WO2014115979A1 - 고강도 편상 흑연 주철 및 이의 제조방법, 상기 주철을 포함하는 내연기관용 엔진바디 - Google Patents

고강도 편상 흑연 주철 및 이의 제조방법, 상기 주철을 포함하는 내연기관용 엔진바디 Download PDF

Info

Publication number
WO2014115979A1
WO2014115979A1 PCT/KR2014/000091 KR2014000091W WO2014115979A1 WO 2014115979 A1 WO2014115979 A1 WO 2014115979A1 KR 2014000091 W KR2014000091 W KR 2014000091W WO 2014115979 A1 WO2014115979 A1 WO 2014115979A1
Authority
WO
WIPO (PCT)
Prior art keywords
cast iron
graphite cast
manganese
strontium
content
Prior art date
Application number
PCT/KR2014/000091
Other languages
English (en)
French (fr)
Inventor
정기환
양식
황재형
주영규
정종권
이예니슬
심동섭
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to EP14743824.6A priority Critical patent/EP2949771B1/en
Priority to CN201480005692.7A priority patent/CN104937121B/zh
Priority to US14/762,858 priority patent/US9719157B2/en
Publication of WO2014115979A1 publication Critical patent/WO2014115979A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/08Manufacture of cast-iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron

Definitions

  • the present invention relates to a high-strength flake graphite cast iron and a method for manufacturing the same, and an engine body including the cast iron, more specifically, the content ratio (Mn / Sr) of manganese (Mn) and trace amounts of strontium (Sr) contained in cast iron.
  • the present invention relates to flat graphite cast iron having a uniform graphite shape, a low possibility of forming a chill, excellent tensile strength of 350 MPa or more, and excellent workability and flowability, and a method of manufacturing the same.
  • the material used as the engine cylinder block and head material is flake graphite cast iron to which ferroalloys such as chromium (Cr), copper (Cu), and tin (Sn) are added.
  • ferroalloys such as chromium (Cr), copper (Cu), and tin (Sn) are added.
  • Such flaky graphite cast iron is excellent in thermal conductivity, vibration damping ability, and because a small amount of ferroalloy is added, the likelihood of chilling is low, and the castability is also excellent.
  • the tensile strength is about 150 ⁇ 250 MPa, there was a limit to the use for the engine cylinder block and head applications that require an explosion pressure of more than 180 bar.
  • the engine cylinder block and the head material to withstand the explosion pressure exceeding 180 bar is required to increase the tensile strength of about 300MPa.
  • additional pearlite stabilizing elements such as copper (Cu) and tin (Sn) or carbide-promoting elements such as chromium (Cr) and molybdenum (Mo) should be additionally added.
  • MnS emulsion is formed by controlling the use ratio of manganese (Mn) and sulfur (S) added to the molten cast iron, that is, Mn / S at a specific ratio. At this time, the formed Mn / S emulsion promotes the formation of graphite nuclei and reduces the chilling due to the addition of ferroalloy.
  • the method may be applied only to high manganese cast iron molten iron having a manganese (Mn) content of about 1.1 to 3.0%. .
  • Manganese (Mn) promotes the pearlite structure and strengthens the matrix structure by densifying the cementite gap in the pearlite tissue, but when the addition of a large amount of manganese (Mn) stabilizes the carbide to inhibit the growth of graphite, Although it can be raised to 350MPa or more, if the Mn / S ratio is not controlled to a specific range, rather the high content of manganese promotes chilling more and the fluidity is reduced. Therefore, there is a limit to apply the material for the engine cylinder block and head having a complex structure.
  • CGI compact graphite iron
  • CGI cast iron is relatively poor in processability than flake graphite cast iron, when manufacturing an engine cylinder block and head by using CGI cast iron, it cannot be processed in the existing flake graphite cast iron processing line, and it becomes a CGI cast iron processing line. Change is necessary. Therefore, there is a problem about the occurrence of enormous capital investment costs.
  • the present invention has been made in order to solve the above problems, the content of manganese (Mn), and the content ratio (Mn / Sr) of a small amount of strontium (Sr) and manganese (Mn) of the components added to cast iron
  • Mn manganese
  • Sr strontium
  • Mn manganese
  • an object of the present invention is to provide a cast iron having a stable physical properties and structure by precisely controlling the use ratio of manganese (Mn) and strontium (Sr), in particular, the engine body for internal combustion engines of complex shape, preferably medium and large It is an object to provide flake graphite cast iron applicable to an engine cylinder block and / or a medium to large engine cylinder head.
  • Mn manganese
  • Sr strontium
  • the present invention is a total weight percent, carbon (C) 3.0 ⁇ 3.2%, silicon (Si) 2.0 ⁇ 2.3%, manganese (Mn) 1.3 ⁇ 1.6%, sulfur (S) 0.1 ⁇ 0.13%, phosphorus (P) 0.06% Or less, containing copper (Cu) 0.6 ⁇ 0.8%, molybdenum (Mo) 0.25 ⁇ 0.35%, strontium (Sr) 0.003 ⁇ 0.006%, and the remaining amount of iron (Fe) to satisfy 100%, the manganese (Mn) It provides a flake graphite cast iron, preferably medium-large engine cylinder block and flake graphite cast iron for the head, characterized in that the ratio (Mn / Sr) of the content to the strontium (Sr) content has a chemical composition in the range of 216 to 515.
  • the tensile strength of the flake graphite cast iron is in the range of 355 to 375 MPa
  • Brinell hardness value can be in the range of 245 ⁇ 279.
  • the flaky graphite cast iron may have a chill depth of 3 mm or less in the wedge test piece.
  • the flaky graphite cast iron may have a spiral length of 730 mm or more in the fluidity test specimen.
  • the present invention provides a method for producing the high strength flaky graphite cast iron described above.
  • the manufacturing method is (i) 3.0 to 3.2% carbon (C), 2.1 to 2.3% silicon (Si), 1.3 to 1.6% manganese (Mn), 0.1 to 0.13% sulfur (S) Preparing a molten cast iron including%, phosphorus (P) of 0.06% or less, copper (Cu) of 0.6 to 0.8%, molybdenum (Mo) of 0.25 to 0.35%, and a balance of iron (Fe); (ii) adding strontium (Sr) to the molten cast iron melt, and adjusting and adding the manganese (Mn) to the ratio (Mn / Sr) to the strontium (Sr) content in the range of 216 to 515. ; And (iii) injecting the molten cast iron into a ladle and injecting the molten cast iron into a prepared mold.
  • the amount of strontium (Sr) added is preferably in the range of 0.003% to 0.006% based on the total weight% of the molten cast iron.
  • the molten cast iron of step (i) is 3.0 to 3.2% carbon (C), 2.0 to 2.3% silicon (Si), 1.3 to 1.6% manganese (Mn), 0.6-0.8% of copper (Cu), molybdenum (Cu) in a cast iron melt formed by melting a cast iron material containing sulfur (S) of 0.1 to 0.13%, phosphorus (P) of 0.06% or less, and a residual amount of iron (Fe) in a smelting furnace.
  • Mo It is possible to manufacture by adding 0.25 ⁇ 0.35%.
  • the step (iii) is preferably added at least one Fe-Si-based inoculum. More specifically, the Fe-Si-based inoculant can be added to the cast iron molten metal in the ladle, injecting the molten metal into the prepared mold, or both of these steps.
