WO2014117567A1 - 供电系统、电子设备以及电子设备的电力分配方法 - Google Patents

供电系统、电子设备以及电子设备的电力分配方法 Download PDF

Info

Publication number
WO2014117567A1
WO2014117567A1 PCT/CN2013/087412 CN2013087412W WO2014117567A1 WO 2014117567 A1 WO2014117567 A1 WO 2014117567A1 CN 2013087412 W CN2013087412 W CN 2013087412W WO 2014117567 A1 WO2014117567 A1 WO 2014117567A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
system load
supply unit
current
operational amplifier
Prior art date
Application number
PCT/CN2013/087412
Other languages
English (en)
French (fr)
Inventor
邓志吉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13874062.6A priority Critical patent/EP2953001B1/en
Priority to JP2015555553A priority patent/JP6080063B2/ja
Priority to KR1020157022678A priority patent/KR101678116B1/ko
Publication of WO2014117567A1 publication Critical patent/WO2014117567A1/zh
Priority to US14/812,491 priority patent/US9935467B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/266Arrangements to supply power to external peripherals either directly from the computer or under computer control, e.g. supply of power through the communication port, computer controlled power-strips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/06Two-wire systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements

Definitions

  • the present invention relates to the field of power distribution, and in particular, to a power supply system, an electronic device, and a power distribution method of an electronic device.
  • peripherals can be externally connected to many electronic devices, referred to as peripherals.
  • peripherals such as keyboard and mouse audio. Therefore, for electronic devices, not only does it need to supply power to its internal system load, but it also needs to supply power to peripherals that may exist.
  • the prior art electronic equipment usually supplies power to the peripheral device by using a fixed power supply mode.
  • the power supply mode provided by the computer for the USB interface is: output voltage is 5V, maximum output 5 ⁇ The current is 0. 5A. Therefore, the computer can provide up to 2W of power to the mobile phone via the USB interface.
  • Embodiments of the present invention provide a power supply system, an electronic device, and a power distribution method, which are capable of The change trend of the system load power consumption is measured, realizing the redistribution of the power supply capability of the system load power supply unit and the peripheral power supply unit, and maximally improving the power distribution of the electronic device.
  • the embodiment of the present invention uses the following technical solutions:
  • a power supply system comprising: a power supply unit, a power distribution unit connected to the power supply unit, a system load power supply unit connected to the power distribution unit, and a peripheral power supply unit connected to the power distribution unit, the power
  • the allocation unit includes:
  • a power consumption prediction module configured to detect a system load power consumption, and calculate a change trend of the system load power consumption
  • a power consumption control module configured to adjust a power supply capability of the system load power supply unit and the peripheral power supply unit according to a change trend of the system load power consumption.
  • the power consumption prediction module includes:
  • a detection circuit configured to detect a system load current and a rate of change of the system load current, where the system load current is used to reflect the system load power consumption;
  • a calculation circuit configured to calculate a predicted current after the reference time according to the system load current, a rate of change of the system load current, and the reference time, where the predicted current is used to reflect the system load power consumption Trend;
  • the power consumption control module includes:
  • a comparison circuit configured to set a reference current, and compare the predicted current with the reference current
  • a control circuit configured to increase a power supply capability of the system load power supply unit when the predicted current is greater than the reference current, and The power supply capability of the peripheral power supply unit is reduced.
  • the predicted current is not greater than the reference current, the power supply capability of the system load power supply unit is reduced, and the power supply capability of the peripheral power supply unit is improved.
  • the detecting circuit includes:
  • a first operational amplifier wherein a negative input terminal thereof is connected to an input end of the system load power supply unit through a second resistor, and a positive input terminal thereof is connected to an output end of the system load power supply unit through a third resistor, and an output end thereof is reflected a first voltage of the system load current;
  • a fourth resistor having one end connected to the negative input terminal of the first operational amplifier and the other end connected to the output end of the first operational amplifier;
  • a fifth resistor having one end connected to the positive input terminal of the first operational amplifier and the other end connected to ground;
  • a second operational amplifier having a positive input terminal connected to the ground through a sixth resistor, a negative input terminal connected to the output end of the first operational amplifier through a first capacitor, and an output of the output terminal reflecting a rate of change of the load current of the system Second voltage
  • the seventh resistor has one end connected to the negative input terminal of the second operational amplifier and the other end connected to the output terminal of the second operational amplifier.
  • the time generating circuit includes:
  • a third operational amplifier having a positive input terminal connected to an output terminal of the second operational amplifier through an eighth resistor, a negative input terminal thereof being grounded through a ninth resistor, and an output terminal outputting a third voltage reflecting the reference time;
  • a tenth resistor one end of which is connected to the positive input terminal of the third operational amplifier, and the other end of which is grounded;
  • the eleventh resistor has one end connected to the negative input terminal of the third operational amplifier and the other end connected to the output terminal of the third operational amplifier.
  • the calculating circuit includes:
  • a fourth operational amplifier having a positive input terminal connected to an output of the third operational amplifier through a twelfth resistor and connected to an output of the first operational amplifier through a thirteenth resistor and passing through The fourteen resistor is grounded, the negative input terminal thereof is grounded through the fifteenth resistor, and the output end thereof outputs a fourth voltage reflecting the predicted current;
  • the sixteenth resistor has one end connected to the negative input terminal of the fourth operational amplifier and the other end connected to the output terminal of the fourth operational amplifier.
  • the comparing circuit includes: at least one comparator, wherein the positive input end of the comparator is grounded through a preset power source, The preset power source is configured to provide a reference voltage reflecting the reference current, a negative input terminal thereof is connected to an output end of the fourth operational amplifier, and an output terminal thereof outputs a comparison result of the reference voltage and the fourth voltage.
  • an electronic device including the power supply system described above.
  • a power distribution method for an electronic device including: detecting system load power consumption;
  • a trend of the system load power consumption is calculated to adjust the power supply capability of the system load power supply unit and the peripheral power supply unit according to the change trend of the system load power consumption.
  • the calculating a change trend of the system load power consumption includes:
  • the adjusting the power supply capability of the system load power supply unit and the peripheral power supply unit according to the change trend of the system load power consumption includes:
  • Embodiments of the present invention provide a power supply system, an electronic device, and a power distribution method.
  • detecting a system load power consumption calculating a change trend of a system load power consumption, dynamically adjusting a system load power supply unit according to a change trend of a system load power consumption, and The power supply capability of the peripheral power supply unit increases the power distribution capability of the electronic device with maximum efficiency.
  • FIG. 1 is a structural block diagram of a power supply system according to an embodiment of the present invention.
  • FIG. 2 is a structural block diagram of a power distribution unit according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram of a detection circuit in an embodiment of the present invention.
  • FIG. 4 is a circuit diagram of a time generation circuit in an embodiment of the present invention.
  • FIG. 5 is a circuit diagram of a calculation circuit in an embodiment of the present invention.
  • FIG. 6 is a circuit diagram of a comparison circuit in an embodiment of the present invention.
  • FIG. 7 is a flowchart of operation of a power supply system according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for allocating power of an electronic device according to an embodiment of the present invention. detailed description
  • the power supply system provided by the embodiment of the invention can predict the change trend of the system load power consumption, reallocate the power supply capability of the system load power supply unit and the peripheral power supply unit, and improve the power distribution of the electronic device with maximum efficiency.
