WO2014116035A1 - 반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물 - Google Patents

반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물 Download PDF

Info

Publication number
WO2014116035A1
WO2014116035A1 PCT/KR2014/000648 KR2014000648W WO2014116035A1 WO 2014116035 A1 WO2014116035 A1 WO 2014116035A1 KR 2014000648 W KR2014000648 W KR 2014000648W WO 2014116035 A1 WO2014116035 A1 WO 2014116035A1
Authority
WO
WIPO (PCT)
Prior art keywords
encapsulant
semiconductor device
lens
device structure
semiconductor
Prior art date
Application number
PCT/KR2014/000648
Other languages
English (en)
French (fr)
Inventor
김창태
이창훈
정현민
윤상원
김석중
Original Assignee
주식회사 씨티랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20130007327A external-priority patent/KR101494440B1/ko
Priority claimed from KR1020130007326A external-priority patent/KR101460742B1/ko
Priority claimed from KR1020130014436A external-priority patent/KR101465708B1/ko
Application filed by 주식회사 씨티랩 filed Critical 주식회사 씨티랩
Publication of WO2014116035A1 publication Critical patent/WO2014116035A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Definitions

  • the present disclosure relates generally to a method of manufacturing a semiconductor device structure and a semiconductor device structure using the same, and more particularly, to a method of manufacturing a semiconductor device structure having a lens and a semiconductor device structure using the same.
  • the semiconductor device includes a semiconductor light emitting device (eg, a laser diode), a semiconductor light receiving device (eg, a photodiode), a pn junction diode electric device, a semiconductor transistor, and the like, and typically includes a group III nitride semiconductor light emitting device.
  • the group III nitride semiconductor light emitting device includes a compound semiconductor layer of Al (x) Ga (y) In (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). It means a light emitting device such as a light emitting diode, and does not exclude the inclusion of a material or a semiconductor layer of these materials with elements of other groups such as SiC, SiN, SiCN, CN.
  • the semiconductor light emitting device is a substrate 100, a buffer layer 200 on the substrate 100, a first semiconductor layer having a first conductivity ( 300), an active layer 400 that generates light through recombination of electrons and holes, and a second semiconductor layer 500 having a second conductivity different from the first conductivity are sequentially deposited, and translucent thereon for current diffusion thereon.
  • the conductive film 600 and the electrode 700 serving as the bonding pad are formed, and the electrode 800 serving as the bonding pad is formed on the etched and exposed first semiconductor layer 300.
  • the substrate 100 side when the substrate 100 side is placed in the package, it functions as a mounting surface.
  • FIG. 2 is a diagram illustrating another example of a conventional semiconductor light emitting device, wherein the semiconductor light emitting device includes a substrate 100 (eg, a sapphire substrate) and a first semiconductor layer having a first conductivity on the substrate 100. 300; for example, an n-type GaN layer), an active layer 400 for generating light through recombination of electrons and holes; for example, InGaN / (In) GaN MQWs), a second semiconductor layer having a second conductivity different from the first conductivity (500; e.g., p-type GaN layer) are sequentially deposited, and an electrode film 901 (e.g., Ag reflecting film) formed of three layers for reflecting light toward the substrate 100 side thereon; : An Ni diffusion barrier layer and an electrode film 903 (eg, Au bonding layer), and are formed on the first semiconductor layer 300 which is etched and exposed, and serves as a bonding pad 800 (eg, Cr / Ni / Au).
  • a bonding pad 800
  • Laminated metal pads are formed.
  • the electrode film 903 side when the electrode film 903 side is placed in the package, it functions as a mounting surface.
  • a flip chip or junction down type chip shown in FIG. 2 is superior in heat dissipation efficiency to the lateral chip shown in FIG. 1. While the lateral chip must emit heat to the outside through the sapphire substrate 100 having a thickness of 80 to 180 ⁇ m, the flip chip transmits heat through the metal electrodes 901, 902, 903 positioned close to the active layer 400. Because it can release.
  • the semiconductor light emitting device package is a vertical semiconductor light emitting device (in the lead frame 110, 120, mold 130, and cavity 140) 150, a vertical type light-emitting chip is provided, and the cavity 140 is filled with an encapsulant 170 containing the phosphor 160.
  • a lower surface of the vertical semiconductor light emitting device 150 is electrically connected to the lead frame 110, and an upper surface of the vertical semiconductor light emitting device 150 is electrically connected to the lead frame 120 by a wire 180.
  • the mold 130, the encapsulant 170, or the lead frames 110, 120, the mold 130, and the encapsulant 170 carry the vertical semiconductor light emitting element, and thus, a carrier (ie, a carrier ( Carrier)
  • an semiconductor device structure includes: a semiconductor device having two electrodes and a flip chip type semiconductor light emitting device; An encapsulant surrounding the semiconductor element such that two electrodes are exposed and having a lens on an opposite side of the side where the two electrodes are exposed; And an insulating film formed on the encapsulant such that the two electrodes are exposed on the side where the two electrodes are exposed.
  • a method of manufacturing a semiconductor device structure comprising: positioning a semiconductor device, which is a semiconductor light emitting device, on a plate; Positioning the electrode toward the plate; Covering the semiconductor element with an encapsulant; Pressing the encapsulant using a mask on which the hole is formed so that the encapsulant flows into the hole to form a lens on the semiconductor element; And cutting the semiconductor device together with the encapsulant having the lens formed thereon.
  • a method of manufacturing a semiconductor device structure comprising: positioning a semiconductor device, which is a semiconductor light emitting device, on a plate; Fixing the position of the electrode toward the plate; Covering the semiconductor element with an encapsulant; Forming a lens on an encapsulant on a side opposite to an electrode of the semiconductor element; Then, the encapsulant is pressed using a cutter having a pin to cut the encapsulant and the semiconductor element together with the lens.
  • a method of manufacturing a semiconductor device structure is provided.
  • a semiconductor device structure in a semiconductor device structure, a plurality of semiconductor devices; each having two electrodes, each of which is a flip chip type semiconductor light emitting device Semiconductor elements; And an encapsulant surrounding the semiconductor element such that the two electrodes are exposed and integrally having lenses positioned on the plurality of semiconductor elements on opposite sides of the side where the two electrodes are exposed.
  • Device structures are presented.
  • FIG. 1 is a view showing an example of a conventional semiconductor light emitting device (Lateral Chip),
  • FIG. 2 is a view showing another example (flip chip) of a conventional semiconductor light emitting device
  • FIG. 3 illustrates an example of a method of manufacturing a semiconductor device structure according to the present disclosure
  • FIG. 5 illustrates another example of a method of manufacturing a semiconductor device structure according to the present disclosure
  • FIG. 6 is a diagram illustrating an example of a semiconductor device structure according to the present disclosure.
  • FIG. 7 illustrates another example of a method of manufacturing a semiconductor device structure according to the present disclosure
  • FIG. 8 illustrates another example of a semiconductor device structure according to the present disclosure
  • FIG. 10 illustrates another example of a method of manufacturing a semiconductor device structure according to the present disclosure
  • FIG. 11 illustrates another example of a semiconductor device structure according to the present disclosure
  • FIG. 12 illustrates another example of a semiconductor device structure according to the present disclosure
  • FIG. 13 illustrates another example of a semiconductor device structure according to the present disclosure
  • 15 is a view showing an example of a conventional semiconductor light emitting device package or semiconductor light emitting device structure
  • 16 to 18 are diagrams illustrating an example of a method of manufacturing the semiconductor device structure illustrated in FIG. 11;
  • 21 to 23 are diagrams illustrating an example of a method of manufacturing the semiconductor device structure illustrated in FIG. 12;
  • FIG. 24 is a diagram illustrating an example of a method of manufacturing the semiconductor device structure illustrated in FIG. 14;
  • 25 is a view illustrating an example of a mask in which a hole is formed according to the present disclosure.
  • 26 is a diagram illustrating an example of a semiconductor device structure in which a plurality of lenses are formed according to the present disclosure
  • FIG. 27 is a view for explaining the principle of forming the lens shown in FIG. 24;
  • FIG. 29 is a diagram illustrating an example of a method of manufacturing a semiconductor device structure illustrated in FIG. 28;
  • FIG. 30 illustrates another example of a semiconductor device structure according to the present disclosure
  • FIG. 31 illustrates another example of a method of manufacturing the semiconductor device structure illustrated in FIG. 30;
  • FIG. 32 is a view showing another example of a cutter having a pin
  • 33 is a view showing still another example of a cutter having a pin
  • 34 is a view showing still another example of a cutter having a pin
  • 35 is a view illustrating still another example of a method of manufacturing a semiconductor device structure shown in FIG. 30;
  • FIG. 36 illustrates another example of a semiconductor device structure including a lens according to the present disclosure
  • FIG. 37 illustrates another example of a semiconductor device structure including a lens according to the present disclosure
  • FIG. 40 illustrates another example of a semiconductor device structure including a lens according to the present disclosure
  • 41 is a view showing still another example of a semiconductor device structure including a lens according to the present disclosure.
  • FIG. 42 illustrates another example of a semiconductor device structure including a lens according to the present disclosure
  • 43 and 45 illustrate yet another example of a semiconductor device structure including a lens according to the present disclosure.
  • FIG. 3 is a view illustrating an example of a method of manufacturing a semiconductor device structure according to the present disclosure.
  • the semiconductor device 2 including the two electrodes 80 and 90 is bonded to the adhesive 3. Fix the position on the plate (1).
  • the encapsulating material (encapsulating material) 4 is used to wrap the semiconductor element 2.
  • the plate 1 and the semiconductor element 2 are separated.
  • the material constituting the plate 1 is not particularly limited, and a material such as sapphire may be used, or a flat structure such as metal or glass may be used. By using a rigid plate such as metal or glass, the process can be stabilized as compared with using a plate (plate) having a softness such as blue tape.
  • the material constituting the adhesive 3 is not particularly limited, and any adhesive may be used as long as the semiconductor element 2 can be fixed to the plate 1.
  • a silicon epoxy conventionally used in an LED package may be used.
  • separation of the semiconductor element 2 and the plate 1 can be performed by applying heat to melt the adhesive 3 or by using a solvent capable of melting the adhesive 3. It is also possible to use heat and solvent together. It is also possible to use an adhesive tape.
  • the encapsulant 4 can be formed by a conventional method such as dispensing, screen printing, molding, spin coating, or the like, and can be formed by irradiating light after applying a photocurable resin (UV curable resin). Do.
  • the plate 1 In the case where a translucent plate such as sapphire is used as the plate 1, it is also possible to irradiate light from the plate 1 side.
  • one semiconductor element 2 is shown on the plate 1 for explanation, the process can be performed with the plurality of semiconductor elements 2 placed on the plate 1.
  • the semiconductor element 2 has been described as having two electrodes 80 and 90, the number is not particularly limited. For example, in the case of a transistor, it may have three electrodes.
  • the semiconductor light emitting device includes a substrate 100 (eg, a sapphire substrate), a first semiconductor layer 300 having a first conductivity (eg, an n-type GaN layer), electrons, and holes on the substrate 100.
  • a substrate 100 eg, a sapphire substrate
  • a first semiconductor layer 300 having a first conductivity eg, an n-type GaN layer
  • electrons and holes on the substrate 100.
  • the active layer 400 (eg, InGaN / (In) GaN MQWs) that generates light through recombination of the second semiconductor layer 500 (eg, p-type GaN layer) having a second conductivity different from the first conductivity
  • a three-layer electrode film 901 e.g., Ag reflecting film
  • an electrode film 902 e.g., Ni diffusion barrier film
  • an electrode 800 eg, Cr / Ni / Au laminated metal pad serving as a bonding pad may be formed on the etched and exposed first semiconductor layer 300.
  • the semiconductor device 2 has two electrodes 80 and 90, and the electrode 90 may have the same configuration as the electrodes 901, 902 and 903 of FIG.
  • the electrode 80 and the electrode 90 are electrically insulated by an insulating film 5 such as SiO 2 .
  • the subsequent procedure is the same, and the semiconductor element 2 is wrapped using an encapsulating material (encapsulating material 4). Next, the semiconductor element 2 is separated from the plate 1 and the adhesive agent 3.
  • FIG. 5 shows another example of a method for manufacturing a semiconductor device structure according to the present disclosure, in which a plurality of semiconductor devices 2, 2 are integrally covered with an encapsulant 4 on a plate 1. After removing the plate 1, it becomes easy to package one semiconductor element 2, 2 integrally. The electrical connection method of the semiconductor element 2 and the semiconductor element 2 is mentioned later. It is also possible to separate them into individual semiconductor elements 2 as in FIG. This is possible by separating the plurality of semiconductor elements 2 and 2 from the plate 1 and then individualizing them through a process such as sawing. By using the sealing agent 4 which has softness after hardening, the bond with a flexible circuit board can be heightened further.
  • FIG. 6 is a view illustrating an example of a semiconductor device structure according to the present disclosure, and is formed such that the side surface 4a of the encapsulant 4 is inclined.
  • the encapsulant 4 has various angled outer surfaces, and the light extraction efficiency to the outside of the package is increased.
  • the screen partition wall is formed to be inclined, so that the side surface 4a can be formed, and when sawing, the side surface 4a can be formed by using a pointed cutter.
  • FIG. 7 is a view showing another example of a method of manufacturing a semiconductor device structure according to the present disclosure.
  • an insulating film 6, such as SiO 2 is formed on the electrode 80 and the electrode 90. It is provided in the state which exposed.
  • the external electrode 81 is connected to the electrode 80, and the external electrode 91 is formed on the electrode 90 to form a structure similar to a conventional package.
  • the external electrodes 81 and 91 may correspond to lead frames of a conventional package.
  • the external electrodes 81 and 91 may be widely spread and deposited so as to function as reflective films.
  • the insulating film 6 may merely serve as an insulating function, or may form an alternate stacked structure of SiO 2 / TiO 2 or form a DBR to reduce light absorption by the external electrodes 81 and 91. As shown in FIG. 4, when the semiconductor device 2 includes the insulating film 5, the insulating film 6 may be omitted.
  • the deposition process and the photolithography process used to form the insulating film 6 and the external electrodes 81 and 91 are common in the semiconductor chip process and are very familiar to those skilled in the art. By providing the external electrodes 81 and 91, mounting to the PCB, COB, etc. can be made easier. If necessary, it is also possible to provide only the insulating film 6 without the external electrodes 81 and 91.
  • the insulating film 6 may function not only to protect the semiconductor element 2 and the encapsulant 4 but also to protect the encapsulant 4 from the process of forming the external electrodes 81 and 91.
  • the insulating film 6 can be formed of a white material so that the insulating film 6 can function as a reflective film.
  • a white PSR Photo Sloder Resist
  • a white PSR can be screen printed or spin coated and then patterned through a common photolithography process.
  • FIG. 8 is a diagram illustrating another example of a semiconductor device structure according to the present disclosure, and includes a semiconductor device 2A and a semiconductor device 2B electrically connected in series. This configuration is made possible by connecting the negative electrode 80A of the semiconductor element 2A and the positive electrode 90B of the semiconductor element 2B through the external electrode 89.
  • Reference numeral 4 is an encapsulant
  • 6 is an insulating film
  • 90A is a positive electrode of the semiconductor element 2A
  • 80B is a negative electrode of the semiconductor element 2B.
  • This configuration makes it possible to form an electrical connection between the integrated semiconductor elements 2A and 2B through the encapsulant 4 without the use of a monolithic substrate.
  • the structure of the semiconductor element thereon is the same, but according to the method of the present disclosure, the semiconductor element 2A and the semiconductor element 2B need not be elements having the same function. It goes without saying that the semiconductor elements 2A and 2B can be connected in parallel.
  • the side surface 4a of the encapsulant 4 may be formed to be inclined as shown in FIG. 6, and this configuration enables a high-voltage semiconductor light emitting device package or a semiconductor light emitting device structure that could not be previously imagined. .
  • FIG. 9 is a view illustrating an example of the use of a semiconductor device structure according to the present disclosure.
  • a conductive line 7a of the printed circuit board 7 and electrodes 80 and 90 are directly connected to each other.
  • the element 2D is connected through the conductive line 7b and the external electrodes 81 and 91.
  • the printed circuit board 7 may be a flexible circuit board.
  • FIG. 10 is a view showing another example of a method of manufacturing a semiconductor device structure according to the present disclosure, in which a semiconductor device 2 as shown in FIG. 2 is provided, and the semiconductor device 2 includes a substrate 100.
  • a first semiconductor layer 300 having a first conductivity, an active layer 400 that generates light through recombination of electrons and holes, and a second semiconductor layer having a second conductivity different from the first conductivity. 500 is grown, and electrodes 80 and 90 are formed.
  • the semiconductor element 2 is attached to the plate 1 with an adhesive 3, and then, prior to covering with the encapsulant 4, the substrate 100 is removed, and preferably a rough surface ( 301 is formed. The subsequent process is the same.
  • the substrate 100 may be removed by a process such as laser lift-off, and the rough surface 301 may be through dry etching such as an inductively coupled plasma (ICP). This enables chip level laser lift off.
  • ICP inductively coupled plasma
  • FIG. 11 is a view showing another example of a semiconductor device structure according to the present disclosure, in which an encapsulant 4 includes phosphors.
  • YAG, Silicate, Nitride phosphors and the like can emit light of a desired color.
  • FIG. 12 illustrates another example of the semiconductor device structure according to the present disclosure, in which a phosphor layer 8 is formed in the encapsulant 4 or under the encapsulant 4. This can be formed by precipitating the phosphor in the encapsulant 4, or spin coating separately, or by applying a phosphor contained in a volatile liquid, followed by volatilization, leaving only the phosphor and then covering it with the encapsulant 4. If necessary, a plurality of phosphor layers 8 can be formed.
  • FIG. 13 is a view showing still another example of the semiconductor device structure according to the present disclosure, in which the encapsulant 4 is provided with a rough surface or unevenness 4g for increasing light extraction efficiency.
  • the rough surface 4g can be formed by pressing, forming a nanoimprint, or the like.
  • After applying the bead material it is also possible to form through etching, sandblasting and the like.
  • the rough surface 4g may be formed before or after separation of the plate 1.
  • FIG. 14 is a view showing still another example of the semiconductor device structure according to the present disclosure, in which a lens 4c is formed on the encapsulant 4.
  • the lens 4c is formed integrally with the encapsulant.