  • the present invention provides an engine body for an internal combustion engine, comprising an engine cylinder block, an engine cylinder head, or both made of the above-mentioned flake graphite cast iron.
  • the engine cylinder block or the engine cylinder head includes a thin section having a cross section thickness of 5 mm to 10 mm and a thick section having a cross section thickness of 30 mm or more, and the graphite form constituting the thin section may be A + D type. It is also possible for the engine body to exceed an explosion pressure of 220 bar.
  • tensile strength, chill depth and fluidity may vary according to the ratio (Mn / Sr) of the addition amount of manganese (Mn) and strontium (Sr), and the thick and thin parts are present at the same time due to the complex shape.
  • Mn / Sr the ratio of the addition amount of manganese (Mn) and strontium
  • the present invention by precisely controlling the amount of strontium (Sr) and the ratio (Mn / Sr) to the strontium (Sr) content of the manganese (Mn) content, a high of 355 to 375 MPa It is possible to provide flake graphite cast iron having a tensile strength, excellent workability and flowability, and suitable for use in, for example, an engine part of an internal combustion engine, and a manufacturing method thereof.
  • Fig. 1 briefly shows an example of a process for producing high strength flaky graphite cast iron for an engine cylinder block and a head according to the present invention.
  • Figure 2 shows the wedge specimen for measuring the chill depth of the flake graphite cast iron according to the present invention.
  • Figure 3 shows a mold for producing a spiral test piece for measuring the flow of flake graphite cast iron according to the present invention.
  • Figure 4 is a plan sectional view to show the thin portion in the cylinder block according to the present invention.
  • Example 5 is a photograph of the surface texture of the thinned graphite cast iron of Example 1 applied to a cylinder block.
  • FIG. 6 is a photograph of the surface texture of the thinned graphite cast iron of Example 2 applied to a cylinder block.
  • Example 7 is a photograph of the surface texture of the thinned graphite cast iron of Example 3 applied to a cylinder block.
  • FIG. 8 is a photograph of surface texture of thin thin graphite cast iron of Example 4 applied to a cylinder block.
  • FIG. 9 is a photograph of surface texture of the thin graphite cast iron of Example 5 applied to a cylinder block.
  • Example 10 is a photograph of the surface texture of the thinned graphite cast iron of Example 6 applied to a cylinder block.
  • FIG. 11 is a photograph of surface texture of the thinned graphite cast iron of Example 7 applied to a cylinder block.
  • FIG. 15 is a photograph of the surface texture of the thinned graphite cast iron of Comparative Example 4 applied to a cylinder block.
  • FIG. 16 is a photograph of the surface structure of the thin portion where the flake graphite cast iron of Comparative Example 5 is applied to a cylinder block.
  • a small amount of strontium (Sr) is used as a component of cast iron, and the content ratio (Mn / Sr) of manganese (Mn) and strontium (Sr) in cast iron is controlled to a specific range.
  • Strontium (Sr) and manganese (Mn) adjusted to a specific content ratio as described above reacts with sulfur (S) in cast iron, respectively, to form SrS and MnS sulfides, and thus SrS surrounds the MnS and flake graphite can grow. Since it acts as a strong nucleation site, even when 1% or more of pearlite and Chill-making element Mn are added, it suppresses chilling and assists the growth and crystallization of healthy A-shaped graphite, which is high in strength and excellent in processability and fluidity. Can be planned at the same time.
  • the content of strontium (Sr) added, and the content ratio (Mn / Sr) of strontium (Sr) and manganese (Mn) in the cast iron is the most important factor for producing a high strength flake graphite cast iron having a tensile strength of 350 MPa or more. Therefore, it is necessary to limit the flaky graphite cast iron of the present invention to the production method and chemical composition exemplified below.
  • each numerical value indicative of the amount, size, and range referred to herein may be inferred by applying at least the number of significant digits and common tolerances, rounding, measurement errors, and the like.
  • the high strength flaky graphite cast iron according to the present invention is 3.0 to 3.2% of carbon (C), 2.0 to 2.3% of silicon (Si), 1.3 to 1.6% of manganese (Mn), and 0.1 to 0.13% of sulfur (S). , Phosphorus (P) 0.06% or less, copper (Cu) 0.6 to 0.8%, molybdenum (Mo) 0.25 to 0.35%, strontium (Sr) 0.003 to 0.006%, and the remaining amount of iron (Fe) to satisfy 100%
  • the ratio of the manganese (Mn) to the strontium (Sr) content (Mn / Sr) has a chemical composition in the range of 216 ⁇ 515.
  • the reason for adding each component contained in the flaky graphite cast iron and the reason for limiting the range of the added content in the present invention are as follows.
  • Carbon is an element which crystallizes healthy flake graphite.
  • a + B flaky graphite can be crystallized in the thick portion having the thickness of the cross section of the engine cylinder block and the head of 30 mm or more, but the thickness of the cross section is 5%.
  • D + E-type graphite which is unhealthy flake graphite, is crystallized, resulting in high probability of Chill, and deterioration of workability.
  • the carbon (C) content exceeds 3.2%, a ferrite structure is formed due to excessive crystallization of flake graphite, and thus the tensile strength is lowered. Therefore, in order to prevent the above-mentioned defects in the high strength engine cylinder block and head having various thicknesses, in the present invention, it is preferable to limit the content of carbon (C) to 3.0 to 3.2%.
  • silicon (Si) When silicon (Si) is added at the optimum ratio with carbon, flake graphite crystallization amount can be maximized.
  • the silicon (Si) content in the flaky graphite cast iron according to the present invention is less than 2.0%, it causes a decrease in workability due to chill formation, and when the content exceeds 2.3%, the tensile strength due to excessive crystallization of the flaky graphite Due to the deterioration, high rigid flake graphite cast iron cannot be obtained. Therefore, in the present invention, it is preferable to limit the content of silicon (Si) to 2.0 to 2.3%.
  • Manganese (Mn) is an element that densifies the interlayer spacing in pearlite to strengthen the matrix of flaky graphite cast iron. If the content of manganese (Mn) in the flaky graphite cast iron according to the present invention is less than 1.3%, it is difficult to obtain high-strength flaky graphite cast iron because it does not have a great influence on the strengthening of the matrix for obtaining a tensile strength of 350 MPa or more, and manganese (Mn) If the content exceeds 1.6%, the tensile strength increases because the carbide stabilization effect is greater than the matrix reinforcing effect, but the tendency to chill increases, resulting in a decrease in processability. In addition, fluidity is lowered. Therefore, in the present invention, it is preferable to limit the content of manganese (Mn) to 1.3 to 1.6%.
  • Sulfur (S) reacts with trace elements contained in the molten metal to form sulfides, which act as nucleation sites of flake graphite to assist in the growth of flake graphite.
  • the sulfur (S) content may be 0.1% or more to produce high strength flaky graphite cast iron.
  • the sulfur (S) content exceeds 0.13%, not only the fluidity is deteriorated, but also due to segregation of sulfur (S), the tensile strength of the material decreases and the brittleness increases, so the content of sulfur (S) according to the present invention is 0.1. It is preferable to limit to -0.13%.
  • Phosphorus is also a kind of impurities that are naturally added in the manufacturing process of cast iron in the air.
