structures known as water electrolysis apparatuses. Accordingly, it may be an alkaline water electrolysis device or a solid polymer water electrolysis device.
  • an electric power source is provided outside the water electrolysis apparatus.
  • the power source is preferably renewable energy or surplus power, but is not limited thereto.
  • a storage system using a hydrogen liquefaction system, a compression device, a hydrogen storage alloy, or the like may be provided.
  • FIG. 2 shows a simple configuration example of such a water electrolysis apparatus, but the water electrolysis apparatus of the present invention is not limited to the structure of FIG. FIG. 2 shows an example using an anion exchange membrane.
  • the water electrolysis apparatus includes a laminated ion exchange membrane (ion exchange membrane for water electrolysis) 10, a cathode 11, and an anode 12 installed in an electrolytic cell 20.
  • the cathode 11 and the anode 12 are connected to an external power source 30 via conducting wires 31 and 32, respectively.
  • the electrolytic cell is provided with raw water supply pipes 13 and 14 for supplying raw water.
  • a dilute alkaline aqueous solution is preferably used from the viewpoint of electrolysis efficiency, and for example, a dilute aqueous solution of KOH is used.
  • a dilute aqueous solution of KOH is used.
  • the ion exchange membrane is made into a chloride ion type and proton type ion exchange membrane by placing the ion exchange membrane in the center of a two-chamber cell equipped with a platinum electrode, and anion exchange is performed on both sides of the ion exchange membrane.
  • a membrane a 0.5 mol ⁇ L ⁇ 1 -NaCl aqueous solution is filled, and in the case of a cation exchange membrane, a 3 mol ⁇ L ⁇ 1 —H 2 SO 4 aqueous solution is filled, and an AC bridge (frequency 1000 cycles / second) is 25 ° C. The resistance between the electrodes was measured (am ⁇ ⁇ cm 2 ).
  • hydrogen gas is introduced as a test gas under conditions of a temperature of 40 ° C., a humidity of 90% RH, and a flow rate of 30 mL / min, and the amount of hydrogen permeated to the carrier gas side within the sampling time is detected by a gas chromatograph.
  • the hydrogen permeability per 62 cm 2 was calculated, and the hydrogen permeability of the ion exchange membrane was evaluated.
  • Example 1 First, 90 parts by weight of chloromethylstyrene, 10 parts by weight of 57% -divinylbenzene, 5 parts by weight of a polymerization initiator (trade name: perbutyl O), and 5 parts by weight of an epoxy compound (trade name: Epolite 40E) are mixed for polymerization. A monomer composition was obtained. 800 g of the obtained polymerizable composition was put in a 1000 ml container, and a porous substrate film A (film thickness 25 ⁇ m, average pore diameter 0.07 ⁇ m, unwound from each of two raw rolls in this polymerizable composition, (Porosity 44%, made of polyethylene) was laminated on a roll and then immersed.
  • a porous substrate film A film thickness 25 ⁇ m, average pore diameter 0.07 ⁇ m, unwound from each of two raw rolls in this polymerizable composition, (Porosity 44%, made of polyethylene
  • This anion exchange membrane precursor was immersed in an aqueous solution containing 6% by weight of trimethylamine and 25% by weight of acetone at room temperature for 16 hours to introduce anion exchange groups to obtain an anion exchange membrane. Subsequently, it was suspended in a large excess of 0.5 mol ⁇ L ⁇ 1 -KHCO 3 aqueous solution, and the counter ion was ion exchanged from chloride ion to bicarbonate ion to obtain a bicarbonate type anion exchange membrane.
  • Example 2 Bicarbonate type in the same manner as in Example 1 except that the porous base film used was changed to porous base film B (film thickness 25 ⁇ m, average pore diameter 0.07 ⁇ m, porosity 35%, made of polyethylene). An anion exchange membrane was obtained, and membrane resistance and hydrogen permeability were measured. The measurement results are shown in Table 1.
  • Example 3 A bicarbonate type anion exchange membrane was obtained in the same manner as in Example 1 except that the porous base film A and the porous base film B were laminated, and the membrane resistance and hydrogen permeability were measured. The measurement results are shown in Table 1.
  • Example 1 A bicarbonate type anion exchange membrane was obtained in the same manner as in Example 1 except that the porous substrate film A used was changed from two to one, and membrane resistance and hydrogen permeability were measured. The measurement results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

[Problem] To provide a laminated ion exchange membrane for water electrolysis that has high gas barrier properties and low membrane resistance. Also to provide a method for continuously manufacturing a thick laminated ion exchange membrane with high gas barrier properties, wherein the method limits increases in membrane resistance and peeling does not occur even in cases of high water content such as in a liquid phase. [Solution] A laminated ion exchange membrane obtained by filling an ion exchange resin in the voids of a laminated porous substrate film in which multiple sheets of a porous substrate film with 30-50% porosity and mean pore diameter of 0.01 µm to less than 0.1 µm are laminated, wherein the total thickness of the porous substrate film is 50-200 µm, and the difference in porosity of adjacent porous substrate films is 10% or less.

Description

水電解用イオン交換膜、及び該イオン交換膜の製造方法Ion exchange membrane for water electrolysis and method for producing the ion exchange membrane
 本発明は、水電解用イオン交換膜、及び該イオン交換膜の製造方法に関する。 The present invention relates to an ion exchange membrane for water electrolysis and a method for producing the ion exchange membrane.
 イオン交換膜は、製塩や食品分野における脱塩工程などで利用される電気透析用膜や燃料電池の電解質膜として、また、鉄鋼業などで発生する金属イオンを含んだ酸からの酸回収に用いられる拡散透析用膜など多くの分野で工業的に利用されている。このようなイオン交換膜では、補強材として、またイオン交換樹脂の支持体としての機能を有する基材フィルムが用いられ、イオン交換樹脂が基材フィルムに支持された構造を有している。これにより一定の膜強度や膜の形状安定性が付与されている。イオン交換樹脂はイオン交換基を多く持っているため、もし基材フィルムがないと、イオン交換膜を電解質水溶液に浸漬させると容易に膨潤してしまい、イオン交換膜の強度低下や形態変化が生じてしまう。 Ion exchange membranes are used as membranes for electrodialysis used in salt production and desalting processes in the food sector, electrolyte membranes for fuel cells, and for acid recovery from acids containing metal ions generated in the steel industry. It is used industrially in many fields such as diffusion dialysis membranes. In such an ion exchange membrane, a base film having a function as a reinforcing material or a support for the ion exchange resin is used, and the ion exchange resin is supported by the base film. Thus, a certain film strength and film shape stability are imparted. Since ion exchange resins have many ion exchange groups, if there is no base film, if the ion exchange membrane is immersed in an aqueous electrolyte solution, it will swell easily, resulting in a decrease in strength and shape change of the ion exchange membrane. End up.
 従来、上記の基材フィルムとして多孔性の熱可塑性樹脂フィルムを使用することが知られており、実際に使用されている。このような多孔性基材フィルムを用いたイオン交換膜は、多孔性基材フィルム中の空隙内にイオン交換樹脂が充填されており、この結果、膜の電気抵抗(以下、膜抵抗と呼ぶ)が低いという利点を有している。 Conventionally, it is known to use a porous thermoplastic resin film as the base film, and it is actually used. The ion exchange membrane using such a porous substrate film is filled with an ion exchange resin in the voids in the porous substrate film, and as a result, the electrical resistance of the membrane (hereinafter referred to as membrane resistance) Has the advantage of low.
 イオン交換膜は、従来から燃料電池用の電解質膜として用いられているが、現在、水素を製造する水電解用の電解質膜としても注目されている。水電解用の電解質膜には、低い膜抵抗や高いガスバリア性などが求められている。水電解の方式として、アルカリ水電解、カチオン交換膜型水電解、およびアニオン交換膜型水電解がある。これらの中でも、水素の内部圧縮が可能なカチオン交換膜型水電解、アニオン交換膜型水電解が注目されている。しかし、内部圧縮することにより圧力がかかり、発生する水素がイオン交換膜を透過しやすくなってしまうため、イオン交換膜には、より高いガスバリア性が求められている。 An ion exchange membrane has been conventionally used as an electrolyte membrane for fuel cells, but is currently attracting attention as an electrolyte membrane for water electrolysis for producing hydrogen. An electrolyte membrane for water electrolysis is required to have low membrane resistance and high gas barrier properties. Water electrolysis methods include alkaline water electrolysis, cation exchange membrane water electrolysis, and anion exchange membrane water electrolysis. Among these, cation exchange membrane type water electrolysis and anion exchange membrane type water electrolysis capable of internal compression of hydrogen are attracting attention. However, pressure is applied by internal compression, and the generated hydrogen is likely to permeate the ion exchange membrane. Therefore, a higher gas barrier property is required for the ion exchange membrane.
 ガスバリア性を高める最も効果的な手法として、イオン交換膜を厚くすることが考えられる。厚いイオン交換膜を作製するためには、より厚い多孔性基材フィルムを用いてイオン交換膜を作製する必要がある。しかし、厚い多孔性基材フィルムは一般的に、空隙率が高く、また細孔径が大きい。厚い多孔性基材フィルムを用いてイオン交換膜を作製した場合、多孔性基材フィルムの空隙率・細孔径が大きいため、イオン交換樹脂の膨潤、収縮による寸法変化が大きくなる。この結果、イオン交換樹脂と多孔性基材フィルムとの間に隙間が発生し、ガスバリア性が低くなってしまう。そのため、一般的な厚い多孔性基材フィルムを用いることは好ましくなく、ガスバリア性の高いイオン交換膜は得られていない状況にある。 It is conceivable to increase the thickness of the ion exchange membrane as the most effective method for improving the gas barrier property. In order to produce a thick ion exchange membrane, it is necessary to produce an ion exchange membrane using a thicker porous substrate film. However, a thick porous substrate film generally has a high porosity and a large pore diameter. When an ion exchange membrane is produced using a thick porous substrate film, the porosity and pore diameter of the porous substrate film are large, so that the dimensional change due to swelling and shrinkage of the ion exchange resin becomes large. As a result, a gap is generated between the ion exchange resin and the porous substrate film, and the gas barrier property is lowered. Therefore, it is not preferable to use a general thick porous substrate film, and an ion exchange membrane having a high gas barrier property has not been obtained.
 液体燃料型の燃料電池用隔膜に用いられるイオン交換膜として、特許文献1には、低含水型と高含水型の2層のカチオン交換膜層を両側層に配した、液体燃料の透過性が低い燃料電池用カチオン交換膜が提案されている。 As an ion exchange membrane used for a liquid fuel type fuel cell membrane, Patent Document 1 discloses a liquid fuel permeability in which two cation exchange membrane layers of a low water content type and a high water content type are arranged on both side layers. Low cation exchange membranes for fuel cells have been proposed.
 また、特許文献2には、脱塩工程や燃料電池の電解質に用いられるイオン交換膜の製造方法として、縦横の配向強度が異なる複数の多孔質樹脂シートに、イオン交換樹脂の前駆体である重合性組成物を含浸し、配向方向が交差するように樹脂シートを重ね合せ、重合性化合物を重合するイオン交換膜の製造方法が開示されている。 Further, in Patent Document 2, as a method for producing an ion exchange membrane used in a desalting step or an electrolyte of a fuel cell, polymerization that is a precursor of an ion exchange resin is performed on a plurality of porous resin sheets having different vertical and horizontal orientation strengths. A method for producing an ion exchange membrane is disclosed in which an impregnating composition is impregnated, resin sheets are superposed so that the orientation directions intersect, and a polymerizable compound is polymerized.
特許第5059341号公報Japanese Patent No. 5059341 特許第5436357号公報Japanese Patent No. 5436357
 特許文献1に開示されている燃料電池用のイオン交換膜は、低含水型と高含水型の2枚のイオン交換膜を積層し、熱プレスを行うことにより、低含水型と高含水型の2層のカチオン交換膜層を両側層に配した、液体燃料の透過性の低いイオン交換膜の作製に成功している。しかしながら、製造時に熱プレスを行うため、イオン交換膜中のイオン交換基が高温により分解し、膜抵抗が高くなるといった欠点が新たに生じてくる。このため、水電解に用いた場合、効率が低くなる等の問題が生じてしまう。 The ion exchange membrane for a fuel cell disclosed in Patent Document 1 has a low water content type and a high water content type by laminating two ion exchange membranes of a low water content type and a high water content type and performing hot pressing. We have succeeded in producing an ion exchange membrane having two layers of cation exchange membrane layers on both sides and having low liquid fuel permeability. However, since hot pressing is performed at the time of production, a new disadvantage arises in that the ion exchange groups in the ion exchange membrane are decomposed at a high temperature and the membrane resistance increases. For this reason, when it uses for water electrolysis, problems, such as efficiency becoming low, will arise.
 また、特許文献1には、空隙率の異なる2枚の多孔性基材フィルムを熱プレスにより積層した後、重合性組成物を含浸して重合硬化させる方法も記載されているが、この方法では、熱プレスにより多孔性基材フィルムの空隙がつぶれて空隙率が低下し、イオン交換膜の膜抵抗が高いものとなる。 Patent Document 1 also describes a method in which two porous substrate films having different porosity are laminated by hot pressing and then impregnated with a polymerizable composition to be cured by polymerization. The voids of the porous substrate film are crushed by hot pressing, and the porosity is lowered, and the membrane resistance of the ion exchange membrane is increased.
