WO2014115996A1 - 투명 전도성 막 코팅 조성물, 투명 전도성 막 및 투명 전도성 막의 제조 방법 - Google Patents

투명 전도성 막 코팅 조성물, 투명 전도성 막 및 투명 전도성 막의 제조 방법 Download PDF

Info

Publication number
WO2014115996A1
WO2014115996A1 PCT/KR2014/000511 KR2014000511W WO2014115996A1 WO 2014115996 A1 WO2014115996 A1 WO 2014115996A1 KR 2014000511 W KR2014000511 W KR 2014000511W WO 2014115996 A1 WO2014115996 A1 WO 2014115996A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
coating composition
transparent conductive
sol
protective layer
Prior art date
Application number
PCT/KR2014/000511
Other languages
English (en)
French (fr)
Inventor
이성현
김경은
김성배
이병욱
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130086072A external-priority patent/KR102148154B1/ko
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to CN201480004715.2A priority Critical patent/CN104919011A/zh
Publication of WO2014115996A1 publication Critical patent/WO2014115996A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a transparent conductive film coating composition, a transparent conductive film and a method for preparing the same, more particularly, a primary conductive film coating composition comprising metal nanowires and dispersions, and magnesium fluoride sol, inorganic sol, inorganic-inorganic
  • a primary conductive film coating composition comprising metal nanowires and dispersions, and magnesium fluoride sol, inorganic sol, inorganic-inorganic
  • a transparent conductive film coating composition, said primary conductive film coating composition and said protective layer coating composition comprising a composite sol and a protective layer coating composition comprising at least one sol selected from the group consisting of organic-inorganic composite sol.
  • a method for producing a transparent conductive film by coating and drying the same or sequentially at the same time and a transparent conductive film prepared therefrom.
  • the transparent electrode is a condensation of atoms, molecules or ions by a physicochemical method on a transparent glass substrate or a thin polymer substrate, and refers to an electrode that is transparent in the visible region (380-780 nm wavelength) and has high electrical conductivity. More specifically, the transparent electrode refers to a thin film having a light transmittance of about 80% or more and a sheet resistance of 500 ⁇ / ⁇ or less.
  • ITO Indium tin oxide
  • ZnO thin films have low cost materials and low electrical conductivity compared to ITO, and ATO thin films in which Sb is added to SnO 2 in a small amount do not etch and have a high firing temperature.
  • the metal nanowires form a network when forming the transparent electrode to secure electrical conductivity.
  • the metal nanowire network is densely formed, the electrical conductivity of the transparent electrode is improved, but the visible light transmittance is lowered and excessive cost is required.
  • disconnection of the network will inevitably occur, and the void space between the networks will remain as a non-conductive area having no conductivity.
  • metal nanowires are nanostructures, which are more active than conventional materials, and thus are prone to oxidation and corrosion when exposed to the atmosphere without a protective layer.
  • silver nanowires have high conductivity properties and are transparent in the visible region, but are known to increase resistance by about 15-20% due to oxidation and corrosion in the air. There was a problem to use. Because of this, wet etching is difficult, and expensive lasers may be used, which is difficult to process and has low yield.
  • the optimized electrical properties, optical properties and acid etching can have a direct impact on the quality and manufacturing process of the transparent conductive film.
  • U.S. Patent No. 7,585,349 discloses a transparent conductive film using silver nanowires, and most of the organic nanowires are coated with organic binder resin components such as polyacrylates having a slight conductivity as a base material, ie, a matrix. .
  • organic binder resin components such as polyacrylates having a slight conductivity as a base material, ie, a matrix.
  • the role of the base material means a material that serves as a protective layer of the silver nanowires and provides adhesion to prevent the silver nanowires from falling off from the base material.
  • the silver nanowires present in the lower layer or the same layer should be easily etched. Can be easily etched.
  • the present invention uses a transparent metal oxide-based sol (Sol) as the base material of the metal nanowire, while having electrical and optical properties, at the same time can be easily etched through the acid transparent conductive film It is an object to provide a coating composition.
  • the present invention also aims to provide a method for producing a transparent conductive film using the coating composition and a transparent conductive film prepared therefrom.
  • the present invention to achieve the above object
  • a transparent conductive film coating composition comprising a protective layer coating composition comprising at least one sol selected from the group consisting of magnesium fluoride sol, inorganic sol, inorganic-inorganic composite sol, and organic-inorganic composite sol. to provide.
  • the present invention also provides a method for producing a transparent conductive film using the primary conductive film coating composition and the protective layer coating composition on a substrate.
  • the present invention also provides a transparent conductive film prepared by the method for producing a transparent conductive film.
  • the transparent conductive film prepared by using the coating composition of the present invention includes a metal nanowire, and as a base material thereof, a group consisting of a transparent metal oxide-based magnesium fluoride sol, an inorganic sol, an inorganic-inorganic composite sol, and an organic-inorganic composite sol.
  • a transparent metal oxide-based magnesium fluoride sol e.g., aluminum oxide-based magnesium fluoride
  • an inorganic sol e.g., aluminum oxide-based magnesium fluoride sol
  • an inorganic sol e.g., aluminum oxide-based magnesium fluoride sol
  • an organic-inorganic composite sol e.g., aluminum silicates, aluminum silicates, aluminum silicates, aluminum silicates, and aluminum silicates, aluminum silicates, aluminum silicates, aluminum silicates, and aluminum silicates, aluminum silicates, aluminum silicates, aluminum silicates, and aluminum silicates, aluminum silicates, aluminum silicates, aluminum silicates, and aluminum silicates, aluminum
  • FIG. 1 is an optical micrograph before the wet etching treatment of a transparent conductive film prepared according to the present invention.
  • Figure 2 is an optical micrograph after the wet etching treatment of the transparent conductive film prepared according to the present invention.
  • 3 is a laminated structure according to an embodiment of the present invention.
  • 5 is a laminated structure according to another embodiment of the present invention.
  • FIG. 6 is a laminated structure according to another embodiment of the present invention.
  • the transparent conductive film coating composition of the present invention uses at least one sol selected from the group consisting of a metal oxide based magnesium fluoride sol, an inorganic sol, an inorganic-inorganic composite sol, and an organic-inorganic composite sol as a base material of the metal nanowires. It is characterized in that, specifically 1) a primary conductive film coating composition comprising a metal nanowire and a dispersion; And 2) at least one sol selected from the group consisting of magnesium fluoride sol, inorganic sol, inorganic-inorganic composite sol, and organic-inorganic composite sol.
  • the present invention uses metal nanowires as the conductive material of the primary conductive film coating composition.
  • the metal usable in the present invention is not particularly limited, but is preferably a group I, group IIA, group IIIA, group IV, such as gold, silver, copper, aluminum, nickel, tin, palladium, platinum, zinc, iron, indium or magnesium. It is preferable to use at least one metal selected from the group consisting of Group VII and Group VII B metals, more preferably from at least one metal selected from the group consisting of zinc, aluminum, tin, copper, silver and gold. It is good.
  • the metal nanowires preferably have a diameter of 15 nm to 120 nm and a length of 5 ⁇ m to 60 ⁇ m.
  • the metal nanowires may be arbitrarily adjusted in concentration with respect to the dispersion described below, and used in an amount of 0.05 to 0.5 wt%. It is desirable to be.
  • the dispersion is at least one sol selected from the group consisting of viscosity control of metal nanowire dispersion, smooth thin film formation, dispersibility of metal nanowires, magnesium fluoride sol, inorganic sol, inorganic-inorganic composite sol, and organic-inorganic composite sol. It can select suitably in consideration of mixing property with etc.
  • the dispersion may be water, methanol, ethanol, propanol, isopropanol, isopropyl acetate, butanol, 2-butanol, octanol, 2-ethylhexanol, pentanol, benzyl alcohol, hexanol, 2-hexanol Cyclohexanol, terpineol, nonanol, methylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene Glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, 2-propanone, diacetyl, acetyl,
  • the dispersion may further include an organic binder resin.
  • organic binder resin When the organic binder resin is added, it is possible to adjust the viscosity of the dispersion, improve the coating property of the metal nanowire dispersion, increase adhesion with the substrate, and further increase the flexibility of the thin film.
  • the organic binder resin may be polyimide, acrylic polymer, epoxy, polyethylene glycol, polyester, polymethyl methacrylate, polyvinylpyrrolidone, cellulose, polyvinyl alcohol, polyurethane, polyacrylonitrile, and the like.
  • cellulose resins hydroxy propyl methyl cellulose, hydroxy ethyl cellulose, hydroxy propyl cellulose, methyl cellulose, carboxyl methyl cellulose and the like can be used.
  • the weight average molecular weight of the organic binder resin is 10,000 to 2,000,000.
  • the organic binder resin is preferably used in an amount of 0.02-3% by weight in the coating composition.
  • the viscosity of the coating solution is improved, the coating property is improved, the adhesion to the substrate is increased, the flexibility is provided, and when the transparent conductive film is bent more than a certain time, the metal nanowires are prevented from being separated from the substrate.
  • the formation, the contact resistance of the excellent transparent conductive film, and the excellent optical characteristic can be secured simultaneously.
  • the content of the organic binder resin is too large, the thickness of the coating film may be too thick, thereby causing the entire film to become yellow, which adversely affects visibility.
  • the protective layer coating composition is selected from the group consisting of magnesium fluoride sol, inorganic sol, inorganic-inorganic composite sol, and organic-inorganic composite sol as a base material for protecting metal nanowires and improving visibility through refractive index control. Use at least one sol.
  • the magnesium fluoride sol may be prepared by mixing and reacting a magnesium compound and a fluorine compound in a solvent.
  • the magnesium compound may include magnesium hydroxide, magnesium oxide, magnesium methoxide, magnesium ethoxide, magnesium acetate, magnesium sulfate, magnesium nitrate, and the like
  • fluorine compounds include trifluoroacetic acid, hydrofluoric acid, and ammonium fluoride. , Fluorine and the like can be used.
  • Solvents include water, methanol, ethanol, propanol, isopropanol, isopropyl acetate, butanol, 2-butanol, octanol, 2-ethylhexanol, pentanol, benzyl alcohol, hexanol, 2-hexanol, cyclohexanol, Terpineol, nonanol, methylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, Diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, 2-propanone, diacetyl, 1,2-diacetyle
  • a metal oxide sol may be used, and as the metal oxide, for example, ZnO, TiO 2 , Al 2 O 3 , MgO, Al (OH) 2 , SiO 2, and Si (OH) 2
  • the metal oxide for example, ZnO, TiO 2 , Al 2 O 3 , MgO, Al (OH) 2 , SiO 2, and Si (OH) 2
  • One or more selected from may be used, and polysiloxane, poly dimethyl siloxane, poly silazane, polysilsesquioxane, polyhedral oligomeric silsesquioxane (POSS) and the like may be used together.
  • the refractive index of the said metal oxide is 1.3-2.0.
  • the metal precursor used for synthesizing the metal oxide may be variously selected. More specifically, in order to synthesize Al 2 O 3 or Al (OH) 2 metal oxide sol, aluminum acetate, aluminum acetyl acetone (Aluminium) acetylacetonate, aluminum ethyl acetylacetonate, aluminum methyl acetylacetonate, aluminum isopropoxide and the like; Zinc acetate, zinc acetylacetonate, and the like may be used to synthesize the ZnO metal oxide sol; Magnesium acetate, magnesium methoxide, magnesium ethoxide, and the like may be used to synthesize the MgO metal oxide sol; Titanium acetate, titanium acetylacetonate, titanium isopropoxide, and the like may be used to synthesize the TiO 2 metal oxide sol; To synthesize SiO 2 metal oxide sol, tetraethyl orthosilane (TEOS), tetrameth
  • the solvent used for the inorganic sol may be a solvent used for the magnesium fluoride sol.
  • the inorganic-inorganic composite sol may be formed through sol-gel synthesis after mixing the magnesium fluoride sol and one or more metal oxides used in the inorganic sol.
  • the mixing ratio can be arbitrarily adjusted.
  • MgF 2 sol already synthesized in the synthesis of ZnO sol may be added, or each synthesized sol may be mixed in a proportion.
  • the inorganic-inorganic composite sol can easily adjust the refractive index of the conductive film and the substrate.
  • a solvent used in the magnesium fluoride sol may be used.
  • the organic-inorganic sol may introduce organic binder into at least one metal oxide sol consisting of the magnesium fluoride sol, the inorganic sol, and the inorganic-inorganic composite sol to increase flexibility in the protective layer or further control the refractive index of the conductive layer. .
  • the organic binder resin may be polyimide, acrylic polymer, epoxy, polyethylene glycol, polyester, polymethyl methacrylate, polyvinylpyrrolidone, cellulose, polyvinyl alcohol, polyurethane, polyacrylonitrile, and the like.
  • cellulose resins hydroxy propyl methyl cellulose, hydroxy ethyl cellulose, hydroxy propyl cellulose, methyl cellulose, carboxyl methyl cellulose and the like can be used.
  • the weight average molecular weight of the organic binder resin is 10,000 to 2,000,000.
  • the organic binder resin is preferably used in an amount of 0.05-5% by weight based on the sol. When it is in the said range, refractive index and ductility can be secured, environmental resistance improvement, visibility improvement after an etching, and favorable contact resistance of a transparent conductive film can be ensured simultaneously.
  • the solvent used for the inorganic-organic complex sol may be a solvent used for the magnesium fluoride sol.