  • Phosphorus (P) stabilizes pearlite and reacts with trace elements contained in the molten metal to form phosphide (steite) to enhance matrix strengthening and wear resistance, but the phosphorus (P) content is 0.06. If it exceeds%, brittleness will increase rapidly. Therefore, in the present invention, it is preferable to limit the content of phosphorus (P) to 0.06% or less. In this case, the lower limit of the phosphorus (P) content may be greater than 0%, and there is no particular limitation.
  • Copper (Cu) is a matrix reinforcing element of flake graphite cast iron, and is an element necessary for securing strength because it promotes and refines pearlite formation. If the content of copper (Cu) in the high strength flaky graphite cast iron for the engine cylinder block and the head according to the present invention is less than 0.6%, a shortage of tensile strength is caused, but even if the addition amount exceeds 0.8%, the addition effect corresponding to the excess is There is almost no problem of rising material costs. Therefore, in the present invention, it is preferable to limit the content of copper (Cu) to 0.6 ⁇ 0.8%.
  • Molybdenum (Mo) is an element that reinforces the matrix of flake graphite cast iron, thereby improving the strength of the material and also improving the strength at high temperatures.
  • Molybdenum (Mo) content is less than 0.25% in the high strength flaky graphite cast iron for the engine cylinder block and the head according to the present invention, it is difficult to obtain the tensile strength required by the present invention, and it operates when the explosion pressure rises above 220 bar. The lack of high temperature tensile strength for application to high temperature engine cylinder blocks and heads results.
  • the content of molybdenum (Mo) exceeds 0.35%, the strengthening effect is increased at a high temperature, the tensile strength can be increased a small amount, but because the Mo carbide is generated, workability is significantly reduced, there is a problem of material cost increase. Therefore, in the present invention, it is preferable to limit the content of molybdenum (Mo) to 0.25 ⁇ 0.35%.
  • Strontium (Sr) reacts with sulfur (S) upon solidification to form SrS sulfides, and forms SrS sulfides as a powerful nucleation site where flake graphite can grow while surrounding the MnS sulfides. It is a powerful graphitizing element that promotes.
  • the strontium (Sr) content of 0.003% or more is required in order to prevent chilling due to the large amount of manganese (Mn) and to improve the strength by crystallizing healthy flake graphite.
  • strontium (Sr) has a high oxidizing property
  • addition of more than 0.006% prevents nucleation of flake graphite by oxidation, thereby producing D + E flake graphite and encourages chilling, resulting in reduced workability. Therefore, in the present invention, it is preferable to limit the content of strontium (Sr) to 0.003 ⁇ 0.006%, more specifically, the content of the strontium (Sr) may be in the range 0.0031 ⁇ 0.0060%.
  • Iron is the main body of cast iron according to the invention.
  • the remaining amount of components other than the above components is iron (Fe), and other unavoidable impurities may be included.
  • the flaky graphite cast iron of the present invention is not only limited to the above chemical composition but also has a ratio (Mn / Sr) of the manganese (Mn) to the strontium (Sr) content in the range of 216 to 515, preferably in the range of 299 to 451.
  • Mn matrix-reinforced and carbide stabilizing element manganese
  • a + D flaky graphite can be obtained and tensile strength is 350 MPa or more because it reduces the chilling.
  • high strength single-phase graphite cast iron for an engine cylinder block and a head excellent in workability can be obtained.
  • the carbon equivalent is less than 3.70, D + E type graphite is formed on the thin walled part having a thickness of about 5 to 10 mm and a chill occurs, resulting in poor casting and workability. do.
  • the carbon equivalent exceeds 4.00, tensile strength decreases due to excessive crystallization of eutectic graphite. Therefore, in the present invention, it is preferable to limit the range of carbon equivalents to the range of 3.70 to 4.00, which can be appropriately adjusted for the mechanical properties and quality control of the engine cylinder block and head.
  • the tensile strength of the flake graphite cast iron having the above-described chemical composition may be in the range of 355 to 375 MPa.
  • Brinell hardness value is in the range of 245 ⁇ 279, preferably 258 ⁇ 279 range.
  • the chill depth of the wedge test piece to which the flake graphite cast iron having the chemical composition is applied is 3 mm or less, preferably 2 mm or less.
  • the wedge test piece measuring the chill depth may be shown as shown in FIG. 2.
  • the length of the spiral of the fluidity test piece to which the flake graphite cast iron having the chemical composition is applied may be 730 mm or more, and preferably 738 mm or more.
  • the fluidity test specimen may be shown as shown in FIG. 3.
  • the upper limit of the length of the spiral in the fluidity test piece is not particularly limited, and may be, for example, an end point of the spiral length of the fluidity test piece specification.
  • Method for producing high strength flaky graphite cast iron of the present invention having the above-described chemical composition is as follows.
  • the method of manufacturing the cast iron molten metal 110 according to the present invention is not particularly limited.
  • the five major elements of cast iron are carbon (C), silicon (Si), manganese (Mn), sulfur (S), and phosphorus (P).
  • Cast molten iron material in the above-described content range in a furnace to produce a cast iron molten iron, and added to the alloy (210) such as copper (Cu), molybdenum (Mo) to the above-described chemical composition Prepare the melt 110.
  • phosphorus (P) may be included as an impurity in the raw material for casting, or may be added separately.
  • the reason for limiting the chemical composition in the molten metal is the same as the reason described in the case of the chemical composition of the flaky graphite cast iron described later, and thus description thereof will be omitted.
  • Strontium (Sr, 220) is added to the molten cast iron melt 110 as above, but the ratio (Mn / Sr) to the strontium (Sr) content of the manganese (Mn) is in the range of 216 to 515. Adjust to add. In this case, the amount of strontium (Sr, 220) added is preferably in the range of 0.003 to 0.006% based on the total weight% of the cast iron molten metal, more specifically, 0.0031 to 0.0060% range.
  • the chemical composition of the flake graphite cast iron is limited as described above, and the ratio (S / Sr) to the strontium (Sr) content of the manganese (Mn) content must be limited to the range of 216 to 515, Preferably it may range from 299 to 451.
  • the ratio of Mn / Sr is less than 216, a decrease in strength may be caused.
  • the ratio of Mn / Sr exceeds 515, the hardness may be high and workability may decrease.
  • Mn matrix-reinforced and carbide stabilizing element manganese
  • the cast iron melt 110 prepared as described above completes the component analysis of the melt using a carbon equivalent meter, a carbon / sulfur analyzer, and a spectrometer.
  • the size of the inoculant may be in the range of 0.5 to 3mm in diameter, and the amount of the inoculum at the time of ladle tapping to obtain a material stabilization effect of the high strength flaky graphite cast iron is preferably limited to 0.3 ⁇ 0.05% by weight (%).
  • the melt temperature of the tapping completed ladle is measured using a immersion type thermometer, and after measuring the temperature, the molten metal 110 is injected into the prepared mold 400.
  • the injection amount of the inoculum at the time of mold injection is preferably limited to 0.3 ⁇ 0.05% by weight (%). This process completes the manufacture of high strength flaky graphite cast iron for the engine cylinder block and head.
