WO2014118310A1 - Legierter stahl für rollen, lager und buchsen in verzinkungsanlagen, derartige rollen, lager oder buchsen sowie verfahren zum herstellen derartiger rollen, lager oder buchsen - Google Patents

Legierter stahl für rollen, lager und buchsen in verzinkungsanlagen, derartige rollen, lager oder buchsen sowie verfahren zum herstellen derartiger rollen, lager oder buchsen Download PDF

Info

Publication number
WO2014118310A1
WO2014118310A1 PCT/EP2014/051871 EP2014051871W WO2014118310A1 WO 2014118310 A1 WO2014118310 A1 WO 2014118310A1 EP 2014051871 W EP2014051871 W EP 2014051871W WO 2014118310 A1 WO2014118310 A1 WO 2014118310A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearings
rollers
bushings
weight
nitrogen
Prior art date
Application number
PCT/EP2014/051871
Other languages
English (en)
French (fr)
Inventor
Murat MOLA
Original Assignee
Duma-Bandzink Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duma-Bandzink Gmbh filed Critical Duma-Bandzink Gmbh
Priority to EP14702027.5A priority Critical patent/EP2951330A1/de
Publication of WO2014118310A1 publication Critical patent/WO2014118310A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/36Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for balls; for rollers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • F16C13/006Guiding rollers, wheels or the like, formed by or on the outer element of a single bearing or bearing unit, e.g. two adjacent bearings, whose ratio of length to diameter is generally less than one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis

Definitions

  • Zinc in the iron there is a high mechanical load, which requires high strength. Due to these loads, it is currently necessary to replace the rollers and bearings at intervals of about one to two weeks.
  • DE 199 21 191 A1 has proposed a guide roller for metal strip running through an immersion bath, in which the roller is mounted via a roller bearing which has an additional casing and lateral cover disks in order to protect the bearings against wear.
  • the structure of this storage unit is very expensive and therefore expensive. A quick interchangeability is not given.
  • DE 102 36 113 B3 discloses a pivot bearing for guide rollers arranged in molten metal, in which a sliding bearing with a ceramic body is used as the sliding surface for supporting the rollers.
  • a carrier shell is arranged for faster replacement of the storage unit, which carries the ceramic body and can be removed with this.
  • the service lives of this storage are still not satisfactory.
  • EP 2 159 298 B1 and EP 2 159 297 likewise disclose bearing units for guide rollers in a galvanizing plant in which roller bearings are used which consist of an internal ceramic bush, cylindrical rollers of ceramic and rings for receiving the cylindrical rollers. Again, there are not satisfactory service life and high costs in the production of the ceramics used.
  • EP 0 230 576 A1 discloses an alloyed tool steel which contains 0.4 to 4.5% by weight of carbon, 0 to 2% by weight of manganese, 0 to 2.5% by weight of silicon, 0 to 6% by weight of chromium, 0 to 7% by weight of tungsten, 0 to 4% by weight of molybdenum, 0 to 10% by weight of cobalt, 1 to 21% by weight of vanadium, 0 to 16 wt.% Titanium, 0 to 4 wt.% Niobium, 0.01 to 2 wt.% Nitrogen and the remainder iron.
  • This steel contains in its structure primary carbides which to a large extent do not form the leather bitterness type eutectics, whereby the wear resistance and sandability can be regulated.
  • this steel would not be suitable for use in galvanizing plants because sufficient wear resistance, strength and corrosion resistance to zinc melt are not achieved.
  • the nitrogen diffuses into the austenitic phase of the alloy and increases the stability of the ordered ferrite / martensite structure against unwanted precipitates.
  • the nitrogen and the carbon are contained in approximately equal proportions by weight, if the chromium content is less than 10 wt.%.
  • the dissolved nitrogen increases the concentration of free electrons in the matrix, which significantly increases the near-order of chromatomas. This effect causes the steel matrix to stabilize against phase transformation.
  • Carbon alone promotes the formation of chromium clusters, but it has been found that this close ordering of the chromium atoms is enhanced by dissolving nitrogen and carbon in equal proportions. With a chromium content of more than 10% by weight, it has proved to be advantageous if the carbon content is 50 to 80% higher than the nitrogen content in the alloy. In this way, if appropriate, the proximity of the chromium atoms can be additionally increased
  • plain bearings or bushings is preferably first an alloyed steel from the mentioned Alloy elements prepared by melting in the oven, then by centrifugal casting an intermediate product of the roller, the plain bearing or sleeve prepared by casting in a corresponding shape and finally produced an end product by purely mechanical 5 processing of the intermediate product.
  • These rollers, plain bearings and bushings are inexpensive to produce, since it can be dispensed with further processing steps to increase the strength or corrosion resistance.
  • rollers, plain bearings, and bushings used to pull a metal strip through a zinc bath of a dip galvanizing plant are subject to special influences.
  • the zinc bath in which the parts are arranged causes an increased risk of corrosion, since the zinc of the bath is soluble in the iron of the components.
  • there is a high thermal load due to temperatures of about 450 ° C in the zinc bath.
  • an alloyed steel is prepared which contains 0.5 to 1.5% by weight of nitrogen, 0.5 to 2
  • a rotationally symmetrical body is produced in the rotating casting mold in a centrifugal casting process, o which serves as an intermediate product.
  • these intermediates have a structure with low void and pore formation.
  • final mechanical processing for example by turning, the bodies are reduced to their final dimensions and the required surface qualities and roughness degrees are generated for the respective application. Further compensation is usually not required.
  • the invention proposes to increase the strength of a high nitrogen steel with a nitrogen content of 0.5 to 2 wt.% And a correspondingly high proportion of manganese of about 5-15 wt.% To alloy. This also leads to a significant increase in wear resistance.
  • nitrogen austenitic solubility is about five times higher than carbon solubility, especially with austenitic steels.
  • Both the carbon and the nitrogen are in the alloy according to the invention in proportions of 0.5 to 1.5 % By weight and affect the structure in such a way that the atoms occupy free lattice parts in the metal lattice.
  • the nitrogen atoms are only about half as large as the iron atoms, and thus also significantly smaller than the carbon atoms and so are particularly easy 5 in the intermediate places, in particular in the octahedral gaps, the iron lattice and form there mixed crystals. Furthermore, a grain boundary hardening occurs.
  • the amount of nitrogen which is soluble in this way depends on the dissolving power, which is increased both by the manganese components and by the chromium, niobium, molybdenum, and IG tungsten components. Furthermore, the nitrogen forms iron with the iron but also with the chromium nitrides and with the iron, vanadium and tungsten carbides as compound crystals, especially in the austenitic phase. In addition, since the solubility of the carbon is largely retained in the presence of nitrogen and thus also vacancies in the lattice structures are occupied by carbon atoms, a lattice with very few vacancies, which accordingly has a high strength, results.
  • Both the dissolved nitrogen and the carbon also have an influence on the formation of chromium clusters, which occur mainly in the vicinity of carbon atoms, because it turns out that the dissolved nitrogen, especially if it is dissolved in equal proportions as the carbon, the Concentration of free electrons in the matrix increases, whereby the Nahaku of Chromatomen is again significantly increased. Thus the possibility of a phase transformation is reduced, so that the desired austenitic W
  • the alloy is carried out with a chromium content of 2 to 10% by weight.
  • This resistance to a selective corrosive attack is additionally increased by the 2 to 10% by weight proportion of the molybdenum.
  • a cobalt content of 2 to 7 wt.% is present, whereby the temper brittleness and the heat resistance are improved. Cobalt inhibits grain growth and reduces the precipitation of carbon and nitrogen at the grain boundaries.
  • Vanadium serves as a strong carbide former in the alloy. These carbides significantly increase the wear resistance. On the other hand, the vanadium binds the nitrogen atoms, whereby a fine-grained casting structure of the intermediate product is achieved.
  • Niobium carbide formation is used to increase the heat resistance and creep rupture strength. It serves as a stabilizer and ferrite former. Not least, the tensile strength, yield strength and toughness are increased by the tungsten content of 5 to 15% by weight. Hard carbides are formed by the addition of tungsten, so that the heat resistance and wear resistance are increased.
  • this steel is optimally suited to be used in zinc bath for plain bearings rollers and bushings, since there is a high insensitivity to both the corrosive attack by the zinc and against the thermal and mechanical loads.
  • this steel is inexpensive to produce, since it can be dispensed with additions of expensive alloying elements such as nickel. In the production of rollers, bushings and bearings can be dispensed with costly post-processing.

