JPH06256549A - Polytetrafluoroethylene porous membrane and its production - Google Patents

Polytetrafluoroethylene porous membrane and its production

Info

Publication number
JPH06256549A
JPH06256549A JP4103293A JP4103293A JPH06256549A JP H06256549 A JPH06256549 A JP H06256549A JP 4103293 A JP4103293 A JP 4103293A JP 4103293 A JP4103293 A JP 4103293A JP H06256549 A JPH06256549 A JP H06256549A
Authority
JP
Japan
Prior art keywords
fibers
porous membrane
film
stretching
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4103293A
Other languages
Japanese (ja)
Other versions
JP3260890B2 (en
Inventor
Toshiaki Ishino
敏昭 石野
Yoshifumi Okamoto
宜文 岡本
Mitsuo Iimura
満男 飯村
Masahiro Kamibayashi
政博 上林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP4103293A priority Critical patent/JP3260890B2/en
Publication of JPH06256549A publication Critical patent/JPH06256549A/en
Application granted granted Critical
Publication of JP3260890B2 publication Critical patent/JP3260890B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a polytetrafluoroethylene porous membrane high in performances such as filtration, concentration and fractionation and large in the amount of a treated substance per unit time, when used as a filtration membrane, and to provide the method for producing the same. CONSTITUTION:A tetrafluoroethylene porous membrane is characterized in that the porous membrane comprises many knots and fibers combining the knots with each other and that the orientation direction of the fibers in the surface part of the membrane is different from the orientation direction of the fibers in its inner parts. The production of the porous membrane comprises forming the mixture of polytetrafluoroethylene powder having a crystallization heat of <=18J/g with a liquid lubricant into a film, monoaxially orienting the film, calcining the film and further orientating the film in a direction orthogonal to the former orientation direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規なミクロ構造を有す
るポリテトラフルオロエチレン(以下、「PTFE」と
いう)多孔質膜およびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polytetrafluoroethylene (hereinafter referred to as "PTFE") porous membrane having a novel microstructure and a method for producing the same.

【0002】[0002]

【従来の技術】PTFE製多孔質膜は耐熱性、耐薬品
性、潤滑性、低摩擦性、電気絶縁性等の種々の特性に優
れており、例えば、濾過膜、電池用隔膜、電気絶縁材
料、人工血管等広範な分野で利用されている。
2. Description of the Related Art PTFE porous membranes are excellent in various properties such as heat resistance, chemical resistance, lubricity, low friction and electric insulation. For example, filtration membranes, diaphragms for batteries, and electric insulation materials. It is used in a wide range of fields such as artificial blood vessels.

【0003】PTFE多孔質膜の製造法としては、特公
昭42−13560号公報や特公昭51−18991号
公報に記載された延伸法が知られている。この延伸法は
PTFE粉末と液状潤滑剤の混和物をフィルム状に成形
し、次いでこのフィルムを延伸して多孔質化するもので
あり、延伸後には、通常、PTFEの融点以上の温度で
加熱することにより焼成し多孔質膜の強度アップを図っ
ている。
As a method for producing a PTFE porous membrane, the stretching method described in Japanese Patent Publication No. 42-13560 and Japanese Patent Publication No. 51-18991 is known. In this stretching method, a mixture of PTFE powder and a liquid lubricant is formed into a film, and then this film is stretched to make it porous. After stretching, it is usually heated at a temperature equal to or higher than the melting point of PTFE. By doing so, the strength of the porous film is increased by firing.

【0004】上記公報に記載された方法の改良法とし
て、PTFE粉末と液体潤滑剤の混和物を成形し、次い
でこの成形物を延伸して多孔質化した後、熱収縮自由な
状態で327℃以上の温度で加熱して焼成し、その後再
度延伸する方法(特公昭52−26786号公報)や、
数平均分子量が1000万以上のPTFE粉末と液体潤
滑剤の混和物を成形し、次いでこの成形物を延伸し、そ
の後熱収縮防止状態で327℃以上の温度で加熱して焼
成する方法(特開昭60−104319号公報)も知ら
れている。これら両法は前者が約1500オングストロ
ーム以下、後者が約0.2μm以下の特に微細な孔を有
する多孔質膜を得るために開発されたものである。
As an improved method of the method described in the above publication, a mixture of PTFE powder and a liquid lubricant is molded, and then the molded product is stretched to make it porous, and then 327 ° C. in a free state of heat shrinkage. A method of heating and firing at the above temperature, and then stretching again (Japanese Patent Publication No. 52-26786),
A method of molding a mixture of a PTFE powder having a number average molecular weight of 10 million or more and a liquid lubricant, stretching the molded article, and then heating and firing at a temperature of 327 ° C. or more in a heat shrinkage-proof state (JP JP-A-60-104319) is also known. Both of these methods were developed in order to obtain a porous membrane with the former having about 1500 Å or less and the latter having particularly fine pores of about 0.2 μm or less.

【0005】これら延伸法によって得られるPTFE多
孔質膜は、例えば、特公昭51−18991号公報にお
いて紹介されているように、多数の結節(結節は延伸方
向に直交する方向に配向している)と、延伸方向に沿っ
て配向され且つ結節相互を連結する多数の繊維から成る
ミクロ構造を有することが知られている。そして、これ
ら多孔質膜における繊維の配向方向は表面部分と内部で
同じである。
The PTFE porous membrane obtained by these stretching methods has a large number of nodules (the nodules are oriented in the direction orthogonal to the stretching direction) as disclosed in, for example, Japanese Patent Publication No. 51-18991. It is known to have a microstructure composed of a large number of fibers which are oriented along the drawing direction and which connect the nodules together. The orientation direction of the fibers in these porous membranes is the same in the surface portion and inside.

【0006】[0006]

【発明が解決しようとする課題】ところで、PTFE多
孔質膜を濾過膜として用い、異なる成分の濾別、濃縮、
分画等を行う場合、処理量をいかに多くするかはコスト
の点から重要な問題である。
By the way, a PTFE porous membrane is used as a filtration membrane to separate and concentrate different components.
When fractionation is performed, how to increase the processing amount is an important issue from the viewpoint of cost.