  • a power supply system is provided. As shown in FIG. 1, a power supply unit 1, a power distribution unit 2 connected to the power supply unit 1, a system load power supply unit 3 connected to the power distribution unit 2, and a power distribution unit are connected. Peripheral power supply unit 4 of unit 2.
  • the power supply unit 1 is configured to provide total input power to supply power to the system load and the peripheral device; the power distribution unit 2 allocates the total input power provided by the power supply unit 1, and transmits the system load power to the system load power supply unit 3, The peripheral power is transmitted to the peripheral power supply unit 4.
  • the power distribution unit 2 includes: a power consumption prediction module 21 and a power consumption control module 22.
  • the power consumption prediction module 21 is configured to detect a system load power consumption, and calculate a change trend of the system load power consumption; the power consumption control module 22 adjusts the system load power supply unit according to a change trend of the system load power consumption, and the Power supply capability of the peripheral power supply unit.
  • the total input power provided by the power supply unit 1 can be divided into two parts: one part provides the system load operation and the other part provides the peripheral work. In fact, the system load and the operating state of the peripherals are changing. Therefore, by detecting the system load power consumption by the power consumption prediction module 21 and calculating the change trend of the system load power consumption, the system load and the power consumption required by the peripheral device can be predicted; then, the power consumption control module 22 supplies the system load power supply unit and The power supply capability of the peripheral power supply unit is adjusted to maximize the power supply efficiency of the entire power supply system. For example, when the system load is relatively idle, the power supply system of the system load power supply unit is reduced, and the power supply capability of the peripheral power supply unit is improved, and excess power is supplied to the peripheral device.
  • the power supply system provided by the embodiment of the present invention calculates the change trend of the system load power consumption by detecting the system load power consumption, and dynamically adjusts the power supply of the system load power supply unit and the peripheral power supply unit according to the change trend of the system load power consumption.
  • the power consumption prediction module 21 includes: a detection circuit 201, a time generation circuit 202, and a calculation circuit 203.
  • the power consumption control module 22 includes: a comparison circuit 204 and a control circuit 205. .
  • the time generating circuit 202 is configured to generate a reference time by adjusting the time generating circuit 202 to obtain a desired reference time.
  • the calculation circuit 203 calculates the predicted current after the reference time based on the system load current, the rate of change of the system load current, and the reference time.
  • the predicted current actually reflects the trend of the system load power consumption after the reference time. Trends in power consumption include, for example, increased power consumption or reduced power consumption or constant power consumption. So far, the power consumption prediction module 21 has completed the purpose of detecting the system load power consumption and calculating the system load power consumption trend.
  • the comparison circuit 204 is for setting a reference current, and comparing the reference current with the predicted current generated by the calculation circuit 203.
  • the reference current can be set according to the precision required by the power supply system in the power supply. For example: Set the appropriate parameters The current value of the current is measured to accurately predict the system load and the power consumption of the peripheral; in addition, at least one reference current can be set, for example: three reference currents are set. Of course, those skilled in the art can also set other numbers of reference currents to finely adjust the system load power supply capability and peripheral power supply capability.
  • the control circuit 205 receives the comparison result of the comparison circuit 204, and completes the adjustment of the system load power supply capability and the peripheral power supply capability.
  • the result of the comparison includes the following two possibilities:
  • the control circuit 205 increases the system load power supply unit.
  • the power supply capability and the power supply capability of the peripheral power supply unit are reduced.
  • the control circuit 205 reduces the power supply capability of the system load power supply unit and improves the peripheral power supply unit. Power supply capability. So far, the power control module 22 completes the adjustment of the power supply capability of the system load power supply unit and the peripheral power supply unit according to the change trend of the system load power consumption.
  • the detecting circuit 201 is configured to detect a system load current and a rate of change of the system load current, and the method includes: a plurality of resistors R l, R2, and R3 , R4, R5, R6, R7, the first operational amplifier U l , the second operational amplifier U2 , and the capacitor C l .
  • the resistor R 1 is connected between the input end and the output end of the system load power supply unit for collecting system load current.
  • the resistor R 1 is a sampling resistor (English: sampling resistor, abbreviated: SR), also known as current sense resistor, current sense resistor, sampling resistor, current sense resistor, etc., which is used in series in the circuit.
  • the current is converted into a voltage signal for measurement.
  • the end points of the resistor R 1 are respectively connected to the VIN terminal of the input terminal of the system load power supply unit, and the end point of the B terminal is connected with the VOUT terminal of the output end of the system load power supply unit. Therefore, when the system load current is I, the resistance
  • V AB I*Ri.
  • the resistor R2 is connected in series between the negative input terminal of the first operational amplifier U1 and the end of the A
  • the resistor R3 is connected in series with the positive input terminal and the B terminal end of the first operational amplifier U1
  • the resistor R4 is connected in series with the first operational amplifier.
  • the resistor R5 is connected in series between the positive input terminal and the ground terminal of the first operational amplifier U1.
  • the resistors R2, R3, R4, and R5 and the first operational amplifier U1 constitute an amplifying circuit. According to the calculation formula of the amplifying circuit, the first voltage Vi outputted from the output end of the first operational amplifier U1 is proportional to V AB . For example: Order
  • Ri is the resistance value of the resistor R1
  • ki is referred to as the first amplification factor. Therefore, the first voltage Vi outputted from the output of the first operational amplifier U1 is used to reflect the system load current I.
  • the capacitor C1 is connected in series between the output terminal of the first operational amplifier U1 and the negative input terminal of the second operational amplifier U2, and the resistor R6 is connected in series between the positive input terminal and the ground terminal of the second operational amplifier U2.
  • R7 is connected in series between the negative input terminal of the second operational amplifier U2 and the output terminal of the second operational amplifier U2.
  • the resistors R6 and R7, the capacitor CI and the second operational amplifier U2 constitute a differential amplifier circuit. According to the calculation formula of the differential amplifier circuit, the second voltage V 2 outputted from the output terminal of the second operational amplifier U2 is proportional to dVi/dt.
  • R 7 is the resistance value of the resistor R7
  • Ci is the capacity of the capacitor C 1
  • k 2 is referred to as the second amplification factor. Therefore, the second voltage V 2 outputted from the output of the second operational amplifier U2 is used to reflect the rate of change dl/dt of the system load current.
  • the method includes: a plurality of resistors R8, R9, RIO, R11 and a third operational amplifier U3. .
  • Resistor R8 is connected in series Between the positive input terminal of the third operational amplifier U3 and the output terminal of the second operational amplifier U2, the resistor R9 is connected in series between the negative input terminal of the third operational amplifier U3 and the ground terminal, and the resistor R10 is connected in series with the positive input terminal of the third operational amplifier U3.
  • the resistor R11 is connected in series between the negative input terminal of the third operational amplifier U3 and the output terminal of the third operational amplifier U3.
  • the resistors R8, R9, RIO, R11 and the third operational amplifier U3 constitute an amplifying circuit.
  • the third voltage V 3 outputted from the output terminal of the third operational amplifier U3 is proportional to V 2 .
  • V 3 [Rio/ ( R 8 +Rio ) ]*[ ( R9+R11 ) /R 9 ] o
  • k 3 is written as the third amplification factor, depending on the resistors R8, R9, RIO, Rl l.
  • the third voltage V 3 is proportional to V 2 .
  • the third amplification system k 3 is used as the reference time generated by the time generation circuit 202, and the need to generate the resistors R8, R9, RIO, and R11 can be generated. Reference time.
  • the calculation circuit 203 is configured to calculate a predicted current after the reference time according to the system load current, the rate of change of the system load current, and the reference time.
  • the method includes: a plurality of resistors R12, R13, R14, R15, R16 and a fourth operational amplifier U4.
