JP2013235665A - Polymer electrolytic film and fuel battery using the same - Google Patents

Polymer electrolytic film and fuel battery using the same Download PDF

Info

Publication number
JP2013235665A
JP2013235665A JP2012105848A JP2012105848A JP2013235665A JP 2013235665 A JP2013235665 A JP 2013235665A JP 2012105848 A JP2012105848 A JP 2012105848A JP 2012105848 A JP2012105848 A JP 2012105848A JP 2013235665 A JP2013235665 A JP 2013235665A
Authority
JP
Japan
Prior art keywords
film
polymer electrolyte
electrolyte membrane
membrane
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012105848A
Other languages
Japanese (ja)
Inventor
Yasutake Matsuda
康壮 松田
Shunichi Shimatani
俊一 島谷
Hiroyuki Nishii
弘行 西井
Toru Sugitani
徹 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2012105848A priority Critical patent/JP2013235665A/en
Publication of JP2013235665A publication Critical patent/JP2013235665A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel polymer electrolytic film that reduces a change in size in a state transition between a dry state and a swelling state, and a fuel battery using the polymer electrolytic film.SOLUTION: A polymer electrolytic film 10 of the present invention, which is used for a fuel battery, includes a porous multilayer film 20, and a polymer electrolyte including an acidic group and fills the multilayer film 20. The acidic group included in the polymer electrolyte includes an O-H bond. The multilayer film 20 includes: a first porous film 11; a second porous film 12; and a porous adhesion layer 13 arranged between the first and second films. The first and second films 11 and 12 each have a direction-dependent elongation. The first and second films 11 and 12 are stacked so that an angle formed by a direction which makes the first film 11 minimum in elongation, and a direction which makes the second film 12 minimum in elongation is within a range of 45°-90°.

Description

本発明は、高分子電解質膜およびそれを用いた燃料電池に関する。   The present invention relates to a polymer electrolyte membrane and a fuel cell using the same.

固体高分子形燃料電池(PEFC)は、エネルギー密度が高く、家庭用コージェネレーションシステム、携帯機器用電源、自動車用電源などの幅広い分野での使用が期待される。PEFCの電解質膜には、燃料極−酸化極間でプロトンを伝導する電解質としての機能、および、燃料極に供給される燃料と酸化極に供給される酸化剤とを分離する隔壁としての機能が求められる。電解質および隔壁としての機能が不十分であると、燃料電池の発電効率が低下する。また、プロトン伝導性、電気化学的安定性および機械的強度に優れ、燃料および酸化剤の透過性が低い高分子電解質膜が望まれる。   The polymer electrolyte fuel cell (PEFC) has a high energy density and is expected to be used in a wide range of fields such as a home cogeneration system, a power source for portable devices, and a power source for automobiles. The electrolyte membrane of PEFC has a function as an electrolyte that conducts protons between the fuel electrode and the oxidation electrode, and a function as a partition that separates the fuel supplied to the fuel electrode and the oxidant supplied to the oxidation electrode. Desired. When the functions as the electrolyte and the partition are insufficient, the power generation efficiency of the fuel cell is lowered. In addition, a polymer electrolyte membrane that is excellent in proton conductivity, electrochemical stability, and mechanical strength and has low fuel and oxidant permeability is desired.

従来、固体高分子形燃料電池の電解質膜として、デュポン社で開発された「ナフィオン(デュポン社の登録商標)」等のパーフルオロスルホン酸膜が一般に用いられていた。しかしながら、「ナフィオン」をはじめとする従来のフッ素系高分子電解質膜は、化学的な安定性には優れるもののイオン交換容量が低いという問題や、保水性が不十分であるため電解質膜が乾燥してプロトン伝導性が低下するという問題があった。この対策としてスルホン酸基を多く導入すると、保水によって強度が極端に低下し、膜が破損しやすくなる。すなわち、ナフィオンのみからなる電解質膜は、乾燥状態と膨潤状態との間の状態変化に対する安定性が低かった。   Conventionally, as an electrolyte membrane for a polymer electrolyte fuel cell, a perfluorosulfonic acid membrane such as “Nafion (registered trademark of DuPont)” developed by DuPont has been generally used. However, conventional fluorine-based polymer electrolyte membranes such as “Nafion” are excellent in chemical stability but have a problem of low ion exchange capacity, and electrolyte membranes are dried due to insufficient water retention. As a result, there is a problem that proton conductivity is lowered. If a large number of sulfonic acid groups are introduced as a countermeasure, the strength is extremely lowered by water retention, and the membrane is easily damaged. That is, the electrolyte membrane composed only of Nafion has low stability against a change in state between the dry state and the swollen state.

含水量の変化に対する耐性が高い膜として、特許文献1(特開平6−29032号公報)は、延伸により作製された高分子多孔膜とその多孔膜の孔内に配置されたイオン交換樹脂とからなる高分子電解質膜を開示している。また、特許文献2(特開2002−352819号公報:特許第4067315号明細書)は、1当量当たりの乾燥重量(EW)が所定の範囲にある膜を開示している。   As a membrane having high resistance to changes in water content, Patent Document 1 (Japanese Patent Laid-Open No. 6-29032) discloses a polymer porous membrane produced by stretching and an ion exchange resin disposed in the pores of the porous membrane. A polymer electrolyte membrane is disclosed. Patent Document 2 (Japanese Patent Laid-Open No. 2002-352819: Japanese Patent No. 4067315) discloses a membrane having a dry weight (EW) per equivalent in a predetermined range.

特開平6−29032号公報JP-A-6-29032 特開2002−352819号公報JP 2002-352819 A

しかし、従来の電解質膜は、乾燥状態と膨潤状態との間の状態変化に対する寸法変化が大きく、燃料電池に用いたときの耐久性が不充分であった。   However, the conventional electrolyte membrane has a large dimensional change with respect to a change in state between a dry state and a swollen state, and has insufficient durability when used in a fuel cell.

このような状況において、本発明は、乾燥状態と膨潤状態との間の状態変化に対する寸法変化が小さい新規な高分子電解質膜およびそれを用いた燃料電池を提供することを目的の1つとする。   In such a situation, an object of the present invention is to provide a novel polymer electrolyte membrane with a small dimensional change with respect to a state change between a dry state and a swollen state, and a fuel cell using the same.

上記目的を達成すべく鋭意研究したところ、本発明者らは、特定の構成を有する積層膜に高分子電解質を充填することによって、乾燥状態と膨潤状態との間の状態変化に対する寸法変化が小さい電解質膜が得られることを見出した。本発明は、この新規な知見に基づく発明である。   As a result of diligent research to achieve the above object, the inventors of the present invention have a small dimensional change with respect to a state change between a dry state and a swollen state by filling a polymer electrolyte in a laminated film having a specific configuration. It has been found that an electrolyte membrane can be obtained. The present invention is based on this novel finding.

本発明は、燃料電池に用いられる高分子電解質膜を提供する。その高分子電解質膜は、多孔性の積層膜と、前記積層膜に充填され酸性基を含む高分子電解質とを含み、前記高分子電解質に含まれる前記酸性基は、O−H結合を含む酸性基であり、前記積層膜は、多孔性の第1の膜、多孔性の第2の膜、および、前記第1の膜と前記第2の膜との間に配置された多孔性の接着層を含み、前記第1および第2の膜はそれぞれ、方向によって伸び率が異なる膜であり、前記第1の膜の伸び率が最小となる方向と前記第2の膜の伸び率が最小となる方向とがなす角度が45°〜90°の範囲にあるように前記第1の膜と前記第2の膜とが積層されている。   The present invention provides a polymer electrolyte membrane used in a fuel cell. The polymer electrolyte membrane includes a porous laminate membrane and a polymer electrolyte filled in the laminate membrane and containing an acidic group, and the acidic group contained in the polymer electrolyte is an acid containing an OH bond. The laminated film includes a porous first film, a porous second film, and a porous adhesive layer disposed between the first film and the second film The first and second films are films having different elongation rates depending on directions, and the direction in which the elongation rate of the first film is minimized and the elongation rate of the second film are minimized. The first film and the second film are laminated so that the angle formed by the direction is in the range of 45 ° to 90 °.

また、本発明は、膜−電極接合体を含む燃料電池を提供する。この燃料電池では、前記膜−電極接合体が本発明の高分子電解質膜を含む。   The present invention also provides a fuel cell including a membrane-electrode assembly. In this fuel cell, the membrane-electrode assembly includes the polymer electrolyte membrane of the present invention.

本発明によれば、乾燥状態と膨潤状態との間の状態変化に対する寸法変化が小さい高分子電解質膜が得られる。この電解質膜を用いることによって、燃料電池において使用したときに剥離などが少ない膜−電極接合体(MEA)が得られる。すなわち、本発明の電解質膜を用いることによって、耐久性が高い固体高分子形燃料電池が得られる。   According to the present invention, a polymer electrolyte membrane having a small dimensional change with respect to a change in state between a dry state and a swollen state can be obtained. By using this electrolyte membrane, a membrane-electrode assembly (MEA) with less peeling when used in a fuel cell can be obtained. That is, a solid polymer fuel cell with high durability can be obtained by using the electrolyte membrane of the present invention.

図1は、本発明の高分子電解質膜の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the polymer electrolyte membrane of the present invention.

以下、本発明の実施形態について説明する。なお、以下の説明において、特定の材料や特定の数値範囲を例示する場合があるが、本発明はそれらの材料および数値範囲に限定されない。また、例示される材料は、特に記載がない限り、1種を単独で使用してもよいし2種以上を併用してもよい。   Hereinafter, embodiments of the present invention will be described. In the following description, specific materials and specific numerical ranges may be exemplified, but the present invention is not limited to these materials and numerical ranges. Moreover, as long as there is no description in particular, the material illustrated may be used individually by 1 type, and may use 2 or more types together.