【0007】処理量は濾過膜の孔径を大きくすることあ
るいは濾過膜の単位面積当たりの孔数の大幅な増加によ
りで達成できると考えられる。しかし、前者の方法は濾
別、濃縮、分画機能の低下が不可避的であり、採用は困
難である。また、後者の方法は理論的には妥当性を有す
るが、既知のPTFE多孔質膜に比べ単位面積当たりの
孔数の大幅に増加した濾過膜を工業的に製造し得る技術
が未だ開発されていないのが現状である。
It is considered that the throughput can be achieved by increasing the pore size of the filtration membrane or by greatly increasing the number of pores per unit area of the filtration membrane. However, the former method is inevitable to filter, concentrate, and deteriorate the fractionation function, and is difficult to adopt. Although the latter method is theoretically valid, a technique capable of industrially producing a filtration membrane having a significantly increased number of pores per unit area as compared with the known PTFE porous membrane has been developed. The current situation is that there are none.

【0008】[0008]

【課題を解決するための手段】本発明者は従来技術の有
する上記問題を解決するため鋭意研究の結果、従来のP
TFE多孔質膜とは異なるミクロ構造を有する膜によれ
ば、濾別、濃縮、分画等の機能を低下させることなく、
処理量を高レベルにできることを見出し、本発明を完成
するに至ったものである。
As a result of earnest research for solving the above problems of the prior art, the present inventor has found that the conventional P
According to the membrane having a microstructure different from that of the TFE porous membrane, the functions such as filtration, concentration, and fractionation are not deteriorated,
The present inventors have completed the present invention by finding that the throughput can be increased to a high level.

【0009】即ち、本発明に係るPTFE多孔質膜は結
節と、結節相互を連結する繊維から成るPTFE多孔質
膜であり、表面部分における繊維の配向方向と内部にお
ける繊維の配向方向が異なることを特徴とするものであ
る。
That is, the PTFE porous membrane according to the present invention is a PTFE porous membrane composed of nodules and fibers that connect the nodules, and the orientation direction of the fibers at the surface portion and the orientation direction of the fibers inside are different. It is a feature.

【0010】本発明に係るPTFE多孔質膜の表面およ
び内部のミクロ構造は走査型電子顕微鏡(Scanni
ng Electron Microscope、以
下、「SEM」という)を用い倍率約2000〜300
00倍で観察することにより知ることができる。PTF
E多孔質膜の表面をSEMにより観察することは既によ
く行われており、本発明に係るPTFE多孔質膜の表面
(この面は多孔質膜の一方の面あるいはその反対面のい
ずれでもよい)のミクロ構造の観察も従来と同様にして
行うことができ、特殊な操作を要しない。一方、内部の
ミクロ構造は、例えば、予め多孔質膜に切り欠きを入
れ、多孔質膜表面に粘着テープを貼着し、その後該テー
プを剥離し、この際に多孔質膜の表面部分を同時に剥離
することにより内部を露出させ、これを観察することに
より知ることができる。剥離により除去する表面部分の
厚さは通常約3〜30μmである。
The microstructure of the surface and inside of the PTFE porous membrane according to the present invention is a scanning electron microscope (Scanni).
ng Electron Microscope (hereinafter referred to as "SEM") using a magnification of about 2000 to 300
It can be known by observing at 00 times. PTF
The surface of the E porous membrane is already well observed by SEM, and the surface of the PTFE porous membrane according to the present invention (this surface may be one surface of the porous membrane or the opposite surface thereof). The microstructure can be observed in the same manner as in the past, and no special operation is required. On the other hand, as for the internal microstructure, for example, a notch is previously made in the porous film, an adhesive tape is attached to the surface of the porous film, and then the tape is peeled off, and at the same time, the surface portion of the porous film is simultaneously removed. It can be known by exposing the inside by peeling and observing this. The thickness of the surface portion removed by peeling is usually about 3 to 30 μm.

【0011】図1は本発明に係るPTFE多孔質膜の表
面部分のミクロ構造の実例を示すSEM写真であり、図
2は内部のミクロ構造の実例を示すSEM写真である。
図1および図2から本発明に係るPTFE多孔質膜は表
面部分、内部のいずれにおいても多数の結節と、隣接す
るあるいは近くの結節相互を連結する多数の繊維からな
り、更に、繊維と繊維の間の空隙が微細孔であるミクロ
構造を有していることが判る。
FIG. 1 is an SEM photograph showing an example of the microstructure of the surface portion of the PTFE porous membrane according to the present invention, and FIG. 2 is an SEM photograph showing an example of the internal microstructure.
1 and 2, the PTFE porous membrane according to the present invention is composed of a large number of nodules on both the surface portion and the inside and a large number of fibers that connect adjacent or nearby nodules. It can be seen that the spaces between have microstructures that are micropores.

【0012】そして、図1と図2の対比から、表面部分
における繊維の配向方向と内部における繊維の配向方向
が異なっていることも判る。この実例では表面部分にお
ける繊維の配向方向と内部における繊維の配向方向はほ
ぼ直交している(繊維の配向方向が約90°異なる)。
このように表面部分と内部における繊維の配向方向が異
なることが本発明に係る多孔質膜の最大の特徴であり、
かようなミクロ構造は従来のPTFE多孔質膜と全く異
なる新規なものである。また、この例に示す多孔質膜に
おいては表面部分における結節の大きさが内部における
結節の大きさに比べ巨大であることも判る。
From the comparison between FIG. 1 and FIG. 2, it can be seen that the orientation direction of the fibers in the surface portion is different from the orientation direction of the fibers in the inside. In this example, the orientation direction of the fibers in the surface portion and the orientation direction of the fibers in the inside are substantially orthogonal to each other (the orientation directions of the fibers differ by about 90 °).
Thus, the greatest feature of the porous membrane according to the present invention is that the orientation direction of the fibers in the surface portion and inside is different,
Such a microstructure is a novel one which is completely different from the conventional PTFE porous membrane. It is also found that in the porous membrane shown in this example, the size of the nodule on the surface portion is larger than the size of the nodule inside.

【0013】かようなミクロ構造を有するPTFE多孔
質膜によれば、何故、濾別、濃縮、分画等の機能を維持
して処理量を増加できるのかは未だ解明されていない
が、実施例に示される如く、その効果が確認された。
The reason why the PTFE porous membrane having such a microstructure can increase the throughput by maintaining the functions of filtration, concentration, fractionation, etc. has not yet been elucidated. The effect was confirmed as shown in FIG.

