JP2009032503A - Composite electrolyte membrane, manufacturing method of composite electrolyte membrane, and solid polymer fuel cell - Google Patents

Composite electrolyte membrane, manufacturing method of composite electrolyte membrane, and solid polymer fuel cell Download PDF

Info

Publication number
JP2009032503A
JP2009032503A JP2007194737A JP2007194737A JP2009032503A JP 2009032503 A JP2009032503 A JP 2009032503A JP 2007194737 A JP2007194737 A JP 2007194737A JP 2007194737 A JP2007194737 A JP 2007194737A JP 2009032503 A JP2009032503 A JP 2009032503A
Authority
JP
Japan
Prior art keywords
electrolyte
polymer
membrane
polymer electrolyte
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007194737A
Other languages
Japanese (ja)
Inventor
Kokichi Doi
孝吉 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007194737A priority Critical patent/JP2009032503A/en
Publication of JP2009032503A publication Critical patent/JP2009032503A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize both size stability and ionic conductivity of a polymer electrolyte membrane at the same time, and thereby aim at improvement of power generation properties and durability of a solid polymer fuel cell. <P>SOLUTION: For the composite electrolyte membrane made of a reinforcement polymer film containing a plurality of fibrous polymer electrolytes, the plurality of fibrous polymer electrolytes 1 are penetrated into and oriented toward a thickness direction of a reinforcement polymer membrane 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、優れた異方イオン伝導性を有し、強度と寸法安定性に優れた複合電解質膜、及びその製造方法に関する。また、固体高分子型燃料電池に関する。   The present invention relates to a composite electrolyte membrane having excellent anisotropic ion conductivity and excellent strength and dimensional stability, and a method for producing the same. The present invention also relates to a polymer electrolyte fuel cell.

固体高分子電解質型燃料電池は、電解質として固体高分子電解質膜を用い、この膜の両面に触媒電極を接合した構造を有する。   A solid polymer electrolyte fuel cell has a structure in which a solid polymer electrolyte membrane is used as an electrolyte and catalyst electrodes are bonded to both surfaces of the membrane.

燃料電池として使用する際に高分子固体電解質膜は、それ自体の膜抵抗が低い必要があり、その為には膜厚はできるだけ薄い方が望ましい。しかしながら、膜厚を余り薄くすると、製膜時にピンホールが生じたり、電極成形時に膜が破れてしまったり、電極間の短絡が発生したりしやすいという問題点があった。また、燃料電池に使用される高分子固体電解質膜は、常に湿潤状態で使用されるため、湿潤による高分子膜の膨潤、変形等による差圧運転時の耐圧性やクロスリーク等、信頼性に問題が生じるようになる。   When used as a fuel cell, the polymer solid electrolyte membrane needs to have a low membrane resistance. For that purpose, it is desirable that the film thickness be as thin as possible. However, if the film thickness is too thin, there are problems that pinholes are easily formed during film formation, the film is broken during electrode forming, and a short circuit between the electrodes is likely to occur. In addition, since solid polymer electrolyte membranes used in fuel cells are always used in a wet state, reliability such as pressure resistance and cross-leakage during differential pressure operation due to swelling, deformation, etc. of the polymer membrane due to wetting is reliable. Problems will arise.

そこで、下記特許文献1には、イオン交換樹脂の含水量の変化が繰り返し生じても破損せず、かつイオン交換樹脂とフッ素樹脂等の多孔膜が互いに密着し、ピンホールができ難いイオン交換膜を目的として、延伸により作製されたフッ素樹脂等の多孔膜の少なくとも孔中に、溶媒に溶解したポリマーを含浸させ、乾燥することにより多孔膜に付着させた後、イオン交換基を導入してイオン交換膜を製造する方法が開示されている。   Therefore, in Patent Document 1 below, an ion exchange membrane that does not break even when a change in the water content of the ion exchange resin repeatedly occurs, and the ion exchange resin and a porous membrane such as a fluororesin are in close contact with each other and pinholes are difficult to form. For the purpose of the above, at least the pores of a porous membrane such as a fluororesin prepared by stretching are impregnated with a polymer dissolved in a solvent and dried to adhere to the porous membrane, and then ion exchange groups are introduced to introduce ions. A method of manufacturing an exchange membrane is disclosed.

ところで、下記特許文献1に開示されたイオン交換膜の製造方法は、ポリマーが溶媒に可溶であることから化学的安定性が低く、電解質性能の劣化が生じやすいという問題点があった。すなわち、溶媒に溶解したポリマーを用いてイオン交換膜を製造するため、前記のような問題が発生していた。また、電解質膜の含水による膨潤変化によって膜の劣化が起こりやすく、燃料電池等の耐久性を短くするという問題点があった。さらに、電解質は保水性を持ち、膜内のプロトンの移動や電極での水の精製などにより電解質が膨潤するが、多孔体は膨潤しないため、多孔体膜に含浸した電解質が遊離しやすく、プロトン伝導性が落ちるという問題点があった。アルコール系の溶媒に加水分解処理されプロトン伝導性をもった電解質(H型高分子電解質)を混ぜて含浸させ、多孔体に電解質性能を持たせることはできるが、分子間の結びつきが弱く、溶解性をもっているため電極等で発生するラジカルの影響を受けやすいという問題点があった。しかも、H型電解質は、後工程で加水分解されてプロトン伝導性を発揮するF型電解質に比べて強度が劣るという問題もある。   By the way, the method for producing an ion exchange membrane disclosed in the following Patent Document 1 has a problem in that since the polymer is soluble in a solvent, the chemical stability is low and the electrolyte performance is likely to deteriorate. That is, since the ion exchange membrane is produced using a polymer dissolved in a solvent, the above-described problems have occurred. In addition, the membrane easily deteriorates due to the swelling change caused by the water content of the electrolyte membrane, and there is a problem that the durability of the fuel cell or the like is shortened. Furthermore, the electrolyte has water retention, and the electrolyte swells due to the movement of protons in the membrane or the purification of water at the electrode, but the porous body does not swell. There was a problem that conductivity was lowered. Electrolyte with proton conductivity (H-type polymer electrolyte) that has been hydrolyzed in an alcohol solvent can be impregnated and the porous body can have electrolyte performance, but the intermolecular bonds are weak and soluble. Therefore, there is a problem that it is easily affected by radicals generated at the electrode. Moreover, the H-type electrolyte also has a problem that its strength is inferior to that of an F-type electrolyte that is hydrolyzed in a subsequent process and exhibits proton conductivity.