(高分子電解質膜)
本発明の高分子電解質膜(複合膜)は、燃料電池に用いられる電解質膜である。この電解質膜は、多孔性の積層膜と、その積層膜に充填され酸性基を含む高分子電解質とを含む。この高分子電解質を、以下では「高分子電解質(E)」という場合がある。高分子電解質(E)に含まれる酸性基は、O−H結合を含む酸性基である。典型的には、この酸性基は、スルホン酸基、硫酸基、カルボン酸基、リン酸基、ホスホン酸基およびフェノール性水酸基からなる群より選ばれる少なくとも1種である。
(Polymer electrolyte membrane)
The polymer electrolyte membrane (composite membrane) of the present invention is an electrolyte membrane used for a fuel cell. The electrolyte membrane includes a porous laminated film and a polymer electrolyte that is filled in the laminated film and contains an acidic group. Hereinafter, this polymer electrolyte may be referred to as “polymer electrolyte (E)”. The acidic group contained in the polymer electrolyte (E) is an acidic group containing an OH bond. Typically, the acidic group is at least one selected from the group consisting of a sulfonic acid group, a sulfuric acid group, a carboxylic acid group, a phosphoric acid group, a phosphonic acid group, and a phenolic hydroxyl group.

積層膜は、多孔性の第1の膜、多孔性の第2の膜、および、第1の膜と第2の膜との間に配置された少なくとも1層の多孔性の接着層を含む。第1および第2の膜はそれぞれ、方向によって伸び率が異なる膜である。ここで、「方向」とは、積層膜の主面に平行な方向を意味する。また、「伸び率」とは、実施例に記載の引っ張り試験の結果に基づいて実施例に記載の式で算出される伸び率を意味する。第1の膜の伸び率が最小となる方向D1minと第2の膜の伸び率が最小となる方向D2minとがなす角度が45°〜90°の範囲にあるように第1の膜と第2の膜とが積層されている。 The laminated film includes a porous first film, a porous second film, and at least one porous adhesive layer disposed between the first film and the second film. The first and second films are films having different elongation rates depending on directions. Here, the “direction” means a direction parallel to the main surface of the laminated film. The “elongation rate” means an elongation rate calculated by the formula described in the example based on the result of the tensile test described in the example. The first film has an angle formed by a direction D1 min in which the elongation percentage of the first film is minimum and a direction D2 min in which the elongation ratio of the second film is minimum in the range of 45 ° to 90 °. A second film is stacked.

第1の膜の伸び率が最小となる方向D1minと第2の膜の伸び率が最小となる方向D2minとがなす角度は、60°〜90°の範囲、70°〜90°の範囲、または80°〜90°の範囲にあってもよい。この角度が90°に近い方が、膜の伸び率の異方性が小さい積層膜が得られる傾向がある。 The angle formed by the direction D1 min in which the elongation rate of the first film is minimum and the direction D2 min in which the elongation rate of the second film is minimum is in the range of 60 ° to 90 ° and in the range of 70 ° to 90 °. Or in the range of 80 ° to 90 °. When this angle is close to 90 °, a laminated film having a small anisotropy of the elongation percentage of the film tends to be obtained.

高分子電解質膜の例を、図1に示す。図1の電解質膜10は積層膜20を含む。。積層膜20には、高分子電解質(図示せず)が充填されている。積層膜20は、「第1の膜11/接着層13/第2の膜12」という積層構造を有する。なお、積層膜は、複数の第1の膜および/または複数の第2の膜を含んでもよい。その場合、第1の膜と第2の膜とは、通常、接着層を挟んで交互に積層される。   An example of the polymer electrolyte membrane is shown in FIG. The electrolyte membrane 10 in FIG. 1 includes a laminated film 20. . The laminated film 20 is filled with a polymer electrolyte (not shown). The laminated film 20 has a laminated structure of “first film 11 / adhesive layer 13 / second film 12”. Note that the stacked film may include a plurality of first films and / or a plurality of second films. In that case, the first film and the second film are usually laminated alternately with an adhesive layer interposed therebetween.

第1の膜の材料および物性と、第2の膜の材料および物性とは異なってもよい。すなわち、第1の膜と第2の膜とは異なる膜であってもよい。典型的な例では、第1の膜の材料および物性は、第2の膜の材料および物性と実質的に同じである。すなわち、第1の膜と第2の膜とは同じ膜である。第1の膜の厚さと第2の膜の厚さとは異なってもよいし、同じでもよい。通常、積層膜に含まれる第1の膜の厚さの合計と、積層膜に含まれる第2の膜の厚さの合計とは実質的に同じであり、前者が後者の0.9〜1.1倍の範囲にあってもよい。また、本発明の効果が得られる限り、積層膜は、第1および第2の膜ならびに接着層に加えて他の膜を含んでもよい。典型的な積層膜は、第1および第2の膜と、それらの間に配置された接着層とからなる。   The material and physical properties of the first film may be different from the material and physical properties of the second film. That is, the first film and the second film may be different films. In a typical example, the material and physical properties of the first film are substantially the same as the material and physical properties of the second film. That is, the first film and the second film are the same film. The thickness of the first film and the thickness of the second film may be different or the same. Usually, the total thickness of the first film included in the multilayer film and the total thickness of the second film included in the multilayer film are substantially the same, and the former is 0.9 to 1 of the latter. It may be in the range of 1 times. Moreover, as long as the effect of the present invention is obtained, the laminated film may include other films in addition to the first and second films and the adhesive layer. A typical laminated film is composed of first and second films and an adhesive layer disposed between them.

(第1および第2の膜)
本発明で用いられる第1および第2の膜はそれぞれ、伸び率に異方性がある膜である。なお、伸び率は、たとえば実施例に記載の方法で測定できる。延伸膜の場合、膜の伸び率の方向依存性は、通常、延伸の条件によって決まる。そのため、2軸延伸で形成された延伸膜は、通常、長手方向(縦方向)とそれに直交する幅方向(横方向)のうちの一方が伸び率が最大となる方向であり、他方が伸び率が最小となる方向である。第1および第2の膜はそれぞれ、伸び率が最小となる方向における伸び率Tmin(%)と、伸び率が最大となる方向における伸び率Tmax(%)とが、0.05≦Tmin/Tmax≦0.7(たとえば、0.05≦Tmin/Tmax≦0.5)を満たす膜であってもよい。
(First and second films)
The first and second films used in the present invention are films having anisotropy in elongation. In addition, elongation rate can be measured by the method as described in an Example, for example. In the case of a stretched film, the direction dependency of the elongation rate of the film is usually determined by the stretching conditions. Therefore, in a stretched film formed by biaxial stretching, one of the longitudinal direction (longitudinal direction) and the width direction (lateral direction) perpendicular thereto is usually the direction in which the elongation is maximum, and the other is the elongation. Is the direction in which is minimized. Each of the first and second films has an elongation rate T min (%) in a direction in which the elongation rate is minimum and an elongation rate T max (%) in a direction in which the elongation rate is maximized. A film satisfying min / Tmax ≦ 0.7 (for example, 0.05 ≦ Tmin / Tmax ≦ 0.5) may be used.

第1および第2の膜の材料となる樹脂の例には、ポリテトラフルオロエチレン(PTFE)、およびポリオレフィン樹脂(ポリプロピレン、ポリメチルペンテン、ポリブテンなど)が含まれる。ポリオレフィン樹脂は、1種を単体で使用してもよいし、2種以上をブレンドして用いてもよいし、共重合体として用いてもよい。また、第1および第2の膜はそれぞれ、複数の層で構成されていてもよいし、異なる複数の樹脂で構成されていてもよい。これらの中でも、化学的安定性が高い点、および、プロトン伝導の阻害性が低い点から、第1および第2の膜はそれぞれ、多孔性のポリテトラフルオロエチレン膜であることが好ましい。   Examples of the resin used as the material for the first and second films include polytetrafluoroethylene (PTFE) and polyolefin resin (polypropylene, polymethylpentene, polybutene, etc.). As the polyolefin resin, one kind may be used alone, two or more kinds may be blended and used as a copolymer. Each of the first and second films may be composed of a plurality of layers, or may be composed of a plurality of different resins. Among these, the first and second films are preferably porous polytetrafluoroethylene films from the viewpoints of high chemical stability and low proton conduction inhibition.

多孔性の第1および第2の膜の形成方法に限定はなく、公知の方法で形成してもよく、たとえば以下の方法で形成してもよい。1つの方法では、樹脂を溶融押出し成形したのち、低温延伸してから高温延伸することによって製膜する(乾式製膜法)。他の方法では、樹脂と被抽出剤との混合物を成形・延伸などの処理によって膜状にした後、被抽出剤を溶媒等で抽出して除去することによって製膜する(湿式製膜法)。   The method for forming the porous first and second films is not limited, and may be formed by a known method, for example, by the following method. In one method, a resin is melt-extruded and then formed at a low temperature and then at a high temperature (dry film formation method). In another method, a mixture of a resin and an extractable agent is formed into a film by a process such as molding and stretching, and then the extractable agent is extracted with a solvent or the like and removed to form a film (wet film forming method). .

以下に、第1および第2の膜として好ましいPTFE膜を製造するための方法の一例について説明する。PTFE膜は、一般的なPTFE多孔膜の製造方法で製造できる。この製造方法において、PTFEの結晶融解温度(融点)以上の温度で焼成することが好ましい。そのような焼成によって、PTFE膜を構成するPTFEは、通常、示差走査熱量測定において吸熱のピークが322〜332℃の範囲にあり且つ結晶融解熱量が40J/g以下であるPTFEとなる。焼成は、たとえば340℃以上の温度で行われ、一例では350℃〜390℃の範囲にある温度で行われる。結晶融解温度以上の温度に加熱されたPTFE膜は、伸び率が小さくなる。しかし、現在、伸び率がより小さい膜が求められている。そのため、本発明の電解質膜は、特定の構成を有する積層膜を用いている。なお、示差走査熱量測定(DSC測定)の昇温速度はたとえば10℃/分である(以下のDSC測定においても同様である)。   Hereinafter, an example of a method for producing a PTFE film preferable as the first and second films will be described. The PTFE membrane can be manufactured by a general PTFE porous membrane manufacturing method. In this production method, it is preferable to perform firing at a temperature equal to or higher than the crystal melting temperature (melting point) of PTFE. By such firing, the PTFE constituting the PTFE film usually becomes PTFE having an endothermic peak in the range of 322 to 332 ° C. in the differential scanning calorimetry and having a heat of crystal melting of 40 J / g or less. Firing is performed, for example, at a temperature of 340 ° C. or higher, and in one example, is performed at a temperature in the range of 350 ° C. to 390 ° C. A PTFE film heated to a temperature equal to or higher than the crystal melting temperature has a low elongation. However, currently, there is a demand for a film having a smaller elongation rate. Therefore, the electrolyte membrane of the present invention uses a laminated film having a specific configuration. Note that the rate of temperature increase in differential scanning calorimetry (DSC measurement) is, for example, 10 ° C./min (the same applies to the following DSC measurement).