【0014】次に、本発明に係るPTFE多孔質膜の製
造法について述べる。この方法は結晶化熱が18J/g
以下のPTFE粉末と液状潤滑剤の混和物をフィルム状
に成形し、次いでこのフィルムを一軸延伸し、その後該
延伸方向の寸法を規制するかあるいは全収縮させない範
囲で収縮させながらPTFEの融点以上の温度に加熱し
て焼成し、次に前記延伸方向と直交する方向に延伸する
ことを特徴とするものである。
Next, a method for producing the PTFE porous membrane according to the present invention will be described. This method has a heat of crystallization of 18 J / g
The following mixture of PTFE powder and liquid lubricant was formed into a film, and then this film was uniaxially stretched, and then the dimension in the stretching direction was regulated, or the film was shrunk to the extent that it did not cause total shrinkage. It is characterized in that it is heated to a temperature and fired, and then stretched in a direction orthogonal to the stretching direction.

【0015】本発明に係る方法には結晶化熱が18J/
g以下のPTFE粉末を用いる必要がある。結晶化熱が
18J/gよりも大きなPTFE粉末を用いると、表面
部分と内部の繊維の配向方向の異なる多孔質膜を得るこ
とができない。
The method according to the invention has a heat of crystallization of 18 J /
It is necessary to use less than g PTFE powder. If a PTFE powder having a heat of crystallization of more than 18 J / g is used, it is impossible to obtain a porous film in which the orientation directions of the fibers in the surface portion and the inside are different.

【0016】PTFE粉末の結晶化熱は示差走査熱量計
(Defferential Scanning Ca
lorimeter、以下、「DSC」という)により
測定できることは既に知られている。従って、本発明に
おいてもこの方法によりPTFE粉末の結晶化熱を測定
できる。例えば、PTFE粉末約10mgを採取して精
秤し、これを試料として初期設定温度200℃、昇温速
度10℃/min、最高到達温度380℃、降温速度1
0℃/min、降温最終温度200℃の温度条件で図3
に示すようなDSC曲線をチャート紙に採る。そして、
このDSC曲線から常法に従ってピーク面積(J)を算
出し、その後、ピーク面積を試料重量(g)で除するこ
とにより結晶化熱(J/g)を求めることができる。
The heat of crystallization of the PTFE powder is measured by a differential scanning calorimeter (Differential Scanning Ca).
It is already known that it can be measured by a lorimeter (hereinafter referred to as "DSC"). Therefore, also in the present invention, the heat of crystallization of the PTFE powder can be measured by this method. For example, about 10 mg of PTFE powder is sampled and precisely weighed, and using this as a sample, an initial setting temperature of 200 ° C., a temperature rising rate of 10 ° C./min, a maximum attainable temperature of 380 ° C., and a temperature lowering rate of 1
Figure 3 under the temperature conditions of 0 ℃ / min and the final temperature drop of 200 ℃
The DSC curve as shown in is taken on a chart paper. And
The heat of crystallization (J / g) can be determined by calculating the peak area (J) from this DSC curve according to a conventional method and then dividing the peak area by the sample weight (g).

【0017】また、本発明においてはPTFE粉末とし
て粒径が0.25μm以上の一次粒子から得られる二次
粒子を用いることが好ましい。液状潤滑剤と混和して成
形するPTFE粉末は「ファインパウダー」とも呼ば
れ、このファィンパウダーはテトラフルオロエチレンを
水中で乳化重合させることによりPTFEの一次粒子を
生成させ、次いでこの一次粒子を凝析や高速攪拌により
二次粒子化し、次いで水と分離し、更にこれを乾燥して
製造される。そして、本発明においては上記したように
このファィンパウダーとして粒径が0.25μm以上の
一次粒子を二次粒子化させたものを使用することが好ま
しい。
In the present invention, it is preferable to use secondary particles obtained from primary particles having a particle size of 0.25 μm or more as the PTFE powder. The PTFE powder formed by mixing with a liquid lubricant is also called "fine powder". This fine powder produces primary particles of PTFE by emulsion polymerization of tetrafluoroethylene in water, and then the primary particles are Secondary particles are formed by coagulation or high-speed stirring, then separated from water, and dried to produce. In the present invention, as described above, it is preferable to use, as the fine powder, primary particles having a particle size of 0.25 μm or more, which are made into secondary particles.

【0018】なお、二次粒子としてのファインパウダー
を得るのに用いた一次粒子の粒径は、例えば、二次粒子
を約10000倍の倍率でSEM観察することにより求
めることができる。PTFEの一次粒子(この粒子は球
状体乃至楕円体である)の長径および短径を求め、長径
と短径を合計した値を「2」で除して一次粒子径とす
る。
The particle size of the primary particles used to obtain the fine powder as the secondary particles can be determined, for example, by observing the secondary particles at a magnification of about 10,000 times with an SEM. The major axis and minor axis of the PTFE primary particles (the particles are spherical or ellipsoidal) are determined, and the total value of the major axis and the minor axis is divided by "2" to obtain the primary particle diameter.

【0019】本発明の方法においては、先ず、PTFE
粉末と液状潤滑剤の混和物がフィルム状に成形される。
混和物の成形は押出および/または圧延によるが、他の
成形方法、例えば、圧縮等を付加的に行ってもよい。こ
の工程において重要なことはPTFE粉末として上記し
たように結晶化熱が18J/g以下のものを用いること
であり、その他の点は従来から行われているPTFEの
ペースト成形と同様であってよい。
In the method of the present invention, first, PTFE is used.
A mixture of powder and liquid lubricant is formed into a film.
The mixture is formed by extrusion and / or rolling, but other forming methods such as compression may be additionally performed. What is important in this step is to use the PTFE powder having a heat of crystallization of 18 J / g or less as described above, and other points may be the same as the conventional PTFE paste molding. .

【0020】従って、液状潤滑剤としてはPTFE粉末
を濡らすことができ、成形後の適当な段階に抽出や蒸発
により除去できるものが使用でき、その具体例としては
流動パラフィン、ナフサ、ホワイトオイル等の炭化水素
油、トルエン、キシレン等の芳香族炭化水素類、アルコ
ール類、ケトン類、エステル類、シリコーンオイル、フ
ルオロクロロカーボンオイル、界面活性剤を含む水等が
挙げられる。
Therefore, as the liquid lubricant, one which can wet the PTFE powder and can be removed by extraction or evaporation at an appropriate stage after molding can be used. Specific examples thereof include liquid paraffin, naphtha, white oil and the like. Examples thereof include hydrocarbon oils, aromatic hydrocarbons such as toluene and xylene, alcohols, ketones, esters, silicone oil, fluorochlorocarbon oil, water containing a surfactant, and the like.

