JP3914302B2 - Method for producing porous film made of polytetrafluoroethylene - Google Patents

Method for producing porous film made of polytetrafluoroethylene Download PDF

Info

Publication number
JP3914302B2
JP3914302B2 JP21127297A JP21127297A JP3914302B2 JP 3914302 B2 JP3914302 B2 JP 3914302B2 JP 21127297 A JP21127297 A JP 21127297A JP 21127297 A JP21127297 A JP 21127297A JP 3914302 B2 JP3914302 B2 JP 3914302B2
Authority
JP
Japan
Prior art keywords
ptfe
molecular weight
polytetrafluoroethylene
membrane
low molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21127297A
Other languages
Japanese (ja)
Other versions
JPH1135716A (en
Inventor
村 忠 嗣 中
口 剣 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Valqua Industries Ltd
Original Assignee
Nippon Valqua Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Valqua Industries Ltd filed Critical Nippon Valqua Industries Ltd
Priority to JP21127297A priority Critical patent/JP3914302B2/en
Publication of JPH1135716A publication Critical patent/JPH1135716A/en
Application granted granted Critical
Publication of JP3914302B2 publication Critical patent/JP3914302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【0001】
【発明の技術分野】
本発明は、ポリテトラフルオロエチレン製多孔質膜の製造方法に関し、さらに詳しくは、機械的強度、透ガス量、透水量に優れ、しかも円形に近く比較的均一な孔を有するポリテトラフルオロエチレン製多孔質膜の製造方法に関する。
【0002】
【発明の技術的背景】
ポリテトラフルオロエチレン樹脂(以下PTFEと略記することがある)は、優れた耐薬品性、耐熱性、機械的特性を有するため、種々の分野で用いられている。たとえばPTFEからなる多孔質膜は、上記のような特性を利用して、腐食性物質あるいは高温物質のフィルタとして広く用いられており、また、電解隔膜、燃料電池などとしても用いられている。
【0003】
従来PTFE樹脂から多孔質膜を製造するには、テトラフルオロエチレンの乳化重合により得られる平均粒子径0.1〜0.4μmのファインパウダーと称されるPTFE微粒子に液状潤滑剤を配合して圧縮予備成形し、次いで押出または圧延あるいはこの両者を含む方法によりフィルム状とし、次に液状潤滑剤を除去した後、得られたPTFE膜を通常加熱条件下で一軸または二軸延伸するという方法が採られていた。(特公昭42−13560号公報、特開昭49−118760号公報、特公昭51−40902号公報、特公昭51−18991号公報参照)
また特公昭53−42794号公報には、焼成されたPTFE膜を327℃以上に加熱した後除冷し、その結晶化度が80%以上になるように熱処理し、次いで25〜260℃の温度において延伸倍率1.5〜4倍に一軸延伸することを特徴とするPTFE多孔体の製造方法が開示されている。
【0004】
ところが、このような方法により製造されたPTFE製多孔質膜は、孔を真円に近い形状に、しかも孔径を所定の大きさに製造することは難しいという問題点があった。また該多孔質膜の機械的強度も充分であるとは言えないという問題点もあった。
【0005】
またPTFE半焼結膜をその融点以下の温度で延伸することによって、PTFE多孔質膜を製造する方法も知られており、たとえば特公平6−89165号公報に記載されている。この方法によれば、高気孔率のPTFE多孔質膜を製造しうるが、PTFEを半焼結状態とするための熱処理条件の範囲が狭く、このような半焼結状態のPTFE膜を製造することが容易でないという問題点があった。
【0006】
【発明の目的】
本発明は、上記のような従来技術における問題点を解決しようとするものであって、真円形に近い孔を有し、しかも機械的強度、透ガス量、透水量に優れたPTFE製多孔質膜の製造方法を提供することを目的としている。
【0007】
【発明の概要】
本発明に係るPTFE製多孔質膜の製造方法は、PTFE製膜と、数平均分子量が500〜1万である低分子量PTFEとを、低分子量PTFEの融点以上の温度で接触させ、次いでこのPTFE製膜をPTFEの融点以下の温度で1.3〜6.5倍に一軸または二軸延伸することを特徴としている。
【0008】
本発明では、PTFE製膜と数平均分子量が500〜1万である低分子量PTFEとの接触は、たとえばPTFE膜上に低分子量PTFE粉末を付着させて行うか、あるいはPTFE膜を溶融状態の低分子量PTFE中に浸漬することによって行うことができる。
【0009】
【発明の具体的説明】
以下本発明に係るPTFE製多孔質膜の製造方法について説明する。
本発明では、まず、PTFE製膜と、低分子量PTFEとを、低分子量PTFEの融点(PTFEの融点は分子量により異なる)以上の温度で接触させる。
【0010】
PTFE製膜としては、PTFE製フィルム、PTFE製薄肉チューブなどが用いられる。このPTFE製膜の膜厚は10〜500μm程度であることが好ましい。
【0011】