そこで、下記特許文献2には、スルホン酸基又はその前駆体基を有するパーフルオロカーボン重合体とフィブリル化可能なフルオロカーボン重合体との混合物をフィルム状に成形し、得られたフィルムの少なくとも片面に延伸補助フィルムを積層した後、加熱下で延伸することを特徴とする固体高分子型燃料電池用電解質膜の製造方法が開示されている。また、積層物を加熱下で延伸するために加熱ロールプレスを用いることも開示されている。   Therefore, in Patent Document 2 below, a mixture of a perfluorocarbon polymer having a sulfonic acid group or a precursor group thereof and a fibrillated fluorocarbon polymer is formed into a film shape and stretched on at least one side of the obtained film. A method for producing an electrolyte membrane for a polymer electrolyte fuel cell is disclosed in which an auxiliary film is laminated and then stretched under heating. It is also disclosed that a heated roll press is used to stretch the laminate under heating.

また、下記特許文献3には、化学的に安定しており、電解質性能の劣化が生じにくいイオン交換膜を連続的に効率良く製造できる製造装置と、製造方法を提供するとともに、強度向上が図れ、多孔体膜(基材シート)の気孔のつぶれを抑制でき、電極触媒との接合の安定性が向上するイオン交換膜の製造装置と、製造方法を提供することを目的として、多孔体膜を連続的に送給する手段と、前記多孔体膜に溶融した電解質ポリマーを加圧含浸して電解質膜を形成する手段と、前記電解質膜中の電解質ポリマーにイオン交換性を付与する手段とを備えたイオン交換膜の製造装置が開示されている。このイオン交換膜の製造装置は、連続的に送給される多孔体膜に溶融した電解質ポリマーを加圧含浸して電解質膜(F型高分子電解質)を形成し、そのあと電解質膜中の電解質ポリマーにイオン交換性を付与(H型高分子電解質)しており、多孔体膜の送給手段、電解質ポリマーを加熱溶融して多孔体膜に電解質膜を形成している。   Patent Document 3 below provides a manufacturing apparatus and a manufacturing method capable of continuously and efficiently manufacturing an ion exchange membrane that is chemically stable and hardly causes deterioration in electrolyte performance, and can improve strength. For the purpose of providing an ion exchange membrane production apparatus and production method that can suppress pore collapse of the porous membrane (base material sheet) and improve the stability of bonding with an electrode catalyst, Means for continuously feeding, means for pressurizing and impregnating molten electrolyte polymer in the porous membrane to form an electrolyte membrane, and means for imparting ion exchange to the electrolyte polymer in the electrolyte membrane An ion exchange membrane manufacturing apparatus is disclosed. This ion exchange membrane manufacturing apparatus pressurizes and impregnates a molten electrolyte polymer into a continuously fed porous membrane to form an electrolyte membrane (F-type polymer electrolyte), and then the electrolyte in the electrolyte membrane An ion exchange property is imparted to the polymer (H-type polymer electrolyte), and the electrolyte membrane is formed on the porous membrane by heating and melting the electrolyte membrane and the electrolyte polymer.

上記特許文献1に開示された方法では、ポリマーは親水性であるのに対し延伸多孔膜は疎水性であり、溶媒にて馴染み易くしてはいるが、耐久性の高い複合化は行われていない。したがって、使用中に電解質とPTFEが分離するという懸念がある。   In the method disclosed in Patent Document 1, the polymer is hydrophilic, while the stretched porous membrane is hydrophobic, and it is easy to become familiar with the solvent, but is highly durable. Absent. Therefore, there is a concern that the electrolyte and PTFE are separated during use.

又、上記特許文献2や上記特許文献3に開示された、補強膜に電解質を溶融含浸する技術は複合電解質膜の製造方法として優れたものではあるが、寸法安定性とイオン伝導性を両立させることについては何等工夫されていない。   In addition, the technique disclosed in Patent Document 2 and Patent Document 3 described above for melting and impregnating a reinforcing membrane with an electrolyte is excellent as a method for producing a composite electrolyte membrane, but achieves both dimensional stability and ion conductivity. There is nothing ingenuity about that.

ところで、下記特許文献4には、湿度や物理的条件変化する状態の中で、歪や破損が起こらず、電気抵抗が低く、耐久性に優れた電解質膜を提供することを目的として、陽イオン伝導性のある繊維を用いて湿式抄紙法もしくは乾式不織布法で網目状に交絡し繊維間で結合した基材シートに、イオン伝導性のある高分子樹脂を含浸して複合させて補強した固体高分子型燃料電池用の電解質膜が開示されている。しかし、特許文献4の図1に示されているように、陽イオン伝導性のある短い繊維が複雑に絡まっており、配向性はない。   By the way, in Patent Document 4 below, a cation is used for the purpose of providing an electrolyte membrane having low electrical resistance and excellent durability without distortion or breakage in a state where humidity and physical conditions change. A solid sheet reinforced by impregnating and compounding a polymer resin with ion conductivity into a base sheet that is entangled in a mesh by a wet papermaking method or a dry nonwoven fabric method using conductive fibers and bonded between the fibers. An electrolyte membrane for a molecular fuel cell is disclosed. However, as shown in FIG. 1 of Patent Document 4, short fibers having cation conductivity are intricately entangled and have no orientation.

特開平9−194609号公報JP-A-9-194609 特開2001−345111号公報JP 2001-345111 A 特開2005−162784号公報Japanese Patent Laying-Open No. 2005-162784 特開2005−285549号公報JP 2005-285549 A

燃料電池用電解質膜の製造に於いて、耐久性及び寸法安定性等の観点より、ゴア等の複合膜について各種提案がなされている。また、補強材料としては、一般的な2次元延伸膜以外に相分離等による3次元的な構造多孔体の提案等がある。これらはいずれも、多孔体中に溶媒含浸や溶融含浸により電解質を充填しており、電解質の織密な充填が不可能であるだけでなく、充填する電解質を効率的に配向させる事が出来ない。   In the manufacture of electrolyte membranes for fuel cells, various proposals have been made for composite membranes such as gore from the viewpoints of durability and dimensional stability. As a reinforcing material, there is a proposal of a three-dimensional structural porous body by phase separation or the like in addition to a general two-dimensional stretched membrane. In any case, the electrolyte is filled in the porous body by solvent impregnation or melt impregnation, and not only the electrolyte cannot be densely packed, but also the electrolyte to be filled cannot be oriented efficiently. .