  • the high strength flaky graphite cast iron of the present invention prepared as described above has a higher strength than the flaky graphite cast iron in the range of 250 to 300 MPa tensile strength currently used for engine cylinder blocks and heads, but shows comparable processability and fluidity. Also, even when a large amount of manganese (Mn) is added, the tendency of chilling is significantly low. In addition, even if the flaky graphite cast iron of the present invention is applied to an engine cylinder block and a head having a complicated shape in which a thick section having a cross section thickness of 30 mm or more and a thin section having a cross section thickness of about 5 to 10 mm exist simultaneously, the thick section and the thin section are constituted. It is possible that the difference in the content ratio of A + D type graphite to be less than 10% in the cross-sectional ratio.
  • the flaky graphite cast iron of the present invention is a high-strength material having a tensile strength of 350 MPa or more, and therefore, is applied to an engine body for an internal combustion engine, particularly, an engine cylinder block, an engine cylinder head, or both in which a thick part and a thin part are present at the same time. It is possible to do Such an engine body is capable of exceeding 220 bar explosion pressure, it can satisfy the recent exhaust gas environmental regulations.
  • the engine body means a configuration of an engine including an engine cylinder block, an engine cylinder head, and a head cover.
  • the engine cylinder block and / or the engine cylinder head to which the flake graphite cast iron is applied according to the present invention includes a thin portion having a cross section thickness of about 5 to 10 mm and a thick portion having a cross section thickness of 30 mm or more, and the graphite constituting the thin portion. It is preferable that the form is A + D type. Indeed, it can be seen that the thin portions to which the flaky graphite cast iron of the present invention is applied to the cylinder block are all in the form of A + D graphite (see FIGS. 5 to 11).
  • a raw water containing carbon (C), silicon (Si), manganese (Mn), sulfur (S), and phosphorus (P) was prepared.
  • phosphorus (P) it was used as an impurity contained in the raw materials for casting, not added separately, but only adjusted to be less than 0.06%.
  • the carbon equivalent (CE) is measured using a carbon equivalent meter before tapping to adjust the content of carbon (C) to 3.0 to 3.2%, and ferroalloys such as copper (Cu), molybdenum (Mo), and manganese (Mn) It was adjusted to the composition as shown in Table 1.
  • strontium (Sr) was added to complete melting, tapping was performed.
  • the first inoculation was performed by injecting Fe-Si-based inoculum simultaneously with tapping.
  • the temperature of the molten metal was measured, and the molten metal was injected into the prepared mold.
  • the tensile strength of the cast iron according to Examples 1-7 in which the Mn / Sr ratio is adjusted to the range of 216 ⁇ 515 is 355 ⁇ 375 MPa range
  • Brinell hardness value is found to be 245 ⁇ 279 HBW range
  • the depth of the chill was 3 mm or less
  • the spiral length of the fluidity test specimen was 730 mm or more.
  • the cast iron of Comparative Examples 1 and 3 to 4 is the same as the content and the manufacturing process of the compositions of Examples 1 to 7, but the content of the manganese (Mn) and Mn / Sr ratio is an example outside the composition range of the present invention.
  • Comparative Example 2 is the same as the content and manufacturing process of the composition of Examples 1 to 7, but the content of strontium (Sr) and Mn / Sr ratio is an example outside the composition range of the present invention.
  • Comparative Example 5 is a material in which manganese (Mn) and sulfur (S) are additionally added without adding ferroalloys such as copper (Cu) and molybdenum (Mo).
  • Comparative Example 6 is the same as the content and the manufacturing process of the composition of Examples 1 to 7, but is a material in which antimony (Sb) is additionally added without adding strontium (Sr).
  • Comparative Example 7 is a tensile strength 300 MPa grade material conventionally developed for producing high strength flaky graphite cast iron for engine cylinder blocks and heads.
  • the high strength flaky graphite cast iron according to the present invention has both stable tensile strength and hardness, chill depth and fluidity, it can be usefully applied to engine cylinder blocks and heads requiring high strength of 350 MPa or more. Able to know.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

본 발명은 고강도 편상 흑연 주철의 제조방법 및 그 방법에 의해 제조된 편상 흑연 주철, 상기 주철을 포함하는 엔진 바디에 관한 것으로, 보다 상세하게는 주철 내 포함된 망간(Mn)과 미량의 스트론튬(Sr)의 함량을 특정 비율로 제어함으로써, 흑연 형상이 균일하고, 칠(Chill) 형성 가능성이 낮으며, 인장강도가 350 MPa 이상의 고강도와 가공성 및 유동성이 우수한 편상 흑연 주철 및 그 제조방법에 관한 것이다.

Description

고강도 편상 흑연 주철 및 이의 제조방법, 상기 주철을 포함하는 내연기관용 엔진바디
본 발명은 고강도 편상 흑연 주철 및 이의 제조방법, 상기 주철을 포함하는 엔진 바디에 관한 것으로, 보다 상세하게는 주철 내 포함된 망간(Mn)과 미량의 스트론튬(Sr)의 함량 비(Mn/Sr)를 특정 범위로 제어함으로써, 흑연 형상이 균일하고, 칠(Chill) 형성 가능성이 낮으며, 인장강도가 350 MPa 이상의 고강도와 가공성 및 유동성이 우수한 편상 흑연 주철 및 그 제조방법에 관한 것이다.
최근 전 세계적으로 환경규제가 더욱 강화되고 있기 때문에, 엔진에서 배출되는 배기 가스의 환경 오염물질의 함량을 줄이는 것이 반드시 필요하며, 이를 해결하기 위해서는 엔진의 폭발 압력을 높여 연소온도를 상승시키는 것이 필요하다. 이와 같이 엔진의 폭발압력을 높였을 때, 폭발압력을 견디기 위해서는 엔진을 구성하고 있는 엔진 실린더 블록 및 헤드의 강도가 높아져야만 한다.
현재 엔진 실린더 블록 및 헤드 소재로 사용되는 소재는 크롬(Cr), 구리(Cu), 주석(Sn) 등의 합금철이 첨가된 편상 흑연 주철이다. 이러한 편상 흑연 주철은 열전도율, 진동 감쇄능이 우수하고, 합금철이 미량 첨가되었기 때문에 칠(Chill)화 가능성이 낮을 뿐만 아니라 주조성 또한 우수하다. 그러나 인장강도가 150~250 MPa 정도이므로, 180 bar를 초과하는 폭발 압력이 요구되는 엔진 실린더 블록 및 헤드 용도로 사용하는 것에는 한계가 있었다.
한편 180 bar를 초과하는 폭발 압력에 견디기 위한 엔진 실린더 블록 및 헤드 소재는 인장강도가 300MPa 정도의 고강도화가 요구된다. 이를 위해서는 구리(Cu), 주석(Sn) 등의 펄라이트 안정화 원소나, 크롬(Cr), 몰리브덴(Mo) 등의 탄화물 생성 촉진 원소를 추가로 첨가하여야 하나, 이러한 합금철의 첨가는 칠(Chill)화 경향을 잠재적으로 내포하고 있기 때문에, 복잡한 형상을 갖는 엔진 실린더 블록 및 헤드의 박육부에 칠(Chill)이 발생할 가능성을 가중시키는 문제점이 있다.