  • the resistor R12 is connected in series between the positive input terminal of the fourth operational amplifier U4 and the output terminal of the third operational amplifier U3, and the resistor R13 is connected in series between the positive input terminal of the fourth operational amplifier U4 and the output terminal of the first operational amplifier U1, and the resistor R14 Connected in series between the positive input terminal and the ground terminal of the fourth operational amplifier U4, the resistor R15 is connected in series between the negative input terminal of the fourth operational amplifier U4 and the ground terminal, and the resistor R16 is connected in series with the negative input terminal of the fourth operational amplifier U4.
  • the fourth operational amplifier U4 is between the outputs.
  • the resistors R12, R13, R14, R15, R16 and the fourth operational amplifier U4 constitute an amplifying circuit.
  • Vi represents the system load current
  • V 2 represents the rate of change of the system load current
  • k 4 is the fourth amplification factor.
  • the predicted current system load current + system load current rate of change * reference time. Therefore, the fourth voltage V 4 outputted from the output terminal of the fourth operational amplifier U4 is used to reflect the predicted current of the system load current after the reference time.
  • the comparison circuit 204 is configured to set a reference current, compare the reference current with the predicted current generated by the calculation circuit 203, and includes: comparators A1, A2 , A3 and preset power supplies Vrefl, Vref2, Vref3.
  • the negative input terminals of the comparators A1, A2, and A3 are connected to the output terminal of the fourth operational amplifier U4, and the positive input terminal of the comparator A1 is connected to the ground through a preset power supply Vr ef 1 , and the positive input terminal of the comparator A 2 passes through
  • the power source Vr ef 2 is connected to the ground terminal
  • the positive input terminal of the comparator A 3 is connected to the ground terminal through the preset power source Vref3
  • the comparators A1, A2, and A3 receive the fourth voltage and the predicted voltage, and then output the comparison result through the output terminal.
  • the comparison result reflects the comparison between the reference current and the predicted current.
  • the comparison result of the output for example, when the predicted voltage is greater than the reference voltage, outputs a comparison result Y; otherwise, the comparison result N is output.
  • the control circuit receives the comparison result of the comparison circuit output, and completes the adjustment of the system load power supply capability and the peripheral power supply capability. For example: When the predicted current is greater than the reference current, the control circuit increases the power supply capability of the system load power supply unit and reduces the power supply capability of the peripheral power supply unit; when the predicted current is not greater than the reference current, the control circuit reduces the power supply capability of the system load power supply unit and Improve the power supply capability of the peripheral power supply unit.
  • the total power consumption of the power supply unit of the power supply system is 6W, and the power supply system sets three reference voltages. Don't be Vrefl, Vref2, Vref3, where Vrefl ⁇ Vref2 ⁇ Vref3.
  • the operation steps of the power supply system can be described as follows, as shown in FIG.
  • Step 1 The power supply system starts to supply power
  • the power supply system includes: a power supply unit, a power distribution unit, a system load power supply unit, and a peripheral power supply unit.
  • the power distribution unit includes: a power consumption prediction module and a power consumption control module.
  • the power supply unit provides total input power to power system loads and peripherals.
  • the power distribution unit distributes the total input power, transmits the system load power to the system load power supply unit, and transmits the peripheral power supply to the peripheral power supply unit.
  • the power supply system of the present embodiment is not limited to the power supply system shown in FIG. 2.
  • Step 2 The power supply system detects the load current of the system and the rate of change of the system load current, and calculates and generates a predicted voltage.
  • the power consumption prediction module of the power supply system detects the system load current, the system load current change rate, and calculates and generates a predicted voltage.
  • the system load current is used to reflect the system load power consumption
  • the generated predicted voltage is used to reflect the change trend of the system load power consumption.
  • the predicted voltage reflects the predicted current, while the predicted current reflects the trend of the system load power consumption. Therefore, by producing a predicted voltage, it is used to reflect the trend of system load power consumption.
  • Step 3 The power supply system compares the predicted voltage with the reference voltage.
  • the comparison between the predicted voltage and the reference voltage has the following four possible cases: The first possibility: Predicted voltage >Vref3; The second possibility: Vref3 > Predicted voltage >Vref2; Third possibility: Vref2 > Predicted voltage > ⁇ ; The fourth possibility: Predict the voltage Vrefl. By comparison It is determined that the predicted voltage is in any of the above possibilities.
  • Step 4 According to the comparison result, adjust the power supply capability of the system load power supply unit and the peripheral power supply unit.
  • the power supply system increases the power supply capability of the system load power supply unit and reduces the power supply capability of the peripheral power supply unit; conversely, when the predicted voltage is not greater than the reference voltage, The power supply system reduces the power supply capability of the system load power supply unit and improves the power supply capability of the peripheral power supply unit.
  • the first type to turn off the peripheral power supply unit;
  • the second type limit the maximum power supply capacity of the peripheral power supply unit to 1W;
  • kind Limit the maximum power supply capacity of the peripheral power supply unit to 2W;
  • the fourth type Limit the maximum power supply capacity of the peripheral power supply unit to 3W.
  • the total power supply capacity of the power supply system the power supply capability of the system load power supply unit + the power supply capability of the peripheral power supply unit. Therefore, adjusting the power supply capability of the peripheral power supply unit changes the power distribution mode of the power supply system, thereby making The power distribution of the power supply system is more reasonable.
  • the power supply system provided by the embodiment of the present invention calculates the change trend of the system load power consumption by detecting the system load power consumption, and dynamically adjusts the power supply of the system load power supply unit and the peripheral power supply unit according to the change trend of the system load power consumption.
  • an electronic device including the power supply system described above.
  • the structure and working principle of the power supply system are the same as the above embodiments, and Let me repeat.
  • the structure of other parts of the electronic device can refer to the prior art, and will not be described in detail herein.
  • An electronic device provided by an embodiment of the present invention may be a product or a component having a peripheral access such as a computer, a television, a digital camera, a mobile phone, and the like, which is not limited by the present invention.
  • a power distribution method for an electronic device comprising the following steps:
  • the power distribution method utilizes the electronic device provided by the foregoing embodiment.
  • the electronic device includes a power supply system
  • the power supply system includes: a power supply unit, and a power distribution.
  • Unit 2 system load power supply unit 3, peripheral power supply unit 4.
  • the power distribution unit 2 includes: a power consumption prediction module 21 and a power consumption control module 22.
  • the change trend of calculating the load power consumption of the system includes: detecting a system load current and a rate of change of the system load current; generating a reference time ;
  • the predicted current is calculated according to the system load current, the rate of change of the system load current, and the reference time, and the predicted current is used to reflect a trend of the system load power consumption after the reference time.
  • the adjusting the power supply capability of the system load power supply unit and the peripheral power supply unit according to the change trend of the system load power consumption includes: Setting a reference current, comparing the predicted current with the reference current, and when the predicted current is greater than the reference current, increasing a power supply capability of the system load power supply unit, and reducing a power supply capability of the peripheral power supply unit, When the predicted current is not greater than the reference current, the power supply capability of the system load power supply unit is reduced, and the power supply capability of the peripheral power supply unit is improved.
  • An embodiment of the present invention provides a method for distributing power of an electronic device, by detecting a system load power consumption, calculating a trend of a system load power consumption, and dynamically adjusting a system load power supply unit and peripherals according to a change trend of the system load power consumption.
  • the power supply capability of the power supply unit increases the power distribution capability of the electronic device with maximum efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Power Sources (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