  • the content of the magnesium fluoride sol, the inorganic sol, the inorganic-inorganic composite sol, and the organic-inorganic composite sol in the protective layer coating composition may be arbitrarily adjusted appropriately, preferably 0.1-15% by weight, more preferably It is recommended to use 1-10% by weight. Within the above range, it is possible to easily etch through an acid while having electrical and optical properties of the conductive film to be produced.
  • the protective layer coating composition may include additives commonly used in the art as needed.
  • the protective layer coating composition comprises a magnesium fluoride sol.
  • the magnesium fluoride sol may be included alone or magnesium fluoride may be used in the inorganic-inorganic complex sol or the inorganic-organic complex sol.
  • the electrical and etching characteristics are particularly excellent.
  • the primary conductive film coating composition and the protective layer coating composition are used in combination;
  • a protective layer may be formed as a single layer or two or more layers on or under the metal nanowire conductive layer, and the sols may form a protective layer alone or by mixing two or more kinds thereof to form a protective layer.
  • the wet etching is possible, it is possible to further facilitate the convenience in subsequent steps.
  • the present invention also provides a method for producing a transparent conductive film using the primary conductive film coating composition and the protective layer coating composition on a substrate and a transparent conductive film prepared by the method.
  • the preparation of the transparent conductive film is a metal nanowire and dispersion in a protective layer coating composition comprising at least one sol selected from the group consisting of the magnesium fluoride sol, inorganic sol, inorganic-inorganic composite sol, and organic-inorganic composite sol. Coating and then drying the one-component composition dispersed in the first conductive film coating composition comprising a substrate, or
  • the method of forming the transparent conductive film through the multilayer film does not affect the contact resistance of the metal nanowires, the desired high conductivity can be easily obtained, and the uniformity in coating can be obtained to provide a high conductivity and high reliability transparent conductive film. It is good to be able to get.
  • one or more protective layers may be formed between the substrate and the conductive film, and one or more protective layers may be formed on the conductive film.
  • at least one of the protective layers is preferably formed using magnesium fluoride, and more preferably, a protective layer is formed using magnesium fluoride just above the conductive film.
  • the electrical, optical and etching properties of the transparent conductive film can be further improved.
  • the electrical properties show an effect of reducing the sheet resistance by 30 to 70% than when using the conductive film alone.
  • the protective layer of the present invention is preferably formed with a thickness of 10 ⁇ 500 nm thickness of the protective layer finally formed.
  • the protective layer is formed to a thickness of less than 10 nm outside the above range may not cover the conductive film sufficiently, some conductive films may be exposed, and this may reduce the sheet resistance, increase the total transmittance, and reduce the Haze. On the contrary, when the protective layer is formed in excess of 500 nm, the sheet resistance reduction effect of the protective layer may disappear, and the transmittance and the decrease of Haze may not appear.
  • the coating and drying in the present invention may be applied to the printing and drying methods commonly used in the art, for example, the printing is gravure off-set printing, gravure direct printing, micro Transparent substrates commonly used by using gravure printing, screen printing, imprinting methods, spin coating, slit coating, slot die coating, etc.
  • the printing may be printed on a polyimide (PI) substrate, a polyethylene terephthalate (PET) substrate, a polycarbonate (PC) substrate, a cycloolefin polymer (COP) substrate, a polyethylene naphthalate (PEN) substrate, or the like.
  • the coating thickness may be appropriately adjusted according to the use, for example, may be a thickness of 0.1-100 um.
  • the coated film in order to dry the coated film, it can be heat-treated at a low temperature.
  • metal oxides made from sol-gel synthesis are usually calcined at high temperatures to form a crystalline phase.
  • the metal oxide sol to improve the adhesion of the metal nanowire in the present invention and to be used as a protective layer can be heat-treated at a temperature of less than 200 °C, preferably heat treatment at 60-180 °C.
  • the low-temperature heat treatment of the metal oxide sol is not a crystalline (morph) form, but the amorphous (Amorphous) phase or polymerized to a high molecular weight gel phase to act to increase the protective layer or adhesion.
  • the amorphous phase or the gel phase having a large molecular weight is more preferable in the present invention. .
  • the transparent conductive film obtained by the above method can be patterned by performing a photo process and an etching process according to a conventional method in the art.
  • the present invention also provides a transparent conductive film prepared according to the above method.
  • the transparent conductive film prepared by using the composition and method of the present invention has a light transmittance of about 90% or more, a sheet resistance of 200 ⁇ / ⁇ or less, and excellent wettability, environmental resistance, warfare transients and haze characteristics, as well as wetness.
  • Etching can be easily performed in the etching process and a wide range of transparent conductive films can be realized by adjusting the concentration, and thus can be usefully used in an electrical device or an optical device. Specific examples thereof include liquid crystal display, plasma display device, touch panel, It can be usefully used for electrodes such as electroluminescent devices, thin film solar cells, dye-sensitized solar cells, inorganic crystalline solar cells.
  • the light transmittance is preferably 88%, more preferably 90% or more
  • the sheet resistance is preferably 150 ⁇ / ⁇ or less, more preferably 100 ⁇ / ⁇ or less, most preferably 80 ⁇ / ⁇ It is as follows.
  • oxalic acid 0.5 g was added to 30 g of a solvent in which water, ethanol, and propylene glycol monomethyl ether were mixed at a ratio of 2: 5: 3, respectively, and then stirred at a temperature of 40-70 ° C. After the temperature increase, 0.05 mole of tetraosilane (TEOS) was added to the mixture for 2 hours or more to synthesize a SiO 2 sol.
  • TEOS tetraosilane
  • titanium dioxide powder was washed with diethyl ether and the titanium dioxide powder was separated by centrifuge. The separated titanium dioxide powder was dispersed in 3 g of ethanol, followed by stirring with 3 g of a solution of cesium carbonate dissolved in 0.2% by weight of 2-ethoxyethanol to synthesize a TiO 2 sol.
  • MgF 2 sol was synthesized by performing a diacid reaction for a time and then aging for at least one day.
  • a flexible plastic substrate was used to manufacture a transparent conductive film, and PET was used.
  • the conductive film 12 coating composition comprising the metal nanowires and the dispersion was prepared by diluting the silver nanowires to 0.1-0.2 wt% in ethanol.
  • the primary 15 and the secondary protective layer 16 were prepared according to the sol synthesis method published above, and the organic-inorganic composite sol was completed through the same process after adding 0.5 g of hydroxypropyl cellulose during sol synthesis.
  • the prepared organic-inorganic composite sol was diluted to 7% by weight in ethanol to prepare a protective layer coating solution.
  • the inorganic-inorganic complex sol was prepared by mixing the sol prepared according to the published sol synthesis method in a 1: 1 weight ratio.
  • the metal nanowire conductive film was coated by slit die coating or micro gravure coating, gravure coating, bar coating, and the like to have a coating thickness of 18-25 ⁇ m, and dried in an oven having a smooth convection.
  • the primary and secondary protective layers were similarly coated with a coating thickness of 15-20 ⁇ m according to the coating method of the metal nanowire conductive film, and dried according to the drying method of the primary conductive film.
  • the performance of the first and second protective layer compositions used in the manufacture of the transparent conductive film and the completed transparent conductive film was evaluated and shown in Table 1 below.
  • the photosensitive material coating-exposure-development-etching process was performed through a series of photo processes. The etching characteristic was grasped.
  • Total transmittance Visible light transmittance was measured using a spectrophotometer in the 400-800 nm wavelength range.
  • Haze It measured using the haze meter COH 400 of NIPPON DENSHOKU.
  • Example 1 Primary protective layer Secondary protective layer Surface resistance ( ⁇ / ⁇ ) Environmental evaluation result Total transmittance (%) Haze (%) Wet etching time (s)
  • Example 1 MgF 2 MgF 2 75 432 91.15 0.72 ⁇ 10
  • Example 2 MgF 2 SiO 2 84 432 91.05 0.96
  • Example 3 MgF 2 ZnO 87 384 91.46 0.83 ⁇ 10
  • Example 4 MgF 2 TiO 2 40 432 91.49 0.68 ⁇ 10
  • Example 5 MgF 2 Al 2 O 3 95 432 91.48 1.03 90
  • Example 6 MgF 2 MgF 2 + HPC 95 420 90.16 0.92
  • Example 7 SiO 2 MgF 2 67 420 91.48 0.71 ⁇ 10
  • Example 8 SiO 2 MgF 2 + HPC 55 432 91.07 0.67 ⁇ 10
  • Example 9 SiO 2 MgF 2 + ZnO 95 432 90.31 0.93 ⁇ 10
  • a transparent conductive film was obtained in the same manner as in Example 1-20, except that the third protective layer 17 was further formed on the second protective layer 16, and the physical properties and performance thereof were evaluated. It is shown in 2.
  • Example 21 MgF 2 MgF 2 SiO 2 92 624 90.26 1.04 300
  • Example 22 MgF 2 SiO 2 SiO 2 106 624 89.93 0.92 480
  • Example 23 SiO 2 MgF 2 SiO 2 110 648 90.68 0.96
  • Example 24 Al 2 O 3 MgF 2 ZnO 121 600 90.06 1.29 70
  • Example 25 MgF 2 SiO 2 MgF2 86 600 91.11 0.84 240
  • Example 26 MgF 2 ZnO MgF 2 95 588 90.97 0.93 50
  • Example 27 MgF 2 TiO 2 MgF 2 75 612 91.24 0.71 15
  • Example 28 MgF 2 MgF 2 TiO 2 75 624 90.14 0.68 ⁇ 10
  • Example 29 MgF 2 + HPC MgF 2 SiO 2 94 588 91.26 0.89
  • a transparent conductive film was obtained in the same manner as in Example 1-20, except that the metal nanowire conductive film 12 was formed on the substrate 11 and the protective layer 13 was formed thereon. And performance evaluation is shown in Table 3 below.
  • Example 43 MgF 2 59 384 91.18 0.62 ⁇ 10
  • Example 44 SiO 2 72 432 90.81 0.86
  • Example 45 ZnO 95 396 89.76 1.02 ⁇ 10
  • Example 46 TiO 2 45 420 91.44 0.57 ⁇ 10
  • Example 47 Al 2 O 3 103 420 89.64 1.13
  • Example 48 MgF 2 + HPC 67 420 90.81 0.71 ⁇ 10
  • Example 49 SiO 2 + HPC 86 432 90.35 0.86 120
  • Example 50 ZnO + HPC 95 396 91.43 0.97
  • Example 51 TiO 2 + HPC 51 432 91.45 0.63 ⁇ 10
  • Example 52 Al 2 O 3 + HPC 110 432 90.59 0.99
  • Example 53 MgF 2 + Al 2 O 3 83 432 90.47 0.82
  • Example 54 SiO 2 + Al 2 O 3 85 420 90.24 0.97
  • a transparent conductive film was obtained in the same manner as in Example 1-20, except that the secondary protective layer 14 was further formed on the primary protective layer 13, and the physical properties and performance thereof were evaluated. 4 is indicated.
  • Example 65 MgF 2 SiO 2 60 432 91.27 0.69 300
  • Example 66 MgF 2 ZnO 80 432 90.85 0.76 ⁇ 10
  • Example 67 MgF 2 TiO 2 52 420 91.62 0.63 ⁇ 10
  • Example 68 MgF 2 Al 2 O 3 100 432 90.03 0.98 90
  • Example 69 MgF 2 MgF 2 + HPC 75 432 90.85 0.74 ⁇ 10
  • Example 70 SiO 2 MgF 2 80 420 91.06 0.80 150
  • Example 72 SiO 2 MgF 2 + ZnO 90 432 91.02 0.83
  • Example 73 SiO 2 MgF 2 + TiO 2 67 432 90.72 0.61
  • the transparent conductive film 18 was formed on the substrate 11 with the one-component metal nanowire coating composition.
  • each sol was prepared according to the above-described sol synthesis method and an organic-inorganic composite sol was prepared in the same manner after adding 0.5 g of hydroxy propyl cellulose in the sol synthesis.
  • the inorganic-inorganic complex sol was prepared by mixing the sol prepared according to the published sol synthesis method in a 1: 1 weight ratio.
  • Each composite sol was added to the ethanol diluted 0.1-0.2% by weight of silver nanowire 7% by weight, and then stirred well so as not to aggregate the sol to prepare a one-component metal nanowire coating composition. This was carried out in the same manner as in Example 1-20 to obtain a transparent conductive film, the physical properties and performance evaluation are shown in Table 5 below.
  • Example 5 In the same manner as in Example 1-20, except that the silver nanowires were diluted 0.1-0.2% by weight in water, and the polyurethane polymer was dissolved in 7% by weight of methyl ethyl ketone, and used as a protective layer-forming composition. A multilayer transparent conductive film was formed, and the physical properties and performance evaluations are shown in Table 5.
  • the transparent conductive film according to the present invention not only has excellent surface resistance, environmental resistance, combat transients and haze characteristics, but also can be easily etched in a wet etching process, in particular, using magnesium fluoride.
  • a protective layer showed excellent physical properties.
  • the transparent conductive film prepared by using the coating composition of the present invention includes a metal nanowire, and as a base material thereof, a group consisting of a transparent metal oxide-based magnesium fluoride sol, an inorganic sol, an inorganic-inorganic composite sol, and an organic-inorganic composite sol.
  • a transparent metal oxide-based magnesium fluoride sol e.g., aluminum oxide-based magnesium fluoride
  • an inorganic sol e.g., aluminum oxide-based magnesium fluoride sol
  • an inorganic sol e.g., aluminum oxide-based magnesium fluoride sol
  • an organic-inorganic composite sol e.g., aluminum silicates, aluminum silicates, aluminum silicates, aluminum silicates, and aluminum silicates, aluminum silicates, aluminum silicates, aluminum silicates, and aluminum silicates, aluminum silicates, aluminum silicates, aluminum silicates, and aluminum silicates, aluminum silicates, aluminum silicates, aluminum silicates, and aluminum silicates, aluminum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 투명 전도성 막 코팅 조성물, 투명 전도성 막 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 금속 나노와이어 및 분산액을 포함하는 1차 전도성 막 코팅 조성물, 및 불화마그네슘 졸, 무기 졸, 무기-무기 복합 졸, 및 유기-무기 복합 졸로 이루어지는 군으로부터 선택되는 1종 이상의 졸을 포함하는 보호층 코팅 조성물을 포함하는 것을 특징으로 하는 투명 전도성 막 코팅 조성물, 상기 1차 전도성 막 코팅 조성물 및 보호층 코팅 조성물을 코팅하고 건조하여 투명 전도성 막을 제조하는 방법 및 이로부터 제조된 투명 전도성 막에 관한 것이다. 본 발명의 코팅 조성물을 이용하여 제조된 투명 전도성 막은 면저항, 내환경성, 전투과도 및 헤이즈의 특성이 우수할 뿐 아니라, 습식 에칭 공정에서도 쉽게 에칭이 가능하고 굴절률 조절이 용이하므로, 액정 표시장치, 플라즈마 표시장치, 터치패널, 전계발광 장치, 박막태양전지, 염료감응태양전지, 무기물 결정질 태양전지 등의 전극에 유용하게 사용될 수 있다.