 特許文献2に開示されているイオン交換膜は、多孔質樹脂シートが高配向の樹脂シートであり、その配向方向が交差するように積層された積層多孔質樹脂シートを基材としている。したがって、得られたイオン交換膜は高い引裂強度を有する。しかし、このイオン交換膜を、水電解に使用すると、基材を構成するそれぞれの多孔質樹脂シートの異方性に起因して、イオン交換膜の膨潤が抑制される。この結果、膜抵抗を十分に低減できず、水電解の効率が不十分なものとなる。また、特許文献2の比較例2には、多孔質樹脂シートを予め熱プレスし、一体化した強度異方性のある積層多孔質樹脂シートを用いた例が記載されている。しかしながら、熱プレスにより膜抵抗が増大したことが報告されている。これは特許文献1に関して説明したように、熱プレスにより多孔質樹脂シートの空隙がつぶれて空隙率が低下し、膜抵抗が増大したためと考えられる。 The ion exchange membrane disclosed in Patent Document 2 has a porous resin sheet that is a highly oriented resin sheet, and a laminated porous resin sheet that is laminated so that the orientation directions thereof intersect each other. Therefore, the obtained ion exchange membrane has a high tear strength. However, when this ion exchange membrane is used for water electrolysis, swelling of the ion exchange membrane is suppressed due to the anisotropy of each porous resin sheet constituting the substrate. As a result, the membrane resistance cannot be sufficiently reduced, and the efficiency of water electrolysis becomes insufficient. Further, Comparative Example 2 of Patent Document 2 describes an example using a laminated porous resin sheet having strength anisotropy integrated by pre-pressing a porous resin sheet in advance. However, it has been reported that film resistance is increased by hot pressing. This is considered to be because the voids of the porous resin sheet were crushed by the hot press, resulting in a decrease in the porosity and an increase in membrane resistance, as described in connection with Patent Document 1.
 従って、本発明の目的は、高いガスバリア性を有し、膜抵抗の低い水電解用の積層イオン交換膜、及び該イオン交換膜を連続的に作製する方法であって、膜抵抗の増加を抑制し、液相中など含水率が高い場合であっても剥離しない積層イオン交換膜を製造する方法を提供することにある。 Accordingly, an object of the present invention is a laminated ion exchange membrane for water electrolysis having a high gas barrier property and low membrane resistance, and a method for continuously producing the ion exchange membrane, which suppresses an increase in membrane resistance. It is another object of the present invention to provide a method for producing a laminated ion exchange membrane that does not peel even when the water content is high, such as in a liquid phase.
 本発明者等は、上記課題を解決するため、鋭意検討を行った。その結果、多孔性基材フィルムの空隙率、平均細孔径、及び多孔性基材フィルムの厚みを特定の範囲にすることにより、膜抵抗の増加を抑制し、高いガスバリア性を有する、剥離することのない積層イオン交換膜を作成でき、かかる積層イオン交換膜が特に水電解用イオン交換膜として有用であるという知見を見出し、本発明を完成させるに至った。 The present inventors have intensively studied to solve the above problems. As a result, by increasing the porosity of the porous substrate film, the average pore diameter, and the thickness of the porous substrate film within a specific range, an increase in membrane resistance is suppressed, and high gas barrier properties are peeled off. The present inventors have found the knowledge that such a laminated ion exchange membrane is particularly useful as an ion exchange membrane for water electrolysis, and have completed the present invention.
 即ち、本発明は、空隙率30~50%、平均細孔径0.01~0.1μm未満の多孔性基材フィルムが複数枚積層された積層多孔性基材フィルムの空隙にイオン交換樹脂が充填されてなる積層イオン交換膜であって、多孔性基材フィルムの合計厚みが50~200μm、且つ隣接した多孔性基材フィルムの空隙率の差が10%以下である水電解用イオン交換膜、及び重合性単量体及び重合開始剤を含む重合性組成物を調製する工程、複数枚の多孔性基材フィルムを積層して積層多孔性基材フィルムとし、該積層多孔性基材フィルムに重合性単量体及び重合開始剤を含む重合性組成物を接触させ、積層多孔性基材フィルムの空隙に重合性組成物を充填させてイオン交換膜前駆体を得る工程、イオン交換膜前駆体中の重合性組成物をイオン交換樹脂とする工程、を含む該水電解用イオン交換膜の製造方法である。 That is, according to the present invention, an ion exchange resin is filled in the voids of a laminated porous substrate film in which a plurality of porous substrate films having a porosity of 30 to 50% and an average pore diameter of 0.01 to less than 0.1 μm are laminated. An ion exchange membrane for water electrolysis, wherein the total thickness of the porous base film is 50 to 200 μm, and the difference in porosity between adjacent porous base films is 10% or less, And a step of preparing a polymerizable composition comprising a polymerizable monomer and a polymerization initiator, laminating a plurality of porous substrate films to form a laminated porous substrate film, and polymerizing the laminated porous substrate film A step of contacting a polymerizable composition containing a polymerizable monomer and a polymerization initiator and filling the voids of the laminated porous substrate film with the polymerizable composition to obtain an ion exchange membrane precursor, in the ion exchange membrane precursor Ion exchange tree of polymerizable composition A method for producing an ion exchange membrane for water electrolysis, comprising a step of converting to fat.
 また、本発明は、上記した積層イオン交換膜の水電解への使用、該積層イオン交換膜を用いた水電解装置、および該装置を用いて水の電気分解を行い、水素を得る水の電解方法に関する。 The present invention also relates to the use of the above-described laminated ion exchange membrane for water electrolysis, a water electrolysis apparatus using the laminated ion exchange membrane, and electrolysis of water to obtain hydrogen by electrolyzing water using the apparatus. Regarding the method.
 本発明の水電解用イオン交換膜は、膜抵抗が低く且つ水素透過性が低いので、発生する水素がイオン交換膜を透過するのを抑制し、効率良く高圧の水素ガスを製造することができる。 Since the ion exchange membrane for water electrolysis of the present invention has low membrane resistance and low hydrogen permeability, it is possible to suppress the generated hydrogen from permeating the ion exchange membrane and efficiently produce high-pressure hydrogen gas. .
 本発明の製造方法によれば、特定の空隙率、平均細孔径を有する多孔性基材フィルムを積層して作製することにより、膜抵抗の増加を抑制し、高いガスバリア性を有する厚い積層イオン交換膜の作製することができ、水電解用に適した積層イオン交換膜を得ることができる。 According to the production method of the present invention, a thick laminated ion exchange having a high gas barrier property is suppressed by suppressing the increase in membrane resistance by laminating a porous substrate film having a specific porosity and average pore diameter. A membrane can be produced, and a laminated ion exchange membrane suitable for water electrolysis can be obtained.
 また、本発明の製造方法において、最も重要な特徴は、積層イオン交換膜を形成する際に用いる多孔性基材フィルムの空隙率、平均細孔径、及び積層する多孔性基材フィルムの空隙率の差を制御している点にある。即ち、イオン交換樹脂用の重合性組成物に積層多孔性基材フィルムを浸漬して、重合性組成物を重合して、積層イオン交換膜を作製することにより、イオン交換樹脂の過度の寸法変化を抑制し、多孔性基材フィルムとイオン交換樹脂との隙間の発生を抑制する。更に、重合性組成物の重合体が接合剤として機能し、多孔性基材フィルム同士が接合され、このイオン交換膜は液相中などイオン交換膜の含水率が高くなる雰囲気であっても、剥離することはない。 In the production method of the present invention, the most important characteristics are the porosity of the porous substrate film used when forming the laminated ion exchange membrane, the average pore diameter, and the porosity of the porous substrate film to be laminated. It is in controlling the difference. That is, by immersing a laminated porous substrate film in a polymerizable composition for an ion exchange resin, polymerizing the polymerizable composition to produce a laminated ion exchange membrane, an excessive dimensional change of the ion exchange resin And the generation of a gap between the porous substrate film and the ion exchange resin is suppressed. Furthermore, the polymer of the polymerizable composition functions as a bonding agent, the porous substrate films are bonded to each other, and this ion exchange membrane is in an atmosphere where the water content of the ion exchange membrane is high, such as in a liquid phase, There is no peeling.
イオン交換膜を製造する際に使用されるロール送り工程を示す図。The figure which shows the roll feed process used when manufacturing an ion exchange membrane. 水電解装置の概略図である。It is the schematic of a water electrolysis apparatus.
(水電解用イオン交換膜)
 本発明の水電解用イオン交換膜は、空隙率30~50%、平均細孔径0.01~0.1μm未満の多孔性基材フィルムが複数枚積層された積層多孔性基材フィルムの空隙にイオン交換樹脂が充填されてなる積層イオン交換膜であって、多孔性基材フィルムの合計厚みが50~200μm、且つ隣接した多孔性基材フィルムの空隙率の差が10%以下である。以下では、積層イオン交換膜と水電解用イオン交換膜を同義で使用することがあるが、積層イオン交換膜は、用途が限定されない。
(Ion exchange membrane for water electrolysis)
The ion exchange membrane for water electrolysis of the present invention has a porosity of 30 to 50% and an average pore diameter of 0.01 to less than 0.1 μm. A laminated ion exchange membrane filled with an ion exchange resin, wherein the total thickness of the porous substrate films is 50 to 200 μm, and the difference in porosity between adjacent porous substrate films is 10% or less. Hereinafter, the laminated ion exchange membrane and the ion exchange membrane for water electrolysis may be used synonymously, but the use of the laminated ion exchange membrane is not limited.
<多孔性基材フィルム>
 上記の多孔性基材フィルムには、表面から裏面に貫通する微細な細孔が多数形成されている。
<Porous substrate film>
In the porous base film, a large number of fine pores penetrating from the front surface to the back surface are formed.
 平均細孔径はASTM-F316-86に準拠し 、ハーフドライ法にて測定することができ、0.01~0.1μm未満であり、0.015~0.09μmであることが好ましい。平均細孔径が0.01μm未満であると膜抵抗が高くなってしまい、0.1μm以上であるとイオン交換膜の水素透過性が高くなってしまう。また、空隙率は多孔性基材フィルムの体積(Vcm)と質量(Ug)を測定し、多孔性基材フィルムの材質の密度をX(g/cm)として、 下記の式により算出した値をいう。
 空隙率=[(V-U/X)/V]×100[%]
The average pore diameter can be measured by a half dry method in accordance with ASTM-F316-86, and is 0.01 to less than 0.1 μm, and preferably 0.015 to 0.09 μm. When the average pore diameter is less than 0.01 μm, the membrane resistance increases, and when it is 0.1 μm or more, the hydrogen permeability of the ion exchange membrane increases. Moreover, the porosity was calculated by the following formula, measuring the volume (Vcm 3 ) and mass (Ug) of the porous substrate film, and setting the density of the material of the porous substrate film as X (g / cm 3 ). Value.
Porosity = [(V−U / X) / V] × 100 [%]
 本発明の効果を達成するためには、空隙率は30~50%である必要があり、33~47%であることが好ましい。空隙率が30%未満であるとイオン交換膜の膜抵抗が高くなってしまい、50%超であるとイオン交換膜の水素透過性が高くなってしまう。各多孔性基材フィルムの厚みは、一般に5~100μmであり、10~50μmであることが好ましく、さらに好ましくは10~40μmである。また、多孔性基材フィルムの合計厚みは50~200μmである。なお、本発明において多孔性基材フィルムの合計厚みは、複数枚の多孔性基材フィルムが積層された積層多孔性基材フィルムの厚みである。多孔性基材フィルムの枚数は、2枚以上であれば特に限定はされないが、好ましくは2~5枚、さらに好ましくは2~3枚である。また、多孔性基材フィルムの幅は特に制限されないが、入手や製造の容易性を勘案すると200~1500mmである。 In order to achieve the effect of the present invention, the porosity needs to be 30 to 50%, preferably 33 to 47%. When the porosity is less than 30%, the membrane resistance of the ion exchange membrane increases, and when it exceeds 50%, the hydrogen permeability of the ion exchange membrane increases. The thickness of each porous substrate film is generally 5 to 100 μm, preferably 10 to 50 μm, more preferably 10 to 40 μm. The total thickness of the porous substrate film is 50 to 200 μm. In the present invention, the total thickness of the porous substrate film is the thickness of the laminated porous substrate film in which a plurality of porous substrate films are laminated. The number of porous substrate films is not particularly limited as long as it is 2 or more, but is preferably 2 to 5, more preferably 2 to 3. The width of the porous substrate film is not particularly limited, but is 200 to 1500 mm in consideration of availability and production.