PTFE多孔膜(第1および第2の膜)は、通常の方法で作製できる。具体的には、まず、樹脂(PTFE)に炭化水素系助剤を混合して混合物を得る。次に、その混合物をシート状または円筒状に押し出し、さらに所定の厚さになるように圧延し乾燥する。押し出しおよび圧延を容易にするため、通常、30〜100℃の範囲(好ましくは35〜80℃の範囲)の温度に材料を加熱して押し出しおよび圧延を行う。押し出しは、通常、押し出しのシリンダーの径のたとえば1/10〜1/100の径を有する絞りを通過させることによって樹脂にシェアーをかけて行う。押し出しのシリンダーの径に対する絞りの径の比率によって、延伸膜の長手方向の伸び率や強度がある程度決定される。圧延は、ロールを用いた圧延であってもよいし、ロールを用いない圧延(プレス)であってもよい。圧延によって、膜の厚さおよび幅を所定の範囲とすることができる。ロールを用いた圧延の場合、ロールによって膜を巻き取るときの膜の張力を変えたり、ロール間のギャップを変えながらロールによる圧延を繰り返したりすることによって、膜の厚さおよび幅を調整できる。押し出し後の樹脂を圧延する場合、圧延の条件(膜の幅や厚さの変化)によって、伸び率が高い方向が決定されることがある。   The PTFE porous membrane (first and second membranes) can be produced by a normal method. Specifically, first, a hydrocarbon-based auxiliary is mixed with resin (PTFE) to obtain a mixture. Next, the mixture is extruded into a sheet or cylinder, and further rolled to a predetermined thickness and dried. In order to facilitate extrusion and rolling, the material is usually heated to a temperature in the range of 30 to 100 ° C. (preferably in the range of 35 to 80 ° C.) to perform extrusion and rolling. Extrusion is usually performed by shearing the resin by passing through a throttle having a diameter of, for example, 1/10 to 1/100 of the diameter of the cylinder of the extrusion. The stretch ratio and strength in the longitudinal direction of the stretched film are determined to some extent by the ratio of the diameter of the throttle to the diameter of the extruded cylinder. The rolling may be rolling using a roll or rolling (pressing) without using a roll. By rolling, the thickness and width of the film can be within a predetermined range. In the case of rolling using a roll, the thickness and width of the film can be adjusted by changing the tension of the film when winding the film with the roll, or by repeating the rolling with the roll while changing the gap between the rolls. When the extruded resin is rolled, the direction in which the elongation rate is high may be determined depending on the rolling conditions (changes in film width and thickness).

乾燥された膜は、所定の温度において所定の倍率で延伸される。延伸の方法や延伸の条件によって、得られる膜の伸び率が最大となる方向が決定される。典型的な延伸の一例では、膜の長手方向の延伸(縦延伸)を行った後に、膜の幅方向の延伸(横延伸)が行われる。縦延伸は、たとえば、100〜380℃の範囲の温度において2〜20倍の範囲の倍率で行われる。また、横延伸は、たとえば、30〜380℃の範囲の温度において、5〜30倍の範囲の倍率で行われる。ある方向の延伸倍率を高くすると、その方向には伸びにくい膜が得られる傾向がある。そのため、延伸の方向および倍率を変えることによって、伸び率の方向依存性を制御することが可能である。   The dried film is stretched at a predetermined magnification at a predetermined temperature. The direction in which the elongation rate of the obtained film is maximized is determined by the stretching method and stretching conditions. In one example of typical stretching, stretching in the longitudinal direction of the membrane (longitudinal stretching) is performed, and then stretching in the width direction of the membrane (lateral stretching) is performed. The longitudinal stretching is performed, for example, at a magnification in the range of 2 to 20 times at a temperature in the range of 100 to 380 ° C. Further, the transverse stretching is performed at a magnification in the range of 5 to 30 times at a temperature in the range of 30 to 380 ° C., for example. When the stretch ratio in a certain direction is increased, a film that does not easily stretch in that direction tends to be obtained. Therefore, it is possible to control the direction dependency of the elongation rate by changing the stretching direction and the magnification.

通常、PTFEの延伸時または延伸後にPTFEの融点以上の温度にPTFEを加熱することによって、PTFEの焼成を行う。延伸時に焼成を行う場合には、縦延伸時に行ってもよいし、横延伸時に行ってもよい。いずれの場合においても、焼成されたPTFEは、通常、DSC測定における結晶融解熱量が40J/g以下となり、吸熱ピークが327±5℃の範囲(322〜332℃の範囲)に現れる。   Usually, PTFE is baked by heating PTFE to a temperature equal to or higher than the melting point of PTFE during or after stretching of PTFE. When firing at the time of stretching, it may be performed at the time of longitudinal stretching or at the time of transverse stretching. In any case, the calcined PTFE usually has a heat of crystal melting in DSC measurement of 40 J / g or less, and an endothermic peak appears in a range of 327 ± 5 ° C. (range of 322 to 332 ° C.).

PTFE以外の樹脂からなる第1および第2の膜も、PTFE膜と同様の方法で形成できる。ただし、押し出し、圧延、および延伸を行う際の温度は、その樹脂に応じた温度を選択する。PTFE以外の樹脂でも、特定の方向の延伸倍率を高くすることによって、通常、その方向における伸び率が小さい膜が得られる。   The first and second films made of a resin other than PTFE can also be formed by the same method as the PTFE film. However, the temperature at the time of extrusion, rolling, and stretching is selected according to the resin. Even with a resin other than PTFE, by increasing the stretching ratio in a specific direction, a film having a low elongation in that direction is usually obtained.

第1および第2の膜の、厚さ、目付量(面密度)、および気孔率は、電解質膜に求められる特性に応じて選択すればよい。第1および第2の膜の一例では、厚さが5μm〜100μmの範囲(たとえば5μm〜50μmの範囲)にあり、気孔率が50%〜95%の範囲(たとえば60%〜95%の範囲)にある。   The thickness, basis weight (area density), and porosity of the first and second films may be selected according to the characteristics required for the electrolyte membrane. In one example of the first and second films, the thickness is in the range of 5 μm to 100 μm (eg, in the range of 5 μm to 50 μm), and the porosity is in the range of 50% to 95% (eg, in the range of 60% to 95%). It is in.

なお、第1および第2の膜には、市販の膜を用いてもよい。同様に、接着層および高分子電解質には市販のものを用いてもよい。   A commercially available film may be used for the first and second films. Similarly, commercially available adhesive layers and polymer electrolytes may be used.

(接着層)
接着層は、多孔性であり、第1の膜および第2の膜を接着できる層であればよい。具体的には、第1および第2の膜の材料よりも低い融点を有する材料を含む多孔性の層を接着層として用いることができる。接着層の形態に限定はなく、たとえば、所定の材料からなる不織布、織布、またはネットであってもよい。
(Adhesive layer)
The adhesive layer may be a layer that is porous and can adhere the first film and the second film. Specifically, a porous layer containing a material having a lower melting point than the materials of the first and second films can be used as the adhesive layer. The form of the adhesive layer is not limited, and may be, for example, a nonwoven fabric, a woven fabric, or a net made of a predetermined material.

接着層に用いることができる材料の例には、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリブテン、ポリエチレンテレフタレート、ポリイミド、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリアミド、ポリフェニレンサルファイド、ポリフェニレンエーテル、ポリカーボネート、ポリエーテルスルホン、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリテトラフルオロエチレンが含まれる。これらは単独で用いてもよいし、複数種を組み合わせて用いてもよい。接着層の材料は、第1および第2の膜に応じて選択される。   Examples of materials that can be used for the adhesive layer include polyethylene, polypropylene, polymethylpentene, polybutene, polyethylene terephthalate, polyimide, polyetherketone ketone, polyetheretherketone, polyetherimide, polyamideimide, polyamide, polyphenylene sulfide, Polyphenylene ether, polycarbonate, polyether sulfone, polyacrylonitrile, polyvinylidene chloride, polyvinylidene fluoride, and polytetrafluoroethylene are included. These may be used alone or in combination of two or more. The material of the adhesive layer is selected according to the first and second films.

接着層は、融点が100〜140℃の範囲にある熱可塑性樹脂を含むことが好ましい。この構成によれば、接着層よりも高い融点を有する樹脂(たとえばPTFE)からなる第1および第2の膜の物性を大きく変化させることなくそれらを容易に接着できる。融点が100〜140℃の範囲にある熱可塑性樹脂の例には、ポリエチレンやポリブテンが含まれる。   The adhesive layer preferably contains a thermoplastic resin having a melting point in the range of 100 to 140 ° C. According to this configuration, the first and second films made of a resin having a higher melting point than the adhesive layer (for example, PTFE) can be easily bonded without significantly changing the physical properties of the first and second films. Examples of the thermoplastic resin having a melting point in the range of 100 to 140 ° C. include polyethylene and polybutene.

接着層は、芯/鞘構造を有する樹脂で形成されてもよい。たとえば、接着層は、熱可塑性樹脂からなる鞘部分と、当該熱可塑性樹脂よりも融点が高い樹脂からなる芯部分とを含む繊維によって構成されていてもよい。鞘部分の材料には、第1および第2の膜よりも融点が低い熱可塑性樹脂を用いることができ、たとえば、融点が100〜140℃の範囲にある樹脂(たとえば上述した樹脂)を用いることができる。このような芯/鞘構造を有する接着層を用い、鞘部分の融点以上で芯部分の融点未満の温度で加熱して第1の膜と第2の膜とを接着することによって、接着層の芯部分の強度を保持したままで積層膜を形成できる。そのため、機械的強度が高い芯部分を含む接着層を用いることによって、機械的強度が高い積層膜(および電解質膜)を得ることが可能である。また、芯/鞘構造を有する接着層を用いることによって、第1の膜と第2の膜とを鞘部分で強固に接着することが可能である。   The adhesive layer may be formed of a resin having a core / sheath structure. For example, the adhesive layer may be composed of fibers including a sheath portion made of a thermoplastic resin and a core portion made of a resin having a melting point higher than that of the thermoplastic resin. As the material of the sheath portion, a thermoplastic resin having a melting point lower than that of the first and second films can be used. For example, a resin having a melting point in the range of 100 to 140 ° C. (for example, the above-described resin) is used. Can do. Using the adhesive layer having such a core / sheath structure, the first film and the second film are bonded by heating at a temperature higher than the melting point of the sheath part and lower than the melting point of the core part. A laminated film can be formed while maintaining the strength of the core portion. Therefore, it is possible to obtain a laminated film (and an electrolyte film) with high mechanical strength by using an adhesive layer including a core portion with high mechanical strength. Further, by using an adhesive layer having a core / sheath structure, the first film and the second film can be firmly bonded at the sheath part.