Description

투명 전도성 막 코팅 조성물, 투명 전도성 막 및 투명 전도성 막의 제조 방법
본 발명은 투명 전도성 막 코팅 조성물, 투명 전도성 막 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 금속 나노와이어 및 분산액을 포함하는 1차 전도성 막 코팅 조성물, 및 불화마그네슘 졸, 무기 졸, 무기-무기 복합 졸, 및 유기-무기 복합 졸로 이루어지는 군으로부터 선택되는 1종 이상의 졸을 포함하는 보호층 코팅 조성물을 함유하는 것을 특징으로 하는 투명 전도성 막 코팅 조성물, 상기 1차 전도성 막 코팅 조성물 및 보호층 코팅 조성물을 동시에 또는 차례로 코팅하고 건조하여 투명 전도성 막을 제조하는 방법 및 이로부터 제조된 투명 전도성 막에 관한 것이다.
투명 전극은 투명한 유리 기판 또는 얇은 고분자 기판 위에 물리화학적인 방법으로 원자, 분자 또는 이온을 응축시킨 것으로, 가시광 영역(380-780 ㎚ 파장)에서 투명하고, 전기전도도가 큰 전극을 의미한다. 보다 구체적으로, 투명 전극은 광투과도가 약 80% 이상이고, 면저항이 500 Ω/□ 이하인 박막을 의미한다.
투명 전극의 재료로 사용되기 위해서는 전기적, 광학적 특성 및 에칭 특성이 우수한 재료가 필요하다. 현재까지 개발된 재료로는 가장 우수한 물성을 나타내고 있는 ITO(Indium tin oxide)가 널리 사용되고 있다. 하지만 ITO는 고가의 희소금속인 인듐을 주성분으로 하고 있기 때문에 이를 대체할만한 투명 전극 재료가 요구되고 있다.
이에 금, 은, 구리 등의 금속을 스퍼터링하여 얇은 박막으로 만들어 투명 전극으로 사용한 시도가 있었으나, 이는 전기전도도는 우수하지만 가시광 영역의 광투과도가 떨어지며, 하부 기판과의 접착력이 좋지 않다는 문제점이 있다.
또한 ZnO 박막은 저가의 재료이나 전기전도성이 ITO에 비해 낮고, SnO2에 Sb를 소량 첨가한 ATO 박막은 에칭이 되지 않고 소성 온도가 높다는 문제점이 있다.
또한 졸-겔(Sol-Gel) 합성을 이용하여 산화막을 만드는 방법도 사용되고 있으나 여전히 전기전도성이 낮고, 소성 온도가 350 ℃를 넘는 고온 공정을 필요로 한다는 문제점이 있다.
또한 ZnO, ITO, IZO 등의 산화물을 나노 크기의 입자로 제조하고 이를 이용하여 잉크나 페이스트를 제조하여 투명 전극을 제조하는 방법도 있으나, 나노 크기의 산화물 제조가 어렵고 250 ℃ 이상의 비교적 고온 공정이 필요하다는 문제점이 있다.
이에 최근에는 금속 나노와이어를 투명 전극에 적용하는 시도가 이루어지고 있다.
투명 전극용 전도성 잉크에서 금속 나노와이어는 투명 전극 형성시 네트워크를 형성하여 전기전도성을 확보하는 역할을 한다. 금속 나노와이어 네트워크가 촘촘히 형성될수록 투명 전극의 전기전도도는 향상되나 가시광 투과율이 떨어지고 과다한 비용이 소요되는 문제점이 있다. 또한 금속 나노와이어로 전도성 네트워크를 형성하더라도 네트워크의 단선이 필연적으로 발생하게 될 뿐 아니라 네트워크 사이의 빈공간은 전도성을 가지지 못하는 부도체 영역으로 남게 된다. 또한 금속 나노와이어는 나노 구조체로서 활성이 기존 물질보다 강해서 보호층 없이 대기에 노출될 경우 산화 및 부식 경향이 강하다. 특히 은 나노와이어는 고전도 특성을 가지며 가시광 영역에서 투명하지만, 대기 중에서 산화 및 부식에 의해 약 15-20% 정도 저항이 상승하는 것으로 알려져 있으며, 이를 방지하기 위해서는 별도의 산화방지제 또는 다수의 보호층을 사용해야 하는 문제점이 있었다. 이 때문에 습식 에칭이 어려워, 고가의 레이저를 사용하기도 하며, 이는 공정이 어렵고 수율이 낮은 문제가 있다.
또한, 다수의 보호층을 사용할 경우 금속 나노와이어를 적용한 투명전도성 필름의 공정이 복잡해지면서 오히려 ITO 필름보다 제품 품질 및 수율이 떨어져 상업적인 용도로 쓰기가 어려운 단점이 있다. 이에, 이러한 다층의 보호막 보다는 단층 또는 복층으로 경도, 접착력 및 에칭 특성 확보가 중요한 과제이다.
따라서 최적화 된 전기적 특성, 광학적 특성 및 산에 의한 에칭이 투명전도성 막의 품질 및 제조 공정에 직접적인 영향을 미칠 수밖에 없다.
미국 특허 7,585,349호는 실버 나노와이어를 이용한 투명전도성 막을 개시하고 있으며, 대부분 표면이 약간의 도전성을 가지는 폴리아크릴레이트 등의 유기 바인더 수지 성분을 기재물질 즉 매트릭스로 채용하여 실버 나노와이어 코팅을 진행하고 있다. 이러한 기재물질을 채용할 경우 광학적 특성 및 전기적인 특성의 구현이 가능하지만 산에 의한 에칭이 어려워 투명전도성 막 제조의 공정이 복잡해지고 품질이 떨어질 수밖에 없다.
여기서 기재물질의 역할은 실버나노와이어의 보호층의 역할을 하면서 기재에서 실버 나노와이어가 떨어지지 않도록 접착력을 제공하는 물질을 의미하는 것으로 보호층이 쉽게 에칭이 되어야 하부층 또는 동일층에 존재하는 실버나노와이어의 에칭이 쉬워질 수 있다.
상기와 같은 문제점을 해결하기 위해, 본 발명은 금속 나노와이어의 기재물질로 투명한 금속 산화물 기반의 졸(Sol)을 사용하여 전기적 특성 및 광학적 특성을 구비하면서도 동시에 산을 통해 쉽게 에칭이 가능한 투명 전도성 막 코팅 조성물을 제공하는 것을 목적으로 한다.
본 발명은 또한 상기 코팅 조성물을 이용하여 투명 전도성 막을 제조하는 방법 및 이로부터 제조된 투명 전도성 막을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해 본 발명은
1) 금속 나노와이어 및 분산액을 포함하는 1차 전도성 막 코팅 조성물; 및
2) 불화마그네슘 졸, 무기 졸, 무기-무기 복합 졸, 및 유기-무기 복합 졸로 이루어지는 군으로부터 선택되는 1종 이상의 졸을 포함하는 보호층 코팅 조성물을 함유하는 것을 특징으로 하는 투명 전도성 막 코팅 조성물을 제공한다.
또한 본 발명은 또한 기판 위에 상기 1차 전도성 막 코팅 조성물과 상기 보호층 코팅 조성물을 이용한 투명 전도성 막의 제조방법을 제공한다.
또한 본 발명은 투명 전도성 막의 제조방법에 의하여 제조되는 투명 전도성 막을 제공한다.
본 발명의 코팅 조성물을 이용하여 제조된 투명 전도성 막은 금속 나노와이어를 포함하고, 이의 기재물질로서 투명한 금속 산화물 기반의 불화마그네슘 졸, 무기 졸, 무기-무기 복합 졸, 및 유기-무기 복합 졸로 이루어지는 군으로부터 선택되는 1종 이상의 졸을 포함하여 면저항, 내환경성, 전투과도 및 헤이즈의 특성이 우수할 뿐 아니라, 습식 에칭 공정에서도 쉽게 에칭이 가능하고 굴절률 조절이 용이하며, 농도 조절을 통해 넓은 범위의 투명 전도막 구현이 가능하므로, 액정 표시장치, 플라즈마 표시장치, 터치패널, 전계발광 장치, 박막태양전지, 염료감응태양전지, 무기물 결정질 태양전지 등의 전극에 유용하게 사용될 수 있다.
도 1은 본 발명에 따라 제조된 투명 전도성 필름의 습식 에칭 처리 전 광학 현미경 사진이다.
도 2는 본 발명에 따라 제조된 투명 전도성 필름의 습식 에칭 처리 후 광학 현미경 사진이다.
도 3은 본 발명의 일 실시예에 따른 적층 구조이다.
도 4는 본 발명의 또 다른 실시예에 따른 적층 구조이다.
도 5은 본 발명의 또 다른 실시예에 따른 적층 구조이다.
도 6은 본 발명의 또 다른 실시예에 따른 적층 구조이다.
도 7은 본 발명의 또 다른 실시예에 따른 적층 구조이다.
본 발명의 투명 전도성 막 코팅 조성물은 금속 나노와이어의 기재물질로서 금속 산화물 기반의 불화마그네슘 졸, 무기 졸, 무기-무기 복합 졸, 및 유기-무기 복합 졸로 이루어지는 군으로부터 선택되는 1종 이상의 졸을 사용하는 것을 특징으로 하며, 구체적으로는 1) 금속 나노와이어 및 분산액을 포함하는 1차 전도성 막 코팅 조성물; 및 2) 불화마그네슘 졸, 무기 졸, 무기-무기 복합 졸, 및 유기-무기 복합 졸로 이루어지는 군으로부터 선택되는 1종 이상의 졸을 포함하는 보호층 코팅 조성물을 포함하는 것을 특징으로 한다.
이하 본 발명을 자세히 설명한다.
1. 1차 전도성 막 코팅 조성물
a) 금속 나노와이어
본 발명은 1차 전도성 막 코팅 조성물의 도전성 물질로서 금속 나노와이어를 사용한다.
본 발명에서 사용가능한 금속은 특별히 한정되지 않으나, 바람직하게는 금, 은, 구리, 알루미늄, 니켈, 주석, 팔라듐, 백금, 아연, 철, 인듐, 마그네슘 등의 Ⅰ족, ⅡA족, ⅢA족, ⅣA족 및 VII B족 금속으로 이루어진 군에서 선택되는 1종 이상의 금속을 사용하는 것이 좋으며, 더욱 바람직하게는 아연, 알루미늄, 주석, 구리, 은 및 금으로 이루어진 군에서 선택되는 1종 이상의 금속을 사용하는 것이 좋다.
상기 금속 나노와이어는 직경이 15 nm 내지 120 nm, 길이가 5 ㎛ 내지 60 ㎛인 것이 바람직하며, 하기에 기술될 분산액에 대하여 농도를 임의로 조절하여 사용할 수 있으며, 0.05 내지 0.5 중량%의 양으로 사용되는 것이 바람직하다.
b) 분산액
상기 분산액은 금속 나노와이어 분산액의 점도 조절, 원활한 박막 형성, 금속 나노와이어의 분산성, 불화마그네슘 졸, 무기 졸, 무기-무기 복합 졸, 및 유기-무기 복합 졸로 이루어지는 군으로부터 선택되는 1종 이상의 졸과의 혼합성 등을 고려하여 적절히 선정할 수 있다.
예를 들어, 상기 분산액으로는 물, 메탄올, 에탄올, 프로판올, 이소프로판올, 이소프로필아세테이트, 부탄올, 2-부탄올, 옥탄올, 2-에틸헥사놀, 펜탄올, 벤질알콜, 헥산올, 2-헥산올, 사이클로헥산올, 테르피네올, 노나놀, 메틸렌 글리콜, 에틸렌 글리콜, 디에틸렌 글리콜, 트리에틸렌 글리콜, 테트라에틸렌 글리콜, 에틸렌 글리콜 모노메틸에테르, 에틸렌 글리콜 모노에틸에테르, 에틸렌 글리콜 모노부틸에테르, 디에틸렌 글리콜 모노메틸에테르, 디에틸렌 글리콜 모노에틸에테르, 디에틸렌 글리콜 모노부틸에테르, 트리에틸렌 글리콜 모노메틸에테르, 트리에틸렌 글리콜 모노에틸에테르, 트리에틸렌 글리콜 모노부틸에테르, 2-프로판온, 디아세틸, 아세틸아세톤, 1,2-디아세틸에탄, 디메틸카보네이트, 디에틸카보네이트, 프로필렌글리콜메틸에테르아세테이트, 2-메톡시에틸아세테이트, 프로필렌글리콜모노메틸에테르, N-메틸-2-피롤리돈, N-메틸아세트아마이드 및 이들의 혼합물로 이루어진 군에서 선택되는 1종 이상의 용매를 사용할 수 있고, 바람직하게는 에탄올, 이소프로판올 단독 또는 이를 포함하는 혼합용매를 사용할 수 있다.