 多孔性基材フィルムが複数枚積層された積層多孔性基材フィルムは、隣接する多孔性基材フィルムの空隙率の差は10%以下であり、好ましくは0~8%、さらに好ましくは0~4%である。なお、空隙率の差とは、空隙率の大きなフィルムの空隙率Aと小さなフィルムの空隙率Bとから、(A-B)で求められる。隣接する多孔性基材フィルムの空隙率の差が10%超であると、イオン交換膜としたときの、イオン交換樹脂が充填された積層多孔性基材フィルムの各層の膨潤率が異なるためと推察されるが、対イオンをイオン交換する際に、多孔性基材フィルム同士の界面で剥離してしまう。なお、多孔性基材フィルムを3枚以上用いる場合には、隣接する多孔性基材フィルム同士の空隙率の差が10%以下であればよく、隣接しないフィルム間での空隙率の差は10%を超えてもよい。たとえば3枚の多孔性基材フィルムを積層した場合には、1層目と2層目との空隙率の差、および2層目と3層目との空隙率の差が10%以下であればよく、1層目と3層目との空隙率の差は10%を超えても良い。しかしながら、すべての多孔性基材フィルムの空隙率の差を10%以下とすることが好ましい。 In a laminated porous substrate film in which a plurality of porous substrate films are laminated, the difference in porosity between adjacent porous substrate films is 10% or less, preferably 0 to 8%, more preferably 0 to 4%. The difference in porosity is obtained from (AB) from the porosity A of a film having a large porosity and the porosity B of a small film. When the difference in porosity between adjacent porous substrate films exceeds 10%, the swelling rate of each layer of the laminated porous substrate film filled with the ion exchange resin when the ion exchange membrane is used is different. As guessed, when the counter-ion is ion-exchanged, it peels off at the interface between the porous substrate films. In addition, when using 3 or more porous base film, the difference of the porosity of adjacent porous base films should just be 10% or less, and the difference of the porosity between films which are not adjacent is 10%. % May be exceeded. For example, when three porous substrate films are laminated, the difference in porosity between the first layer and the second layer and the difference in porosity between the second layer and the third layer should be 10% or less. The difference in porosity between the first layer and the third layer may exceed 10%. However, it is preferable that the difference in the porosity of all the porous substrate films is 10% or less.
 多孔性基材フィルムは、種々の熱可塑性樹脂で形成されていてもよいが、イオン交換膜の基材フィルムとして使用する場合では、イオン交換基を有していない熱可塑性樹脂、例えば、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-オレフィン共重合体等の塩化ビニル系樹脂;ナイロン6、ナイロン66等のポリアミド樹脂;エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、4-メチル-1-ペンテン、5-メチル-1-ヘプテン等のオレフィン系重合体或いは共重合体が好適であり、空隙率、平均細孔径の制御が容易であり、また柔軟性にも優れるオレフィン系重合体或いは共重合体がより好適であり、中でもポリエチレンが最適である。 The porous substrate film may be formed of various thermoplastic resins, but when used as a substrate film of an ion exchange membrane, a thermoplastic resin having no ion exchange group, for example, polychlorinated Vinyl chloride resins such as vinyl, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-olefin copolymer; polyamide resins such as nylon 6 and nylon 66; ethylene, propylene, 1- Preferred are olefin polymers or copolymers such as butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 4-methyl-1-pentene, 5-methyl-1-heptene, and the porosity. An olefin polymer or copolymer that is easy to control the average pore diameter and excellent in flexibility is more preferable, and polyethylene is most preferable. That.
 多孔性基材フィルムは、延伸されていてもよいし、未延伸であってもよいが、一般的には、フィルムの結晶化度が増すことによるイオン交換膜の強度向上や水素透過性の抑制等の観点から1軸或いは2軸方向に延伸されていることが好ましい。また、積層多孔性基材フィルム中の各多孔性基材フィルムの配向方向は揃っていることが好ましい。なお、配向方向が揃っているとは、各多孔性基材フィルムの配向方向(二軸延伸フィルムの場合には、延伸倍率の高い方向)のなす角が、±10°以内の範囲にあることを言う。配向方向が揃っている場合、配向方向が揃っていない場合と比較して、イオン交換膜が膨潤しやすく、膜抵抗が低いものとなる。 The porous substrate film may be stretched or unstretched, but in general, the ion exchange membrane is improved in strength and the hydrogen permeability is suppressed by increasing the crystallinity of the film. From such a viewpoint, it is preferable that the film is stretched in a uniaxial or biaxial direction. Moreover, it is preferable that the orientation direction of each porous base film in the laminated porous base film is aligned. In addition, the orientation direction being uniform means that the angle formed by the orientation direction of each porous substrate film (in the case of a biaxially stretched film, the direction in which the stretching ratio is high) is within ± 10 °. Say. When the alignment direction is aligned, the ion exchange membrane is easily swelled and the membrane resistance is lower than when the alignment direction is not aligned.
 なお、上記のような多孔性基材フィルムは、それ自体公知の方法、例えば、特開平9-216964号公報、特開平9-235399号公報、特開2002-338721号公報などに記載されている方法によって形成することができる。即ち、フィルム成形用の熱可塑性樹脂(例えばポリエチレン)に細孔形成用の添加材が配合された樹脂組成物を用い、押出成形等により所定厚みのフィルムを成形し、次いで必要により延伸成形を行った後、得られたフィルムに配合されている添加材を、有機溶剤による抽出、酸またはアルカリによる溶解などによって除去することにより、目的とする細孔が多数形成されたフィルムを得ることができる。 The porous substrate film as described above is described in a method known per se, for example, in JP-A-9-216964, JP-A-9-235399, JP-A 2002-338721, and the like. It can be formed by a method. That is, a film having a predetermined thickness is formed by extrusion molding or the like using a resin composition in which an additive for pore formation is blended with a thermoplastic resin for film formation (for example, polyethylene), and then stretch-molded if necessary. Thereafter, an additive added to the obtained film is removed by extraction with an organic solvent, dissolution with an acid or alkali, and the like, whereby a film having a large number of target pores can be obtained.
<イオン交換樹脂>
 多孔性基材フィルムの空隙内に充填されるイオン交換樹脂は、公知のものでよく、例えば、炭化水素系又はフッ素系の樹脂に、イオン交換能を発現させるイオン交換基、具体的には、陽イオン交換基或いは陰イオン交換基を導入したものである。これらの中でも、反応場がアルカリ性であり、電極として比較的安価な鉄、コバルト、ニッケルあるいはこれらの合金等を使用できる陰イオン交換型のイオン交換樹脂が好ましい。
<Ion exchange resin>
The ion exchange resin filled in the voids of the porous substrate film may be a known one, for example, an ion exchange group that expresses ion exchange ability in a hydrocarbon-based or fluorine-based resin, specifically, A cation exchange group or an anion exchange group is introduced. Among these, an anion exchange type ion exchange resin that has an alkaline reaction field and can use relatively inexpensive iron, cobalt, nickel, or an alloy thereof as an electrode is preferable.
 前記炭化水素系の樹脂としては、スチレン系樹脂、アクリル系樹脂等が、また、フッ素系の材質としては、パーフルオロカーボン系樹脂等が挙げられる。イオン交換樹脂としては、水素透過性が低く、且つ安価に入手可能であるため、炭化水素系の樹脂にイオン交換基を導入したものが好ましい。 Examples of the hydrocarbon-based resin include styrene-based resins and acrylic resins, and examples of the fluorine-based material include perfluorocarbon-based resins. As an ion exchange resin, since hydrogen permeability is low and it can be obtained at low cost, a resin obtained by introducing an ion exchange group into a hydrocarbon resin is preferable.
 なお、炭化水素系の樹脂とは、実質的に炭素-フッ素結合を含まず、樹脂を構成する主鎖及び側鎖の結合の大部分が、炭素-炭素結合で構成されている樹脂のことを言う。すなわち、上記主鎖及び側鎖を構成する炭素-炭素結合の合間にエーテル結合、エステル結合、アミド結合、シロキサン結合等により酸素、窒素、珪素、硫黄、ホウ素、リン等の他の原子が少量介在していても良い。また、上記主鎖及び側鎖に結合する原子は、その全てが水素原子である必要はなく少量であれば塩素、臭素、フッ素、ヨウ素等の他の原子、又は他の原子を含む置換基により置換されていても良い。 The hydrocarbon-based resin is a resin that does not substantially contain a carbon-fluorine bond, and that most of the main chain and side chain bonds constituting the resin are composed of carbon-carbon bonds. To tell. That is, a small amount of other atoms such as oxygen, nitrogen, silicon, sulfur, boron, and phosphorus are interposed between the carbon-carbon bonds constituting the main chain and the side chain by ether bond, ester bond, amide bond, siloxane bond, etc. You may do it. In addition, the atoms bonded to the main chain and the side chain need not all be hydrogen atoms, and if the amount is small, other atoms such as chlorine, bromine, fluorine, iodine, etc., or substituents containing other atoms It may be replaced.
 また、上記したイオン交換基は、水溶液中で負又は正の電荷となり得る官能基であり、陽イオン交換基の場合には、スルホン酸基、カルボン酸基、ホスホン酸基等が挙げられ、一般的に、強酸性基であるスルホン酸基が好適である。陽イオン交換膜の場合、カウンターカチオンは、水素イオンが好適である。また、陰イオン交換基の場合には、1~3級アミノ基、4級アンモニウム基、ピリジル基、イミダゾール基、4級ピリジニウム基等が挙げられ、一般的に、強塩基性である4級アンモニウム基や4級ピリジニウム基が好適である。陰イオン交換膜の場合、カウンターアニオンは、炭酸イオン、重炭酸イオン、水酸化物イオン等が好適である。 The ion exchange group described above is a functional group that can be negatively or positively charged in an aqueous solution. In the case of a cation exchange group, examples thereof include a sulfonic acid group, a carboxylic acid group, and a phosphonic acid group. In particular, sulfonic acid groups that are strongly acidic groups are preferred. In the case of a cation exchange membrane, the counter cation is preferably a hydrogen ion. Examples of anion exchange groups include primary to tertiary amino groups, quaternary ammonium groups, pyridyl groups, imidazole groups, and quaternary pyridinium groups. Generally, quaternary ammoniums that are strongly basic are used. Groups and quaternary pyridinium groups are preferred. In the case of an anion exchange membrane, the counter anion is preferably carbonate ion, bicarbonate ion, hydroxide ion or the like.
 積層多孔性基材フィルムの空隙にイオン交換樹脂が充填されてなる積層イオン交換膜は、通常のイオン交換膜と同様に各種の用途に制限なく用いられるが、膜抵抗が低く、且つ水素透過性も低いため、特に水を電気分解し、水素を得るための電解装置に組み込まれる水電解用イオン交換膜として好ましく用いられる。 Laminated ion exchange membranes in which voids in the laminated porous substrate film are filled with ion exchange resin are used without limitation for various applications like ordinary ion exchange membranes, but have low membrane resistance and hydrogen permeability. In particular, it is preferably used as an ion exchange membrane for water electrolysis incorporated in an electrolysis apparatus for electrolyzing water to obtain hydrogen.
(積層イオン交換膜の製造方法)
 本発明の水電解用イオン交換膜は、上記イオン交換樹脂を形成するための重合性単量体及び重合開始剤を含む重合性組成物(以下、単に、重合性組成物ともいう)を調製する工程(重合性組成物調製工程)、複数枚の多孔性基材フィルムを積層させて積層多孔性基材フィルムとし、該積層多孔性基材フィルムに重合性単量体及び重合開始剤を含む重合性組成物を接触させ、積層多孔性基材フィルムの空隙部に重合性組成物を充填させイオン交換膜前駆体とした後(イオン交換膜前駆体作製工程)、及びイオン交換膜前駆体中の重合性組成物をイオン交換樹脂とすること(イオン交換樹脂形成工程)により製造される。
(Production method of laminated ion exchange membrane)
The ion exchange membrane for water electrolysis of the present invention prepares a polymerizable composition (hereinafter also simply referred to as a polymerizable composition) containing a polymerizable monomer and a polymerization initiator for forming the ion exchange resin. Step (polymerizable composition preparation step), laminating a plurality of porous substrate films to form a laminated porous substrate film, and polymerization including a polymerizable monomer and a polymerization initiator in the laminated porous substrate film The ion-exchange membrane precursor (step of preparing the ion-exchange membrane precursor), and the ion-exchange membrane precursor in the ion-exchange membrane precursor It is produced by using the polymerizable composition as an ion exchange resin (ion exchange resin forming step).
1.重合性組成物調製工程;
 本発明において、重合性組成物はイオン交換樹脂を形成するための組成物である。該重合性組成物は重合性単量体として、イオン交換基を導入し得る官能基(交換基導入用官能基)を有する重合性単量体又はイオン交換基を有する重合性単量体(以下、これらの単量体を「基本重合性単量体成分」と呼ぶことがある)を含有し、さらに架橋重合性単量体を含有してもよい。重合性組成物は、これらの成分と重合開始剤とを混合することにより調製される。
1. Polymerizable composition preparation step;
In the present invention, the polymerizable composition is a composition for forming an ion exchange resin. The polymerizable composition is a polymerizable monomer having a functional group capable of introducing an ion exchange group (functional group for introducing an exchange group) or a polymerizable monomer having an ion exchange group (hereinafter referred to as a polymerizable monomer). These monomers may be referred to as “basic polymerizable monomer components”), and may further contain a crosslinkable polymerizable monomer. The polymerizable composition is prepared by mixing these components and a polymerization initiator.