接着層は、プロトン伝導を阻害しにくい層、すなわち、プロトン伝導阻害性が低い層であることが好ましい。具体的には、接着層は、第1および第2の膜(たとえばPTFE多孔膜)よりもプロトン伝導性が低い層であることが好ましい。   The adhesive layer is preferably a layer that does not easily inhibit proton conduction, that is, a layer that has low proton conduction inhibition. Specifically, the adhesive layer is preferably a layer having lower proton conductivity than the first and second membranes (for example, PTFE porous membrane).

接着層に求められる上記の特性、および、燃料電池内で使用するために求められる特性(強度および寸法安定性など)を考慮すると、接着層は、ポリオレフィンを含む層(不織布、織布、またはネット)であることが好ましく、融点が異なる2種類以上の樹脂を有する接着層であることがより好ましい。好ましい接着層の一例は、ポリオレフィンからなる鞘部分と、鞘部分よりも高い融点を有する樹脂からなる芯部分とを含む芯/鞘構造を有する繊維によって構成された接着層である。   In consideration of the above-mentioned properties required for the adhesive layer and the properties required for use in the fuel cell (such as strength and dimensional stability), the adhesive layer is a layer containing a polyolefin (nonwoven fabric, woven fabric, or net). ), And more preferably an adhesive layer having two or more kinds of resins having different melting points. An example of a preferable adhesive layer is an adhesive layer constituted by fibers having a core / sheath structure including a sheath portion made of polyolefin and a core portion made of a resin having a melting point higher than that of the sheath portion.

接着層の、厚さ、目付量、および気孔率は、電解質膜に求められる特性に応じて選択すればよい。たとえば、厚さは、積層膜に含まれる膜を充分な接着強度で接着できる範囲で選択される。接着層の一例では、厚さが1μm〜100μmの範囲(たとえば1μm〜50μmの範囲)にあり、目付量が0.1g/m2〜100g/m2の範囲(たとえば2g/m2〜50g/m2の範囲)の範囲にあり、気孔率が50%〜95%の範囲(たとえば60%〜95%の範囲)にある。目付量が小さいと溶融樹脂によるプロトン伝導の阻害性は低くなるが、目付量が小さすぎると、第1および第2の膜との接着性が低下して剥離しやすくなる。一方、目付量が大きいと、第1および第2の膜との接着性は高くなるが、目付量が大きすぎると、溶融樹脂によるプロトン伝導の阻害性が高くなる。接着層の孔径は、第1および第2の膜(たとえばPTFE多孔膜)の孔径よりも小さくてもよいが、同じ程度かまたはそれよりも大きいことが好ましい。 The thickness, basis weight, and porosity of the adhesive layer may be selected according to the characteristics required for the electrolyte membrane. For example, the thickness is selected within a range where the films included in the laminated film can be bonded with sufficient adhesive strength. In one example of the adhesive layer is in the range of the thickness is 1 m to 100 m (for example in the range of 1 m to 50 m), range basis weight of 0.1g / m 2 ~100g / m 2 ( e.g. 2g / m 2 ~50g / m 2 range) and the porosity is in the range of 50% to 95% (for example, in the range of 60% to 95%). If the weight per unit area is small, the inhibition of proton conduction by the molten resin will be low, but if the amount per unit area is too small, the adhesiveness with the first and second films will be reduced and peeling will easily occur. On the other hand, if the basis weight is large, the adhesion to the first and second films is high, but if the basis weight is too large, the inhibition of proton conduction by the molten resin is high. The pore diameter of the adhesive layer may be smaller than the pore diameters of the first and second membranes (for example, PTFE porous membrane), but is preferably the same or larger.

(積層膜)
積層膜の厚さは、5μm〜200μmの範囲にあることが好ましく、高分子電解質膜の強度やプロトン伝導性を考慮すると、10μm〜100μmの範囲にあることがより好ましい。積層膜が薄いと、得られる高分子電解質膜のプロトン伝導性は高くなるが、薄すぎると、積層膜の強度が低下し、また、燃料である水素が透過しやすくなるという問題が生じる。一方、積層膜が厚いと、得られる高分子電解質膜の強度が高くなるとともに燃料の透過性が低くなるが、厚すぎると、プロトン伝導性が低下する。
(Laminated film)
The thickness of the laminated film is preferably in the range of 5 μm to 200 μm, and more preferably in the range of 10 μm to 100 μm in view of the strength and proton conductivity of the polymer electrolyte membrane. When the laminated film is thin, the proton conductivity of the obtained polymer electrolyte membrane is high. However, when the laminated film is too thin, the strength of the laminated film is lowered and hydrogen as a fuel is easily transmitted. On the other hand, if the laminated film is thick, the strength of the obtained polymer electrolyte membrane is high and the fuel permeability is low, but if it is too thick, the proton conductivity is low.

積層膜の孔径(第1および第2の膜の孔径)は、高分子電解質の充填性を考慮すると、0.1μm〜10μmの範囲にあることが好ましく、1μm〜5μmの範囲にあることがより好ましい。孔径が小さすぎると、高分子電解質を均一に充填しにくくなる。一方、孔径が大きすぎると、高分子電解質を保持する機能が弱くなる。高分子電解質の充填量を多くするとプロトン伝導度が高くなるため、プロトン伝導度を高める観点では、積層膜の気孔率は高い方が好ましい。積層膜の気孔率は、50〜95%の範囲にあることが好ましく、実用上問題がない限り、60〜95%の範囲にあることがより好ましい。積層膜の一例では、気孔率が50%以上であり、且つ、厚さが5μm以上である。   The pore size of the laminated membrane (pore size of the first and second membranes) is preferably in the range of 0.1 μm to 10 μm, more preferably in the range of 1 μm to 5 μm, in consideration of the filling properties of the polymer electrolyte. preferable. When the pore diameter is too small, it becomes difficult to uniformly fill the polymer electrolyte. On the other hand, if the pore diameter is too large, the function of holding the polymer electrolyte is weakened. When the filling amount of the polymer electrolyte is increased, the proton conductivity is increased, and therefore, the porosity of the laminated film is preferably high from the viewpoint of increasing the proton conductivity. The porosity of the laminated film is preferably in the range of 50 to 95%, and more preferably in the range of 60 to 95% unless there is a practical problem. In an example of the laminated film, the porosity is 50% or more and the thickness is 5 μm or more.

(高分子電解質(E))
上述したように、積層膜に充填される高分子電解質(E)に含まれる酸性基は、スルホン酸基、カルボン酸基、リン酸基、およびフェノール性水酸基からなる群より選ばれる少なくとも1種である。燃料電池内で使用される際の化学的安定性およびプロトン伝導性を考慮すると、フッ素系高分子電解質が好ましい。電解質の好ましい例には、フッ化炭素鎖とスルホン酸基とを含む高分子が含まれる。そのような高分子の一例は、ナフィオン(登録商標)である。
(Polymer electrolyte (E))
As described above, the acidic group contained in the polymer electrolyte (E) filled in the laminated film is at least one selected from the group consisting of a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, and a phenolic hydroxyl group. is there. In view of chemical stability and proton conductivity when used in a fuel cell, a fluorine-based polymer electrolyte is preferable. Preferred examples of the electrolyte include a polymer containing a fluorocarbon chain and a sulfonic acid group. An example of such a polymer is Nafion®.

本発明の好ましい一例では、第1および第2の膜がPTFE多孔膜であり、接着層がポリオレフィン(たとえばポリエチレン)を含む接着層である。この一例では、高分子電解質がスルホン酸基を有する高分子であってもよく、たとえばスルホン酸基とフッ化炭素鎖とを含む高分子であってもよい。そのような高分子の一例はナフィオンである。
(高分子電解質膜の特性)
In a preferred example of the present invention, the first and second membranes are PTFE porous membranes, and the adhesive layer is an adhesive layer containing polyolefin (for example, polyethylene). In this example, the polymer electrolyte may be a polymer having a sulfonic acid group, for example, a polymer containing a sulfonic acid group and a fluorocarbon chain. An example of such a polymer is Nafion.
(Characteristics of polymer electrolyte membrane)

本発明の高分子電解質膜は、高い寸法安定性を有する。好ましい一例では、本発明の電解質膜は、乾燥状態から膨潤状態に変化させたときの、縦方向における寸法変化率L(%)と横方向における寸法変化率T(%)との平均が、10%以下(たとえば5%以下)である。また、好ましい他の一例では、寸法変化率L(%)および寸法変化率T(%)が共に10%以下(たとえば5%以下)である。   The polymer electrolyte membrane of the present invention has high dimensional stability. In a preferred example, the electrolyte membrane of the present invention has an average dimensional change rate L (%) in the vertical direction and dimensional change rate T (%) in the horizontal direction of 10 when the dry state is changed to the swollen state. % Or less (for example, 5% or less). In another preferred example, both the dimensional change rate L (%) and the dimensional change rate T (%) are 10% or less (for example, 5% or less).

また、本発明によれば、乾燥状態から膨潤状態に変化させたときの寸法変化の異方性が小さい電解質膜を得ることが可能である。上記寸法変化LおよびTが共に5%以下である膜は、寸法変化の異方性が小さい膜であるといえる。   Further, according to the present invention, it is possible to obtain an electrolyte membrane having a small anisotropy of dimensional change when changed from a dry state to a swollen state. A film having both the dimensional changes L and T of 5% or less can be said to be a film having a small dimensional change anisotropy.