또한 상기 분산액에는 유기 바인더 수지를 더욱 포함할 수 있다. 상기 유기 바인더 수지를 첨가할 경우 분산액의 점도를 조절하고 금속 나노와이어 분산액의 코팅성을 향상시키고, 기판과 부착력을 증가시키며, 박막의 유연성을 더욱 증가시킬 수 있다.
상기 유기 바인더 수지로는 폴리이미드, 아크릴 폴리머, 에폭시, 폴리에틸렌글리콜, 폴리에스테르, 폴리메틸메타아크릴레이트, 폴리비닐피롤리돈, 셀룰로오스, 폴리비닐알콜, 폴리우레탄, 폴리아크릴로니트릴 등이 사용될 수 있으며 , 셀룰로오스 수지 중에서도 하이드록시 프로필 메틸 셀룰로오스, 하이드록시 에틸 셀룰로오스, 하이드록시 프로필 셀룰로오스, 메틸 셀룰로오스, 카르복실 메틸 셀룰로오스 등을 사용할 수 있다. 바람직하기로는 상기 유기 바인더 수지의 중량평균분자량은 10,000 내지 2,000,000이다.
상기 유기 바인더 수지는 코팅 조성물에 0.02-3 중량%의 양으로 사용되는 것이 바람직하다. 상기 범위 내인 경우 코팅액의 점도 조절, 코팅성 향상, 기판과의 부착력 증가, 유연성 부여, 투명 전도성 막이 일정 이상 휘어질 경우 금속 나노와이어가 기판에서 이탈방지, 코팅의 균일성을 통한 전기전도성이 우수한 막의 형성, 우수한 투명 도전막의 접촉 저항, 우수한 광학특성을 동시에 확보할 수 있다. 상기 유기 바인더 수지의 함량이 지나치게 많은 경우 도막 두께가 지나치게 두꺼워질 수 있으며, 이로 인하여 막 전체가 노란색을 띄게 되어 시인성에 악영향을 주게 된다.
2. 보호층 코팅 조성물
본 발명에서 보호층 코팅 조성물은 금속 나노와이어를 보호하고 굴절률 조절을 통해 시인성을 개선하기 위한 기재물질로서 불화마그네슘 졸, 무기 졸, 무기-무기 복합 졸, 및 유기-무기 복합 졸로 이루어지는 군으로부터 선택되는 1종 이상의 졸을 사용한다.
a) 불화마그네슘 졸
상기 불화마그네슘 졸은 마그네슘 화합물과 불소 화합물을 용매 중에 혼합하여 반응시켜 제조할 수 있다. 마그네슘 화합물의 구체적인 예로는 마그네슘 하이드록사이드, 마그네슘 옥사이드, 마그네슘 메톡사이드, 마그네슘 에톡사이드, 마그네슘 아세테이트, 마그네슘 설페이트, 마그네슘 나이트레이트 등이 사용될 수 있고, 불소 화합물로는 트리플루오르 아세트산, 불산, 암모늄 플루오라이드, 플루오린 등을 이용할 수 있다. 용매로는 물, 메탄올, 에탄올, 프로판올, 이소프로판올, 이소프로필아세테이트, 부탄올, 2-부탄올, 옥탄올, 2-에틸헥사놀, 펜탄올, 벤질알콜, 헥산올, 2-헥산올, 사이클로헥산올, 테르피네올, 노나놀, 메틸렌 글리콜, 에틸렌 글리콜, 디에틸렌 글리콜, 트리에틸렌 글리콜, 테트라에틸렌 글리콜, 에틸렌 글리콜 모노메틸에테르, 에틸렌 글리콜 모노에틸에테르, 에틸렌 글리콜 모노부틸에테르, 디에틸렌 글리콜 모노메틸에테르, 디에틸렌 글리콜 모노에틸에테르, 디에틸렌 글리콜 모노부틸에테르, 트리에틸렌 글리콜 모노메틸에테르, 트리에틸렌 글리콜 모노에틸에테르, 트리에틸렌 글리콜 모노부틸에테르, 2-프로판온, 디아세틸, 1,2-디아세틸에탄, 프로필렌글리콜메틸에테르아세테이트, 2-메톡시에틸아세테이트, 프로필렌글리콜모노메틸에테르 및 이들의 혼합물로 이루어진 군에서 선택되는 1종 이상의 용매를 사용할 수 있고, 바람직하게는 메탄올 단독 또는 이를 포함하는 혼합용매를 사용할 수 있다.
b) 무기졸
상기 무기 졸로는 금속 산화물 졸을 사용할 수 있으며, 금속 산화물로는, 예를 들어, ZnO, TiO2, Al2O3, MgO, Al(OH)2, SiO2 및 Si(OH)2로 이루어진 군에서 선택되는 1종 이상의 것이 사용될 수 있으며, 폴리 실록산, 폴리 디메틸 실록산, 폴리 실라잔, 폴리실세스퀴옥산, 폴리헤드랄 올리고머릭 실세스퀴옥산(POSS) 등이 함께 쓰일 수 있다. 상기 금속 산화물의 굴절률은 1.3 내지 2.0인 것이 바람직하다.
금속 산화물을 합성하기 위해 사용되는 금속 전구체는 다양하게 선택될 수 있으며, 보다 구체적으로 Al2O3 또는 Al(OH)2 금속 산화물 졸을 합성하기 위해서는 알루미늄 아세테이트(Aluminium acetate), 알루미늄 아세틸 아세톤(Aluminium acetylacetonate), 알루미늄 에틸아세틸 아세톤(aluminium ethyl acetylacetonate), 알루미늄 메틸 아세틸 아세톤(Aluminium methyl acetylacetonate), 알루미늄 이소프로폭사이드(Aluminium isopropoxide) 등이 사용될 수 있고; ZnO 금속 산화물 졸을 합성하기 위해서는 아연 아세테이트(Zinc acetate), 아연 아세틸아세톤(Zinc acetylacetonate) 등이 사용될 수 있고; MgO 금속 산화물 졸을 합성하기 위해서는 마그네슘 아세테이트(Magnesium acetate), 마그네슘 메톡사이드(Magnesium methoxide), 마그네슘 에톡사이드(Magnesium ethoxide) 등이 사용될 수 있고; TiO2금속 산화물 졸을 합성하기 위해서는 타이타늄 아세테이트(titanium acetate), 타이타늄 아세틸아세톤(Titanium acetylacetonate), 타이타늄 이소프로폭사이드(Titanium isopropoxide) 등이 사용될 수 있으며; SiO2 금속 산화물 졸을 합성하기 위해서는 테트라에틸 오소실란(TEOS), 테트라메톡시실란실란(TMOS), 테트라에톡시에틸실란(TEES), 1,2-비스(트리에톡시실리)에탄 (BTSE) 등이 사용될 수 있다.
무기졸에 사용되는 용매는 상기 불화마그네슘 졸에 사용되는 용매가 사용될 수 있다.
c) 무기-무기 복합졸
상기 무기-무기 복합졸은 상기 불화마그네슘 졸 및 무기졸에 사용되는 1종 이상의 금속 산화물을 혼합한 다음, 졸-겔 합성을 통해 형성할 수 있다. 혼합비율은 임의로 조절할 수 있다. 예를 들어, ZnO-MgF2 복합 졸의 제조를 위해서는, ZnO졸 합성시 이미 합성된 MgF2졸을 첨가하거나 각각 합성된 졸을 일정 비율 섞어서 쓸 수 있다.
상기 무기-무기 복합졸은 전도성 막과 기판과의 굴절률을 용이하게 조절할 수 있게 된다.
무기-무기 복합졸에 사용되는 용매는 상기 불화마그네슘 졸에 사용되는 용매가 사용될 수 있다.
d) 유-무기 복합졸
상기 유-무기 졸은 상기 불화마그네슘 졸, 무기졸, 및 무기-무기 복합졸로 이루어지는 1종 이상의 금속 산화물 졸에 유기바인더를 도입하여 보호층에 유연성을 증가시키거나 전도성 막의 굴절률을 추가로 조절할 수 있다.
상기 유기 바인더 수지로는 폴리이미드, 아크릴 폴리머, 에폭시, 폴리에틸렌글리콜, 폴리에스테르, 폴리메틸메타아크릴레이트, 폴리비닐피롤리돈, 셀룰로오스, 폴리비닐알콜, 폴리우레탄, 폴리아크릴로니트릴 등이 사용될 수 있으며 , 셀룰로오스 수지 중에서도 하이드록시 프로필 메틸 셀룰로오스, 하이드록시 에틸 셀룰로오스, 하이드록시 프로필 셀룰로오스, 메틸 셀룰로오스, 카르복실 메틸 셀룰로오스 등을 사용할 수 있다. 바람직하기로는 상기 유기 바인더 수지의 중량평균분자량은 10,000 내지 2,000,000이다.
상기 유기 바인더 수지는 졸에 대하여 0.05-5 중량%의 양으로 사용되는 것이 바람직하다. 상기 범위 내인 경우 굴절률 및 연성 확보, 내환경성 향상, 에칭 후 시인성 개선, 및 투명 도전막의 양호한 접촉 저항을 동시에 확보할 수 있다.
무기-유기 복합졸에 사용되는 용매는 상기 불화마그네슘 졸에 사용되는 용매가 사용될 수 있다.
본 발명에서 상기 보호층 코팅 조성물에서 불화마그네슘 졸, 무기 졸, 무기-무기 복합 졸, 및 유기-무기 복합 졸의 함량은 임의로 적절히 조절 가능하며, 바람직하기로는 0.1-15 중량%, 더욱 바람직하기로는 1-10 중량%로 사용하는 것이 좋다. 상기 범위 내인 경우 제조되는 전도성 막의 전기적 특성 및 광학적 특성을 구비하면서도 동시에 산을 통해 쉽게 에칭이 가능하다.
본 발명에서 상기 보호층 코팅 조성물은 필요에 따라 당업계에서 통상적으로 사용되는 첨가제를 포함할 수 있다.
바람직하기로 상기 보호층 코팅 조성물은 불화마그네슘 졸을 포함하는 것이 좋다. 이 경우, 불화마그네슘 졸을 단독으로 포함하거나, 무기-무기 복합졸 또는 무기-유기 복합졸에 불화마그네슘을 사용하는 것 일 수 있다. 불화마그네슘을 사용하는 경우 특히 전기적 특성 및 에칭특성이 우수하다.
본 발명에서 상기 1차 전도성 막 코팅 조성물과 보호층 코팅 조성물은 혼합하여 사용하거나; 또는 금속나노와이어 전도성 막 하부 또는 상부에 단일층 또는 2개 이상의 복층으로 보호층을 형성할 수 있으며, 상기 졸들은 단독으로 보호층을 형성하거나 또는 2종 이상 혼합하여 보호층을 형성할 수도 있다. 특히 보호층 전도성 막의 상부에 가지는 경우 습식 에칭이 가능해 짐으로써 후속 공정에서의 편의성을 더욱 도모할 수 있다.
또한 본 발명은 기판 위에 상기 1차 전도성 막 코팅 조성물과 상기 보호층 코팅 조성물을 이용한 투명 전도성 막의 제조방법 및 상기 방법에 의하여 제조된 투명 전도성 막을 제공한다.
본 발명에서 투명 전도성 막의 제조는 상기 불화마그네슘 졸, 무기 졸, 무기-무기 복합 졸, 및 유기-무기 복합 졸로 이루어지는 군으로부터 선택되는 1종 이상의 졸을 포함하는 보호층 코팅 조성물에 금속 나노와이어 및 분산액을 포함하는 1차 전도성 막 코팅 조성물에 분산시킨 일액형 조성물을 기판에 코팅한 다음 건조하는 단계를 포함하거나, 또는
기판 위에 상기 1차 전도성 막 코팅 조성물과 상기 보호층 코팅 조성물을 각각 순차적으로 코팅하고 건조하는 다층막을 형성하는 단계를 포함하는 것 일 수 있다.
바람직하기로는 다층막을 통해 투명 전도성 막을 형성하는 방법이 금속 나노와이어의 접촉 저항에 영향을 미치지 않기 때문에 원하는 고 전도도를 용이하게 얻을 수 있고, 코팅시 균일도가 우수하여 고 전도도, 고 신뢰성의 투명전도성 막을 얻을 수 있어 좋다.