Abstract

Es sind legierte Stähle bekannt, die außer Eisen Stickstoff, Kohlenstoff, Wolfram, Kobalt, Vanadium, Niob, Molybdän, Chrom und Mangan enthalten. Diese sind jedoch häufig nicht geeignet als Rollen, Lager oder Buchsen in Verzinkungsanlagen eingesetzt zu werden, da keine ausreichende Korrosions- und Verschleißbeständigkeit gegeben ist. Es wird daher ein Stahl vorgeschlagen, der 0,5 bis 2 Gew.% Stickstoff, 0,5 bis 1,5 Gew.% Kohlenstoff, 5 bis 15 Gew.% Wolfram, 2 bis 7 Gew.% Kobalt, 2 bis 7 Gew.% Vanadium, 2 bis 7 Gew.% Niob, 2 bis 10 Gew.% Molybdän, 3 bis 13 Gew.% Chrom, 5 bis 15 Gew.% Mangan sowie Rest Eisen enthält. Dieser Stahl ist kostengünstig herstellbar und eignet sich hervorragend für eine Anwendung in Verzinkungsanlagen.

Description

Figure imgf000002_0001
Zink im Eisen. Hinzu kommt eine hohe mechanische Belastung, durch die hohe Festigkeiten erforderlich sind. Aufgrund dieser Belastungen ist es derzeit erforderlich, die Rollen und Lager in Abständen von etwa ein bis zwei Wochen auszutauschen.
5
Aus diesem Grund wurde in der DE 199 21 191 AI eine Führungsrolle für durch ein Tauchbad laufendes Metallband vorgeschlagen, bei der die Rolle über ein Wälzlager gelagert wird, welches eine zusätzliche Ummantelung sowie seitliche Abdeckscheiben aufweist, um die Lager vor Verschleiß zu l o schützen. Der Aufbau dieser Lagereinheit ist sehr aufwendig und somit kostenintensiv. Eine schnelle Austauschbarkeit ist nicht gegeben.
Des Weiteren ist aus der DE 102 36 113 B3 eine Drehlagerung für in Metallschmelzen angeordnete Führungsrollen bekannt, bei der zur5 Lagerung der Rollen ein Gleitlager mit einem Keramikkörper als Gleitfläche verwendet wird. In einem Gehäuse ist dabei zur schnelleren Auswechslung der Lagereinheit eine Trägerschale angeordnet, die den Keramikkörper trägt und mit diesem entfernt werden kann. Die Standzeiten dieser Lagerung sind jedoch weiterhin nicht0 zufriedenstellend.
Aus der EP 2 159 298 Bl und der EP 2 159 297 sind ebenfalls Lagereinheiten für Führungsrollen in Verzinkungsanlage bekannt, bei denen als Lager Wälzlager verwendet werden, welche aus einer inneren5 Keramikbuchse, Zylinderrollen aus Keramik sowie Ringen zur Aufnahme der Zylinderrollen bestehen. Auch hier ergeben sich nicht befriedigende Standzeiten sowie hohe Kosten bei der Herstellung der verwendeten Keramiken. Zusätzlich ist aus der EP 0 230 576 AI ein legierter Werkzeugstahl bekannt, der 0,4 bis 4,5 Gew.% Kohlenstoff, 0 bis 2 Gew.% Mangan, 0 bis 2,5 Gew.% Silizium, 0 bis 6 Gew.% Chrom, 0 bis 7 Gew.% Wolfram, 0 bis 4 Gew.% Molybdän, 0 bis 10 Gew.% Kobalt, 1 bis 21 Gew.% Vanadium, 0 bis 16 Gew.% Titan, 0 bis 4 Gew.% Niob, 0,01 bis 2 Gew.% Stickstoff sowie den Rest Eisen enthält. Dieser Stahl enthält in seiner Struktur primäre Carbide, die zu einem hohen Prozentsatz keine Eutektika des Ledeburittyps bilden, wodurch die Verschleißfestigkeit und Schleifbarkeit reguliert werden kann. Jedoch würde sich dieser Stahl nicht zur Verwendung in Verzinkungsanlagen eignen, da keine ausreichende Verschleißbeständigkeit, Festigkeit und Korrosionsbeständigkeit gegenüber der Zinkschmelze erreicht werden.
Es stellt sich daher die Aufgabe, einen legierten Stahl für Rollen, Lager und Buchsen in Verzinkungsanlagen, derartige Rollen, Lager oder Buchsen sowie Verfahren zum Herstellen derartiger Rollen, Lager oder Buchsen bereit zu stellen, mit denen die bekannten Verschleißfestigkeiten und Korrosionsbeständigkeiten bei einfachem Aufbau der Lagerungen im Vergleich zu bekannten Ausführungen erhöht werden können.