(高分子電解質膜の製造方法)
本発明の高分子電解質膜を製造するための方法の一例を以下に説明する。なお、本発明の高分子電解質膜について説明した事項は以下の製造方法に適用できるため、重複する説明を省略する場合がある。
(Production method of polymer electrolyte membrane)
An example of the method for producing the polymer electrolyte membrane of the present invention will be described below. In addition, since the matter demonstrated about the polymer electrolyte membrane of this invention is applicable to the following manufacturing methods, the overlapping description may be abbreviate | omitted.

この製造方法は、工程(i)および(ii)を含む。工程(i)では、積層膜を形成する。工程(ii)では、当該積層膜に高分子電解質(E)を充填する。以下に、工程(i)および(ii)について説明する。   This manufacturing method includes steps (i) and (ii). In step (i), a laminated film is formed. In step (ii), the laminated film is filled with the polymer electrolyte (E). Below, process (i) and (ii) are demonstrated.

この積層膜は、上述したように、第1の膜、第2の膜、および、第1の膜と第2の膜との間に配置された接着層とを含む。積層膜は、積層膜に含まれる膜を接着層で接着して一体化することによって形成できる。接着方法の例には、ホットプレス、ラミネート、圧接、粘着等の方法が含まれる。ただし、得られた高分子電解質膜が膨潤・収縮したときに接着層と膜とが剥離しないような接着性が得られる限り、接着方法に限定はない。接着方法の好ましい一例は、積層膜を構成する膜および層を重ね合わせて一体とした状態で、それらを加熱しながら加圧する方法である。   As described above, this laminated film includes the first film, the second film, and the adhesive layer disposed between the first film and the second film. The laminated film can be formed by bonding and integrating the films included in the laminated film with an adhesive layer. Examples of the bonding method include methods such as hot pressing, laminating, pressure welding, and adhesion. However, there is no limitation on the bonding method as long as the adhesive property that the adhesive layer does not peel off when the obtained polymer electrolyte membrane swells / shrinks can be obtained. A preferred example of the bonding method is a method in which a film and a layer constituting a laminated film are stacked and integrated, and pressed while heating them.

接着の際の加熱・加圧の条件によって、得られる積層膜の膜厚、孔径、および、気孔率が変化し、高分子電解質の充填性に大きく影響する。電解質膜を構成する膜同士の接着性を考慮すると、接着層を構成する材料のうちの少なくとも1つの材料の融点以上の温度に加熱した状態で加圧することが好ましい。加圧時の圧力は、0.01MPa〜1MPaの範囲にあることが好ましく、0.1MPa〜0.8MPaの範囲にあることがより好ましい。圧力が高いと、膜と接着層との接着性が増加するとともに膜厚のバラツキが抑えられる。しかし、圧力が高すぎると、膜の孔径が小さくなるとともに膜の気孔率が低下し、その結果、高分子電解質の充填が難しくなって、得られる電解質膜のプロトン伝導性が低下する。一方、圧力が低いと、膜の孔径および気孔率を維持できるが、圧力が高すぎると、膜と接着層との接着性が低下し、また、膜厚のバラツキも大きくなる。なお、加熱・加圧する時間に限定はなく、充分な接着性が得られる範囲で選択すればよい。   The film thickness, pore diameter, and porosity of the resulting laminated film vary depending on the heating and pressurizing conditions during bonding, and greatly affect the filling properties of the polymer electrolyte. In consideration of the adhesiveness between the membranes constituting the electrolyte membrane, it is preferable to apply pressure in a state of being heated to a temperature equal to or higher than the melting point of at least one of the materials constituting the adhesive layer. The pressure at the time of pressurization is preferably in the range of 0.01 MPa to 1 MPa, and more preferably in the range of 0.1 MPa to 0.8 MPa. When the pressure is high, the adhesiveness between the film and the adhesive layer is increased, and variations in film thickness are suppressed. However, when the pressure is too high, the pore size of the membrane is reduced and the porosity of the membrane is lowered. As a result, it becomes difficult to fill the polymer electrolyte, and the proton conductivity of the obtained electrolyte membrane is lowered. On the other hand, when the pressure is low, the pore size and porosity of the membrane can be maintained. However, when the pressure is too high, the adhesion between the membrane and the adhesive layer is lowered, and the variation in film thickness is increased. In addition, there is no limitation in the time which heats and pressurizes, What is necessary is just to select in the range from which sufficient adhesiveness is acquired.

工程(ii)では、積層膜に高分子電解質(E)を充填する。高分子電解質の充填方法に限定はなく、公知の方法で充填してもよい。一例の方法では、高分子電解質を含む液体(溶液または分散液)を積層膜に塗布した後、液体中の液媒体(溶媒または分散媒)を除去することによって高分子電解質を積層膜に充填する。この場合、高分子電解質を含む液体の塗布と乾燥とを複数回繰り返してもよい。高分子電解質を含む液体の濃度および液媒体は、高分子電解質および積層膜に応じて選択すればよい。液媒体の例には、アルコール(エタノールやイソプロピルアルコールなど)が含まれる。高分子電解質を含む液体の一例は、濃度が5〜20重量%の範囲にあるナフィオンの分散液である。   In step (ii), the polymer electrolyte (E) is filled into the laminated film. There is no limitation on the method of filling the polymer electrolyte, and it may be filled by a known method. In an example method, after a liquid (solution or dispersion) containing a polymer electrolyte is applied to the laminated film, the liquid electrolyte (solvent or dispersion medium) in the liquid is removed to fill the laminated film with the polymer electrolyte. . In this case, application and drying of the liquid containing the polymer electrolyte may be repeated a plurality of times. What is necessary is just to select the density | concentration and liquid medium of the liquid containing a polymer electrolyte according to a polymer electrolyte and a laminated film. Examples of the liquid medium include alcohol (such as ethanol and isopropyl alcohol). An example of a liquid containing a polymer electrolyte is a Nafion dispersion having a concentration in the range of 5 to 20% by weight.

以下では実施例によって本発明を詳細に説明するが、本発明は以下の実施例に限定されない。なお、以下の実施例および比較例における膜の評価は、下記の方法で行った。   Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples. In addition, evaluation of the film | membrane in a following example and a comparative example was performed with the following method.

(A)引っ張り試験
まず、延伸膜から、1cm(長手方向)×5cm(幅方向)のサンプルを切り出した。そして、このサンプルについて、島津製作所製の試験機(オートグラフ)を用いて、引っ張り試験を行った。引っ張り試験は、初期のチャック間距離を2cmとし、引っ張り速度を20cm/分として、25℃で行った。そして、サンプルが破断したときのチャック間距離から、以下の式で伸び率(%)を算出した。
伸び率(%)=100×(破断時のチャック間距離−初期のチャック間距離)/(初期のチャック間距離)
(A) Tensile test First, a sample of 1 cm (longitudinal direction) x 5 cm (width direction) was cut out from the stretched film. And about this sample, the tension test was done using the Shimadzu Corporation test machine (autograph). The tensile test was performed at 25 ° C. with an initial chuck distance of 2 cm and a tensile speed of 20 cm / min. And elongation rate (%) was computed with the following formula | equation from the distance between chuck | zippers when a sample fractured | ruptured.
Elongation rate (%) = 100 × (distance between chucks at break−initial distance between chucks) / (initial distance between chucks)

(B)示差走査熱量測定(DSC測定)
まず、膜を直径2mmの円形に打ち抜いた。そして、その円形の膜を、測定用のアルミセルに約10mgになるように詰めた後、NETZSCH製の測定器(DSC200F3)を用いてDSC測定を行った。測定において、室温から200℃までは昇温速度を20℃/分とし、200℃に達してから5分間200℃を保持し、その後は昇温速度を10℃/分とした。結晶融解熱量は、295℃〜345℃の区間にある吸熱ピークの面積を積分することによって求めた。
(B) Differential scanning calorimetry (DSC measurement)
First, the membrane was punched into a circle with a diameter of 2 mm. And after packing the circular film | membrane so that it might become about 10 mg in the aluminum cell for a measurement, DSC measurement was performed using the measuring device (DSC200F3) made from NETZSCH. In the measurement, the temperature rising rate was 20 ° C./min from room temperature to 200 ° C., 200 ° C. was maintained for 5 minutes after reaching 200 ° C., and then the temperature rising rate was 10 ° C./min. The amount of heat of crystal fusion was determined by integrating the area of the endothermic peak in the interval from 295 ° C to 345 ° C.

(C)気孔率
まず、面積が25cm2となるように膜を打ち抜いて測定用のサンプルを作製した。そして、そのサンプルの厚さ(cm)および重量(g)を測定した。サンプルの厚さは、尾崎製作所製ダイヤルシックネスゲージG−6C(1/1000mm、測定子直径:5mm)を用いて、室温で65±20%RH(RH:相対湿度)の環境で測定した(以下の膜厚の測定においても同様である)。そして、測定された厚さおよび重量と、膜の比重とを用いて、以下の式によって気孔率(%)を算出した。なお、膜の比重には、焼成されたPTFEの比重(2.18)を用いた。
気孔率(%)=(1−重量/(厚さ×25×2.18))×100
(C) Porosity First, a measurement sample was prepared by punching the film so that the area was 25 cm 2 . And the thickness (cm) and weight (g) of the sample were measured. The thickness of the sample was measured in an environment of 65 ± 20% RH (RH: relative humidity) at room temperature using a dial thickness gauge G-6C (1/1000 mm, probe diameter: 5 mm) manufactured by Ozaki Mfg. The same applies to the measurement of the film thickness. And the porosity (%) was computed by the following formula | equation using the measured thickness and weight, and the specific gravity of a film | membrane. The specific gravity of the fired PTFE (2.18) was used as the specific gravity of the film.
Porosity (%) = (1−weight / (thickness × 25 × 2.18)) × 100

(D)イオン交換容量(IEC)
実施例および比較例で作製された高分子電解質膜を、面積が約12cm2となるように切り出して測定用のサンプルを作製した。このサンプルを濃度が3モル/Lの塩化ナトリウム水溶液に浸漬し、浸漬したままの状態で乾燥機中において60℃で72時間以上反応させた。その後、この反応によって置換されたプロトン(H+)の量を電位差自動滴定装置(AT−510:京都電子工業株式会社製)を使用して、0.05Nの水酸化ナトリウム水溶液で滴定することによって測定した。そして、置換されたプロトンの量を酸基の量とした。
(D) Ion exchange capacity (IEC)
Samples for measurement were produced by cutting out the polymer electrolyte membranes produced in Examples and Comparative Examples so that the area was about 12 cm 2 . This sample was immersed in an aqueous sodium chloride solution having a concentration of 3 mol / L, and allowed to react at 60 ° C. for 72 hours or longer in the dryer while being immersed. Thereafter, the amount of proton (H + ) substituted by this reaction is titrated with a 0.05N aqueous sodium hydroxide solution using a potentiometric automatic titrator (AT-510: manufactured by Kyoto Electronics Industry Co., Ltd.). It was measured. The amount of substituted protons was taken as the amount of acid groups.