 重合性単量体としては上記した炭化水素系もしくはフッ素系の樹脂を製造できる単量体であれば特に制限されない。したがって、イオン交換樹脂あるいはその前駆体樹脂を形成する単量体として使用される炭化水素系もしくはフッ素系の重合性単量体であれば制限はなく、交換基導入用官能基を有する重合性単量体及びイオン交換基を有する重合性単量体としてイオン交換樹脂を製造するために、従来から使用されているものを制限なく使用できる。 The polymerizable monomer is not particularly limited as long as it is a monomer that can produce the above-described hydrocarbon-based or fluorine-based resin. Therefore, there is no limitation as long as it is a hydrocarbon-based or fluorine-based polymerizable monomer used as a monomer for forming an ion exchange resin or its precursor resin, and a polymerizable monomer having a functional group for introducing an exchange group. In order to produce an ion exchange resin as a polymerizable monomer having a monomer and an ion exchange group, those conventionally used can be used without limitation.
 例えば、陽イオン交換基導入用官能基を有する炭化水素系重合性単量体としては、スチレン、ビニルトルエン、ビニルキシレン、α-メチルスチレン、ビニルナフタレン、α-ハロゲン化スチレン類等を挙げることができる。 For example, examples of the hydrocarbon polymerizable monomer having a functional group for introducing a cation exchange group include styrene, vinyl toluene, vinyl xylene, α-methyl styrene, vinyl naphthalene, α-halogenated styrenes, and the like. it can.
 陰イオン交換基導入用官能基を有する炭化水素系重合性単量体としては、スチレン、ブロモブチルスチレン、ビニルトルエン、クロロメチルスチレン、ビニルピリジン、ビニルイミダゾール、α-メチルスチレン、ビニルナフタレン等が挙げられる。なお、スチレン等は、陽イオン交換基の導入にも、陰イオン交換基の導入にも使用できる。 Examples of hydrocarbon polymerizable monomers having an anion exchange group-introducing functional group include styrene, bromobutyl styrene, vinyl toluene, chloromethyl styrene, vinyl pyridine, vinyl imidazole, α-methyl styrene, vinyl naphthalene, and the like. It is done. Styrene and the like can be used for introducing a cation exchange group or an anion exchange group.
 なお、上記した陽又は陰イオン交換基導入用官能基を有する炭化水素系重合性単量体に導入されるイオン交換基は、水溶液中で負又は正の電荷となり得る官能基であり、陽イオン交換基の場合には、スルホン酸基、カルボン酸基、ホスホン酸基等が挙げられ、一般的に、強酸性基であるスルホン酸基が好適である。また、陰イオン交換基の場合には、1~3級アミノ基、4級アンモニウム基、ピリジル基、イミダゾール基、4級ピリジニウム基等が挙げられ、一般的に、強塩基性である4級アンモニウム基や4級ピリジニウム基が好適である。 The ion exchange group introduced into the hydrocarbon polymerizable monomer having a functional group for introducing a cation or anion exchange group described above is a functional group that can be negatively or positively charged in an aqueous solution. In the case of an exchange group, a sulfonic acid group, a carboxylic acid group, a phosphonic acid group and the like can be mentioned, and a sulfonic acid group which is a strongly acidic group is generally preferable. Examples of anion exchange groups include primary to tertiary amino groups, quaternary ammonium groups, pyridyl groups, imidazole groups, and quaternary pyridinium groups. Generally, quaternary ammoniums that are strongly basic are used. Groups and quaternary pyridinium groups are preferred.
 陽イオン交換基を有する炭化水素系重合性単量体としては、α-ハロゲン化ビニルスルホン酸、スチレンスルホン酸、ビニルスルホン酸等のスルホン酸系重合性単量体、メタクリル酸、アクリル酸、無水マレイン酸等のカルボン酸系重合性単量体、ビニルリン酸等のホスホン酸系重合性単量体、それらの塩類およびエステル類等を挙げることができる。 Hydrocarbon polymerizable monomers having a cation exchange group include sulfonic acid polymerizable monomers such as α-halogenated vinyl sulfonic acid, styrene sulfonic acid, and vinyl sulfonic acid, methacrylic acid, acrylic acid, anhydrous Examples thereof include carboxylic acid polymerizable monomers such as maleic acid, phosphonic acid polymerizable monomers such as vinyl phosphoric acid, salts and esters thereof, and the like.
 また、陰イオン交換基を有する炭化水素系重合性単量体としては、ビニルベンジルトリメチルアミン、[4-(4-ビニルフェニル)-メチル]-トリメチルアミン、ビニルベンジルトリエチルアミン等のアミン系重合性単量体、ビニルピリジン、ビニルイミダゾール等の含窒素複素環系重合性単量体、それらの塩類及びエステル類を挙げることができる。 Examples of the hydrocarbon polymerizable monomer having an anion exchange group include amine polymerizable monomers such as vinylbenzyltrimethylamine, [4- (4-vinylphenyl) -methyl] -trimethylamine, and vinylbenzyltriethylamine. And nitrogen-containing heterocyclic polymerizable monomers such as vinyl pyridine and vinyl imidazole, and salts and esters thereof.
 なお、上記のような重合性単量体として、イオン交換基を有する重合性単量体を用いた場合には、後述する重合工程が完了した段階でイオン交換樹脂となり目的とする積層イオン交換膜が得られるが、イオン交換基導入用官能基を有する重合性単量体を用いた場合には、重合工程後にイオン交換基導入工程を実施することによりイオン交換樹脂となり、目的とする積層イオン交換膜を得ることができる。 In addition, when a polymerizable monomer having an ion exchange group is used as the polymerizable monomer as described above, the target laminated ion exchange membrane becomes an ion exchange resin when the polymerization step described later is completed. However, when a polymerizable monomer having a functional group for introducing an ion exchange group is used, an ion exchange resin is obtained by carrying out an ion exchange group introduction step after the polymerization step, and the desired laminated ion exchange A membrane can be obtained.
 また、架橋性重合性単量体は、イオン交換樹脂を緻密化し、膨潤抑止性や膜強度等を高めるために使用されるものであり、特に制限されるものでは無いが、例えば、ジビニルベンゼン、ジビニルスルホン、ブタジエン、クロロプレン、ジビニルビフェニル、トリビニルベンゼン類、ジビニルナフタリン、ジアリルアミン、ジビニルピリジン等のジビニル化合物が挙げられる。 Further, the crosslinkable polymerizable monomer is used for densifying the ion exchange resin, and is not particularly limited, for example, divinylbenzene, Examples include divinyl sulfone, butadiene, chloroprene, divinyl biphenyl, trivinylbenzenes, divinyl naphthalene, diallylamine, divinyl pyridine and the like.
 このような架橋性重合性単量体は、一般に、前述した基本重合性単量体成分100重量部に対して、0.1~50重量部が好ましく、さらに好ましくは1~40重量部である。 Such a crosslinkable polymerizable monomer is generally preferably 0.1 to 50 parts by weight, more preferably 1 to 40 parts by weight with respect to 100 parts by weight of the basic polymerizable monomer component described above. .
 更に、上記した交換基導入用官能基を有する重合性単量体、イオン交換基を有する重合性単量体及び架橋性重合性単量体の他に、必要に応じて、これらの重合性単量体と共重合可能な他の重合性単量体を添加しても良い。こうした他の重合性単量体としては、例えば、スチレン、アクリロニトリル、メチルスチレン、アクロレイン、メチルビニルケトン、ビニルビフェニル等が用いられる。なお、スチレンは交換基導入用官能基を有する重合性単量体でもあるが、その官能基の一部は交換基を導入されずに残留してもよい。交換基が導入されないスチレン等は、他の重合性単量体とみなされる。 Furthermore, in addition to the polymerizable monomer having a functional group for introducing an exchange group, the polymerizable monomer having an ion exchange group, and a crosslinkable polymerizable monomer, these polymerizable monomers are optionally used. Another polymerizable monomer copolymerizable with the monomer may be added. Examples of such other polymerizable monomers include styrene, acrylonitrile, methylstyrene, acrolein, methyl vinyl ketone, vinyl biphenyl, and the like. Styrene is also a polymerizable monomer having a functional group for introducing an exchange group, but a part of the functional group may remain without introducing an exchange group. Styrene and the like into which no exchange group is introduced are regarded as other polymerizable monomers.
 本発明において、重合性組成物には重合性単量体と共に重合開始剤を含有する。重合開始剤としては、従来公知のものが特に制限されること無く使用される。具体的には、オクタノイルパーオキシド、ラウロイルパーオキシド、t-ブチルパーオキシ-2-エチルヘキサノエート、ベンゾイルパ-オキシド、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシラウレート、t-ヘキシルパーオキシベンゾエート、ジ-t-ブチルパーオキシド等の有機過酸化物が用いられる。 In the present invention, the polymerizable composition contains a polymerization initiator together with the polymerizable monomer. As the polymerization initiator, conventionally known polymerization initiators are used without particular limitation. Specifically, octanoyl peroxide, lauroyl peroxide, t-butyl peroxy-2-ethylhexanoate, benzoyl peroxide, t-butyl peroxyisobutyrate, t-butyl peroxylaurate, t- Organic peroxides such as hexyl peroxybenzoate and di-t-butyl peroxide are used.
 このような重合開始剤は、使用する全重合性単量体成分100重量部に対して、0.1~20重量部が好ましく、更に好ましくは0.5~10重量部である。 Such a polymerization initiator is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of all polymerizable monomer components to be used.
 重合性組成物には、さらに酸トラップ剤が含まれていても良い。交換基導入用官能基に交換基を導入する反応では、酸が発生することがある。たとえば、クロロメチルスチレンなどを4級アンモニウム化する際には、塩酸が発生する。酸は重合中にガス化することにより重合体中に気泡を生じさせることがあるため、酸トラップ剤により、中和することが好ましい。酸トラップ剤としては、たとえばエポキシ化合物、(アミン類、アンモニウム塩)等が好ましく用いられる。 The polymerizable composition may further contain an acid trapping agent. In the reaction of introducing an exchange group into the functional group for introducing an exchange group, an acid may be generated. For example, hydrochloric acid is generated when chloromethylstyrene or the like is converted to quaternary ammonium. Since the acid may be gasified during the polymerization to generate bubbles in the polymer, it is preferably neutralized with an acid trapping agent. As the acid trapping agent, for example, epoxy compounds, (amines, ammonium salts) and the like are preferably used.
 上記した各種成分を含有する重合性組成物には、粘度を調整するために、必要に応じてマトリックス樹脂を配合することもできる。 In the polymerizable composition containing the various components described above, a matrix resin can be blended as necessary in order to adjust the viscosity.
 このようなマトリックス樹脂としては、例えば、エチレン-プロピレン共重合体、ポリブチレン等の飽和脂肪族炭化水素系ポリマー、スチレンーブタジエン共重合体等のスチレン系ポリマー、ポリ塩化ビニルがあげられる。さらにこれらポリマーに、各種のコモノマー(例えばビニルトルエン、ビニルキシレン、クロロスチレン、クロロメチルスチレン、α-メチルスチレン、α-ハロゲン化スチレン、α,β,β´-トリハロゲン化スチレン等のスチレン系モノマーや、エチレン、ブチレン等のモノオレフィンや、ブタジエン、イソプレン等の共役ジオレフィンなど)を共重合させたものなどを使用することができる。 Examples of such matrix resins include ethylene-propylene copolymers, saturated aliphatic hydrocarbon polymers such as polybutylene, styrene polymers such as styrene-butadiene copolymers, and polyvinyl chloride. In addition to these polymers, various comonomers (for example, vinyl toluene, vinyl xylene, chlorostyrene, chloromethyl styrene, α-methyl styrene, α-halogenated styrene, α, β, β'-trihalogenated styrene, etc.) And monoolefins such as ethylene and butylene, and conjugated diolefins such as butadiene and isoprene) can be used.
 これらのマトリックス樹脂は、重合性組成物が、垂れ等を生じることなく、多孔性基材フィルムの空隙内に速やかに充填保持し得るような粘度となるような量で使用される。 These matrix resins are used in such an amount that the polymerizable composition has a viscosity such that the polymerizable composition can be quickly filled and held in the voids of the porous base film without causing dripping or the like.
2.イオン交換膜前駆体作製工程;
 この工程では、複数枚の多孔性基材フィルムを積層させて積層多孔性基材フィルムとした後、該積層多孔性基材フィルムに上記重合性組成物を接触させて、空隙に上記重合性組成物を充填することによりイオン交換膜前駆体を作製する。こうすることにより、積層多孔性基材フィルムを構成する各多孔性基材フィルム間に気泡等による空気層が生じ難くなる。
2. Ion exchange membrane precursor production process;
In this step, after laminating a plurality of porous substrate films to form a laminated porous substrate film, the polymerizable composition is brought into contact with the laminated porous substrate film, and the polymerizable composition is introduced into the voids. An ion exchange membrane precursor is produced by filling the product. By carrying out like this, the air layer by a bubble etc. becomes difficult to produce between each porous base film which comprises a laminated porous base film.