편상 흑연 주철의 고강도화를 위한 종래 기술로는, 주철 용탕에 첨가되는 망간(Mn)과 황(S)의 사용 비율, 즉 Mn/S를 특정 비율로 제어하여 MnS 유화물을 형성시키는 것이다. 이때 형성된 Mn/S 유화물은 흑연 핵 생성을 촉진하고 합금철 첨가에 의한 Chill화를 저감시키는 역할을 하는데, 상기 방법은 망간(Mn) 함량이 1.1~3.0% 정도인 고망간 주철 용탕에만 적용될 수 있다. 망간(Mn)은 펄라이트 조직을 촉진시키고, 펄라이트 조직 내 시멘타이트 간격을 치밀하게 하여 매트릭스 조직을 강화하기는 하나, 이러한 망간(Mn)을 다량 첨가하는 경우 탄화물을 안정시켜 흑연 성장을 저해하기 때문에 강도는 350MPa 이상으로 상승될 수 있으나, Mn/S 비를 특정 범위로 제어하지 않으면, 오히려 망간의 고함량으로 인해 chill화가 더 촉진되며 유동성이 감소하게 된다. 따라서 복잡한 구조를 갖는 엔진 실린더 블록 및 헤드용 소재로 적용하기에는 한계가 있었다.
최근에는 편상 흑연 주철의 우수한 주조성, 진동 감쇄능 및 열전도율을 가지면서, 이와 동시에 350MPa 이상의 높은 인장강도를 모두 만족하는 CGI(compacted graphite iron) 주철이 폭발압이 높은 엔진 실린더 블록 및 헤드 소재로 적용되고 있다. 인장 강도 350MPa 이상의 CGI 주철을 만들기 위해서는 황(S)과 인(P)과 같은 불순물의 함량이 낮은 고급 선철 및 용해재료를 사용해야 하며, 흑연 구상화 원소인 마그네슘(Mg)의 정밀 제어가 필요하다. 그러나 마그네슘(Mg)의 제어가 힘들고, 또한 출탕온도, 출탕속도 등 용해 및 주조 조건변화에 매우 민감하기 때문에, CGI 주철의 재질 불량 및 주조 불량이 발생할 가능성이 높으며, 제조 원가가 상승하는 문제점이 있다.
또한, CGI 주철은 편상 흑연 주철보다 상대적으로 가공성이 나쁘기 때문에, CGI 주철을 이용하여 엔진 실린더 블록 및 헤드 제조시, 기존의 편상 흑연 주철 전용 가공 라인에서 가공을 하지 못하고, CGI 주철 전용 가공 라인으로의 변경이 반드시 필요하다. 따라서 막대한 설비투자 비용 발생에 대한 문제점이 있다.
본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로서, 주철에 첨가되는 성분 중 망간(Mn)의 함량, 및 미량의 스트론튬(Sr)과 망간(Mn)의 함량 비(Mn/Sr)를 특정 범위로 제어함으로써, 망간(Mn)을 다량 첨가하더라도, 칠(Chill)의 증가 없이 인장강도 350 MPa 이상의 고강도를 확보하면서, 종래 기술과 대등한 가공성과 유동성을 동시에 갖는 편상흑연 주철 및 그 제조방법을 제공하는 것을 목적으로 한다.
또한 본 발명은 망간(Mn)과 스트론튬(Sr)의 사용비율을 정밀하게 제어함으로써 안정적인 물성과 조직을 가지는 주철을 제공하는 데 그 목적이 있으며, 특히 형상이 복잡한 내연기관용 엔진 바디, 바람직하게는 중대형 엔진 실린더 블록 및/또는 중대형 엔진 실린더 헤드에 적용 가능한 편상 흑연 주철을 제공하는 것을 목적으로 한다.
본 발명은 전체 중량%로서, 탄소(C) 3.0~3.2%, 규소(Si) 2.0~2.3%, 망간(Mn) 1.3~1.6%, 황(S) 0.1~0.13%, 인(P) 0.06% 이하, 구리(Cu) 0.6~0.8%, 몰리브덴(Mo) 0.25~0.35%, 스트론튬(Sr) 0.003~0.006%, 및 100%를 만족시키는 잔량의 철(Fe)을 포함하며, 상기 망간(Mn) 함량의 상기 스트론튬(Sr) 함량에 대한 비(Mn/Sr)가 216~515 범위의 화학 조성을 지니는 것을 특징으로 하는 편상 흑연 주철, 바람직하게는 중대형 엔진 실린더 블록 및 헤드용 편상 흑연 주철을 제공한다.
본 발명의 바람직한 일례에 따르면 상기 편상 흑연 주철의 탄소 당량(CE: Carbon Equivalent)은 CE=%C+%Si/3의 방법으로 계산하였을 때, 3.7~4.0 범위가 되도록 한다.
또한 본 발명의 바람직한 다른 일례에 따르면, 상기 편상 흑연 주철의 인장 강도(Tensile Strength)는 355 내지 375 MPa 범위이며, 브리넬 경도값(BHW)이 245~279 범위인 것이 가능하다.
한편 본 발명의 바람직한 일례에 따르면, 상기 편상 흑연 주철은 쐐기 시험편의 칠(Chill) 깊이가 3mm 이하인 것이 가능하다.
또한 상기 편상 흑연 주철은 유동도 시험편에서 나선의 길이가 730mm 이상인 것이 가능하다.
아울러, 본 발명은 전술한 고강도 편상 흑연 주철의 제조방법을 제공한다.
보다 구체적으로, 상기 제조방법은 (i) 전체 중량%에 대하여 탄소(C) 3.0~3.2%, 규소(Si) 2.1~2.3%, 망간(Mn) 1.3~1.6%, 황(S) 0.1~0.13%, 인(P) 0.06% 이하, 구리(Cu) 0.6~0.8%, 몰리브덴(Mo) 0.25~0.35%, 및 잔량의 철(Fe)을 포함하는 주철 용탕을 제조하는 단계; (ii) 상기 용융된 주철 용탕에 스트론튬(Sr)을 첨가하되, 상기 망간(Mn) 함량의 상기 스트론튬(Sr) 함량에 대한 비(Mn/Sr)가 216~515 범위가 되도록 조절하여 첨가하는 단계; 및 (iii) 상기 주철 용탕을 레들에 출탕하여 준비된 주형에 주입하는 단계를 포함하여 구성될 수 있다.
여기서, 상기 스트론튬(Sr)의 첨가량은 주철 용탕 전체 중량% 대비 0.003% 내지 0.006% 범위인 것이 바람직하다.
본 발명의 바람직한 일례에 따르면, 상기 단계 (i)의 주철 용탕은, 전체 중량%에 대하여 탄소(C) 3.0~3.2%, 규소(Si) 2.0~2.3%, 망간(Mn) 1.3~1.6%, 황(S) 0.1~0.13%, 인(P) 0.06% 이하 및 잔량의 철(Fe)을 포함하는 주철 재료를 용광로에서 용융하여 형성된 주철 용탕에, 구리(Cu) 0.6~0.8%, 및 몰리브덴(Mo) 0.25~0.35%를 첨가하여 제조되는 것이 가능하다.
또한 본 발명의 일례에 따르면, 상기 단계 (iii)는 Fe-Si계 접종제를 1회 이상 첨가하는 것이 바람직하다. 보다 구체적으로, 상기 Fe-Si계 접종제는 주철 용탕을 레들에 출탕시, 준비된 주형에 용탕을 주입시, 또는 이들 단계 모두에 첨가하는 것이 가능하다.
나아가, 본 발명은 전술한 편상 흑연 주철을 소재로 이루어지는 엔진 실린더 블록, 엔진 실린더 헤드 또는 이들 모두를 구비하는 것을 특징으로 하는 내연기관용 엔진 바디를 제공한다.