(E)プロトン伝導度(σ)
電解質膜のプロトン伝導度(電気伝導度)は、通常の膜抵抗測定セルとLCRメーター(HIOKI製、Chemical Impedance meter 3532-80)とを使用して、交流法(新実験化学講座19、高分子化学<II>、p992、丸善)によって測定した。具体的には、まず、幅1cmで長さ2cmに電解質膜を裁断し、それを3時間以上水中に浸漬した。その電解質膜(サンプル)を、膜の両面のそれぞれに1つずつ白金電極が接触するように、且つ、たわみがないようにプロトン伝導度の測定用の治具にセットした。2つの白金電極間の距離は5mmとした。この白金電極に、LCRメーターの測定端子を取り付けた。次に、電解質膜をセットした治具を、予め60℃に設定した恒温水槽で加熱しておいた超純水の入ったビーカーに入れて、LCRメーターによって抵抗を測定した。そして、測定値をプロットし、極小値の実数部分の値を膜抵抗R(Ω)とした。膨潤させたときの膜の厚さをt(cm)、サンプルの幅をh(cm)、電極間距離をL(cm)として、膜厚換算したイオン伝導率σ(S・cm-1)を以下の式から求めた。
σ=L/(R×t×h) [S・cm-1
(E) Proton conductivity (σ)
The proton conductivity (electrical conductivity) of the electrolyte membrane can be measured using an alternating current method (New Experimental Chemistry Course 19, Polymer) using a normal membrane resistance measurement cell and an LCR meter (manufactured by HIOKI, Chemical Impedance meter 3532-80). Chemistry <II>, p992, Maruzen). Specifically, first, the electrolyte membrane was cut into a width of 1 cm and a length of 2 cm, and immersed in water for 3 hours or more. The electrolyte membrane (sample) was set on a proton conductivity measurement jig so that one platinum electrode was in contact with each side of the membrane and there was no deflection. The distance between the two platinum electrodes was 5 mm. A measurement terminal of an LCR meter was attached to this platinum electrode. Next, the jig on which the electrolyte membrane was set was placed in a beaker containing ultrapure water that had been heated in a constant temperature water bath set at 60 ° C., and resistance was measured with an LCR meter. Then, the measured values were plotted, and the value of the real part of the minimum value was defined as the membrane resistance R (Ω). When the film thickness when swollen is t (cm), the width of the sample is h (cm), and the distance between electrodes is L (cm), the ion conductivity σ (S · cm −1 ) converted to the film thickness is It calculated | required from the following formula | equation.
σ = L / (R × t × h) [S · cm −1 ]

(F)寸法変化率
電解質膜を30mm(縦方向)×20mm(横方向)のサイズに切り出して測定用のサンプルを作製した。このサンプルを、23℃で55%RHの環境下に1時間以上放置して乾燥状態とした後、縦方向の2辺の長さ(LDRY1およびLDRY2)および横方向の2辺の長さ(WDRY1およびWDRY2)を測定した。その後、このサンプルを23℃の水中に寸法が変化しなくなるまで(1時間以上)浸漬することによって、膨潤状態とした。浸漬後のサンプルについて、縦方向の2辺の長さ(LWET1およびLWET2)および横方向の2辺の長さ(WWET1およびWWET2)を測定した。そして、膨潤による、縦方向および横方向の寸法変化率、ならびに、それらの平均の寸法変化率を以下の式から求めた。
縦方向の寸法変化率(%)={(LWET1+LWET2)/(LDRY1+LDRY2)−1}×100
横方向の寸法変化率(%)={(WWET1+WWET2)/(WDRY1+WDRY2)−1}×100
平均寸法変化率(%)={(縦方向の寸法変化率)+(横方向の寸法変化率)}/2
(F) Dimensional change rate The electrolyte membrane was cut into a size of 30 mm (vertical direction) × 20 mm (horizontal direction) to prepare a sample for measurement. The sample was left to dry in an environment of 55% RH at 23 ° C. for 1 hour or longer, and then the length of two sides in the vertical direction (LDRY1 and LDRY2) and the length of the two sides in the horizontal direction (WDRY1). And WDRY2) were measured. Thereafter, this sample was immersed in water at 23 ° C. until it no longer changed in size (1 hour or longer) to make it swollen. About the sample after immersion, the length (LWET1 and LWET2) of the two sides of the vertical direction and the length (WWET1 and WWET2) of the two sides of the horizontal direction were measured. And the dimensional change rate of the vertical direction and horizontal direction by swelling, and those average dimensional change rates were calculated | required from the following formula | equation.
Dimensional change rate in the vertical direction (%) = {(LWET1 + LWET2) / (LDRY1 + LDRY2) −1} × 100
Horizontal dimensional change rate (%) = {(WWET1 + WWET2) / (WDRY1 + WDRY2) −1} × 100
Average dimensional change rate (%) = {(vertical dimensional change rate) + (horizontal dimensional change rate)} / 2

(G)突き刺し強度
測定する膜について、カトーテック(株)製の圧縮試験機「KES−G5」を使用して針突刺し試験を行った。そして、測定によって得られた荷重変位曲線から最大荷重を読み取り、その値を突刺し強度の値とした。測定には、直径1.0mm、先端曲率半径0.5mmの針を用い、突刺し速度は2mm/sとした。
(G) Puncture strength The membrane to be measured was subjected to a needle puncture test using a compression tester “KES-G5” manufactured by Kato Tech Co., Ltd. And the maximum load was read from the load displacement curve obtained by measurement, and the value was made into the value of puncture strength. For the measurement, a needle having a diameter of 1.0 mm and a tip curvature radius of 0.5 mm was used, and the piercing speed was 2 mm / s.

(PTFE多孔膜)
PTFE粉末(ダイキン工業株式会社製のF104)に、イソパラフィン系溶剤(エクソンモービル社製のアイソパーM)を20wt%となるように配合して、50℃の温度で、絞り比率を1/50にして平板状のシート(厚さ1mm×幅10cm)を押出した。これを、幅を変えずにロール2本でギャップを調整して厚さが0.2mmになるまで圧延した後、150℃で乾燥して延伸前のシートを作製した。次に、このシートを、長手方向に300℃で10倍延伸し、次いで、幅方向に300℃で10倍延伸した。さらに、シートの四隅を固定した状態で、380℃で60秒間シートを放置した。このようにして、PTFE多孔膜を作製した。
(PTFE porous membrane)
PTFE powder (F104 manufactured by Daikin Industries, Ltd.) is blended with isoparaffinic solvent (Isopar M manufactured by ExxonMobil Co., Ltd.) at 20 wt%, and the squeezing ratio is 1/50 at a temperature of 50 ° C. A flat sheet (thickness 1 mm × width 10 cm) was extruded. This was rolled by adjusting the gap with two rolls without changing the width until the thickness became 0.2 mm, and then dried at 150 ° C. to prepare a sheet before stretching. Next, this sheet was stretched 10 times at 300 ° C. in the longitudinal direction, and then 10 times stretched at 300 ° C. in the width direction. Further, the sheet was left for 60 seconds at 380 ° C. with the four corners of the sheet fixed. In this way, a PTFE porous membrane was produced.

得られたPTFE多孔膜の長手方向(縦方向)の伸び率は18%であり、幅方向の伸び率は100%であった。得られたPTFE多孔膜の伸び率が最小となる方向は、長手方向であった。得られたPTFE多孔膜についてDSC測定を行ったところ、結晶融解温度は328℃であり、結晶融解熱量は19J/gであった。   The obtained PTFE porous membrane had an elongation in the longitudinal direction (longitudinal direction) of 18% and an elongation in the width direction of 100%. The direction in which the elongation percentage of the obtained PTFE porous membrane was the minimum was the longitudinal direction. When the obtained PTFE porous film was subjected to DSC measurement, the crystal melting temperature was 328 ° C., and the crystal melting heat amount was 19 J / g.

(比較例1)
比較例1では、上記のPTFE膜単体を支持体として電解質膜を作製した。具体的には、まず、ナフィオンの20wt%分散液(DE530、デュポン株式会社製)を第1のガラス板上に塗布した。次に、第2のガラス板上に、上記のPTFE多孔膜を固定し、このPTFE多孔膜上にナフィオンの20wt%分散液を塗布した。このPTFE多孔膜を第2のガラス板から剥がし、ナフィオン分散液が塗布されていない面を、第1のガラス板上に塗布されたナフィオン分散液に貼り合わせた。そして、PTFE多孔膜上のナフィオン分散液が半乾きの状態で、ナフィオンの20wt%分散液をPTFE多孔膜上にさらに塗布する作業を2回行った。次に、PTFE多孔膜にナフィオン5wt%分散液をさらに塗布し、60℃の乾燥機に1時間置いて乾燥させた。このようにして、高分子電解質膜を得た。得られた高分子電解質膜について、上述した方法で評価を行った。
(Comparative Example 1)
In Comparative Example 1, an electrolyte membrane was produced using the above PTFE membrane alone as a support. Specifically, first, a Nafion 20 wt% dispersion (DE530, manufactured by DuPont) was applied onto the first glass plate. Next, the PTFE porous membrane was fixed on the second glass plate, and a 20 wt% dispersion of Nafion was applied onto the PTFE porous membrane. This PTFE porous membrane was peeled off from the second glass plate, and the surface on which the Nafion dispersion was not applied was bonded to the Nafion dispersion applied on the first glass plate. Then, in a state where the Nafion dispersion on the PTFE porous membrane was semi-dry, an operation of further applying a 20 wt% dispersion of Nafion onto the PTFE porous membrane was performed twice. Next, a Nafion 5 wt% dispersion was further applied to the PTFE porous membrane, and dried in a dryer at 60 ° C. for 1 hour. In this way, a polymer electrolyte membrane was obtained. The obtained polymer electrolyte membrane was evaluated by the method described above.