現在提案されているイオン伝導性電解質膜は、吸水による膨潤等の課題と強度不足のため、2軸延伸膜や相分離多孔膜が使われている。2軸延伸膜では気孔率は80%以上を得ることが出来、比較的イオン伝導性が高く維持でき、吸湿による面内寸法変化は小さいが、厚み方向の寸法安定性が無く、膨潤・収縮のサイクルによる剥離等の問題がある。一方相分離多孔膜では厚さ方向の拘束もあり、寸法安定性は確保できるが、その気孔率が60%程度と余り高くできず、実際のイオン伝導パスが膜厚に対し大きくなり、複合膜としてのイオン伝導性が低いという問題が生じている。したがって、従来技術では、寸法安定性が高く、イオン伝導性も高い膜を同時に成立させることが困難である。   Currently proposed ion conductive electrolyte membranes use biaxially stretched membranes and phase-separated porous membranes due to problems such as swelling due to water absorption and insufficient strength. The biaxially stretched membrane can achieve a porosity of 80% or more, can maintain a relatively high ionic conductivity, and has a small in-plane dimensional change due to moisture absorption. There are problems such as peeling due to cycles. On the other hand, the phase-separated porous membrane also has constraints in the thickness direction, and dimensional stability can be secured, but the porosity cannot be so high as about 60%, and the actual ion conduction path becomes larger with respect to the film thickness. As a result, there is a problem of low ion conductivity. Therefore, in the prior art, it is difficult to simultaneously form a film having high dimensional stability and high ion conductivity.

多孔体中に電解質材料を充填するには、流動性を得る為、溶媒に電解質を溶解させた溶液を含浸させるか、加熱溶融させ、圧力含浸するかである。しかし、溶液含浸では、多孔体中に溶液として充填される為、溶媒蒸発後は空孔として残存する。このため、多数回の充填が必要になるだけでなく、100%電解質が充填されることは無い。また、溶融含浸では、充填過程が多孔体の1方向からの圧力でなされる為、内部で気孔が複雑に分岐したり、気孔径のバラツキ等により溶融電解質が充填されない領域が存在する等により、ポアが膜中に残存してしまう。すなわち電解質の充填率は90%以下となる。また、実際のイオン伝導パスは、膜厚に対じ最大約3倍程度まで達する。   In order to fill the electrolyte material in the porous body, in order to obtain fluidity, the solution in which the electrolyte is dissolved in a solvent is impregnated, or it is heated and melted and pressure impregnated. However, in solution impregnation, since the porous body is filled as a solution, it remains as a void after evaporation of the solvent. For this reason, not only the filling of many times is required, but also 100% electrolyte is not filled. In addition, in the melt impregnation, the filling process is performed with pressure from one direction of the porous body, so that the pores are branched in a complicated manner, or there is a region where the molten electrolyte is not filled due to pore size variation, etc. The pores remain in the membrane. That is, the electrolyte filling rate is 90% or less. In addition, the actual ion conduction path reaches up to about three times the film thickness.

この為、実際の複合膜のイオン伝導度=(バルクとしての電解質のイオン伝導度)×(多孔体の空隙率)×(電解質の充填率)×(1/実際のイオン伝導経路)となり、バルクに対し、20%程度の性能しか得られない場合がある。この為、さらなる薄膜化等が必要になり、耐久信頼性、ハンドリング性等困難なものになっていく。   Therefore, the ionic conductivity of the actual composite membrane = (the ionic conductivity of the electrolyte as a bulk) × (the porosity of the porous body) × (the filling rate of the electrolyte) × (1 / the actual ionic conduction path) On the other hand, only about 20% performance may be obtained. For this reason, it is necessary to further reduce the film thickness, and it becomes difficult to achieve durability reliability and handling properties.

さらに、いずれの充填方法に対しても、微小な気孔に電解質を充填するには流動性を低くする必要がある為、充填過程の中では揃断力による電解質樹脂の伸展がなされず、官能基の整列化によるイオン伝導パスの形成が行われ無いので、等方的なイオン伝導性能を持つにすぎない。つまり、膜厚方向に配向させるには磁場等の印加が必要になる。   In addition, for any filling method, it is necessary to lower the fluidity in order to fill the pores with the electrolyte, so the electrolyte resin does not extend due to the crushing force during the filling process, and the functional group Since the ion conduction path is not formed by the alignment, the isotropic ion conduction performance is only achieved. In other words, application of a magnetic field or the like is required for orientation in the film thickness direction.

本発明は、上記従来技術の問題点に鑑みて発明されたものであり、高分子電解質膜の寸法安定性とイオン伝導性を同時に成立させることを目的とする。また、これにより、固体高分子型燃料電池の発電性と耐久性の向上を図ることを目的とする。   The present invention was invented in view of the above-mentioned problems of the prior art, and an object thereof is to simultaneously establish the dimensional stability and ionic conductivity of a polymer electrolyte membrane. Another object of the present invention is to improve the power generation and durability of the polymer electrolyte fuel cell.

本発明者は、複数の繊維状高分子電解質を補強用高分子膜の厚さ方向に貫通且つ略配向ことで上記課題が解決されることを見出し、本発明に至った。   The present inventor has found that the above problems can be solved by penetrating and substantially orienting a plurality of fibrous polymer electrolytes in the thickness direction of the reinforcing polymer membrane, and has reached the present invention.

即ち、第1に、本発明は、複数の繊維状高分子電解質を含有する補強用高分子膜からなる複合電解質膜の発明であり、該複数の繊維状高分子電解質が該補強用高分子膜の厚さ方向に貫通且つ略配向していることを特徴とする。   That is, first, the present invention is an invention of a composite electrolyte membrane comprising a reinforcing polymer membrane containing a plurality of fibrous polymer electrolytes, wherein the plurality of fibrous polymer electrolytes are the reinforcing polymer membranes. It is characterized by penetrating through and substantially oriented in the thickness direction.