  • Such an integrated lens 4c can be formed by a compression molding method or the like.
  • 16 to 18 are diagrams illustrating an example of a method of manufacturing the semiconductor device structure shown in FIG. 11, in which the semiconductor devices 2 and 2 are fixed to the plate 1 using the adhesive 3.
  • the sealing agent 4 containing the phosphor that is, the phosphor layer 8 is covered.
  • the plate 1 is removed, and as shown in FIG. 18, the semiconductor elements 2 and 2 are separated from each other.
  • Conformal coating in this manner substitution of the conformal coating through the removal of the encapsulant 4 or the removal of the phosphor layer 8 is largely distinguished from the conformal coating which has been conventionally performed by spin coating or screen printing. do.
  • FIG. 19 is a view showing another example of a method of manufacturing a semiconductor device structure according to the present disclosure.
  • the semiconductor device 2, 2 manufactured in FIG. 18 is again used on the plate 1 by using an adhesive 3. Put it on, and apply the sealing agent 4 again.
  • easy shape control of the interface between the phosphor layer 8 and the encapsulant 4 is possible.
  • both appearance control of the phosphor layer 8 and appearance control of the encapsulant 4 covering the phosphor layer 8 can be easily performed.
  • the phosphor may be introduced into the external encapsulant 4 and the phosphor may not be introduced into the internal encapsulant 4.
  • the encapsulant 4 constituting the phosphor layer 8 and the encapsulant 4 covering the phosphor layer 8 may be the same material, but may have different properties (refractive index, hardness, light transmittance, curing rate, etc.). It may be a substance.
  • the present embodiment can be extended to a method of manufacturing a semiconductor device structure according to the present disclosure in which two or more same or different encapsulation agents are applied.
  • the semiconductor light emitting element is suitable for application to the semiconductor element, but when the phosphor is not contained, the semiconductor element need not necessarily be the semiconductor light emitting element.
  • FIG. 20 is a view illustrating another example of a method of manufacturing a semiconductor device structure according to the present disclosure.
  • the phosphor layer 8 is formed, and then the phosphor layer is not removed.
  • a part of (8) is removed to form a phosphor layer 8 conformally on each of the semiconductor elements 2 and 2. Thereafter, in the case where the process according to FIG. 19 is in progress, the use of the plate 1 can be reduced once.
  • 21 to 23 are views illustrating an example of a method of manufacturing the semiconductor device structure illustrated in FIG. 12. Unlike the method illustrated in FIG. 20, the phosphor layer 8 is not completely removed and separated. Leave it removed. Next, a semiconductor device structure is manufactured by covering the encapsulant 4 as shown in FIG. 22 and separating the semiconductor devices 2 and 2 as shown in FIG. The encapsulant 4 may have various shapes such as the shape shown in FIG. 13 and the shape shown in FIG. 14.
  • FIG. 24 is a diagram illustrating an example of a method of manufacturing the semiconductor device structure illustrated in FIG. 14.
  • the semiconductor device 2 and 2 may be plated using an adhesive 3.
  • the encapsulant 4 containing phosphor that is, the phosphor layer 8.
  • the encapsulant 4 is covered again.
  • the mask 11 may be made of, for example, stainless steel or alumina, but is not particularly limited.
  • the height of the hole 11h is not particularly limited, and the lens 4c may be located in the hole 11h when pressed, and may be exposed out of the hole 11h.
  • the encapsulant 4c on which the lens 4c is formed is cured while the mask 11 is left as it is.
  • the stopper 12 may be provided to limit the movement of the mask 11 to adjust the height of the lens 4c.
  • the thickness of the phosphor layers 4 and 8 varies depending on the concentration of the phosphor contained in the encapsulant, but may be applied from 0.01 mm to several mm, and then in the encapsulant curing temperature of 50 to 200 degrees in the range of one hundred to ten thousand seconds. Heat treatment.
  • the thickness of the upper encapsulant 4 depends on the thickness of the lens 4c to be made, and is usually 0.01 mm to several mm.
  • the upper encapsulant 4 is one hundred to one thousand seconds at an encapsulant curing temperature of 50 to 200 degrees with the mask 11 placed thereon, and one hundred to one thousand seconds with the mask 11 removed. Harden.
  • the radius of the lens 4c made of a silicon epoxy encapsulant with a thickness of 0.6 mm may be about 0.7 mm.
  • a plurality of lenses 4c may be formed as shown in FIG.
  • the holes 11h may have a size of several nanometers to several tens of micrometers when a plurality of holes are formed, depending on the size of the lens 4c to be formed. If one is formed, it can range in size from several hundred micrometers to several millimeters. Generally, a hole 11h having a circular cross section is used (so a lens 4c having a dome shape as a whole is formed), but holes 11h of various shapes such as an oval, a square, a triangle and the like can be used. Of course it can.
  • the upper encapsulant 4 may also contain phosphors, and the lower encapsulation agent 4 and the upper encapsulation agent 4 may be formed. It may be formed integrally without forming separately (the encapsulant 4 may be applied only once if necessary). It is also possible to include different phosphors in the lower encapsulation agent 4 and the upper encapsulation agent 4, for example, the lower encapsulation agent 4 is provided with a yellow phosphor, and the upper encapsulation agent 4 has a longer wavelength than yellow. It is possible to have orange and / or red phosphors. The formation of the lens 4c can be done before and after removal of the plate 1.
  • the lens 4c can be formed prior to the removal of the plate 1 as shown in FIG. 19.
  • the encapsulant 4 may be coated while the insulating film 6 and / or the external electrodes 81 and 91 are formed, and the lens 4c may be formed.
  • the lens 4c may be formed in the state in which the plate 1 is removed. At this time, after the plate 1 is removed, the insulating film 6 and / or the external electrodes 81 and 91 may be formed first, or after the lens 4c is formed, the insulating film 6 and / or the external electrode 81, 91) can of course be formed.
  • the plate 1 is reattached to form the lens 4c or the cutting operation is performed. can do.
  • the lower encapsulant 4 and 8 containing phosphors are first applied and cured, and then the upper encapsulant 4 is applied, cured and lens molded thereon. Proceed. Later, the plate 1 is separated to expose the electrodes 80 and 90, and then the plate 1 (the plate used previously, it is not necessary to use it as it is) is attached to the lens 4c side using an adhesive to insulate the insulating film. (6) may be formed, and the insulating film 6 may be formed without the plate 1. Thereafter, using a material such as a transfer tape, it is attached to the electrodes 80 and 90 side or the insulating film 6 side (if the plate 1 is present, the plate 1 is removed).
  • dicing may be performed from the lens 4c side to the insulating film 6 side and divided into individual packages.
  • the plate 1 is removed, and then the insulating plate 6 is disposed on the exposed surface of the electrodes 80 and 90 with the new plate 1 attached to the encapsulant 4.
  • the plate 1 attached to the sealing agent 4 is detached, and the electrodes 80 and 90 are transferred. It is also possible to transfer to a sheet.
  • FIG. 27 is a view for explaining the principle of forming the lens shown in FIG. 24.
  • the encapsulant 4 is pressed using the mask 11 on which the hole 11h is formed, the upper portion of the hole 11h is opened. Therefore, the pressurized encapsulant 4c flows into the hole 11h to form the lens 4c by the surface tension of the encapsulant 4c itself.
  • FIG. 28 is a view showing another example of a semiconductor device structure according to the present disclosure, wherein the lower encapsulant 4 or phosphor layer 8 surrounding the semiconductor device 2 has a circular cross-sectional shape.
  • This example means that the conventional shell-type semiconductor light emitting device can be implemented through the method of manufacturing a semiconductor device structure according to the present disclosure.
  • a shell type semiconductor light emitting device having a flip chip may be implemented without a separate lead frame.
  • FIG. 29 is a view showing an example of a method of manufacturing the semiconductor device structure shown in FIG. 28.
  • FIG. 28 it is possible to manufacture by cutting the semiconductor element 2 together with the sealing agent 4 using the cutter 13 provided with the pin 13a (Pin) of circular cross section. At this time, as shown in FIG. 28, it is possible to cut so that the upper surface 4s of the phosphor layer 8 is exposed.
  • the shape of the cutter 13 is not limited to a circle, and may have various shapes such as a rectangle, an ellipse, and a triangle, as necessary.
  • FIG. 30 is a diagram illustrating still another example of the semiconductor device structure according to the present disclosure. Unlike the semiconductor device 2 illustrated in FIG. 28, the upper surface of the phosphor layer 8 is not exposed. In the case of using the method shown in Fig. 29, the semiconductor device structure of this type can be manufactured by narrowing and cutting the width of the fin 13a.
  • FIG. 31 is a view showing another example of the method of manufacturing the semiconductor device structure shown in FIG. 30, wherein the phosphor layers 4 and 8 and the encapsulant 4 are coated, and then a cutter having a pin 13a ( 13), the lens 4c is directly formed in the cutting process without a separate process.
  • a cutter having a pin 13a ( 13) By giving the time for the lens 4c to harden without removing the cutter 13 immediately in a cut
  • Various combinations are possible, including phosphors in both the lower encapsulant 4 and the upper encapsulant 4.
  • FIG. 32 is a view showing another example of a cutter having a pin, in which the lower portion 13b of the pin 13a is made wider, so that the semiconductor device structure shown in FIG. 28 can be made in the cutting process.
  • FIG 33 is a view showing another example of a cutter having a pin, wherein the cross section of the lower portion 13b of the pin 13a has a rectangular cross section unlike the upper circular cross section.
  • FIG. 34 is a view showing another example of a cutter having a pin.
  • the upper portion of the pin 13a is not opened to form a lens using surface tension, but the pin 13a is closed to close the lens-shaped upper surface ( 13c).
  • FIG. 35 is a view illustrating another example of a method of manufacturing the semiconductor device structure illustrated in FIG. 30, and the cutter 13 may not cut the upper encapsulation agent 4 and the lower encapsulation agent 4, 8 at a time.
  • the lens 13 is first formed by lowering the cutter 13 to a predetermined depth, and then the entirety is cut to manufacture a semiconductor device structure.
  • FIG. 36 is a view illustrating another example of a semiconductor device structure including a lens according to the present disclosure, in which an insulating film 6 is encapsulated so that an encapsulant 4 is provided with a lens 4c to expose exposed electrodes 800 and 900. It is formed in (4).
  • various types of combinations described in the present disclosure are possible as semiconductor device structures having a lens according to the present disclosure.
  • FIG. 37 is a view showing another example of a semiconductor device structure including a lens according to the present disclosure, in which one lens 4c and a plurality of semiconductor devices 2A and 2B are provided, and the lens 4c is encapsulated. It is formed integrally with the agent (4), and the electrodes 80A, 90A, 80B, and 90B are exposed out of the encapsulant 4.
  • the plurality of semiconductor devices 2A and 2B may be flip chip type semiconductor light emitting devices.
  • the size of the lens 4c may be such that the size of the plurality of semiconductor elements 2A, 2B is located within the diameter of the lens 4c. Depending on the specification, the size of the lens 4c may be part of the plurality of the semiconductor elements 2A, 2B.
  • the lens 4c functions as a common lens 4c for both the plurality of semiconductor elements 2A and 2B, and may have various shapes according to this function.
  • the number of the plurality of semiconductor devices 2A and 2B is not particularly limited, and a plurality of semiconductor devices 2A and 2B may be disposed in the width and depth directions of the semiconductor device structure. For example, two may be disposed in the width direction (direction shown in FIG. 37), and two may be disposed in the vertical direction (depth direction), respectively, so that four semiconductor elements may be disposed under one lens ( See FIG. 44).
  • no other method is particularly necessary, for example by adjusting the size of the mask 11 and the cutter 13 in the methods presented above. Based on the structure shown in FIG.
  • This structure is easy to heat through the electrodes 80A, 90A, 80B, and 90B, although a plurality of semiconductor elements 2A and 2B are provided under one lens 4c to generate a lot of heat in the semiconductor device structure.
  • This structure has the advantage of making the lens 4c easy.
  • FIG. 38 illustrates another example of a semiconductor device structure including a lens according to the present disclosure, in which electrodes 80A, 90A, 80B, and 90B are exposed to the outside through an insulating film 6.
  • the electrodes 80A, 90A, 80B, and 90B may be directly connected by a conductive adhesive or Ag paste or metal solder to a film or glass with a circuit, a PCB, or the like.
  • a white insulating film 6 is provided to reflect light upward.
  • FIG. 39 shows yet another example of a semiconductor device structure including a lens according to the present disclosure, in which a plurality of semiconductor devices 2A and 2B are surrounded by a phosphor layer 8.
  • the phosphor layer 8 is surrounded by the encapsulant 4 provided with the lens 4c.
  • the phosphor layer 8 may be formed by various methods described in FIGS. 12 and 16-23, but is not limited thereto.
  • the lens 4c may cover the entire upper surface of the encapsulant 4, but may be formed in a form in which the upper surface 4t of the encapsulant 4 is exposed.
  • the cross section of the lens 4c it is possible to form the cross section of the lens 4c differently from the cross section of the encapsulant 4 under the lens 4c, for example, of the lens 4c. It is possible to make the cross section circular and to make the cross section of the encapsulant 4 under the lens 4c rectangular.
  • FIG. 40 is a view showing another example of a semiconductor device structure having a lens according to the present disclosure, in which electrodes 80A and 90B of a plurality of semiconductor devices 2A and 2B are electrically connected by external electrodes 89. It is. As illustrated in FIG. 8, various electrical connections are possible.
  • the insulating film 6 is interposed between the sealing agent 4 and the external electrode 89.
  • the external electrodes may be provided separately on the electrodes 80B and 90A.
  • FIG. 41 is a view showing another example of a semiconductor device structure including a lens according to the present disclosure, in which electrodes 80A, 80B, 90A, and 90B are provided with external electrodes 81A, 81B, 91A, and 91B, respectively. .
  • the insulating film 6 sealing agent 4 is interposed between them.
  • FIG. 42 is a view showing another example of a semiconductor device structure including a lens according to the present disclosure, showing an example in which the examples shown in FIGS. 37 to 41 are combined. In addition, various combinations are possible.
  • FIG. 43 and 45 are diagrams illustrating still another example of a semiconductor device structure including a lens according to the present disclosure, and FIG. 43 is a cross-sectional view of the semiconductor device structure shown in FIG. 45 taken along line A-A.
  • the lens 4c is formed convexly on the plurality of semiconductor elements 2A and 2B, and one lens 4c is formed as a whole.
  • a semiconductor device structure comprising: a semiconductor device having two electrodes and being a flip chip type semiconductor light emitting device; An encapsulant surrounding the semiconductor element such that two electrodes are exposed and having a lens on an opposite side of the side where the two electrodes are exposed; And an insulating film formed on the encapsulant so as to expose the two electrodes on the side where the two electrodes are exposed.
  • a semiconductor device structure wherein an upper surface of the encapsulant is covered by a lens.
  • a semiconductor device structure characterized in that the cross section of the entire encapsulant including the lens is circular.
  • a semiconductor device structure wherein the insulating film is a white insulating film.
  • a method of manufacturing a semiconductor device structure comprising the steps of: positioning a semiconductor device, which is a semiconductor light emitting device, on a plate, comprising: positioning the electrode of the semiconductor device to face the plate; Covering the semiconductor element with an encapsulant; Pressing the encapsulant using a mask on which the hole is formed so that the encapsulant flows into the hole to form a lens on the semiconductor element; And cutting the encapsulant and the semiconductor light emitting device having the lens formed therein together.
  • a method of manufacturing a semiconductor device structure wherein the lens is cured in a state where the encapsulant is pressed with a mask in the step of forming the lens.
  • a method for manufacturing a semiconductor device structure comprising using a stopper for limiting the height at which the mask presses the encapsulant in the step of forming the lens.
  • a method for manufacturing a semiconductor device structure characterized in that the encapsulant comprises a lower encapsulant surrounding the semiconductor element and an upper encapsulant on which a lens is formed.
  • a method of manufacturing a semiconductor device structure characterized in that in the cutting step, one lens is provided in the encapsulant.
  • a method of manufacturing a semiconductor device structure comprising the steps of: positioning a semiconductor device, which is a semiconductor light emitting device, on a plate, comprising: positioning the electrode of the semiconductor device to face the plate; Covering the semiconductor element with an encapsulant; Forming a lens on an encapsulant on a side opposite to an electrode of the semiconductor element; And pressing the encapsulant by using a cutter having a pin to cut the encapsulant and the semiconductor element having the lens together.
  • a method of manufacturing a semiconductor device structure characterized in that the cutter presses the encapsulant at once to form the lens and cut the lens.
  • a method of manufacturing a semiconductor device structure characterized in that the cutter presses the encapsulant to form a lens, and then presses and cuts the encapsulant.
  • (21) A method of manufacturing a semiconductor device structure, characterized in that the width of the bottom of the fin is wider than the top width of the fin.
  • a semiconductor device structure having two electrodes and comprising a plurality of flip chip type semiconductor light emitting devices.
  • a semiconductor device structure comprising: a plurality of semiconductor devices, each comprising: a plurality of semiconductor devices each having two electrodes, each of which is a flip chip type semiconductor light emitting device; And an encapsulant surrounding the semiconductor element such that the two electrodes are exposed and integrally having lenses positioned on the plurality of semiconductor elements on opposite sides of the side where the two electrodes are exposed.
  • Device structure comprising: a plurality of semiconductor devices, each comprising: a plurality of semiconductor devices each having two electrodes, each of which is a flip chip type semiconductor light emitting device; And an encapsulant surrounding the semiconductor element such that the two electrodes are exposed and integrally having lenses positioned on the plurality of semiconductor elements on opposite sides of the side where the two electrodes are exposed.
  • a semiconductor device structure further comprising: a phosphor layer surrounding each semiconductor device between each semiconductor device and an encapsulant.
  • a semiconductor device structure characterized in that the cross-section of the lens and the cross-sectional shape of the encapsulant under the lens are different.
  • a semiconductor device structure wherein the lens has a circular cross section, and the encapsulant under the lens has a square cross section.
  • each of the two electrodes has an external electrode, and an insulating film is interposed between the external electrode and the encapsulant.
  • a phosphor layer surrounding each semiconductor element between each semiconductor element and the encapsulant; further comprising an upper surface of the encapsulant around the lens, the lens having a circular cross section, and an encapsulant under the lens
  • the semiconductor device structure characterized in that it has a square cross section.
  • the method of manufacturing another semiconductor device structure and the semiconductor device structure using the same according to the present disclosure it is possible to make a structure or package in which the encapsulant serves as a carrier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