(比較例2)
上記のPTFE多孔膜を2枚準備し、それらを接着層を用いることなく直接積層して接着し、積層膜を作製した。このとき、2枚のPTFE多孔膜は、一方の膜の伸び率が最小となる方向と他方の膜の伸び率が最小となる方向とがなす角度が90°となるように積層した。接着は、340℃の温度、0.27MPaの圧力で30秒間加熱・加圧することによって行った。得られた積層膜を支持体とすることを除いて、比較例1と同様の方法で支持体(積層膜)に電解質を充填して高分子電解質膜を作製した。得られた高分子電解質膜について、上述した方法で評価を行った。
(Comparative Example 2)
Two PTFE porous membranes were prepared, and these were directly laminated and bonded without using an adhesive layer to produce a laminated membrane. At this time, the two PTFE porous membranes were laminated so that the angle formed by the direction in which the elongation rate of one membrane was the minimum and the direction in which the elongation rate of the other membrane was the minimum was 90 °. Adhesion was performed by heating and pressing at a temperature of 340 ° C. and a pressure of 0.27 MPa for 30 seconds. A polymer electrolyte membrane was prepared by filling the support (laminate film) with an electrolyte in the same manner as in Comparative Example 1 except that the obtained laminated membrane was used as a support. The obtained polymer electrolyte membrane was evaluated by the method described above.

(実施例1)
上述したPTFE多孔膜を2枚準備し、それらを接着層で接着して積層膜を作製した。このとき、2枚のPTFE多孔膜は、一方の膜の伸び率が最小となる方向と他方の膜の伸び率が最小となる方向とがなす角度が90°となるように積層した。また、接着層には、芯部分がポリエチレンテレフタレートで鞘部分がポリエチレンである芯/鞘構造を有する繊維からなる不織布(商品名「エルベス」、ユニチカ株式会社、目付量15g/m2)を用いた。接着は、140℃の温度、0.27MPaの圧力で30秒間加熱・加圧することによって行った。
Example 1
Two PTFE porous membranes as described above were prepared, and these were adhered with an adhesive layer to produce a laminated membrane. At this time, the two PTFE porous membranes were laminated so that the angle formed by the direction in which the elongation rate of one membrane was the minimum and the direction in which the elongation rate of the other membrane was the minimum was 90 °. For the adhesive layer, a non-woven fabric (trade name “Elves”, Unitika Ltd., basis weight 15 g / m 2 ) made of fibers having a core / sheath structure in which the core portion is polyethylene terephthalate and the sheath portion is polyethylene was used. . Adhesion was performed by heating and pressurizing for 30 seconds at a temperature of 140 ° C. and a pressure of 0.27 MPa.

得られた積層膜を支持体とすることを除いて、比較例1と同様の方法で支持体(積層膜)に電解質を充填して高分子電解質膜を作製した。得られた高分子電解質膜について、上述した方法で評価を行った。   A polymer electrolyte membrane was prepared by filling the support (laminate film) with an electrolyte in the same manner as in Comparative Example 1 except that the obtained laminated membrane was used as a support. The obtained polymer electrolyte membrane was evaluated by the method described above.

(実施例2)
2枚のPTFE多孔膜がなす角度を変えたことを除いて、実施例1と同様の方法で電解質膜を作製した。実施例2では、2枚のPTFE多孔膜を、一方の膜の伸び率が最小となる方向と他方の膜の伸び率が最小となる方向とがなす角度が45°となるように積層した。得られた高分子電解質膜について、上述した方法で評価を行った。
(Example 2)
An electrolyte membrane was produced in the same manner as in Example 1 except that the angle formed by the two PTFE porous membranes was changed. In Example 2, two PTFE porous membranes were laminated so that the angle formed by the direction in which the elongation rate of one membrane was the minimum and the direction in which the elongation rate of the other membrane was the minimum was 45 °. The obtained polymer electrolyte membrane was evaluated by the method described above.

(実施例3)
接着層が異なることを除いて、実施例1と同様の方法で積層膜を作製した。具体的には、上述したPTFE多孔膜を2枚準備し、それらを接着層で接着して積層膜を作製した。このとき、2枚のPTFE多孔膜は、一方の膜の伸び率が最小となる方向と他方の膜の伸び率が最小となる方向とがなす角度が90°となるように積層した。実施例2では、接着層として、ポリエチレン製のネット(Delstar Technologies社製)の「デルネット(DELNET:登録商標)」、目付量9.1〜13.6g/m2)を用いた。接着は、実施例1と同じ条件で行った。
(Example 3)
A laminated film was produced in the same manner as in Example 1 except that the adhesive layers were different. Specifically, two PTFE porous membranes as described above were prepared, and these were adhered with an adhesive layer to produce a laminated film. At this time, the two PTFE porous membranes were laminated so that the angle formed by the direction in which the elongation rate of one membrane was the minimum and the direction in which the elongation rate of the other membrane was the minimum was 90 °. In Example 2, “Delnet (DELNET: registered trademark)” of a net made of polyethylene (manufactured by Delstar Technologies) having a basis weight of 9.1 to 13.6 g / m 2 was used as the adhesive layer. Adhesion was performed under the same conditions as in Example 1.

得られた積層膜を支持体とすることを除いて、比較例1と同様の方法で支持体(積層膜)に電解質を充填して高分子電解質膜を作製した。得られた高分子電解質膜について、上述した方法で評価を行った。   A polymer electrolyte membrane was prepared by filling the support (laminate film) with an electrolyte in the same manner as in Comparative Example 1 except that the obtained laminated membrane was used as a support. The obtained polymer electrolyte membrane was evaluated by the method described above.

(実施例4)
2枚のPTFE多孔膜がなす角度を変えたことを除いて、実施例3と同様の方法で電解質膜を作製した。実施例4では、2枚のPTFE多孔膜を、一方の膜の伸び率が最小となる方向と他方の膜の伸び率が最小となる方向とがなす角度が45°となるように積層した。得られた高分子電解質膜について、上述した方法で評価を行った。
Example 4
An electrolyte membrane was produced in the same manner as in Example 3 except that the angle formed by the two PTFE porous membranes was changed. In Example 4, two PTFE porous membranes were laminated so that the angle formed by the direction in which the elongation rate of one membrane was minimized and the direction in which the elongation rate of the other membrane was minimized was 45 °. The obtained polymer electrolyte membrane was evaluated by the method described above.

測定結果を表1に示す。   The measurement results are shown in Table 1.

Figure 2013235665
Figure 2013235665

なお、表1中の「支持体」とは、実施例1〜4および比較例2では積層膜を意味し、比較例1では1枚のPTFE多孔膜を意味する。また、表1中の「端部の剥離」とは、寸法変化率の測定を行ったときの、積層膜の端部の剥離の有無を意味する。   The “support” in Table 1 means a laminated film in Examples 1 to 4 and Comparative Example 2, and means a single PTFE porous film in Comparative Example 1. Further, “end peeling” in Table 1 means presence / absence of peeling of the end of the laminated film when the dimensional change rate is measured.

実施例1〜4の高分子電解質膜は、比較例1に比べ、寸法変化率を大きく改善でき、平均寸法変化率を3%以下にまで低減できた。比較例2は多孔接着層を用いていないため、端部の剥離が起こり、さらに寸法変化率も大きかった。また、実施例1〜4で用いられた支持体は、比較例1で用いられた支持体に比べて、突き刺し強度が非常に高くなった。以上のように、本発明の高分子電解質膜は、高いプロトン伝導性および強度と優れた寸法安定性とを有しており、燃料電池作動時の電極との接合性に優れるものであった。   The polymer electrolyte membranes of Examples 1 to 4 were able to greatly improve the dimensional change rate as compared with Comparative Example 1, and the average dimensional change rate could be reduced to 3% or less. Since Comparative Example 2 did not use the porous adhesive layer, the end portion was peeled off and the dimensional change rate was also large. Moreover, the support body used in Examples 1-4 became very high in puncture strength compared with the support body used in Comparative Example 1. As described above, the polymer electrolyte membrane of the present invention has high proton conductivity and strength, and excellent dimensional stability, and has excellent bondability with an electrode during fuel cell operation.

本発明は、高分子電解質膜、ならびに、それを用いた膜−電極接合体および燃料電池に利用できる。   The present invention can be used for a polymer electrolyte membrane, and a membrane-electrode assembly and a fuel cell using the same.

10 電解質膜
11 第1の膜
12 第2の膜
13 接着層
20 積層膜
DESCRIPTION OF SYMBOLS 10 Electrolyte membrane 11 1st film | membrane 12 2nd film | membrane 13 Adhesion layer 20 Laminated | multilayer film

Claims (10)