상기에서 다층막을 형성하는 것은 도 3 내지 6에 기재된 것과 같이 기판과 전도성 막 사이에 1층 이상의 보호층을 형성할 수 있으며, 전도성 막 상부에 1층 이상의 보호층을 형성할 수 있다. 바람직하기로는 상기 보호층 중 적어도 하나는 불화마그네슘을 사용하여 형성된 것이 좋으며, 더욱 바람직하기로는 전도성 막 바로 위 상부에 불화마그네슘을 사용하여 보호층을 형성하는 것이 좋다. 이 경우 투명 전도성 막의 전기적 특성, 광학적 특성 및 에칭 특성을 더욱 향상시킬 수 있다. 본 발명에 있어서 특히 전기적 특성은 전도성 막 단독 사용 시 보다 면저항이 30~70% 감소되는 효과를 보인다. 이는 보호층이 전도성 막 위에 형성될 때 보호층 물질이 수축되어 전도성 막을 형성하는 금속 나노와이어 간의 접촉을 증가시켜 접촉 저항을 감소시키기 때문이다. 또한 보호층이 함께 사용되면 전도성 막 단독으로 사용할 때 보다 전 투과도는 0.5~5% 증가하고, Haze(탁도)는 2~50% 감소하는 효과를 보인다. 이는 보호층 조성물에 의한 굴절률 조절 효과에 기인한 것이다. 이러한 효과를 보이기 위해 본 발명의 보호층은 최종 형성된 보호층의 두께가 10~500 nm의 두께로 형성하는 것이 바람직하다. 상기 범위를 벗어나 10 nm미만의 두께로 보호층이 형성되면 전도성 막을 충분히 덮지 못하고 일부 전도성 막이 노출될 수 있으며, 이렇게 되면 면저항 감소, 전 투과도 상승, Haze 감소 효과를 얻을 수 없게 될 수 있다. 이와 반대로 500 nm를 초과하여 보호층을 형성하면, 보호층의 면저항 저감 효과가 사라질 수 있으며, 투과도 증가, Haze 감소 현상은 나타나지 않을 수 있다.
본 발명에서 상기 코팅 및 건조는 당업계에서 통상적으로 사용되는 인쇄 및 건조방법이 적용될 수 있으며, 예를 들어 인쇄는 그라비아 옵-셋(Gravure off-set) 인쇄, 그라비아 다이렉트(Gravure direct) 인쇄, 마이크로 그라비아(Micro Gravure) 인쇄, 스크린 (Screen)인쇄, 임프린팅 방법, 스핀코팅(spin coating), 슬릿 코팅(slit coating), 슬롯 다이 코팅(slot die coating) 등을 이용하여 통상적으로 사용되는 투명 기판, 예를 들어, 폴리이미드(PI) 기판, 폴리에틸렌 테레프탈레이트(PET) 기판, 폴리카보네이트(PC) 기판, 싸이클로올레핀폴리머(COP) 기판, 폴리에틸렌나프탈레이트(PEN) 기판 등에 인쇄될 수 있다. 또한, 코팅 두께는 용도에 따라 적절히 조절될 수 있으며, 일예로 0.1-100 um의 두께일 수 있다.
또한 본 발명에서는, 상기 코팅된 막을 건조하기 위하여, 저온에서 열처리할 수 있다.
대부분의 졸-겔 합성으로 만들어진 금속산화물은 결정상으로 만들어지기 위해 높은 온도에서 소성하는 것이 일반적인 방법이다. 하지만, 본 발명에서 금속 나노와이어의 부착력을 향상시키고 보호층으로 사용하고자 하는 금속 산화물 졸의 경우에는 200 ℃ 미만의 온도에서 열처리할 수 있으며, 바람직하게는 60-180 ℃에서 열처리하는 것이 좋다. 이와 같은 금속 산화물 졸의 저온 열처리는 결정상(crystal) 형태가 아닌 아모포스(Amorphous)상 또는 중합되면서 분자량이 큰 젤상으로 변환되어 보호층 또는 부착력을 증가 시키는 역할을 한다.
또한, 400 ℃ 이상의 온도에서만 결정상이 증가하는 금속 산화물의 특성상 높은 온도에서의 소성은 후속공정인 에칭이 안 될 가능성이 많기 때문에 본 발명에서는 오히려 결정상이 아닌 아모포스상이나 분자량이 큰 젤상이 더욱 바람직하다.
상기 방법에 의해 얻어진 투명전도성 막은 당분야에서 통상적인 방법에 따라 포토 공정 및 에칭 공정을 수행함으로써 패턴 형성이 가능하다.
본 발명은 또한 상기 방법에 따라 제조된 투명 전도성 막을 제공한다. 본 발명의 조성물 및 방법을 이용하여 제조된 투명 전도성 막은 광투과도가 약 90% 이상이고, 면저항이 200 Ω/□ 이하이며, 면저항, 내환경성, 전투과도 및 헤이즈의 특성이 우수할 뿐 아니라, 습식 에칭 공정에서도 쉽게 에칭이 가능하고 농도 조절을 통해 넓은 범위의 투명 전도막 구현이 가능하므로, 전기장치 또는 광학장치에 유용하게 활용될 수 있으며, 구체적인 예로는 액정 표시장치, 플라즈마 표시장치, 터치패널, 전계발광 장치, 박막태양전지, 염료감응태양전지, 무기물 결정질 태양전지 등의 전극에 유용하게 활용될 수 있다.
본 발명에서 바람직하기로 광투도는 88%, 더욱 바람직하기로는 90% 이상이며, 면저항은 바람직하기로 150 Ω/□ 이하, 더욱 바람직하기로는 100 Ω/□ 이하, 가장 바람직하기로는 80 Ω/□ 이하이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
합성예 1: SiO2졸의 합성
물, 에탄올 및 프로필렌글리콜모노메틸에테르를 각각 2:5:3의 비율로 혼합한 용매 30 g에 옥살산 0.5 g을 투입한 후, 40-70 ℃까지 승온하며 교반하였다. 승온이 완료되면, 테트라오소실란(TEOS) 0.05 몰을 첨가하여 2시간 이상 반응시켜 SiO2졸을 합성하였다.
합성예 2: TiO2졸의 합성
사염화티타늄 0.005 몰, 벤질알코올 0.094 몰 및 에탄올 0.034 몰을 혼합한 후, 70-90 ℃ 온도에서 6시간 이상 반응시켜 흰색의 이산화티타늄 분말을 형성하였다. 상기 이산화티타늄 분말을 디에틸에테르로 세척하며 원심분리기로 이산화티타늄 분말을 분리하였다. 분리된 이산화티타늄 분말을 에탄올 3 g에 분산처리한 후, 세슘카보네이트를 2-에톡시에탄올에 0.2 중량%로 녹인 용액 3 g과 교반시켜 TiO2졸을 합성하였다.
합성예 3: MgF2졸의 합성
마그네슘 전구체로써 마그네슘 메톡사이드 또는 마그네슘 아세테이트 1 몰을 메탄올에 용해시켜 교반한 후, 불소 이온을 부여하기 위해 불산 또는 트리플로로 아세트산을 마그네슘 전구체 대비 2 몰의 양으로 첨가하여 60-90 ℃ 사이에서 12시간동안 이산 반응을 시킨 다음, 하루 이상 에이징(Aging) 처리하여 MgF2졸을 합성하였다.
합성예 4: ZnO 졸의 합성
아연 전구체로써 ZnO 입자 0.5 몰을 메탄올 및 에탄올의 5:5 혼합 용매에 첨가 후, 온도를 50 ℃까지 승온하였다. 그 이후, 아세틸 아세톤, 메틸 아세틸아세토네이트 또는 에틸 아세틸아세토네이트 1 몰을 첨가하여 ZnO 졸을 합성하였다.
합성예 5: Al2O3졸의 합성
알루미늄 전구체로써 Al2O3입자 0.5 몰을 메탄올 및 에탄올의 5:5 혼합 용매에 첨가 후, 온도를 50 ℃까지 승온하였다. 그 이후, 아세틸 아세톤, 메틸 아세틸아세토네이트 또는 에틸 아세틸아세토네이트 1 몰을 첨가하여 Al2O3졸을 합성하였다.
[실시예 1-20]
위에서 합성된 졸을 이용하여 도 3과 같은 형태로 적층 구조를 형성하였다. 기판(11)은 투명 전도성 막을 제조하기 위해서 유연한 플라스틱 기판이 사용 되었으며, PET를 사용하였다. 금속 나노와이어 및 분산액을 포함하는 전도성 막(12) 코팅 조성물은 실버 나노와이어를 에탄올에 0.1-0.2 중량%로 희석하여 준비하였다. 1차(15) 및 2차 보호층(16)은 위에서 게시된 졸 합성법에 따라 제조하였으며 졸 합성 중에 하이드록시 프로필 셀롤로우즈 0.5 g을 첨가 후 동일한 과정을 거쳐 유기-무기 복합 졸을 완성하였으며, 준비된 유기-무기 복합 졸을 에탄올(Ethanol)에 7 중량%로 희석하여 보호층 코팅액을 준비하였다. 그리고 무기-무기 복합졸은 게시된 졸 합성법에 따라 제조된 졸을 1:1 중량비로 혼합하여 제조하였다.
금속 나노와이어 전도성 막은 코팅 두께가 18-25 ㎛가 되도록 슬릿 다이 코팅 또는 마이크로 그라비아 코팅, 그라비아 코팅, 바 코팅 등을 통해 코팅을 진행하였으며, 대류가 원활한 100-130 ℃ 오븐에서 건조하였다.
1차 및 2차 보호층도 마찬가지로 금속 나노와이어 전도성 막의 코팅 방법대로 코팅 두께가 15-20 ㎛가 되도록 코팅하였으며, 1차 전도성 막의 건조 방법에 따라 건조하였다.
투명전도성 막 제조에 사용된 1차 및 2차 보호층 조성물과 완성된 투명 전도성 필름의 성능은 평가하여 하기 표 1 에 표기하였으며, 일련의 포토 공정인 감광성물질도포―노광 ― 현상 ― 에칭 공정을 통해 에칭 특성을 파악하였다.
그 외 각 항목의 성능 평가는 하기와 같이 수행하였다.
1) 면저항: 면저항 측정기를 통해 단위면적당 표면저항을 측정하였다.
2) 내환경성: 온도 85 ℃, 습도 85% 조건에서 면저항이 변하지 않는 시간을 측정하였다.
3) 전 투과도: 400-800 nm 파장 영역에서 분광광도계를 이용하여 가시광 투과도를 측정하였다.
4) 헤이즈: NIPPON DENSHOKU사의 헤이즈 미터COH 400을 이용하여 측정하였다.
5) 습식 에칭 시간: 에칭액으로 과산화수소, 질산 혼합액을 사용하여 도전성이 없어지는 시간을 측정하였다.
표 1
1차보호층 2차 보호층 면 저항(Ω/□) 내 환경성 평가 결과 전 투과도 (%) Haze (%) Wet etching Time(s)
실시예 1 MgF2 MgF2 75 432 91.15 0.72 < 10
실시예 2 MgF2 SiO2 84 432 91.05 0.96 300
실시예 3 MgF2 ZnO 87 384 91.46 0.83 < 10
실시예 4 MgF2 TiO2 40 432 91.49 0.68 < 10
실시예 5 MgF2 Al2O3 95 432 91.48 1.03 90
실시예 6 MgF2 MgF2+HPC 95 420 90.16 0.92 30
실시예 7 SiO2 MgF2 67 420 91.48 0.71 < 10
실시예 8 SiO2 MgF2+HPC 55 432 91.07 0.67 < 10
실시예 9 SiO2 MgF2+ZnO 95 432 90.31 0.93 < 10
실시예 10 MgF2+HPC MgF2 62 384 92.09 0.99 50
실시예 11 MgF2+HPC MgF2+HPC 65 360 92.12 0.94 45
실시예 12 MgF2+HPC SiO2 95 360 91.00 1.11 300
실시예 13 MgF2+HPC SiO2+HPC 114 360 91.59 1.24 180
실시예 14 MgF2+HPC TiO2 54 420 90.96 0.67 20
실시예 15 MgF2+HPC TiO2+HPC 71 384 92.38 0.68 30
실시예 16 MgF2+HPC ZnO 138 360 92.83 1.34 40
실시예 17 MgF2+HPC ZnO+HPC 132 360 90.05 1.26 50
실시예 18 MgF2+ZnO MgF2 92 360 91.45 0.81 < 10
실시예 19 MgF2+ZnO MgF2+HPC 87 384 92.83 1.31 40
실시예 20 MgF2+ZnO MgF2+SiO2 107 384 90.96 1.08 < 10
[실시예 21-42]
위에서 합성된 졸을 이용하여 도 4와 같은 형태로 적층 구조를 형성하였다. 2차 보호층(16)위에 추가로 3차 보호층(17)을 형성하는 것을 제외하고는 상기 실시예 1-20과 동일한 방법을 수행하여 투명전도성 필름을 얻었으며, 물성 및 성능 평가를 하기 표 2에 표기하였다.
표 2
1차보호층 2차 보호층 3차 보호층 면 저항(Ω/□) 내 환경성 평가 결과 전 투과도 (%) Haze (%) Wet etching Time(s)