본 개시는 두 개의 전극을 가지며, 플립 칩형 반도체 발광소자인 반도체 소자; 두 개의 전극이 노출되도록 반도체 소자를 둘러싸며, 두 개의 전극이 노출되는 측의 대향하는 측에 렌즈를 구비하는 봉지제; 그리고, 두 개의 전극이 노출되는 측에 두 개의 전극이 노출되도록 봉지제에 형성되는 절연막;을 포함하는 것을 특징으로 하는 반도체 소자 구조물 및 이를 제조하는 방법 등에 관한 것이다.

Description

반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물
본 개시(Disclosure)는 전체적으로 반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물에 관한 것으로, 특히 렌즈를 구비한 반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물에 관한 것이다.
여기기, 반도체 소자라 함은 반도체 발광소자(예: 레이저 다이오드), 반도체 수광소자(예: 포토 다이오드), p-n접합 다이오드 전기 소자, 반도체 트랜지스터 등을 포함하며, 대표적으로 3족 질화물 반도체 발광소자를 예로 들 수 있다. 3족 질화물 반도체 발광소자는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물 반도체층을 포함하는 발광다이오드와 같은 발광소자를 의미하며, 추가적으로 SiC, SiN, SiCN, CN와 같은 다른 족(group)의 원소들로 물질이나 이들 물질로 된 반도체층을 포함하는 것을 배제하는 것은 아니다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).
도 1은 종래의 반도체 발광소자의 일 예(Lateral Chip)를 나타내는 도면으로서, 반도체 발광소자는 기판(100), 기판(100) 위에, 버퍼층(200), 제1 도전성을 가지는 제1 반도체층(300), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(400), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(500)이 순차로 증착되어 있으며, 그 위에 전류 확산을 위한 투광성 전도막(600)과, 본딩 패드로 역할하는 전극(700)이 형성되어 있고, 식각되어 노출된 제1 반도체층(300) 위에 본딩 패드로 역할하는 전극(800)이 형성되어 있다. 여기서, 기판(100) 측이 패키지에 놓일 때, 장착면으로 기능한다.
도 2는 종래의 반도체 발광소자의 다른 예(Flip Chip)를 나타내는 도면으로서, 반도체 발광소자는 기판(100; 예: 사파이어 기판), 기판(100) 위에, 제1 도전성을 가지는 제1 반도체층(300; 예: n형 GaN층), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(400; 예: InGaN/(In)GaN MQWs), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(500; 예: p형 GaN층)이 순차로 증착되어 있으며, 그 위에 기판(100) 측으로 빛을 반사시키기 위한 3층으로 된 전극막(901; 예: Ag 반사막), 전극막(902; 예: Ni 확산 방지막) 및 전극막(903; 예: Au 본딩층)이 형성되어 있고, 식각되어 노출된 제1 반도체층(300) 위에 본딩 패드로 기능하는 전극(800; 예: Cr/Ni/Au 적층 금속 패드)이 형성되어 있다. 여기서, 전극막(903) 측이 패키지에 놓일 때, 장착면으로 기능한다. 열방출 효율의 관점에서, 도 1에 도시된 래터럴 칩(Lateral Chip)보다 도 2에 도시된 플립 칩(Flip Chip) 또는 정션 다운형(Junction Down Type) 칩이 열방출 효율이 우수하다. 래터럴 칩이 80~180㎛의 두께를 가지는 사파이어 기판(100)을 통해 열을 외부로 방출해야 하는 반면에, 플립 칩은 활성층(400)에 가깝게 위치하는 금속으로 된 전극(901,902,903)을 통해 열을 방출할 수 있기 때문이다.
도 15는 종래의 반도체 발광소자 패키지 또는 반도체 발광소자 구조물의 일 예를 나타내는 도면으로서, 반도체 발광소자 패키지는 리드 프레임(110,120), 몰드(130), 그리고 캐비티(140) 내에 수직형 반도체 발광소자(150; Vertical Type Light-emitting Chip)가 구비되어 있고, 캐비티(140)는 형광체(160)를 함유하는 봉지제(170)로 채워져 있다. 수직형 반도체 발광소자(150)의 하면이 리드 프레임(110)에 전기적으로 연결되고, 상면이 와이어(180)에 의해 리드 프레임(120)에 전기적으로 연결되어 있다. 수직형 반도체 발광소자(150)에서 나온 광(예: 청색광)의 일부가 형광체(160)를 여기시켜 형광체(160)가 광(예: 황색광)을 만들고, 이 광들(청색광+황색광)이 백색광을 만든다. 여기서, 몰드(130)-봉지제(170) 또는 리드 프레임(110,120)-몰드(130)-봉지제(170)가 수직형 반도체 발광소자를 담지한 채로, 반도체 발광소자 패키지의 지지체 즉, 캐리어(Carrier)로 역할한다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 반도체 소자 구조물에 있어서, 두 개의 전극을 가지며, 플립 칩형 반도체 발광소자인 반도체 소자; 두 개의 전극이 노출되도록 반도체 소자를 둘러싸며, 두 개의 전극이 노출되는 측의 대향하는 측에 렌즈를 구비하는 봉지제; 그리고, 두 개의 전극이 노출되는 측에 두 개의 전극이 노출되도록 봉지제에 형성되는 절연막;을 포함하는 것을 특징으로 하는 반도체 소자 구조물이 제공된다.
본 개시에 따른 다른 하나의 태양에 의하면(According to another aspect of the present disclosure), 반도체 소자 구조물을 제조하는 방법에 있어서, 플레이트 위에 반도체 발광소자인 반도체 소자를 위치 고정하는 단계;로서, 반도체 소자의 전극이 플레이트를 향하도록 위치 고정하는 단계; 반도체 소자를 봉지제로 덮는 단계; 홀이 형성된 마스크를 이용하여 봉지제를 가압하여, 홀 내로 봉지제가 유입되도록 하여 반도체 소자 위에 렌즈를 형성하는 단계; 그리고, 렌즈가 형성된 봉지제와 반도체 소자를 함께 절단하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법이 제공된다.
본 개시에 따른 또 다른 하나의 태양에 의하면(According to another aspect of the present disclosure), 반도체 소자 구조물을 제조하는 방법에 있어서, 플레이트 위에 반도체 발광소자인 반도체 소자를 위치 고정하는 단계;로서, 반도체 소자의 전극이 플레이트를 향하도록 위치 고정하는 단계; 반도체 소자를 봉지제로 덮는 단계; 반도체 소자의 전극과 대향하는 측의 봉지제에 렌즈를 형성하는 단계; 그리고, 핀을 구비하는 커터를 이용하여 봉지제를 가압하여, 렌즈가 형성된 봉지제와 반도체 소자를 함께 절단하는 단계;를 포함하는 반도체 소자 구조물을 제조하는 방법이 제공된다.
본 개시에 따른 또 다른 하나의 태양에 의하면(According to another aspect of the present disclosure), 반도체 소자 구조물에 있어서, 복수의 반도체 소자;로서, 각각이 두 개의 전극을 가지며, 플립 칩형 반도체 발광소자인 복수의 반도체 소자; 그리고, 두 개의 전극이 노출되도록 반도체 소자를 둘러싸며, 두 개의 전극이 노출되는 측의 대향하는 측에서 복수의 반도체 소자 위에 위치하는 렌즈를 일체로 구비하는 봉지제;를 포함하는 것을 특징으로 하는 반도체 소자 구조물이 제시된다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
도 1은 종래의 반도체 발광소자의 일 예(Lateral Chip)를 나타내는 도면,
도 2는 종래의 반도체 발광소자의 다른 예(Flip Chip)를 나타내는 도면,
도 3은 본 개시에 따라 반도체 소자 구조물을 제조하는 방법의 일 예를 나타내는 도면,
도 4는 본 개시에 따라 플립 칩 패키지를 제조하는 방법의 일 예를 나타내는 도면,
도 5는 본 개시에 따라 반도체 소자 구조물을 제조하는 방법의 다른 예를 나타내는 도면,
도 6은 본 개시에 따른 반도체 소자 구조물의 일 예를 나타내는 도면,
도 7은 본 개시에 따라 반도체 소자 구조물을 제조하는 방법의 또 다른 예를 나타내는 도면,
도 8은 본 개시에 따른 반도체 소자 구조물의 다른 예를 나타내는 도면,
도 9는 본 개시에 따른 반도체 소자 구조물 사용의 일 예를 나타내는 도면,
도 10은 본 개시에 따라 반도체 소자 구조물을 제조하는 방법의 또 다른 예를 나타내는 도면,
도 11은 본 개시에 따른 반도체 소자 구조물의 또 다른 예를 나타내는 도면,
도 12은 본 개시에 따른 반도체 소자 구조물의 또 다른 예를 나타내는 도면,
도 13은 본 개시에 따른 반도체 소자 구조물의 또 다른 예를 나타내는 도면,
도 14는 본 개시에 따른 반도체 소자 구조물의 또 다른 예를 나타내는 도면,
도 15는 종래의 반도체 발광소자 패키지 또는 반도체 발광소자 구조물의 일 예를 나타내는 도면,
도 16 내지 도 18은 도 11에 도시된 반도체 소자 구조물을 제조하는 방법의 일 예를 나타내는 도면,
도 19는 본 개시에 따라 반도체 소자 구조물을 제조하는 방법의 또 다른 예를 나타내는 도면,
도 20은 본 개시에 따라 반도체 소자 구조물을 제조하는 방법의 또 다른 예를 나타내는 도면,
도 21 내지 도 23은 도 12에 도시된 반도체 소자 구조물을 제조하는 방법의 일 예를 나타내는 도면,
도 24는 도 14에 도시된 반도체 소자 구조물을 제조하는 방법의 일 예를 나타내는 도면,
도 25는 본 개시에 따른 홀이 형성된 마스크의 일 예를 나타내는 도면,
도 26은 본 개시에 따라 복수의 렌즈가 형성된 반도체 소자 구조물의 일 예를 나타내는 도면,
도 27은 도 24에 도시된 렌즈를 형성하는 원리를 설명하는 도면,
도 28은 본 개시에 따른 반도체 소자 구조물의 또 다른 예를 나타내는 도면,
도 29는 도 28에 도시된 반도체 소자 구조물을 제조하는 방법의 일 예를 나타내는 도면,
도 30은 본 개시에 따른 반도체 소자 구조물의 또 다른 예를 나타내는 도면,
도 31은 도 30에 도시된 반도체 소자 구조물을 제조하는 방법의 다른 예를 나타내는 도면,
도 32는 핀을 가지는 커터의 다른 예를 나타내는 도면,
도 33은 핀을 가지는 커터의 또 다른 예를 나타내는 도면,
도 34는 핀을 가지는 커터의 또 다른 예를 나타내는 도면,
도 35는 도 30에 도시된 반도체 소자 구조물을 제조하는 방법의 또 다른 예를 나타내는 도면,
도 36은 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 다른 예를 나타내는 도면,
도 37은 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 또 다른 예를 나타내는 도면,
도 38 및 도 44는 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 또 다른 예를 나타내는 도면,
도 39는 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 또 다른 예를 나타내는 도면,
도 40은 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 또 다른 예를 나타내는 도면,
도 41은 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 또 다른 예를 나타내는 도면,
도 42는 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 또 다른 예를 나타내는 도면,