燃料電池に用いられる高分子電解質膜であって、
多孔性の積層膜と、前記積層膜に充填され酸性基を含む高分子電解質とを含み、
前記高分子電解質に含まれる前記酸性基は、O−H結合を含む酸性基であり、
前記積層膜は、多孔性の第1の膜、多孔性の第2の膜、および、前記第1の膜と前記第2の膜との間に配置された多孔性の接着層を含み、
前記第1および第2の膜はそれぞれ、方向によって伸び率が異なる膜であり、
前記第1の膜の伸び率が最小となる方向と前記第2の膜の伸び率が最小となる方向とがなす角度が45°〜90°の範囲にあるように前記第1の膜と前記第2の膜とが積層されている、高分子電解質膜。
A polymer electrolyte membrane used in a fuel cell,
A porous laminated film, and a polymer electrolyte filled in the laminated film and containing an acidic group,
The acidic group contained in the polymer electrolyte is an acidic group containing an OH bond,
The laminated film includes a porous first film, a porous second film, and a porous adhesive layer disposed between the first film and the second film,
The first and second films are films having different elongation rates depending on directions,
The first film and the first film are arranged so that an angle formed by a direction in which the elongation ratio of the first film is minimum and a direction in which the elongation ratio of the second film is minimum is in a range of 45 ° to 90 °. A polymer electrolyte membrane in which a second membrane is laminated.
前記酸性基が、スルホン酸基、硫酸基、カルボン酸基、リン酸基、ホスホン酸基およびフェノール性水酸基からなる群より選ばれる少なくとも1種である、請求項1に記載の高分子電解質膜。   The polymer electrolyte membrane according to claim 1, wherein the acidic group is at least one selected from the group consisting of a sulfonic acid group, a sulfuric acid group, a carboxylic acid group, a phosphoric acid group, a phosphonic acid group, and a phenolic hydroxyl group. 前記第1および第2の膜はそれぞれ、多孔性のポリテトラフルオロエチレン膜である、請求項1または2に記載の高分子電解質膜。   The polymer electrolyte membrane according to claim 1 or 2, wherein each of the first and second membranes is a porous polytetrafluoroethylene membrane. 前記ポリテトラフルオロエチレン膜は、示差走査熱量測定において吸熱のピークが322〜332℃の範囲にあり且つ結晶融解熱量が40J/g以下であるポリテトラフルオロエチレンからなる、請求項3に記載の高分子電解質膜。   The high-pressure polytetrafluoroethylene film according to claim 3, wherein the polytetrafluoroethylene film is made of polytetrafluoroethylene having an endothermic peak in a range of 322 to 332 ° C in a differential scanning calorimetry and a crystal melting heat amount of 40 J / g or less. Molecular electrolyte membrane. 前記第1および第2の膜はそれぞれ、伸び率が最小となる方向における伸び率Tmin(%)と、伸び率が最大となる方向における伸び率Tmax(%)とが、0.05≦Tmin/Tmax≦0.7を満たす、請求項1〜4のいずれか1項に記載の高分子電解質膜。 Each of the first and second films has an elongation rate T min (%) in a direction in which the elongation rate is minimum and an elongation rate T max (%) in a direction in which the elongation rate is maximum. The polymer electrolyte membrane according to any one of claims 1 to 4, which satisfies T min / T max ≦ 0.7. 前記接着層は、融点が100〜140℃の範囲にある熱可塑性樹脂を含む、請求項1〜5のいずれか1項に記載の高分子電解質膜。   The polymer electrolyte membrane according to any one of claims 1 to 5, wherein the adhesive layer includes a thermoplastic resin having a melting point in a range of 100 to 140 ° C. 前記接着層は、前記熱可塑性樹脂からなる鞘部分と、前記熱可塑性樹脂よりも融点が高い樹脂からなる芯部分とを含む繊維によって構成されている、請求項6に記載の高分子電解質膜。   The polymer electrolyte membrane according to claim 6, wherein the adhesive layer is composed of fibers including a sheath portion made of the thermoplastic resin and a core portion made of a resin having a melting point higher than that of the thermoplastic resin. 前記積層膜は、気孔率が50%以上であり、且つ、厚さが5μm以上である、請求項1〜7に記載の高分子電解質膜。   The polymer electrolyte membrane according to claim 1, wherein the laminated film has a porosity of 50% or more and a thickness of 5 μm or more. 乾燥状態から膨潤状態に変化させたときの縦方向における寸法変化率L(%)および横方向における寸法変化率T(%)が共に5%以下である、請求項1〜8のいずれか1項に記載の高分子電解質膜。   9. The dimensional change rate L (%) in the vertical direction and the dimensional change rate T (%) in the horizontal direction when the dry state is changed to the swollen state are both 5% or less. The polymer electrolyte membrane described in 1. 膜−電極接合体を含む燃料電池であって、
前記膜−電極接合体が請求項1〜9のいずれか1項に記載の高分子電解質膜を含む、燃料電池。
A fuel cell comprising a membrane-electrode assembly,
A fuel cell, wherein the membrane-electrode assembly includes the polymer electrolyte membrane according to any one of claims 1 to 9.
JP2012105848A 2012-05-07 2012-05-07 Polymer electrolytic film and fuel battery using the same Pending JP2013235665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012105848A JP2013235665A (en) 2012-05-07 2012-05-07 Polymer electrolytic film and fuel battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012105848A JP2013235665A (en) 2012-05-07 2012-05-07 Polymer electrolytic film and fuel battery using the same

Publications (1)

Publication Number Publication Date
JP2013235665A true JP2013235665A (en) 2013-11-21

Family

ID=49761646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012105848A Pending JP2013235665A (en) 2012-05-07 2012-05-07 Polymer electrolytic film and fuel battery using the same

Country Status (1)

Country Link
JP (1) JP2013235665A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256549A (en) * 1993-03-02 1994-09-13 Nitto Denko Corp Polytetrafluoroethylene porous membrane and its production
JPH1030031A (en) * 1996-05-17 1998-02-03 Nitto Denko Corp Polytetrafluoroethylene porous membrane, its production, sheetlike polytetrafluoroethylene molded material and filtering material for air filter
JPH10287759A (en) * 1997-04-16 1998-10-27 Nitto Denko Corp Porous polytetrafluoroethylene film and production thereof
WO2005086264A1 (en) * 2004-03-04 2005-09-15 Matsushita Electric Industrial Co., Otd. Composite electrolytic membrane, catalytic layer membrane assembly, membrane electrode assembly and polymer electroytic fuel cell
JP2007109657A (en) * 2005-10-14 2007-04-26 Gm Global Technology Operations Inc Multi-layered polymeric electrolyte membrane for fuel cell
JP2008004500A (en) * 2006-06-26 2008-01-10 Toyota Motor Corp Porous membrane for fuel cell electrolyte membrane and its manufacturing method
JP2009016075A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Manufacturing method of composite electrolyte membrane, and membrane electrode assembly equipped with the same
JP2012001591A (en) * 2010-06-15 2012-01-05 Nitto Denko Corp Polytetrafluoroethylene porous membrane with small elongation anisotropy and process for production thereof
JP2012021099A (en) * 2010-07-15 2012-02-02 Astom:Kk Method for manufacturing ion exchange membrane
WO2012046777A1 (en) * 2010-10-07 2012-04-12 旭化成イーマテリアルズ株式会社 Fluorine-containing polymer electrolyte membrane

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256549A (en) * 1993-03-02 1994-09-13 Nitto Denko Corp Polytetrafluoroethylene porous membrane and its production
JPH1030031A (en) * 1996-05-17 1998-02-03 Nitto Denko Corp Polytetrafluoroethylene porous membrane, its production, sheetlike polytetrafluoroethylene molded material and filtering material for air filter
JPH10287759A (en) * 1997-04-16 1998-10-27 Nitto Denko Corp Porous polytetrafluoroethylene film and production thereof
WO2005086264A1 (en) * 2004-03-04 2005-09-15 Matsushita Electric Industrial Co., Otd. Composite electrolytic membrane, catalytic layer membrane assembly, membrane electrode assembly and polymer electroytic fuel cell
JP2007109657A (en) * 2005-10-14 2007-04-26 Gm Global Technology Operations Inc Multi-layered polymeric electrolyte membrane for fuel cell
JP2008004500A (en) * 2006-06-26 2008-01-10 Toyota Motor Corp Porous membrane for fuel cell electrolyte membrane and its manufacturing method
JP2009016075A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Manufacturing method of composite electrolyte membrane, and membrane electrode assembly equipped with the same
JP2012001591A (en) * 2010-06-15 2012-01-05 Nitto Denko Corp Polytetrafluoroethylene porous membrane with small elongation anisotropy and process for production thereof
JP2012021099A (en) * 2010-07-15 2012-02-02 Astom:Kk Method for manufacturing ion exchange membrane
WO2012046777A1 (en) * 2010-10-07 2012-04-12 旭化成イーマテリアルズ株式会社 Fluorine-containing polymer electrolyte membrane

Similar Documents

Publication Publication Date Title
US8420701B2 (en) Polymer electrolyte membrane, membrane-electrode assembly for polymer electrolyte fuel cells and process for producing polymer electrolyte membrane
JP5151063B2 (en) Porous material for electrolyte membrane for fuel cell, production method thereof, electrolyte membrane for polymer electrolyte fuel cell, membrane-electrode assembly (MEA), and fuel cell
JP2007109657A (en) Multi-layered polymeric electrolyte membrane for fuel cell
EP0900249A1 (en) Integral multi-layered ion-exchange composite membranes
JP2014506714A (en) Porous microfiber mats to reinforce proton conducting membranes in proton exchange membrane applications
CN101326220A (en) Reinforced ion-conductive membranes
KR20130097728A (en) Ion exchange membrane and method for producing same
US20230420718A1 (en) Integral composite membrane with a continuous ionomer phase
JP5114907B2 (en) Method for producing reinforced electrolyte membrane and reinforced electrolyte membrane produced by the method
JP2005216769A (en) Solid polymer electrolyte membrane, its manufacturing method, and membrane electrode joint body having solid polymer electrolyte membrane
KR20190130126A (en) Method for producing gas diffusion electrode substrate, and fuel cell
US20230343979A1 (en) Composite electrolyte membrane
JP2011146256A (en) Reinforcing membrane type electrolyte membrane
JP2010257765A (en) Manufacturing method of gas diffusion layer, membrane electrode assembly, and manufacturing method of membrane electrode assembly
JP4843928B2 (en) Solid polymer electrolyte membrane, membrane electrode assembly for solid polymer fuel cell, and method for producing solid polymer electrolyte membrane
JP7331253B2 (en) Polymer electrolyte membrane and membrane-electrode assembly containing the same
JP2009032503A (en) Composite electrolyte membrane, manufacturing method of composite electrolyte membrane, and solid polymer fuel cell
JP2013235665A (en) Polymer electrolytic film and fuel battery using the same
EP4260390A1 (en) Free-standing, ion-selective composite membranes
TW201714743A (en) Ion exchange membrane for water electrolysis, and method for manufacturing said ion exchange membrane
JP2005276847A (en) Polymer solid electrolyte-electrode junction
JP4228062B2 (en) Porous membrane, composite ion exchange membrane and method for producing the same
JP2023532660A (en) Polymer electrolyte membrane and membrane electrode assembly including the same
JP2011003358A (en) Method of manufacturing porous membrane for fuel-cell electrolyte membrane
JP5720467B2 (en) Electrolyte membrane for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161220