여기서, 상기 엔진 실린더 블록 또는 엔진 실린더 헤드는 단면 두께가 5mm ~10mm인 박육부와 단면 두께가 30mm 이상인 후육부를 포함하며, 상기 박육부를 구성하는 흑연 형태가 A+D형인 것이 가능하다. 또한 상기 엔진 바디는 폭발압력이 220 bar를 초과하는 것이 가능하다.
본 발명에 따르면, 망간(Mn)과 스트론튬(Sr)의 첨가량의 비(Mn/Sr)에 따라 인장강도, chill 깊이 및 유동도가 달라질 수 있는데, 형상이 복잡하여 후육부와 박육부가 동시에 존재하는 고강도 엔진 실린더 블록 및 헤드에 적용하기 위해서는 Mn/Sr 비가 216~515 범위가 되도록 한다.
이상에서 설명한 바와 같이, 본 발명에 따르면, 스트론튬(Sr)의 양, 및 망간(Mn) 함량의 스트론튬(Sr) 함량에 대한 비(Mn/Sr)를 정밀하게 제어함으로써, 355 내지 375 MPa의 높은 인장강도, 우수한 가공성 및 유동도를 가지며, 예를 들어 내연기관의 엔진 부품 등에 이용하기에 적합한 편상 흑연 주철 및 이의 제조방법을 제공할 수 있다.
도 1은 본 발명에 따른 엔진 실린더 블록 및 헤드용 고강도 편상 흑연 주철의 제조 공정의 일례를 간략히 도시한 것이다.
도 2는 본 발명에 따른 편상 흑연 주철의 칠(Chill) 깊이를 측정하기 위한 쐐기 시편을 나타낸 것이다.
도 3은 본 발명에 따른 편상 흑연 주철의 유동도 측정용 나선 시험편 제작을 위한 금형을 나타낸 것이다.
도 4는 본 발명에 따른 실린더 블록에서 박육부를 보이도록 하는 평단면도이다.
도 5는 실시예 1의 편상 흑연 주철이 실린더 블록에 적용된 박육부의 표면 조직 사진이다.
도 6은 실시예 2의 편상 흑연 주철이 실린더 블록에 적용된 박육부의 표면 조직 사진이다.
도 7은 실시예 3의 편상 흑연 주철이 실린더 블록에 적용된 박육부의 표면 조직 사진이다.
도 8은 실시예 4의 편상 흑연 주철이 실린더 블록에 적용된 박육부의 표면 조직 사진이다.
도 9는 실시예 5의 편상 흑연 주철이 실린더 블록에 적용된 박육부의 표면 조직 사진이다.
도 10은 실시예 6의 편상 흑연 주철이 실린더 블록에 적용된 박육부의 표면 조직 사진이다.
도 11은 실시예 7의 편상 흑연 주철이 실린더 블록에 적용된 박육부의 표면 조직 사진이다.
도 12는 비교예 1의 편상 흑연 주철이 실린더 블록에 적용된 박육부의 표면 조직 사진이다.
도 13은 비교예 2의 편상 흑연 주철이 실린더 블록에 적용된 박육부의 표면 조직 사진이다.
도 14는 비교예 3의 편상 흑연 주철이 실린더 블록에 적용된 박육부의 표면 조직 사진이다.
도 15는 비교예 4의 편상 흑연 주철이 실린더 블록에 적용된 박육부의 표면 조직 사진이다.
도 16는 비교예 5의 편상 흑연 주철이 실린더 블록에 적용된 박육부의 표면 조직 사진이다.
도 17은 비교예 6의 편상 흑연 주철이 실린더 블록에 적용된 박육부의 표면 조직 사진이다.
도 18은 비교예 7의 편상 흑연 주철이 실린더 블록에 적용된 박육부의 표면 조직 사진이다.
<부호의 간단한 설명>
1: 엔진 실린더 블록
2: 단면 두께 5mm~10mm 박육부
100: 용광로
110: 주철 용융액
210: 구리, 몰리브덴, 망간
220: 스트론튬
300: 레들
400: 주형
이하, 구체적인 예시를 통하여 본 발명을 상세히 설명한다.
본 발명에서는 주철의 성분으로 미량의 스트론튬(Sr)을 사용하되, 주철 내 망간(Mn)과 스트론튬(Sr)의 함량비(Mn/Sr)를 특정 범위로 제어하는 것을 특징으로 한다.
상기와 같이 특정 함량비로 조절된 스트론튬(Sr)과 망간(Mn)은 주철 내 황(S)과 각각 반응하여 SrS 및 MnS 황화물을 형성하고, 이렇게 형성된 SrS가 MnS를 둘러싸면서 편상 흑연이 성장할 수 있는 강력한 핵생성 사이트 역할을 하기 때문에, 펄라이트 및 Chill 조장원소인 Mn을 1% 이상 다량 첨가하더라도 반응칠(Chill)화를 억제하고 건전한 A형 편상 흑연의 성장 및 정출을 보조하여 고강도와 우수한 가공성 및 유동성을 동시에 도모할 수 있다.
이때 첨가되는 스트론튬(Sr)의 함량, 및 주철 내 스트론튬(Sr)과 망간(Mn)과의 함량비(Mn/Sr)는 인장강도가 350 MPa 이상인 고강도 편상 흑연 주철을 제조하는데 가장 중요한 인자이다. 따라서 본 발명의 편상 흑연 주철은 하기에 예시되는 제조방법 및 해당 화학조성으로 한정하는 것이 필요하다.
이하, 본 발명에 따른 편상 흑연 주철의 화학조성 및 상기 편상 흑연 주철의 제조방법에 대해 설명한다. 여기서, 각 원소의 첨가량은 중량%이며, 이하 내용에서는 단순히 %로 표시한다.
또한 본 명세서에서 언급된 양, 크기, 범위를 나타내는 각각의 수치는 적어도 유효 숫자의 수 및 통상의 허용오차, 반올림법, 측정 오차 등을 적용하여 유추될 수 있다.
<편상 흑연 주철>
본 발명에 따른 고강도 편상 흑연 주철은, 전체 중량%로서, 탄소(C) 3.0~3.2%, 규소(Si) 2.0~2.3%, 망간(Mn) 1.3~1.6%, 황(S) 0.1~0.13%, 인(P) 0.06% 이하, 구리(Cu) 0.6~0.8%, 몰리브덴(Mo) 0.25~0.35%, 스트론튬(Sr) 0.003~0.006%, 및 100%를 만족시키는 잔량의 철(Fe)을 포함하며, 상기 망간(Mn) 함량의 상기 스트론튬(Sr) 함량에 대한 비(Mn/Sr)가 216~515 범위의 화학 조성을 지닌다.
본 발명에서 상기 편상 흑연 주철에 함유된 각 성분의 첨가 이유 및 첨가된 함량의 범위를 한정하는 이유는 다음과 같다.