도 43 및 도 45는 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 또 다른 예를 나타내는 도면.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 3은 본 개시에 따라 반도체 소자 구조물을 제조하는 방법의 일 예를 나타내는 도면으로서, 플레이트(1)를 준비한 다음, 두 개의 전극(80,90)이 구비된 반도체 소자(2)를 접착제(3)를 이용하여 플레이트(1)에 위치 고정한다. 다음으로, 봉지제(4; encapsulating material)를 이용하여, 반도체 소자(2)를 감싼다. 다음으로, 플레이트(1)와 반도체 소자(2)를 분리한다. 플레이트(1)를 이루는 물질에는 특별한 제한이 없으며, 사파이어와 같은 물질을 사용하여도 좋고, 금속이나 유리 등의 평평평한 구조물을 사용하여도 좋다. 금속 또는 유리와 같이 딱딱한(rigid) 플레이트를 사용함으로써, 블루 테이브(Blue tape)와 같이 연성을 가지는 플레이트(판)를 사용할 때에 비해 공정의 안정을 도모할 수 있다. 접착제(3)를 이루는 물질에도 특별한 제한이 없으며, 반도체 소자(2)를 플레이트(1)에 위치 고정만 할 수 있다면 어떠한 접착제여도 좋다. 봉지제(3)를 이루는 물질로는 종래에 LED 패키지에 사용되는 실리콘 에폭시가 사용될 수 있다. 봉지제(4)가 형성된 후, 반도체 소자(2)와 플레이트(1)의 분리는 접착제(3)를 녹일 수 있는 열을 가하거나, 접착제(3)를 녹일 수 있는 용제를 이용함으로써 가능하다. 열과 용제를 함께 사용하는 것도 가능하다. 또한 접착 테이프를 이용하는 것도 가능하다. 봉지제(4)는 종래에 사용되는 디스펜싱, 스크린 프린팅, 몰딩, 스핀 코팅 등의 방법으로 형성할 수 있으며, 광경화성 수지(UV경화성 수지)를 도포한 후, 광을 조사함으로써 형성하는 것도 가능하다. 플레이트(1)로 사파이어와 같이 투광성 플레이트가 사용되는 경우에, 플레이트(1) 측으로부터 광을 조사하는 것도 가능하다. 설명을 위해, 플레이트(1) 위에 하나의 반도체 소자(2)를 도시하였지만, 복수의 반도체 소자(2)를 플레이트(1) 위에 두고 공정을 행할 수 있다. 여기서 반도체 소자(2)는 두 개의 전극(80,90)을 가지는 것으로 설명되었지만, 그 수에 특별히 제한이 있는 것은 아니다. 예를 들어, 트랜지스터의 경우에 세 개의 전극을 가질 수 있다.
도 4는 본 개시에 따라 플립 칩 패키지를 제조하는 방법의 일 예를 나타내는 도면으로서, 반도체 소자(2)로서, 정션 다운 형 칩이 제시되어 있다. 정션 다운 형 칩으로서, 도 2에 도시된 것과 같은 플립 칩형 반도체 발광소자를 예로 들 수 있다. 따라서 반도체 발광소자는 도 2에서와 같이, 기판(100; 예: 사파이어 기판), 기판(100) 위에, 제1 도전성을 가지는 제1 반도체층(300; 예: n형 GaN층), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(400; 예: InGaN/(In)GaN MQWs), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(500; 예: p형 GaN층)이 순차로 증착되어 있으며, 그 위에 기판(100) 측으로 빛을 반사시키기 위한 3층으로 된 전극막(901; 예: Ag 반사막), 전극막(902; 예: Ni 확산 방지막) 및 전극막(903; 예: Au 본딩층)이 형성되어 있고, 식각되어 노출된 제1 반도체층(300) 위에 본딩 패드로 기능하는 전극(800; 예: Cr/Ni/Au 적층 금속 패드)이 형성된 구조를 가질 수 있다. 반도체 소자(2)는 두 개의 전극(80,90)을 가지며, 전극(90)은 도 2의 전극(901,902,903)과 같은 구성을 가져도 좋고, DBR(Distributed Bragg Reflector)과 금속 반사막의 조합으로 이루어져도 좋다. 전극(80)과 전극(90)은 SiO2와 같은 절연막(5)에 의해 전기적으로 절연되어 있다. 이후의 과정은 동일하며, 봉지제(4; encapsulating material)를 이용하여, 반도체 소자(2)를 감싼다. 다음으로, 플레이트(1)와 접착제(3)로부터 반도체 소자(2)를 분리한다.
도 5는 본 개시에 따라 반도체 소자 구조물을 제조하는 방법의 다른 예를 나타내는 도면으로서, 플레이트(1) 위에 복수의 반도체 소자(2,2)가 일체로 봉지제(4)에 의해 덮혀 있다. 플레이트(1)를 제거한 후, 반도체 소자(2,2)를 일체로서 하나의 패키지화하는 것이 용이해진다. 반도체 소자(2)와 반도체 소자(2)의 전기적 연결 방법에 대해서는 후술한다. 또한 이들을 도 3에서와 같이 개별적인 반도체 소자(2)로 분리하는 것도 가능하다. 이는 복수의 반도체 소자(2,2)를 플레이트(1)로부터 분리한 후, 쏘잉(sawing) 등의 공정을 통해 개별화함으로써 가능하다. 경화후 연성을 가지는 봉지제(4)를 사용함으로써, 연성 회로기판과의 결합을 한층 높일 수 있게 된다.
도 6은 본 개시에 따른 반도체 소자 구조물의 일 예를 나타내는 도면으로서, 봉지제(4)의 측면(4a)이 경사지도록 형성되어 있다. 반도체 소자(2)가 발광소자인 경우에, 봉지제(4)가 다양한 각의 외면을 갖게 되어, 패키지 외부로의 광 추출 효율이 높아지게 된다. 스크린 프린팅시, 스크린 격벽을 경사지게 형성하여 측면(4a)의 형성이 가능하며, 쏘잉시, 끝이 뾰족한 커터를 이용함으로써 측면(4a)의 형성이 가능하다.
도 7은 본 개시에 따라 반도체 소자 구조물을 제조하는 방법의 또 다른 예를 나타내는 도면으로서, 플레이트(1)가 제거된 후, SiO2와 같은 절연막(6)을 전극(80)과 전극(90)을 노출한 상태로 구비하고 있다. 이후, 전극(80)에 외부 전극(81)을 연결하고, 전극(90)에 외부 전극(91)을 형성하여, 종래의 패키지와 같은 구조로 만들 수 있게 된다. 외부 전극(81,91)은 종래 패키지의 리드 프레임에 대응할 수 있다. 또한 외부 전극(81,91)을 반사막으로 기능하도록 넓게 펼쳐 증착하는 것도 가능하다. 절연막(6)은 단순히 절연 기능만을 하여도 좋고, 외부 전극(81,91)에 의한 광 흡수를 줄이도록 SiO2/TiO2의 교대 적층구조를 형성하거나 DBR을 이루어도 좋다. 도 4에서와 같이 반도체 소자(2)가 절연막(5)을 구비하는 경우에는 절연막(6)이 생략될 수도 있다. 절연막(6)과 외부 전극(81,91)의 형성에 사용되는 증착 공정과 포토리쏘그라피 공정 등은 반도체 칩 공정에서 일반적인 것으로 당업자에 매우 익숙한 것이다. 외부 전극(81,91)을 구비함으로써, PCB, COB 등에의 장착이 보다 용이해질 수 있다. 필요한 경우에, 외부 전극(81,91) 없이 절연막(6)만을 구비하는 것도 가능하다. 절연막(6)은 반도체 소자(2)와 봉지제(4) 사이를 보호하는 기능을 할 뿐만 아니라, 봉지제(4)를 외부 전극(81,91) 형성 공정으로부터 보호하는 기능도 할 수 있다. 또한 절연막(6)을 백색 물질로 형성하여, 절연막(6)을 반사막으로 기능하게 할 수 있다. 예를 들어, 백색의 PSR(Photo Sloder Resist)을 절연막(6)으로 이용하거나, 코팅하여 사용할 수 있다. 예를 들어, 백색의 PSR을 스크린 프린팅 또는 스핀 코팅한 다음, 일반적인 포토리소그라피 공정을 통해 패터닝할 수 있다.
도 8은 본 개시에 따른 반도체 소자 구조물의 다른 예를 나타내는 도면으로서, 전기적으로 직렬 연결된 반도체 소자(2A)와 반도체 소자(2B)가 구비되어 있다. 반도체 소자(2A)의 음(-) 전극(80A)과 반도체 소자(2B)의 양(+) 전극(90B)을 외부 전극(89)을 통해 연결함으로써 이러한 구성이 가능해진다. 미설명 부호 4는 봉지제이며, 6은 절연막이고, 90A은 반도체 소자(2A)의 양(+) 전극이며, 80B는 반도체 소자(2B)의 음(-) 전극이다. 이러한 구성을 통해, 모노리식 기판의 사용 없이, 봉지제(4)를 통해 일체화된 반도체 소자(2A,2B) 간의 전기적 연결을 형성할 수 있게 된다. 모노리식 기판의 경우에, 그 위의 반도체 소자의 구조가 동일하지만, 본 개시의 방법에 의하면, 반도체 소자(2A)와 반도체 소자(2B)가 같은 기능의 소자일 필요가 없다. 반도체 소자(2A,2B)를 병렬연결할 수 있음은 물론이다. 또한 봉지제(4)의 측면(4a)을 도 6에서와 같이 경사지게 형성할 수 있으며, 이러한 구성은 기존에 상상할 수 없었던 고전압(High-Voltage) 반도체 발광소자 패키지 내지는 반도체 발광소자 구조물을 가능하게 한다.
도 9는 본 개시에 따른 반도체 소자 구조물 사용의 일 예를 나타내는 도면으로서, 반도체 소자(2C)는 인쇄회로기판(7)의 도선(7a)과 전극(80,90)이 직접 연결되어 있으며, 반도체 소자(2D)는 도선(7b)과 외부 전극(81,91)을 통해 연결되어 있다. 인쇄회로기판(7)은 연성 회로기판이어도 좋다.
도 10은 본 개시에 따라 반도체 소자 구조물을 제조하는 방법의 또 다른 예를 나타내는 도면으로서, 도 2에 도시된 것과 같은 반도체 소자(2)가 구비되어 있으며, 반도체 소자(2)는 기판(100), 기판(100) 위에, 제1 도전성을 가지는 제1 반도체층(300), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(400), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(500)이 성장되며, 전극(80,90)이 형성되어 있다. 반도체 소자(2)를 접착제(3)를 이용해 플레이트(1)에 붙인 다음, 봉지제(4)로 덮기에 앞서, 기판(100)을 제거하고, 바람직하게는 광 취출 효율을 높이기 위해 거친 표면(301)을 형성한다. 이후의 과정은 동일하다. 기판(100)의 제거는 레이저 리프트 오프(Laser Lift-off)와 같은 공정에 의해 가능하며, 거친 표면(301)은 ICP(Inductively Coupled Plasma)와 같은 건식 식각을 통해 가능하다. 이것은 칩 레벨 레이저 리프트 오프를 가능하게 한다.
도 11은 본 개시에 따른 반도체 소자 구조물의 또 다른 예를 나타내는 도면으로서, 봉지제(4)에 형광체가 포함되어 있다. YAG, Silicate, Nitride 형광체 등을 이용하여 원하는 색의 광을 발광할 수 있게 된다.
도 12은 본 개시에 따른 반도체 소자 구조물의 또 다른 예를 나타내는 도면으로서, 봉지제(4) 내에 또는 봉지제(4) 하부에 형광체층(8)이 형성되어 있다. 이는 봉지제(4) 내에서 형광체를 침전시키거나, 별도로 스핀 코팅하거나, 휘발성 액체에 담긴 형광체를 도포한 후 휘발시켜 형광체만 남긴 후 봉지제(4)로 덮음으로써 형성할 수 있다. 필요에 따라 복수의 형광체층(8)의 형성도 가능하다.
도 13은 본 개시에 따른 반도체 소자 구조물의 또 다른 예를 나타내는 도면으로서, 봉지제(4)에 광 취출 효율을 높이기 위한 거친 표면 또는 요철(4g)이 형성되어 있다. 거친 표면(4g)은 pressing, 나노임프린트(nanoimprint) 등의 성형을 통해 형성이 가능하다. 또한 bead 물질을 도포한 후, 에칭, 샌드블라스팅 등의 방법을 통해 형성하는 것도 가능하다. 거친 표면(4g)은 플레이트(1)의 분리 이전 또는 분리 이후에 형성될 수 있다.
도 14는 본 개시에 따른 반도체 소자 구조물의 또 다른 예를 나타내는 도면으로서, 봉지제(4)에 렌즈(4c)가 형성되어 있다. 바람직하게는 렌즈(4c)는 봉지제와 일체로 형성된다. 이러한 일체형 렌즈(4c)는 압축성형 등으로 방법으로 형성하는 것이 가능하다.
도 16 내지 도 18은 도 11에 도시된 반도체 소자 구조물을 제조하는 방법의 일 예를 나타내는 도면으로서, 반도체 소자(2,2)를 접착제(3)를 이용하여 플레이트(1)에 고정한 상태에서, 형광체가 함유된 봉지제(4), 즉 형광체층(8)으로 덮는다. 다음으로 도 17에 도시된 바와 같이, 플레이트(1)를 제거하고, 도 18에 도시된 바와 같이, 반도체 소자(2,2)를 서로 분리한다. 이러한 방법을 통해, 소위 형광체 내지는 형광체층(8)을 반도체 소자(2,2)에 컨포멀하게 코팅하는 것이 가능해진다. 형광체층(8)의 높이(V)와 폭(H)을 동일하게 하는 것이 가능하다. 이러한 방식의 컨포멀 코팅(봉지제(4)의 제거 내지는 형광체층(8)의 제거를 통한 컨포멀 코팅의 구성)은 종래에 스핀코팅, 스크린 프린팅 등의 방식으로 진행되던 컨포멀 코팅과 크게 구분된다.