本発明の複合電解質膜は、複数の繊維状高分子電解質が補強用高分子膜の厚さ方向に貫通且つ略配向しているため、イオンパスである繊維状高分子電解質が最短距離で直線的に形成され、イオン伝導性に優れている。また、繊維状高分子電解質は補強用高分子によって周囲をほぼ完全に囲まれているため、膜強度と寸法安定性に優れている。これにより、高分子電解質膜の寸法安定性とイオン伝導性を同時に成立させることが出来た。   In the composite electrolyte membrane of the present invention, since the plurality of fibrous polymer electrolytes penetrate and are substantially oriented in the thickness direction of the reinforcing polymer membrane, the fibrous polymer electrolyte that is an ion path is linearly at the shortest distance. It is formed and has excellent ion conductivity. In addition, since the fibrous polymer electrolyte is almost completely surrounded by the reinforcing polymer, it is excellent in membrane strength and dimensional stability. As a result, the dimensional stability and ionic conductivity of the polymer electrolyte membrane could be established at the same time.

前記複数の繊維状高分子電解質は結束されずばらばらの状態で補強用高分子膜の厚さ方向に貫通且つ略配向していても良いが、明瞭なイオンパスを作製するためと、後述する製造方法の面から、前記複数の繊維状高分子電解質は所定数結束されて、高分子電解質束を構成し、複数の該高分子電解質束が前記補強用高分子膜の厚さ方向に貫通且つ略配向していることが好ましい。   The plurality of fibrous polymer electrolytes may be separated and not penetrated in the thickness direction of the reinforcing polymer membrane and may be substantially oriented, but in order to produce a clear ion path, a manufacturing method described later From this surface, a predetermined number of the plurality of fibrous polymer electrolytes are bound to form a polymer electrolyte bundle, and the plurality of polymer electrolyte bundles penetrates in the thickness direction of the reinforcing polymer membrane and is substantially oriented. It is preferable.

本発明で用いられる高分子電解質としては、それ自体でプロトン伝導性を有するH型高分子電解質でも、加水分解によりプロトン伝導性を発揮する高分子電解質前駆体(F型高分子電解質)の加水分解物であってもよいが、後述する製造方法の面から、加水分解によりプロトン伝導性を発揮する高分子電解質前駆体(F型高分子電解質)の加水分解物が好ましい。   The polymer electrolyte used in the present invention is a hydrolyzed polymer electrolyte precursor (F-type polymer electrolyte) that exhibits proton conductivity by hydrolysis even with an H-type polymer electrolyte that itself has proton conductivity. However, from the viewpoint of the production method described later, a hydrolyzate of a polymer electrolyte precursor (F-type polymer electrolyte) that exhibits proton conductivity by hydrolysis is preferable.

本発明の複合電解質膜では、複合電解質膜表面積に対する繊維状高分子電解質部分の面積を高めても十分な強度を確保することができる。具体的には、複合電解質膜表面積に対する繊維状高分子電解質部分の面積が30%以上とすることが好ましい。   In the composite electrolyte membrane of the present invention, sufficient strength can be ensured even if the area of the fibrous polymer electrolyte portion relative to the surface area of the composite electrolyte membrane is increased. Specifically, the area of the fibrous polymer electrolyte portion relative to the surface area of the composite electrolyte membrane is preferably 30% or more.

第2に、本発明は、上記の複数の繊維状高分子電解質束が該補強用高分子膜の厚さ方向に貫通且つ略配向している複合電解質膜の製造方法の発明であり、加水分解によりプロトン伝導性を発揮する高分子電解質前駆体(F型高分子電解質)を溶融延伸紡糸して繊維状高分子電解質を得る紡糸工程と、複数の該繊維状高分子電解質を結束して結束材を得る結束工程と、該結束材に補強用高分子材料を含浸してブロック材を得る含浸工程と、該ブロック材を該複数の繊維状高分子電解質の配向方向に対して略垂直にスライスする膜化工程とを含む。   Secondly, the present invention is an invention of a method for producing a composite electrolyte membrane in which the plurality of fibrous polymer electrolyte bundles penetrates and is substantially oriented in the thickness direction of the reinforcing polymer membrane. A spinning process for obtaining a fibrous polymer electrolyte by melt-drawing and spinning a polymer electrolyte precursor (F-type polymer electrolyte) that exhibits proton conductivity, and binding a plurality of the fibrous polymer electrolytes A bundling step of obtaining a block material by impregnating the bundling material with a reinforcing polymer material, and slicing the block material substantially perpendicular to the orientation direction of the plurality of fibrous polymer electrolytes A film forming step.

本発明の溶融延伸工程により、電解質樹脂は長手方向に配向し、長手方向のイオン伝導チャンネルが効率的に形成され、延伸方向に対するイオン伝導が大幅に向上する。また、繊維状電解質の回りが補強材料により充填され強固なブロックを形成する事により、充填率として100%を達成可能とするだけでなく、条件の選定によっては、標準状態でも熱収縮によるプレ応力を電解質に付与可能になり、電解質の膨潤を抑制するだけでなく、厚み方向の拘束力を摩擦力で発生させる事も可能である。これにより従来以上に水素透過防止性能が向上し、燃料電池性能の向上に寄与する。   According to the melt stretching process of the present invention, the electrolyte resin is oriented in the longitudinal direction, ion conduction channels in the longitudinal direction are efficiently formed, and ion conduction in the stretching direction is greatly improved. In addition, by forming a solid block around the fibrous electrolyte by filling it with a reinforcing material, it is possible not only to achieve a filling rate of 100%, but depending on the selection of conditions, pre-stress due to heat shrinkage even in the standard state It is possible not only to suppress the swelling of the electrolyte but also to generate a restraining force in the thickness direction by a frictional force. As a result, the hydrogen permeation preventing performance is improved more than before, and the fuel cell performance is improved.

本発明では、前記膜化工程の後に、前記加水分解によりプロトン伝導性を発揮する高分子電解質前駆体(F型高分子電解質)を加水分解して高分子電解質を得る加水分解工程を含むことが好ましい。   In the present invention, after the membrane forming step, a hydrolysis step of hydrolyzing a polymer electrolyte precursor (F-type polymer electrolyte) that exhibits proton conductivity by hydrolysis to obtain a polymer electrolyte is included. preferable.