このようなPTFE製膜としては、たとえば、乳化重合法によって得られたPTFEファインパウダーと液状潤滑剤との配合物を圧縮予備成形した後、これを押出または圧延あるいはこの両者を含む方法によってフィルム状としたものでもよい。また懸濁重合法によって得られたPTFEモールディングパウダーを圧縮成形して円筒状の予備成形品を作成し、次いでこの予備成形品をPTFEの融点(327℃)以上の温度で焼成した後、これを切削してフィルム状としたものでもよい。また複数枚のPTFE製膜を熱融着させて得られたものであってもよい。
【0012】
このようなPTFEの数平均分子量は、200万〜2000万、好ましくは200万〜800万程度である。
このようなPTFE製膜を、低分子量PTFEと、低分子量PTFEの融点以上の温度で接触させる。
【0013】
この操作は、具体的には、たとえば以下のような方法で行われる。
イ)PTFE膜上に、低分子量PTFE粉末をまぶすようにして付着させ、次いで低分子量PTFEの融点以上の温度に加熱した後冷却する。この際の加熱温度は、100〜400℃、好ましくは250〜380℃、さらに好ましくは300〜380℃程度であることが望ましい。
【0014】
加熱時間は、加熱温度によって大きく変化するが、通常5〜3600秒、好ましくは数秒〜20分程度であることが望ましい。
ロ)まず低分子量PTFE粉末を、エタノール、エチレングリコールなどの有機溶媒あるいは水などに分散させて分散液を調製する。次いでこの分散液をPTFE膜上に塗布あるいは噴霧して、PTFE膜上に低分子量PTFE粉末を付着させ、分散媒を除去した後、低分子量PTFEの融点以上の温度に加熱した後冷却する。加熱温度および加熱時間は、上記と同様である。
【0015】
ハ)まず低分子量PTFE粉末を加熱して溶融させる。次いでこの溶融状態にある低分子量PTFE中に、PTFE膜を浸漬して、PTFE膜と低分子量PTFEとを接触させ、PTFEの融点以上の温度に加熱した後冷却する。あるいはPTFE膜上に溶融状態にある低分子量PTFEを塗布または噴霧してPTFE膜と低分子量PTFEとを接触させ、低分子量PTFEの融点以上の温度に加熱した後冷却する。加熱温度および加熱時間は、上記と同様である。
【0016】
このようにしてPTFE膜と低分子量PTFEとを、低分子量PTFEの融点以上の温度で接触させた後冷却し、このPTFE膜をPTFEの融点以下の温度で1.3〜6.5倍に一軸または二軸延伸すると、PTFE製多孔質膜が得られる。
【0017】
この延伸温度は19〜320℃、好ましくは50〜290℃程度であることが望ましい。
PTFE膜の延伸倍率は1.3〜6.5倍であることが好ましく、この延伸倍率が6.5倍を超えると、膜にピンホールが発生したり、延伸時に膜が破断したりする恐があり、一方延伸倍率が1.3倍未満であると、所望の微細孔が得られないことがある。
【0018】
このような延伸は一軸または二軸方向好ましくは二軸方向に行われる。PTFE膜に二軸延伸を行うことによって、得られるPTFE多孔質膜の孔が真円に近づくという効果が認められる。
【0019】
本明細書において、低分子量PTFEとは、数平均分子量100万以下、好ましくは500〜1万、さらに好ましくは500〜2000程度のPTFEを意味する。このような低分子量PTFEは、たとえばセントラル硝子(株)より商品名セフラルルーブとして販売されている。
【0020】
本発明では、PTFE膜と低分子量PTFEとを、低分子量PTFEの融点以上の温度で接触させた後に、このPTFE膜をPTFEの融点以下の温度で1.3〜6.5倍に一軸または二軸延伸してPTFE製多孔質膜を製造すると、PTFE膜と低分子量PTFEとを低分子量PTFEの融点以上の温度で接触させないでPTFE製多孔質膜を製造した場合と比較して、透水量、透ガス量が高く、機械的強度にも優れたPTFE製多孔質膜が得られる。この理由については定かではないが、PTFE膜と低分子量PTFEとを低分子量PTFEの融点以上の温度で接触させることにより、PTFE膜中に低分子量PTFEが入りこみ、PTFE膜が膨潤し、このためPTFE膜の延伸工程で真円に近い孔が形成され、しかも透水量、透ガス量、機械的強度に優れたPTFE製多孔質膜が得られるのであろうと推測される。
【0021】
【発明の効果】
本発明によれば、透水量、透ガス量、機械的強度に優れ、しかも真円形に近く比較的均一な孔を有するPTFE製多孔質膜が得られる。
【0022】
【実施例】
以下本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
【0023】
【実施例1〜8】
懸濁重合法によって得られる平均粒子径25μmのPTFEモールディングパウダー(ポリフロンM−12、ダイキン工業(株)製)を金型中で150kg/cm2の成形圧で予備成形した後、360℃で焼成してPTFE成型品を作製した。この成型品を切削して膜厚20μmのPTFE膜を作製した。
【0024】
このようにして得られたフィルムを2枚重ねて50%ロール圧延した後360℃で熱融着した後、冷却し、膜厚40μmのPTFE膜を作製した。
このようにして得られた焼成されたPTFE膜表面に、数平均分子量700〜1500の低分子量PTFE(セフラルルーブ−V、セントラル硝子(株)製)を15重量%となるようにエタノール中に分散させた分散液を、スプレーガンで噴霧した後乾燥して2mg/cm2の量で低分子量PTFE粉末を塗布した。このフィルムを電気炉中で300〜360℃の温度範囲で60〜300秒間熱処理した後、室温まで急冷してPTFE膜を作製した。
【0025】
熱処理温度および熱処理時間を表1に示す。
このPTFE膜を70℃の温度で2.0×2.0の延伸倍率で二軸延伸を行ってPTFE多孔質膜を作成した。
【0026】
【比較例1】
実施例1において、延伸前のPTFE膜を低分子量PTFEと接触させなかった以外は、実施例1と同様にして、PTFE製多孔質膜を作成した。
【0027】
実施例1〜8および比較例1で得られたPTFE製多孔質膜について、それぞれ気孔率透水量、N2ガス透過量、引張り強度、伸び率の測定を行い、さらに走査型電子顕微鏡による表面形態の観察を行った。
【0028】
その結果を表1および表2に示す。
また図1に実施例4で得られたPTFE製多孔質膜の電子顕微鏡写真を示すとともに、図2に比較例1で得られたPTFE製多孔質膜の電子顕微鏡写真を示す。
【0029】
表1より実施例1のPTFE製多孔質膜は透水量および透ガス量に優れていることがわかる。
【0030】
【表1】