도 19는 본 개시에 따라 반도체 소자 구조물을 제조하는 방법의 또 다른 예를 나타내는 도면으로서, 도 18에서 제조된 반도체 소자(2,2)를 다시 접착제(3)를 이용하여, 플레이트(1) 위에 올려놓고, 다시 봉지제(4)를 도포한다. 봉지제(4)에 다른 형광체 및/또는 광 산란을 위한 소형 입자를 추가하는 것도 가능하다. 종래와 달리 형광체층(8)과 봉지제(4) 간의 경계면에 대한 용이한 형상 제어가 가능해진다. 또한 형광체층(8)의 외형 제어 및 형광체층(8)을 덮는 봉지제(4)의 외형 제어 모두가 용이하게 가능해진다. 반대로, 외부의 봉지제(4)에 형광체를 도입하고, 내부의 봉지제(4)에는 형광체를 도입하지 않을 수도 있다. 즉, 외부의 봉지제(4)가 형광체층이 되도록 하는 것도 가능하다. 이 경우에도 양자의 경계면 및 외형 제어가 가능하다는 점은 동일하다. 형광체층(8)을 구성하는 봉지제(4)와 형광체층(8)를 덮는 봉지제(4)는 서로 동일한 물질일 수 있지만, 서로 다른 특성(굴절률, 경도, 광투과성, 경화 속도 등)의 물질일 수도 있다. 따라서 본 실시예는 두 번 이상의 동일한 또는 서로 다른 봉지제가 적용되는 본 개시에 따른 반도체 소자 구조물의 제조 방법으로 확장될 수 있다. 형광체층(8)을 가지는 경우에, 반도체 소자는 반도체 발광소자이 적용이 적합하지만, 형광체가 함유되지 않은 경우에, 반도체 소자는 반드시 반도체 발광소자일 필요는 없다.
도 20은 본 개시에 따라 반도체 소자 구조물을 제조하는 방법의 또 다른 예를 나타내는 도면으로서, 도 16에서와 같이 형광체층(8)을 형성한 다음, 플레이트(1)를 제거하는 공정 없이, 형광체층(8)을 일부 제거하여 반도체 소자(2,2) 각각에 형광체층(8)이 컨포멀하게 형성된다. 이 후, 도 19에 따른 공정이 진행되는 경우에, 플레이트(1)의 사용을 한번으로 줄일 수 있는 이점을 가진다.
도 21 내지 도 23은 도 12에 도시된 반도체 소자 구조물을 제조하는 방법의 일 예를 나타내는 도면으로서, 도 20에 도시된 방법과 달리, 형광체층(8)을 완전히 제거하여 분리하지 않고, 일부를 남겨 두고 제거한다. 다음으로, 도 22에 도시된 바와 같이 봉지제(4)를 덮고, 도 23에 도시된 바와 같이, 반도체 소자(2,2)를 분리함으로써, 반도체 소자 구조물이 제조된다. 봉지제(4)가 도 13에 도시된 형상, 도 14에 도시된 형상 등 다양한 형상을 가질 수 있음은 물론이다.
도 24는 도 14에 도시된 반도체 소자 구조물을 제조하는 방법의 일 예를 나타내는 도면으로서, 도 16에 도시된 바와 같이, 반도체 소자(2,2)를 접착제(3)를 이용하여 플레이트(1)에 고정한 상태에서, 형광체가 함유된 봉지제(4), 즉 형광체층(8)으로 덮는다. 다음으로, 반도체 소자(2,2)를 분리하는 것이 아니라, 다시 봉지제(4)를 덮는다. 다음으로, 바람직하게는 봉지제(4)가 완전히 경화되기 전에, 도 25에 도시된 것과 같은 홀(11h)이 형성된 마스크(11)를 이용하여, 봉지제(4)를 가압하여, 렌즈(4c)를 형성한다. 마스크(11)는 예를 들어, 스테인레스 스틸, 알루미나 등의 재질로 이루어질 수 있으며, 특별한 제한이 있는 것은 아니다. 홀(11h)의 높이에도 특별히 제한이 있는 것은 아니며, 가압시 렌즈(4c)가 홀(11h) 내에 위치할 수 있으며, 홀(11h) 밖으로 노출될 수도 있다. 바람직하게는 마스크(11)를 그대로 둔 상태에서 렌즈(4c)가 형성된 봉지제(4c)를 경화시킨다. 필요에 따라, 마스크(11)의 이동을 제한하여, 렌즈(4c)의 높이를 조절할 수 있는 스톱퍼(12)가 구비될 수 있다. 예를들어, 형광체층(4,8)의 두께는 봉지제에 담는 형광체의 농도에 따라 다르나 0.01mm~수 mm까지 도포한 후, 봉지제 경화 온도 50~200도 범위에서 일백~일만 초 범위로 열처리한다. 그 후 상부 봉지제(4)의 두께는 만들고자 하는 렌즈(4c) 두께에 따라 달라지며, 보통 0.01mm~수 mm로 한다. 렌즈(4c)를 형성하기 위해서 상부 봉지제(4)를 마스크(11)가 놓인 상태에서 봉지제 경화 온도 50~200도에서 일백~일천 초, 마스크(11)를 제거한 상태에서 일백~일천 초 더 경화한다. 봉지제 종류 및 두께에 따라 달라지나, 예를 들어 실리콘 에폭시 성분의 봉지제를 0.6mm 두께로 하여 만든 렌즈(4c)의 반경은 약 0.7mm로 형성할 수 있다. 렌즈(4c)는 도 26에 도시된 것과 같이 복수의 렌즈(4c)가 형성될 수도 있다. 홀(11h)의 크기에 특별한 제한이 있는 것은 아니지만, 홀(11h)은 형성될 렌즈(4c)의 크기에 따라, 복수 개가 형성되는 경우에는 수 나노미터에서 수십 마이크로미터의 크기를 가질 수 있으며, 한 개가 형성되는 경우에 수백 마이크로미터에서 수 밀리미터의 크기를 가질 수 있다. 일반적으로 단면이 원형인 홀(11h)이 사용되지만 (그래서 전체로서 돔(dome) 형태인 렌즈(4c)가 형성되지만), 단면이 타원형, 사각형, 삼각형 등 다양한 형태의 홀(11h)이 이용될 수 있음은 물론이다. 필요에 따라, 하부 봉지제(4)만을 형광체층(8)으로 형성하여도 좋고, 상부 봉지제(4)에도 형광체를 함유하여도 좋고, 하부 봉지제(4)와 상부 봉지제(4)를 별도로 형성하지 않고, 일체로 형성하여도 좋다(필요에 따라 봉지제(4)가 한번만 도포될 수도 있다). 하부 봉지제(4)와 상부 봉지제(4)에 다른 형광체를 구비하는 것도 가능하며, 예를 들어 하부 봉지제(4)에 황색 형광체를 구비하고, 상부 봉지제(4)에 g황색 보다 장파장의 오렌지색(Orange) 및/또는 적색 형광체를 구비하는 것이 가능하다. 렌즈(4c)의 형성은 플레이트(1)의 제거 이전 및 이후에 행해질 수 있다. 도 19에 도시된 상태처럼 플레이트(1)의 제거 이전에, 렌즈(4c)를 형성할 수 있음을 물론이다. 또한 절연막(6) 및/또는 외부전극(81,91)이 형성된 상태에서 봉지제(4)를 코팅하고, 렌즈(4c)가 형성될 수 있음은 물론이다. 또한 도 17에 도시된 바와 같이, 플레이트(1)가 제거된 상태에서, 렌즈(4c)가 형성될 수 있음은 물론이다. 이때 플레이트(1)가 제거된 후에, 절연막(6) 및/또는 외부전극(81,91)이 먼저 형성되어도 좋고, 렌즈(4c)를 형성한 후에 절연막(6) 및/또는 외부전극(81,91)을 형성할 수 있음은 물론이다. 절연막(6) 및/또는 외부전극(81,91)을 형성한 후에 렌즈(4c)를 형성하는 경우에, 필요한 경우에, 플레이트(1)를 재차 붙여서 렌즈(4c)를 형성하거나, 절단 작업을 할 수 있다.
예를 들어, 렌즈(4c)가 형성되는 패키지 제품의 경우, 형광체가 포함된 하부 봉지제(4,8)를 먼저 도포, 경화시킨 후 상부 봉지제(4)를 그 위에 도포, 경화 및 렌즈 성형을 진행한다. 후에 플레이트(1)를 분리하여 전극(80,90)을 노출시킨 다음, 다시 플레이트(1; 앞에서 사용된 플레이트를 그대로 사용할 필요는 없다.)를 접착제를 이용하여 렌즈(4c) 측에 부착하여 절연막(6)을 형성할 수도 있으며, 또한 플레이트(1) 없이 절연막(6)을 형성할 수도 있다. 이후, 전사 테이프와 같은 재료를 이용하여 전극(80,90) 측 또는 절연막(6) 측에 부착한다(플레이트(1)가 있는 경우 플레이트(1)를 제거한다.). 이후 렌즈(4c) 측에서 절연막(6) 측으로 다이싱을 진행하여 각개의 패키지로 분할할 수 있다. 또한 봉지제(4)를 경화한 후에, 플레이트(1)를 제거한 다음, 새로운 플레이트(1)를 봉지제(4) 위에 부착한 상태에서 전극(80,90)이 노출된 면 위로 절연막(6)을 형성하고, 절연막(6) 측에서 봉지제(4) 측으로 다이싱을 진행하여 분할한 후, 봉지제(4)에 부착된 플레이트(1)를 탈착시키면서, 전극(80,90) 측을 전사 시트로 옮기는 것도 가능하다.
도 27은 도 24에 도시된 렌즈를 형성하는 원리를 설명하는 도면으로서, 홀(11h)이 형성된 마스크(11)를 이용하여 봉지제(4)를 가압하면, 홀(11h)의 상부가 개방되어 있으므로, 가압된 봉지제(4c)가 홀(11h)에 유입되어 봉지제(4c) 자체의 표면장력에 의해 렌즈(4c)를 형성하게 되는 것이다.
도 28은 본 개시에 따른 반도체 소자 구조물의 또 다른 예를 나타내는 도면으로서, 반도체 소자(2)를 둘러싸는 하부 봉지제(4) 또는 형광체층(8)이 원형의 단면 형상을 가진다. 이러한 예는 본 개시에 따른 반도체 소자 구조물의 제조 방법을 통해, 종래의 포탄형 반도체 발광소자를 구현할 수 있음을 의미한다. 다만, 별도의 리드 프레임 없이 플립 칩을 가지는 형태의 포탄형 반도체 발광소자를 구현할 수 있게 된다.
도 29는 도 28에 도시된 반도체 소자 구조물을 제조하는 방법의 일 예를 나타내는 도면으로서, 예를 들어 도 24에 도시된 것과 같은 방법을 통해 렌즈(4c)를 형성한 후에, 블레이드를 이용하는 쏘잉 대신에, 단면이 원형인 핀(13a; Pin)을 구비한 커터(13)를 이용하여, 반도체 소자(2)를 봉지제(4)와 함께 절단함으로써 제조하는 것이 가능하다. 이 때, 도 28에 도시된 바와 같이, 형광체층(8)의 상면(4s)이 노출되도록 절단하는 것이 가능하다. 렌즈(4c)의 형상을 그대로 살리는 이점이 있다. 커터(13)의 형상은 원형에 한정되지 않고, 필요에 따라 사각형, 타원형, 삼각형 등 다양한 형상을 가질 수 있음은 물론이다.
도 30은 본 개시에 따른 반도체 소자 구조물의 또 다른 예를 나타내는 도면으로서, 도 28에 도시된 반도체 소자(2)와 달리 형광체층(8)의 상면이 노출되어 있지 않다. 도 29에 도시된 방법을 이용하는 경우에, 핀(13a)의 폭을 좁혀서 절단함으로써, 이러한 형태의 반도체 소자 구조물을 제조할 수 있다.
도 31은 도 30에 도시된 반도체 소자 구조물을 제조하는 방법의 다른 예를 나타내는 도면으로서, 형광체층(4,8)과 봉지제(4)를 도포한 다음, 핀(13a)을 구비하는 커터(13)를 이용하여, 절단 공정에서 렌즈(4c)를 별도의 공정 없이 직접 형성한다. 절단 상태에서 커터(13)를 바로 제거하지 않고, 렌즈(4c)가 경화될 시간을 부여함으로써, 렌즈(4c)를 안정적으로 제조할 수 있게 된다. 하부 봉지제(4)와 상부 봉지제(4) 모두에 형광체를 함유하는 등 다양한 조합이 가능함은 물론이다.
도 32는 핀을 가지는 커터의 다른 예를 나타내는 도면으로서, 핀(13a)의 하부(13b)를 더 넓게 형성하여, 도 28에 도시된 반도체 소자 구조물을 절단 공정에서 만들 수 있다.
도 33은 핀을 가지는 커터의 또 다른 예를 나타내는 도면으로서, 핀(13a)의 하부(13b)의 단면이 상부의 원형 단면과 달리 사각형의 단면을 가진다. 이러한 커터(13)를 이용함으로써, 하부는 사각형이고, 렌즈는 돔형상인 반도체 소자 구조물을 만들 수 있게 된다. 상하부 단면의 다양한 조합이 가능함은 물론이다.
도 34는 핀을 가지는 커터의 또 다른 예를 나타내는 도면으로서, 핀(13a)의 상부가 개방되어 표면장력을 이용하여 렌즈를 형성하는 것이 아니라, 핀(13a)이 폐쇄되어 렌즈 형상의 상부면(13c)을 가진다.
도 35는 도 30에 도시된 반도체 소자 구조물을 제조하는 방법의 또 다른 예를 나타내는 도면으로서, 커터(13)로 한번에 상부 봉지제(4) 및 하부 봉지제(4,8)를 절단하는 것이 아니라, 커터(13)를 일정 깊이로 내려서 렌즈(4c)를 먼저 형성한 다음, 전체를 절단하여, 반도체 소자 구조물을 제조한다.
도 36은 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 다른 예를 나타내는 도면으로서, 봉지제(4)에 렌즈(4c)가 구비되어 노출된 전극(800,900)이 노출되도록 절연막(6)이 봉지제(4)에 형성되어 있다. 이외에도 본 개시에 설명된 다양한 형태의 조합이 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물로서 가능하다.
도 37은 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 또 다른 예를 나타내는 도면으로서, 하나의 렌즈(4c)와 복수의 반도체 소자(2A,2B)가 구비되어 있으며, 렌즈(4c)가 봉지제(4)와 일체로 형성되어 있고, 전극(80A,90A,80B,90B)이 봉지제(4) 밖으로 노출되어 있다. 복수의 반도체 소자(2A,2B)는 플립 칩형 반도체 발광소자일 수 있다. 렌즈(4c)의 크기는 렌즈(4c)의 지름 내에 복수의 반도체 소자(2A,2B)가 위치하도록 포함되는 크기여도 좋고, 사양에 따라, 복수의 반도체 소자(2A,2B)의 일부에 걸치도록 형성되는 것도 가능하며, 어떠한 경우이든 렌즈(4c)는 복수의 반도체 소자(2A,2B) 모두에 대한 공통의 렌즈(4c)로서 기능하며, 이 기능에 따라 다양한 형상을 가질 수 있다. 복수의 반도체 소자(2A,2B)의 갯수에 특별한 제한이 있는 것은 아니며, 반도체 소자 구조물의 폭 및 깊이 방향으로 복수 개가 배치될 수 있다. 예를 들어, 폭 방향(도 37에 도시된 방향)으로 두 개가 배치되고, 이에 수직한 방향(깊이 방향)으로 각각 두 개가 배치되어, 4개의 반도체 소자가 하나의 렌즈 아래에 배치될 수 있다(도 44 참조). 이러한 구조를 위해, 특별히 다른 방법이 필요한 것은 아니며, 예를 들어, 위에 제시된 방법들에서 마스크(11) 및 커터(13)의 크기를 조절함으로써 가능하다. 도 37에 도시된 구조를 바탕으로, 위에서 언급된 다양한 구성들(6,8)이 도입될 수 있음은 물론이다. 이러한 구조는 하나의 렌즈(4c) 아래에 복수의 반도체 소자(2A,2B)가 구비되어 반도체 소자 구조물 내에 많은 열이 발생할 수 있음에도 불구하고, 전극(80A,90A,80B,90B)을 통해 쉽게 열을 방출할 수 있는 한편, 렌즈(4c)를 쉽게 만들 수 있는 이점을 가진다.