 複数枚の多孔性基材フィルムの積層時には熱圧着、溶着等、多孔性基材フィルムの空隙率が減少する処理はしないので、多孔性基材フィルムの空隙率を維持することができ、イオン交換膜としたときに膜抵抗が高くならない。すなわち、多孔性基材フィルムの積層時における温度は5~40℃程度であり、また圧力は0~0.05MPa程度であり、フィルム同士はその多孔性を損なうことなく、積み重ねられた状態にある。積層時に加えられる圧力は、後述するラインロール3を通過する際のテンション程度であり、複数のフィルムは容易に剥離できる状態にある。しかしながら、フィルムの積層後、後述するイオン交換樹脂形成工程において、積層多孔性基材フィルムに含浸させた重合性組成物の重合が行われ、積層多孔性基材フィルムを構成する多孔性基材フィルムは重合体を介して接合されるで、剥離しない。 When laminating a plurality of porous substrate films, there is no treatment to reduce the porosity of the porous substrate film, such as thermocompression bonding and welding, so the porosity of the porous substrate film can be maintained, and ion exchange Film resistance does not increase when a film is used. That is, the temperature at the time of laminating the porous base film is about 5 to 40 ° C., the pressure is about 0 to 0.05 MPa, and the films are stacked without impairing the porosity. . The pressure applied at the time of lamination is about the tension when passing through a line roll 3 described later, and the plurality of films are in a state where they can be easily peeled off. However, after the films are laminated, in the ion exchange resin forming step described later, the polymerizable composition impregnated in the laminated porous substrate film is polymerized, and the porous substrate film constituting the laminated porous substrate film Is bonded via a polymer and does not peel off.
 複数枚の多孔性基材フィルムを積層させて積層多孔性基材フィルムする際、隣接する多孔性基材フィルムの空隙率の差を10%以下とする。隣接する多孔性基材フィルムの空隙率の差が10%超であると、イオン交換膜としたときの、イオン交換樹脂が充填された積層多孔性基材フィルムの各層の膨潤率が異なるためと推察されるが、対イオンをイオン交換する際に、多孔性基材フィルム同士の界面で剥離してしまう。また、上記したように、多孔性基材フィルムとして延伸された多孔性基材フィルムを用いる場合には、配向方向を
そろえて積層することが好ましい。
When laminating a plurality of porous substrate films to form a laminated porous substrate film, the difference in porosity between adjacent porous substrate films is set to 10% or less. When the difference in porosity between adjacent porous substrate films exceeds 10%, the swelling rate of each layer of the laminated porous substrate film filled with the ion exchange resin when the ion exchange membrane is used is different. As guessed, when the counter-ion is ion-exchanged, it peels off at the interface between the porous substrate films. Further, as described above, when a stretched porous substrate film is used as the porous substrate film, it is preferable to align the layers in the orientation direction.
 重合性組成物の空隙内への充填は、浸漬により行うことが好ましいが、浸漬の代わりに、スプレー塗布などによって行うことも可能である。  The filling of the polymerizable composition into the voids is preferably carried out by dipping, but can also be carried out by spraying or the like instead of dipping.
3.イオン交換樹脂形成工程; 
 上記のようにして、積層多孔性基材フィルム4の空隙内に重合性組成物が充填されたイオン交換膜前駆体を得た後に、重合性組成物をイオン交換樹脂とし、目的とする本発明の水電解用イオン交換膜とする。 
3. Ion exchange resin forming step;
After obtaining an ion exchange membrane precursor in which the polymerizable composition is filled in the voids of the laminated porous substrate film 4 as described above, the polymerizable composition is used as an ion exchange resin, and the present invention is intended. This is an ion exchange membrane for water electrolysis.
 イオン交換樹脂形成工程では、まず、イオン交換膜前駆体を重合する。重合は好ましくは加圧下で行う。イオン交換膜前駆体に充填されている重合性組成物の基本重合性単量体成分としてイオン交換基を有する重合性単量体が使用されている場合には、重合により目的とする水電解用イオン交換膜が得られる。また、基本重合性単量体成分として、交換基導入用官能基を有する単量体を用いた場合には、重合の後に、イオン交換基を導入する。 In the ion exchange resin formation step, first, the ion exchange membrane precursor is polymerized. The polymerization is preferably carried out under pressure. When a polymerizable monomer having an ion exchange group is used as a basic polymerizable monomer component of the polymerizable composition filled in the ion exchange membrane precursor, the intended water electrolysis is performed by polymerization. An ion exchange membrane is obtained. When a monomer having a functional group for introducing an exchange group is used as the basic polymerizable monomer component, an ion exchange group is introduced after the polymerization.
 本発明においては、積層多孔性基材フィルムは多孔性基材フィルム同士を熱融着等により接合せず、イオン交換膜前駆体中の重合性組成物(各多孔性基材フィルムの空隙に充填されている重合性組成物)を加圧下で重合せしめることにより、イオン交換樹脂(或いはその前駆体樹脂)の形成と同時に、積層多孔性基材フィルムの接合一体化が行われ、各多孔性基材フィルム同士が強固に接合される。 In the present invention, the laminated porous base film does not join the porous base films by heat fusion or the like, and the polymerizable composition in the ion exchange membrane precursor (fills the voids of each porous base film) The polymerized composition) is polymerized under pressure, whereby the laminated porous substrate film is joined and integrated simultaneously with the formation of the ion exchange resin (or its precursor resin), and each porous group The material films are firmly bonded to each other.
 即ち、イオン交換膜前駆体作製工程及び本工程では、積層された多孔性基材フィルムの熱融着を行わない。しかし、重合時の加圧により多孔性基材フィルムの界面に、余剰の重合性組成物が滲出する。基材フィルム界面に滲出した重合性組成物と多孔性基材フィルムの空隙に充填された重合性組成物とが連続した状態で重合が行われる。重合により、積層多孔性基材フィルムの上面から下面に連続した形でイオン交換樹脂(或いはその前駆体樹脂)が形成され、多孔性基材フィルム同士が樹脂を介して接合する。この結果、各多孔性基材フィルムの界面での剥離が生じることなく、重合性組成物の重合により得られた樹脂が接合剤となって、積層多孔性基材フィルムの接合一体化が行われる。 That is, in the ion exchange membrane precursor preparation step and this step, the laminated porous substrate film is not heat-sealed. However, excess polymerizable composition exudes to the interface of the porous substrate film due to pressurization during polymerization. Polymerization is carried out in a state in which the polymerizable composition leached at the base film interface and the polymerizable composition filled in the gaps of the porous base film are continuous. By the polymerization, an ion exchange resin (or a precursor resin thereof) is formed in a form continuous from the upper surface to the lower surface of the laminated porous substrate film, and the porous substrate films are bonded together via the resin. As a result, the resin obtained by polymerization of the polymerizable composition becomes a bonding agent without peeling at the interface of each porous substrate film, and the laminated porous substrate film is joined and integrated. .
 イオン交換膜前駆体の加圧及び重合は、多孔性基材フィルムの界面での剥離が生じないように行えばよく、例えば、イオン交換膜前駆体(積層した多孔性基材フィルム)を離型性フィルムで挟み込んで加圧を行い、この状態で加熱により重合を行うのが良い。 The pressurization and polymerization of the ion exchange membrane precursor may be performed so that peeling at the interface of the porous substrate film does not occur. For example, the ion exchange membrane precursor (laminated porous substrate film) is released from the mold. It is good to superpose | polymerize by heating by inserting | pinching between an adhesive film and performing a pressurization in this state.
 なお、離型性フィルムとしては、後述する重合に耐え得る耐熱性を有し、且つ重合後に容易に引き剥がせるものが使用される。例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテンあるいはエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン等のα-オレフィン同士のランダムあるいはブロック共重合体等のポリオレフィン、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、エチレン・塩化ビニル共重合体等のエチレン・ビニル化合物共重合体、ポリスチレン、アクリロニトリル・スチレン共重合体、ABS、α-メチルスチレン・スチレン共重合体等のスチレン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、塩化ビニル・塩化ビニリデン共重合体、ポリアクリル酸メチル、ポリメタクリル酸メチル等のポリビニル化合物、ナイロン6、ナイロン6-6、ナイロン6-10、ナイロン11、ナイロン12等のポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステル、ポリカーボネート、ポリフエニレンオキサイド等や、ポリ乳酸など生分解性樹脂、あるいはそれらの混合物のいずれかの樹脂からなるフィルムを挙げることができ、係るフィルムは2軸延伸されていてもよい。 In addition, as the releasable film, a film having heat resistance that can withstand polymerization described later and that can be easily peeled off after polymerization is used. For example, low-density polyethylene, high-density polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, or random α-olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, or Polyolefins such as block copolymers, ethylene / vinyl acetate copolymers, ethylene / vinyl alcohol copolymers, ethylene / vinyl compound copolymers such as ethylene / vinyl chloride copolymers, polystyrene, acrylonitrile / styrene copolymers, ABS, styrene resins such as α-methylstyrene / styrene copolymer, polyvinyl chloride, polyvinylidene chloride, vinyl chloride / vinylidene chloride copolymer, polyvinyl compounds such as polymethyl acrylate and polymethyl methacrylate, nylon 6 , Nylon 6-6, nylon Polyamide such as 6-10, nylon 11, nylon 12, etc., thermoplastic polyester such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyphenylene oxide, etc., biodegradable resin such as polylactic acid, or a mixture thereof The film which consists of one of these resin can be mentioned, The film which concerns may be biaxially stretched.
 即ち、上記のフィルムの中から、重合性組成物中の単量体成分の種類に応じて適宜なものを選択して離型性フィルムとして使用すればよい。特に、耐熱性及び剥離性の点から、ポリエチレンテレフタレート(PET)等のポリエステルフィルムが最も好適である。 That is, an appropriate film may be selected from the above films according to the type of monomer component in the polymerizable composition and used as a releasable film. In particular, a polyester film such as polyethylene terephthalate (PET) is most preferable from the viewpoint of heat resistance and peelability.
 加圧圧力は、一般に、0.1~1.0MPa程度でよい。加圧は、プレス機による加圧でもよいが、基材フィルムの多孔性を維持する観点から、窒素などの不活性ガスを圧力媒体とした等方加圧が好ましい。 The pressurizing pressure may generally be about 0.1 to 1.0 MPa. The pressurization may be performed by a press, but isotropic pressurization using an inert gas such as nitrogen as a pressure medium is preferable from the viewpoint of maintaining the porosity of the base film.
 重合温度は、積層多孔性基材フィルムを形成する熱可塑性樹脂の融点よりも低い温度であり、多孔性基材フィルムの配向および多孔性が損なわれない温度であればよい。一般に、ポリオレフィン製のフィルムの場合で40~100℃程度の範囲である。即ち、係る温度範囲に加熱して重合を行うことにより、多孔性基材フィルム同士が熱融着を生じることなく、重合することができる。このとき、多孔性基材フィルムの一部が重合性組成物中に溶解している状態で重合が行われてもよい。この結果、多孔性基材フィルムの接合強度を高めることができ、膜強度を一層向上させることができる。 The polymerization temperature is a temperature lower than the melting point of the thermoplastic resin forming the laminated porous substrate film, and may be any temperature that does not impair the orientation and porosity of the porous substrate film. Generally, it is in the range of about 40 to 100 ° C. in the case of a polyolefin film. That is, by performing polymerization by heating to such a temperature range, the porous substrate films can be polymerized without causing heat fusion. At this time, the polymerization may be performed in a state where a part of the porous substrate film is dissolved in the polymerizable composition. As a result, the bonding strength of the porous substrate film can be increased, and the membrane strength can be further improved.
 なお、重合時間は、重合温度等によっても異なるが、一般には、3~20時間程度である。 The polymerization time varies depending on the polymerization temperature and the like, but is generally about 3 to 20 hours.
 先に述べたように、重合性組成物中の基本単量体成分として、イオン交換基を有する単量体を用いた場合には、上記の重合によりイオン交換樹脂が形成され、この段階で目的とする水電解用イオン交換膜が得られる。基本単量体成分として、交換基導入用官能基を有する単量体を用いた場合には、上記の重合で得られる樹脂にはイオン交換基を有していないため、重合後にイオン交換基を導入する。 As described above, when a monomer having an ion exchange group is used as a basic monomer component in the polymerizable composition, an ion exchange resin is formed by the above-described polymerization. An ion exchange membrane for water electrolysis is obtained. When a monomer having a functional group for introducing an exchange group is used as a basic monomer component, the resin obtained by the above polymerization does not have an ion exchange group. Introduce.
 イオン交換基の導入は、それ自体公知の方法で行われ、例えば、陽イオン交換膜を製造する場合には、スルホン化、クロルスルホン化、ホスホニウム化、加水分解等の処理により行われ、陰イオン交換膜を製造する場合には、アミノ化、アルキル化等の処理により行われる。 The introduction of the ion exchange group is carried out by a method known per se. For example, in the case of producing a cation exchange membrane, it is carried out by a treatment such as sulfonation, chlorosulfonation, phosphoniumation, hydrolysis, and the like. When producing an exchange membrane, it is carried out by a process such as amination or alkylation.
 イオン交換基の導入は、イオン交換膜前駆体の重合後に行い、離型性フィルムで挟み込んで加圧下で重合した場合、離型性フィルムを引き剥がした後に行われる。 The introduction of the ion exchange group is performed after the polymerization of the ion exchange membrane precursor, and is performed after the release film is peeled off when it is sandwiched between the release films and polymerized under pressure.