【0021】この際のPTFE粉末と液状潤滑剤との混
和の割合は他の添加剤の有無等によっても変わ得るが、
通常、PTFE粉末100重量部に対し、液状潤滑剤5
〜50重量部である。
At this time, the mixing ratio of the PTFE powder and the liquid lubricant may be changed depending on the presence or absence of other additives.
Usually, liquid lubricant 5 is added to 100 parts by weight of PTFE powder.
˜50 parts by weight.

【0022】また、PTFE粉末と液状潤滑剤に加え、
種々の添加剤、例えば、着色のための顔料、圧縮に対す
る強度の向上、耐摩耗性の向上等のためにカーボンブラ
ック、グラファイト、シリカ粉、ガラス粉、金属粉、金
属酸化物粉、金属硫化物粉等を混和することもできる。
In addition to the PTFE powder and the liquid lubricant,
Various additives such as pigments for coloring, carbon black, graphite, silica powder, glass powder, metal powder, metal oxide powder, metal sulfide for improving strength against compression, wear resistance, etc. It is also possible to mix powders and the like.

【0023】このようにして混和物をフィルム状に成形
した後、これを一軸延伸する。延伸はPTFEの融点よ
りも低い温度であれば限定されないが、作業性の点から
は約50〜250℃が好ましい。なお、この成形物は液
状潤滑剤を含有しているので、延伸に先立ち、抽出法、
加熱法あるいはこれらを組み合わせた方法により該潤滑
剤を除去しておくことができる。勿論、延伸を加熱条件
下で行う場合には延伸時に液状潤滑剤を蒸発除去させて
もよく、あるいは延伸後に除去するようにしてもよい。
After the mixture is formed into a film in this manner, it is uniaxially stretched. The stretching is not limited as long as it is lower than the melting point of PTFE, but from the viewpoint of workability, it is preferably about 50 to 250 ° C. Since this molded product contains a liquid lubricant, prior to stretching, the extraction method,
The lubricant can be removed by a heating method or a combination thereof. Of course, when the stretching is performed under heating conditions, the liquid lubricant may be removed by evaporation during the stretching, or may be removed after the stretching.

【0024】フィルム状成形物を一軸延伸する際の延伸
率は表面部分と内部における繊維の配向方向の異なる多
孔質膜を得るために、30〜300%が好ましく、50
〜250%がより好ましいことが判明している。この一
軸延伸によりフィルムは多孔質化するが、この段階では
そのミクロ構造は何ら特異ではない。即ち、この一軸延
伸フィルムは、従来の延伸PTFE多孔質膜と同様に多
数の結節とこれら結節を連結する多数の繊維から成り
(繊維と繊維の間の空隙が微細孔である)、繊維は延伸
方向に沿って配向(延伸方向と同方向に配向)し、この
繊維の配向方向は表面部分と内部とで何ら異なることな
く同じである。
The uniaxially stretching of the film-shaped molded product is preferably 30 to 300%, preferably 50 to 50%, in order to obtain a porous film having different fiber orientation directions at the surface portion and inside.
~ 250% has been found to be more preferred. This uniaxial stretching makes the film porous, but its microstructure is not unique at this stage. That is, this uniaxially stretched film is composed of a large number of nodules and a large number of fibers that connect these nodules (the voids between the fibers are micropores) like the conventional stretched PTFE porous membrane, and the fibers are stretched. The fibers are oriented along the same direction (oriented in the same direction as the drawing direction), and the orientation direction of this fiber is the same in the surface portion and the inside without any difference.

【0025】かようにして多孔質化されたフィルム状物
は次いで加熱により焼成される。加熱温度はPTFEの
融点以上であればよいが、フィルム状物の変質防止等の
ためには340〜410℃が好ましい。焼成時間は温
度、フィルム厚さ、加熱方法等により変わり得るが、通
常、約1〜10分である。
The film-like material thus made porous is then baked by heating. The heating temperature may be equal to or higher than the melting point of PTFE, but is preferably 340 to 410 ° C. in order to prevent alteration of the film-like material. The firing time may vary depending on the temperature, film thickness, heating method, etc., but is usually about 1 to 10 minutes.

【0026】延伸されたフィルムは加熱により延伸方向
の寸法が延伸前の寸法まで収縮する性質があるが、この
焼成は延伸されたフィルム状物の延伸方向の寸法が変化
しないように規制するか、あるいは全収縮(延伸前の寸
法まで収縮)させないように収縮させながら行う。収縮
させながら行う場合の収縮の程度は、一軸延伸時の延伸
率、目的とする多孔質膜の孔径等に応じて変わり得る
が、60%以下が好ましい。この収縮率(%)は焼成前
の寸法L0 (フィルム状物を多孔質化させるために行っ
た一軸延伸時における延伸方向の寸法)と、焼成後の寸
法L1 に基づき下記の数1により算出される値である。
The stretched film has a property that the dimension in the stretching direction shrinks to the dimension before stretching by heating, but this firing is regulated so as not to change the dimension in the stretching direction of the stretched film material, or Alternatively, it is performed while shrinking so as not to completely shrink (shrink to the size before stretching). The degree of shrinkage in the case of performing shrinkage may vary depending on the stretch ratio during uniaxial stretching, the target pore diameter of the porous membrane, and the like, but is preferably 60% or less. This shrinkage (%) is based on the following dimension 1 based on the dimension L 0 before firing (the dimension in the stretching direction during uniaxial stretching performed to make the film-like material porous) and the dimension L 1 after firing. It is a calculated value.

【0027】[0027]

【数1】 [Equation 1]

【0028】上記のように延伸方向の寸法を規制あるい
は全収縮させないようにして焼成すると、表面部分は溶
融により結節および繊維が共に消滅し実質的に無孔構造
となり、一方、内部は繊維長さが若干短くなり微細孔の
孔径が小さくなる傾向があるものの結節と結節相互を連
結する繊維から成り、且つ繊維が延伸方向に沿って配向
しているという基本的なミクロ構造は変化せずに保存さ
れる。ただし、焼成時に前記収縮率が60%を越えるよ
うな場合には、内部においても結節および繊維が激減乃
至消滅してしまい、次工程での延伸を行っても表面部分
と内部の繊維の配向の異なる多孔質膜を得ることが困難
になるので、この点には充分注意する必要がある。
When firing is performed with the dimension in the stretching direction being restricted or not being completely shrunk as described above, the surface portion has a substantially non-porous structure in which both nodules and fibers disappear due to melting, while the inside has a fiber length. Although it tends to be slightly shorter and the pore size of the micropores tends to be smaller, it is preserved without changing the basic microstructure consisting of nodules and fibers connecting the nodules, and the fibers are oriented along the stretching direction. To be done. However, in the case where the shrinkage ratio exceeds 60% during firing, the nodules and fibers are drastically reduced or disappeared even in the interior, and even if stretching is performed in the next step, the orientation of the fibers in the surface portion and the interior is Since it is difficult to obtain different porous membranes, it is necessary to pay attention to this point.