1) 탄소(C) 3.0~3.2%
탄소는 건전한 편상 흑연을 정출시키는 원소이다. 본 발명에 따른 편상 흑연 주철에서 탄소(C) 함량이 3.0% 미만이면, 엔진 실린더 블록 및 헤드의 단면의 두께가 30mm 이상인 후육부에는 A+B형 편상 흑연 정출이 가능하지만, 단면의 두께가 5~10mm 이하여서 상대적으로 냉각속도가 빠른 박육부에서는 건전하지 못한 편상 흑연인 D+E형 흑연이 정출하여 Chill 발생 확률이 높고, 가공성 저하가 초래된다. 또한 탄소(C) 함량이 3.2% 를 초과하면, 편상 흑연의 과다 정출에 따라 페라이트(ferrite)조직이 형성되어 인장강도가 저하되기 때문에 고강성 편상 흑연 주철을 얻을 수 없다. 따라서 다양한 두께를 가지는 고강도 엔진 실린더 블록 및 헤드에서 전술한 불량을 예방하기 위해서, 본 발명에서는 탄소(C)의 함량을 3.0~3.2%로 한정하는 것이 바람직하다.
2) 실리콘(Si) 2.0~2.3%
실리콘(Si)은 탄소와 최적 비율로 첨가될 경우 편상 흑연 정출량을 극대화 할 수 있으며, Chill 발생을 저하시키고 강도를 증가시킨다. 본 발명에 따른 편상 흑연 주철에서 실리콘(Si) 함량이 2.0% 미만이면, 칠(Chill) 형성에 따른 가공성 저하를 야기시키게 되고, 그 함량이 2.3%를 초과하면 편상 흑연의 과다 정출로 인한 인장 강도 저하로 인해 고강성 편상 흑연 주철을 얻을 수 없다. 따라서 본 발명에서는 실리콘(Si)의 함량을 2.0~2.3% 로 한정하는 것이 바람직하다.
3) 망간(Mn) 1.3~1.6%
망간(Mn)은 펄라이트 내의 층간 간격을 조밀하게 하여 편상 흑연 주철의 기지를 강화시키는 원소이다. 본 발명에 따른 편상 흑연 주철에서 망간(Mn) 함량이 1.3% 미만이면, 인장강도 350MPa 이상을 얻기 위한 기지 강화에는 큰 영향을 미치지 못하기 때문에 고강성 편상 흑연 주철을 얻기가 힘들고, 망간(Mn) 함량이 1.6%를 초과하면, 기지 강화 효과 보다는 탄화물 안정화 효과가 크기 때문에 인장강도는 상승하지만, Chill 화 경향이 증가하여 가공성 저하가 초래된다. 또한 유동성이 저하된다. 따라서 본 발명에서는 망간(Mn)의 함량을 1.3~1.6%로 한정하는 것이 바람직하다.
4) 황(S) 0.1~0.13%
황(S)은 용탕에 포함되어 있는 미량 원소와 반응하여 황화물을 형성하는데, 이러한 황화물은 편상 흑연의 핵 생성 사이트 역할을 하여 편상 흑연의 성장을 보조하는 역할을 한다. 본 발명에 따른 편상 흑연 주철에서 황(S)의 함량은 0.1% 이상이어야 고강도 편상 흑연 주철을 제조할 수 있다. 또한 황(S) 함량이 0.13%를 초과하면 유동성이 나빠질 뿐만 아니라 황(S)의 편석으로 인하여 재료의 인장강도가 저하되고 취성이 증가하기 때문에, 본 발명에 따른 황(S)의 함량은 0.1~0.13%로 한정하는 것이 바람직하다.
5) 인(P) 0.06% 이하
인은 공기 중에서의 주철 제조공정에서 자연적으로 첨가되는 불순물의 일종이기도 하다. 이러한 인(P)은 펄라이트를 안정화하고, 용탕에 포함되어 있는 미량 원소와 반응하여 인화물(스테다이트)을 형성하여 기지강화 및 내마모성을 향상시키는 역할을 하나, 상기 인(P)의 함량이 0.06%를 초과하면 취성이 급격히 증가하게 된다. 따라서 본 발명에서는 인(P)의 함량을 0.06% 이하로 한정하는 것이 바람직하다. 이때 인(P) 함량의 하한치는 0 % 초과일 수 있으며, 특별히 한정할 필요는 없다.
6) 구리(Cu) 0.6~0.8%
구리(Cu)는 편상 흑연 주철의 기지 강화 원소로서, 펄라이트 생성을 촉진시키고 미세화시키는 작용을 하기 때문에 강도 확보를 위해 필요한 원소이다. 본 발명에 따른 엔진 실린더 블록 및 헤드용 고강도 편상 흑연 주철에서 구리(Cu)의 함량이 0.6% 미만이면 인장 강도의 부족을 초래하지만, 그 첨가량이 0.8%를 초과하더라도 그 초과분에 해당하는 첨가 효과가 거의 없어 재료비 상승의 문제점이 있다. 따라서 본 발명에서는 구리(Cu)의 함량을 0.6~0.8%로 한정하는 것이 바람직하다.
7) 몰리브덴(Mo) 0.25~0.35%
몰리브덴(Mo)은 편상 흑연 주철의 기지를 강화시키고, 이에 따라 재료의 강도를 향상시키고, 또한 고온에서의 강도를 향상시키는 원소이다. 본 발명에 따른 엔진 실린더 블록 및 헤드용 고강도 편상 흑연 주철에서 몰리브덴(Mo)의 함량이 0.25% 미만이면 본 발명에서 요구하는 인장강도를 얻기가 힘들 뿐만 아니라, 폭발압력이 220bar 이상으로 상승할 때 동작온도가 높은 엔진 실린더 블록 및 헤드에 적용하기 위한 고온 인장강도의 부족이 초래된다. 반면 몰리브덴(Mo)의 함량이 0.35%를 초과하면, 고온에서 기지 강화효과가 커져 인장강도는 소량 상승할 수 있으나 Mo 탄화물이 생성되기 때문에 가공성이 현저하게 저하하게 되며, 재료비 상승의 문제점이 있다. 따라서, 본 발명에서는 몰리브덴(Mo)의 함량을 0.25~0.35%로 한정하는 것이 바람직하다.
8) 스트론튬(Sr) 0.003~0.006%
스트론튬(Sr)은 미량으로도 응고시 황(S)과 반응하여 SrS 황화물을 형성하고, 형성된 SrS 황화물이 MnS 황화물을 둘러싸면서 편상 흑연이 성장할 수 있는 강력한 핵생성 사이트 역할을 하여 건전한 A type 흑연을 조장하는 강력한 흑연화 원소이다. 본 발명에서는 망간(Mn)의 다량 첨가에 따른 Chill화를 방지하고 건전한 편상 흑연을 정출하여 강도의 향상을 위해서는 0.003% 이상의 스트론튬(Sr) 함량을 필요로 한다. 그러나 스트론튬(Sr)은 산화성이 크기 때문에 0.006%을 초과하여 첨가하면 산화에 의해 편상 흑연의 핵 생성을 방해하여 D+E형 편상 흑연을 생성하고 Chill화를 조장하여, 가공성 저하가 초래된다. 따라서, 본 발명에서는 스트론튬(Sr)의 함량을 0.003~0.006%로 한정하는 것이 바람직하며, 보다 구체적으로, 상기 스트론튬(Sr)의 함량은 0.0031 ~ 0.0060% 범위일 수 있다.
9) 철(Fe)
철은 본 발명에 따른 주철의 주재이다. 상기 성분 이외의 잔량의 성분은 철(Fe)이며, 그 외 불가피한 불순물이 일부 포함될 수 있다.