Figure 0003914302
【0031】
【表2】
Figure 0003914302
【0032】
【実施例9】
乳化重合法によって得られる平均粒子径550μmのPTFEファインパウダー(フルオンCD−1、旭硝子(株)製)を液状潤滑剤と配合して圧縮予備成形した後、押出し成形によって膜状とし、次いで所定の温度で熱処理して液状潤滑剤を除去して膜厚50μmの未焼成PTFE膜を作製した。この未焼成PTFE膜を360℃で熱処理して焼成PTFE膜を得た。
【0033】
この焼成PTFE膜表面に、数平均分子量700〜1500の低分子量PTFE(セフラルルーブ−V、セントラル硝子(株)製)を15重量%の割合でエタノール中に分散させた分散液を、スプレーガンで噴霧した後乾燥して2mg/cm2の量で低分子量PTFE粉末を塗布した。このPTFE膜を電気炉中で360℃の温度で60秒間熱処理した後、室温まで急冷してPTFE膜を作製した。
【0034】
このPTFE膜を70℃の温度で2.0×2.0の延伸倍率で二軸延伸を行って膜厚32μmのPTFE多孔質膜を得た。
【0035】
【比較例2】
実施例2において、延伸前のPTFE膜を低分子量PTFEと接触させなかった以外は、実施例2と同様にして、PTFE製多孔質膜を作成した。
【0036】
実施例2および比較例2で得られたPTFE製多孔質膜について、それぞれ透水量、N2ガス透過量、引張り強度の測定を行い、さらに走査型電子顕微鏡による表面形態の観察を行った。
【0037】
その結果を表2および表3に示す。
また図3に実施例9で得られたPTFE製多孔質膜の電子顕微鏡写真を示すとともに、図4に比較例2で得られたPTFE製多孔質膜の電子顕微鏡写真を示す。
【0038】
表2および表3より実施例9のPTFE製多孔質膜は透水量および透ガス量に優れていることがわかる。
【0039】
【表3】
Figure 0003914302
【0040】
【表4】
Figure 0003914302
【0041】
【実施例10〜12】
懸濁重合法によって得られる平均粒子径25μmのPTFEモールディングパウダー(ポリフロンM−12、ダイキン工業(株)製)を金型中で150kg/cm2の成形圧で予備成形したあと360℃で焼成してPTFE成型品を作製した。この成型品を切削して膜厚40〜60μmのフィルムを作製した。
【0042】
このPTFE膜表面に低分子量PTFE粉末をまぶし、電気炉中で350℃で20分間熱処理した後冷却してPTFE膜を得た。このPTFE膜を二軸方向に逐次延伸してPTFE製多孔質膜を得た。実施例10〜12の延伸条件を表4に示す。また表4に実施例10で得られた多孔質膜の特性、図5にSEM写真を示す。
【0043】
【表5】
Figure 0003914302
【0044】
【実施例13】
乳化重合法によって得られる平均粒子径550μmのPTFEファインパウダー(フルオンCD−1、旭硝子(株)製)を液状潤滑剤と配合して圧縮予備成形した後、押出し成形によって膜状とし、次いで所定の温度で熱処理して液状潤滑剤を除去して膜厚50μmの未焼成PTFE膜を作製した。この未焼成PTFE膜を360℃で熱処理して焼成PTFE膜を得た。
【0045】
この焼成PTFEフィルムを、320℃の温度で融液化された低分子量PTFE中に10分間浸漬した。得られたPTFE膜を二軸方向に逐次延伸してPTFE製多孔質膜を得た。得られたPTFE製多孔質膜の特性を表5に示す。
【0046】
【表6】
Figure 0003914302