 得られる積層イオン交換膜の膜厚は、積層多孔性基材フィルムの厚み、導入したイオン交換樹脂の種類、量にもよるが、好ましくは50~220μm、さらに好ましくは50~180μmである。 The film thickness of the obtained laminated ion exchange membrane is preferably 50 to 220 μm, more preferably 50 to 180 μm, although it depends on the thickness of the laminated porous substrate film and the type and amount of the introduced ion exchange resin.
<好適な製造プロセス>
 上述した製造方法は、多孔性基材フィルムとして適度な大きさに裁断されたものを使用して実施することもできるし、ロールに巻かれた長尺シートを用いて実施することもできる。工業的には、ロールに巻かれた長尺シートを多孔性基材フィルムとして用いることが生産性の上で有利である。
<Preferred manufacturing process>
The manufacturing method mentioned above can also be implemented using what was cut | judged to the moderate magnitude | size as a porous base film, and can also be implemented using the elongate sheet wound by the roll. Industrially, it is advantageous in terms of productivity to use a long sheet wound around a roll as a porous substrate film.
 図1には、このような長尺シートを用いて、多孔性基材フィルムを2枚積層させた水電解用イオン交換膜を製造するプロセスの一例が示されている。 FIG. 1 shows an example of a process for producing an ion exchange membrane for water electrolysis in which two porous substrate films are laminated using such a long sheet.
 多孔性基材フィルム2a、2bが巻かれた原反ロール1a、1bから多孔性基材フィルム2a、2bが巻き出され、最終的には巻き取りロール6に巻き取られるが、この間に、ラインロール3上で多孔性基材フィルムを積層させて積層多孔性基材フィルム4とする。積層多孔性基材フィルム4は、ラインロール3と巻き取りロール6との間に設けられた重合性組成物が収容された重合性組成物浸漬槽9を通過し、この槽9内の重合性組成物中に浸漬される。この浸漬によって、重合性組成物が積層多孔性基材フィルム4の空隙内に充填されたイオン交換膜前駆体4’が得られ、このような前駆体の形で巻き取りロール6に巻き取られる。 The porous substrate films 2a and 2b are unwound from the raw rolls 1a and 1b around which the porous substrate films 2a and 2b are wound, and finally wound on the take-up roll 6. A porous substrate film is laminated on the roll 3 to obtain a laminated porous substrate film 4. The laminated porous substrate film 4 passes through a polymerizable composition immersion tank 9 containing a polymerizable composition provided between the line roll 3 and the take-up roll 6, and the polymerizable property in the tank 9 is reached. Immerse in the composition. By this immersion, an ion exchange membrane precursor 4 ′ in which the polymerizable composition is filled in the voids of the laminated porous substrate film 4 is obtained, and is wound around the winding roll 6 in the form of such a precursor. .
 なお、図1の例では、重合性組成物の空隙内への充填が浸漬により行われているが、浸漬の代わりに、スプレー塗布などによって行うことも可能である。このような作業を、多孔性基材フィルムを積層させて巻き取りロール6に巻き取る間に行うことにより、積層多孔性基材フィルム4の空隙内に重合性組成物を十分充填することができる。 In the example of FIG. 1, filling of the polymerizable composition into the voids is performed by dipping, but it is also possible to carry out by spray coating or the like instead of dipping. By performing such an operation while laminating the porous base film and winding it on the take-up roll 6, the polymerizable composition can be sufficiently filled in the voids of the laminated porous base film 4. .
 一方、巻き取りロール6には、ニップロール(圧ロール)5を介して離型性フィルム7が離型性フィルム原反ロール8から巻き取られるようになっている。この結果、巻き取りロール6にはイオン交換膜前駆体4’と離型性フィルム7とが同時に巻き取られる。 On the other hand, the releasable film 7 is wound on the take-up roll 6 from the releasable film original fabric roll 8 via a nip roll (pressure roll) 5. As a result, the ion exchange membrane precursor 4 ′ and the release film 7 are simultaneously wound on the winding roll 6.
 即ち、巻き取りロール6には、イオン交換膜前駆体4’が離型性フィルム7で挟持され且つロール圧により加圧された状態で保持されていることとなる。よって、下記の重合においては、ニップロール5による加圧(一般に0.1~1.0MPa程度)により多孔性基材フィルムの界面に存在している余剰の重合性組成物が該フィルムの空隙内に押し込まれた状態のままで重合が行われ、樹脂溜りの発生などが効果的に防止される。 That is, the ion exchange membrane precursor 4 ′ is held on the take-up roll 6 while being held between the release film 7 and pressed by the roll pressure. Therefore, in the polymerization described below, an excess polymerizable composition present at the interface of the porous substrate film by pressurization by the nip roll 5 (generally about 0.1 to 1.0 MPa) is placed in the voids of the film. Polymerization is carried out in the pressed state, and the occurrence of resin accumulation is effectively prevented.
 積層多孔性基材フィルム4の空隙内に重合性組成物が充填されたイオン交換膜前駆体4’は、巻き取りロール6に巻かれたまま加熱オーブン等の重合装置内で加圧下で加熱されての重合に供される。即ち、基本単量体成分としてイオン交換基を有する単量体が使用されている場合には、この重合の完了により目的とする積層イオン交換膜が得られる。また、基本成分として、交換基導入用官能基を有する単量体を用いた場合には、この重合の完了後に、イオン交換基を導入する。 The ion exchange membrane precursor 4 ′ in which the polymerizable composition is filled in the voids of the laminated porous substrate film 4 is heated under pressure in a polymerization apparatus such as a heating oven while being wound around the take-up roll 6. Used for all polymerizations. That is, when a monomer having an ion exchange group is used as the basic monomer component, the intended laminated ion exchange membrane can be obtained upon completion of this polymerization. When a monomer having a functional group for introducing an exchange group is used as a basic component, an ion exchange group is introduced after the completion of the polymerization.
 このようにして形成された積層イオン交換膜は、適宜、適当な大きさに裁断されて、水電解用のイオン交換膜として使用或いは販売に供される。 The laminated ion exchange membrane thus formed is appropriately cut into an appropriate size and used or sold as an ion exchange membrane for water electrolysis.
 積層イオン交換膜は、膜抵抗、水素透過性が低くく、また接合強度も高いため、特に水を電気分解し、水素を得るための電解装置に組み込まれる水電解用イオン交換膜として好ましく用いられる。 The laminated ion exchange membrane is preferably used as an ion exchange membrane for water electrolysis that is incorporated in an electrolysis apparatus for electrolyzing water and obtaining hydrogen because it has low membrane resistance and hydrogen permeability and high bonding strength. .
 何ら限定に解釈されるべきではないが、積層イオン交換膜の膜抵抗は、後述する実施例の方法による測定値で、好ましくは10~30mΩ・cm、さらに好ましくは10~20mΩ・cm程度であり、また水素透過率は好ましくは4000~9000cc/m・24hr・atm、さらに好ましくは4000~7000cc/m・24hr・atmである。接合強度は好ましくは350~1500gf/cm、さらに好ましくは500~1500gf/cmである。 Although it should not be construed as limiting in any way, the membrane resistance of the laminated ion exchange membrane is a value measured by the method of the examples described later, preferably about 10 to 30 mΩ · cm 2 , more preferably about 10 to 20 mΩ · cm 2. The hydrogen permeability is preferably 4000 to 9000 cc / m 2 · 24 hr · atm, more preferably 4000 to 7000 cc / m 2 · 24 hr · atm. The bonding strength is preferably 350 to 1500 gf / cm, more preferably 500 to 1500 gf / cm.
 積層イオン交換膜は、膜厚が比較的厚く、基材フィルムの空隙率が比較的低く、平均細孔径も小さいため、ガスバリア性に優れ、水素透過率が低い。一方、厚みが厚く、基材フィルムの平均細孔径や空隙率が比較的低いことから、膜抵抗は大きくなると予想されるが、予測されたほどには膜抵抗は大きくない。この原因は、何ら理論的に拘束されるものではないが、以下のように推定できる。多孔性フィルムは、フィルム内部に比べて表面層(スキン層)において細孔径が小さく、空隙率が低いと考えられている。このスキン層と電解液との界面が膜抵抗測定時の伝導性についての律速過程となる。つまりイオンがスキン層を経てイオン交換膜に浸入するため、スキン層の細孔径や空隙率の影響を受けやすい。また多孔性フィルムを積層する際には、通常は熱圧着、溶着等の処理をするため、スキン層の細孔径はより小さくなり、また空隙率も低下し、この結果、膜抵抗は増大する。しかし、本発明では、多孔性フィルムの積層時に、多孔性を維持しうる条件で積層しているため、膜抵抗の増大が抑制されている。一方、ガス透過性は、基材フィルムとイオン交換樹脂との隙間の大きさにより重大な影響を受ける。本発明ではイオン交換樹脂が充填される基材の多孔性(平均細孔径、空隙率)を特定範囲に制御し、さらに隣接した基材フィルムの空隙率の差を小さくすることで、基材フィルムとイオン交換樹脂との隙間が発生しなくなり、高いガスバリア性が達成される。さらに、積層多孔性基材フィルムを構成する多孔性基材フィルムはイオン交換樹脂を介して接合されるで、高い接合強度が得られる。 The laminated ion exchange membrane has a relatively thick film thickness, a relatively low porosity of the base film, and a small average pore diameter, so that it has excellent gas barrier properties and low hydrogen permeability. On the other hand, since the thickness is large and the average pore diameter and porosity of the base film are relatively low, the membrane resistance is expected to increase, but the membrane resistance is not as great as predicted. This cause is not theoretically constrained at all, but can be estimated as follows. The porous film is considered to have a small pore diameter and a low porosity in the surface layer (skin layer) as compared with the inside of the film. The interface between the skin layer and the electrolytic solution is a rate-determining process for conductivity when measuring the membrane resistance. That is, since ions enter the ion exchange membrane through the skin layer, they are easily affected by the pore diameter and porosity of the skin layer. Further, when laminating the porous film, since the treatment such as thermocompression bonding and welding is usually performed, the pore diameter of the skin layer becomes smaller and the porosity also decreases, resulting in an increase in membrane resistance. However, in the present invention, when the porous film is laminated, since the lamination is performed under the condition that the porosity can be maintained, an increase in the membrane resistance is suppressed. On the other hand, gas permeability is significantly affected by the size of the gap between the base film and the ion exchange resin. In the present invention, the substrate film filled with the ion exchange resin is controlled to have a specific range of porosity (average pore diameter, porosity), and further, the difference in the porosity of adjacent substrate films is reduced. And no gap between the ion exchange resin and high gas barrier properties. Furthermore, since the porous substrate film constituting the laminated porous substrate film is bonded via the ion exchange resin, high bonding strength can be obtained.
 本発明の水電解用イオン交換膜は、上記の積層イオン交換膜からなり、膜抵抗が低く且つ水素透過性が低いので、発生する水素がイオン交換膜を透過するのを抑制し、特に水素の内部圧縮が可能なカチオン交換膜型又はアニオン交換膜型水電解により、効率良く高圧の水素ガスを製造することができる。 The ion exchange membrane for water electrolysis of the present invention is composed of the above laminated ion exchange membrane, and has low membrane resistance and low hydrogen permeability, so that it suppresses the generated hydrogen from passing through the ion exchange membrane, High-pressure hydrogen gas can be efficiently produced by cation exchange membrane type or anion exchange membrane type water electrolysis capable of internal compression.
(水電解装置および電解方法)
 本発明の水電解装置は、陽極および陰極を備え、陽極と陰極との間に上記した積層イオン交換膜を有する。水電解装置は、上記の基本構造を備える限り、特に限定はされず、水電解装置として知られている各種の構造を含む。したがって、アルカリ水電解型装置であってもよく、固体高分子型水電解装置であってもよい。また、水電解装置の外部には、電力源を備える。電力源としては、再生可能エネルギーや余剰電力が好ましいが、これらに限定はされない。また、水素の液化システム、圧縮装置や水素吸蔵合金などを用いた貯蔵システムを備えていても良い。
(Water electrolysis apparatus and electrolysis method)
The water electrolysis apparatus of the present invention includes an anode and a cathode, and has the above-described laminated ion exchange membrane between the anode and the cathode. The water electrolysis apparatus is not particularly limited as long as it has the above basic structure, and includes various structures known as water electrolysis apparatuses. Accordingly, it may be an alkaline water electrolysis device or a solid polymer water electrolysis device. Moreover, an electric power source is provided outside the water electrolysis apparatus. The power source is preferably renewable energy or surplus power, but is not limited thereto. Further, a storage system using a hydrogen liquefaction system, a compression device, a hydrogen storage alloy, or the like may be provided.