【0029】焼成されたフィルム状物の表面が上記した
ように実質的に無孔構造であることは、該フィルム表面
をSEMにより観察することによって確認でき、また、
該フィルム状物を濾過膜として液体の透過試験を行うと
フラックス(液透過量)が実質的に「0」であることか
らも確認できる。
It can be confirmed by observing the surface of the film with an SEM that the surface of the fired film-like material has a substantially non-porous structure as described above.
It can also be confirmed from the fact that the flux (liquid permeation amount) is substantially “0” when a liquid permeation test is performed using the film-like material as a filtration membrane.

【0030】本発明の方法においては次いで焼成フィル
ムが前記一軸延伸時の延伸方向に直交する方向に延伸さ
れる。この延伸もPTFEの融点以下好ましくは80〜
300℃の温度条件下で行う。延伸率は特に限定されな
いが、通常、約50〜500%である。
In the method of the present invention, the fired film is then stretched in the direction orthogonal to the stretching direction during the uniaxial stretching. This stretching is also below the melting point of PTFE, preferably 80-
It is carried out under the temperature condition of 300 ° C. The stretching rate is not particularly limited, but is usually about 50 to 500%.

【0031】そして、この延伸により、表面部分には多
数の結節と、これら結節相互を連結する多数の繊維が再
形成され、該表面部分は再び多孔質構造(繊維と繊維の
間の空隙が微細孔である)となる。そして、この表面部
分の繊維は延伸方向(即ち、焼成後の延伸時における延
伸方向)に沿って配向している。一方、内部のミクロ構
造は微細孔の径が拡大すること以外は殆ど変化しない。
その結果、表面部分と内部における繊維の配向方向は異
なるものとなり、目的とする多孔質膜が得られる。
By this stretching, a large number of nodules and a large number of fibers connecting these nodules are reformed on the surface portion, and the surface portion has a porous structure again (the voids between the fibers are fine). It is a hole). The fibers of this surface portion are oriented along the stretching direction (that is, the stretching direction at the time of stretching after firing). On the other hand, the internal microstructure hardly changes except that the diameter of the micropores increases.
As a result, the orientation direction of the fibers in the surface portion is different from that in the inside, and the desired porous membrane is obtained.

【0032】[0032]

【実施例】以下、実施例により本発明を更に詳細に説明
する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0033】実施例1 粒径0.51μmの一次粒子を二次粒子化したPTFE
粉末(結晶化熱12.6J/g、平均粒径450μm)
100重量部に対し、33重量部の流動パラフィンを均
一に混合し、この混和物を圧力20kg/cm2 の条件
で圧縮予備成形し、次いで押出成形により直径20mm
のロッド状とし、これを金属製圧延ロールにより圧延し
て厚さ150μmの長尺フィルム状とし、トリクロロエ
チレン中に浸漬して流動パラフィンを抽出除去する。
Example 1 PTFE obtained by converting primary particles having a particle size of 0.51 μm into secondary particles
Powder (heat of crystallization 12.6 J / g, average particle size 450 μm)
33 parts by weight of liquid paraffin were uniformly mixed with 100 parts by weight, and the mixture was compression preformed under a pressure of 20 kg / cm 2 and then extruded to a diameter of 20 mm.
The rod-shaped rod is rolled into a long film having a thickness of 150 μm by rolling with a metal rolling roll, and immersed in trichlorethylene to extract and remove liquid paraffin.

【0034】このフィルム状物を温度200℃で長尺方
向に延伸率が100%になるように一軸延伸する。次
に、その長尺方向の寸法が変化しないように規制して温
度355℃で5分間加熱することにより焼成する。そし
て、その後温度150℃で幅方向(長尺方向に直交する
方向)に延伸率が200%なるように延伸し厚さ約80
μmの多孔質膜を得た。
This film-like material is uniaxially stretched at a temperature of 200 ° C. in the longitudinal direction so that the stretching ratio is 100%. Next, firing is performed by regulating the lengthwise direction so as not to change and heating at a temperature of 355 ° C. for 5 minutes. Then, the film is drawn at a temperature of 150 ° C. in the width direction (direction orthogonal to the lengthwise direction) so that the draw ratio is 200%, and the thickness is about 80.
A porous film of μm was obtained.

【0035】この多孔質膜の表面および内部のミクロ構
造をSEMにより観察した写真を図1および2(倍率は
いずれも10000倍)として示す。内部の観察は多孔
質膜の一方の表面に粘着テープ(日東電工社製、商品名
No. 375)を貼着した後この粘着テープを剥離し、テ
ープ剥離時に多孔質膜の表面部分を同時に剥離(剥離厚
さ約10μm)することにより内部を露出させて行っ
た。なお、多孔質膜の粘着テープ貼着面には、該テープ
の貼着に先立ちナイフにより切り欠きを入れておいたの
で、表面部分の剥離は容易に行うことができた。
Photographs of the microstructures on the surface and inside of this porous film observed by SEM are shown in FIGS. 1 and 2 (magnification: 10,000 times). The inside is observed by adhesive tape (made by Nitto Denko Corporation, trade name on one surface of the porous film.
After adhering No. 375), the pressure-sensitive adhesive tape was peeled off, and when the tape was peeled off, the surface portion of the porous film was simultaneously peeled off (peeling thickness of about 10 μm) to expose the inside. Since the notch was made on the surface of the porous film on which the adhesive tape was adhered by a knife prior to adhering the tape, the surface portion could be easily peeled off.

【0036】図1および図2からこの多孔質膜のミクロ
構造は、多数の結節と、これら結節相互を連結する繊維
から成り、表面部分においては繊維が焼成後における延
伸方向(図中の矢印X方向)に沿って配向し、内部にお
いては焼成前における延伸方向(図中の矢印Y)に沿っ
て配向しており、表面部分と内部における繊維の配向方
向がほぼ直交するものであることが判る。
From FIGS. 1 and 2, the microstructure of this porous membrane is composed of a large number of nodules and fibers connecting these nodules, and in the surface portion, the fibers are stretched in the stretching direction (arrow X in the drawings). Direction), and inside is oriented along the stretching direction (arrow Y in the figure) before firing, and it can be seen that the orientation direction of the fiber in the surface part and the inside is almost orthogonal. .