ここで、補強用高分子材料としては複合高分子電解質膜の補強材として公知のものを用いることができる。その中で、ポリテトラフルオロエチレン(PTFE)、共重合成分を10モル%以下含むテトラフルオロエチレン共重合体、及び、ポリシロキサンから選択される1種以上が好ましく例示される。   Here, as the reinforcing polymer material, known materials can be used as the reinforcing material for the composite polymer electrolyte membrane. Among these, at least one selected from polytetrafluoroethylene (PTFE), a tetrafluoroethylene copolymer containing 10 mol% or less of a copolymer component, and polysiloxane is preferably exemplified.

従来の複合高分子電解質膜の製造方法である、補強膜である多孔性膜と、該多孔性膜の両側に2枚の加水分解によりプロトン伝導性を有する高分子電解質前駆体単膜を挟み、且つこれらの両側から2枚の剥離性保護シートを挟んで、これら剥離性保護シート−高分子電解質前駆体単膜−多孔性膜−高分子電解質前駆体単膜−剥離性保護シートを積層して送給して、複合高分子電解質膜を連続製造する場合と比べて、本発明の工程が少なく、且つ均一な性能の複合高分子電解質膜を製造することが可能である。   A conventional method for producing a composite polymer electrolyte membrane, a porous membrane as a reinforcing membrane, and two polymer electrolyte precursor single membranes having proton conductivity by hydrolysis on both sides of the porous membrane, In addition, two peelable protective sheets are sandwiched from both sides, and these peelable protective sheets-polymer electrolyte precursor single membrane-porous membrane-polymer electrolyte precursor single membrane-peelable protective sheet are laminated. Compared with the case where the composite polymer electrolyte membrane is continuously manufactured by feeding, it is possible to manufacture a composite polymer electrolyte membrane with fewer steps and uniform performance.

第3に、本発明は、上記の複合電解質膜を有する固体高分子型燃料電池である。   Third, the present invention is a polymer electrolyte fuel cell having the above composite electrolyte membrane.

本発明の複合電解質膜は、繊維状電解質を厚み方向に配向させる事により厚み方向のイオン伝導度は最大3倍程度まで向上が可能である。これにより、(1)電解質の面積率が30%程度の低い物でも複合電解質膜としては等方的なバルク材と同程度のイオン伝導性能が得られる。また、(2)電解質の配置が厚さ方向に並行であるので、イオン伝導パスは膜厚に等しく、最短経路での伝導が可能である。更に、(3)電解質の充填率を100%とする事により、電解質中には水の浸入が無くなるため、燃料電池の実運転状態でも吸湿による膨潤が無く、厚さ方向も含めて極めて寸法安定性・耐久信頼性の高い複合電解質膜となる。   In the composite electrolyte membrane of the present invention, the ionic conductivity in the thickness direction can be improved up to about 3 times by orienting the fibrous electrolyte in the thickness direction. Thereby, (1) Even if the area ratio of the electrolyte is as low as about 30%, the composite electrolyte membrane can obtain ion conduction performance comparable to that of an isotropic bulk material. Further, (2) since the electrolyte arrangement is parallel to the thickness direction, the ion conduction path is equal to the film thickness, and conduction through the shortest path is possible. (3) Since the electrolyte filling rate is 100%, water does not enter the electrolyte, so there is no swelling due to moisture absorption even in the actual operating state of the fuel cell, and it is extremely dimensionally stable including the thickness direction. It becomes a composite electrolyte membrane with high reliability and durability.

図1に、本発明の複合電解質膜の模式的斜視図を示す。延伸紡糸等により厚さ方向に配向した繊維状電解質部分1、又は複数の該繊維状電解質材料を結束した電解質材料の結束束(直径10μm以下)1が補強材料である補強用高分子膜2の両面に貫通して配置され、複合電解質膜表面積に対する繊維状高分子電解質部分の面積が30%以上を有する固体高分子型燃料電池に好適な複合電解質膜である。   FIG. 1 shows a schematic perspective view of the composite electrolyte membrane of the present invention. A fibrous polymer portion 1 oriented in the thickness direction by stretch spinning or the like, or a bundle of electrolyte materials (a diameter of 10 μm or less) 1 in which a plurality of fibrous electrolyte materials are bundled is a reinforcing polymer membrane 2 that is a reinforcing material. It is a composite electrolyte membrane suitable for a polymer electrolyte fuel cell that is disposed so as to penetrate both surfaces and has an area of a fibrous polymer electrolyte portion of 30% or more with respect to the surface area of the composite electrolyte membrane.

図2に、本発明の複合電解質膜の製造プロセスを示す。また、下記表1に各工程とその機能を一覧で示す。   FIG. 2 shows a manufacturing process of the composite electrolyte membrane of the present invention. Table 1 below lists each process and its function.

Figure 2009032503
Figure 2009032503

プロトン伝導性を有する高分子電解質(以下、H型高分子電解質という)とはスルホン酸基等有し、特に後工程で変性させなくてもそれ自体がプロトン伝導性を有するものであるのに対し、本発明で用いる、加水分解によりプロトン伝導性を発揮する高分子電解質前駆体(以下、単に高分子電解質前駆体やF型高分子電解質という)とは、後工程で加水分解処理や酸型化処理を行うことによってスルホン酸基等のプロトン伝導性基に変性される前駆体基、例えば−SOF基、−SOCl基、を有するものである。 A polymer electrolyte having proton conductivity (hereinafter referred to as “H-type polymer electrolyte”) has a sulfonic acid group and the like, and in particular has proton conductivity even if it is not modified in a subsequent process. The polymer electrolyte precursor that exhibits proton conductivity by hydrolysis used in the present invention (hereinafter simply referred to as polymer electrolyte precursor or F-type polymer electrolyte) is a hydrolysis treatment or acidification in a later step. It has a precursor group, for example, a —SO 2 F group or a —SO 2 Cl group, which is modified into a proton conductive group such as a sulfonic acid group by performing the treatment.