本发明实施例公开了一种供电系统、电子设备以及电子设备的电力分配方法,涉及电力分配领域,能够预测系统负载功耗的变化趋势,实现对系统负载供电单元以及外设供电单元供电能力的重新分配,最大效率的提高电子设备的供电分配。本发明实施例的供电系统,包括:电源单元,连接于电源单元的电力分配单元,连接于电力分配单元的系统负载供电单元,连接于电力分配单元的外设供电单元,电力分配单元包括:功耗预测模块,用于检测系统负载功耗,计算系统负载功耗的变化趋势;功耗控制模块,用于根据系统负载功耗的变化趋势调整系统负载供电单元以及外设供电单元的供电能力。

Description

供电系统、 电子设备以及电子设备的电力分配方法 本申请要求于 2013 年 1 月 30 日提交中国专利局、 申请号为 201310036198.4 , 发明名称为"供电系统、 电子设备以及电子设备的电力分配 方法"的中国专利申请的优先权, 在先申请文件的内容通过引用结合在本申请 中。 技术领域
本发明涉及电力分配领域, 尤其涉及一种供电系统、 电子设备 以及电子设备的电力分配方法。
背景技术
随着科学技术的不断提高和发展, 越来越多的电子设备进入了千家万户, 丰富着人们的日常生活。 为了满足人们多功能、 多用途、 多扩展性的需求, 现 在很多电子设备中都可外接扩展设备, 简称为外设。 以电脑为例, 除其本身主 体结构外, 还可能包括: 键盘鼠标音响等外设。 因此, 对于电子设备而言, 不 仅需要对其内部的系统负载进行供电, 还需要对可能存在的外设进行供电。
现有技术的电子设备通常釆用固定供电模式对外设进行供电, 举例来说, 利用电脑的 USB接口对手机进行充电时,电脑为 USB接口可以提供的供电模式 为: 输出电压为 5V, 最大输出电流为 0. 5A。 因此, 电脑通过 USB接口最多可 提供给手机 2. 5W的电能。
但发明人在研发过程中发现现有技术至少存在以下缺陷: 事实上, 电子设 备系统负载的功耗时刻会发生改变。 因此, 可能存在以下情况: 当电子设备系 统负载功耗较小时, 受限于固定模式的外设供电, 导致电子设备无法将多余的 电能分配给外设使用, 造成功耗的浪费。 因此, 现有技术固定供电模式导致了 电子设备在供电分配上不够灵活, 无法满足电子设备最大效率的供电分配。 发明内容
本发明的实施例提供一种供电系统、 电子设备以及电力分配方法, 能够预 测系统负载功耗的变化趋势,实现对系统负载供电单元以及外设供电单元供电 能力的重新分配, 最大效率的提高电子设备的供电分配。
为解决上述技术问题, 本发明的实施例釆用如下技术方案:
一种供电系统, 包括: 电源单元, 连接于所述电源单元的电力分配单元, 连接于所述电力分配单元的系统负载供电单元,连接于所述电力分配单元的外 设供电单元, 所述电力分配单元包括:
功耗预测模块, 用于检测系统负载功耗,计算所述系统负载功耗的变化趋 势;
功耗控制模块,用于根据所述系统负载功耗的变化趋势调整所述系统负载 供电单元以及所述外设供电单元的供电能力。
在第一中可能的实现方式中, 所述功耗预测模块包括:
检测电路, 用于检测所述系统负载电流以及所述系统负载电流的变化率, 其中, 所述系统负载电流用于反映所述系统负载功耗;
时间生成电路, 用于生成参考时间;
计算电路, 用于根据所述系统负载电流、所述系统负载电流的变化率以及 所述参考时间,计算所述参考时间后的预测电流, 所述预测电流用于反映所述 系统负载功耗的变化趋势;
所述功耗控制模块包括:
比较电路, 用于设置参考电流, 并比较所述预测电流与所述参考电流; 控制电路, 用于当所述预测电流大于所述参考电流时,提高所述系统负载 供电单元的供电能力, 并降低所述外设供电单元的供电能力, 当所述预测电流 不大于所述参考电流时, 降低所述系统负载供电单元的供电能力, 并提高所述 外设供电单元的供电能力。
结合第一方面、 第一种可能的实现方式, 在第二种可能的实现方式中, 所 述检测电路包括:
第一电阻, 连接于所述系统负载供电单元的输入端与输出端之间, 用于釆 集所述系统负载电流;
第一运算放大器,其负极输入端通过第二电阻与所述系统负载供电单元的 输入端相连,其正极输入端通过第三电阻与所述系统负载供电单元的输出端相 连, 其输出端输出反映所述系统负载电流的第一电压;
第四电阻, 其一端与所述第一运算放大器的负极输入端相连, 其另一端与 所述第一运算放大器的输出端相连;
第五电阻, 其一端与所述第一运算放大器的正极输入端相连, 其另一端接 地;
第二运算放大器, 其正极输入端通过第六电阻与地相连, 其负极输入端通 过第一电容与所述第一运算放大器的输出端相连,其输出端输出反映所述系统 负载电流的变化率的第二电压;
第七电阻, 其一端与所述第二运算放大器的负极输入端相连, 其另一端与 所述第二运算放大器的输出端相连。
结合第一方面、 第二种可能的实现方式, 在第三种可能的实现方式中, 所 述时间生成电路包括:
第三运算放大器,其正极输入端通过第八电阻与所述第二运算放大器的输 出端相连, 其负极输入端通过第九电阻接地, 其输出端输出反映所述参考时间 的第三电压;
第十电阻, 其一端与所述第三运算放大器的正极输入端相连, 其另一端接 地;
第十一电阻, 其一端与所述第三运算放大器的负极输入端相连, 其另一端 与所述第三运算放大器的输出端相连。
结合第一方面、 第三种可能的实现方式, 在第四种可能的实现方式中, 所 述计算电路包括:
第四运算放大器,其正极输入端通过第十二电阻与所述第三运算放大器的 输出端相连且通过第十三电阻与所述第一运算放大器的输出端相连且通过第 十四电阻接地, 其负极输入端通过第十五电阻接地, 其输出端输出反映所述预 测电流的第四电压;
第十六电阻, 其一端与所述第四运算放大器的负极输入端相连, 其另一端 与所述第四运算放大器的输出端相连。
结合第一方面、 第四种可能的实现方式, 在第五种可能的实现方式中, 所 述比较电路包括: 至少一个比较器, 所述比较器其正极输入端通过预设电源接 地, 所述预设电源用于提供反映所述参考电流的参考电压, 其负极输入端与所 述第四运算放大器的输出端相连,其输出端输出所述参考电压与所述第四电压 的比较结果。
本发明的另一方面, 提供了一种电子设备, 包括以上所述的供电系统。 本发明的再一方面, 提供了一种电子设备的电力分配方法, 包括: 检测系统负载功耗;
计算所述系统负载功耗的变化趋势,以根据所述系统负载功耗的变化趋势 调整系统负载供电单元以及外设供电单元的供电能力。
在第一种可能的实现方式中, 所述计算所述系统负载功耗的变化趋势包 括:
检测系统负载电流以及所述系统负载电流的变化率;
生成参考时间;
根据所述系统负载电流、 所述系统负载电流的变化率以及所述参考时间, 计算预测电流,所述预测电流用于反映所述参考时间后所述系统负载功耗的变 化趋势。
结合第三方面、 第一种可能的实现方式, 在第二种可能的实现方式中, 所 述根据所述系统负载功耗的变化趋势调整系统负载供电单元以及外设供电单 元的供电能力包括:
设置参考电流, 比较所述预测电流与所述参考电流, 当所述预测电流大于 所述参考电流时,提高所述系统负载供电单元的供电能力, 并降低所述外设供 电单元的供电能力, 当所述预测电流不大于所述参考电流时, 降低所述系统负 载供电单元的供电能力, 并提高所述外设供电单元的供电能力。
本发明的实施例提供一种供电系统、 电子设备以及电力分配方法,通过检 测系统负载功耗, 计算系统负载功耗的变化趋势,根据系统负载功耗的变化趋 势动态的调整系统负载供电单元以及外设供电单元的供电能力,以最大效率的 提高电子设备的供电分配能力。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例中供电系统的结构框图;
图 2为本发明实施例中电力分配单元的结构框图;
图 3为本发明实施例中检测电路的电路图;
图 4为本发明实施例中时间生成电路的电路图;
图 5为本发明实施例中计算电路的电路图;
图 6为本发明实施例中比较电路的电路图;
图 7为本发明实施例中供电系统的运行流程图;
图 8为本发明实施例中电子设备的电力分配方法的流程图。 具体实施方式
本发明实施例提供的一种供电系统, 能够预测系统负载功耗 的变化趋势, 实现对系统负载供电单元以及外设供电单元供电能 力的重新分配, 最大效率的提高电子设备的供电分配。
下面将结合本发明实施例中的附图, 对本发明实施例中的技 术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅是本发 明一部分实施例, 而不是全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所 有其他实施例, 都属于本发明保护的范围。