 このような水電解装置の簡略な構成例を図2に示すが、本発明の水電解装置は図2の構造に限定されるものではない。図2では、アニオン交換膜を使用した例を示した。図2に示したように、水電解装置は、電解槽20内に設置された積層イオン交換膜(水電解用イオン交換膜)10、および陰極11、陽極12を備える。陰極11および陽極12は、それぞれ導線31、32を介して外部電源30に接続されている。電解槽には原水を供給する原水供給管13、14が設けられている。原水としては、電解効率の観点から希薄アルカリ水溶液が好ましく用いられ、たとえばKOHの希薄水溶液が用いられる。原水を供給して外部電源から通電することで、水の電気分解が開始する。陰極側および陽極側の反応は以下のとおりである。 FIG. 2 shows a simple configuration example of such a water electrolysis apparatus, but the water electrolysis apparatus of the present invention is not limited to the structure of FIG. FIG. 2 shows an example using an anion exchange membrane. As shown in FIG. 2, the water electrolysis apparatus includes a laminated ion exchange membrane (ion exchange membrane for water electrolysis) 10, a cathode 11, and an anode 12 installed in an electrolytic cell 20. The cathode 11 and the anode 12 are connected to an external power source 30 via conducting wires 31 and 32, respectively. The electrolytic cell is provided with raw water supply pipes 13 and 14 for supplying raw water. As the raw water, a dilute alkaline aqueous solution is preferably used from the viewpoint of electrolysis efficiency, and for example, a dilute aqueous solution of KOH is used. By supplying raw water and energizing from an external power source, water electrolysis starts. The reaction on the cathode side and the anode side is as follows.
(陰極側)2HO+2e → H+2OH
(陽極側)2OH → 1/2O+HO+2e
(Cathode side) 2H 2 O + 2e → H 2 + 2OH
(Anode side) 2OH → 1 / 2O 2 + H 2 O + 2e
 陰極側では水の電気分解により水素および水酸化物イオンが発生する。水酸化物イオンは積層イオン交換膜10を経て陽極側に到達し、酸素、水および電子を生成する。陰極側で発生した水素はガス回収管15を経て回収され、酸素はガス回収管16を経て回収される。 On the cathode side, hydrogen and hydroxide ions are generated by electrolysis of water. The hydroxide ions reach the anode side through the laminated ion exchange membrane 10, and generate oxygen, water, and electrons. Hydrogen generated on the cathode side is recovered through the gas recovery tube 15, and oxygen is recovered through the gas recovery tube 16.
 以下に実施例を用いて本発明を詳細に説明するが、本発明は、これら実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to these examples.
 なお、実施例及び比較例に示すイオン交換膜の特性評価に用いた膜抵抗、水素透過度および接合強度の測定方法を以下に示す。 In addition, the measuring method of the membrane resistance, hydrogen permeability, and joining strength used for the characteristic evaluation of the ion exchange membrane shown in an Example and a comparative example is shown below.
1)膜抵抗
 まず、得られた各重炭酸型陰イオン交換膜の室温一晩乾燥時の膜厚(Dry膜厚)を測定した。次に、陰イオン交換膜の場合は、0.5mol・L-1-NaCl水溶液、陽イオン交換膜の場合は、3mol・L-1-HSO水溶液に25℃下で4時間以上浸漬してイオン交換することにより塩化物イオン型およびプロトン型のイオン交換膜とした後、白金電極を備えた2室セルの中央に該イオン交換膜を置き、イオン交換膜の両側に、陰イオン交換膜の場合は、0.5mol・L-1-NaCl水溶液、陽イオン交換膜の場合は、3mol・L-1-HSO水溶液を満たし、交流ブリッジ(周波数1000サイクル/秒)により25℃における電極間の抵抗を測定した(amΩ・cm)。同様にしてイオン交換膜を設置せずに電極間の抵抗を測定し(bmΩ・cm)、これとイオン交換膜を設置した場合の電極間の抵抗の差により膜抵抗を求めた。
 膜抵抗=a-b[mΩ・cm
1) Membrane resistance First, the film thickness (Dry film thickness) of each obtained bicarbonate type anion exchange membrane when dried at room temperature overnight was measured. Next, in the case of an anion exchange membrane, it is immersed in an aqueous solution of 0.5 mol·L −1 —NaCl, and in the case of a cation exchange membrane, it is immersed in an aqueous solution of 3 mol·L −1 —H 2 SO 4 at 25 ° C. for 4 hours or more. The ion exchange membrane is made into a chloride ion type and proton type ion exchange membrane by placing the ion exchange membrane in the center of a two-chamber cell equipped with a platinum electrode, and anion exchange is performed on both sides of the ion exchange membrane. In the case of a membrane, a 0.5 mol·L −1 -NaCl aqueous solution is filled, and in the case of a cation exchange membrane, a 3 mol·L −1 —H 2 SO 4 aqueous solution is filled, and an AC bridge (frequency 1000 cycles / second) is 25 ° C. The resistance between the electrodes was measured (amΩ · cm 2 ). Similarly, the resistance between the electrodes was measured without installing the ion exchange membrane (bmΩ · cm 2 ), and the membrane resistance was determined from the difference in resistance between the electrodes when the ion exchange membrane was installed.
Membrane resistance = a−b [mΩ · cm 2 ]
2)水素透過度
 得られた重炭酸型陰イオン交換膜を5cm×5cmに切り出してガス透過率測定装置(GTRテック(株)製、GTR-200XFTS)に取り付け、水素透過量の測定を行った。測定は、始めに、該イオン交換膜を該装置のセルに挟み、該イオン交換膜の一方にキャリアガス(アルゴンガス)を温度40℃、湿度90%RH、流量30mL/minの条件で流し、他方に試験ガスとして水素ガスを温度40℃、湿度90%RH、流量30mL/minの条件で導入し、サンプリング時間内にキャリアガス側に透過した水素量をガスクロマトグラフで検知し、試験面積9.62cm当たりの水素透過度を算出し、該イオン交換膜の水素透過性を評価した。
 水素透過度[cc/m・24hr・atm]=(273/T)×(1/A)×B×(1/t)
 T:測定温度(K)
 A:透過面積(cm
 B:透過ガス量(μL)
 t:サンプリング時間(s)
2) Hydrogen Permeability The obtained bicarbonate type anion exchange membrane was cut into 5 cm × 5 cm and attached to a gas permeability measuring device (GTR-200X FTS, manufactured by GTR Tech Co., Ltd.), and the hydrogen permeation amount was measured. . In the measurement, first, the ion exchange membrane is sandwiched between cells of the apparatus, and a carrier gas (argon gas) is flowed to one side of the ion exchange membrane at a temperature of 40 ° C., a humidity of 90% RH, and a flow rate of 30 mL / min. On the other hand, hydrogen gas is introduced as a test gas under conditions of a temperature of 40 ° C., a humidity of 90% RH, and a flow rate of 30 mL / min, and the amount of hydrogen permeated to the carrier gas side within the sampling time is detected by a gas chromatograph. The hydrogen permeability per 62 cm 2 was calculated, and the hydrogen permeability of the ion exchange membrane was evaluated.
Hydrogen permeability [cc / m 2 · 24 hr · atm] = (273 / T) × (1 / A) × B × (1 / t)
T: Measurement temperature (K)
A: Transmission area (cm 2 )
B: Permeated gas amount (μL)
t: Sampling time (s)
3)接合強度
 25℃、65%相対湿度において幅15mm、長さ150mmで、予め接合面の一部を剥がしたサンプルを作成し、引張試験機(島津製作所製オートグラフAGS‐X)にチャック間距離75mmでT状態にセットして500mm/分の速度で接合力を測定した。測定した接合力から以下の式により接合強度を求めた。
 接合強度(gf/cm)=接合力(gf)/サンプル幅(cm)
3) Joining strength A sample with a part of the joining surface peeled off in advance with a width of 15 mm and a length of 150 mm at 25 ° C. and 65% relative humidity is created between chucks on a tensile tester (Autograph AGS-X manufactured by Shimadzu Corporation). The bonding force was measured at a speed of 500 mm / min after setting the T state at a distance of 75 mm. The bonding strength was determined from the measured bonding force by the following formula.
Bonding strength (gf / cm) = bonding force (gf) / sample width (cm)
<実施例1>
 まず、クロロメチルスチレン90重量部、57%-ジビニルベンゼン10重量部、重合開始剤(商品名:パーブチルO)5重量部、エポキシ化合物(商品名:エポライト40E)5重量部を混合して重合性単量体組成物を得た。得られた重合性組成物800gを1000mlの容器に入れ、この重合性組成物中に2つの原反ロールからそれぞれ巻き出した多孔性基材フィルムA(膜厚25μm、平均細孔径0.07μm、空隙率44%、ポリエチレン製)をロール上で積層させた後、浸漬した。
<Example 1>
First, 90 parts by weight of chloromethylstyrene, 10 parts by weight of 57% -divinylbenzene, 5 parts by weight of a polymerization initiator (trade name: perbutyl O), and 5 parts by weight of an epoxy compound (trade name: Epolite 40E) are mixed for polymerization. A monomer composition was obtained. 800 g of the obtained polymerizable composition was put in a 1000 ml container, and a porous substrate film A (film thickness 25 μm, average pore diameter 0.07 μm, unwound from each of two raw rolls in this polymerizable composition, (Porosity 44%, made of polyethylene) was laminated on a roll and then immersed.
 続いて、この積層多孔性基材フィルムを重合性組成物中から取り出し、50μmのポリエステルフィルムを離型性フィルムとして積層多孔性基材フィルムの両側を被覆しながら巻き取りロールに巻き取った後、0.3MPaの窒素加圧下、90℃で5時間加熱重合し陰イオン交換膜前駆体を得た。 Subsequently, after taking out this laminated porous substrate film from the polymerizable composition and winding it on a take-up roll while covering both sides of the laminated porous substrate film with a 50 μm polyester film as a release film, Polymerization was carried out at 90 ° C. for 5 hours under a nitrogen pressure of 0.3 MPa to obtain an anion exchange membrane precursor.
 この陰イオン交換膜前駆体を6重量%のトリメチルアミンと25重量%のアセトンを含む水溶液中に室温で16時間浸漬して陰イオン交換基を導入し、陰イオン交換膜を得た。次いで大過剰の0.5mol・L-1-KHCO水溶液中に懸濁して対イオンを塩化物イオンから重炭酸イオンにイオン交換し重炭酸型陰イオン交換膜を得た。 This anion exchange membrane precursor was immersed in an aqueous solution containing 6% by weight of trimethylamine and 25% by weight of acetone at room temperature for 16 hours to introduce anion exchange groups to obtain an anion exchange membrane. Subsequently, it was suspended in a large excess of 0.5 mol·L −1 -KHCO 3 aqueous solution, and the counter ion was ion exchanged from chloride ion to bicarbonate ion to obtain a bicarbonate type anion exchange membrane.
 得られた陰イオン交換膜の膜抵抗、水素透過度を測定した。結果を表1に示した。 The membrane resistance and hydrogen permeability of the obtained anion exchange membrane were measured. The results are shown in Table 1.
<実施例2>
 用いた多孔性基材フィルムを多孔性基材フィルムB(膜厚25μm、平均細孔径0.07μm、空隙率35%、ポリエチレン製)に変更した以外は、実施例1と同様にして重炭酸型陰イオン交換膜を得、膜抵抗、水素透過度を測定した。測定結果を表1に示す。
<Example 2>
Bicarbonate type in the same manner as in Example 1 except that the porous base film used was changed to porous base film B (film thickness 25 μm, average pore diameter 0.07 μm, porosity 35%, made of polyethylene). An anion exchange membrane was obtained, and membrane resistance and hydrogen permeability were measured. The measurement results are shown in Table 1.
<実施例3>
 多孔性基材フィルムAと多孔性基材フィルムBを積層した以外は、実施例1と同様にして重炭酸型陰イオン交換膜を得、膜抵抗、水素透過度を測定した。測定結果を表1に示す。
<Example 3>
A bicarbonate type anion exchange membrane was obtained in the same manner as in Example 1 except that the porous base film A and the porous base film B were laminated, and the membrane resistance and hydrogen permeability were measured. The measurement results are shown in Table 1.
<比較例1>
 用いた多孔性基材フィルムAを2枚から1枚に変更した以外は、実施例1と同様にして重炭酸型陰イオン交換膜を得、膜抵抗、水素透過度を測定した。測定結果を表1に示す。
<Comparative Example 1>
A bicarbonate type anion exchange membrane was obtained in the same manner as in Example 1 except that the porous substrate film A used was changed from two to one, and membrane resistance and hydrogen permeability were measured. The measurement results are shown in Table 1.
<比較例2>
 用いた多孔性基材フィルムを多孔性基材フィルムBとし、2枚から1枚に変更した以外は、実施例1と同様にして重炭酸型陰イオン交換膜を得、膜抵抗、水素透過度を測定した。測定結果を表1に示す。
<Comparative example 2>
A bicarbonate type anion exchange membrane was obtained in the same manner as in Example 1 except that the porous base film used was changed from two to one, and the porous base film B was used. Was measured. The measurement results are shown in Table 1.
<比較例3>
 多孔性基材フィルムBと多孔性基材フィルムC(膜厚25μm、平均細孔径0.1μm以上、空隙率53%、ポリエチレン製)を積層した以外は、実施例1と同様にして重炭酸型陰イオン交換膜を得たが、対イオンを塩化物イオンから重炭酸イオンにイオン交換した後に部分的に界面の剥離がみられ、完璧なイオン交換膜を得ることはできなかった。
<Comparative Example 3>
Bicarbonate type in the same manner as in Example 1 except that the porous base film B and the porous base film C (thickness 25 μm, average pore diameter 0.1 μm or more, porosity 53%, made of polyethylene) were laminated. Although an anion exchange membrane was obtained, peeling of the interface was partially observed after the ion exchange of the counter ion from chloride ion to bicarbonate ion, and a perfect ion exchange membrane could not be obtained.