高分子電解質前駆体(F型高分子電解質)には公知の種々のものを用いることができる。高分子電解質前駆体は、上記のイオン性官能基を有する高分子電解質モノマー自体だけでなく、後工程の反応によりイオン性官能基に変換する基を有するモノマーである。例えば、本発明では、高分子フィルム又はシート基材中に電解質生成モノマーを含浸させ、重合させ、さらに、分子鎖内のスルホニルハライド基[−SO]、スルホン酸エステル基[−SO]、又はハロゲン基[−X]をスルホン酸基[−SOH]とすることにより製造する。また、高分子フィルム又はシート基材中に存在する電解質生成モノマー単位に存在するフェニル基、ケトン、エーテル基などはクロルスルホン酸でスルホン酸基を導入して製造することができる。 Various known polymer electrolyte precursors (F-type polymer electrolytes) can be used. The polymer electrolyte precursor is not only a polymer electrolyte monomer itself having the above ionic functional group but also a monomer having a group that is converted into an ionic functional group by a reaction in a subsequent step. For example, in the present invention, a polymer film or sheet substrate is impregnated with an electrolyte-generating monomer, polymerized, and further, a sulfonyl halide group [—SO 2 X 1 ] or a sulfonate group [—SO 3 ] in the molecular chain. R 1 ] or a halogen group [—X 2 ] is produced by making it into a sulfonic acid group [—SO 3 H]. In addition, phenyl groups, ketones, ether groups and the like present in the electrolyte-generating monomer units present in the polymer film or sheet substrate can be produced by introducing sulfonic acid groups with chlorosulfonic acid.

本発明において、重合して高分子電解質前駆体となる電解質生成モノマーは、以下の(1)〜(6)に示すモノマーが代表的である。   In the present invention, the following monomers (1) to (6) are representative examples of the electrolyte-forming monomer that is polymerized to become a polymer electrolyte precursor.

(1)スルホニルハライド基を有するモノマーである、CF=CF(SO)(式中、Xはハロゲン基で−Fまたは−Clである。以下同じ。)、CH=CF(SO)、及びCF=CF(OCH(CFSO)(式中、mは1〜4である。以下同じ。)からなる群から選択される1種類以上のモノマー。
(2)スルホン酸エステル基を有するモノマーである、CF=CF(SO)(式中、Rはアルキル基で−CH、−Cまたは−C(CHである。以下同じ。)、CH=CF(SO)、及びCF=CF(OCH(CFSO3R1)からなる群から選択される1種類以上のモノマー。
(3)CF=CF(O(CH)(式中、Xはハロゲン基で−Br又は−Clである。以下同じ。)、及びCF=CF(OCH(CF)からなる群から選択される1種類以上のモノマー。
(4)アクリルモノマーである、CF=CR(COOR)(式中、Rは−CH又は−Fであり、Rは−H、−CH、−C又は−C(CHである。以下同じ。)、及びCH=CR(COOR)からなる群から選択される1種類以上のモノマー。
(5)スチレン、スチレン誘導体モノマーである2,4−ジメチルスチレン、ビニルトルエン、及び4−tertブチルスチレンからなる群から選択される1種類以上のモノマー。
(6)アセチルナフチレン、ビニルケトンCH=CH(COR)(式中、Rは−CH、−C又はフェニル基(−C)である。)、及びビニルエーテルCH=CH(OR)(式中、Rは−C2n+1(n=1〜5)、−CH(CH、−C(CH、又はフェニル基である。)からなる群から選択される1種類以上のモノマー。
(1) CF 2 ═CF (SO 2 X 1 ), which is a monomer having a sulfonyl halide group (wherein X 1 is a halogen group —F or —Cl; the same shall apply hereinafter), CH 2 ═CF ( SO 2 X 1 ), and CF 2 ═CF (OCH 2 (CF 2 ) m SO 2 X 1 ) (wherein, m is 1 to 4, the same shall apply hereinafter). Monomer.
(2) CF 2 ═CF (SO 3 R 1 ), which is a monomer having a sulfonate group (wherein R 1 is an alkyl group, —CH 3 , —C 2 H 5 or —C (CH 3 ) 3 The same shall apply hereinafter.), One or more monomers selected from the group consisting of CH 2 ═CF (SO 3 R 1 ) and CF 2 ═CF (OCH 2 (CF 2 ) m SO 3 R 1 ).
(3) CF 2 = CF ( O (CH 2) m X 2) ( wherein, X 2 is -Br or -Cl halogen group. Hereinafter the same.), And CF 2 = CF (OCH 2 ( CF 2 ) One or more monomers selected from the group consisting of m X 2 ).
(4) CF 2 = CR 2 (COOR 3 ) which is an acrylic monomer (wherein R 2 is —CH 3 or —F, and R 3 is —H, —CH 3 , —C 2 H 5 or — And C (CH 3 ) 3. The same shall apply hereinafter.), And one or more monomers selected from the group consisting of CH 2 = CR 2 (COOR 3 ).
(5) One or more monomers selected from the group consisting of styrene, styrene derivative monomers 2,4-dimethylstyrene, vinyltoluene, and 4-tertbutylstyrene.
(6) Acetylnaphthylene, vinyl ketone CH 2 ═CH (COR 4 ) (wherein R 4 is —CH 3 , —C 2 H 5 or a phenyl group (—C 6 H 5 )), and vinyl ether CH. 2 = CH (OR 5 ) (wherein R 5 is —C n H 2n + 1 (n = 1 to 5), —CH (CH 3 ) 2 , —C (CH 3 ) 3 , or a phenyl group. .) One or more monomers selected from the group consisting of:

所望により、本発明で用いられる電解質生成モノマーに対する架橋剤の具体例としては、ジビニルベンゼン、トリアリルシアヌレート、トリアリルイソシアヌレート、3,5−ビス(トリフルオロビニル)フェノール、及び3,5−ビス(トリフルオロビニロキシ)フェノールとうが挙げられる。これら1種類以上の架橋剤を、全モノマー基準で30モル%以下の量加えて架橋重合させる。   If desired, specific examples of crosslinking agents for the electrolyte-forming monomers used in the present invention include divinylbenzene, triallyl cyanurate, triallyl isocyanurate, 3,5-bis (trifluorovinyl) phenol, and 3,5- Bis (trifluorovinyloxy) phenol is mentioned. One or more kinds of these cross-linking agents are added in an amount of 30 mol% or less based on the total monomer to cause cross-linking polymerization.

以下、本発明の実施例を示す。   Examples of the present invention will be described below.