실시예 21 MgF2 MgF2 SiO2 92 624 90.26 1.04 300
실시예 22 MgF2 SiO2 SiO2 106 624 89.93 0.92 480
실시예 23 SiO2 MgF2 SiO2 110 648 90.68 0.96 300
실시예 24 Al2O3 MgF2 ZnO 121 600 90.06 1.29 70
실시예 25 MgF2 SiO2 MgF2 86 600 91.11 0.84 240
실시예 26 MgF2 ZnO MgF2 95 588 90.97 0.93 50
실시예 27 MgF2 TiO2 MgF2 75 612 91.24 0.71 15
실시예 28 MgF2 MgF2 TiO2 75 624 90.14 0.68 < 10
실시예 29 MgF2+HPC MgF2 SiO2 94 588 91.26 0.89 300
실시예 30 MgF2+HPC MgF2 ZnO 85 600 91.75 0.69 30
실시예 31 MgF2+HPC MgF2 TiO2 92 624 92.07 0.76 20
실시예 32 MgF2+HPC MgF2 Al2O3 122 648 91.68 0.48 90
실시예 33 MgF2+HPC MgF2+HPC Al2O3 132 648 91.48 0.71 120
실시예 34 MgF2+HPC MgF2+HPC SiO2 68 612 90.77 0.83 300
실시예 35 MgF2+HPC MgF2+HPC SiO2+HPC 76 600 91.30 0.72 120
실시예 36 MgF2+HPC MgF2+HPC ZnO 100 588 90.27 1.00 60
실시예 37 MgF2+HPC MgF2+HPC ZnO+ HPC 95 624 91.17 0.94 70
실시예 38 MgF2+ ZnO MgF2 SiO2+HPC 74 600 90.16 0.43 120
실시예 39 MgF2+ ZnO SiO2+HPC MgF2+HPC 95 588 91.26 0.71 90
실시예 40 MgF2+ ZnO MgF2+SiO2 MgF+ TiO2 80 612 92.13 0.94 < 10
실시예 41 MgF2+ ZnO Al2O3+HPC MgF2+HPC 105 600 91.85 0.77 60
실시예 42 MgF2+ ZnO MgF2+SiO2 MgF2+ HPC 93 588 91.01 0.83 20
[실시예 43-64]
위에서 합성된 졸을 이용하여 도 5와 같은 형태로 적층 구조를 형성하였다. 기판(11) 위에 금속 나노와이어 전도성 막(12)을 형성하고 그 위에 보호층(13)을 형성하는 것을 제외하고는 상기 실시예 1-20과 동일한 방법을 수행하여 투명전도성 필름을 얻었으며, 물성 및 성능 평가를 하기 표 3에 표기하였다.
표 3
보호층 면 저항(Ω/□) 내 환경성 평가 결과 전 투과도 (%) Haze (%) Wet etching Time(s)
실시예 43 MgF2 59 384 91.18 0.62 < 10
실시예 44 SiO2 72 432 90.81 0.86 300
실시예 45 ZnO 95 396 89.76 1.02 < 10
실시예 46 TiO2 45 420 91.44 0.57 < 10
실시예 47 Al2O3 103 420 89.64 1.13 120
실시예 48 MgF2+HPC 67 420 90.81 0.71 < 10
실시예 49 SiO2+HPC 86 432 90.35 0.86 120
실시예 50 ZnO+HPC 95 396 91.43 0.97 70
실시예 51 TiO2+HPC 51 432 91.45 0.63 < 10
실시예 52 Al2O3+HPC 110 432 90.59 0.99 120
실시예 53 MgF2+Al2O3 83 432 90.47 0.82 30
실시예 54 SiO2+Al2O3 85 420 90.24 0.97 180
실시예 55 ZnO+Al2O3 100 408 89.55 1.09 50
실시예 56 MgF2+SiO2 80 444 91.27 0.77 60
실시예 57 MgF2+TiO2 60 420 92.16 0.76 < 10
실시예 58 MgF2+ZnO 75 420 91.04 0.84 < 10
실시예 59 MgF2+Al2O3+HPC 97 384 90.56 0.91 60
실시예 60 SiO2+Al2O3+HPC 95 384 90.82 1.11 60
실시예 61 ZnO+Al2O3+HPC 110 372 89.26 1.24 70
실시예 62 MgF2+SiO2+HPC 85 420 91.46 0.82 60
실시예 63 MgF2+TiO2+HPC 75 432 91.55 0.83 30
실시예 64 MgF2+ZnO+HPC 100 432 90.14 0.76 20
[실시예 65-84]
위에서 합성된 졸을 이용하여 도 6과 같은 형태로 적층 구조를 형성하였다. 1차 보호층(13)위에 2차 보호층(14)을 추가로 형성하는 것을 제외하고는 상기 실시예 1-20과 동일한 방법을 수행하여 투명전도성 필름을 얻었으며, 물성 및 성능 평가를 하기 표 4에 표기하였다.
표 4
1차보호층 2차 보호층 면 저항(Ω/□) 내 환경성 평가 결과 (85℃/85%) 전 투과도 (%) Haze (%) Wet etching Time(s)
실시예 65 MgF2 SiO2 60 432 91.27 0.69 300
실시예 66 MgF2 ZnO 80 432 90.85 0.76 < 10
실시예 67 MgF2 TiO2 52 420 91.62 0.63 < 10
실시예 68 MgF2 Al2O3 100 432 90.03 0.98 90
실시예 69 MgF2 MgF2+HPC 75 432 90.85 0.74 < 10
실시예 70 SiO2 MgF2 80 420 91.06 0.80 150
실시예 71 SiO2 MgF2+HPC 65 420 90.43 0.85 150
실시예 72 SiO2 MgF2+ZnO 90 432 91.02 0.83 150
실시예 73 SiO2 MgF2+TiO2 67 432 90.72 0.61 150
실시예 74 MgF2+HPC MgF2 62 384 92.12 0.64 < 10
실시예 75 MgF2+HPC Al2O3 105 384 90.34 0.87 90
실시예 76 MgF2+HPC SiO2 87 420 91.12 0.77 300
실시예 77 MgF2+HPC SiO2+HPC 85 420 91.72 0.87 180
실시예 78 MgF2+HPC TiO2 60 432 90.87 0.58 20
실시예 79 MgF2+HPC TiO2+HPC 60 432 90.18 0.71 30
실시예 80 MgF2+HPC ZnO 95 384 89.93 0.82 40
실시예 81 MgF2+HPC ZnO+HPC 107 384 89.56 0.95 50
실시예 82 MgF2+ZnO MgF2 85 420 90.48 0.76 < 10
실시예 83 MgF2+ZnO MgF2+HPC 90 420 91.26 0.72 40
실시예 84 MgF2+ZnO MgF2+SiO2 100 420 90.28 0.83 < 10
[실시예 85-92]
위에서 합성된 졸을 이용하여 도 7과 같은 형태로 적층 구조를 형성하였다. 기판(11)위에 일액형 금속 나노와이어 코팅 조성물로 투명전도성막(18)을 형성하였다.
위에서 게시된 졸 합성법에 따라 각각의 졸을 제조하였으며 졸 합성 중에 하이드록시 프로필 셀롤로우즈 0.5 g을 첨가 후 동일한 과정을 거쳐 유기-무기 복합 졸을 제조하였다. 그리고 무기-무기 복합졸은 게시된 졸 합성법에 따라 제조된 졸을 1:1 중량비로 혼합하여 제조하였다. 각각의 복합졸은 은 나노와이어가 0.1-0.2 중량%로 희석된 에탄올에 7 중량%로 첨가한 다음, 졸이 뭉치지 않도록 잘 교반하여 일액형 금속 나노와이어 코팅 조성물을 제조하였다. 이를 상기 실시예 1-20과 동일한 방법을 수행하여 투명전도성 필름을 얻었으며, 물성 및 성능 평가를 하기 표 5에 표기하였다.
[비교예 1] 폴리우레탄 폴리머를 이용한 다층막의 제조
은 나노와이어를 물에 0.1-0.2 중량%로 희석하는 것과, 폴리우레탄 폴리머를 메틸에틸케톤에 7 중량%로 녹여서 보호층 형성용 조성물로 사용한 것을 제외하고는 상기 실시예 1-20과 동일한 방법으로 다층 투명 전도성 막을 형성하였으며, 물성 및 성능 평가를 표 5에 표기하였다.
[비교예 2] 폴리우레탄 폴리머를 이용한 단층막의 제조
은 나노와이어를 물에 0.2-0.4 중량%로 희석하는 것과, 폴리우레탄 폴리머를 메틸에틸케톤에 14 중량%로 녹여서 보호층 형성용 조성물을 제조하고 이를 은 나노와이어 분산액과 1:1비로 혼합하여 사용한 것을 제외하고는 상기 실시예 85-92와 동일한 방법으로 단층 투명 전도성 막을 형성하였으며, 물성 및 성능 평가를 하기 표 5에 표기하였다.
표 5
복합졸 조성 면 저항(Ω/□) 내 환경성 평가 결과 (85℃/85%) 전 투과도 (%) Haze (%) Wet etching Time(s)
실시예 85 SiO2+HPC 100 288 91.03 1.03 10
실시예 86 SiO2+Al2O3 70 300 90.67 0.63 40
실시예 87 SiO2+Al2O3+HPC 70 288 90.73 0.98 15
실시예 88 MgF2+HPC 200 300 92.16 0.57 10
실시예 89 ZnO+HPC 120 300 90.05 1.22 30
실시예 90 ZnO+Al2O3 140 300 91.07 1.02 60
실시예 91 ZnO+Al2O3+HPC 140 300 90.55 1.27 60
실시예 92 TiO2+HPC 60 300 91.87 1.41 20
비교예 1 - 240 300 88.38 5.21 에칭불가
비교예 2 - 측정불가 측정불가 89.24 3.82 측정불가
상기 표 1 내지 5에 나타난 바와 같이 본 발명에 따른 투명 전도성 막은 면저항, 내환경성, 전투과도 및 헤이즈의 특성이 우수할 뿐 아니라, 습식 에칭 공정에서도 쉽게 에칭이 가능하고 특히 불화마그네슘을 사용하여 별도의 보호층을 형성할 경우 우수한 물성을 나타내었다.
본 발명의 코팅 조성물을 이용하여 제조된 투명 전도성 막은 금속 나노와이어를 포함하고, 이의 기재물질로서 투명한 금속 산화물 기반의 불화마그네슘 졸, 무기 졸, 무기-무기 복합 졸, 및 유기-무기 복합 졸로 이루어지는 군으로부터 선택되는 1종 이상의 졸을 포함하여 면저항, 내환경성, 전투과도 및 헤이즈의 특성이 우수할 뿐 아니라, 습식 에칭 공정에서도 쉽게 에칭이 가능하고 굴절률 조절이 용이하며, 농도 조절을 통해 넓은 범위의 투명 전도막 구현이 가능하므로, 액정 표시장치, 플라즈마 표시장치, 터치패널, 전계발광 장치, 박막태양전지, 염료감응태양전지, 무기물 결정질 태양전지 등의 전극에 유용하게 사용될 수 있다.