도 38은 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 또 다른 예를 나타내는 도면으로서, 전극(80A,90A,80B,90B)이 절연막(6)을 통해 외부로 노출되어 있다. 전극(80A,90A,80B,90B)은 회로가 있는 필름 또는 유리, PCB 등에 도전성 접착체 또는 Ag 페이스트 또는 메탈 솔더 등에 의해 직접 연결될 수 있다. 바람직하게는 상방으로 빛을 반사하기 위해 백색 절연막(6)이 구비된다.
도 39는 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 또 다른 예를 나타내는 도면으로서, 복수의 반도체 소자(2A,2B)가 형광체층(8)에 의해 둘러싸여 있다. 형광체층(8)이 렌즈(4c)가 구비된 봉지제(4)에 의해 둘러싸여 있다. 형광체층(8)은 도 12, 16-23에 설명된 다양한 방법에 의해 형성될 수 있으며, 이에 제한되지 않는다. 렌즈(4c)는 도 30에 도시된 바와 같이, 봉지제(4) 상면 전체를 덮는 형태일 수 있지만, 봉지제(4)의 상면(4t)이 노출되는 형태로 형성될 수 있다. 도 33에서 설명된 커터(13)를 이용함으로써, 렌즈(4c)의 단면과 렌즈(4c) 아래의 봉지제(4)의 단면을 다르게 형성하는 것이 가능하며, 예를 들어, 렌즈(4c)의 단면을 원형으로 하고, 렌즈(4c) 아래의 봉지제(4) 단면을 사각형으로 하는 것이 가능하다.
도 40은 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 또 다른 예를 나타내는 도면으로서, 복수의 반도체 소자(2A,2B)의 전극(80A,90B)이 외부 전극(89)에 의해 전기적으로 연결되어 있다. 도 8에서 설명된 바와 같이, 다양한 전기적 연결이 가능하다. 바람직하게는 봉지제(4)와 외부 전극(89) 사이에 절연막(6)이 개재된다. 전극(80B,90A)에 별도로 외부 전극이 구비될 수 있음은 물론이다.
도 41은 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 또 다른 예를 나타내는 도면으로서, 전극(80A,80B,90A,90B)에 각각 외부 전극(81A,81B,91A,91B)이 구비되어 있다. 바람직하게는, 절연막(6) 봉지제(4)와 이들 사이에 개재된다.
도 42는 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 또 다른 예를 나타내는 도면으로서, 도 37 내지 도 41에 도시된 예가 조합된 예를 나타낸다. 이외에도 다양한 조합이 가능하다.
도 43 및 도 45는 본 개시에 따른 렌즈를 구비하는 반도체 소자 구조물의 또 다른 예를 나타내는 도면으로서, 도 43은 도 45에 도시된 반도체 소자 구조물을 A-A 라인을 따라 잘라 본 단면도이다. 렌즈(4c)가 복수의 반도체 소자(2A,2B) 위에서 볼록하게 형성되어 있으며, 전체로서 하나의 렌즈(4c)를 형성하고 있다.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.
(1) 반도체 소자 구조물에 있어서, 두 개의 전극을 가지며, 플립 칩형 반도체 발광소자인 반도체 소자; 두 개의 전극이 노출되도록 반도체 소자를 둘러싸며, 두 개의 전극이 노출되는 측의 대향하는 측에 렌즈를 구비하는 봉지제; 그리고, 두 개의 전극이 노출되는 측에 두 개의 전극을 노출되도록 봉지제에 형성되는 절연막;을 포함하는 것을 특징으로 하는 반도체 소자 구조물.
(2) 렌즈 주변의 봉지제 상면이 노출되어 있는 것을 특징으로 하는 반도체 소자 구조물.
(3) 봉지제의 상면이 렌즈에 의해 덮혀 있는 것을 특징으로 하는 반도체 소자 구조물.
(4) 렌즈를 포함하는 봉지제 전체의 단면이 원형인 것을 특징으로 하는 반도체 소자 구조물.
(5) 절연막은 백색 절연막인 것을 특징으로 하는 반도체 소자 구조물.
(6) 반도체 소자 구조물을 제조하는 방법에 있어서, 플레이트 위에 반도체 발광소자인 반도체 소자를 위치 고정하는 단계;로서, 반도체 소자의 전극이 플레이트를 향하도록 위치 고정하는 단계; 반도체 소자를 봉지제로 덮는 단계; 홀이 형성된 마스크를 이용하여 봉지제를 가압하여, 홀 내로 봉지제가 유입되도록 하여 반도체 소자 위에 렌즈를 형성하는 단계; 그리고, 렌즈가 형성된 봉지제와 반도체 발광소자를 함께 절단하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(7) 렌즈를 형성하는 단계에서 마스크로 봉지제를 가압한 상태에서 렌즈를 경화하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(8) 렌즈를 형성하는 단계에서 마스크가 봉지제를 누르는 높이를 제한하는 스톱퍼를 이용하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(9) 봉지제는 반도체 소자를 둘러싸는 하부 봉지제와 렌즈가 형성되는 상부 봉지제를 포함하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(10) 하부 봉지제는 형광체층인 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(11) 절단하는 단계에서, 봉지제에 하나의 렌즈가 구비되는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(12) 절단하는 단계에서, 봉지제에 복수 개의 렌즈가 구비되는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(13) 절단하는 단계에 앞서, 전극을 노출시키는 절연막 및 전극과 전기적으로 연결되는 외부 전극 중의 적어도 하나를 형성하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(14) 절단하는 단계에 앞서, 플레이트를 제거하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(15) 반도체 소자 구조물을 제조하는 방법에 있어서, 플레이트 위에 반도체 발광소자인 반도체 소자를 위치 고정하는 단계;로서, 반도체 소자의 전극이 플레이트를 향하도록 위치 고정하는 단계; 반도체 소자를 봉지제로 덮는 단계; 반도체 소자의 전극과 대향하는 측의 봉지제에 렌즈를 형성하는 단계; 그리고, 핀을 구비하는 커터를 이용하여 봉지제를 가압하여, 렌즈가 형성된 봉지제와 반도체 소자를 함께 절단하는 단계;를 포함하는 반도체 소자 구조물을 제조하는 방법.
(16) 절단하는 단계에서, 렌즈 주변의 봉지제 상면이 노출되는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(17) 렌즈가 커터에 의해 형성되는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(18) 커터는 봉지제를 한번에 가압하여, 렌즈를 형성하는 단계와 절단하는 단계가 이루어지는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(19) 커터는 봉지제를 일부 가압하여 렌즈를 형성한 다음, 봉지제를 추가로 가압하여 절단하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(20) 핀의 하부 형상과 핀의 상부 형상이 다른 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(21) 핀의 하부의 폭이 핀의 상부 폭보다 넓은 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(22) 핀의 하부가 사각 단면을 가지고, 핀의 상부 단면이 원형의 단면을 가지는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
(23) 두 개의 전극을 가지며, 플립 칩형 반도체 발광소자가 복수 개 구비되는 것을 특징으로 하는 반도체 소자 구조물.
(24) 반도체 소자 구조물에 있어서, 복수의 반도체 소자;로서, 각각이 두 개의 전극을 가지며, 플립 칩형 반도체 발광소자인 복수의 반도체 소자; 그리고, 두 개의 전극이 노출되도록 반도체 소자를 둘러싸며, 두 개의 전극이 노출되는 측의 대향하는 측에서 복수의 반도체 소자 위에 위치하는 렌즈를 일체로 구비하는 봉지제;를 포함하는 것을 특징으로 하는 반도체 소자 구조물.
(25) 두 개의 전극이 노출되는 측에 두 개의 전극이 노출되도록 봉지제에 형성되는 절연막;을 포함하는 것을 특징으로 하는 반도체 소자 구조물.
(26) 절연막은 백색 절연막인 것을 특징으로 하는 반도체 소자 구조물.
(27) 각각의 반도체 소자와 봉지제 사이에서 각각의 반도체 소자를 둘러싸는 형광체층;을 더 포함하는 것을 특징으로 하는 반도체 소자 구조물.
(28) 렌즈 주변의 봉지제 상면이 노출되는 것을 특징으로 하는 반도체 소자 구조물.
(29) 렌즈의 단면과 렌즈 아래의 봉지제의 단면 형상이 서로 다른 것을 특징으로 하는 반도체 소자 구조물.
(30) 렌즈는 원형 단면을 가지고, 렌즈 아래의 봉지제는 사각 단면을 가지는 것을 특징으로 하는 반도체 소자 구조물.
(31) 두 개의 전극이 노출되는 측에서, 복수의 반도체 소자 중의 하나와 복수의 반도체 소자 중의 다른 하나를 전기적으로 연결하는 외부 전극;을 포함하는 것을 특징으로 하는 반도체 소자 구조물.
(32) 두 개의 전극 각각은 외부 전극을 구비하며, 외부 전극과 봉지제 사이에 절연막이 개재되는 것을 특징으로 하는 반도체 소자 구조물.
(33) 각각의 반도체 소자와 봉지제 사이에서 각각의 반도체 소자를 둘러싸는 형광체층;을 더 포함하며, 렌즈 주변의 봉지제 상면이 노출되어 있고, 렌즈는 원형 단면을 가지고, 렌즈 아래의 봉지제는 사각 단면을 가지는 것을 특징으로 하는 반도체 소자 구조물.
(34) 렌즈는 복수의 반도체 소자 각각의 위에서 볼록하게 형성되어 있는 것을 특징으로 하는 반도체 소자 구조물.
본 개시에 따른 하나의 반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물에 의하면, 반도체 소자 구조물 또는 패키지를 쉽게 제조할 수 있게 된다.
또한 본 개시에 따른 다른 반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물에 의하면, 봉지제가 캐리어로 역할하는 구조물 또는 패키지를 만들 수 있게 된다.
또한 본 개시에 따른 또 다른 반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물에 의하면, 투광성 봉지제가 캐리어로 역할하는 발광소자 구조물 또는 패키지를 만들 수 있게 된다.
또한 본 개시에 따른 또 다른 반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물에 의하면, 복수의 반도체 소자를 쉽게 전기적으로 연결할 수 있게 된다.
또한 본 개시에 따른 또 다른 반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물에 의하면, 다른 구조의 반도체 소자들을 쉽게 전기적으로 연결할 수 있게 된다.
또한 본 개시에 따른 또 다른 반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물에 의하면, 렌즈가 구비된 반도체 소자를 용이하게 제조할 수 있게 된다.
또한 본 개시에 따른 또 다른 반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물에 의하면, 복수의 반도체 소자와 하나의 렌즈가 구비된 반도체 소자를 용이하게 제조할 수 있게 된다.