[実施例1]
図2に示されるプロセスに従って、本発明を実施した。
電解質樹脂としては、パーフロロスルホニルフロイドを用い、スクリュー型押し出し機より溶融押し出しを行って、繊維状材料を形成した。その、冷却過程において同時に延伸を行い、配向性を持った電解質繊維束を得た。この時、スチレン樹脂、ポリイミド、ポリアミド等の樹脂と溶媒を用いたテープ状キャスト成形を行い、長さ方向に延伸しても構わない。
[Example 1]
The present invention was implemented according to the process shown in FIG.
As the electrolyte resin, perfluorosulfonyl floyd was used, and melt extrusion was performed from a screw type extruder to form a fibrous material. In the cooling process, stretching was performed at the same time to obtain an electrolyte fiber bundle having orientation. At this time, tape-like cast molding using a resin such as styrene resin, polyimide, or polyamide and a solvent may be performed and stretched in the length direction.

補強材としては、フッ素樹脂を、その融点以上まで加熱し、上記延伸した電解質材料を結束した部位に溶融含浸を行った。なおパーフロロスルホニルフロイドの場合は、薄膜化後加水分解により端末の−SOFを−SOHに置換し、電解質としての機能を形成する。 As the reinforcing material, the fluororesin was heated to the melting point or higher and melt impregnation was performed on the portion where the stretched electrolyte material was bound. In the case of perfluorosulfonyl floyd, the terminal —SO 2 F is replaced with —SO 3 H by hydrolysis after thinning to form a function as an electrolyte.

一旦形状拘束された電解質は、その膨潤率が制限される為、寸法安定性は確保出来ると同時に、含水による応力は水の浸透圧程度に限定されるので、基材そのものへの膨潤時応力は比較的小さく、従来技術の様に基材に延伸等による強度確保を行う必要が無く、その他の熱可塑性樹脂を基材に用いる事も可能であり、多孔体化への対応が不要であり、材料選択の範囲が拡大できる。   Once the shape-constrained electrolyte is limited in its swelling rate, dimensional stability can be ensured, and at the same time the stress due to water content is limited to the osmotic pressure of water. Relatively small, there is no need to ensure the strength by stretching or the like to the base material as in the prior art, it is also possible to use other thermoplastic resin for the base material, it is not necessary to correspond to the porous body, The range of material selection can be expanded.

F型高分子電解質を加水分解してプロトン伝導性を与えた後、MEAセルを作製し、複数のセルを積層固定し燃料電池スタックを作製した。   After hydrolyzing the F-type polymer electrolyte to impart proton conductivity, an MEA cell was prepared, and a plurality of cells were stacked and fixed to prepare a fuel cell stack.

なお、加水分解処理は下記の手順で行った。
(1)NaOH水溶液+DMSO混合液、80℃
(2)純水洗浄
(3)HSO水溶液、80℃
(4)純水洗浄
(5)熱水洗浄、90℃
The hydrolysis treatment was performed according to the following procedure.
(1) NaOH aqueous solution + DMSO mixed solution, 80 ° C.
(2) Pure water cleaning (3) H 2 SO 4 aqueous solution, 80 ° C.
(4) Pure water cleaning (5) Hot water cleaning, 90 ° C

本発明により、高分子電解質膜の寸法安定性とイオン伝導性を同時に成立させることが可能となった。また、固体高分子型燃料電池の発電性と耐久性の向上が可能となった。これにより、燃料電池の実用化及び普及に貢献する。   According to the present invention, the dimensional stability and ionic conductivity of the polymer electrolyte membrane can be simultaneously established. In addition, the power generation and durability of the polymer electrolyte fuel cell can be improved. This contributes to the practical application and popularization of fuel cells.

本発明の複合電解質膜の模式的斜視図を示す。The typical perspective view of the composite electrolyte membrane of this invention is shown. 本発明の複合電解質膜の製造プロセスを示す。The manufacturing process of the composite electrolyte membrane of this invention is shown.

符号の説明Explanation of symbols

1:繊維状電解質部分又は複数の該繊維状電解質材料を結束した電解質材料の結束束、2:補強用高分子膜 1: a bundle of electrolyte materials obtained by binding a fibrous electrolyte portion or a plurality of the fibrous electrolyte materials, 2: a reinforcing polymer membrane

Claims (7)

複数の繊維状高分子電解質を含有する補強用高分子フィルムからなる複合電解質膜であって、該複数の繊維状高分子電解質が該補強用高分子膜の厚さ方向に貫通且つ略配向していることを特徴とする複合電解質膜。   A composite electrolyte membrane comprising a reinforcing polymer film containing a plurality of fibrous polymer electrolytes, wherein the plurality of fibrous polymer electrolytes penetrate and substantially align in the thickness direction of the reinforcing polymer membrane. A composite electrolyte membrane characterized by comprising: 前記複数の繊維状高分子電解質が所定数結束されて、高分子電解質束を構成し、複数の該高分子電解質束が前記補強用高分子膜の厚さ方向に貫通且つ略配向していることを特徴とする請求項1に記載の複合電解質膜。   A predetermined number of the plurality of fibrous polymer electrolytes are bound to form a polymer electrolyte bundle, and the plurality of polymer electrolyte bundles penetrate and are substantially oriented in the thickness direction of the reinforcing polymer membrane. The composite electrolyte membrane according to claim 1. 前記高分子電解質が、加水分解によりプロトン伝導性を発揮する高分子電解質前駆体(F型高分子電解質)の加水分解物であることを特徴とする請求項1又は2に記載の複合電解質膜。   The composite electrolyte membrane according to claim 1 or 2, wherein the polymer electrolyte is a hydrolyzate of a polymer electrolyte precursor (F-type polymer electrolyte) that exhibits proton conductivity by hydrolysis. 複合電解質膜表面積に対する前記繊維状高分子電解質部分の面積が30%以上であることを特徴とする請求項1乃至3のいずれかに記載の複合電解質膜。   4. The composite electrolyte membrane according to claim 1, wherein the area of the fibrous polymer electrolyte portion with respect to the surface area of the composite electrolyte membrane is 30% or more. 5. 加水分解によりプロトン伝導性を発揮する高分子電解質前駆体(F型高分子電解質)を溶融延伸紡糸して繊維状高分子電解質を得る紡糸工程と、複数の該繊維状高分子電解質を結束して結束材を得る結束工程と、該結束材に補強用高分子材料を含浸してブロック材を得る含浸工程と、該ブロック材を該複数の繊維状高分子電解質の配向方向に対して略垂直にスライスする膜化工程とを含み、複数の繊維状高分子電解質束が該補強用高分子膜の厚さ方向に貫通且つ略配向している複合電解質膜の製造方法。   A spinning step of obtaining a fibrous polymer electrolyte by melt-drawing a polymer electrolyte precursor (F-type polymer electrolyte) that exhibits proton conductivity by hydrolysis, and binding the plurality of fibrous polymer electrolytes together A bundling step of obtaining a bundling material; an impregnation step of impregnating the bundling material with a reinforcing polymer material to obtain a block material; and the block material being substantially perpendicular to the orientation direction of the plurality of fibrous polymer electrolytes. And a membrane forming step of slicing, wherein a plurality of fibrous polymer electrolyte bundles are penetrated and substantially oriented in the thickness direction of the reinforcing polymer membrane. 前記膜化工程の後に、前記加水分解によりプロトン伝導性を発揮する高分子電解質前駆体(F型高分子電解質)を加水分解して高分子電解質を得る加水分解工程を含むことを特徴とする請求項5に記載の複合電解質膜の製造方法。   A hydrolyzing step of hydrolyzing a polymer electrolyte precursor (F-type polymer electrolyte) exhibiting proton conductivity by the hydrolysis to obtain a polymer electrolyte is included after the membrane forming step. Item 6. A method for producing a composite electrolyte membrane according to Item 5. 請求項1乃至4のいずれかに記載の複合電解質膜を有する固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the composite electrolyte membrane according to claim 1.
JP2007194737A 2007-07-26 2007-07-26 Composite electrolyte membrane, manufacturing method of composite electrolyte membrane, and solid polymer fuel cell Pending JP2009032503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007194737A JP2009032503A (en) 2007-07-26 2007-07-26 Composite electrolyte membrane, manufacturing method of composite electrolyte membrane, and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007194737A JP2009032503A (en) 2007-07-26 2007-07-26 Composite electrolyte membrane, manufacturing method of composite electrolyte membrane, and solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2009032503A true JP2009032503A (en) 2009-02-12