Diese Aufgabe wird durch einen Stahl sowie die Verwendung dieses Stahls bei der Herstellung von Rollen, Lagern und Buchsen mit den Merkmalen des Anspruchs 1 gelöst.
Dadurch, dass der Stahl 0,5 bis 1,5 Gew.% Stickstoff, 0,5 bis 2 Gew.% Kohlenstoff, 5 bis 15 Gew.% Wolfram, 2 bis 7 Gew.% Kobalt, 2 bis 7 Gew.% Vanadium, 2 bis 7 Gew.% Niob, 2 bis 10 Gew.% Molybdän, 3 bis 13 Gew.% Chrom, 5 bis 15 Gew.% Mangan sowie Rest Eisen enthält, wird erreicht, dass einerseits eine deutliche Festigkeitssteigerung durch eine erhöhte Löslichkeit von Stickstoff aufgrund des hohen Mangananteils erzielt wird und andererseits die Verschleißbeständigkeit durch Verringerung der Korrosion aufgrund der Löslichkeit von Zink in Eisen, deutlich erhöht wird. Zusätzlich diffundiert der Stickstoff in die austenitische Phase der Legierung und erhöht die Stabilität des geordneten Ferrit/Martensit-Gefüges gegenüber unerwünschten Ausscheidungen. Vorzugsweise sind dabei der Stickstoff und der Kohlenstoff in etwa gleichen Gewichtsanteilen enthalten, wenn der Chromgehalt unter 10 Gew.% liegt. Der gelöste Stickstoff erhöht die Konzentration an freien Elektronen in der Matrix, wodurch die Nahordnung von Chromatomen signifikant gesteigert wird. Dieser Effekt führt dazu, dass die Stahlmatrix gegen Phasenumwandlung stabilisiert wird. Kohlenstoff fördert bereits alleine die Bildung von Chromclustern, jedoch hat sich herausgestellt, dass diese Nahordnung der Chromatome durch Lösen von Stickstoff und Kohlenstoff in gleichen Anteilen noch einmal gesteigert wird. Bei einem Chromanteil von über 10 Gew.% ihat es sich als vorteilhaft herausgestellt, wenn der Kohlenstoffgehalt 50 bis 80 % höher ist als der Stickstoffgehalt in der Legierung. Hierdurch kann gegebenenfalls die Nahordnung der Chromatome zusätzlich gesteigert werden
Bezüglich der Verwendung einer derartigen Legierung für Rollen, Gleitlager oder Buchsen in Verzinkungsanlagen ergeben sich entsprechend deutlich verlängerte Standzeiten durch die Minimierung der Löslichkeit von Zink im Eisen insbesondere aufgrund der Chrom- und Molybdänanteile. Des Weiteren weisen diese Rollen durch das Zusammenspiel des Mangans mit dem Stickstoff und dem Kohlenstoff eine erhöhte Festigkeit auf. Auch wird die Warmfestigkeit und Zeitstandfestigkeit durch die Anteile an Niob, Vanadium und Kobalt erhöht. So ergeben sich deutliche Kostenvorteile durch die Vermeidung von Ausfallzeiten der Verzinkungsanlage. Zur Herstellung derartiger Rollen, Gleitlager oder Buchsen wird vorzugsweise zunächst ein legierter Stahl aus den genannten Legierungselementen durch Schmelzen im Ofen hergestellt, anschließend im Schleudergussverfahren ein Zwischenprodukt der Rolle, des Gleitlagers oder die Buchse durch Gießen in eine entsprechend Form hergestellt und abschließend ein Endprodukt durch rein mechanische 5 Bearbeitung des Zwischenproduktes hergestellt. Diese Rollen, Gleitlager und Buchsen sind kostengünstig herstellbar, da auf weitere Bearbeitungsschritte zur Erhöhung der Festigkeit oder Korrosionsbeständigkeit verzichtet werden kann. o Es wird somit ein legierter Stahl für Rollen, Lager und Buchsen in Verzinkungsanlagen, derartige Rollen, Lager oder Buchsen sowie ein Verfahren zum Herstellen derartiger Rollen, Lager oder Buchsen geschaffen, welche geeignet sind, die Standzeiten der Bauteile bei der Verwendung in Verzinkungsanlagen deutlich zu erhöhen, so dass sich die Bestückungszeiten verringern und die Produktivität der Anlagen gesteigert werden kann. Dennoch sind die Bauteile kostengünstig herstellbar.
Die Wirkweisen der Elemente im Einzelnen und im Verbund der erfindungsgemäßen Legierung werden im Folgenden beschrieben.