【0037】この多孔質膜を濾過膜とし、粒径0.10
5μmのスチレンラテックスを100ppmの濃度で含
む水を差圧380mmHgで透過させて、ラテックス除
去率を測定したところ、92%であった。また、AST
M−F317−72に規定される方法でエタノールフラ
ックスを測定したところ、3.8ml/cm2 ・min
であった。
This porous membrane is used as a filtration membrane and has a particle size of 0.10.
Water containing 5 μm of styrene latex at a concentration of 100 ppm was permeated at a differential pressure of 380 mmHg, and the latex removal rate was measured to be 92%. Also, AST
When the ethanol flux was measured by the method specified in M-F317-72, it was 3.8 ml / cm 2 · min.
Met.

【0038】実施例2 粒径0.42μmの一次粒子を二次粒子化したPTFE
粉末(結晶化熱15.2J/g、平均粒径480μm)
を用いること以外は実施例1と同様にして多孔質膜(厚
さ約80μm)を得た。
Example 2 PTFE obtained by converting primary particles having a particle size of 0.42 μm into secondary particles
Powder (heat of crystallization 15.2 J / g, average particle size 480 μm)
A porous membrane (thickness: about 80 μm) was obtained in the same manner as in Example 1 except that was used.

【0039】この多孔質膜のミクロ構造も図1および図
2に示すのと同様に、多数の結節と、これら結節相互を
連結する繊維から成り、表面部分においては繊維が焼成
後における延伸方向(図中の矢印X方向)に沿って配向
し、内部においては焼成前における延伸方向(図中の矢
印Y)に沿って配向しており、表面部分と内部における
繊維の配向方向がほぼ直交するものであった。
The microstructure of this porous membrane is also composed of a large number of nodules and fibers that connect these nodules to each other, as in the case shown in FIGS. Oriented along the direction of the arrow X in the figure) and internally oriented along the direction of stretching before firing (arrow Y in the figure), and the orientation of the fibers on the surface and inside is substantially orthogonal. Met.

【0040】この多孔質膜について実施例1と同様な試
験を行ったところ、ラテックス除去率は61%、フラッ
クスは4.0ml/cm2 ・minであった。
When the same test as in Example 1 was conducted on this porous film, the latex removal rate was 61% and the flux was 4.0 ml / cm 2 · min.

【0041】実施例3 粒径0.30μmの一次粒子を二次粒子化したPTFE
粉末(結晶化熱17.0J/g、平均粒径480μm)
を用いること以外は実施例1と同様にして多孔質膜(厚
さ約80μm)を得た。
Example 3 PTFE obtained by converting primary particles having a particle size of 0.30 μm into secondary particles
Powder (heat of crystallization 17.0 J / g, average particle size 480 μm)
A porous membrane (thickness: about 80 μm) was obtained in the same manner as in Example 1 except that was used.

【0042】この多孔質膜のミクロ構造も図1および図
2に示すのと同様に、多数の結節と、これら結節相互を
連結する繊維から成り、表面部分においては繊維が焼成
後における延伸方向(図中の矢印X)に沿って配向し、
内部においては繊維が焼成前における延伸方向(図中の
矢印Y)に沿って配向しており、表面部分と内部におけ
る繊維の配向方向がほぼ直交するものであった。
Similarly to the microstructure of this porous membrane, as shown in FIGS. 1 and 2, a large number of nodules and fibers connecting these nodules to each other are formed. Oriented along the arrow X) in the figure,
In the inside, the fibers were oriented along the stretching direction (arrow Y in the figure) before firing, and the orientation of the fibers in the surface portion and inside were substantially orthogonal.

【0043】この多孔質膜について実施例1と同様な試
験を行ったところ、ラテックス除去率は50%、フラッ
クスは4.2ml/cm2 ・minであった。
When the same test as in Example 1 was conducted on this porous membrane, the latex removal rate was 50% and the flux was 4.2 ml / cm 2 · min.

【0044】実施例4 一軸延伸時における延伸率を180%とすること、およ
び一軸延伸時における延伸方向の寸法を30%収縮させ
ながら焼成を行うこと以外は以外は実施例1と同様に作
業して多孔質膜(厚さ約80μm)を得た。
Example 4 The same procedure as in Example 1 was carried out except that the stretching ratio during uniaxial stretching was 180%, and firing was performed while shrinking the dimension in the stretching direction during uniaxial stretching by 30%. A porous film (thickness: about 80 μm) was obtained.

【0045】この多孔質膜も図1および図2に示すのと
同様に、多数の結節と、結節相互を連結する繊維から成
り、表面部分においては繊維が焼成後における延伸方向
(図中の矢印X)に沿って配向し、内部においては繊維
が焼成前における延伸方向(図中の矢印Y)に沿って配
向しており、表面部分と内部における繊維の配向方向が
ほぼ直交するものであった。
This porous membrane is also composed of a large number of nodules and fibers that connect the nodules, as in the case shown in FIGS. 1 and 2, and in the surface portion, the fibers are stretched in the stretching direction (arrows in the drawings). X), the fibers were oriented along the stretching direction (arrow Y in the figure) before firing inside, and the orientation direction of the fibers on the surface portion and inside was substantially orthogonal. .

【0046】この多孔質膜について実施例1と同様な試
験を行ったところ、ラテックス除去率は71%、フラッ
クスは4.4ml/cm2 ・minであった。
When the same test as in Example 1 was conducted on this porous membrane, the latex removal rate was 71% and the flux was 4.4 ml / cm 2 · min.

【0047】実施例5 一軸延伸時における延伸率を230%とすること、およ
び一軸延伸時における延伸方向の寸法を50%収縮させ
ながら焼成を行うこと以外は以外は実施例1と同様に作
業して多孔質膜(厚さ約90μm)を得た。
Example 5 The same operation as in Example 1 was carried out except that the stretching ratio during uniaxial stretching was 230%, and firing was performed while shrinking the dimension in the stretching direction during uniaxial stretching by 50%. A porous film (thickness: about 90 μm) was obtained.