【図面の簡単な説明】
【図1】 実施例4のPTFE製多孔質膜表面の電子顕微鏡写真
【図2】 比較例1のPTFE製多孔質膜表面の電子顕微鏡写真
【図3】 実施例9のPTFE製多孔質膜表面の電子顕微鏡写真
【図4】 比較例2のPTFE製多孔質膜表面の電子顕微鏡写真
【図5】 実施例12のPTFE製多孔質膜表面のSEM写真[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a porous film made of polytetrafluoroethylene, and more specifically, made of polytetrafluoroethylene having excellent mechanical strength, gas permeation amount, water permeation amount, and having relatively uniform pores that are nearly circular The present invention relates to a method for producing a porous membrane.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
Polytetrafluoroethylene resin (hereinafter sometimes abbreviated as PTFE) has excellent chemical resistance, heat resistance, and mechanical properties, and is therefore used in various fields. For example, a porous membrane made of PTFE is widely used as a filter for a corrosive substance or a high-temperature substance by utilizing the above-described characteristics, and is also used as an electrolytic diaphragm, a fuel cell, or the like.
[0003]
Conventionally, in order to produce a porous membrane from PTFE resin, liquid lubricant is mixed with PTFE fine particles called fine powder having an average particle diameter of 0.1 to 0.4 μm obtained by emulsion polymerization of tetrafluoroethylene and compressed. A method of preforming, then forming into a film by a method including extrusion and / or rolling, removing the liquid lubricant, and then stretching the obtained PTFE film uniaxially or biaxially under normal heating conditions is employed. It was done. (See Japanese Patent Publication No. 42-13560, Japanese Patent Publication No. 49-118760, Japanese Patent Publication No. 51-40902, Japanese Patent Publication No. 51-18991)
Japanese Patent Publication No. 53-42794 discloses that a calcined PTFE film is heated to 327 ° C. or higher and then cooled, heat-treated so that its crystallinity becomes 80% or higher, and then a temperature of 25 to 260 ° C. Discloses a method for producing a porous PTFE material, which is uniaxially drawn at a draw ratio of 1.5 to 4 times.
[0004]
However, the porous PTFE membrane manufactured by such a method has a problem that it is difficult to manufacture the pores in a shape close to a perfect circle and the pore diameter to a predetermined size. There is also a problem that the mechanical strength of the porous membrane cannot be said to be sufficient.
[0005]
Also known is a method for producing a PTFE porous membrane by stretching a PTFE semi-sintered membrane at a temperature below its melting point, for example, described in JP-B-6-89165. According to this method, a porous PTFE membrane having a high porosity can be produced, but the range of heat treatment conditions for making PTFE into a semi-sintered state is narrow, and such a semi-sintered PTFE membrane can be produced. There was a problem that it was not easy.
[0006]
OBJECT OF THE INVENTION
The present invention is intended to solve the above-described problems in the prior art, and has a porous shape made of PTFE having holes close to a perfect circle and excellent in mechanical strength, gas permeability, and water permeability. It aims at providing the manufacturing method of a film | membrane.
[0007]
SUMMARY OF THE INVENTION
In the method for producing a porous PTFE membrane according to the present invention, a PTFE membrane is contacted with a low molecular weight PTFE having a number average molecular weight of 500 to 10,000 at a temperature equal to or higher than the melting point of the low molecular weight PTFE. The film formation is characterized by being uniaxially or biaxially stretched 1.3 to 6.5 times at a temperature not higher than the melting point of PTFE.
[0008]
In the present invention, PTFE film formation and the number average molecular weight of the low molecular weight PTFE which is a 500 to 10,000 contact, for example, whether carried out by attaching the low molecular weight PTFE powder on a PTFE film or PTFE film in a molten state it can be carried out by immersion in the low molecular weight in PTFE.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for producing a PTFE porous membrane according to the present invention will be described.
In the present invention, first, PTFE film formation and low molecular weight PTFE are brought into contact with each other at a temperature equal to or higher than the melting point of low molecular weight PTFE (the melting point of PTFE varies depending on the molecular weight).
[0010]
As the PTFE film, a PTFE film, a thin PTFE tube, or the like is used. The film thickness of this PTFE film is preferably about 10 to 500 μm.
[0011]
As such PTFE film formation, for example, after a pre-compression molding of a blend of PTFE fine powder obtained by an emulsion polymerization method and a liquid lubricant, it is extruded or rolled, or a film-like form by a method including both of them. It may be a thing. Also, a PTFE molding powder obtained by the suspension polymerization method is compression-molded to prepare a cylindrical preform, and then the preform is fired at a temperature equal to or higher than the melting point of PTFE (327 ° C.). It may be cut into a film. Further, it may be obtained by thermally fusing a plurality of PTFE films.
[0012]
The number average molecular weight of such PTFE is about 2 million to 20 million, preferably about 2 million to 8 million.
Such a PTFE film is brought into contact with the low molecular weight PTFE at a temperature equal to or higher than the melting point of the low molecular weight PTFE.
[0013]
Specifically, this operation is performed by the following method, for example.
B) A low molecular weight PTFE powder is deposited on the PTFE film by dusting, and then heated to a temperature equal to or higher than the melting point of the low molecular weight PTFE and then cooled. The heating temperature at this time is 100 to 400 ° C, preferably 250 to 380 ° C, more preferably about 300 to 380 ° C.
[0014]
The heating time varies greatly depending on the heating temperature, but it is usually 5 to 3600 seconds, preferably several seconds to 20 minutes.
B) First, a low molecular weight PTFE powder is dispersed in an organic solvent such as ethanol or ethylene glycol or water to prepare a dispersion. Next, this dispersion is applied or sprayed onto the PTFE membrane, the low molecular weight PTFE powder is adhered onto the PTFE membrane, the dispersion medium is removed, and then heated to a temperature equal to or higher than the melting point of the low molecular weight PTFE and then cooled. The heating temperature and the heating time are the same as described above.
[0015]
C) First, the low molecular weight PTFE powder is heated and melted. Next, the PTFE membrane is immersed in this low molecular weight PTFE in a molten state, the PTFE membrane and the low molecular weight PTFE are brought into contact with each other, heated to a temperature equal to or higher than the melting point of PTFE, and then cooled. Alternatively, a low molecular weight PTFE in a molten state is applied or sprayed on the PTFE film to bring the PTFE film into contact with the low molecular weight PTFE, heated to a temperature equal to or higher than the melting point of the low molecular weight PTFE, and then cooled. The heating temperature and the heating time are the same as described above.
[0016]
In this way, the PTFE membrane and the low molecular weight PTFE are brought into contact with each other at a temperature equal to or higher than the melting point of the low molecular weight PTFE and then cooled, and the PTFE membrane is uniaxially increased by 1.3 to 6.5 times at a temperature equal to or lower than the melting point of PTFE. Alternatively, biaxial stretching yields a PTFE porous membrane.
[0017]
The stretching temperature is 19 to 320 ° C, preferably about 50 to 290 ° C.
The stretching ratio of the PTFE membrane is preferably 1.3 to 6.5 times. If this stretching ratio exceeds 6.5 times, pinholes may be generated in the membrane or the membrane may be broken during stretching. On the other hand, if the draw ratio is less than 1.3 times, desired fine pores may not be obtained.
[0018]
Such stretching is performed uniaxially or biaxially, preferably biaxially. By biaxially stretching the PTFE membrane, an effect that the pores of the obtained PTFE porous membrane approach a perfect circle is recognized.
[0019]
In the present specification, the low molecular weight PTFE means PTFE having a number average molecular weight of 1 million or less, preferably 500 to 10,000, and more preferably about 500 to 2,000. Such low molecular weight PTFE is sold, for example, by Central Glass Co., Ltd. under the trade name Cefral Lube.
[0020]
In the present invention, after the PTFE membrane and the low molecular weight PTFE are brought into contact with each other at a temperature equal to or higher than the melting point of the low molecular weight PTFE, the PTFE membrane is uniaxially or biaxially 1.3 to 6.5 times at a temperature equal to or lower than the melting point of the PTFE. When a PTFE porous membrane is produced by axial stretching, the amount of water permeation is compared with the case where a PTFE porous membrane is produced without contacting the PTFE membrane and the low molecular weight PTFE at a temperature equal to or higher than the melting point of the low molecular weight PTFE. A porous PTFE membrane having a high gas permeability and excellent mechanical strength can be obtained. Although the reason for this is not clear, when the PTFE membrane and the low molecular weight PTFE are brought into contact with each other at a temperature equal to or higher than the melting point of the low molecular weight PTFE, the low molecular weight PTFE enters the PTFE membrane, and the PTFE membrane swells. It is presumed that a porous film made of PTFE that is formed with pores close to a perfect circle in the stretching process of the membrane and that has excellent water permeability, gas permeability, and mechanical strength will be obtained.
[0021]
【The invention's effect】
According to the present invention, it is possible to obtain a porous PTFE membrane having excellent water permeability, gas permeability, and mechanical strength, and having a relatively uniform hole that is nearly circular.
[0022]
【Example】
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
[0023]
Examples 1-8
After preforming the average PTFE molding powder of particle diameter 25 [mu] m (Polyflon M-12, manufactured by Daikin Industries Ltd.) molding pressure of 150 kg / cm 2 in a mold obtained by a suspension polymerization method, calcined at 360 ° C. Thus, a PTFE molded product was produced. This molded product was cut to prepare a PTFE film having a thickness of 20 μm.
[0024]
Two films thus obtained were stacked and 50% rolled and then heat-sealed at 360 ° C. and then cooled to produce a PTFE film having a thickness of 40 μm.
On the surface of the calcined PTFE film thus obtained, low molecular weight PTFE having a number average molecular weight of 700 to 1500 (cefural lube-V, manufactured by Central Glass Co., Ltd.) is dispersed in ethanol so as to be 15% by weight. The dispersion was sprayed with a spray gun and dried, and a low molecular weight PTFE powder was applied in an amount of 2 mg / cm 2 . This film was heat-treated in an electric furnace at a temperature range of 300 to 360 ° C. for 60 to 300 seconds, and then rapidly cooled to room temperature to prepare a PTFE film.
[0025]
Table 1 shows the heat treatment temperature and heat treatment time.
This PTFE membrane was biaxially stretched at a stretching ratio of 2.0 × 2.0 at a temperature of 70 ° C. to prepare a PTFE porous membrane.
[0026]
[Comparative Example 1]
In Example 1, a PTFE porous membrane was prepared in the same manner as in Example 1 except that the PTFE membrane before stretching was not brought into contact with the low molecular weight PTFE.
[0027]
About the porous film made from PTFE obtained in Examples 1-8 and Comparative Example 1, the porosity water permeability, N 2 gas permeation, tensile strength, and elongation were measured, respectively, and the surface morphology by a scanning electron microscope Was observed.
[0028]
The results are shown in Tables 1 and 2.
1 shows an electron micrograph of the PTFE porous membrane obtained in Example 4, and FIG. 2 shows an electron micrograph of the PTFE porous membrane obtained in Comparative Example 1.
[0029]
From Table 1, it can be seen that the porous PTFE membrane of Example 1 is excellent in water permeability and gas permeability.
[0030]
[Table 1]
Figure 0003914302
[0031]
[Table 2]
Figure 0003914302
[0032]
[Example 9]
PTFE fine powder (Fluon CD-1, manufactured by Asahi Glass Co., Ltd.) having an average particle diameter of 550 μm obtained by emulsion polymerization is blended with a liquid lubricant and subjected to compression pre-molding, and then formed into a film by extrusion molding, The liquid lubricant was removed by heat treatment at a temperature to produce an unsintered PTFE film having a thickness of 50 μm. This unfired PTFE film was heat-treated at 360 ° C. to obtain a fired PTFE film.
[0033]
A dispersion liquid in which a low molecular weight PTFE having a number average molecular weight of 700 to 1500 (cefural lube-V, manufactured by Central Glass Co., Ltd.) is dispersed in ethanol at a ratio of 15% by weight is sprayed on the surface of the sintered PTFE film with a spray gun. After drying, a low molecular weight PTFE powder was applied in an amount of 2 mg / cm 2 . This PTFE membrane was heat-treated at a temperature of 360 ° C. for 60 seconds in an electric furnace, and then rapidly cooled to room temperature to produce a PTFE membrane.
[0034]
The PTFE membrane was biaxially stretched at a stretching ratio of 2.0 × 2.0 at a temperature of 70 ° C. to obtain a PTFE porous membrane having a thickness of 32 μm.
[0035]
[Comparative Example 2]
In Example 2, a PTFE porous membrane was prepared in the same manner as in Example 2 except that the PTFE membrane before stretching was not brought into contact with the low molecular weight PTFE.
[0036]
The porous membranes made of PTFE obtained in Example 2 and Comparative Example 2 were measured for water permeability, N 2 gas permeability, and tensile strength, respectively, and surface morphology was observed with a scanning electron microscope.
[0037]
The results are shown in Tables 2 and 3.
3 shows an electron micrograph of the PTFE porous membrane obtained in Example 9, and FIG. 4 shows an electron micrograph of the PTFE porous membrane obtained in Comparative Example 2.
[0038]
From Table 2 and Table 3, it can be seen that the PTFE porous membrane of Example 9 is excellent in water permeability and gas permeability.
[0039]
[Table 3]
Figure 0003914302
[0040]
[Table 4]
Figure 0003914302
[0041]
Examples 10-12
PTFE molding powder (Polyflon M-12, manufactured by Daikin Industries, Ltd.) having an average particle size of 25 μm obtained by suspension polymerization is pre-molded in a mold at a molding pressure of 150 kg / cm 2 and then fired at 360 ° C. Thus, a PTFE molded product was produced. This molded product was cut to produce a film having a thickness of 40 to 60 μm.
[0042]
The PTFE membrane surface was coated with a low molecular weight PTFE powder, heat treated at 350 ° C. for 20 minutes in an electric furnace, and then cooled to obtain a PTFE membrane. The PTFE membrane was sequentially stretched in the biaxial direction to obtain a PTFE porous membrane. Table 4 shows the stretching conditions of Examples 10-12. Table 4 shows the characteristics of the porous membrane obtained in Example 10, and FIG. 5 shows an SEM photograph.
[0043]
[Table 5]
Figure 0003914302
[0044]
Example 13
PTFE fine powder (Fluon CD-1, manufactured by Asahi Glass Co., Ltd.) having an average particle diameter of 550 μm obtained by emulsion polymerization is blended with a liquid lubricant and subjected to compression pre-molding, and then formed into a film by extrusion molding, The liquid lubricant was removed by heat treatment at a temperature to produce an unsintered PTFE film having a thickness of 50 μm. This unfired PTFE film was heat-treated at 360 ° C. to obtain a fired PTFE film.
[0045]
This baked PTFE film was immersed in a low molecular weight PTFE melted at a temperature of 320 ° C. for 10 minutes. The obtained PTFE membrane was sequentially stretched in the biaxial direction to obtain a porous PTFE membrane. Table 5 shows the properties of the obtained porous PTFE membrane.
[0046]
[Table 6]
Figure 0003914302

[Brief description of the drawings]
1 is an electron micrograph of the surface of a PTFE porous membrane of Example 4, FIG. 2 is an electron micrograph of the surface of a PTFE porous membrane of Comparative Example 1, and FIG. 3 is a surface of the PTFE porous membrane of Example 9. 4 is an electron micrograph of the surface of the porous PTFE membrane of Comparative Example 2. FIG. 5 is an SEM photo of the surface of the porous PTFE membrane of Example 12.

Claims (3)

ポリテトラフルオロエチレン製膜と、数平均分子量が500〜1万である低分子量ポリテトラフルオロエチレンとを、低分子量ポリテトラフルオロエチレンの融点以上の温度で接触させ、次いでこのポリテトラフルオロエチレン製膜をポリテトラフルオロエチレンの融点以下の温度で1.3〜6.5倍に一軸または二軸延伸することを特徴とするポリテトラフルオロエチレン製多孔質膜の製造方法。And polytetrafluoroethylene film, and a low molecular weight polytetrafluoroethylene having a number average molecular weight is 500 to 10,000, is contacted with said low molecular weight polytetrafluoroethylene temperature above the melting point of the ethylene, then made the polytetrafluoroethylene A process for producing a porous film made of polytetrafluoroethylene, characterized in that the film is uniaxially or biaxially stretched 1.3 to 6.5 times at a temperature below the melting point of polytetrafluoroethylene. ポリテトラフルオロエチレン製膜上に、数平均分子量が500〜1万である低分子量ポリテトラフルオロエチレン粉末を付着させて、ポリテトラフルオロエチレン製膜と低分子量ポリテトラエチレンとの接触を行うことを特徴とする請求項1に記載のポリテトラフルオロエチレン製多孔質膜の製造方法。On a polytetrafluoroethylene film, the number average molecular weight by attaching low molecular weight polytetrafluoroethylene powder is from 500 to 10,000, to make contact with a polytetrafluoroethylene membrane and the low molecular weight poly tetraethylene The method for producing a porous film made of polytetrafluoroethylene according to claim 1. ポリテトラフルオロエチレン製膜を、数平均分子量が500〜1万である溶融状態の低分子量ポリテトラフルオロエチレン中に浸漬して、ポリテトラフルオロエチレン製膜と低分子量ポリテトラフルオロエチレンとの接触を行うことを特徴とする請求項1に記載のポリテトラフルオロエチレン製多孔質膜の製造方法。The polytetrafluoroethylene membrane was immersed number average molecular weight in the low molecular weight polytetrafluoroethylene in a molten state is from 500 to 10,000, contact with a polytetrafluoroethylene membrane and the low molecular weight polytetrafluoroethylene The method for producing a porous film made of polytetrafluoroethylene according to claim 1, wherein:
JP21127297A 1997-07-22 1997-07-22 Method for producing porous film made of polytetrafluoroethylene Expired - Lifetime JP3914302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21127297A JP3914302B2 (en) 1997-07-22 1997-07-22 Method for producing porous film made of polytetrafluoroethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21127297A JP3914302B2 (en) 1997-07-22 1997-07-22 Method for producing porous film made of polytetrafluoroethylene

Publications (2)

Publication Number Publication Date
JPH1135716A JPH1135716A (en) 1999-02-09
JP3914302B2 true JP3914302B2 (en) 2007-05-16

Family

ID=16603181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21127297A Expired - Lifetime JP3914302B2 (en) 1997-07-22 1997-07-22 Method for producing porous film made of polytetrafluoroethylene

Country Status (1)

Country Link
JP (1) JP3914302B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795565B2 (en) * 2006-02-21 2014-08-05 Celgard Llc Biaxially oriented microporous membrane
US20100203310A1 (en) 2006-08-09 2010-08-12 Sumitomo Electric Fine Polymer, Inc. Fluororesin thin film, fluororesin composite, porous fluororesin composite, manufacturing methods thereof, and seperation membrane element
JP5470140B2 (en) 2010-03-31 2014-04-16 富士フイルム株式会社 Crystalline polymer microporous membrane and filter for filtration
JP5633793B2 (en) * 2010-08-26 2014-12-03 旭硝子株式会社 Method for producing stretched polytetrafluoroethylene film and stretched polytetrafluoroethylene film
JP5830782B2 (en) 2012-01-27 2015-12-09 住友電工ファインポリマー株式会社 Method for producing modified polytetrafluoroethylene microporous membrane and method for producing modified polytetrafluoroethylene porous resin membrane composite
JP2015200058A (en) * 2014-04-04 2015-11-12 東洋紡株式会社 electret

Also Published As

Publication number Publication date
JPH1135716A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
CA2018389C (en) Polytetrafluoroethylene porous material and process for producing the same
US5234751A (en) Porous material of polytetrafluoroethylene and process for producing the same
JPH03179038A (en) Production of multilayered porous membrane of polytetrafluoroethylene
JPS6116840A (en) Manufacture of porous film of polytetrafluoroethylene
JP5985277B2 (en) Polytetrafluoroethylene porous membrane and waterproof ventilation member
US20200172695A1 (en) Fluororesin porous film and preparation method thereof
US4710331A (en) Process for the production of polytetrafluoroethylene porous membranes
KR102190864B1 (en) Preparation method of porous fluorine resin sheet
JP3914302B2 (en) Method for producing porous film made of polytetrafluoroethylene
KR102242547B1 (en) Porous fluorine resin film
JPH078927B2 (en) Method for producing polytetrafluoroethylene multilayer porous membrane
AU631008B2 (en) Porous material of polytetrafluoroethylene and process for producing the same
WO2004078831A1 (en) Porous polytetrafluoroethylene resin body and process for producing the same
JP3456284B2 (en) Porous tetrafluoroethylene resin laminate and method for producing the same
KR20210061777A (en) Porous fluorine resin sheet and method for prepararing the same
JPH10323923A (en) Porous tube of polytetrafluoroethylene and its manufacture
JPH0694186B2 (en) Polytetrafluoroethylene multi-layer semi-baked product
KR20130105072A (en) Manufacturing method of ptfe hollow fiber membrane having porosity
JP3539441B2 (en) Porous ethylene tetrafluoride resin and method for producing the same
JPH10266014A (en) Production of fluororesin hollow yarn
JP2801658B2 (en) Polytetrafluoroethylene porous body and method for producing the same
JP2780113B2 (en) Method for producing porous polytetrafluoroethylene
JPH07278331A (en) Porous polytetrafluoroethylene(ptfe) and its production
JPH08215552A (en) Production of porous polytetrafluoroethylene membrane
KR20130097929A (en) Manufacturing method of ptfe hollow fiber membrane having porosity using polyvinyl pyrrolidone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term