Rollen, Gleitlager und Buchsen, welche verwendet werden, um ein Metallband durch ein Zinkbad einer Tauchbadverzinkungsanlage zu ziehen beziehungsweise zu führen und zu lagern, sind besonderen Einflüssen ausgesetzt. Neben der rein mechanischen Belastung durch das Gewicht und die Anpressung des Metallbandes wirken auch Biegekräfte aufgrund des Transportes auf diese Teile. Des Weiteren entsteht durch das Zinkbad, in welchem die Teile angeordnet sind, eine erhöhte Korrosionsgefahr, da das Zink des Bades im Eisen der Bauteile löslich ist. Nichtzuletzt besteht eine hohe thermische Belastung durch Temperaturen von etwa 450°C im Zinkbad. Um nun die Verschleißbeständigkeit, Festigkeit, Anlassbeständigkeit, Korrosionsbeständigkeit und Warmfestigkeit zu verbessern, wird ein legierter Stahl hergestellt, welcher 0,5 bis 1,5 Gew.% Stickstoff, 0,5 bis 2
5 Gew.% Kohlenstoff, 5 bis 15 Gew.% Wolfram, 2 bis 7 Gew.% Kobalt, 2 bis 7 Gew.% Vanadium, 2 bis 7 Gew.% Niob, 2 bis 10 Gew.% Molybdän, 3 bis 13 Gew.% Chrom, 5 bis 15 Gew.% Mangan sowie Rest Eisen enthält. Aus diesem wird in einem Schleudergussverfahren ein rotationssymmetrischer Körper in der rotierenden Gießform hergestellt, o welches als Zwischenprodukt dient. Durch den Schleuderguss weisen diese Zwischenprodukte ein Gefüge mit geringer Lunker- und Porenbildung auf. Durch abschließendes mechanisches Bearbeiten beispielsweise durch Drehen, werden die Körper auf ihr Endmaß reduziert und die geforderten Oberflächengüten und Rauheitsgrade für den jeweiligen Einsatz erzeugt. Eine weitere Vergütung ist in der Regel nicht erforderlich.
In Versuchen hat sich herausgestellt, dass bei legierten Stählen die Löslichkeit von Stickstoff durch Mangan deutlich erhöht werden kann. Entsprechend wird erfindungsgemäß vorgeschlagen, zur Festigkeitssteigerung eines hochstickstoffhaltigen Stahls mit einem Stickstoffgehalt von 0,5 bis 2 Gew.% auch einen entsprechend hohen Anteil an Mangan von etwa 5-15 Gew.% hinzu zu legieren. Dies führt auch zu einer signifikanten Steigerung der Verschleißbeständigkeit.
Während in bekannten Stahllegierungen zur Erhöhung der Verschleißbeständigkeit vor allem ein hoher Anteil Kohlenstoff zulegiert wurde, hat sich gezeigt, dass gerade bei austenitischen Stählen die Stickstofflöslichkeit etwa fünfmal so hoch ist wie die Kohlenstofflöslichkeit. Sowohl der Kohlenstoff als auch der Stickstoff liegen in der erfindungsgemäßen Legierung in Anteilen von 0,5 bis 1,5 Gew.% vor und wirken sich in der Weise auf die Gefügebildung aus, dass die Atome freie Gittersteilen im Metallgitter besetzen. Die Stickstoffatome sind lediglich etwa halb so groß wie die Eisenatome, und damit auch deutlich kleiner als die Kohlenstoffatome und lagern sich so besonders 5 einfach in die Zwischenplätze, insbesondere in die Oktaederlücken, des Eisengitters ein und bilden dort Mischkristalle. Des Weiteren entsteht eine Korngrenzenverfestigung. Die Menge des derart lösbaren Stickstoffs ist abhängig vom Lösungsvermögen, welches sowohl durch die Mangananteile als auch durch die Chrom-, Niob-, Molybdän,- und I G Wolframanteile erhöht wird. Des Weiteren bildet der Stickstoff mit dem Eisen aber auch mit dem Chrom Nitride und mit dem Eisen, Vanadium und Wolfram Carbide als Verbindungskristalle vor allem in der austenitischen Phase. Da zusätzlich die Löslichkeit des Kohlenstoffs bei Anwesenheit von Stickstoff weitestgehend erhalten bleibt und somit5 ebenfalls Leerstellen in den Gitterstrukturen durch Kohlenstoffatome besetzt werden, entsteht ein Gitter mit sehr wenig Leerstellen, weiches entsprechend eine hohe Festigkeit aufweist. Diese positiven Eigenschaften des Stickstoffs wirken sich nur dann aus, wenn die Atome interstitiell in der Matrix gelöst vorliegen. Bei Überschreiten der0 Löslichkeitsgrenze entstehen Nitride, die zu einer Versprödung des Materials führen können. Durch das Mangan wird die Löslichkeitsgrenze jedoch deutlich gesteigert.