【0048】この多孔質膜も図1および図2に示すのと
同様に、多数の結節と、結節相互を連結する繊維から成
り、表面部分においては繊維が焼成後における延伸方向
(図中の矢印X)に沿って配向し、内部においては繊維
が焼成前における延伸方向(図中の矢印Y)に沿って配
向しており、表面部分と内部における繊維の配向方向が
ほぼ直交するものであった。
This porous membrane is also composed of a large number of nodules and fibers connecting the nodules, as in the case shown in FIGS. 1 and 2, and in the surface portion, the fibers are drawn in the direction of stretching after firing (the arrow in the figure). X), the fibers were oriented along the stretching direction (arrow Y in the figure) before firing inside, and the orientation direction of the fibers on the surface portion and inside was substantially orthogonal. .

【0049】この多孔質膜について実施例1と同様な試
験を行ったところ、ラテックス除去率は81%、フラッ
クスは3.2ml/cm2 ・minであった。
When the same test as in Example 1 was conducted on this porous membrane, the latex removal rate was 81% and the flux was 3.2 ml / cm 2 · min.

【0050】比較例1 結晶化熱22J/g、平均粒径500μmのPTFE粉
末を用いること以外は実施例1と同様に作業して多孔質
膜を得た。この多孔質膜のミクロ構造を実施例と同様に
して観察したところ、内部には焼成前の延伸方向に沿っ
て配向した繊維が認められるものの、表面には繊維がほ
とんど認められず、また、形成された孔も粗大なもので
あった。
Comparative Example 1 A porous film was obtained in the same manner as in Example 1 except that PTFE powder having a crystallization heat of 22 J / g and an average particle size of 500 μm was used. When the microstructure of this porous film was observed in the same manner as in Example, fibers oriented along the stretching direction before firing were observed inside, but almost no fibers were observed on the surface, and formation The holes made were also coarse.

【0051】この多孔質膜について実施例1と同様な試
験を行ったところ、ラテックス除去率は2%、フラック
スは2.1ml/cm2 ・minであった。
When the same test as in Example 1 was conducted on this porous membrane, the latex removal rate was 2% and the flux was 2.1 ml / cm 2 · min.

【0052】比較例2 実施例1と同様にしてPTFE粉末と流動パラフィンの
混合、圧縮予備成形、押出成形、圧延、流動パラフィン
の抽出除去および長尺方向への一軸延伸を行う。次い
で、温度150℃で幅方向に延伸率が200%になるよ
うに延伸、その後両方向の寸法が変化しないように規制
して温度350℃で5分間加熱することにより焼成し、
厚さ約90μmの多孔質膜を得た。
Comparative Example 2 In the same manner as in Example 1, mixing of PTFE powder and liquid paraffin, compression preforming, extrusion molding, rolling, extraction and removal of liquid paraffin, and uniaxial stretching in the longitudinal direction are performed. Then, it is stretched at a temperature of 150 ° C. so as to have a stretching ratio of 200% in the width direction, then regulated so that the dimensions in both directions are not changed, and heated at a temperature of 350 ° C. for 5 minutes for firing.
A porous film having a thickness of about 90 μm was obtained.

【0053】この多孔質膜のミクロ構造を実施例と同様
にして観察したところ、表面と内部で同じであり、多数
の結節と、結節相互を連結する多数の繊維から成り、且
つ繊維は結節から放射状に伸びていることが確認され
た。
When the microstructure of this porous membrane was observed in the same manner as in the example, it was the same on the surface and in the inside, and consisted of a large number of nodules and a large number of fibers connecting the nodules, and the fibers were It was confirmed that it was extending radially.

【0054】この多孔質膜について実施例1と同様な試
験を行ったところ、ラテックス除去率は38%、フラッ
クスは4.7ml/cm2 ・minであった。
When the same test as in Example 1 was conducted on this porous film, the latex removal rate was 38% and the flux was 4.7 ml / cm 2 · min.

【0055】[0055]

【発明の効果】本発明は上記のように構成され、表面部
分と内部における繊維の配向方向が異なるミクロ構造を
しているので、濾過機能に優れているばかりでなく、単
位時間当たりの処理量も大きいという利点がある。ま
た、本発明の製造法によれば、この新規なミクロ構造を
有する多孔質膜を容易に製造できる。
EFFECTS OF THE INVENTION The present invention is constructed as described above, and has a microstructure in which the orientation directions of the fibers in the surface portion and inside are different, so that not only is the filtration function excellent, but the throughput per unit time is also high. Also has the advantage of being large. Further, according to the manufacturing method of the present invention, the porous film having this novel microstructure can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るPTFE多孔質膜の表面部分にお
ける繊維の配向を示すSEM写真である。
FIG. 1 is an SEM photograph showing the orientation of fibers in the surface portion of a PTFE porous membrane according to the present invention.

【図2】本発明に係るPTFE多孔質膜の内部における
繊維の配向を示すSEM写真である。
FIG. 2 is an SEM photograph showing the orientation of fibers inside the PTFE porous membrane according to the present invention.

【図3】本発明に用いるPTFE粉末の結晶化熱を求め
るためのDSC曲線である。
FIG. 3 is a DSC curve for determining the heat of crystallization of the PTFE powder used in the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年3月4日[Submission date] March 4, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係るPTFE多孔質膜の表面部分に
おける配向された繊維の形状を示すSEM写真である。
FIG. 1 is an SEM photograph showing a shape of oriented fibers in a surface portion of a PTFE porous membrane according to the present invention.

【図2】 本発明に係るPTFE多孔質膜の内部におけ
る配向された繊維の形状を示すSEM写真である。
FIG. 2 is a SEM photograph showing the shape of oriented fibers inside a PTFE porous membrane according to the present invention.