Claims (20)

1) 금속 나노와이어 및 분산액을 포함하는 1차 전도성 막 코팅 조성물; 및
2) 불화마그네슘 졸, 무기 졸, 무기-무기 복합 졸, 및 유기-무기 복합 졸로 이루어지는 군으로부터 선택되는 1종 이상의 졸을 포함하는 보호층 코팅 조성물
을 함유하는 것을 특징으로 하는 투명 전도성 막 코팅 조성물.
제1항에 있어서,
상기 금속 나노와이어는 상기 분산액에 대하여 0.05 내지 0.5 중량%의 양으로 사용되는 것을 특징으로 하는 투명 전도성 막 코팅 조성물.
제1항에 있어서,
상기 1차 전도성 막 코팅 조성물은 유기 바인더를 더욱 포함하는 것을 특징으로 하는 투명 전도성 막 코팅 조성물.
제1항에 있어서,
상기 금속 나노와이어의 금속이 금, 은, 구리, 알루미늄, 니켈, 주석, 팔라듐, 백금, 아연, 철, 인듐 및 마그네슘으로 이루어진 군에서 선택되는 1종 이상의 것임을 특징으로 하는 투명 전도성 막 코팅 조성물.
제1항에 있어서,
상기 금속 나노와이어의 직경이 15 nm 내지 120 nm, 길이가 5 ㎛ 내지 60 ㎛인 것을 특징으로 하는 투명 전도성 막 코팅 조성물.
제1항에 있어서,
상기 분산액이 물, 메탄올, 에탄올, 프로판올, 이소프로판올, 이소프로필아세테이트, 부탄올, 2-부탄올, 옥탄올, 2-에틸헥사놀, 펜탄올, 벤질알콜, 헥산올, 2-헥산올, 사이클로헥산올, 테르피네올, 노나놀, 메틸렌 글리콜, 에틸렌 글리콜, 디에틸렌 글리콜, 트리에틸렌 글리콜, 테트라에틸렌 글리콜, 에틸렌 글리콜 모노메틸에테르, 에틸렌 글리콜 모노에틸에테르, 에틸렌 글리콜 모노부틸에테르, 디에틸렌 글리콜 모노메틸에테르, 디에틸렌 글리콜 모노에틸에테르, 디에틸렌 글리콜 모노부틸에테르, 트리에틸렌 글리콜 모노메틸에테르, 트리에틸렌 글리콜 모노에틸에테르, 트리에틸렌 글리콜 모노부틸에테르, 2-프로판온, 디아세틸, 아세틸아세톤, 1,2-디아세틸에탄, 디메틸카보네이트, 디에틸카보네이트, 프로필렌글리콜메틸에테르아세테이트, 2-메톡시에틸아세테이트, 프로필렌글리콜모노메틸에테르, N-메틸-2-피롤리돈, N-메틸아세트아마이드 및 이들의 혼합물로 이루어진 군에서 선택되는 1종 이상의 용매인 것을 특징으로 하는 투명 전도성 막 코팅 조성물.
제1항에 있어서,
상기 보호층 코팅 조성물이 불화마그네슘 졸을 포함하는 것을 특징으로 하는 투명 전도성 막 코팅 조성물.
제1항에 있어서,
상기 무기졸이 ZnO, TiO2, MgO, CaF2, Al2O3, Al(OH)2, SiO2및 Si(OH)2로 이루어진 군에서 선택되는 1종 이상의 것임을 특징으로 하는 투명 전도성 막 코팅 조성물.
제1항에 있어서,
상기 유기-무기 복합졸에 사용되는 유기 바인더 수지가 폴리이미드, 아크릴 폴리머, 에폭시, 폴리에틸렌글리콜, 폴리에스테르, 폴리메틸메타아크릴레이트, 폴리비닐피롤리돈, 셀룰로오스, 폴리비닐알콜, 폴리우레탄 및 폴리아크릴로니트릴로 이루어진 군에서 선택되는 1종 이상의 것임을 특징으로 하는 투명 전도성 막 코팅 조성물.
제9항에 있어서,
상기 유기 바인더 수지가 금속 산화물 졸에 대하여 0.05 내지 5 중량%의 양으로 사용되는 것을 특징으로 하는 투명 전도성 막 코팅 조성물.
제1항 기재의 보호층 코팅 조성물 및 1차 전도성 막 코팅 조성물을 이용한 기판에 코팅한 다음 건조하는 단계를 포함하는 것을 특징으로 하는 투명 전도성 막의 제조방법.
제11항에 있어서,
상기 보호층 코팅 조성물에 금속 나노와이어 및 분산액을 포함하는 1차 전도성 막 코팅 조성물을 분산시킨 일액형 조성물을 기판에 코팅한 다음 건조하는 단계를 포함하는 것을 특징으로 하는 투명 전도성 막의 제조방법.
제11항에 있어서,
상기 1차 전도성 막 코팅 조성물을 기판에 코팅한 다음, 건조하는 단계; 및
제1항 기재의 보호층 코팅 조성물을 상기 1차 전도성 막 위에 코팅한 다음, 건조하는 단계를 포함하는 것을 특징으로 하는 투명 전도성 막의 제조방법.
제11항에 있어서,
상기 보호층 코팅 조성물을 기판에 코팅한 다음, 건조하는 단계;
상기 1차 전도성 막 코팅 조성물을 상기 보호층 막 위에 코팅한 다음, 건조하는 단계; 및
상기 보호층 코팅 조성물을 상기 1차 전도성 막 위에 코팅한 다음, 건조하는 단계를 포함하는 것을 특징으로 하는 투명 전도성 막의 제조방법.
제11항에 있어서,
상기 건조가 200 ℃ 미만의 온도에서 열처리하는 것임을 특징으로 하는 투명 전도성 막의 제조방법.
제11항의 방법에 따라 코팅 및 건조하여 제조되는 것을 특징으로 하는 투명 전도성 막.
제16항에 있어서,
상기 막의 광투과도가 90% 이상인 것을 특징으로 하는 투명 전도성 막.
제16항에 있어서,
상기 막의 면저항이 100 Ω/□ 이하인 것을 특징으로 하는 투명 전도성 막.
제16항에 있어서,
상기 막은 전극인 것을 특징으로 하는 투명 전도성 막.
제16항에 있어서,
상기 막의 보호층의 두께는 10-500 nm인 것을 특징으로 하는 투명 전도성 막.
PCT/KR2014/000511 2013-01-22 2014-01-17 투명 전도성 막 코팅 조성물, 투명 전도성 막 및 투명 전도성 막의 제조 방법 WO2014115996A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480004715.2A CN104919011A (zh) 2013-01-22 2014-01-17 透明导电性膜涂布组合物、透明导电性膜及透明导电性膜的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0006780 2013-01-22
KR20130006780 2013-01-22
KR1020130086072A KR102148154B1 (ko) 2013-01-22 2013-07-22 투명 전도성 막 코팅 조성물, 투명 전도성 막 및 투명 전도성 막의 제조 방법
KR10-2013-0086072 2013-07-22