Sowohl der gelöste Stickstoff als auch der Kohlenstoff haben auch Einfluss auf die Bildung von Chromclustern, welche vor allem in der Nähe zu Kohlenstoffatomen entstehen, denn es zeigt sich, dass der gelöste Stickstoff vor allem wenn er in gleichen Anteilen wie der Kohlenstoff gelöst vorliegt, die Konzentration an freien Elektronen in der Matrix erhöht, wodurch die Nahordnung von Chromatomen noch einmal signifikant gesteigert wird. So wird die Möglichkeit einer Phasenumwandlung reduziert, so dass die gewünschten austenitischen W
8 und martensitischen Phasen stabilisiert werden, wodurch auf Nickel verzichtet werden kann. Durch die geringe Anzahl freier Gitterplätze in der vorliegenden Legierung und der Affinität der Nitride und Karbide zum Chrom ist auch die Bildung der Chromcluster gleichmäßig im Werkstück vorhanden, so dass dessen Korrosionsbeständigkeit gesteigert wird. Entsprechend wird die Legierung mit einem Chromgehalt von 2 bis 10 Gew.% ausgeführt.
Diese Beständigkeit gegen einen selektiven Korrosionsangriff wird zusätzlich durch den 2 bis 10 Gew.%-igen Anteil des Molybdäns gesteigert.
Des Weiteren ist in der Legierung ein Kobaltgehalt von 2 bis 7 Gew.% vorhanden, wodurch die Anlasssprödigkeit und die Warmfestigkeit verbessert werden. Dabei hemmt Kobalt das Kornwachstum und verringert die Ausscheidung von Kohlenstoff und Stickstoff an den Korngrenzen.
Durch den Zusatz von 2 bis 7 Gew.% Vanadium wird eine mögliche Versprödung verringert, also die Anlassbeständigkeit gesteigert. Das Vanadium dient in der Legierung als starker Karbidbildner. Diese Karbide erhöhen signifikant den Verschleißwiderstand. Andererseits bindet das Vanadium die Stickstoffatome, wodurch eine feinkörnige Gussstruktur des Zwischenproduktes erreicht wird.
Auch der Zusatz von 2 bis 7 Gew.% Niob dient der Karbidbildung zur Erhöhung der Warmfestigkeit und Zeitstandfestigkeit. Es dient als Stabilisator und Ferritbildner. Nichtzuletzt wird die Zugfestigkeit, Streckgrenze und Zähigkeit durch den Wolframanteil von 5 bis 15 Gew.% erhöht. Es entstehen harte Karbide durch die Zugabe von Wolfram, so dass die Warmfestigkeit und Verschleißfestigkeit erhöht werden.
Entsprechend ist dieser Stahl optimal geeignet, um im Zinkbad für Gleitlager Rollen und Buchsen verwendet zu werden, da eine hohe Unempfindlichkeit sowohl gegen den korrosiven Angriff durch das Zink als auch gegen die thermischen und mechanischen Belastungen gegeben ist. Dabei ist dieser Stahl kostengünstig herstellbar, da auf Zugaben teurer Legierungselemente wie Nickel verzichtet werden kann. Bei der Herstellung der Rollen, Buchsen und Gleitlager kann auch auf kostenintensive Nachbearbeitungsverfahren verzichtet werden.
Besonders gute Ergebnisse wurden mit einer Legierung erzielt, bei der der Mangangehalt 5 Gew.%, der Stickstoffgehalt 1 Gew.%, der Kohlenstoffgehalt 1,7 Gew.%, der Wolframgehalt 10 Gew.%, der Kobaltgehalt 6 Gew.%, der Niobgehalt 5 Gew.%, der Molybdängehalt 9 Gew.%, der Chromgehalt 12 Gew.% und der Vanadiumgehalt 5 Gew.% und der Eisengehalt die übrigen 45,3% betrug. Ein korrosiver Angriff durch Zink wird mit diesem Material zu großen Teilen verhindert. Zusätzlich besteht eine hohe Festigkeit, woraus eine sehr hohe Lebensdauer bei der Verwendung als Rollen in Zinkbädern resultiert.

Claims

Figure imgf000011_0001
4. Rolle, Gleitlager, oder Buchse für Verzinkungsanlagen,
dadurch gekennzeichnet, dass
die Rolle, das Gleitlager oder die Buchse aus einer Legierung gemäß einem der vorhergehenden Ansprüche hergestellt ist.
5. Verfahren zur Herstellung einer Rolle, eines Gleitlagers oder einer Buchse nach Anspruch 4,
dadurch gekennzeichnet, dass
zunächst ein legierter Stahl gemäß einem der Ansprüche 1 oder 2 durch Schmelzen im Ofen hergestellt wird, anschließend im Schleudergussverfahren ein Zwischenprodukt der Rolle, des Gleitlagers oder der Buchse durch Gießen in eine entsprechende Form hergestellt wird und abschließend ein Endprodukt durch rein mechanische Bearbeitung des Zwischenproduktes hergestellt wird.
PCT/EP2014/051871 2013-02-01 2014-01-31 Legierter stahl für rollen, lager und buchsen in verzinkungsanlagen, derartige rollen, lager oder buchsen sowie verfahren zum herstellen derartiger rollen, lager oder buchsen WO2014118310A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14702027.5A EP2951330A1 (de) 2013-02-01 2014-01-31 Legierter stahl für rollen, lager und buchsen in verzinkungsanlagen, derartige rollen, lager oder buchsen sowie verfahren zum herstellen derartiger rollen, lager oder buchsen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013101041 2013-02-01
DE102013101041.5 2013-02-01

Publications (1)

Publication Number Publication Date
WO2014118310A1 true WO2014118310A1 (de) 2014-08-07

Family

ID=50030304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/051871 WO2014118310A1 (de) 2013-02-01 2014-01-31 Legierter stahl für rollen, lager und buchsen in verzinkungsanlagen, derartige rollen, lager oder buchsen sowie verfahren zum herstellen derartiger rollen, lager oder buchsen

Country Status (2)

Country Link
EP (1) EP2951330A1 (de)
WO (1) WO2014118310A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107497859A (zh) * 2017-09-29 2017-12-22 四川德胜集团钒钛有限公司 一种耐磨轧辊

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3165400A (en) * 1961-06-27 1965-01-12 Chrysler Corp Castable heat resisting iron alloy
EP0230576A1 (de) 1985-12-06 1987-08-05 AKADEMIA GORNICZO-HUTNICZA im. Stanislawa Staszica Legierter Werkzeugstahl mit grosser Verschleissfestigkeit
US6004507A (en) * 1997-08-11 1999-12-21 Alphatech, Inc. Material formulation for galvanizing equipment submerged in molten and aluminum zinc melts
DE19921191A1 (de) 1999-05-07 2000-11-09 Walter Neumann Führungsrolle für ein durch ein Tauchbad laufendes Metallband
DE10236113B3 (de) 2002-08-07 2004-04-08 Band-Zink Gmbh Drehlagerung für in Metallschmelzen rotierende Führungsrollen
US20080274006A1 (en) * 2007-05-01 2008-11-06 Mark Bright Overlay cladding for molten metal processing
EP2159297A1 (de) 2008-09-01 2010-03-03 Band-Zink GmbH Führungsrollen-Drehlagerung für ein Metallschmelzbad
WO2010044740A1 (en) * 2008-10-16 2010-04-22 Uddeholm Tooling Aktiebolag Steel material and a method for its manufacture
EP2159298B1 (de) 2008-09-01 2010-11-24 Band-Zink GmbH Führungsrollen-Drehlagerung für ein Metallschmelzbad
EP2538099A1 (de) * 2010-08-13 2012-12-26 Xinxing Ductile Iron Pipes Co., Ltd Neues lagerringmaterial und herstellungsverfahren dafür

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3165400A (en) * 1961-06-27 1965-01-12 Chrysler Corp Castable heat resisting iron alloy
EP0230576A1 (de) 1985-12-06 1987-08-05 AKADEMIA GORNICZO-HUTNICZA im. Stanislawa Staszica Legierter Werkzeugstahl mit grosser Verschleissfestigkeit
US6004507A (en) * 1997-08-11 1999-12-21 Alphatech, Inc. Material formulation for galvanizing equipment submerged in molten and aluminum zinc melts
DE19921191A1 (de) 1999-05-07 2000-11-09 Walter Neumann Führungsrolle für ein durch ein Tauchbad laufendes Metallband
DE10236113B3 (de) 2002-08-07 2004-04-08 Band-Zink Gmbh Drehlagerung für in Metallschmelzen rotierende Führungsrollen
US20080274006A1 (en) * 2007-05-01 2008-11-06 Mark Bright Overlay cladding for molten metal processing
EP2159297A1 (de) 2008-09-01 2010-03-03 Band-Zink GmbH Führungsrollen-Drehlagerung für ein Metallschmelzbad
EP2159298B1 (de) 2008-09-01 2010-11-24 Band-Zink GmbH Führungsrollen-Drehlagerung für ein Metallschmelzbad
WO2010044740A1 (en) * 2008-10-16 2010-04-22 Uddeholm Tooling Aktiebolag Steel material and a method for its manufacture
EP2538099A1 (de) * 2010-08-13 2012-12-26 Xinxing Ductile Iron Pipes Co., Ltd Neues lagerringmaterial und herstellungsverfahren dafür

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107497859A (zh) * 2017-09-29 2017-12-22 四川德胜集团钒钛有限公司 一种耐磨轧辊

Also Published As

Publication number Publication date
EP2951330A1 (de) 2015-12-09

Similar Documents

Publication Publication Date Title
DE2423193C2 (de) Verwendung eines austenitischen rostfreien Stahls
AT511196B1 (de) Mehrschichtlagerschale
DE102019216995A1 (de) Lagerbauteil mit einem metallischen Grundkörper und einer Beschichtung mit legiertem Stahl
EP3736350B1 (de) Mehrschichtgleitlagerelement
DE102015222183A1 (de) Warmumformstahl und Verfahren zum Herstellen desselben
AT511432B1 (de) Verfahren zur herstellung eines gleitlagerelementes
AT502506A4 (de) Lagerelement
DE3236268C2 (de) Verschleißfeste Gußeisenlegierung
DE60027355T2 (de) Selbstschmierendes Kolbenringmaterial für Verbrennungsmotoren und Kolbenring
DE19836360B4 (de) Kolbenringmaterial mit hervorragender Bearbeitbarkeit und Resistenz gegen Fressen sowie Kolbenring hieraus
DE4328612A1 (de) Gleitlager für ein Gehäuse aus einer leichten Legierung
DE10062036A1 (de) Wälzlager und Verfahren zu seiner Herstellung
WO2014118310A1 (de) Legierter stahl für rollen, lager und buchsen in verzinkungsanlagen, derartige rollen, lager oder buchsen sowie verfahren zum herstellen derartiger rollen, lager oder buchsen
AT518875A4 (de) Mehrschichtgleitlagerelement
AT505860B1 (de) Mehrschichtgleitlager
DE102017215222A1 (de) Einsatzhärtbare Edelstahllegierung
WO2008019716A1 (de) Stahlwerkstoff, insbesondere zur herstellung von kolbenringen
DE102007028824B3 (de) Verfahren zur Herstellung eines Blechs in einer Walzstraße
DE2502356C3 (de) Baueinheit, z.B. für einen Rotationskompressor
EP2737098B1 (de) Bauteil und verfahren zum herstellen des bauteils
EP2737097B1 (de) Stahl, bauteil und verfahren zum herstellen von stahl
DE1209756B (de) Eisenlegierung zum Aufschweissen, Aufspritzen oder Aufgiessen
DE10321524A1 (de) Werkstoff mit selbstschmierenden Eigenschaften, insbesondere für Gleitlager
EP2809818B1 (de) Duplexstahl mit verbesserter kerbschlagzähigkeit und zerspanbarkeit
DE102007028823A1 (de) Verfahren zur Herstellung eines Blechs in einer Walzstraße

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14702027

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014702027

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014702027

Country of ref document: EP