本发明的一方面, 提供一种供电系统, 如图 1所示, 电源单 元 1、 连接于电源单元 1的电力分配单元 2、 连接于电力分配单元 2 的系统负载供电单元 3、连接于电力分配单元 2的外设供电单元 4。 其中, 电源单元 1用于提供总输入电能, 为系统负载以及外设进 行供电; 电力分配单元 2对电源单元 1提供的总输入电能进行分 配, 将系统负载供电传输给系统负载供电单元 3 , 将外设供电传 输给外设供电单元 4。 而电力分配单元 2包括: 功耗预测模块 21 以及功耗控制模块 22。 功耗预测模块 21用于检测系统负载功耗, 计算所述系统负载功耗的变化趋势; 功耗控制模块 22 , 根据所述 系统负载功耗的变化趋势调整所述系统负载供电单元以及所述 外设供电单元的供电能力。
电源单元 1提供的总输入电能可分为两部分: 一部分提供系 统负载工作所用, 另一部分电能提供给外设工作所用。 事实上, 系统负载以及外设的工作状态是处于变化状态的。 因此, 通过功 耗预测模块 21检测系统负载功耗并计算系统负载功耗的变化趋 势, 可以预测出系统负载以及外设所需的功耗; 然后, 功耗控制 模块 22对系统负载供电单元以及外设供电单元的供电能力进行 调整, 使得整个供电系统达到最大的供电效率。 举例来说, 当系 统负载较为空闲时, 通过上述供电系统, 降低系统负载供电单元 的供电能力并提高外设供电单元的供电能力, 将多余的电能提供 给外设。 例如: 将手机看做为外设, 通过 USB接口与电脑相连。 此时, 当电脑处于较为空闲状态时, 将多余电能提供给手机充电 使用, 可使得手机最大的利用该部分电能, 缩短手机充电所需的 时间。 当系统负载较为忙碌时, 通过上述供电系统, 提高系统负 载供电单元的供电能力并降低外设供电单元的供电能力, 优先将 电能提供给系统负载, 保证供电系统的正常工作。
本发明的实施例提供的一种供电系统, 通过检测系统负载功 耗, 计算系统负载功耗的变化趋势, 根据系统负载功耗的变化趋 势动态的调整系统负载供电单元以及外设供电单元的供电能力, 以最大效率的提高电子设备的供电分配能力。
作为本发明的一种具体实施方式, 如图 2所示, 功耗预测模 块 21包括: 检测电路 201、 时间生成电路 202以及计算电路 203; 功耗控制模块 22包括: 比较电路 204、 控制电路 205。 其中, 检 测电路 201 , 用于检测系统负载电流以及系统负载电流的变化率。 需要说明的是, 以纯电阻电路的系统负载为例, 系统负载电功率 P=PR , 其中 I为系统负载电流, R为系统负载对应的电阻值。 因 此, 利用系统负载电流即可以反映出系统负载功耗的情况。 时间 生成电路 202 , 用于生成参考时间, 通过调整时间生成电路 202 以得到所需的参考时间。 计算电路 203 , 根据系统负载电流、 系 统负载电流的变化率以及参考时间, 计算参考时间后的预测电 流。 预测电流的计算公式可描述为: 预测电流=系统负载电流 + 系统负载电流的变化率 *参考时间。 预测电流实际上反映的是参 考时间后所述系统负载功耗的变化趋势。 功耗的变换趋势包括, 例如: 功耗变大或者功耗变小或者功耗不变。 至此, 功耗预测模 块 21完成了检测系统负载功耗并计算系统负载功耗变换趋势的 目的。
比较电路 204用于设置参考电流, 比较参考电流与计算电路 203生成的预测电流。 需要说明的是, 参考电流可根据供电系统 在电能调配中所需要达到的精度进行设置。 例如: 设置合适的参 考电流的电流值, 从而准确的预测系统负载以及外设的功耗情 况; 另外, 还可设置至少一个参考电流, 例如: 设置三个参考电 流。 当然, 本领域技术人员还可以设置其它数量的参考电流, 从 而更为精细的调整系统负载供电能力以及外设供电能力。 控制电 路 205接收比较电路 204的比较结果,完成对系统负载供电能力以 及外设供电能力的调整。事实上, 比较的结果包括以下两种可能: 当预测电流大于参考电流时, 说明系统负载电流在参考时间后呈 变大趋势, 系统负载功耗呈增加趋势, 因此控制电路 205提高系 统负载供电单元的供电能力并降低外设供电单元的供电能力。 反 之, 当预测电流不大于参考电流时, 说明系统负载电流在参考时 间后呈变小趋势, 系统负载功耗呈减少趋势, 因此控制电路 205 降低系统负载供电单元的供电能力并提高外设供电单元的供电 能力。 至此, 功耗控制模块 22根据所述系统负载功耗的变化趋势 完成对所述系统负载供电单元以及所述外设供电单元的供电能 力的调整。
进一步的, 作为本发明的一种具体实施方式, 如图 3所示, 其中, 检测电路 201用于检测系统负载电流以及系统负载电流的 变化率, 其包括: 多个电阻 R l、 R2、 R3、 R4、 R5、 R6、 R7、 第一运算放大器 U l、 第二运算放大器 U2以及电容 C l。 电阻 R 1 连接于系统负载供电单元的输入端与输出端之间, 用于采集系统 负载电流。 事实上, 电阻 R 1是一个采样电阻 (英文: sampling resistor , 缩写: SR ) , 又称为电流检测电阻, 电流感测电阻, 取样电阻, 电流感应电阻等等, 其作用是串联在电路中用于把电 流转换为电压信号进行测量。 电阻 R 1两侧端点分别 A、 B , A端点 与系统负载供电单元输入端 VIN端相连, B端点与系统负载供电 单元输出端 VOUT端相连。 因此, 当系统负载电流为 I时, 电阻 Rl两侧端点 A、 B之间的电压即可反映出 系统负 载电流: VAB=I*Ri。 然后, 电阻 R2串连于第一运算放大器 U1负极输入端 与 A端点之间,电阻 R3串连与于第一运算放大器 U1正极输入端与 B端点之间,电阻 R4串连与第一运算放大器 U1负极输入端与第一 运算放大器 U1输出端之间, 电阻 R5串连与于第一运算放大器 U1 正极输入端与接地端之间。 其中, 电阻 R2、 R3、 R4、 R5以及第 一运算放大器 Ul构成一种放大电路, 根据放大电路的运算公式, 第一运算放大器 U1输出端输出的第一电压 Vi正比于 VAB。 例如: 令
Figure imgf000011_0001
其中, Ri为电阻 Rl的电阻值, ki记作第一放大系数。 因此, 第一 运算放大器 U1输出端输出的第一电压 Vi用于反映系统负载电流 I。
然后, 电容 C 1串连于第一运算放大器 U1的输出端与第二运 算放大器 U2的负极输入端之间, 电阻 R6串连于第二运算放大器 U2的正极输入端与接地端之间, 电阻 R7串连于第二运算放大器 U2的负极输入端与第二运算放大器 U2的输出端之间。 其中, 电 阻 R6、 R7、 电容 C I以及第二运算放大器 U2构成一种微分放大电 路, 根据微分放大电路的运算公式, 第二运算放大器 U2输出端输 出的第二电压 V2正比于 dVi/dt。 例如: V2=R7*Ci* ( dVi/dt ) = R7*Ci*ki*dI/dt= k2*dl/dt。 其中, R7为电阻 R7的电阻值, Ci为 电容 C 1的容量, k2记作第二放大系数。 因此, 第二运算放大器 U2输出端输出的第二电压 V2用于反映系统负载电流的变化率 dl/dt。
进一步的, 作为本发明的一种具体实施方式, 如图 4所示, 其中, 时间生成电路 202用于生成参考时间, 其包括: 多个电阻 R8、 R9、 RIO , R11以及第三运算放大器 U3。 电阻 R8串连于第 三运算放大器 U3正极输入端与第二运算放大器 U2输出端之间, 电阻 R9串接于第三运算放大器 U3负极输入端与接地端之间, 电 阻 R10串接于第三运算放大器 U3正极输入端与接地端之间, 电阻 R11串接于第三运算放大器 U3负极输入端与第三运算放大器 U3 输出端之间。 其中, 电阻 R8、 R9、 RIO , R11以及第三运算放大 器 U3构成一种放大电路, 根据放大电路的运算公式, 第三运算放 大器 U3输出端输出的第三电压 V3正比于 V2。 例如: V3=[Rio/ ( R8+Rio ) ]*[ ( R9+R11 ) /R9]
Figure imgf000012_0001
o 其中, k3记作第三放 大系数, 取决于电阻 R8、 R9、 RIO , Rl l。 事实上, 第三电压 V3 正比于 V2 , 在此, 将第三放大系统 k3作为所述时间生成电路 202 生成的参考时间, 通过改变电阻 R8、 R9、 RIO , R11的即可生成 需要的参考时间。
进一步的, 作为本发明的一种具体实施方式, 如图 5所示, 其中, 计算电路 203用于根据系统负载电流、 系统负载电流的变 化率以及参考时间, 计算参考时间后的预测电流, 其包括: 多个 电阻 R12、 R13、 R14、 R15、 R16以及第四运算放大器 U4。 电阻 R12串连于第四运算放大器 U4正极输入端与第三运算放大器 U3 输出端之间, 电阻 R13串连于第四运算放大器 U4正极输入端与第 一运算放大器 U1输出端之间, 电阻 R14串连于第四运算放大器 U4正极输入端与接地端之间, 电阻 R15串接于第四运算放大器 U4负极输入端与接地端之间, 电阻 R16串接于第四运算放大器 U4负极输入端与第四运算放大器 U4输出端之间。 其中, 电阻 R12、 R13、 R14、 R15、 R16以及第四运算放大器 U4构成一种放 大电路, 根据放大电路的计算公式, 第四运算放大器 U4输出端输 出的第四电压 V4可表示为: V4=k4* ( V1+V3 ) = k4* ( Vi+ k3*V2 )。 其中, Vi表示系统负载电流, V2表示系统负载电流的变化率, k3 为生成的参考时间, k4为第四放大系数。 而预测电流 =系统负载 电流 +系统负载电流的变化率 *参考时间。 因此, 第四运算放大器 U4输出端输出的第四电压 V4用于反映系统负载电流在参考时间 后的预测电流
进一步的, 作为本发明的一种具体实施方式, 如图 6所示, 其中, 比较电路 204用于设置参考电流, 比较参考电流与计算电 路 203生成的预测电流, 其包括: 比较器 Al、 A2、 A3以及预设 电源 Vrefl、 Vref2、 Vref3。 比较器 Al、 A2、 A3的负极输入端与 第四运算放大器 U4输出端相连, 比较器 A1的正极输入端通过预 设电源 Vr e f 1与接地端相连, 比较器 A 2的正极输入端通过预设电 源 Vr e f 2与接地端相连, 比较器 A 3的正极输入端通过预设电源 Vref3与接地端相连, 比较器 Al、 A2、 A3接收第四电压以及预测 电压后通过输出端输出比较结果, 该比较结果反映的即是参考电 流与预测电流的比较结果。 输出的比较结果, 举例来说, 当预测 电压大于参考电压时, 输出比较结果 Y; 反之, 输出比较结果 N。
然后, 控制电路接收比较电路输出的比较结果, 完成对系统 负载供电能力以及外设供电能力的调整。 例如: 当预测电流大于 参考电流时, 控制电路提高系统负载供电单元的供电能力并降低 外设供电单元的供电能力; 当预测电流不大于参考电流时, 控制 电路降低系统负载供电单元的供电能力并提高外设供电单元的 供电能力。
为了本领域技术人员更好的理解本发明实施例提供的一种 电系统的工作流程进行详细解释。
作为本发明的一种具体实施方式, 假设供电系统的电源单元 可提供的总供电功耗为 6W, 本供电系统设置三个参考电压, 分 别为 Vrefl、 Vref2、 Vref3 , 其中, Vrefl<Vref2<Vref3。 供电系 统的运作步骤可描述如下, 如图 7所示,
步骤 1、 供电系统开始供电工作;
具体的, 在本步骤中, 供电系统以图 2所示例的供电系统结 构为例进行说明。 该供电系统包括: 电源单元、 电力分配单元、 系统负载供电单元、 外设供电单元。 其中, 电力分配单元中包括: 功耗预测模块以及功耗控制模块。 电源单元提供总输入电能, 为 系统负载以及外设进行供电。 电力分配单元将总输入电能进行分 配, 将系统负载供电传输给系统负载供电单元, 将外设供电传输 给外设供电单元。
可以理解的是, 本实施例仅以图 2所述的供电系统结构为例 进行说明, 本实施例的供电系统并不限于图 2所示的供电系统。
步骤 2、 供电系统检测系统负载电流、 系统负载电流变化率, 计算生成预测电压。
具体的, 在本步骤中, 供电系统的功耗预测模块检测系统负 载电流、 系统负载电流变化率, 计算生成预测电压。 其中, 系统 负载电流用于反映系统负载功耗, 生成的预测电压用于反映系统 负载功耗的变化趋势。 事实上, 预测电压反映的是预测电流, 而 预测电流反映的是系统负载功耗的变化趋势。 因此, 通过生产预 测电压, 用于反映系统负载功耗的变化趋势。
步骤 3、 供电系统比较预测电压以及参考电压。
具体的, 在本步骤中, 在本具体实施方式中设置三个参考电 压, 分别为 Vrefl、 Vref2、 Vref3。 因此, 预测电压与参考电压 的比较结果有如下四种可能的情况: 第 1种可能: 预测电压> Vref3; 第 2种可能: Vref3 >预测电压 > Vref2; 第 3种可能: Vref2 >预测电压> ^^; 第 4种可能: 预测电压 Vrefl。 通过比较 确定预测电压处于上述任 种的可能情况之中。
可以理解的是, 本实施例中设置的参考电压的个数以及参考 电压的电压值仅为示例性说明, 事实上, 可以设置任意数量、 任 意电压值的预测电压以满足所述供电系统比较判断的需要。
步骤 4、 根据比较结果, 调整系统负载供电单元以及外设供 电单元的供电能力。
具体的, 在本步骤中, 当预测电压大于参考电压时, 所述供 电系统提高系统负载供电单元的供电能力并降低外设供电单元 的供电能力; 反之, 当预测电压不大于参考电压时, 所述供电系 统降低系统负载供电单元的供电能力并提高外设供电单元的供 电能力。 具体的, 对应于上面预测电压可能的 4种情况, 分别对 应四种控制方式: 第 1种: 进行关闭外设供电单元; 第 2种: 将外 设供电单元最大供电能力限制为 1W; 第 3种: 将外设供电单元最 大供电能力限制为 2W; 第 4种: 将外设供电单元最大供电能力限 制为 3W。 事实上, 供电系统的总供电能力=系统负载供电单元的 供电能力 +外设供电单元的供电能力, 因此, 调整限制外设供电 单元的供电能力即改变了所述供电系统的电能分配方式, 使得所 述供电系统的电力分配更加合理。
可以理解的是, 上述有关系统负载供电单元以及外设供电单 元的供电能力的描述仅为举例说明, 在此不做赘述。
本发明的实施例提供的一种供电系统, 通过检测系统负载功 耗, 计算系统负载功耗的变化趋势, 根据系统负载功耗的变化趋 势动态的调整系统负载供电单元以及外设供电单元的供电能力, 以最大效率的提高电子设备的供电分配能力。
本发明的另一方面, 提供一种电子设备, 包括上述的供电系 统。 其中, 供电系统的结构以及工作原理同上述实施例, 在此不 再赘述。 另外, 电子设备的其他部分的结构可以参考现有技术, 对此本文不再详细描述。
本发明实施例提供的一种电子设备, 所述电子设备可以为电 脑、 电视、 数码相机、 手机等具有外设接入的产品或者部件, 本 发明不做限制。
本发明的再一方面, 提供一种电子设备的电力分配方法, 如 图 8所示, 包括以下步骤:
S 1 : 检测系统负载功耗;
S2: 计算所述系统负载功耗的变化趋势, 以根据所述系统负 载功耗的变化趋势调整系统负载供电单元以及外设供电单元的 供电能力。
作为本发明的一种实施方式, 该电力分配方法利用了上述实 施例提供的电子设备, 如图 2所示, 所述电子设备中包括供电系 统, 所述供电系统包括: 电源单元 1、 电力分配单元 2、 系统负载 供电单元 3、 外设供电单元 4。 其中, 电力分配单元 2中包括: 功 耗预测模块 21以及功耗控制模块 22。
该电子设备的具体结构和原理与上述实施例相同, 在此不再 进一步的, 计算所述系统负载功耗的变化趋势包括: 检测系统负载电流以及所述系统负载电流的变化率; 生成参考时间;
才艮据所述系统负载电流、 所述系统负载电流的变化率以及所 述参考时间, 计算预测电流, 所述预测电流用于反映所述参考时 间后所述系统负载功耗的变化趋势。
进一步的, 所述根据所述系统负载功耗的变化趋势调整系统 负载供电单元以及外设供电单元的供电能力包括: 设置参考电流, 比较所述预测电流与所述参考电流, 当所述 预测电流大于所述参考电流时, 提高所述系统负载供电单元的供 电能力, 并降低所述外设供电单元的供电能力, 当所述预测电流 不大于所述参考电流时, 降低所述系统负载供电单元的供电能 力, 并提高所述外设供电单元的供电能力。
本发明的实施例提供的一种电子设备的电力分配方法, 通过 检测系统负载功耗, 计算系统负载功耗的变化趋势, 根据系统负 载功耗的变化趋势动态的调整系统负载供电单元以及外设供电 单元的供电能力, 以最大效率的提高电子设备的供电分配能力。 例之间相同相似的部分互相参见即可, 每个实施例重点说明的都 是与其他实施例的不同之处。 尤其, 对于方法实施例而言, 由于 其基本相似于装置实施例, 所以描述得比较简单, 相关之处参见 装置实施例的部分说明即可。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范 围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露 的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保 护范围之内。 因此, 本发明的保护范围应以所述权利要求的保护 范围为准。

Claims

权 利 要 求
1、 一种供电系统, 包括: 电源单元, 连接于所述电源单元的电力分配单 元, 连接于所述电力分配单元的系统负载供电单元, 连接于所述电力分配单元 的外设供电单元, 其特征在于, 所述电力分配单元包括:
功耗预测模块, 用于检测系统负载功耗,计算所述系统负载功耗的变化趋 势;
功耗控制模块,用于根据所述系统负载功耗的变化趋势调整所述系统负载 供电单元以及所述外设供电单元的供电能力。
2、 根据权利要求 1所述的供电系统, 其特征在于,
所述功耗预测模块包括:
检测电路, 用于检测所述系统负载电流以及所述系统负载电流的变化率, 其中, 所述系统负载电流用于反映所述系统负载功耗;
时间生成电路, 用于生成参考时间;
计算电路, 用于根据所述系统负载电流、所述系统负载电流的变化率以及 所述参考时间,计算所述参考时间后的预测电流, 所述预测电流用于反映所述 系统负载功耗的变化趋势;
所述功耗控制模块包括:
比较电路, 用于设置参考电流, 并比较所述预测电流与所述参考电流; 控制电路, 用于当所述预测电流大于所述参考电流时,提高所述系统负载 供电单元的供电能力, 并降低所述外设供电单元的供电能力, 当所述预测电流 不大于所述参考电流时, 降低所述系统负载供电单元的供电能力, 并提高所述 外设供电单元的供电能力。
3、 根据权利要求 2所述的供电系统, 其特征在于, 所述检测电路包括: 第一电阻, 连接于所述系统负载供电单元的输入端与输出端之间, 用于釆 集所述系统负载电流;
第一运算放大器,其负极输入端通过第二电阻与所述系统负载供电单元的 输入端相连,其正极输入端通过第三电阻与所述系统负载供电单元的输出端相 连, 其输出端输出反映所述系统负载电流的第一电压;
第四电阻, 其一端与所述第一运算放大器的负极输入端相连, 其另一端与 所述第一运算放大器的输出端相连;
第五电阻, 其一端与所述第一运算放大器的正极输入端相连, 其另一端接 地;
第二运算放大器, 其正极输入端通过第六电阻与地相连, 其负极输入端通 过第一电容与所述第一运算放大器的输出端相连,其输出端输出反映所述系统 负载电流的变化率的第二电压;
第七电阻, 其一端与所述第二运算放大器的负极输入端相连, 其另一端与 所述第二运算放大器的输出端相连。
4、 根据权利要求 3所述的供电系统, 其特征在于, 所述时间生成电路包 括:
第三运算放大器,其正极输入端通过第八电阻与所述第二运算放大器的输 出端相连, 其负极输入端通过第九电阻接地, 其输出端输出反映所述参考时间 的第三电压;
第十电阻, 其一端与所述第三运算放大器的正极输入端相连, 其另一端接 地;
第十一电阻, 其一端与所述第三运算放大器的负极输入端相连, 其另一端 与所述第三运算放大器的输出端相连。
5、 根据权利要求 4所述的供电系统, 其特征在于, 所述计算电路包括: 第四运算放大器,其正极输入端通过第十二电阻与所述第三运算放大器的 输出端相连且通过第十三电阻与所述第一运算放大器的输出端相连且通过第 十四电阻接地, 其负极输入端通过第十五电阻接地, 其输出端输出反映所述预 测电流的第四电压;
第十六电阻, 其一端与所述第四运算放大器的负极输入端相连, 其另一端 与所述第四运算放大器的输出端相连。
6、 根据权利要求 5所述的供电系统, 其特征在于, 所述比较电路包括: 至少一个比较器, 所述比较器其正极输入端通过预设电源接地, 所述预设电源 用于提供反映所述参考电流的参考电压,其负极输入端与所述第四运算放大器 的输出端相连, 其输出端输出所述参考电压与所述第四电压的比较结果。
7、 一种电子设备, 其特征在于包括权利要求 1-6任一项所述供电系统。
8、 一种电子设备的电力分配方法, 其特征在于, 包括:
检测系统负载功耗;
计算所述系统负载功耗的变化趋势,以根据所述系统负载功耗的变化趋势 调整系统负载供电单元以及外设供电单元的供电能力。
9、 根据权利要求 8所述的电力分配方法, 其特征在于, 所述计算所述系 统负载功耗的变化趋势包括:
检测系统负载电流以及所述系统负载电流的变化率;
生成参考时间;
根据所述系统负载电流、 所述系统负载电流的变化率以及所述参考时间, 计算预测电流,所述预测电流用于反映所述参考时间后所述系统负载功耗的变 化趋势。
10、 根据权利要求 9所述的电力分配方法, 其特征在于, 所述根据所述系 统负载功耗的变化趋势调整系统负载供电单元以及外设供电单元的供电能力 包括:
设置参考电流, 比较所述预测电流与所述参考电流, 当所述预测电流大于 所述参考电流时,提高所述系统负载供电单元的供电能力, 并降低所述外设供 电单元的供电能力, 当所述预测电流不大于所述参考电流时, 降低所述系统负 载供电单元的供电能力, 并提高所述外设供电单元的供电能力。
PCT/CN2013/087412 2013-01-30 2013-11-19 供电系统、电子设备以及电子设备的电力分配方法 WO2014117567A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13874062.6A EP2953001B1 (en) 2013-01-30 2013-11-19 Power supply system, electronic device and power distribution method of electronic device
JP2015555553A JP6080063B2 (ja) 2013-01-30 2013-11-19 電源システム、電子デバイス、および電子デバイスの配電方法
KR1020157022678A KR101678116B1 (ko) 2013-01-30 2013-11-19 전력 공급 시스템, 전자 장치 및 전자 장치의 전기 분배 방법
US14/812,491 US9935467B2 (en) 2013-01-30 2015-07-29 Power supply system, electronic device, and electricity distribution method of electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310036198.4 2013-01-30
CN201310036198.4A CN103970079B (zh) 2013-01-30 2013-01-30 供电系统、电子设备以及电子设备的电力分配方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/812,491 Continuation US9935467B2 (en) 2013-01-30 2015-07-29 Power supply system, electronic device, and electricity distribution method of electronic device

Publications (1)

Publication Number Publication Date
WO2014117567A1 true WO2014117567A1 (zh) 2014-08-07

Family

ID=51239712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087412 WO2014117567A1 (zh) 2013-01-30 2013-11-19 供电系统、电子设备以及电子设备的电力分配方法

Country Status (6)

Country Link
US (1) US9935467B2 (zh)
EP (1) EP2953001B1 (zh)
JP (1) JP6080063B2 (zh)
KR (1) KR101678116B1 (zh)
CN (1) CN103970079B (zh)
WO (1) WO2014117567A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587659B (zh) * 2016-01-26 2017-06-11 九暘電子股份有限公司 乙太網路供電系統的供電設備及供電方法 (二)
TWI594598B (zh) * 2016-02-04 2017-08-01 九暘電子股份有限公司 乙太網路供電系統的供電設備及供電方法(一)
CN106160011B (zh) * 2016-06-30 2018-10-26 温州大学 基于效率和均流指标黄金分割的并联供电系统模块数量控制方法
CN106099998B (zh) * 2016-06-30 2018-08-07 温州大学 基于均流标准差矩阵∞范数的并联供电系统均流性能评价方法
CN106026204B (zh) * 2016-06-30 2018-08-07 温州大学 基于均流偏差期望矩阵1范数的并联供电系统均流性能评价方法
CN106094523B (zh) * 2016-06-30 2018-11-06 温州大学 基于效率和均流指标面积和最大的并联供电系统优化方法
CN106160021B (zh) * 2016-06-30 2018-08-07 温州大学 基于效率和均流标准差加权和矩阵的并联供电系统最优点确定方法
CN106026205B (zh) * 2016-06-30 2018-08-07 温州大学 基于效率和均流性能面积和最大的并联供电系统优化控制方法
CN106160019B (zh) * 2016-06-30 2018-08-24 温州大学 基于效率和均流指标面积和最大的并联供电系统最优点确定方法
CN106156951B (zh) * 2016-06-30 2019-10-18 温州大学 并联供电系统均流性能评价方法
CN106054614B (zh) * 2016-06-30 2018-11-06 温州大学 兼顾效率和均流性能的并联供电系统模糊控制方法
CN106130001B (zh) * 2016-06-30 2018-08-07 温州大学 一种均流偏差期望最小的并联供电系统电源模块数量灰色控制方法
CN106374609B (zh) * 2016-09-30 2019-03-05 苏州融硅新能源科技有限公司 应用于太阳能充电器的稳压器电路
DE102016120226B3 (de) * 2016-10-24 2018-03-15 Fujitsu Technology Solutions Intellectual Property Gmbh Computersystem mit wenigstens einer Schnittstelle und Verfahren
US10509426B2 (en) * 2018-05-02 2019-12-17 Analog Devices Global Unlimited Company Methods and circuits for controlling and/or reducing current leakage during a low-power or inactive mode
CN110365495B (zh) * 2019-07-03 2021-07-30 普联技术有限公司 一种PoE受电方法、装置和系统
US11886273B2 (en) 2019-07-31 2024-01-30 Hewlett-Packard Development Company, L.P. Power source devices for power delivery contract selections
CN110632517A (zh) * 2019-10-31 2019-12-31 中船动力研究院有限公司 一种电力测功机的控制装置及电力测功机
CN112968647B (zh) * 2021-02-03 2022-12-02 大连理工大学 一种开关磁阻电机的改进电流预测控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1286446A (zh) * 1999-11-30 2001-03-07 深圳市中兴通讯股份有限公司 一种配电网状态的在线监视方法
CN101102052A (zh) * 2007-06-13 2008-01-09 华为技术有限公司 供电单元、供电装置、供电系统及供电方法
US20080103609A1 (en) * 2006-10-12 2008-05-01 Smith David E Determining power
CN101777834A (zh) * 2009-01-12 2010-07-14 林晖凡 自动对压供电装置及方法
CN102246049A (zh) * 2011-05-26 2011-11-16 华为终端有限公司 移动终端及其负载功率测量方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564379A (ja) * 1991-08-30 1993-03-12 Mitsubishi Electric Corp 直流駆動電気機器
US6105142A (en) * 1997-02-11 2000-08-15 Vlsi Technology, Inc. Intelligent power management interface for computer system hardware
JPH11316625A (ja) * 1998-04-30 1999-11-16 Toshiba Corp パーソナルコンピュータ及び外部ユニットへの電力供給制御方法
JP4112770B2 (ja) * 2000-03-31 2008-07-02 富士通株式会社 冷却ファン制御装置および電子装置
US6636976B1 (en) * 2000-06-30 2003-10-21 Intel Corporation Mechanism to control di/dt for a microprocessor
GB2386004B (en) * 2001-12-07 2005-08-24 Peter Steven Robertson Socket assembly
US6948079B2 (en) 2001-12-26 2005-09-20 Intel Corporation Method and apparatus for providing supply voltages for a processor
TW577990B (en) * 2002-08-15 2004-03-01 Yu-Nan Chen Method of increasing equipment efficiency and saving power, and apparatus of the same
US7023111B2 (en) * 2002-08-20 2006-04-04 Sony Corporation Electronic device with attachment and switching between batteries therefor
JP4225164B2 (ja) 2003-08-19 2009-02-18 ティアック株式会社 配線基板の製造方法
JP2006007553A (ja) * 2004-06-25 2006-01-12 Canon Inc 記録装置
JP4541200B2 (ja) * 2005-03-18 2010-09-08 富士通オプティカルコンポーネンツ株式会社 電源制御回路及び電源制御回路の制御方法。
CN100498635C (zh) * 2006-08-16 2009-06-10 威盛电子股份有限公司 调整系统效率的装置与方法
US7689851B2 (en) * 2006-10-27 2010-03-30 Hewlett-Packard Development Company, L.P. Limiting power state changes to a processor of a computer device
US8212399B2 (en) * 2006-11-27 2012-07-03 Xslent Energy Technologies, Llc Power extractor with control loop
US8261102B2 (en) * 2008-04-28 2012-09-04 Delta Electronics, Inc. Power management system capable of saving power and optimizing operating efficiency of power supplies for providing power with back-up or redundancy to plural loads
JP4982512B2 (ja) * 2009-01-30 2012-07-25 株式会社東芝 情報処理装置及び情報制御方法
WO2010115006A1 (en) * 2009-04-01 2010-10-07 Eaglepicher Technologies, Llc Hybrid energy storage system, renewable energy system including the storage system, and method of using same
US8281172B2 (en) * 2009-04-30 2012-10-02 Hewlett-Packard Development Company, L.P. Server with multiple power supplies transitioning first power supply from its online state to its standby state and second power supply to its deep-sleep state
US8700925B2 (en) * 2009-09-01 2014-04-15 Nvidia Corporation Regulating power using a fuzzy logic control system
JP5346255B2 (ja) * 2009-09-02 2013-11-20 パナソニック株式会社 電源供給装置
US8620238B2 (en) * 2010-07-23 2013-12-31 Blackberry Limited Method of power amplifier switching power control using post power amplifier power detection
KR20120029656A (ko) * 2010-09-17 2012-03-27 삼성전자주식회사 컴퓨터시스템 및 그 전원공급장치와, 그 제어방법
US8671298B2 (en) * 2011-02-17 2014-03-11 Dell Products L.P. System and method for improving power supply efficiency
US9454200B2 (en) * 2014-05-05 2016-09-27 International Business Machines Corporation Budgeting for power consumption in a chassis environment that includes a plurality of integrated technology elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1286446A (zh) * 1999-11-30 2001-03-07 深圳市中兴通讯股份有限公司 一种配电网状态的在线监视方法
US20080103609A1 (en) * 2006-10-12 2008-05-01 Smith David E Determining power
CN101102052A (zh) * 2007-06-13 2008-01-09 华为技术有限公司 供电单元、供电装置、供电系统及供电方法
CN101777834A (zh) * 2009-01-12 2010-07-14 林晖凡 自动对压供电装置及方法
CN102246049A (zh) * 2011-05-26 2011-11-16 华为终端有限公司 移动终端及其负载功率测量方法

Also Published As

Publication number Publication date
US20150333526A1 (en) 2015-11-19
JP2016507108A (ja) 2016-03-07
EP2953001A1 (en) 2015-12-09
KR101678116B1 (ko) 2016-11-29
EP2953001A4 (en) 2016-03-23
JP6080063B2 (ja) 2017-02-15
KR20150110702A (ko) 2015-10-02
CN103970079A (zh) 2014-08-06
US9935467B2 (en) 2018-04-03
CN103970079B (zh) 2016-12-28
EP2953001B1 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
WO2014117567A1 (zh) 供电系统、电子设备以及电子设备的电力分配方法
KR101779051B1 (ko) 동적 전압 조정 회로들 및 방법들
KR101484830B1 (ko) 외부 전원 장치를 안정화시키기 위해 변형된 전류 제한 피드백 제어 루프를 가진 휴대형 전자 장치 전력 관리기
US10491003B2 (en) Multiple input single inductor multiple output regulator
US8680821B2 (en) Load adaptive voltage regulator
TWI288322B (en) An electrical device with adjustable voltage
WO2020062923A1 (zh) 一种无线充电接收电路、控制方法和终端设备
TWI706627B (zh) 具多組寬範圍電壓輸出之電源供應裝置及其控制方法
TW201100997A (en) Power-saving trigger-type control device for dynamically and instantly varying frequency and method thereof
WO2020238584A1 (zh) 充电方法、装置、终端设备及计算机可读存储介质
TWI553998B (zh) 動態充電裝置及動態充電方法
WO2018010400A1 (zh) 移动终端的充电方法以及移动终端
CN106844160B (zh) 一种功率控制方法、装置和电子设备
CN215268079U (zh) 一种开关电源并联供电系统
TW202301780A (zh) 用於聯動電壓調節器的負載平衡體系結構
TW201943173A (zh) 充電裝置與應用於充電裝置之適應性分頻控制方法
TWI661660B (zh) 電源控制電路及電源控制方法
TW201424229A (zh) 電源供應器及其控制電路與控制方法
KR20130063374A (ko) 이동 단말기 및 그 제어 방법
EP4199296A1 (en) Voltage regulation circuit, device and method
TWI483091B (zh) 電壓調節裝置與電子裝置
CN106374594A (zh) 在电子设备中进行自适应输入电流控制的方法及装置
CN201307827Y (zh) 多电压供应的电源供应器
CN116501152A (zh) 供电装置及方法、电子设备、可读存储介质和程序产品
CN114243843A (zh) 用电装置的电流控制电路、方法及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015555553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013874062

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157022678

Country of ref document: KR

Kind code of ref document: A