Publications (1)

Publication Number Publication Date
WO2014115996A1 true WO2014115996A1 (ko) 2014-07-31

Family

ID=51227752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000511 WO2014115996A1 (ko) 2013-01-22 2014-01-17 투명 전도성 막 코팅 조성물, 투명 전도성 막 및 투명 전도성 막의 제조 방법

Country Status (1)

Country Link
WO (1) WO2014115996A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108251820A (zh) * 2018-03-09 2018-07-06 无锡博硕珈睿科技有限公司 自加热制品/材料的制造方法及制造设备
CN113362991A (zh) * 2021-06-04 2021-09-07 深圳先进电子材料国际创新研究院 一种透明导电膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020007872A (ko) * 2000-07-19 2002-01-29 박호군 전자파차폐용 투광성 도전막 및 그 제조방법
KR20100097789A (ko) * 2009-02-27 2010-09-06 건국대학교 산학협력단 안티모니 주석 산화물 투명 전도성 박막의 제조방법
KR20110059950A (ko) * 2009-11-30 2011-06-08 한국과학기술원 이산화규소 투명 유전체층을 구비한 투명 플라즈마 디스플레이 패널 및 그 제조 방법
KR20120086635A (ko) * 2011-01-26 2012-08-03 주식회사 잉크테크 투명 도전막의 제조방법 및 이에 의해 제조된 투명 도전막
KR20120092294A (ko) * 2011-02-11 2012-08-21 한국과학기술원 은 나노 와이어를 이용한 투명전극 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020007872A (ko) * 2000-07-19 2002-01-29 박호군 전자파차폐용 투광성 도전막 및 그 제조방법
KR20100097789A (ko) * 2009-02-27 2010-09-06 건국대학교 산학협력단 안티모니 주석 산화물 투명 전도성 박막의 제조방법
KR20110059950A (ko) * 2009-11-30 2011-06-08 한국과학기술원 이산화규소 투명 유전체층을 구비한 투명 플라즈마 디스플레이 패널 및 그 제조 방법
KR20120086635A (ko) * 2011-01-26 2012-08-03 주식회사 잉크테크 투명 도전막의 제조방법 및 이에 의해 제조된 투명 도전막
KR20120092294A (ko) * 2011-02-11 2012-08-21 한국과학기술원 은 나노 와이어를 이용한 투명전극 및 그 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108251820A (zh) * 2018-03-09 2018-07-06 无锡博硕珈睿科技有限公司 自加热制品/材料的制造方法及制造设备
CN113362991A (zh) * 2021-06-04 2021-09-07 深圳先进电子材料国际创新研究院 一种透明导电膜及其制备方法和应用

Similar Documents

Publication Publication Date Title
KR102148154B1 (ko) 투명 전도성 막 코팅 조성물, 투명 전도성 막 및 투명 전도성 막의 제조 방법
WO2015050320A1 (ko) 광투과도가 우수한 전극, 이의 제조방법 및 이를 포함하는 전자소자
WO2013133644A1 (ko) 투명 전극 형성용 전도성 잉크 조성물
WO2017164451A1 (ko) 유무기 복합소재의 박막기판 및 이의 제조방법
WO2012036453A2 (ko) 반사방지층이 코팅된 투명도전성 시트 및 이의 제조 방법
WO2011108787A1 (ko) 태양열차단 코팅액과 이를 이용한 태양열차단 코팅 유리
WO2010123265A2 (ko) 탄소나노튜브 도전막 및 그 제조 방법
WO2013036038A2 (en) Transparent conductive film, method of manufacturing the same, and touch panel having the same
WO2013094832A1 (ko) 도전성 필름용 조성물, 이로부터 형성된 도전성 필름 및 이를 포함하는 광학 표시 장치
WO2008143714A2 (en) Protective coatings for porous conductive films and coatings
WO2015152559A1 (ko) 저굴절 조성물, 이의 제조방법, 및 투명 도전성 필름
WO2014115996A1 (ko) 투명 전도성 막 코팅 조성물, 투명 전도성 막 및 투명 전도성 막의 제조 방법
WO2015009090A1 (ko) 투명 도전성 박막 형성용 코어-쉘 나노 입자, 및 이를 사용한 투명 도전성 박막의 제조 방법
TW201609997A (zh) 裝飾用著色組成物、裝飾材、附有裝飾材的基材、轉印材料、觸控面板、及資訊顯示裝置
WO2015102335A1 (ko) 표면처리를 통한 금속 나노와이어 기반 투명 전도성 막의 패터닝 방법
WO2017176038A1 (ko) Basno3 박막 및 이의 저온 제조 방법
WO2015046843A1 (ko) 금속 나노와이어를 함유하는 전도성 코팅 조성물 및 이를 이용한 전도성 필름의 형성방법
JP4079904B2 (ja) 有機無機ハイブリッドガラス状物質を含有するディスプレイパネル用低誘電体材料
WO2014163376A1 (ko) 비스-타입 실란화합물을 포함하는 코팅 조성물
WO2010151013A2 (ko) 탄소나노튜브 도전막 및 이의 제조 방법
WO2016129937A9 (ko) 전도성 구조체 및 이의 제조방법
WO2016186394A1 (ko) 전도성 적층체 및 이를 포함하는 투명 전극
WO2014193086A1 (ko) 불소가 도핑된 고투과율의 산화 주석 박막 제조 방법
WO2013032059A1 (ko) 전도성 조성물 및 이의 제조방법
WO2019160296A1 (ko) 컬러필터 일체형 유연성 터치센서 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743809

Country of ref document: EP

Kind code of ref document: A1