<比較例4>
 用いた多孔性基材フィルムを多孔性基材フィルムD(膜厚55μm、平均細孔径0.1μm以上、空隙率63%、ポリエチレン製)とし、2枚から1枚に変更した以外は、実施例1と同様にして重炭酸型陰イオン交換膜を得、膜抵抗、水素透過度を測定した。測定結果を表1に示す。
<Comparative example 4>
Except that the porous substrate film used was a porous substrate film D (film thickness 55 μm, average pore diameter of 0.1 μm or more, porosity 63%, made of polyethylene), and was changed from two to one. In the same manner as in Example 1, a bicarbonate type anion exchange membrane was obtained, and membrane resistance and hydrogen permeability were measured. The measurement results are shown in Table 1.
<比較例5>
 積層多孔性基材フィルムに代えて、多孔性基材フィルムA’(膜厚55μm、平均細孔径0.07μm、空隙率44%、ポリエチレン製)を単層で基材として用いた以外は、実施例1と同様にして重炭酸型陰イオン交換膜を得、膜抵抗、水素透過度を測定した。測定結果を表1に示す。
<Comparative Example 5>
Implemented except that porous substrate film A ′ (film thickness 55 μm, average pore diameter 0.07 μm, porosity 44%, made of polyethylene) was used as the substrate in a single layer instead of the laminated porous substrate film A bicarbonate type anion exchange membrane was obtained in the same manner as in Example 1, and membrane resistance and hydrogen permeability were measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、実施例1、2、3では厚く、膜抵抗が低く、水素透過度の低くく、かつ接合強度の高い積層イオン交換膜を得ることができた。これに対し、比較例1、2では膜厚が薄いため、水素透過度を低下させることはできなかった。また比較例3では、空隙率の差が非常に大きいため、剥離が生じてしまった。また、比較例4では、厚く、膜抵抗が低い膜はできたが、空隙率および平均細孔径が大きいため、水素透過度を低下させることはできなかった。比較例5では、単層の多孔性基材フィルムを用いたため膜抵抗の増大は殆どなかったものの、水素透過度の低減が不十分なものであった。 As shown in Table 1, in Examples 1, 2, and 3, it was possible to obtain a laminated ion exchange membrane that was thick, had low membrane resistance, low hydrogen permeability, and high bonding strength. On the other hand, in Comparative Examples 1 and 2, since the film thickness was thin, the hydrogen permeability could not be reduced. In Comparative Example 3, the difference in porosity was so large that peeling occurred. In Comparative Example 4, a thick film having a low membrane resistance was formed, but the hydrogen permeability could not be reduced because the porosity and the average pore diameter were large. In Comparative Example 5, since a single layer porous substrate film was used, the membrane resistance was hardly increased, but the hydrogen permeability was not sufficiently reduced.
1a、1b:多孔性基材フィルム原反ロール
2a、2b:多孔性基材フィルム
3:ラインロール
4:積層多孔性基材フィルム
4’:イオン交換膜前駆体
5:ニップロール
6:巻き取りロール
7:離型性フィルム
8:離型性フィルム原反ロール
9:重合性組成物浸漬槽10:積層イオン交換膜(水電解用イオン交換膜)
11:陰極
12:陽極
13、14:原水供給管
15、16:ガス回収管
20:電解槽
30:外部電源
31、32:導線
DESCRIPTION OF SYMBOLS 1a, 1b: Porous base film original fabric roll 2a, 2b: Porous base film 3: Line roll 4: Laminated porous base film 4 ': Ion exchange membrane precursor 5: Nip roll 6: Winding roll 7 : Releasable film 8: releasable film original fabric roll 9: polymerizable composition immersion tank 10: laminated ion exchange membrane (ion exchange membrane for water electrolysis)
11: Cathode 12: Anode 13, 14: Raw water supply pipe 15, 16: Gas recovery pipe 20: Electrolyzer 30: External power supply 31, 32: Conductor

Claims (9)

  1.  空隙率30~50%、平均細孔径0.01~0.1μm未満の多孔性基材フィルムが複数枚積層された積層多孔性基材フィルムの空隙にイオン交換樹脂が充填されてなる積層イオン交換膜であって、多孔性基材フィルムの合計厚みが50~200μm、且つ隣接した多孔性基材フィルムの空隙率の差が10%以下である水電解用イオン交換膜。 Laminated ion exchange in which a void is formed by laminating a plurality of porous substrate films having a porosity of 30 to 50% and an average pore diameter of 0.01 to less than 0.1 μm, and the voids of the laminated porous substrate film are filled with an ion exchange resin. An ion exchange membrane for water electrolysis, wherein the total thickness of the porous base film is 50 to 200 μm, and the difference in porosity between adjacent porous base films is 10% or less.
  2.  イオン交換樹脂が炭化水素系イオン交換樹脂である請求項1に記載の水電解用イオン交換膜。 The ion exchange membrane for water electrolysis according to claim 1, wherein the ion exchange resin is a hydrocarbon ion exchange resin.
  3.  多孔性基材フィルムがオレフィン系重合体或いは共重合体である請求項1又は2に記載の水電解用イオン交換膜。 The ion exchange membrane for water electrolysis according to claim 1 or 2, wherein the porous substrate film is an olefin polymer or a copolymer.
  4.  重合性単量体及び重合開始剤を含む重合性組成物を調製する工程、複数枚の多孔性基材フィルムを積層して積層多孔性基材フィルムとし、該積層多孔性基材フィルムに重合性単量体及び重合開始剤を含む重合性組成物を接触させ、積層多孔性基材フィルムの空隙に重合性組成物を充填させてイオン交換膜前駆体を得る工程、イオン交換膜前駆体中の重合性組成物をイオン交換樹脂とする工程、を含む請求項1記載の水電解用イオン交換膜の製造方法。 A step of preparing a polymerizable composition containing a polymerizable monomer and a polymerization initiator, laminating a plurality of porous substrate films to form a laminated porous substrate film, and polymerizing the laminated porous substrate film A step of contacting a polymerizable composition containing a monomer and a polymerization initiator and filling the voids of the laminated porous substrate film with the polymerizable composition to obtain an ion exchange membrane precursor, in the ion exchange membrane precursor The method for producing an ion exchange membrane for water electrolysis according to claim 1, comprising a step of using the polymerizable composition as an ion exchange resin.
  5.  重合性組成物に含まれる重合性単量体が炭化水素系重合性単量体である請求項4に記載の水電解用イオン交換膜の製造方法。 The method for producing an ion exchange membrane for water electrolysis according to claim 4, wherein the polymerizable monomer contained in the polymerizable composition is a hydrocarbon-based polymerizable monomer.
  6.  多孔性基材フィルムがオレフィン系重合体或いは共重合体である請求項4又は5に記載の水電解用イオン交換膜の製造方法。 The method for producing an ion exchange membrane for water electrolysis according to claim 4 or 5, wherein the porous substrate film is an olefin polymer or a copolymer.
  7.  空隙率30~50%、平均細孔径0.01~0.1μm未満の多孔性基材フィルムが複数枚積層された積層多孔性基材フィルムの空隙にイオン交換樹脂が充填されてなり、多孔性基材フィルムの合計厚みが50~200μm、且つ隣接した多孔性基材フィルムの空隙率の差が10%以下である積層イオン交換膜の水電解への使用。 A porous porous substrate film in which a plurality of porous substrate films having a porosity of 30 to 50% and an average pore diameter of less than 0.01 to 0.1 μm are laminated is filled with an ion exchange resin, and is porous. Use of a laminated ion exchange membrane for water electrolysis in which the total thickness of the base film is 50 to 200 μm and the difference in porosity between adjacent porous base films is 10% or less.
  8.  空隙率30~50%、平均細孔径0.01~0.1μm未満の多孔性基材フィルムが複数枚積層された積層多孔性基材フィルムの空隙にイオン交換樹脂が充填されてなり、多孔性基材フィルムの合計厚みが50~200μm、且つ隣接した多孔性基材フィルムの空隙率の差が10%以下である積層イオン交換膜を介して、陽極および陰極が設置された水電解装置。 A porous porous substrate film in which a plurality of porous substrate films having a porosity of 30 to 50% and an average pore diameter of less than 0.01 to 0.1 μm are laminated is filled with an ion exchange resin, and is porous. A water electrolysis apparatus in which an anode and a cathode are installed through a laminated ion exchange membrane in which a total thickness of base films is 50 to 200 μm and a difference in porosity between adjacent porous base films is 10% or less.
  9.  空隙率30~50%、平均細孔径0.01~0.1μm未満の多孔性基材フィルムが複数枚積層された積層多孔性基材フィルムの空隙にイオン交換樹脂が充填されてなり、多孔性基材フィルムの合計厚みが50~200μm、且つ隣接した多孔性基材フィルムの空隙率の差が10%以下である積層イオン交換膜を介して、陽極および陰極が設置された水電解装置に水を流通し、電極間に通電し、水の電気分解を行い、水素を得る水の電解方法。 A porous porous substrate film in which a plurality of porous substrate films having a porosity of 30 to 50% and an average pore diameter of less than 0.01 to 0.1 μm are laminated is filled with an ion exchange resin, and is porous. Water is added to the water electrolysis apparatus in which the anode and the cathode are installed through a laminated ion exchange membrane in which the total thickness of the base film is 50 to 200 μm and the difference in porosity between adjacent porous base films is 10% or less. Water is electrolyzed to obtain hydrogen by conducting electricity between electrodes and electrolyzing water.
PCT/JP2016/068049 2015-06-17 2016-06-17 Ion exchange membrane for water electrolysis, and method for manufacturing said ion exchange membrane WO2016204262A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-122320 2015-06-17
JP2015122320A JP2018127506A (en) 2015-06-17 2015-06-17 Ion-exchange membrane for water electrolysis, and method for manufacturing the ion-exchange membrane

Publications (1)

Publication Number Publication Date
WO2016204262A1 true WO2016204262A1 (en) 2016-12-22

Family

ID=57546034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068049 WO2016204262A1 (en) 2015-06-17 2016-06-17 Ion exchange membrane for water electrolysis, and method for manufacturing said ion exchange membrane

Country Status (3)

Country Link
JP (1) JP2018127506A (en)
TW (1) TW201714743A (en)
WO (1) WO2016204262A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111470880A (en) * 2019-01-23 2020-07-31 元创绿能科技股份有限公司 Ion exchange membrane with multiple pores and manufacturing method thereof
JP2022149276A (en) * 2021-03-25 2022-10-06 株式会社アストム Anion exchange membrane and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280231A (en) * 1986-05-30 1987-12-05 Asahi Glass Co Ltd Novel multilayer diaphragm
JP2005334263A (en) * 2004-05-26 2005-12-08 Tokuyama Corp Iontophoresis device and ion exchange membrane
JP2009039695A (en) * 2007-08-10 2009-02-26 Research Institute Of Innovative Technology For The Earth Manufacturing method of acid and alkali
JP2009231238A (en) * 2008-03-25 2009-10-08 Panasonic Corp Recycling method for exhaust electrolyte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280231A (en) * 1986-05-30 1987-12-05 Asahi Glass Co Ltd Novel multilayer diaphragm
JP2005334263A (en) * 2004-05-26 2005-12-08 Tokuyama Corp Iontophoresis device and ion exchange membrane
JP2009039695A (en) * 2007-08-10 2009-02-26 Research Institute Of Innovative Technology For The Earth Manufacturing method of acid and alkali
JP2009231238A (en) * 2008-03-25 2009-10-08 Panasonic Corp Recycling method for exhaust electrolyte

Also Published As

Publication number Publication date
TW201714743A (en) 2017-05-01
JP2018127506A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP4992019B2 (en) Method for producing acid and alkali
TWI616481B (en) Ion-exchange membrane and method for producing same and electrodialyzer
WO2012133538A1 (en) Ion-exchange membrane
KR101835906B1 (en) Ion exchange membrane and method for producing same
CN109071852B (en) Bipolar membrane
WO2010067775A1 (en) Bipolar membrane and method for manufacturing same
CN106536051B (en) Ion exchange membrane and method for producing same
US10974209B2 (en) Ion-exchange membrane
WO2016204262A1 (en) Ion exchange membrane for water electrolysis, and method for manufacturing said ion exchange membrane
JP5436357B2 (en) Production method of ion exchange membrane
WO2014119207A1 (en) Electrolytic membrane
JP2011072860A (en) Composite ion exchanger and manufacturing method of the same
JP5893511B2 (en) Diaphragm for alkaline water electrolysis
JP2020097647A (en) Bipolar membrane and method for producing the same
CN115298249A (en) Anion exchange membrane and method for producing same
JP2021154277A (en) Anion exchange membrane and method for producing the same
JP6517404B2 (en) Ion exchange membrane
JP2009039694A (en) Bipolar membrane and its manufacturing method
WO2014119208A1 (en) Electrolytic membrane
JP5850764B2 (en) Method for producing ion exchange membrane using long porous thermoplastic resin film
JP7454423B2 (en) Anion exchange membrane and its manufacturing method
JP2012224708A (en) Method of producing ion-exchange membrane
JP2013235665A (en) Polymer electrolytic film and fuel battery using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP