WO2015030025A1 - Method for manufacturing diaphragm for alkaline water electrolysis, and diaphragm for alkaline water electrolysis - Google Patents

Method for manufacturing diaphragm for alkaline water electrolysis, and diaphragm for alkaline water electrolysis Download PDF

Info

Publication number
WO2015030025A1
WO2015030025A1 PCT/JP2014/072357 JP2014072357W WO2015030025A1 WO 2015030025 A1 WO2015030025 A1 WO 2015030025A1 JP 2014072357 W JP2014072357 W JP 2014072357W WO 2015030025 A1 WO2015030025 A1 WO 2015030025A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkaline water
diaphragm
water electrolysis
porogen
resin
Prior art date
Application number
PCT/JP2014/072357
Other languages
French (fr)
Japanese (ja)
Inventor
勇三 村木
健郎 井上
樋口 浩之
川口 佳秀
原田 憲章
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015030025A1 publication Critical patent/WO2015030025A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/046Elimination of a polymeric phase
    • C08J2201/0464Elimination of a polymeric phase using water or inorganic fluids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method for producing a diaphragm for alkaline water electrolysis and a diaphragm for alkaline water electrolysis.
  • This ion-permeable diaphragm exhibits wettability to water based on the wettability of a hydrophilic inorganic material added in a large amount, and has ion permeability because it is porous.
  • this ion-permeable diaphragm has a problem that the gas generated by the electrode during electrolysis tends to adhere to the surface of the diaphragm because the polymer material as a matrix is essentially hydrophobic. As a result, in electrolysis using alkaline water as the electrolytic solution, the electrical resistance characteristics are insufficient and a voltage rise occurs.
  • the present invention has been made in order to solve the above-described conventional problems.
  • the object of the present invention is excellent ion permeability and chemical resistance, and gas generated at the electrode during electrolysis adheres to the diaphragm surface.
  • An object of the present invention is to provide a method for producing a diaphragm for alkaline water electrolysis that is difficult to perform.
  • the manufacturing method of the diaphragm for alkaline water electrolysis of this invention includes the process of preparing the resin composition containing an epoxy resin, a hardening
  • the manufacturing method of the diaphragm for alkaline water electrolysis of this invention further includes the process of removing the said porogen from the said resin sheet.
  • the resin composition in the step of obtaining a resin sheet using the resin composition, the resin composition is molded to obtain a cured body, and the cured body Cutting the surface layer portion with a predetermined thickness to obtain the resin sheet.
  • the cured body in the method for producing a diaphragm for alkaline water electrolysis according to the present invention, is cylindrical, and the surface layer portion of the cured body is rotated while rotating the cured body about a cylindrical axis. Including cutting.
  • the porogen is polyethylene glycol or polypropylene glycol.
  • a diaphragm for alkaline water electrolysis is provided. This diaphragm for alkaline water electrolysis is obtained by the above production method.
  • a composite membrane for alkaline water electrolysis is provided.
  • the composite membrane for alkaline water electrolysis includes the above diaphragm for alkaline water electrolysis and a porous reinforcing body disposed on one or both surfaces of the diaphragm for alkaline water electrolysis.
  • the said porous reinforcement body is comprised from the polymer which has a hydrophilic functional group.
  • the porous reinforcing body is a woven fabric, a nonwoven fabric, a net, a mesh, or a sintered porous membrane.
  • a diaphragm having a porous structure suitable for alkaline water electrolysis can be obtained by using a resin composition containing an epoxy resin and a porogen.
  • the alkaline water electrolysis diaphragm is excellent in ion permeability and chemical resistance, and the gas generated at the electrode during electrolysis hardly adheres to the diaphragm surface.
  • the method for producing a diaphragm for alkaline water electrolysis according to the present invention comprises a step of preparing a resin composition containing an epoxy resin, a curing agent and a porogen (step 1), and the resin composition.
  • the membrane for alkaline water electrolysis thus obtained is made porous by removing the porogen in the resin sheet in an aqueous solvent such as alkaline water, and is excellent in ion permeability.
  • the diaphragm for alkaline water electrolysis obtained by the production method of the present invention is a precursor of a porous body, and becomes porous when used, specifically, when immersed in alkaline water. obtain.
  • the production method of the present invention further includes a step of removing the porogen from the resin sheet.
  • the diaphragm for alkaline water electrolysis is provided as a porous body excellent in ion permeability.
  • the diaphragm for alkaline water electrolysis obtained by the production method of the present invention is composed of an epoxy resin, it is excellent in chemical resistance, and the gas generated at the electrode during electrolysis hardly adheres to the surface of the diaphragm.
  • the resin composition can be prepared by mixing an epoxy resin, a curing agent, and a porogen at room temperature.
  • the said resin composition is obtained by dissolving an epoxy resin and a hardening
  • any appropriate epoxy resin can be used as the epoxy resin.
  • An aromatic epoxy resin may be used, and a non-aromatic epoxy resin may be used.
  • the aromatic epoxy resin include a polyphenyl-based epoxy resin, an epoxy resin containing a fluorene ring, an epoxy resin containing triglycidyl isocyanurate, and an epoxy resin containing a heteroaromatic ring (for example, a triazine ring).
  • polyphenyl-based epoxy resins include bisphenol A type epoxy resins, brominated bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, stilbene type epoxy resins, biphenyl type epoxy resins, and bisphenol A novolac types.
  • Examples thereof include an epoxy resin, a cresol novolac type epoxy resin, a diaminodiphenylmethane type epoxy resin, and a tetrakis (hydroxyphenyl) ethane-based epoxy resin.
  • non-aromatic epoxy resins include aliphatic glycidyl ether type epoxy resins, aliphatic glycidyl ester type epoxy resins, alicyclic glycidyl ether type epoxy resins, alicyclic glycidyl amine type epoxy resins, and alicyclic glycidyl ester types.
  • An epoxy resin etc. are mentioned. These may be used alone or in combination of two or more.
  • the epoxy resin is preferably a bisphenol A type epoxy resin, a brominated bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol AD type epoxy resin, an epoxy resin containing a fluorene ring, an epoxy resin containing triglycidyl isocyanurate, An alicyclic glycidyl ether type epoxy resin, an alicyclic glycidyl amine type epoxy resin or an alicyclic glycidyl ester type epoxy resin is used. If these epoxy resins are used, a three-dimensional network skeleton having an excellent porous structure as a diaphragm for electrolysis can be formed, and uniform pores can be formed. Moreover, the diaphragm for alkaline water electrolysis excellent in chemical resistance and intensity
  • the epoxy equivalent of the epoxy resin is preferably 6000 or less, more preferably 2000 or less. Within such a range, a three-dimensional network skeleton having an appropriate porosity and pore diameter (average pore diameter) as an electrolysis diaphragm and an excellent porous structure is formed, and uniform pores are formed. obtain. Moreover, the diaphragm for alkaline water electrolysis which is excellent in chemical-resistance and intensity
  • two or more epoxy resins having different epoxy equivalents are used.
  • gas adhesion, mechanical properties such as strength, chemical resistance, etc. of the diaphragm for alkaline water electrolysis can be adjusted.
  • epoxy resins having epoxy equivalents different by 100 or more are used.
  • a combination of an epoxy resin having a high epoxy equivalent (for example, epoxy equivalent: 2000 to 4000) and an epoxy resin having a low epoxy equivalent (for example, epoxy equivalent: 150 to 200) is used in combination.
  • the weight average molecular weight of the epoxy resin is preferably 370 to 12000, more preferably 370 to 4000. If it is such a range, the diaphragm for alkaline water electrolysis which is excellent in ion permeability, chemical-resistance, and intensity
  • the weight average molecular weight in this specification can be calculated
  • the molecular weight distribution (weight average molecular weight / number average molecular weight) of the epoxy resin is preferably 1.0 to 10, more preferably 1.0 to 5.0. If it is such a range, the diaphragm for alkaline water electrolysis which is excellent in ion permeability, chemical-resistance, and intensity
  • the number average molecular weight in this specification can be calculated
  • the melting point of the epoxy resin is preferably 170 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 20 ° C. to 50 ° C. Within such a range, a three-dimensional network skeleton having an excellent porous structure as a diaphragm for electrolysis can be formed, and uniform pores can be formed. Moreover, the diaphragm for alkaline water electrolysis excellent in chemical resistance and intensity
  • any appropriate curing agent may be used as the curing agent.
  • An aromatic curing agent may be used, and a non-aromatic curing agent may be used.
  • aromatic curing agents include aromatic amines such as metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, benzyldimethylamine, and dimethylaminomethylbenzene; aromatics such as phthalic anhydride, trimellitic anhydride, and pyromellitic anhydride
  • Non-aromatic curing agents include, for example, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, iminobispropylamine, bis (hexamethylene) triamine, 1,3,6-trisaminomethylhexane, polymethylenediamine, Aliphatic amines such as trimethylhexamethylene diamine and polyether diamine; isophorone diamine, menthane diamine, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) 2,4,8,10-tetraoxaspiro ( 5,5) Fats containing alicyclic amines such as undecane adduct, bis (4-amino-3-methylcyclohexyl) methane, bis (4-aminocyclohexyl) methane, modified products thereof, polyamines and dimer acid Polyamidoamine etc. And the like. These may be used alone or in combination of two or more.
  • a curing agent having two or more primary amines in the molecule is preferably used.
  • the curing agent having two or more primary amines in the molecule include metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, polymethylenediamine, bis (4-amino-3-methylcyclohexyl) methane and bis (4- Aminocyclohexyl) methane and the like. If these curing agents are used, a three-dimensional network skeleton having an excellent porous structure as a diaphragm for electrolysis can be formed, and uniform pores can be formed. Moreover, the diaphragm for alkaline water electrolysis which is excellent in intensity
  • an aromatic epoxy resin is used as the epoxy resin
  • aliphatic amines or alicyclic amines can be preferably used as the curing agent.
  • aromatic amines can be preferably used as the curing agent. If an epoxy resin and a hardening
  • the content of the curing agent in the resin composition is preferably such that the curing agent equivalent is 0.6 to 1.5 with respect to 1 equivalent of epoxy group of the epoxy resin. If it is such a range, the diaphragm for alkaline water electrolysis which is excellent in heat resistance, chemical durability, a mechanical characteristic, etc. can be obtained.
  • the above curing agent and curing accelerator may be used in combination.
  • a curing accelerator By using a curing accelerator, the porous structure can be controlled. Specifically, unreacted functional groups can be reduced by using a curing accelerator. As a result, it is possible to obtain a diaphragm for alkaline water electrolysis that is excellent in thermal properties and mechanical properties and is chemically stable.
  • the curing accelerator include tertiary amines such as triethylamine and tributylamine; imidazoles such as 2-phenol-4-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenol-4,5-dihydroxyimidazole. Etc.
  • the content of the curing accelerator is preferably 1 to 5 parts by weight with respect to 100 parts by weight of the curing agent.
  • the porogen is preferably a solvent capable of dissolving the epoxy resin and the curing agent.
  • the resin composition when the resin composition is cured, that is, when the epoxy resin and the curing agent are polymerized, it is used as a solvent that can cause reaction-induced phase separation.
  • the porogen may be a solvent that can dissolve a polymer of an epoxy resin and a curing agent.
  • porogen examples include cellosolves such as methyl cellosolve and ethyl cellosolve; esters such as ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate; glycols such as polyethylene glycol and polypropylene glycol; polyoxyethylene monomethyl ether; Ethers such as polyoxyethylene dimethyl ether can be used as the porogen. These may be used alone or in combination of two or more.
  • porogen methyl cellosolve, ethyl cellosolve, polyethylene glycol, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, polypropylene glycol, polyoxyethylene monomethyl ether or polyoxyethylene dimethyl ether can be preferably used.
  • polyethylene glycol, polypropylene glycol, polyoxyethylene monomethyl ether or propylene glycol monomethyl ether acetate is preferable, and polyethylene glycol or polypropylene glycol is more preferable. If these porogens are used, a three-dimensional network skeleton having an excellent porous structure as a diaphragm for electrolysis can be formed, and uniform pores can be formed.
  • the content of the porogen is preferably 40% by weight to 80% by weight, more preferably 60% by weight to 70% by weight, and still more preferably 60% by weight with respect to the total amount of the epoxy resin, the curing agent and the porogen. % To 65% by weight. If it is such a range, the diaphragm for alkaline water electrolysis which has a porosity, a hole diameter (average hole diameter), and air permeability suitable as a diaphragm for electrolysis can be obtained.
  • Process 2 Examples of a method for obtaining a resin sheet from the resin composition include the following methods.
  • Method i A method in which the resin composition is applied onto any appropriate substrate, and then the coating layer is cured to obtain a resin sheet.
  • Method ii A method in which the resin composition is molded to obtain a cured product, and a surface layer portion of the cured product is cut at a predetermined thickness to obtain a resin sheet.
  • Method i the resin composition is applied onto any appropriate substrate, and then the coating layer is heated, whereby the epoxy resin and the curing agent react to form a three-dimensional crosslinked structure. At this time, a co-continuous structure is formed by phase separation of the crosslinked epoxy resin and the porogen.
  • Examples of the coating layer forming method include a coating method, a relief printing method, a direct gravure printing method, an intaglio printing method, a lithographic printing method, and a stencil printing method.
  • the thickness of the coating layer is preferably 55 ⁇ m to 500 ⁇ m, more preferably 60 ⁇ m to 250 ⁇ m.
  • any appropriate curing method may be employed as the method for curing the coating layer.
  • curing by heating can be employed, in which case the heating temperature is typically 40 ° C. to 200 ° C. and the heating time is typically 10 minutes to 100 hours.
  • the resin sheet manufactured in this way can be provided as a diaphragm for alkaline water electrolysis.
  • the diaphragm for alkaline water electrolysis of the present invention can become porous when it is used, specifically, when immersed in alkaline water which is electrolytic water. More specifically, in the alkaline water, the porogen is removed from the alkaline water electrolysis diaphragm to form a three-dimensional network skeleton and to form communicating pores.
  • the method further includes a step of removing the porogen from the resin sheet after the coating layer is heated.
  • the method for removing the porogen include the method described in the section A-2-2 below.
  • the epoxy resin and the curing agent in the resin composition are polymerized, and the resin composition is cured to form a cured body having a three-dimensional crosslinked structure.
  • the cured body is formed, a co-continuous structure is formed by phase separation between the epoxy resin crosslinked body and the porogen.
  • the cured body is formed in a columnar shape, for example. If a column-shaped hardening body is formed, it will be excellent in the efficiency at the time of cutting.
  • the cured body can be obtained by curing the resin composition.
  • the cylindrical cured body is obtained, for example, by charging the resin composition into a cylindrical mold and then curing the resin composition.
  • the curing temperature and time for curing can be set to any appropriate conditions depending on the composition of the resin composition and the like.
  • the curing temperature at the time of the curing is, for example, 20 ° C. to 120 ° C.
  • a three-dimensional network skeleton having an excellent porous structure as a diaphragm for electrolysis is formed, and a diaphragm for alkaline water electrolysis in which uniform pores are formed can be obtained.
  • the diaphragm for alkaline water electrolysis with a small average hole diameter can be obtained, so that hardening temperature is high.
  • the curing process may be performed with the curing temperature set at 20 ° C. to 40 ° C. and the curing time set preferably at 3 hours to 100 hours, more preferably 20 hours to 50 hours. .
  • the curing temperature is preferably set to 40 ° C. to 120 ° C., more preferably 60 ° C. to 100 ° C.
  • the curing time is preferably 10 minutes to 300 minutes, more preferably 30 minutes to 180 minutes.
  • post-cure may be performed as necessary. By performing post-cure, the degree of crosslinking of the cured product can be increased.
  • the temperature of the post cure is, for example, 50 ° C. to 160 ° C., and the time is, for example, 2 hours to 48 hours.
  • the dimension of the cured body can be any appropriate dimension.
  • the diameter of the cured body is typically 20 cm or more, and preferably 30 cm to 150 cm.
  • the length (axial direction) of the cured body is typically 20 cm to 200 cm, preferably 20 cm to 150 cm, more preferably 20 cm to 120 cm. If it is such a dimension, it is excellent in manufacturing efficiency.
  • FIG. 1 is a schematic diagram illustrating an example of a method of cutting the cured body when the cured body is cylindrical.
  • the cured body 100 is attached to the shaft 10, and the surface layer portion of the cured body 100 is attached to the cured body 100 using any appropriate blade 20 while rotating the cured body 100 around the cylindrical axis.
  • Cutting (slicing) at a predetermined thickness According to such a method, the resin sheet 110 can be obtained efficiently.
  • the rotational speed of the cured body 100 is, for example, 2 m / min to 70 m / min.
  • Cutting thickness preferably 55 ⁇ m to 500 ⁇ m, more preferably 60 ⁇ m to 250 ⁇ m.
  • the length of the resin sheet 110 is not specifically limited, From the viewpoint of the manufacturing efficiency of the resin sheet 110, it is 100 m or more, for example, Preferably it is 1000 m or more.
  • the resin sheet manufactured in this way can be provided as a diaphragm for alkaline water electrolysis.
  • the diaphragm for alkaline water electrolysis of the present invention can become porous when it is used, specifically, when immersed in alkaline water which is electrolytic water. More specifically, in the alkaline water, the porogen is removed from the alkaline water electrolysis diaphragm to form a three-dimensional network skeleton and to form communicating pores.
  • the method further includes a step of removing porogen from the resin sheet. By removing the porogen, a diaphragm for alkaline water electrolysis having a porous structure can be obtained.
  • Examples of the method for removing porogen from the resin sheet include a method of immersing the resin sheet in a solvent capable of extracting the porogen. Ultrasonic waves may be applied while dipping. Further, it may be immersed in a heated solvent (for example, 40 ° C. to 100 ° C.).
  • the solvent used for removing the porogen it is preferable to use a halogen-free solvent.
  • the solvent include water, DMF (N, N-dimethylformamide), DMSO (dimethyl sulfoxide), THF (tetrahydrofuran) and the like.
  • the step of removing porogen from the resin sheet may be performed in multiple stages.
  • the step of removing the porogen from the resin sheet can be performed, for example, in three or more stages. At each stage, the porogen may be removed by changing the type and / or temperature of the solvent.
  • the membrane for alkaline water electrolysis is dried.
  • the drying conditions are not particularly limited, and the temperature is, for example, 40 ° C. to 120 ° C., preferably 50 ° C. to 100 ° C.
  • the drying time is, for example, about 10 seconds to 5 minutes.
  • a drying apparatus employing a known sheet drying method such as a tenter method, a floating method, a roll method, or a belt method can be used. A plurality of drying methods may be combined.
  • the diaphragm for alkaline water electrolysis of the present invention has a three-dimensional network skeleton composed of a crosslinked epoxy resin and has pores communicating so that ions can permeate.
  • the diaphragm for alkaline water electrolysis of this invention can be manufactured with said manufacturing method, for example.
  • the diaphragm for alkaline water electrolysis preferably has an electrical resistance value of 0.5 ⁇ ⁇ cm 2 or less, more preferably 0.5 ⁇ ⁇ cm 2 or less, when a potassium hydroxide aqueous solution having a temperature of 25 ° C./concentration of 25.5 wt% is used as the electrolyte. It is 0.1 ⁇ ⁇ cm 2 or less, more preferably 0.01 ⁇ ⁇ cm 2 to 0.08 ⁇ ⁇ cm 2 , and particularly preferably 0.01 ⁇ ⁇ cm 2 to 0.06 ⁇ ⁇ cm 2 .
  • the present invention having a three-dimensional network skeleton composed of a crosslinked epoxy resin and having pores communicating so that ions can permeate, it has excellent ion permeability, as described above.
  • a diaphragm for alkaline water electrolysis having a small electric resistance value can be obtained.
  • the electrical resistance value of the diaphragm for alkaline water electrolysis means the electrical resistance value after porogen is removed when the diaphragm for alkaline water electrolysis is obtained by the said manufacturing method.
  • the thickness of the membrane for alkaline water electrolysis is preferably 55 ⁇ m to 500 ⁇ m, more preferably 60 ⁇ m to 250 ⁇ m, and still more preferably 70 ⁇ m to 150 ⁇ m. If it is such a range, the diaphragm for alkaline water electrolysis will be excellent in ion permeability, and has a practically acceptable strength.
  • the “thickness of the diaphragm for alkaline water electrolysis” refers to the thickness after the porogen is removed when the diaphragm for alkaline water electrolysis is obtained by the above production method.
  • the average pore size of the membrane for alkaline water electrolysis is preferably 0.02 ⁇ m to 3.5 ⁇ m. If it is such a range, the diaphragm for alkaline water electrolysis which is very excellent in ion permeability can be obtained.
  • the “average pore diameter of the diaphragm for alkaline water electrolysis” refers to the average pore diameter after the porogen is removed when the diaphragm for alkaline water electrolysis is obtained by the above production method.
  • the average pore diameter is a median diameter measured and calculated by a mercury intrusion method.
  • the porosity of the membrane for alkaline water electrolysis is preferably 20% to 80%, more preferably 30% to 80%, and further preferably 40% to 70%.
  • the porosity of the diaphragm for alkaline water electrolysis is a value calculated by the formula ⁇ 1- (apparent density of the diaphragm for alkaline water electrolysis / true density of the material constituting the diaphragm for alkaline water electrolysis) ⁇ ⁇ 100.
  • the “porosity of the diaphragm for alkaline water electrolysis” refers to the porosity after the porogen is removed when the diaphragm for alkaline water electrolysis is obtained by the above production method.
  • a composite membrane for alkaline water electrolysis comprising the above diaphragm for alkaline water electrolysis and a porous reinforcing body disposed on one or both surfaces of the diaphragm for alkaline water electrolysis can be provided.
  • the porous reinforcing body By providing the porous reinforcing body, it is possible to obtain a composite membrane that has sufficient strength as a diaphragm for electrolysis and is excellent in short-circuit prevention between electrodes.
  • Examples of the form of the upper porous reinforcing body include woven fabric, non-woven fabric, net, mesh, and sintered porous membrane.
  • a sintered porous membrane is preferable. If it is a sintered porous membrane, strength and ion permeability are remarkably excellent.
  • Examples of a method for obtaining a sintered porous film include a sintering method described in JP-A-2-214647.
  • the porosity of the porous reinforcing body is preferably 10% to 90%, more preferably 10% to 55%, and further preferably 10% to 50%.
  • the porosity of the porous reinforcing body means a value calculated by the formula ⁇ 1- (apparent density of porous reinforcing body / true density of material constituting porous reinforcing body) ⁇ ⁇ 100.
  • the thickness of the porous reinforcing body is preferably 10 ⁇ m to 1000 ⁇ m, more preferably 30 ⁇ m to 500 ⁇ m, and further preferably 50 ⁇ m to 200 ⁇ m. If it is such a range, it has sufficient intensity
  • any appropriate material can be used as long as the effects of the present invention can be obtained.
  • the polymer which has a hydrophilic functional group is mentioned, for example.
  • the polymer having a hydrophilic functional group include a polymer in which a hydrophilic functional group is introduced into a resin having a skeleton such as a fluorine resin, an olefin resin, and an aromatic hydrocarbon resin.
  • a polymer using ultrahigh molecular weight polyethylene as a resin serving as a skeleton can be preferably used.
  • the polymer preferably has a hydroxyl group, a carboxylic acid group, an amino group, an amide group, or a cyano group as the hydrophilic functional group.
  • any appropriate method can be adopted as a method for introducing the hydrophilic functional group.
  • the method include a graft polymerization method such as a radiation graft polymerization method and a chemical initiator graft polymerization method; a monomer constituting the resin serving as the skeleton, a monomer having a hydrophilic functional group, and a crosslinking as necessary. And a method of copolymerizing the agent.
  • a graft polymerization method is preferably employed, and a radiation graft polymerization method is more preferably employed.
  • the radiation graft polymerization method for example, after making the resin that becomes a skeleton porous, the resin that becomes the skeleton is irradiated with radiation to generate free radicals, and then the resin irradiated with the radiation and the hydrophilic And a method in which a monomer composition containing a monomer having a functional functional group is brought into contact with each other and graft polymerization is carried out starting from the free radical (pre-irradiation method). Moreover, you may use the method (simultaneous irradiation method) of irradiating with radiation in the state which coexisted resin used as frame
  • a film-like resin (resin that becomes a skeleton) subjected to graft polymerization is referred to as a base material.
  • Examples of the monomer having a hydrophilic functional group include acrylic acid, methacrylic acid, 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2 -Hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, vinyl acetate, allylamine, acrylamide, methacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, N, N-dimethylaminopropylacrylamide, N, N-dimethylamino Ethyl acrylate 2- (dimethylamino) ethyl acrylate, N- (2-hydroxyethyl) acrylamide, acryloylmorpholine, N-isopropylacrylamido , Acrylonitrile, methacrylonitrile, 1-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine
  • acrylic acid, methacrylic acid, 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, acrylamide or methacrylamide are preferable.
  • These monomers may be used alone or in combination of two or more.
  • a hydrophilic effect can be further enhanced by performing a neutralization treatment using an about 1 N aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, or the like.
  • a polymer radical method in which irradiation is performed in an inert gas for polymerization may be used, or a peroxide method in which irradiation is performed in the presence of oxygen for polymerization may be used.
  • the polymer radical method is preferred. If a polymer radical method is used, it can suppress that a monomer polymerizes without being graft-polymerized.
  • the radiation include ⁇ rays, ⁇ rays, ⁇ rays, electron beams, ultraviolet rays, and the like. Preferably, it is a gamma ray or an electron beam.
  • Examples of the base material include woven fabric, non-woven fabric, net, mesh, and sintered porous membrane.
  • the porosity of the base material is preferably 10% to 95%, more preferably 15% to 90%, and further preferably 15% to 75%. Particularly preferred is 15% to 70%. If it is such a range, the reinforcement which is excellent in ion permeability and excellent in the short circuit prevention performance of an electrode can be obtained.
  • the porosity of the base material is calculated by the formula ⁇ 1- (apparent density of base material / true density of material constituting base material) ⁇ ⁇ 100. Value.
  • the weight graft ratio of the porous reinforcing body having a hydrophilic functional group obtained by graft polymerization is preferably 1% to 80%, more preferably 3% to 50%.
  • the diaphragm for alkaline water electrolysis and the porous reinforcing body can be laminated by heating and pressurizing with a hot press machine or a heating roll, for example.
  • the diaphragm for alkaline water electrolysis and the porous reinforcing body are laminated, and only the end of the laminated body is heated.
  • pressure may be applied from both sides with an electrode or the like to fix the diaphragm for alkaline water electrolysis and the porous reinforcing body.
  • the mode (SEM photograph) of the bubble adhering to the diaphragm for electrolysis in an Example and a comparative example is shown in FIG. (3) Electric resistance
  • the film resistance of the samples obtained in the examples and comparative examples was measured by an AC voltage drop method.
  • the sample was immersed in an electrolytic solution at 25 ° C. (potassium hydroxide aqueous solution having a concentration of 25.5% by weight) for 10 minutes, set in a measurement cell (platinum electrode), and measured at an alternating current of 1 kHz.
  • Alkaline water electrolysis evaluation Alkaline water electrolysis evaluation of the diaphragm for electrolysis obtained by the Example and the comparative example was performed using the H-type cell made from an acrylic resin.
  • an aqueous potassium hydroxide solution having a concentration of 25.5 wt% was used, and a Ni electrode was used as the electrode.
  • the liquid temperature at the time of measurement was set to 25 ° C.
  • the current density was 0.2 A / cm 2 , the voltage when a constant current was applied continuously for 1 hour was measured, and alkaline water electrolysis was evaluated based on the average value of the measured values 50 minutes to 1 hour after the start of measurement. Went.
  • the measurement was performed after the diaphragm for electrolysis was immersed in the electrolyte for 10 minutes.
  • Example 1 70 parts by weight of bisphenol A type epoxy resin (Mitsubishi Chemical Co., Ltd., jER (registered trademark) 827, epoxy equivalent: 180-190), bisphenol A type epoxy resin (Mitsubishi Chemical Co., Ltd., jER (registered trademark) 1009, epoxy equivalent) : 2400-3300) and 30 parts by weight of polyethylene glycol (PEG 200, manufactured by Sanyo Chemical Co., Ltd.) were mixed to prepare a polyethylene glycol solution of an epoxy resin.
  • bisphenol A type epoxy resin Mitsubishi Chemical Co., Ltd., jER (registered trademark) 827, epoxy equivalent: 180-190
  • bisphenol A type epoxy resin Mitsubishi Chemical Co., Ltd., jER (registered trademark) 1009, epoxy equivalent) : 2400-3300
  • PEG 200 manufactured by Sanyo Chemical Co., Ltd.
  • a mold release agent (manufactured by Nagase ChemteX, QZ-13) is thinly applied to the inner surface of a cylindrical mold (stainless steel, inner diameter 20 cm, height 30 cm), and the mold is dried at 70 ° C. ⁇ 30 ° C. Dry in the machine.
  • This mold was filled with a polyethylene glycol solution of the epoxy resin prepared as described above, and 22.3 parts by weight of bis (4-aminocyclohexyl) methane was added as a curing agent.
  • curing agent, and a porogen was prepared.
  • the epoxy resin composition was stirred with an anchor blade at 300 rpm for 30 minutes.
  • the obtained diaphragm for alkaline water electrolysis was subjected to the above evaluations (2) to (5).
  • the evaluation results are shown in Table 1. In the evaluation, in order to allow water to permeate into the membrane of the obtained alkaline water electrolysis diaphragm, it was immersed in a 10 wt% aqueous isopropyl alcohol solution for 10 minutes, and then the isopropyl alcohol was sufficiently replaced with pure water.
  • nip polyethylene
  • NBC polyethylene net
  • the obtained diaphragm for electrolysis was subjected to the evaluations (2) to (5).
  • the evaluation results are shown in Table 1.
  • the membrane was immersed in a 10 wt% isopropyl alcohol aqueous solution for 10 minutes, and then the isopropyl alcohol was sufficiently replaced with pure water.
  • the alkaline water electrolysis diaphragm of the present invention has low electrical resistance and excellent ion permeability.

Abstract

Provided is a method for manufacturing a diaphragm for alkaline water electrolysis, which has excellent ion permeability and chemical resistance and hardly undergoes the adhesion of a gas, which is generated at an electrode upon the electrolysis, onto the surface thereof. The method for manufacturing a diaphragm for alkaline water electrolysis according to the present invention comprises: a step of preparing a resin composition comprising an epoxy resin, a curing agent and a porogen; and a step of producing a resin sheet using the resin composition. In one embodiment, the method for manufacturing a diaphragm for alkaline water electrolysis according to the present invention additionally involves a step of removing the porogen from the resin sheet.

Description

アルカリ水電解用隔膜の製造方法およびアルカリ水電解用隔膜Process for producing diaphragm for alkaline water electrolysis and diaphragm for alkaline water electrolysis
 本発明は、アルカリ水電解用隔膜の製造方法およびアルカリ水電解用隔膜に関する。 The present invention relates to a method for producing a diaphragm for alkaline water electrolysis and a diaphragm for alkaline water electrolysis.
 従来、石油を中心としたエネルギー構図が構築されているが、石油は限りある資源であることに加えて産出可能な地域が限定されているため、今後のエネルギー事情を考慮すると、安定したエネルギーの供給方法が必要である。このようなエネルギー事情を反映し、水素は石油に代わる新しいエネルギー源として注目されている。水素の工業的製造方法として、高分子電解質を用いた水電解法が挙げられる。しかし、当該技術は、白金のような高価な貴金属を触媒として使用するため、コストが高くなる問題がある。一方、アルカリ水電解法は、高価な貴金属触媒を使用することなく、アルカリ水を電気分解することで、安価に安定して水素を得られる方法として期待されている。 Conventionally, an energy composition centered on oil has been established, but in addition to being a limited resource, oil is limited in the areas where it can be produced. A supply method is required. Reflecting this energy situation, hydrogen is attracting attention as a new energy source to replace oil. As an industrial method for producing hydrogen, a water electrolysis method using a polymer electrolyte can be mentioned. However, the technique uses an expensive noble metal such as platinum as a catalyst. On the other hand, the alkaline water electrolysis method is expected as a method for stably obtaining hydrogen at low cost by electrolyzing alkaline water without using an expensive noble metal catalyst.
 アルカリ水電解用の隔膜には、アスベスト布やセラミック多孔膜などが知られている。しかし、アスベスト布は100℃以上での耐久性に問題があり、健康被害の問題もある。セラミック多孔膜は、加工時に非常な高温処理の工程を要するという問題があり、厚みが厚く高抵抗となる問題もある。また、アルカリ水電解法に用いられる隔膜として、親水性無機材料を含有するイオン透過性隔膜が提案されている(特許文献1)。このイオン透過性隔膜は、大量に添加された親水性無機材料の濡れ性に基づき水への濡れ性を示し、多孔質であるためイオン透過性を有する。しかし、このイオン透過性隔膜は、マトリックスとなっている高分子材料が本質的に疎水性であるため電解時に電極で生成したガスが隔膜表面に付着しやすいという問題がある。その結果、アルカリ水を電解液とする電解において、電気抵抗特性が不十分であり、電圧上昇が生じる。 As membranes for alkaline water electrolysis, asbestos cloth and ceramic porous membranes are known. However, asbestos cloth has a problem in durability at 100 ° C. or more, and there is also a problem of health damage. The ceramic porous membrane has a problem that it requires a very high-temperature treatment process at the time of processing, and also has a problem that the thickness is high and the resistance becomes high. In addition, an ion-permeable diaphragm containing a hydrophilic inorganic material has been proposed as a diaphragm used in the alkaline water electrolysis method (Patent Document 1). This ion-permeable diaphragm exhibits wettability to water based on the wettability of a hydrophilic inorganic material added in a large amount, and has ion permeability because it is porous. However, this ion-permeable diaphragm has a problem that the gas generated by the electrode during electrolysis tends to adhere to the surface of the diaphragm because the polymer material as a matrix is essentially hydrophobic. As a result, in electrolysis using alkaline water as the electrolytic solution, the electrical resistance characteristics are insufficient and a voltage rise occurs.
特開2008-144262号公報JP 2008-144262 A
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、イオンの透過性および耐薬品性に優れ、かつ、電解時に電極で生成したガスが隔膜表面に付着し難いアルカリ水電解用隔膜の製造方法を提供することにある。 The present invention has been made in order to solve the above-described conventional problems. The object of the present invention is excellent ion permeability and chemical resistance, and gas generated at the electrode during electrolysis adheres to the diaphragm surface. An object of the present invention is to provide a method for producing a diaphragm for alkaline water electrolysis that is difficult to perform.
 本発明のアルカリ水電解用隔膜の製造方法は、エポキシ樹脂、硬化剤およびポロゲンを含む樹脂組成物を調製する工程と、該樹脂組成物を用いて樹脂シートを得る工程とを含む。
 1つの実施形態においては、本発明のアルカリ水電解用隔膜の製造方法は、上記樹脂シートから前記ポロゲンを除去する工程をさらに含む。
 1つの実施形態においては、本発明のアルカリ水電解用隔膜の製造方法は、上記樹脂組成物を用いて樹脂シートを得る工程において、該樹脂組成物を成形して硬化体を得、該硬化体表層部分を所定の厚みで切削して該樹脂シートを得ることを含む。
 1つの実施形態においては、本発明のアルカリ水電解用隔膜の製造方法は、上記硬化体が円柱状であり、該硬化体を円柱軸を中心にして回転させながら、該硬化体の表層部を切削することを含む。
 1つの実施形態においては、上記ポロゲンが、ポリエチレングリコールまたはポリプロピレングリコールである。
 本発明の別の局面によれば、アルカリ水電解用隔膜が提供される。このアルカリ水電解用隔膜は、上記製造法により得られる。
 本発明のさらに別の局面によれば、アルカリ水電解用複合膜が提供される。このアルカリ水電解用複合膜は、上記アルカリ水電解用隔膜と、該アルカリ水電解用隔膜の片面または両面に配置された多孔性補強体とを備える。
 1つの実施形態においては、上記多孔性補強体が、親水性官能基を有するポリマーから構成される。
 1つの実施形態においては、上記多孔性補強体が、織布、不織布、ネット、メッシュまたは焼結多孔膜である。
The manufacturing method of the diaphragm for alkaline water electrolysis of this invention includes the process of preparing the resin composition containing an epoxy resin, a hardening | curing agent, and a porogen, and the process of obtaining a resin sheet using this resin composition.
In one embodiment, the manufacturing method of the diaphragm for alkaline water electrolysis of this invention further includes the process of removing the said porogen from the said resin sheet.
In one embodiment, in the method for producing a diaphragm for alkaline water electrolysis according to the present invention, in the step of obtaining a resin sheet using the resin composition, the resin composition is molded to obtain a cured body, and the cured body Cutting the surface layer portion with a predetermined thickness to obtain the resin sheet.
In one embodiment, in the method for producing a diaphragm for alkaline water electrolysis according to the present invention, the cured body is cylindrical, and the surface layer portion of the cured body is rotated while rotating the cured body about a cylindrical axis. Including cutting.
In one embodiment, the porogen is polyethylene glycol or polypropylene glycol.
According to another aspect of the present invention, a diaphragm for alkaline water electrolysis is provided. This diaphragm for alkaline water electrolysis is obtained by the above production method.
According to still another aspect of the present invention, a composite membrane for alkaline water electrolysis is provided. The composite membrane for alkaline water electrolysis includes the above diaphragm for alkaline water electrolysis and a porous reinforcing body disposed on one or both surfaces of the diaphragm for alkaline water electrolysis.
In one embodiment, the said porous reinforcement body is comprised from the polymer which has a hydrophilic functional group.
In one embodiment, the porous reinforcing body is a woven fabric, a nonwoven fabric, a net, a mesh, or a sintered porous membrane.
 本発明によれば、エポキシ樹脂とポロゲンとを含む樹脂組成物を用いることにより、アルカリ水電解用として好適な多孔質構造を有する隔膜を得ることができる。該アルカリ水電解用隔膜は、イオンの透過性および耐薬品性に優れ、かつ、電解時に電極で生成したガスが隔膜表面に付着し難い。 According to the present invention, a diaphragm having a porous structure suitable for alkaline water electrolysis can be obtained by using a resin composition containing an epoxy resin and a porogen. The alkaline water electrolysis diaphragm is excellent in ion permeability and chemical resistance, and the gas generated at the electrode during electrolysis hardly adheres to the diaphragm surface.
円柱状の硬化体の表層部を切削する方法の一例を示す概略図である。It is the schematic which shows an example of the method of cutting the surface layer part of a cylindrical hardening body. 実施例および比較例における、電解用隔膜に付着した気泡の様子を示すSEM写真である。It is a SEM photograph which shows the mode of the bubble adhering to the diaphragm for electrolysis in an Example and a comparative example.
 以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。
A.アルカリ水電解用隔膜の製造方法
 本発明のアルカリ水電解用隔膜の製造方法は、エポキシ樹脂、硬化剤およびポロゲンを含む樹脂組成物を調製する工程(工程1)と、該樹脂組成物から樹脂シートを得る工程(工程2)とを含む。このようにして得られたアルカリ水電解用隔膜は、アルカリ水等の水系溶媒中で、樹脂シート中のポロゲンが除去されて、多孔性となり、イオン透過性に優れる。すなわち、1つの実施形態においては、本発明の製造方法により得られるアルカリ水電解用隔膜は、多孔体の前駆体であり、使用時に、具体的にはアルカリ水に浸漬した際に、多孔性となり得る。別の実施形態においては、本発明の製造方法は、上記樹脂シートから前記ポロゲンを除去する工程をさらに含む。この実施形態においては、上記アルカリ水電解用隔膜は、イオン透過性に優れる多孔体として提供される。
Hereinafter, although preferable embodiment of this invention is described, this invention is not limited to these embodiment.
A. Method for producing diaphragm for alkaline water electrolysis The method for producing a diaphragm for alkaline water electrolysis according to the present invention comprises a step of preparing a resin composition containing an epoxy resin, a curing agent and a porogen (step 1), and the resin composition. A step of obtaining a resin sheet (step 2). The membrane for alkaline water electrolysis thus obtained is made porous by removing the porogen in the resin sheet in an aqueous solvent such as alkaline water, and is excellent in ion permeability. That is, in one embodiment, the diaphragm for alkaline water electrolysis obtained by the production method of the present invention is a precursor of a porous body, and becomes porous when used, specifically, when immersed in alkaline water. obtain. In another embodiment, the production method of the present invention further includes a step of removing the porogen from the resin sheet. In this embodiment, the diaphragm for alkaline water electrolysis is provided as a porous body excellent in ion permeability.
 本発明の製造方法により得られるアルカリ水電解用隔膜は、エポキシ樹脂から構成されているので、耐薬品性に優れ、かつ、電解時に電極で生成したガスが隔膜表面に付着し難い。 Since the diaphragm for alkaline water electrolysis obtained by the production method of the present invention is composed of an epoxy resin, it is excellent in chemical resistance, and the gas generated at the electrode during electrolysis hardly adheres to the surface of the diaphragm.
A-1.工程1
 上記樹脂組成物は、常温下で、エポキシ樹脂と、硬化剤と、ポロゲンとを混合して調製することができる。1つの実施形態においては、ポロゲンにエポキシ樹脂と硬化剤とを溶解させることにより、上記樹脂組成物が得られる。
A-1. Process 1
The resin composition can be prepared by mixing an epoxy resin, a curing agent, and a porogen at room temperature. In one embodiment, the said resin composition is obtained by dissolving an epoxy resin and a hardening | curing agent in a porogen.
 上記エポキシ樹脂としては、任意の適切なエポキシ樹脂が用いられ得る。芳香族エポキシ樹脂を用いてもよく、非芳香族エポキシ樹脂を用いてもよい。芳香族エポキシ樹脂としては、例えば、ポリフェニルベースエポキシ樹脂、フルオレン環を含むエポキシ樹脂、トリグリシジルイソシアヌレートを含むエポキシ樹脂、複素芳香環(例えば、トリアジン環)を含むエポキシ樹脂等が挙げられる。ポリフェニルベースエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、スチルベン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、テトラキス(ヒドロキシフェニル)エタンベースエポキシ樹脂等が挙げられる。非芳香族エポキシ樹脂としては、例えば、脂肪族グリシジルエーテル型エポキシ樹脂、脂肪族グリシジルエステル型エポキシ樹脂、脂環族グリシジルエーテル型エポキシ樹脂、脂環族グリシジルアミン型エポキシ樹脂、脂環族グリシジルエステル型エポキシ樹脂等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 Any appropriate epoxy resin can be used as the epoxy resin. An aromatic epoxy resin may be used, and a non-aromatic epoxy resin may be used. Examples of the aromatic epoxy resin include a polyphenyl-based epoxy resin, an epoxy resin containing a fluorene ring, an epoxy resin containing triglycidyl isocyanurate, and an epoxy resin containing a heteroaromatic ring (for example, a triazine ring). Examples of polyphenyl-based epoxy resins include bisphenol A type epoxy resins, brominated bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, stilbene type epoxy resins, biphenyl type epoxy resins, and bisphenol A novolac types. Examples thereof include an epoxy resin, a cresol novolac type epoxy resin, a diaminodiphenylmethane type epoxy resin, and a tetrakis (hydroxyphenyl) ethane-based epoxy resin. Examples of non-aromatic epoxy resins include aliphatic glycidyl ether type epoxy resins, aliphatic glycidyl ester type epoxy resins, alicyclic glycidyl ether type epoxy resins, alicyclic glycidyl amine type epoxy resins, and alicyclic glycidyl ester types. An epoxy resin etc. are mentioned. These may be used alone or in combination of two or more.
 上記エポキシ樹脂として、好ましくは、ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、フルオレン環を含むエポキシ樹脂、トリグリシジルイソシアヌレートを含むエポキシ樹脂、脂環族グリシジルエーテル型エポキシ樹脂、脂環族グリシジルアミン型エポキシ樹脂または脂環族グリシジルエステル型エポキシ樹脂が用いられる。これらのエポキシ樹脂を用いれば、電解用隔膜として優れた多孔質構造を有する三次元網目状骨格が形成され、均一な空孔が形成され得る。また、耐薬品性および強度に優れたアルカリ水電解用隔膜を得ることができる。 The epoxy resin is preferably a bisphenol A type epoxy resin, a brominated bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol AD type epoxy resin, an epoxy resin containing a fluorene ring, an epoxy resin containing triglycidyl isocyanurate, An alicyclic glycidyl ether type epoxy resin, an alicyclic glycidyl amine type epoxy resin or an alicyclic glycidyl ester type epoxy resin is used. If these epoxy resins are used, a three-dimensional network skeleton having an excellent porous structure as a diaphragm for electrolysis can be formed, and uniform pores can be formed. Moreover, the diaphragm for alkaline water electrolysis excellent in chemical resistance and intensity | strength can be obtained.
 上記エポキシ樹脂のエポキシ当量は、好ましくは6000以下であり、より好ましくは2000以下である。このような範囲であれば、電解用隔膜として適切な空孔率、孔径(平均孔径)を有し、優れた多孔質構造を有する三次元網目状骨格が形成され、均一な空孔が形成され得る。また、耐薬品性および強度に優れ、かつ、電解時に電極で生成したガスが付着し難いアルカリ水電解用隔膜を得ることができる。 The epoxy equivalent of the epoxy resin is preferably 6000 or less, more preferably 2000 or less. Within such a range, a three-dimensional network skeleton having an appropriate porosity and pore diameter (average pore diameter) as an electrolysis diaphragm and an excellent porous structure is formed, and uniform pores are formed. obtain. Moreover, the diaphragm for alkaline water electrolysis which is excellent in chemical-resistance and intensity | strength, and the gas produced | generated with the electrode at the time of electrolysis cannot adhere easily can be obtained.
 1つの実施形態においては、エポキシ当量が異なる2種以上のエポキシ樹脂が用いられる。エポキシ当量が異なるエポキシ樹脂を複数種用いることにより、アルカリ水電解用隔膜のガス付着性、強度等の機械特性、耐薬品性等を調整することができる。好ましくは、エポキシ当量が100以上異なるエポキシ樹脂が用いられる。例えば、エポキシ当量の大きい(例えば、エポキシ当量:2000~4000)エポキシ樹脂と、エポキシ当量の小さい(例えば、エポキシ当量:150~200)エポキシ樹脂とを組み合わせて用い、エポキシ当量の大きいエポキシ樹脂の配合割合を多くすることにより、柔軟性および/または強度に優れたアルカリ水電解用隔膜を得ることができる。 In one embodiment, two or more epoxy resins having different epoxy equivalents are used. By using a plurality of epoxy resins having different epoxy equivalents, gas adhesion, mechanical properties such as strength, chemical resistance, etc. of the diaphragm for alkaline water electrolysis can be adjusted. Preferably, epoxy resins having epoxy equivalents different by 100 or more are used. For example, a combination of an epoxy resin having a high epoxy equivalent (for example, epoxy equivalent: 2000 to 4000) and an epoxy resin having a low epoxy equivalent (for example, epoxy equivalent: 150 to 200) is used in combination. By increasing the ratio, a diaphragm for alkaline water electrolysis excellent in flexibility and / or strength can be obtained.
 上記エポキシ樹脂の重量平均分子量は、好ましくは370~12000であり、より好ましくは370~4000である。このような範囲であれば、イオン透過性、耐薬品性および強度により優れ、かつ、電解時に電極で生成したガスが付着し難いアルカリ水電解用隔膜を得ることができる。なお、本明細書における重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)測定(溶媒テトラヒドロフラン)により求めることができる。 The weight average molecular weight of the epoxy resin is preferably 370 to 12000, more preferably 370 to 4000. If it is such a range, the diaphragm for alkaline water electrolysis which is excellent in ion permeability, chemical-resistance, and intensity | strength, and the gas produced | generated by the electrode at the time of electrolysis cannot adhere easily can be obtained. In addition, the weight average molecular weight in this specification can be calculated | required by a gel permeation chromatography (GPC) measurement (solvent tetrahydrofuran).
 上記エポキシ樹脂の分子量分布(重量平均分子量/数平均分子量)は、好ましくは1.0~10であり、より好ましくは1.0~5.0である。このような範囲であれば、イオン透過性、耐薬品性および強度により優れ、かつ、電解時に電極で生成したガスが付着し難いアルカリ水電解用隔膜を得ることができる。なお、本明細書における数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)測定(溶媒テトラヒドロフラン)により求めることができる。 The molecular weight distribution (weight average molecular weight / number average molecular weight) of the epoxy resin is preferably 1.0 to 10, more preferably 1.0 to 5.0. If it is such a range, the diaphragm for alkaline water electrolysis which is excellent in ion permeability, chemical-resistance, and intensity | strength, and the gas produced | generated by the electrode at the time of electrolysis cannot adhere easily can be obtained. In addition, the number average molecular weight in this specification can be calculated | required by a gel permeation chromatography (GPC) measurement (solvent tetrahydrofuran).
 上記エポキシ樹脂の融点は、好ましくは170℃以下であり、より好ましくは120℃以下であり、さらに好ましくは20℃~50℃である。このような範囲であれば、電解用隔膜として優れた多孔質構造を有する三次元網目状骨格が形成され、均一な空孔が形成され得る。また、耐薬品性および強度に優れたアルカリ水電解用隔膜を得ることができる。 The melting point of the epoxy resin is preferably 170 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 20 ° C. to 50 ° C. Within such a range, a three-dimensional network skeleton having an excellent porous structure as a diaphragm for electrolysis can be formed, and uniform pores can be formed. Moreover, the diaphragm for alkaline water electrolysis excellent in chemical resistance and intensity | strength can be obtained.
 上記硬化剤としては、任意の適切な硬化剤が用いられ得る。芳香族硬化剤を用いてもよく、非芳香族硬化剤を用いてもよい。芳香族硬化剤としては、例えば、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ベンジルジメチルアミン、ジメチルアミノメチルベンゼン等の芳香族アミン;無水フタル酸、無水トリメリット酸、無水ピロメリット酸等の芳香族酸無水物;フェノール樹脂;フェノールノボラック樹脂;複素芳香環を含むアミン(例えば、トリアジン環を含むアミン)等が挙げられる。非芳香族硬化剤としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、1,3,6-トリスアミノメチルヘキサン、ポリメチレンジアミン、トリメチルヘキサメチレンジアミン、ポリエーテルジアミン等の脂肪族アミン類;イソホロンジアミン、メンタンジアミン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ(5,5)ウンデカンアダクト、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタン、これらの変性品等の脂環族アミン類、ポリアミン類とダイマー酸とを含む脂肪族ポリアミドアミン等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 Any appropriate curing agent may be used as the curing agent. An aromatic curing agent may be used, and a non-aromatic curing agent may be used. Examples of aromatic curing agents include aromatic amines such as metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, benzyldimethylamine, and dimethylaminomethylbenzene; aromatics such as phthalic anhydride, trimellitic anhydride, and pyromellitic anhydride An aromatic acid anhydride; a phenol resin; a phenol novolak resin; an amine containing a heteroaromatic ring (for example, an amine containing a triazine ring) and the like. Non-aromatic curing agents include, for example, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, iminobispropylamine, bis (hexamethylene) triamine, 1,3,6-trisaminomethylhexane, polymethylenediamine, Aliphatic amines such as trimethylhexamethylene diamine and polyether diamine; isophorone diamine, menthane diamine, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) 2,4,8,10-tetraoxaspiro ( 5,5) Fats containing alicyclic amines such as undecane adduct, bis (4-amino-3-methylcyclohexyl) methane, bis (4-aminocyclohexyl) methane, modified products thereof, polyamines and dimer acid Polyamidoamine etc. And the like. These may be used alone or in combination of two or more.
 上記硬化剤として、好ましくは、分子内に一級アミンを2つ以上有する硬化剤が用いられる。分子内に一級アミンを2つ以上有する硬化剤の具体例としては、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ポリメチレンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン及びビス(4-アミノシクロヘキシル)メタン等が挙げられる。これらの硬化剤を使用すれば、電解用隔膜として優れた多孔質構造を有する三次元網目状骨格が形成され、均一な空孔が形成され得る。また、強度に優れ、かつ、適切な弾性率を有するアルカリ水電解用隔膜を得ることができる。 As the curing agent, a curing agent having two or more primary amines in the molecule is preferably used. Specific examples of the curing agent having two or more primary amines in the molecule include metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, polymethylenediamine, bis (4-amino-3-methylcyclohexyl) methane and bis (4- Aminocyclohexyl) methane and the like. If these curing agents are used, a three-dimensional network skeleton having an excellent porous structure as a diaphragm for electrolysis can be formed, and uniform pores can be formed. Moreover, the diaphragm for alkaline water electrolysis which is excellent in intensity | strength and has an appropriate elasticity modulus can be obtained.
 エポキシ樹脂として、芳香族エポキシ樹脂を用いる場合、硬化剤としては、脂肪族アミン類または脂環族アミン類が好ましく用いられ得る。エポキシ樹脂として、非芳香族エポキシ樹脂(例えば、脂環族エポキシ樹脂)を用いる場合、硬化剤としては、芳香族アミン類が好ましく用いられ得る。エポキシ樹脂と硬化剤とをこれらの組み合わせで用いれば、耐熱性に優れたアルカリ水電解用隔膜を得ることができる。 When an aromatic epoxy resin is used as the epoxy resin, aliphatic amines or alicyclic amines can be preferably used as the curing agent. When a non-aromatic epoxy resin (for example, alicyclic epoxy resin) is used as the epoxy resin, aromatic amines can be preferably used as the curing agent. If an epoxy resin and a hardening | curing agent are used in these combinations, the diaphragm for alkaline water electrolysis excellent in heat resistance can be obtained.
 上記樹脂組成物中の硬化剤の含有量は、エポキシ樹脂のエポキシ基1当量に対して、硬化剤当量が0.6~1.5となる量であることが好ましい。このような範囲であれば、耐熱性、化学的耐久性、力学特性等に優れるアルカリ水電解用隔膜を得ることができる。 The content of the curing agent in the resin composition is preferably such that the curing agent equivalent is 0.6 to 1.5 with respect to 1 equivalent of epoxy group of the epoxy resin. If it is such a range, the diaphragm for alkaline water electrolysis which is excellent in heat resistance, chemical durability, a mechanical characteristic, etc. can be obtained.
 上記硬化剤と硬化促進剤とを併用してもよい。硬化促進剤を用いることにより、多孔質構造を制御することができる。具体的には、硬化促進剤を用いることにより、未反応の官能基を少なくすることができる。その結果、熱的物性および機械的物性に優れ、かつ、化学的にも安定なアルカリ水電解用隔膜を得ることができる。硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等の三級アミン;2-フェノール-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェノール-4,5-ジヒドロキシイミダゾール等のイミダゾール類等が挙げられる。硬化促進剤の含有割合は、硬化剤100重量部に対して、好ましくは1重量部~5重量部である。 The above curing agent and curing accelerator may be used in combination. By using a curing accelerator, the porous structure can be controlled. Specifically, unreacted functional groups can be reduced by using a curing accelerator. As a result, it is possible to obtain a diaphragm for alkaline water electrolysis that is excellent in thermal properties and mechanical properties and is chemically stable. Examples of the curing accelerator include tertiary amines such as triethylamine and tributylamine; imidazoles such as 2-phenol-4-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenol-4,5-dihydroxyimidazole. Etc. The content of the curing accelerator is preferably 1 to 5 parts by weight with respect to 100 parts by weight of the curing agent.
 上記ポロゲンは、上記エポキシ樹脂および硬化剤を溶解させ得る溶媒であることが好ましい。また、上記樹脂組成物を硬化させた際、すなわち、エポキシ樹脂と硬化剤とが重合した際には、反応誘起相分離を生じさせ得る溶媒として使用される。なお、上記ポロゲンは、エポキシ樹脂と硬化剤との重合物を溶解させ得る溶媒であってもよい。 The porogen is preferably a solvent capable of dissolving the epoxy resin and the curing agent. In addition, when the resin composition is cured, that is, when the epoxy resin and the curing agent are polymerized, it is used as a solvent that can cause reaction-induced phase separation. The porogen may be a solvent that can dissolve a polymer of an epoxy resin and a curing agent.
 上記ポロゲンの具体例としては、メチルセロソルブ、エチルセロソルブ等のセロソルブ類;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル類;ポリエチレングリコール、ポリプロピレングリコール等のグリコール類;ポリオキシエチレンモノメチルエーテル、ポリオキシエチレンジメチルエーテル等のエーテル類をポロゲンとして使用できる。これらは単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the porogen include cellosolves such as methyl cellosolve and ethyl cellosolve; esters such as ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate; glycols such as polyethylene glycol and polypropylene glycol; polyoxyethylene monomethyl ether; Ethers such as polyoxyethylene dimethyl ether can be used as the porogen. These may be used alone or in combination of two or more.
 上記ポロゲンとして、好ましくは、メチルセロソルブ、エチルセロソルブ、ポリエチレングリコール、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ポリプロピレングリコール、ポリオキシエチレンモノメチルエーテルまたはポリオキシエチレンジメチルエーテルが好ましく用いられ得る。なかでも好ましくは、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンモノメチルエーテルまたはプロピレングリコールモノメチルエーテルアセテートであり、より好ましくはポリエチレングリコールまたはポリプロピレングリコールである。これらのポロゲンを使用すれば、電解用隔膜として優れた多孔質構造を有する三次元網目状骨格が形成され、均一な空孔が形成され得る。 As the porogen, methyl cellosolve, ethyl cellosolve, polyethylene glycol, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, polypropylene glycol, polyoxyethylene monomethyl ether or polyoxyethylene dimethyl ether can be preferably used. Among these, polyethylene glycol, polypropylene glycol, polyoxyethylene monomethyl ether or propylene glycol monomethyl ether acetate is preferable, and polyethylene glycol or polypropylene glycol is more preferable. If these porogens are used, a three-dimensional network skeleton having an excellent porous structure as a diaphragm for electrolysis can be formed, and uniform pores can be formed.
 上記ポロゲンの含有割合は、エポキシ樹脂、硬化剤およびポロゲンの総量に対して、好ましくは40重量%~80重量%であり、より好ましくは60重量%~70重量%であり、さらに好ましくは60重量%~65重量%である。このような範囲であれば、電解用隔膜として適切な空孔率、孔径(平均孔径)および通気度を有するアルカリ水電解用隔膜を得ることができる。 The content of the porogen is preferably 40% by weight to 80% by weight, more preferably 60% by weight to 70% by weight, and still more preferably 60% by weight with respect to the total amount of the epoxy resin, the curing agent and the porogen. % To 65% by weight. If it is such a range, the diaphragm for alkaline water electrolysis which has a porosity, a hole diameter (average hole diameter), and air permeability suitable as a diaphragm for electrolysis can be obtained.
A-2.工程2
 上記樹脂組成物から樹脂シートを得る方法としては、例えば、以下の方法が挙げられる。
 (方法i)上記樹脂組成物を任意の適切な基板上に塗布し、その後、塗布層を硬化して樹脂シートを得る方法。
 (方法ii)上記樹脂組成物を成形して硬化体を得、該硬化体表層部分を所定の厚みで切削して樹脂シートを得る方法。
A-2. Process 2
Examples of a method for obtaining a resin sheet from the resin composition include the following methods.
(Method i) A method in which the resin composition is applied onto any appropriate substrate, and then the coating layer is cured to obtain a resin sheet.
(Method ii) A method in which the resin composition is molded to obtain a cured product, and a surface layer portion of the cured product is cut at a predetermined thickness to obtain a resin sheet.
A-2-1.方法i
 方法iにおいては、上記樹脂組成物を任意の適切な基板上に塗布した後、塗布層を加熱することにより、エポキシ樹脂と硬化剤とが反応して三次元架橋構造が形成される。また、このときエポキシ樹脂架橋体とポロゲンとの相分離により、共連続構造が形成される。
A-2-1. Method i
In method i, the resin composition is applied onto any appropriate substrate, and then the coating layer is heated, whereby the epoxy resin and the curing agent react to form a three-dimensional crosslinked structure. At this time, a co-continuous structure is formed by phase separation of the crosslinked epoxy resin and the porogen.
 塗布層形成方法としては、コーティング法、凸版印刷法、ダイレクトグラビア印刷法、凹版印刷法、平版印刷法、孔版印刷法等が挙げられる。 Examples of the coating layer forming method include a coating method, a relief printing method, a direct gravure printing method, an intaglio printing method, a lithographic printing method, and a stencil printing method.
 上記塗布層の厚みは、好ましくは55μm~500μmであり、より好ましくは60μm~250μmである。 The thickness of the coating layer is preferably 55 μm to 500 μm, more preferably 60 μm to 250 μm.
 上記塗布層の硬化方法としては、任意の適切な硬化方法が採用され得る。例えば、加熱による硬化が採用され得、この場合、加熱温度は代表的には40℃~200℃であり、加熱時間は代表的には10分~100時間である。 Any appropriate curing method may be employed as the method for curing the coating layer. For example, curing by heating can be employed, in which case the heating temperature is typically 40 ° C. to 200 ° C. and the heating time is typically 10 minutes to 100 hours.
 1つの実施形態においては、このようにして製造された樹脂シートが、アルカリ水電解用隔膜として提供され得る。この場合、本発明のアルカリ水電解用隔膜は、使用時に、具体的には電解水であるアルカリ水に浸漬した際に、多孔性となり得る。より詳細には、アルカリ水中で、ポロゲンがアルカリ水電解用隔膜から除去されて、三次元網目状骨格が形成され、連通する空孔が形成される。 In one embodiment, the resin sheet manufactured in this way can be provided as a diaphragm for alkaline water electrolysis. In this case, the diaphragm for alkaline water electrolysis of the present invention can become porous when it is used, specifically, when immersed in alkaline water which is electrolytic water. More specifically, in the alkaline water, the porogen is removed from the alkaline water electrolysis diaphragm to form a three-dimensional network skeleton and to form communicating pores.
 別の実施形態においては、塗布層の加熱後に、樹脂シートからポロゲンを除去する工程をさらに含む。ポロゲンを除去する方法としては、後述のA-2-2項で説明する方法が挙げられる。 In another embodiment, the method further includes a step of removing the porogen from the resin sheet after the coating layer is heated. Examples of the method for removing the porogen include the method described in the section A-2-2 below.
 なお、上記基材上に形成された塗布層上に、さらに別の基板を配置して、該塗布層が一対の基板に挟まれた状態で、加熱してもよい。 Note that another substrate may be placed on the coating layer formed on the base material, and the coating layer may be heated while being sandwiched between the pair of substrates.
A-2-2.方法ii A-2-2. Method ii
 方法iiにおいては、樹脂組成物中のエポキシ樹脂と硬化剤とを重合し、該樹脂組成物を硬化させて三次元架橋構造を有する硬化体を形成する。硬化体を形成する際に、エポキシ樹脂架橋体とポロゲンとの相分離により、共連続構造が形成される。 In method ii, the epoxy resin and the curing agent in the resin composition are polymerized, and the resin composition is cured to form a cured body having a three-dimensional crosslinked structure. When the cured body is formed, a co-continuous structure is formed by phase separation between the epoxy resin crosslinked body and the porogen.
 上記硬化体は、例えば、円柱状に形成される。円柱状の硬化体を形成すれば、切削する際の効率性に優れる。 The cured body is formed in a columnar shape, for example. If a column-shaped hardening body is formed, it will be excellent in the efficiency at the time of cutting.
 上記硬化体は、上記樹脂組成物を硬化させることにより、得ることができる。円柱状の硬化体は、例えば、円筒状の金型に上記樹脂組成物を投入した後、該樹脂組成物を硬化して、得られる。硬化の際の硬化温度および時間は、樹脂組成物の組成等に応じて任意の適切な条件に設定され得る。 The cured body can be obtained by curing the resin composition. The cylindrical cured body is obtained, for example, by charging the resin composition into a cylindrical mold and then curing the resin composition. The curing temperature and time for curing can be set to any appropriate conditions depending on the composition of the resin composition and the like.
 上記硬化の際の硬化温度は、例えば、20℃~120℃である。このような温度で硬化すれば、電解用隔膜として優れた多孔質構造を有する三次元網目状骨格が形成され、均一な空孔が形成されたアルカリ水電解用隔膜を得ることができる。なお、硬化温度が高いほど、平均孔径の小さいアルカリ水電解用隔膜を得ることができる。1つの実施形態においては、硬化温度を20℃~40℃に設定して、硬化時間を好ましくは3時間~100時間、より好ましくは20時間~50時間に設定して、硬化処理が行われ得る。別の実施形態においては、硬化温度を好ましくは40℃~120℃、より好ましくは60℃~100℃に設定して、硬化時間を好ましくは10分~300分、より好ましくは30分~180分に設定して、硬化処理が行われる。硬化処理の後、必要に応じて、ポストキュアを行ってもよい。ポストキュアを行うことにより、硬化体の架橋度を高めることができる。ポストキュアの温度は、例えば、50℃~160℃であり、時間は、例えば、2時間~48時間である。 The curing temperature at the time of the curing is, for example, 20 ° C. to 120 ° C. When cured at such a temperature, a three-dimensional network skeleton having an excellent porous structure as a diaphragm for electrolysis is formed, and a diaphragm for alkaline water electrolysis in which uniform pores are formed can be obtained. In addition, the diaphragm for alkaline water electrolysis with a small average hole diameter can be obtained, so that hardening temperature is high. In one embodiment, the curing process may be performed with the curing temperature set at 20 ° C. to 40 ° C. and the curing time set preferably at 3 hours to 100 hours, more preferably 20 hours to 50 hours. . In another embodiment, the curing temperature is preferably set to 40 ° C. to 120 ° C., more preferably 60 ° C. to 100 ° C., and the curing time is preferably 10 minutes to 300 minutes, more preferably 30 minutes to 180 minutes. And the curing process is performed. After the curing treatment, post-cure may be performed as necessary. By performing post-cure, the degree of crosslinking of the cured product can be increased. The temperature of the post cure is, for example, 50 ° C. to 160 ° C., and the time is, for example, 2 hours to 48 hours.
 上記硬化体の寸法は、任意の適切な寸法であり得る。上記硬化体が円柱状の場合、該硬化体の直径は、代表的には直径が20cm以上であり、好ましくは30cm~150cmである。また、該硬化体の長さ(軸方向)は、代表的には20cm~200cmであり、好ましくは20cm~150cmであり、より好ましくは20cm~120cmである。このような寸法であれば、製造効率に優れる。 The dimension of the cured body can be any appropriate dimension. When the cured body is cylindrical, the diameter of the cured body is typically 20 cm or more, and preferably 30 cm to 150 cm. The length (axial direction) of the cured body is typically 20 cm to 200 cm, preferably 20 cm to 150 cm, more preferably 20 cm to 120 cm. If it is such a dimension, it is excellent in manufacturing efficiency.
 上記のようにして硬化体を形成した後、該硬化体の表層部分を切削することにより、樹脂シートを得ることができる。図1は、硬化体が円柱状の場合における、該硬化体を切削する方法の一例を示す概略図である。硬化体が円柱状の場合は、該硬化体100をシャフト10に取り付け、硬化体100を円柱軸を中心にして回転させながら、任意の適切なブレード20を用いて、硬化体100の表層部を所定の厚さで切削(スライス)する。このような方法によれば、効率的に樹脂シート110を得ることができる。 After forming the cured body as described above, a resin sheet can be obtained by cutting the surface layer portion of the cured body. FIG. 1 is a schematic diagram illustrating an example of a method of cutting the cured body when the cured body is cylindrical. When the cured body is cylindrical, the cured body 100 is attached to the shaft 10, and the surface layer portion of the cured body 100 is attached to the cured body 100 using any appropriate blade 20 while rotating the cured body 100 around the cylindrical axis. Cutting (slicing) at a predetermined thickness. According to such a method, the resin sheet 110 can be obtained efficiently.
 硬化体100の回転速度は、例えば、2m/min~70m/minである。 The rotational speed of the cured body 100 is, for example, 2 m / min to 70 m / min.
 切削厚さ(樹脂シート110の厚さ)、好ましくは55μm~500μmであり、より好ましくは60μm~250μmである。樹脂シート110の長さは特に限定されないが、樹脂シート110の製造効率の観点から、例えば100m以上であり、好ましくは1000m以上である。 Cutting thickness (thickness of resin sheet 110), preferably 55 μm to 500 μm, more preferably 60 μm to 250 μm. Although the length of the resin sheet 110 is not specifically limited, From the viewpoint of the manufacturing efficiency of the resin sheet 110, it is 100 m or more, for example, Preferably it is 1000 m or more.
 1つの実施形態においては、このようにして製造された樹脂シートが、アルカリ水電解用隔膜として提供され得る。この場合、本発明のアルカリ水電解用隔膜は、使用時に、具体的には電解水であるアルカリ水に浸漬した際に、多孔性となり得る。より詳細には、アルカリ水中で、ポロゲンがアルカリ水電解用隔膜から除去されて、三次元網目状骨格が形成され、連通する空孔が形成される。 In one embodiment, the resin sheet manufactured in this way can be provided as a diaphragm for alkaline water electrolysis. In this case, the diaphragm for alkaline water electrolysis of the present invention can become porous when it is used, specifically, when immersed in alkaline water which is electrolytic water. More specifically, in the alkaline water, the porogen is removed from the alkaline water electrolysis diaphragm to form a three-dimensional network skeleton and to form communicating pores.
 別の実施形態においては、樹脂シートからポロゲンを除去する工程をさらに含む。ポロゲンを除去することにより、多孔質構造を有するアルカリ水電解用隔膜を得ることができる。 In another embodiment, the method further includes a step of removing porogen from the resin sheet. By removing the porogen, a diaphragm for alkaline water electrolysis having a porous structure can be obtained.
 樹脂シートからポロゲンを除去する方法としては、例えば、ポロゲンを抽出し得る溶剤に、樹脂シートを浸漬する方法が挙げられる。浸漬しながら、超音波をかけてもよい。また、加熱された溶剤(例えば、40℃~100℃)に浸漬してもよい。 Examples of the method for removing porogen from the resin sheet include a method of immersing the resin sheet in a solvent capable of extracting the porogen. Ultrasonic waves may be applied while dipping. Further, it may be immersed in a heated solvent (for example, 40 ° C. to 100 ° C.).
 ポロゲンを除去する際に用いる溶剤としては、ハロゲンフリーの溶剤を用いることが好ましい。該溶剤の具体例としては、水、DMF(N,N-ジメチルホルムアミド)、DMSO(ジメチルスルホキシド)、THF(テトラヒドロフラン)等が挙げられる。 As the solvent used for removing the porogen, it is preferable to use a halogen-free solvent. Specific examples of the solvent include water, DMF (N, N-dimethylformamide), DMSO (dimethyl sulfoxide), THF (tetrahydrofuran) and the like.
 樹脂シートからポロゲンを除去する工程は、多段階で行われてもよい。樹脂シートからポロゲンを除去する工程は、例えば、3段以上に分けて行われ得る。各段で、溶剤の種類および/または温度を変更して、ポロゲンの除去を行ってもよい。 The step of removing porogen from the resin sheet may be performed in multiple stages. The step of removing the porogen from the resin sheet can be performed, for example, in three or more stages. At each stage, the porogen may be removed by changing the type and / or temperature of the solvent.
 好ましくは、樹脂シートからポロゲンを除去する工程の後、アルカリ水電解用隔膜の乾燥処理を行う。乾燥条件は特に限定されず、温度は、例えば40℃~120℃であり、好ましくは50℃~100℃である。乾燥時間は、例えば、10秒~5分程度である。乾燥処理には、テンター方式、フローティング方式、ロール方式、ベルト方式等の公知のシート乾燥方法を採用した乾燥装置を使用できる。複数の乾燥方法を組み合わせてもよい。 Preferably, after the step of removing the porogen from the resin sheet, the membrane for alkaline water electrolysis is dried. The drying conditions are not particularly limited, and the temperature is, for example, 40 ° C. to 120 ° C., preferably 50 ° C. to 100 ° C. The drying time is, for example, about 10 seconds to 5 minutes. For the drying treatment, a drying apparatus employing a known sheet drying method such as a tenter method, a floating method, a roll method, or a belt method can be used. A plurality of drying methods may be combined.
B.アルカリ水電解用隔膜
 本発明のアルカリ水電解用隔膜は、エポキシ樹脂架橋体で構成された三次元網目状骨格を有し、イオンが透過し得るように連通している空孔を有する。本発明のアルカリ水電解用隔膜は、例えば、上記の製造方法にて製造することができる。
B. Diaphragm for alkaline water electrolysis The diaphragm for alkaline water electrolysis of the present invention has a three-dimensional network skeleton composed of a crosslinked epoxy resin and has pores communicating so that ions can permeate. The diaphragm for alkaline water electrolysis of this invention can be manufactured with said manufacturing method, for example.
 上記アルカリ水電解用隔膜は、温度25℃/濃度25.5重量%の水酸化カリウム水溶液を電解液としたときの電気抵抗値が、好ましくは0.5Ω・cm以下であり、より好ましくは0.1Ω・cm以下であり、さらに好ましくは0.01Ω・cm~0.08Ω・cmであり、特に好ましくは0.01Ω・cm~0.06Ω・cmである。本発明によれば、エポキシ樹脂架橋体で構成された三次元網目状骨格を有し、イオンが透過し得るように連通している空孔を有することにより、イオン透過性に優れ、上記のように電気抵抗値の小さいアルカリ水電解用隔膜を得ることができる。なお、本明細書において、アルカリ水電解用隔膜の電気抵抗値は、アルカリ水電解用隔膜が上記製造方法で得られる場合、ポロゲンゲが除去された後の電気抵抗値をいう。 The diaphragm for alkaline water electrolysis preferably has an electrical resistance value of 0.5 Ω · cm 2 or less, more preferably 0.5 Ω · cm 2 or less, when a potassium hydroxide aqueous solution having a temperature of 25 ° C./concentration of 25.5 wt% is used as the electrolyte. It is 0.1 Ω · cm 2 or less, more preferably 0.01 Ω · cm 2 to 0.08 Ω · cm 2 , and particularly preferably 0.01 Ω · cm 2 to 0.06 Ω · cm 2 . According to the present invention, having a three-dimensional network skeleton composed of a crosslinked epoxy resin and having pores communicating so that ions can permeate, it has excellent ion permeability, as described above. In addition, a diaphragm for alkaline water electrolysis having a small electric resistance value can be obtained. In addition, in this specification, the electrical resistance value of the diaphragm for alkaline water electrolysis means the electrical resistance value after porogen is removed when the diaphragm for alkaline water electrolysis is obtained by the said manufacturing method.
 上記アルカリ水電解用隔膜の厚みは、好ましくは55μm~500μmであり、より好ましくは60μm~250μmであり、さらに好ましくは70μm~150μmである。このような範囲であれば、アルカリ水電解用隔膜は、イオン透過性に優れ、かつ、実用上許容可能な強度を有する。なお、本明細書において、「アルカリ水電解用隔膜の厚み」は、アルカリ水電解用隔膜が上記製造方法で得られる場合、ポロゲンが除去された後の厚みをいう。 The thickness of the membrane for alkaline water electrolysis is preferably 55 μm to 500 μm, more preferably 60 μm to 250 μm, and still more preferably 70 μm to 150 μm. If it is such a range, the diaphragm for alkaline water electrolysis will be excellent in ion permeability, and has a practically acceptable strength. In the present specification, the “thickness of the diaphragm for alkaline water electrolysis” refers to the thickness after the porogen is removed when the diaphragm for alkaline water electrolysis is obtained by the above production method.
 上記アルカリ水電解用隔膜の平均孔径は、好ましくは0.02μm~3.5μmである。このような範囲であれば、イオン透過性に非常に優れるアルカリ水電解用隔膜を得ることができる。なお、本明細書において、「アルカリ水電解用隔膜の平均孔径」は、アルカリ水電解用隔膜が上記製造方法で得られる場合、ポロゲンが除去された後の平均孔径をいう。また、平均孔径とは、水銀圧入法により測定・算出されたメジアン径をいう。 The average pore size of the membrane for alkaline water electrolysis is preferably 0.02 μm to 3.5 μm. If it is such a range, the diaphragm for alkaline water electrolysis which is very excellent in ion permeability can be obtained. In the present specification, the “average pore diameter of the diaphragm for alkaline water electrolysis” refers to the average pore diameter after the porogen is removed when the diaphragm for alkaline water electrolysis is obtained by the above production method. The average pore diameter is a median diameter measured and calculated by a mercury intrusion method.
 上記アルカリ水電解用隔膜の気孔率は、好ましくは20%~80%であり、より好ましくは30%~80%であり、さらに好ましくは40%~70%である。なお、アルカリ水電解用隔膜の気孔率とは、{1-(アルカリ水電解用隔膜の見掛け密度/アルカリ水電解用隔膜を構成する材料の真密度)}×100の式で算出される値をいう。なお、本明細書において、「アルカリ水電解用隔膜の気孔率」は、アルカリ水電解用隔膜が上記製造方法で得られる場合、ポロゲンが除去された後の気孔率をいう。 The porosity of the membrane for alkaline water electrolysis is preferably 20% to 80%, more preferably 30% to 80%, and further preferably 40% to 70%. Note that the porosity of the diaphragm for alkaline water electrolysis is a value calculated by the formula {1- (apparent density of the diaphragm for alkaline water electrolysis / true density of the material constituting the diaphragm for alkaline water electrolysis)} × 100. Say. In the present specification, the “porosity of the diaphragm for alkaline water electrolysis” refers to the porosity after the porogen is removed when the diaphragm for alkaline water electrolysis is obtained by the above production method.
 1つの実施形態においては、上記アルカリ水電解用隔膜と、該アルカリ水電解用隔膜の片面または両面に配置された多孔性補強体とを備えるアルカリ水電解用複合膜が提供され得る。多孔性補強体を備えることにより、電解用隔膜として十分な強度を有し、かつ、電極間での短絡防止性にも優れる複合膜を得ることができる。 In one embodiment, a composite membrane for alkaline water electrolysis comprising the above diaphragm for alkaline water electrolysis and a porous reinforcing body disposed on one or both surfaces of the diaphragm for alkaline water electrolysis can be provided. By providing the porous reinforcing body, it is possible to obtain a composite membrane that has sufficient strength as a diaphragm for electrolysis and is excellent in short-circuit prevention between electrodes.
 上多孔性補強体の形態としては、例えば、織布、不織布、ネット、メッシュ、焼結多孔膜等が挙げられる。好ましくは焼結多孔膜である。焼結多孔膜であれば、強度およびイオン透過性が顕著に優れる。焼結多孔膜を得る方法としては、例えば、特開平2-214647号公報に記載された焼結法が挙げられる。 Examples of the form of the upper porous reinforcing body include woven fabric, non-woven fabric, net, mesh, and sintered porous membrane. A sintered porous membrane is preferable. If it is a sintered porous membrane, strength and ion permeability are remarkably excellent. Examples of a method for obtaining a sintered porous film include a sintering method described in JP-A-2-214647.
 上記多孔性補強体の気孔率は、好ましくは10%~90%であり、より好ましくは10%~55%であり、さらに好ましくは10%~50%である。なお、多孔性補強体の気孔率とは、{1-(多孔性補強体の見掛け密度/多孔性補強体を構成する材料の真密度)}×100の式で算出される値をいう。 The porosity of the porous reinforcing body is preferably 10% to 90%, more preferably 10% to 55%, and further preferably 10% to 50%. The porosity of the porous reinforcing body means a value calculated by the formula {1- (apparent density of porous reinforcing body / true density of material constituting porous reinforcing body)} × 100.
 上記多孔性補強体の厚みは、好ましくは10μm~1000μmであり、より好ましくは30μm~500μmであり、さらに好ましくは50μm~200μmである。このような範囲であれば、補強体として十分な強度を有し、かつ、電極の短絡を防止することができる。 The thickness of the porous reinforcing body is preferably 10 μm to 1000 μm, more preferably 30 μm to 500 μm, and further preferably 50 μm to 200 μm. If it is such a range, it has sufficient intensity | strength as a reinforcement body and can prevent the short circuit of an electrode.
 上記多孔性補強体を構成する材料としては、本発明の効果が得られる限りにおいて、任意の適切な材料が用いられ得る。上記多孔性補強体を構成する材料としては、例えば、親水性官能基を有するポリマーが挙げられる。親水性官能基を有するポリマーとしては、例えば、フッ素系樹脂、オレフィン系樹脂、芳香族炭化水素系樹脂等の骨格となる樹脂に親水性官能基が導入されたポリマーが挙げられる。なかでも、骨格となる樹脂として超高分子量ポリエチレンを用いたポリマーが好ましく用いられ得る。多孔性補強体においては、該ポリマーが、親水性官能基として、ヒドロキシル基、カルボン酸基、アミノ基、アミド基またはシアノ基を有することが好ましい。このような官能基を有するポリマーを用いれば、親水性に優れ、電解時に電極で生成したガスが付着し難い複合膜を得ることができる。 As the material constituting the porous reinforcing body, any appropriate material can be used as long as the effects of the present invention can be obtained. As a material which comprises the said porous reinforcement body, the polymer which has a hydrophilic functional group is mentioned, for example. Examples of the polymer having a hydrophilic functional group include a polymer in which a hydrophilic functional group is introduced into a resin having a skeleton such as a fluorine resin, an olefin resin, and an aromatic hydrocarbon resin. Among these, a polymer using ultrahigh molecular weight polyethylene as a resin serving as a skeleton can be preferably used. In the porous reinforcing body, the polymer preferably has a hydroxyl group, a carboxylic acid group, an amino group, an amide group, or a cyano group as the hydrophilic functional group. By using such a polymer having a functional group, it is possible to obtain a composite film that is excellent in hydrophilicity and hardly adheres to the gas generated at the electrode during electrolysis.
 上記親水性官能基を導入する方法としては、任意の適切な方法が採用され得る。該方法としては、例えば、放射線グラフト重合法、化学開始剤グラフト重合法等のグラフト重合による方法;上記骨格となる樹脂を構成するモノマーと、親水性官能基を有するモノマーと、必要に応じて架橋剤とを共重合させる方法等が挙げられる。好ましくはグラフト重合法が採用され、より好ましくは放射線グラフト重合法が採用される。 Any appropriate method can be adopted as a method for introducing the hydrophilic functional group. Examples of the method include a graft polymerization method such as a radiation graft polymerization method and a chemical initiator graft polymerization method; a monomer constituting the resin serving as the skeleton, a monomer having a hydrophilic functional group, and a crosslinking as necessary. And a method of copolymerizing the agent. A graft polymerization method is preferably employed, and a radiation graft polymerization method is more preferably employed.
 上記放射線グラフト重合法としては、例えば、骨格となる上記樹脂を多孔性化した後、該骨格となる樹脂に放射線を照射してフリーラジカルを生成させた後、放射線が照射された樹脂と、親水性官能基を有するモノマーを含むモノマー組成物とを接触させ、該フリーラジカルを起点としてグラフト重合させる方法(前照射法)が挙げられる。また、骨格となる樹脂とモノマーとを共存させた状態に放射線を照射してグラフト重合させる方法(同時照射法)を用いてもよい。なお、本明細書において、グラフト重合に供されるフィルム状の樹脂(骨格となる樹脂)を基材と称する。 As the radiation graft polymerization method, for example, after making the resin that becomes a skeleton porous, the resin that becomes the skeleton is irradiated with radiation to generate free radicals, and then the resin irradiated with the radiation and the hydrophilic And a method in which a monomer composition containing a monomer having a functional functional group is brought into contact with each other and graft polymerization is carried out starting from the free radical (pre-irradiation method). Moreover, you may use the method (simultaneous irradiation method) of irradiating with radiation in the state which coexisted resin used as frame | skeleton, and a monomer, and graft-polymerizing. In this specification, a film-like resin (resin that becomes a skeleton) subjected to graft polymerization is referred to as a base material.
 上記親水性官能基を有するモノマーとしては、例えば、アクリル酸、メタクリル酸、2-ヒドロキシメチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシメチルメタクリレート、2-ヒドロキシエチルメタクリレート、酢酸ビニル、アリルアミン、アクリルアミド、メタクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノエチルアクリレートアクリル酸2-(ジメチルアミノ)エチル、N-(2-ヒドロキシエチル)アクリルアミド、アクリロイルモルフォリン、N-イソプロピルアクリルアミド、アクリロニトリル、メタクリロニトリル、1-ビニルイミダゾール、2-ビニルピリジン、4-ビニルピリジン、メチルビニルピリジン、エチルビニルピリジン、ビニルピロリドン、ビニルカルバゾール、アミノスチレン、アルキルアミノスチレン、ジアルキルアミノスチレン、トリアルキルアミノスチレン、ビニルベンジルトリメチルアンモニウムクロリド等が挙げられる。なかでも好ましくは、アクリル酸、メタクリル酸、2-ヒドロキシメチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシメチルメタクリレート、2-ヒドロキシエチルメタクリレート、アクリルアミドまたはメタクリルアミドである。これらのモノマーは、単独で、または2種以上組み合わせて用いてもよい。また、グラフト重合した後、例えば、約1規定の水酸化ナトリウム水溶液、水酸化カリウム水溶液等を用いて中和処理を行うことにより、更に親水化効果を高めることができる。 Examples of the monomer having a hydrophilic functional group include acrylic acid, methacrylic acid, 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2 -Hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, vinyl acetate, allylamine, acrylamide, methacrylamide, N, N-dimethylacrylamide, N, N-diethylacrylamide, N, N-dimethylaminopropylacrylamide, N, N-dimethylamino Ethyl acrylate 2- (dimethylamino) ethyl acrylate, N- (2-hydroxyethyl) acrylamide, acryloylmorpholine, N-isopropylacrylamido , Acrylonitrile, methacrylonitrile, 1-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, methylvinylpyridine, ethylvinylpyridine, vinylpyrrolidone, vinylcarbazole, aminostyrene, alkylaminostyrene, dialkylaminostyrene, trialkyl Aminostyrene, vinylbenzyltrimethylammonium chloride, etc. are mentioned. Of these, acrylic acid, methacrylic acid, 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, acrylamide or methacrylamide are preferable. These monomers may be used alone or in combination of two or more. Further, after the graft polymerization, for example, a hydrophilic effect can be further enhanced by performing a neutralization treatment using an about 1 N aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, or the like.
 上記前照射法としては、不活性ガス中で放射線を照射し重合するポリマーラジカル法を用いてもよく、酸素存在下で放射線を照射し重合するパーオキサイド法を用いてもよい。好ましくは、ポリマーラジカル法である。ポリマーラジカル法を用いれば、モノマーがグラフト重合されずにポリマー化することを抑制することができる。上記放射線としては、例えば、α線、β線、γ線、電子線、紫外線などが挙げられる。好ましくは、γ線または電子線である。 As the pre-irradiation method, a polymer radical method in which irradiation is performed in an inert gas for polymerization may be used, or a peroxide method in which irradiation is performed in the presence of oxygen for polymerization may be used. The polymer radical method is preferred. If a polymer radical method is used, it can suppress that a monomer polymerizes without being graft-polymerized. Examples of the radiation include α rays, β rays, γ rays, electron beams, ultraviolet rays, and the like. Preferably, it is a gamma ray or an electron beam.
 上記基材の形態としては、例えば、織布、不織布、ネット、メッシュ、焼結多孔膜等が挙げられる。 Examples of the base material include woven fabric, non-woven fabric, net, mesh, and sintered porous membrane.
 上記基材(グラフト重合前の多孔性補強体)の気孔率は、好ましくは10%~95%であり、より好ましくは15%~90%であり、さらに好ましくは15%~75%であり、特に好ましくは15%~70%である。このような範囲であれば、イオン透過性に優れ、かつ、電極の短絡防止性能に優れる補強体を得ることができる。なお、本明細書において、基材(グラフト重合前の補強体)の気孔率とは、{1-(基材の見掛け密度/基材を構成する材料の真密度)}×100の式で算出される値をいう。 The porosity of the base material (porous reinforcing body before graft polymerization) is preferably 10% to 95%, more preferably 15% to 90%, and further preferably 15% to 75%. Particularly preferred is 15% to 70%. If it is such a range, the reinforcement which is excellent in ion permeability and excellent in the short circuit prevention performance of an electrode can be obtained. In this specification, the porosity of the base material (reinforcing body before graft polymerization) is calculated by the formula {1- (apparent density of base material / true density of material constituting base material)} × 100. Value.
 グラフト重合により得られた親水性官能基を有する多孔性補強体の、重量グラフト率は、好ましくは1%~80%であり、より好ましくは3%~50%である。 The weight graft ratio of the porous reinforcing body having a hydrophilic functional group obtained by graft polymerization is preferably 1% to 80%, more preferably 3% to 50%.
 アルカリ水電解用隔膜と多孔性補強体とは、例えば、ホットプレス機または加熱ロールを用いて加熱加圧して溶着させて積層させることができる。好ましくは、アルカリ水電解用隔膜と多孔性補強体とを積層し、積層体端部のみを加熱する。また、アルカリ水電解用複合膜は、電解用隔膜として使用する際に、電極等により両側から圧力をかけて、アルカリ水電解用隔膜と多孔性補強体とを固定してもよい。 The diaphragm for alkaline water electrolysis and the porous reinforcing body can be laminated by heating and pressurizing with a hot press machine or a heating roll, for example. Preferably, the diaphragm for alkaline water electrolysis and the porous reinforcing body are laminated, and only the end of the laminated body is heated. Moreover, when using the composite membrane for alkaline water electrolysis as a diaphragm for electrolysis, pressure may be applied from both sides with an electrode or the like to fix the diaphragm for alkaline water electrolysis and the porous reinforcing body.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。実施例における評価方法は以下のとおりである。また、実施例において、特に明記しない限り、「部」および「%」は重量基準である。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. The evaluation methods in the examples are as follows. In Examples, unless otherwise specified, “parts” and “%” are based on weight.
(1)厚みの測定
 厚みはデジタルアップライトゲージR1-205(尾崎製作所社製;測定子:Φ5mm、測定力:1.1N以下)を使用した。特に断りがない場合は、25℃±2℃、65±20%RHでの測定値である。
(2)水中における空気の接触角
 実施例および比較例で得られた電解用隔膜を25℃の純水に10分間浸漬した後、自動接触角測定装置(dataphysics instruments社製の商品名「OCA30」)を用いて、電解用隔膜に付着している空気(気泡)の接触角を測定した。なお、実施例および比較例における、電解用隔膜に付着した気泡の様子(SEM写真)を図2にしめす。
(3)電気抵抗
 実施例および比較例で得られたサンプルの膜抵抗を交流式電圧降下法で測定した。サンプルを25℃の電解液(濃度25.5重量%の水酸化カリウム水溶液)に10分間浸漬させた後、測定用セル(白金電極)にセットし、1kHzの交流にて測定した。
(4)アルカリ水電解評価
 実施例および比較例で得られた電解用隔膜のアルカリ水電解評価は、アクリル樹脂製のH型セルを用いて行った。電解液は、濃度25.5重量%の水酸化カリウム水溶液を用い、電極としては、Ni電極を用いた。測定時の液温は25℃に設定した。電流密度を0.2A/cmとし、定電流を1時間連続して印加した時の電圧を測定し、測定開始から50分後~1時間後における測定値の平均値により、アルカリ水電解評価を行った。測定は、電解用隔膜を電解液に10分間浸漬させた後に行った。
(5)ガス遮断性
 上記(4)におけるアルカリ水電解を開始して1時間後にカソード側に発生したガスを回収し、ガスクロマトグラフィー(島津製作所社製、商品名「GC-8A」)によりカソード側に発生したガスの水素純度を測定することにより、ガス遮断性を評価した。
(1) Measurement of thickness Digital upright gauge R1-205 (manufactured by Ozaki Seisakusho; measuring element: Φ5 mm, measuring force: 1.1 N or less) was used for the thickness. Unless otherwise specified, the measured values are at 25 ° C. ± 2 ° C. and 65 ± 20% RH.
(2) Contact angle of air in water After immersing the diaphragm for electrolysis obtained in Examples and Comparative Examples in pure water at 25 ° C. for 10 minutes, an automatic contact angle measuring device (trade name “OCA30” manufactured by dataphysics instruments, Inc.) ) Was used to measure the contact angle of air (bubbles) adhering to the diaphragm for electrolysis. In addition, the mode (SEM photograph) of the bubble adhering to the diaphragm for electrolysis in an Example and a comparative example is shown in FIG.
(3) Electric resistance The film resistance of the samples obtained in the examples and comparative examples was measured by an AC voltage drop method. The sample was immersed in an electrolytic solution at 25 ° C. (potassium hydroxide aqueous solution having a concentration of 25.5% by weight) for 10 minutes, set in a measurement cell (platinum electrode), and measured at an alternating current of 1 kHz.
(4) Alkaline water electrolysis evaluation Alkaline water electrolysis evaluation of the diaphragm for electrolysis obtained by the Example and the comparative example was performed using the H-type cell made from an acrylic resin. As the electrolytic solution, an aqueous potassium hydroxide solution having a concentration of 25.5 wt% was used, and a Ni electrode was used as the electrode. The liquid temperature at the time of measurement was set to 25 ° C. The current density was 0.2 A / cm 2 , the voltage when a constant current was applied continuously for 1 hour was measured, and alkaline water electrolysis was evaluated based on the average value of the measured values 50 minutes to 1 hour after the start of measurement. Went. The measurement was performed after the diaphragm for electrolysis was immersed in the electrolyte for 10 minutes.
(5) Gas barrier property The gas generated on the cathode side after 1 hour from the start of alkaline water electrolysis in (4) above is recovered, and the cathode is obtained by gas chromatography (trade name “GC-8A” manufactured by Shimadzu Corporation). The gas barrier properties were evaluated by measuring the hydrogen purity of the gas generated on the side.
[実施例1]
 ビスフェノールA型エポキシ樹脂(三菱化学社製、jER(登録商標)827、エポキシ当量:180~190)70重量部、のビスフェノールA型エポキシ樹脂(三菱化学社製、jER(登録商標)1009、エポキシ当量:2400~3300)30重量部、およびポリエチレングリコール(三洋化成社製、PEG200)197.4重量部を混合し、エポキシ樹脂のポリエチレングリコール溶液を調製した。
 円筒状の金型(ステンレス製、内径20cm、高さ30cm)の内面に離型剤(ナガセケムテックス社製、QZ-13)を薄く塗布し、金型を70℃±30℃に設定した乾燥機中で乾燥させた。この金型に、上記のように調製したエポキシ樹脂のポリエチレングリコール溶液を充填し、硬化剤として、ビス(4-アミノシクロヘキシル)メタン22.3重量部を加えた。このようにして、エポキシ樹脂、硬化剤及びポロゲンを含むエポキシ樹脂組成物を調製した。
 次に、アンカー翼で300rpmにてエポキシ樹脂組成物を30分撹拌した。次に、真空盤(アズワン社製、VZ型)を用いて、泡が消失するまで約0.1MPaにて真空脱泡した。約2時間放置後、再度約30分撹拌し、再度真空脱泡した。次に、27℃で72時間放置して、エポキシ樹脂組成物を硬化させた。これにより、エポキシ樹脂組成物の硬化体を得た。
 次に、切削旋盤装置(東芝機械社製)を用い、硬化体の表層部を厚さ100μmで連続的にスライスし、エポキシ樹脂シートを得た。エポキシ樹脂シートを60℃の純水に浸漬させてポリエチレングリコールを除去し、その後、70℃で2分間、80℃で1分間、90℃で1分間乾燥してアルカリ水電解用隔膜を得た。アルカリ水電解用隔膜の厚さは、88μmであった。
 得られたアルカリ水電解用隔膜を、上記評価(2)~(5)に供した。評価結果を表1に示す。
 なお、評価に際し、得られたアルカリ水電解用隔膜の膜内部に水を浸透させるため、10wt%のイソプロピルアルコール水溶液に10分間浸漬させ、その後、該イソプロピルアルコールを純水で十分に置換した。
[Example 1]
70 parts by weight of bisphenol A type epoxy resin (Mitsubishi Chemical Co., Ltd., jER (registered trademark) 827, epoxy equivalent: 180-190), bisphenol A type epoxy resin (Mitsubishi Chemical Co., Ltd., jER (registered trademark) 1009, epoxy equivalent) : 2400-3300) and 30 parts by weight of polyethylene glycol (PEG 200, manufactured by Sanyo Chemical Co., Ltd.) were mixed to prepare a polyethylene glycol solution of an epoxy resin.
A mold release agent (manufactured by Nagase ChemteX, QZ-13) is thinly applied to the inner surface of a cylindrical mold (stainless steel, inner diameter 20 cm, height 30 cm), and the mold is dried at 70 ° C. ± 30 ° C. Dry in the machine. This mold was filled with a polyethylene glycol solution of the epoxy resin prepared as described above, and 22.3 parts by weight of bis (4-aminocyclohexyl) methane was added as a curing agent. Thus, the epoxy resin composition containing an epoxy resin, a hardening | curing agent, and a porogen was prepared.
Next, the epoxy resin composition was stirred with an anchor blade at 300 rpm for 30 minutes. Next, vacuum degassing was performed at about 0.1 MPa until the bubbles disappeared using a vacuum disk (manufactured by ASONE, VZ type). After standing for about 2 hours, the mixture was again stirred for about 30 minutes and vacuum degassed again. Next, the epoxy resin composition was cured by leaving at 27 ° C. for 72 hours. Thereby, the hardening body of the epoxy resin composition was obtained.
Next, using a cutting lathe device (manufactured by Toshiba Machine Co., Ltd.), the surface layer portion of the cured body was continuously sliced with a thickness of 100 μm to obtain an epoxy resin sheet. The epoxy resin sheet was immersed in pure water at 60 ° C. to remove polyethylene glycol, and then dried at 70 ° C. for 2 minutes, 80 ° C. for 1 minute, and 90 ° C. for 1 minute to obtain a diaphragm for alkaline water electrolysis. The thickness of the diaphragm for alkaline water electrolysis was 88 μm.
The obtained diaphragm for alkaline water electrolysis was subjected to the above evaluations (2) to (5). The evaluation results are shown in Table 1.
In the evaluation, in order to allow water to permeate into the membrane of the obtained alkaline water electrolysis diaphragm, it was immersed in a 10 wt% aqueous isopropyl alcohol solution for 10 minutes, and then the isopropyl alcohol was sufficiently replaced with pure water.
[比較例1]
 初めに1-メチル-2-ピロリドン(和光純薬社製)30gと、フッ化カルシウム(和光純薬社製)24gとを混合してホモミクサーで十分に撹拌した。ここにポリスルホン(BASF社製、商品名「ULTRASON S6010」)8g、を添加して60℃に加温し、再度十分に撹拌、溶解した後、脱泡して懸濁液を調製した。
 次いで、ガラス板にベーカー式アプリケータを用いて、ギャップ300μmで上記懸濁液を塗布した。この上に200メッシュ、厚み190μmのポリエチレン網(ニップ(ポリエチレン)強力網、NBC社製)を載せ、ハンドローラーにて面圧を加えてメッシュに懸濁液を十分に浸みこませた。その後、同じ様にベーカー式アプリケータを用いて、ギャップ400μmで再度上記懸濁液を塗布した。その後、ガラス板ごと25℃の純水中に浸漬し、室温で10分間放置して1-メチル-2-ピロリドンを抽出した。凝固したシート状物を剥離し、さらにこれを25℃の純水中で30分間洗浄し、25℃で風乾後、80℃の乾燥機で30分間乾燥し、シート状の電解用隔膜を得た。
 得られた電解用隔膜を、上記評価(2)~(5)に供した。評価結果を表1に示す。
 なお、評価に際し、得られた電解用隔膜の膜内部に水を浸透させるため、10wt%のイソプロピルアルコール水溶液に10分間浸漬させ、その後、該イソプロピルアルコールを純水で十分に置換した。
[Comparative Example 1]
First, 30 g of 1-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) and 24 g of calcium fluoride (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and sufficiently stirred with a homomixer. 8 g of polysulfone (manufactured by BASF, trade name “ULTRASON S6010”) was added thereto, heated to 60 ° C., sufficiently stirred and dissolved again, and defoamed to prepare a suspension.
Next, the suspension was applied to a glass plate with a gap of 300 μm using a Baker type applicator. A 200 mesh, 190 μm thick polyethylene net (nip (polyethylene) strong net, manufactured by NBC)) was placed on this, and surface pressure was applied by a hand roller to sufficiently immerse the suspension in the mesh. Thereafter, the suspension was applied again at a gap of 400 μm using a Baker type applicator in the same manner. Thereafter, the glass plate was immersed in pure water at 25 ° C. and left at room temperature for 10 minutes to extract 1-methyl-2-pyrrolidone. The solidified sheet was peeled off, further washed in pure water at 25 ° C. for 30 minutes, air dried at 25 ° C., and then dried in an 80 ° C. dryer for 30 minutes to obtain a sheet-like diaphragm for electrolysis. .
The obtained diaphragm for electrolysis was subjected to the evaluations (2) to (5). The evaluation results are shown in Table 1.
In the evaluation, in order to allow water to penetrate into the membrane of the obtained diaphragm for electrolysis, the membrane was immersed in a 10 wt% isopropyl alcohol aqueous solution for 10 minutes, and then the isopropyl alcohol was sufficiently replaced with pure water.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明のアルカリ水電解用隔膜は、電気抵抗が小さく、イオン透過性に優れる。また、本発明によれば、水中における空気の接触角が大きく、すなわち、電解時に生成したガスが表面に付着し難いアルカリ水電解用隔膜を得ることができる。 As is apparent from Table 1, the alkaline water electrolysis diaphragm of the present invention has low electrical resistance and excellent ion permeability. In addition, according to the present invention, it is possible to obtain an alkaline water electrolysis diaphragm in which the contact angle of air in water is large, that is, the gas generated during electrolysis hardly adheres to the surface.
 100      硬化体
 110      樹脂シート
 
100 Cured body 110 Resin sheet

Claims (10)

  1.  エポキシ樹脂、硬化剤およびポロゲンを含む樹脂組成物を調製する工程と、
     該樹脂組成物を用いて樹脂シートを得る工程とを含む、
     アルカリ水電解用隔膜の製造方法。
    Preparing a resin composition comprising an epoxy resin, a curing agent and a porogen;
    A step of obtaining a resin sheet using the resin composition,
    A method for producing a diaphragm for alkaline water electrolysis.
  2.  前記樹脂シートから前記ポロゲンを除去する工程をさらに含む、請求項1に記載のアルカリ水電解用隔膜の製造方法。 The method for producing a diaphragm for alkaline water electrolysis according to claim 1, further comprising a step of removing the porogen from the resin sheet.
  3.  前記樹脂組成物を用いて樹脂シートを得る工程において、該樹脂組成物を成形して硬化体を得、該硬化体表層部分を所定の厚みで切削して該樹脂シートを得ることを含む、請求項1に記載のアルカリ水電解用隔膜の製造方法。 In the step of obtaining a resin sheet using the resin composition, the method includes molding the resin composition to obtain a cured body, and cutting the cured body surface layer portion with a predetermined thickness to obtain the resin sheet. Item 2. A method for producing a diaphragm for alkaline water electrolysis according to Item 1.
  4.  前記硬化体が円柱状であり、該硬化体を円柱軸を中心にして回転させながら、該硬化体の表層部を切削することを含む、請求項3に記載のアルカリ水電解用隔膜の製造方法。 The manufacturing method of the diaphragm for alkaline water electrolysis of Claim 3 including cutting the surface layer part of this hardening body while the said hardening body is cylindrical shape, rotating this hardening body centering on a cylinder axis | shaft. .
  5.  前記ポロゲンが、ポリエチレングリコールまたはポリプロピレングリコールである、請求項1に記載のアルカリ水電解用隔膜の製造方法。 The method for producing a diaphragm for alkaline water electrolysis according to claim 1, wherein the porogen is polyethylene glycol or polypropylene glycol.
  6.  請求項1から5のいずれかに記載の製造方法により得られる、アルカリ水電解用隔膜。 A diaphragm for alkaline water electrolysis obtained by the production method according to any one of claims 1 to 5.
  7.  請求項6に記載のアルカリ水電解用隔膜と、該アルカリ水電解用隔膜の片面または両面に配置された多孔性補強体とを備える、アルカリ水電解用複合膜。 A composite membrane for alkaline water electrolysis comprising the diaphragm for alkaline water electrolysis according to claim 6 and a porous reinforcing body disposed on one or both surfaces of the diaphragm for alkaline water electrolysis.
  8.  前記多孔性補強体が、親水性官能基を有するポリマーから構成される、請求項7に記載のアルカリ水電解用複合膜。 The composite membrane for alkaline water electrolysis according to claim 7, wherein the porous reinforcing body is composed of a polymer having a hydrophilic functional group.
  9.  前記多孔性補強体が、織布、不織布、ネット、メッシュまたは焼結多孔膜である、請求項7に記載のアルカリ水電解用複合膜。 The composite membrane for alkaline water electrolysis according to claim 7, wherein the porous reinforcing body is a woven fabric, a nonwoven fabric, a net, a mesh, or a sintered porous membrane.
  10.  前記多孔性補強体が、織布、不織布、ネット、メッシュまたは焼結多孔膜である、請求項8に記載のアルカリ水電解用複合膜。 The composite membrane for alkaline water electrolysis according to claim 8, wherein the porous reinforcing body is a woven fabric, a nonwoven fabric, a net, a mesh, or a sintered porous membrane.
PCT/JP2014/072357 2013-08-30 2014-08-27 Method for manufacturing diaphragm for alkaline water electrolysis, and diaphragm for alkaline water electrolysis WO2015030025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013180392A JP2015048504A (en) 2013-08-30 2013-08-30 Manufacturing method of barrier for alkaline water electrolysis, and barrier for alkaline water electrolysis
JP2013-180392 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030025A1 true WO2015030025A1 (en) 2015-03-05

Family

ID=52586577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072357 WO2015030025A1 (en) 2013-08-30 2014-08-27 Method for manufacturing diaphragm for alkaline water electrolysis, and diaphragm for alkaline water electrolysis

Country Status (2)

Country Link
JP (1) JP2015048504A (en)
WO (1) WO2015030025A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242922A (en) * 2008-03-31 2009-10-22 Kurita Water Ind Ltd Electrode for water electrolysis apparatus
WO2012172788A1 (en) * 2011-06-13 2012-12-20 日東電工株式会社 Epoxy resin porous membrane, separator for nonaqueous electrolyte storage device, nonaqueous electrolyte storage device, composite semipermeable membrane, and process for producing the same
JP2013249510A (en) * 2012-05-31 2013-12-12 Nitto Denko Corp Diaphragm for alkaline water electrolysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242922A (en) * 2008-03-31 2009-10-22 Kurita Water Ind Ltd Electrode for water electrolysis apparatus
WO2012172788A1 (en) * 2011-06-13 2012-12-20 日東電工株式会社 Epoxy resin porous membrane, separator for nonaqueous electrolyte storage device, nonaqueous electrolyte storage device, composite semipermeable membrane, and process for producing the same
JP2013249510A (en) * 2012-05-31 2013-12-12 Nitto Denko Corp Diaphragm for alkaline water electrolysis

Also Published As

Publication number Publication date
JP2015048504A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6293822B2 (en) Anion exchange membrane and production method
JP5948243B2 (en) Ion exchange membrane
JP4427291B2 (en) Continuous production method of functional membrane
WO2010035807A1 (en) Composite semi-permeable membrane and method for producing same
JP5377452B2 (en) Manufacturing method of composite semipermeable membrane
JP5579365B2 (en) Anion exchange membrane and method for producing the same
WO2010047383A1 (en) Method for producing porous thermosetting resin sheet, porous thermosetting resin sheet and composite semipermeable membrane using same
US10974209B2 (en) Ion-exchange membrane
JP2010132829A (en) Bipolar membrane and method for producing the same
JP2013173926A (en) Anion exchange membrane, method for producing the same, and fuel cell using the same
JP2009173786A (en) Anion exchange membrane, and method for producing the same
JP4724971B2 (en) Anion exchange membrane, method for producing the same, and solution processing apparatus
JP2018505055A (en) Asymmetric composite membrane and modified substrate used in its preparation
JP2004171994A (en) Manufacturing method of hybrid material using porous membrane as base material
WO2015030025A1 (en) Method for manufacturing diaphragm for alkaline water electrolysis, and diaphragm for alkaline water electrolysis
WO2014119207A1 (en) Electrolytic membrane
WO2013180071A1 (en) Diaphragm for alkaline water electrolysis
JP2006073495A (en) Solid polymer electrolyte complex film formed by impregnating polyacrylonitrile porous film with phosphate-group-containing unsaturated monomer (composition) and (co)polymerizing it, and usage of the same
WO2014119208A1 (en) Electrolytic membrane
WO2019151272A1 (en) Method for producing hydrophilic porous membrane
JP2009039694A (en) Bipolar membrane and its manufacturing method
JP2012005967A (en) Porous support and method for manufacturing the same
JP5028661B2 (en) Cation exchange, anion exchange membrane and production method thereof
JP2012217871A (en) Composite semipermeable membrane and method of producing the same
JPS59219334A (en) Anion exchange membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839510

Country of ref document: EP

Kind code of ref document: A1