Family

ID=40402821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007194737A Pending JP2009032503A (en) 2007-07-26 2007-07-26 Composite electrolyte membrane, manufacturing method of composite electrolyte membrane, and solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2009032503A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253158B2 (en) * 2009-02-16 2012-08-28 Toppan Printing Co., Ltd. Organic electroluminescence display and method for manufacturing the same
US9023552B2 (en) 2010-09-15 2015-05-05 Toyota Jidosha Kabushiki Kaisha Membrane electrode assembly, manufacturing method thereof, and fuel cells
WO2020117001A1 (en) * 2018-12-06 2020-06-11 주식회사 엘지화학 Solid electrolyte membrane, method for manufacturing same, and all-solid-state battery comprising same
CN115039262A (en) * 2020-09-29 2022-09-09 可隆工业株式会社 Polymer electrolyte membrane and membrane-electrode assembly including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253158B2 (en) * 2009-02-16 2012-08-28 Toppan Printing Co., Ltd. Organic electroluminescence display and method for manufacturing the same
US9023552B2 (en) 2010-09-15 2015-05-05 Toyota Jidosha Kabushiki Kaisha Membrane electrode assembly, manufacturing method thereof, and fuel cells
WO2020117001A1 (en) * 2018-12-06 2020-06-11 주식회사 엘지화학 Solid electrolyte membrane, method for manufacturing same, and all-solid-state battery comprising same
EP3787092A4 (en) * 2018-12-06 2021-09-01 Lg Chem, Ltd. Solid electrolyte membrane, method for manufacturing same, and all-solid-state battery comprising same
CN115039262A (en) * 2020-09-29 2022-09-09 可隆工业株式会社 Polymer electrolyte membrane and membrane-electrode assembly including the same

Similar Documents

Publication Publication Date Title
KR102112648B1 (en) Polymer electrolyte membrane
US8420701B2 (en) Polymer electrolyte membrane, membrane-electrode assembly for polymer electrolyte fuel cells and process for producing polymer electrolyte membrane
CA2654921C (en) Porous membrane for fuel cell electrolyte membrane and method for manufacturing the same
Gong et al. Aligned electrospun nanofibers as proton conductive channels through thickness of sulfonated poly (phthalazinone ether sulfone ketone) proton exchange membranes
US9893374B2 (en) Reinforced composite electrolyte membrane for fuel cell
CA2802942C (en) Composite having ion exchange function and preparation method and use thereof
Gloukhovski et al. Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: a beginner’s guide
KR20010095213A (en) Electrolyte membrane for solid polymer type fuel cell and producing method thereof
Oh et al. Interlocking Membrane/Catalyst Layer Interface for High Mechanical Robustness of Hydrocarbon‐Membrane‐Based Polymer Electrolyte Membrane Fuel Cells
WO2004030132A1 (en) Electrolyte film, process for producing the same, and solid polymer type fuel cell
KR20130114187A (en) Porous nano-fiber mats to reinforce proton conducting membranes for pem applications
JP2008277288A (en) Manufacturing device of composite polymer electrolyte membrane, manufacturing method of composite polymer electrolyte membrane, functional membrane, and fuel cell
JP5114907B2 (en) Method for producing reinforced electrolyte membrane and reinforced electrolyte membrane produced by the method
JP2009032503A (en) Composite electrolyte membrane, manufacturing method of composite electrolyte membrane, and solid polymer fuel cell
JP2005216769A (en) Solid polymer electrolyte membrane, its manufacturing method, and membrane electrode joint body having solid polymer electrolyte membrane
JP5189394B2 (en) Polymer electrolyte membrane
JP2004178995A (en) Electrolyte film for solid polymer fuel cell and its manufacturing method
KR102367411B1 (en) Reinforced composite electrolyte membrane and method of manufacturing same
JP3922954B2 (en) ELECTROLYTE MEMBRANE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2010257765A (en) Manufacturing method of gas diffusion layer, membrane electrode assembly, and manufacturing method of membrane electrode assembly
Polat et al. Preparation and characterization of a thermoplastic proton-exchange system based on SEBS and polypropylene blends
CN113381046B (en) Preparation method of enhanced fluorine-containing composite membrane or membrane electrode
CN113097549B (en) High-enhancement type fluorine-chlorine-containing alkaline fuel cell membrane
Mehdipour-Ataei et al. Polymer electrolyte membranes for direct methanol fuel cells
JP2014110232A (en) Fluorine-based polymer electrolyte film