【図3】 本発明に用いるPTFE粉末の結晶化熱を求
めるためのDSC曲線である。
FIG. 3 is a DSC curve for determining the heat of crystallization of the PTFE powder used in the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上林 政博 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Uebayashi 1-2-1, Shimohozumi, Ibaraki City, Osaka Prefecture Nitto Denko Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 結節と結節相互を連結する繊維から成る
ポリテトラフルオロエチレン多孔質膜であり、表面部分
における繊維の配向方向と内部における繊維の配向方向
が異なることを特徴とするポリテトラフルオロエチレン
多孔質膜。
1. A polytetrafluoroethylene porous membrane comprising nodules and fibers connecting the nodules to each other, wherein the orientation of the fibers in the surface portion and the orientation of the fibers in the interior are different. Porous membrane.
【請求項2】 結晶化熱が18J/g以下のポリテトラ
フルオロエチレン粉末と液状潤滑剤の混和物をフィルム
状に成形し、次いでこのフィルムを一軸延伸し、その後
該延伸方向の寸法を規制するかあるいは全収縮させない
範囲で収縮させながらポリテトラフルオロエチレンの融
点以上の温度に加熱して焼成し、次に前記延伸方向と直
交する方向に延伸することを特徴とするポリテトラフル
オロエチレン多孔質膜の製造法。
2. A mixture of a polytetrafluoroethylene powder having a heat of crystallization of 18 J / g or less and a liquid lubricant is formed into a film, the film is uniaxially stretched, and then the dimension in the stretching direction is regulated. Alternatively, the polytetrafluoroethylene porous membrane is characterized in that it is heated to a temperature equal to or higher than the melting point of polytetrafluoroethylene while being shrunk in a range where it is not totally shrunk, is baked, and is then stretched in a direction orthogonal to the stretching direction. Manufacturing method.
【請求項3】 粒径が0.25μm以上の一次粒子から
形成したポリテトラフルオロエチレンの二次粒子粉末を
用いる請求項2記載のポリテトラフルオロエチレン多孔
質膜の製造法。
3. The method for producing a polytetrafluoroethylene porous membrane according to claim 2, wherein a secondary particle powder of polytetrafluoroethylene formed from primary particles having a particle size of 0.25 μm or more is used.
JP4103293A 1993-03-02 1993-03-02 Polytetrafluoroethylene porous membrane and method for producing the same Expired - Lifetime JP3260890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4103293A JP3260890B2 (en) 1993-03-02 1993-03-02 Polytetrafluoroethylene porous membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4103293A JP3260890B2 (en) 1993-03-02 1993-03-02 Polytetrafluoroethylene porous membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06256549A true JPH06256549A (en) 1994-09-13
JP3260890B2 JP3260890B2 (en) 2002-02-25

Family

ID=12597065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4103293A Expired - Lifetime JP3260890B2 (en) 1993-03-02 1993-03-02 Polytetrafluoroethylene porous membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP3260890B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814405A (en) * 1995-08-04 1998-09-29 W. L. Gore & Associates, Inc. Strong, air permeable membranes of polytetrafluoroethylene
JP2013235665A (en) * 2012-05-07 2013-11-21 Nitto Denko Corp Polymer electrolytic film and fuel battery using the same
WO2018147394A1 (en) * 2017-02-09 2018-08-16 積水化学工業株式会社 Synthetic resin microporous film, method for producing same, separator for power storage device, and power storage device
WO2018147395A1 (en) * 2017-02-09 2018-08-16 積水化学工業株式会社 Synthetic resin microporous film, method for producing same, separator for power storage device, and power storage device
WO2020031418A1 (en) * 2018-08-09 2020-02-13 住友電工ファインポリマー株式会社 Porous tube and porous tube production method
CN116925422A (en) * 2023-09-18 2023-10-24 国家电投集团氢能科技发展有限公司 Polytetrafluoroethylene membrane and preparation method thereof, expanded polytetrafluoroethylene and composite ion exchange membrane and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814405A (en) * 1995-08-04 1998-09-29 W. L. Gore & Associates, Inc. Strong, air permeable membranes of polytetrafluoroethylene
JP2013235665A (en) * 2012-05-07 2013-11-21 Nitto Denko Corp Polymer electrolytic film and fuel battery using the same
WO2018147394A1 (en) * 2017-02-09 2018-08-16 積水化学工業株式会社 Synthetic resin microporous film, method for producing same, separator for power storage device, and power storage device
WO2018147395A1 (en) * 2017-02-09 2018-08-16 積水化学工業株式会社 Synthetic resin microporous film, method for producing same, separator for power storage device, and power storage device
JPWO2018147395A1 (en) * 2017-02-09 2019-07-11 積水化学工業株式会社 Synthetic resin microporous film, method for producing the same, separator for electric storage device, and electric storage device
JPWO2018147394A1 (en) * 2017-02-09 2019-07-11 積水化学工業株式会社 Synthetic resin microporous film, method for producing the same, separator for electric storage device, and electric storage device
WO2020031418A1 (en) * 2018-08-09 2020-02-13 住友電工ファインポリマー株式会社 Porous tube and porous tube production method
CN116925422A (en) * 2023-09-18 2023-10-24 国家电投集团氢能科技发展有限公司 Polytetrafluoroethylene membrane and preparation method thereof, expanded polytetrafluoroethylene and composite ion exchange membrane and application thereof

Also Published As

Publication number Publication date
JP3260890B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
US4110392A (en) Production of porous sintered PTFE products
EP0402901B1 (en) Polytetrafluoroethylene porous material and process for producing the same
US4588633A (en) Polyethylene microporous membrane of ultra high molecular weight
US5043113A (en) Process for formation of halogenated polymeric microporous membranes having improved strength properties
CA1099463A (en) Microporous tubes and process for producing the same
US4248924A (en) Asymmetric porous film materials and process for producing same
US5234751A (en) Porous material of polytetrafluoroethylene and process for producing the same
JPH03179038A (en) Production of multilayered porous membrane of polytetrafluoroethylene
CN111093948B (en) Method for preparing porous film of fluorine-based resin
JPS6116840A (en) Manufacture of porous film of polytetrafluoroethylene
US4710331A (en) Process for the production of polytetrafluoroethylene porous membranes
JPH06256549A (en) Polytetrafluoroethylene porous membrane and its production
JP2001011224A (en) Preparation of porous tube and usage of porous tube
CN103561851B (en) Microporous modified polytetrafluoroethylene film, porous modified polytetrafluoroethylene resin film composite and method for producing same, and membrane separation element
JPH07119303B2 (en) Method for producing tetrafluoroethylene resin porous membrane
JP2533229B2 (en) Polytetrafluoroethylene porous body and method for producing the same
JPH0391544A (en) Porous tetrafluoroethylene resin body
KR20190060586A (en) Preparation method of porous fluorine resin sheet
JPS6144656B2 (en)
CA2025090C (en) Porous material of polytetrafluoroethylene and process for producing the same
TWI682956B (en) Porous fluorine resin film, preparation method thereof and automotive vent filter
WO2018221688A1 (en) Polytetrafluoroethylene porous film
JP3914302B2 (en) Method for producing porous film made of polytetrafluoroethylene
JP2007153967A (en) Ptfe porous body and bulk filter
JPH02196835A (en) Preparation of microporous, halogenated polymer film excellent in strength characteristics

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 12

EXPY Cancellation because of completion of term