Claims (37)

  1. 반도체 소자 구조물에 있어서,
    두 개의 전극을 가지며, 플립 칩형 반도체 발광소자인 반도체 소자;
    두 개의 전극이 노출되도록 반도체 소자를 둘러싸며, 두 개의 전극이 노출되는 측의 대향하는 측에 렌즈를 구비하는 봉지제; 그리고,
    두 개의 전극이 노출되는 측에 두 개의 전극이 노출되도록 봉지제에 형성되는 절연막;을 포함하는 것을 특징으로 하는 반도체 소자 구조물.
  2. 청구항 1에 있어서,
    렌즈 주변의 봉지제 상면이 노출되어 있는 것을 특징으로 하는 반도체 소자 구조물.
  3. 청구항 1에 있어서,
    봉지제의 상면이 렌즈에 의해 덮혀 있는 것을 특징으로 하는 반도체 소자 구조물.
  4. 청구항 1에 있어서,
    렌즈를 포함하는 봉지제 전체의 단면이 원형인 것을 특징으로 하는 반도체 소자 구조물.
  5. 청구항 1에 있어서,
    절연막은 백색 절연막인 것을 특징으로 하는 반도체 소자 구조물.
  6. 반도체 소자 구조물을 제조하는 방법에 있어서,
    플레이트 위에 반도체 발광소자인 반도체 소자를 위치 고정하는 단계;로서, 반도체 소자의 전극이 플레이트를 향하도록 위치 고정하는 단계;
    반도체 소자를 봉지제로 덮는 단계;
    홀이 형성된 마스크를 이용하여 봉지제를 가압하여, 홀 내로 봉지제가 유입되도록 하여 반도체 소자 위에 렌즈를 형성하는 단계; 그리고,
    렌즈가 형성된 봉지제와 반도체 소자를 함께 절단하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  7. 청구항 6에 있어서,
    렌즈를 형성하는 단계에서 마스크로 봉지제를 가압한 상태에서 렌즈를 경화하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  8. 청구항 6에 있어서,
    렌즈를 형성하는 단계에서 마스크가 봉지제를 누르는 높이를 제한하는 스톱퍼를 이용하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  9. 청구항 6에 있어서,
    봉지제는 반도체 소자를 둘러싸는 하부 봉지제와 렌즈가 형성되는 상부 봉지제를 포함하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  10. 청구항 9에 있어서,
    하부 봉지제는 형광체층인 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  11. 청구항 6에 있어서,
    절단하는 단계에서, 봉지제에 하나의 렌즈가 구비되는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  12. 청구항 6에 있어서,
    절단하는 단계에서, 봉지제에 복수 개의 렌즈가 구비되는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  13. 청구항 10에 있어서,
    렌즈를 형성하는 단계에서 마스크로 봉지제를 가압한 상태에서 렌즈를 경화하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  14. 청구항 6에 있어서,
    절단하는 단계에 앞서, 전극을 노출시키는 절연막 및 전극과 전기적으로 연결되는 외부 전극 중의 적어도 하나를 형성하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  15. 청구항 6에 있어서,
    절단하는 단계에 앞서, 플레이트를 제거하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  16. 반도체 소자 구조물을 제조하는 방법에 있어서,
    플레이트 위에 반도체 발광소자인 반도체 소자를 위치 고정하는 단계;로서, 반도체 소자의 전극이 플레이트를 향하도록 위치 고정하는 단계;
    반도체 소자를 봉지제로 덮는 단계;
    반도체 소자의 전극과 대향하는 측의 봉지제에 렌즈를 형성하는 단계; 그리고,
    핀을 구비하는 커터를 이용하여 봉지제를 가압하여, 렌즈가 형성된 봉지제와 반도체 소자를 함께 절단하는 단계;를 포함하는 반도체 소자 구조물을 제조하는 방법.
  17. 청구항 16에 있어서,
    렌즈가 홀을 구비하는 마스크에 의해 형성되는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  18. 청구항 16에 있어서,
    절단하는 단계에서, 렌즈 주변의 봉지제 상면이 노출되는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  19. 청구항 17에 있어서,
    절단하는 단계에서, 렌즈 주변에 봉지제 상면이 노출되는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  20. 청구항 16에 있어서,
    렌즈가 커터에 의해 형성되는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  21. 청구항 20에 있어서,
    커터는 봉지제를 한번에 가압하여, 렌즈를 형성하는 단계와 절단하는 단계가 이루어지는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  22. 청구항 20에 있어서,
    커터는 봉지제를 일부 가압하여 렌즈를 형성한 다음, 봉지제를 추가로 가압하여 절단하는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  23. 청구항 16에 있어서,
    핀의 하부 형상과 핀의 상부 형상이 다른 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  24. 청구항 23에 있어서,
    핀의 하부의 폭이 핀의 상부 폭보다 넓은 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  25. 청구항 23에 있어서,
    핀의 하부가 사각 단면을 가지고, 핀의 상부 단면이 원형의 단면을 가지는 것을 특징으로 하는 반도체 소자 구조물을 제조하는 방법.
  26. 청구항 1에 있어서,
    두 개의 전극을 가지며, 플립 칩형 반도체 발광소자가 복수 개 구비되는 것을 특징으로 하는 반도체 소자 구조물.
  27. 반도체 소자 구조물에 있어서,
    복수의 반도체 소자;로서, 각각이 두 개의 전극을 가지며, 플립 칩형 반도체 발광소자인 복수의 반도체 소자; 그리고,
    두 개의 전극이 노출되도록 반도체 소자를 둘러싸며, 두 개의 전극이 노출되는 측의 대향하는 측에서 복수의 반도체 소자 위에 위치하는 렌즈를 일체로 구비하는 봉지제;를 포함하는 것을 특징으로 하는 반도체 소자 구조물.
  28. 청구항 27에 있어서,
    두 개의 전극이 노출되는 측에 두 개의 전극이 노출되도록 봉지제에 형성되는 절연막;을 포함하는 것을 특징으로 하는 반도체 소자 구조물.
  29. 청구항 27에 있어서,
    절연막은 백색 절연막인 것을 특징으로 하는 반도체 소자 구조물.
  30. 청구항 27에 있어서,
    각각의 반도체 소자와 봉지제 사이에서 각각의 반도체 소자를 둘러싸는 형광체층;을 더 포함하는 것을 특징으로 하는 반도체 소자 구조물.
  31. 청구항 27에 있어서,
    렌즈 주변의 봉지제 상면이 노출되는 것을 특징으로 하는 반도체 소자 구조물.
  32. 청구항 27에 있어서,
    렌즈의 단면과 렌즈 아래의 봉지제의 단면 형상이 서로 다른 것을 특징으로 하는 반도체 소자 구조물.
  33. 청구항 32에 있어서,
    렌즈는 원형 단면을 가지고, 렌즈 아래의 봉지제는 사각 단면을 가지는 것을 특징으로 하는 반도체 소자 구조물.
  34. 청구항 27에 있어서,
    두 개의 전극이 노출되는 측에서, 복수의 반도체 소자 중의 하나와 복수의 반도체 소자 중의 다른 하나를 전기적으로 연결하는 외부 전극;을 포함하는 것을 특징으로 하는 반도체 소자 구조물.
  35. 청구항 28에 있어서,
    두 개의 전극 각각은 외부 전극을 구비하며,
    외부 전극과 봉지제 사이에 절연막이 개재되는 것을 특징으로 하는 반도체 소자 구조물.
  36. 청구항 27에 있어서,
    각각의 반도체 소자와 봉지제 사이에서 각각의 반도체 소자를 둘러싸는 형광체층;을 더 포함하며,
    렌즈 주변의 봉지제 상면이 노출되어 있고,
    렌즈는 원형 단면을 가지고, 렌즈 아래의 봉지제는 사각 단면을 가지는 것을 특징으로 하는 반도체 소자 구조물.
  37. 청구항 27에 있어서,
    렌즈는 복수의 반도체 소자 각각의 위에서 볼록하게 형성되어 있는 것을 특징으로 하는 반도체 소자 구조물.
PCT/KR2014/000648 2013-01-23 2014-01-23 반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물 WO2014116035A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2013-0007326 2013-01-23
KR10-2013-0007327 2013-01-23
KR20130007327A KR101494440B1 (ko) 2013-01-23 2013-01-23 반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물
KR1020130007326A KR101460742B1 (ko) 2013-01-23 2013-01-23 반도체 소자 구조물을 제조하는 방법
KR1020130014436A KR101465708B1 (ko) 2013-02-08 2013-02-08 반도체 소자 구조물을 제조하는 방법
KR10-2013-0014436 2013-02-08

Publications (1)

Publication Number Publication Date
WO2014116035A1 true WO2014116035A1 (ko) 2014-07-31

Family

ID=51227777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000648 WO2014116035A1 (ko) 2013-01-23 2014-01-23 반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물

Country Status (1)

Country Link
WO (1) WO2014116035A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3410500A4 (en) * 2016-01-27 2019-08-14 Omron Corporation LIGHT EMITTING DEVICE, BACKLIGHT DEVICE, AND METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227119A (ja) * 2007-03-13 2008-09-25 Shin Etsu Chem Co Ltd 発光ダイオードチップとレンズとの一体化構造物及びその製造方法
KR20100060867A (ko) * 2008-11-28 2010-06-07 삼성전기주식회사 웨이퍼 레벨 패키지의 제조방법
KR100986468B1 (ko) * 2009-11-19 2010-10-08 엘지이노텍 주식회사 렌즈 및 렌즈를 갖는 발광 장치
KR20120032899A (ko) * 2010-09-29 2012-04-06 삼성엘이디 주식회사 Led 패키지 및 그 제조방법
KR20120051380A (ko) * 2010-11-12 2012-05-22 삼성엘이디 주식회사 발광소자 패키지 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227119A (ja) * 2007-03-13 2008-09-25 Shin Etsu Chem Co Ltd 発光ダイオードチップとレンズとの一体化構造物及びその製造方法
KR20100060867A (ko) * 2008-11-28 2010-06-07 삼성전기주식회사 웨이퍼 레벨 패키지의 제조방법
KR100986468B1 (ko) * 2009-11-19 2010-10-08 엘지이노텍 주식회사 렌즈 및 렌즈를 갖는 발광 장치
KR20120032899A (ko) * 2010-09-29 2012-04-06 삼성엘이디 주식회사 Led 패키지 및 그 제조방법
KR20120051380A (ko) * 2010-11-12 2012-05-22 삼성엘이디 주식회사 발광소자 패키지 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3410500A4 (en) * 2016-01-27 2019-08-14 Omron Corporation LIGHT EMITTING DEVICE, BACKLIGHT DEVICE, AND METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE
US10607967B2 (en) 2016-01-27 2020-03-31 Omron Corporation Light emitting device, backlight device, and manufacturing method of light emitting device

Similar Documents

Publication Publication Date Title
WO2013151387A1 (ko) 반도체 소자 구조물을 제조하는 방법
TWI407591B (zh) 白光二極體晶片及其形成方法
WO2012026757A2 (ko) 형광체 필름, 이의 제조방법, 형광층 도포 방법, 발광소자 패키지의 제조방법 및 발광소자 패키지
WO2012039528A1 (en) Light-emitting diode package and method of fabricating the same
KR101476771B1 (ko) 반도체 소자 구조물 및 반도체 소자 구조물을 제조하는 방법
US20070278513A1 (en) Semiconductor light emitting device and method of fabricating the same
WO2010150994A9 (ko) 파장변환물질층을 구비하는 발광 다이오드 및 이의 제조방법
CN106796968A (zh) 用于制造光电子半导体器件的方法和光电子半导体器件
KR20150107086A (ko) 반도체 소자 구조물 및 반도체 소자 구조물을 제조하는 방법
WO2016064216A1 (ko) 반도체 소자용 지지 기판, 이를 포함하는 반도체 장치 및 이를 제조하는 방법
TW201342672A (zh) 發光二極體封裝結構的製造方法
JP2001135861A (ja) 半導体発光装置及びその製造方法
KR20140026163A (ko) 반도체 소자 구조물을 제조하는 방법
KR101360324B1 (ko) 반도체 소자 구조물을 제조하는 방법
JP5737083B2 (ja) Led光源装置
WO2014116035A1 (ko) 반도체 소자 구조물을 제조하는 방법 및 이를 이용하는 반도체 소자 구조물
WO2013151391A1 (ko) 반도체 소자 구조물을 제조하는 방법 및 이를 이용한 반도체 소자 구조물
KR101460742B1 (ko) 반도체 소자 구조물을 제조하는 방법
WO2019112250A1 (ko) 발광소자 패키지 및 광원 장치
WO2017217672A1 (ko) 반도체 발광소자 및 이의 제조방법
KR101300463B1 (ko) 반도체 소자 구조물을 제조하는 방법
WO2014175682A1 (ko) 반도체 소자 구조물 및 반도체 소자 구조물을 제조하는 방법
KR101465708B1 (ko) 반도체 소자 구조물을 제조하는 방법
WO2018008901A1 (ko) 반도체 발광소자 및 이의 제조방법
KR101450216B1 (ko) 반도체 소자 구조물을 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743561

Country of ref document: EP

Kind code of ref document: A1