본 발명의 편상 흑연 주철은 상기 화학조성에 한정될 뿐 아니라, 상기 망간(Mn) 함유량의 상기 스트론튬(Sr) 함유량에 대한 비(Mn/Sr)를 216~515 범위, 바람직하게는 299~451 범위로 조절함으로써, 고강도 편상 흑연 주철 제조를 위해 기지 강화 및 탄화물 안정화 원소인 망간(Mn)을 다량 첨가하더라도 A+D형의 편상 흑연을 얻을 수 있고, Chill화를 감소시키기 때문에 인장강도가 350MPa 이상이면서, 가공성이 우수한 엔진 실린더 블록 및 헤드용 고강도 편상 흑연 주철을 얻을 수 있다.
본 발명의 일례에 따르면, 상기 편상 흑연 주철의 탄소 당량(CE : Carbon Equivalent)은 CE=%C+%Si/3의 방법으로 계산하였을 때, 3.70~4.00 범위가 되도록 하며, 바람직하게는 3.74~3.92 범위일 수 있다. 상기 탄소 당량이 3.70 미만일 경우에는 단면의 두께가 5~10mm 정도인 박육부(thin walled part)에 D+E형 편상흑연이 생성되고 칠(Chill)이 발생하여, 주조불량 및 가공성의 저하가 초래된다. 또한 상기 탄소 당량이 4.00을 초과하면 공정 흑연의 과도한 정출로 인해 인장강도가 저하된다. 따라서 본 발명에서는 탄소 당량의 범위를 3.70~4.00 범위로 한정하는 것이 바람직하며, 그 범위 내에서는 엔진 실린더 블록 및 헤드의 기계적 성질과 품질 제어를 위해 적절히 조절될 수 있다.
본 발명의 일례에 따르면, 전술한 화학조성을 가진 편상 흑연 주철의 인장강도(Tensile Strength)는 355~375MPa 범위일 수 있다. 또한 브리넬 경도값(BHW)은 245~279 범위이며, 바람직하게는 258~279 범위일 수 있다.
본 발명의 일례에 따르면, 상기 화학조성을 가진 편상 흑연 주철을 적용한 쐐기 시험편의 Chill 깊이는 3mm 이하이며, 바람직하게는 2mm 이하이다. 이때 칠(chill) 깊이를 측정하는 쐐기 시험편은 하기 도 2와 같이 도시될 수 있다.
또한 본 발명의 일례에 따르면, 상기 화학조성을 가진 편상 흑연 주철을 적용한 유동도 시험편의 나선의 길이가 730mm 이상이 가능하며, 바람직하게는 738mm 이상일 수 있다. 이때 유동도 시험편은 하기 도 3과 같이 도시될 수 있다. 상기 유동도 시험편에서 나선의 길이의 상한치는 특별한 제한이 없으며, 일례로 유동도 시험편 규격이 갖는 나선 길이의 끝점일 수 있다.
<편상 흑연 주철의 제조방법>
전술한 화학조성을 가진 본 발명의 고강도 편상 흑연 주철의 제조방법은 하기와 같다.
그러나 하기 제조방법에 의해서만 한정되는 것은 아니며, 필요에 따라 각 공정의 단계가 변형되거나 또는 선택적으로 혼용되어 수행될 수 있다.
도 1을 참조하여 설명하면, 먼저 1) 전체 중량%에 대하여 탄소(C) 3.0~3.2%, 규소(Si) 2.0~2.3%, 망간(Mn) 1.3~1.6%, 황(S) 0.1~0.13%, 인(P) 0.06% 이하, 구리(Cu) 0.6~0.8%, 몰리브덴(Mo) 0.25~0.35% 및 잔량의 철(Fe)을 포함하는 주철 용탕(110)을 제조한다.
본 발명에 따른 주철 용탕(110)을 제조하는 방법은 특별히 한정되지 않으며, 일례로 주철의 5대 원소인 탄소(C), 실리콘(Si), 망간(Mn), 황(S), 인(P)이 전술한 함량 범위로 함유된 주철 재료를 용광로에서 용융하여 주철 용탕을 제조하고, 여기에 구리(Cu), 몰리브덴(Mo) 등의 합금철(210)을 첨가하여 전술한 화학조성이 되도록 주철 용탕(110)을 준비한다.
이때 인(P)은 주조를 하기 위한 원재료에 불순물로 포함될 수 있으며, 또는 별도로 첨가할 수도 있다. 한편, 본 발명에서 상기 용탕 중의 화학조성의 한정이유는 후술하는 편상 흑연 주철의 화학조성의 경우에서 기술하는 이유와 동일하므로, 이에 관한 설명은 생략한다.
2) 상기와 같이 용융된 주철 용탕(110)에 스트론튬(Sr, 220)을 첨가하되, 상기 망간(Mn) 함량의 상기 스트론튬(Sr) 함량에 대한 비(Mn/Sr)가 216~515 범위가 되도록 조절하여 첨가한다. 이때 스트론튬(Sr, 220)의 첨가량은 주철 용탕 전체 중량% 대비 0.003 내지 0.006% 범위가 바람직하며, 보다 구체적으로 0.0031~0.0060% 범위일 수 있다.
본 발명에서는 편상 흑연 주철의 화학조성을 상기와 같이 한정함과 동시에, 상기 망간(Mn) 함유량의 상기 스트론튬(Sr) 함유량에 대한 비(S/Sr)를 216~515 범위로 한정할 필요가 있으며, 바람직하게는 299~451 범위일 수 있다. 상기 Mn/Sr의 비가 216 미만이면 강도의 저하가 초래되고, Mn/Sr의 비가 515을 초과하면 경도가 높아져서 가공성이 저하될 수 있다. 이와 같이 Mn/Sr 비를 한정함으로써, 고강도 편상 흑연 주철 제조를 위해 기지 강화 및 탄화물 안정화 원소인 망간(Mn)을 다량 첨가하더라도 A+D형의 편상 흑연을 얻을 수 있고, Chill화를 감소시키기 때문에 인장강도가 350 MPa 이상이면서, 가공성이 우수한 엔진 실린더 블록 및 헤드용 고강도 편상 흑연 주철을 얻을 수 있다.
상기와 같이 제조된 주철 용탕(110)은 탄소 당량 측정기, 탄소/황 분석기 및 분광분석기를 이용하여 용탕의 성분 분석을 완료한다.
3) 전술한 주철 용탕을, 출탕하기 위한 용기인 래들(300, ladle)에 출탕하고 이후 준비된 주형에 주입하는데, 이때 Fe-Si계 접종제를 적어도 1회 이상 첨가할 수 있다.
상기 단계의 바람직한 일례를 들면, 고강도 편상 흑연 주철의 재질의 안정화 측면에서 먼저 출탕과 동시에 Fe-Si계 접종제를 첨가하고(1차 접종처리), 다음으로 주입과 동시에 Fe-Si계 접종제를 첨가한다(2차 접종처리). 이때 투입되는 접종제의 크기는 직경 0.5~3mm 범위일 수 있으며, 고강도 편상 흑연 주철의 재질 안정화 효과를 얻기 위한 래들 출탕시 접종제의 투입량은 중량비(%)로 0.3±0.05%로 한정하는 것이 바람직하다.
출탕이 완료된 레들의 용탕 온도를 침적식 타입의 온도계를 사용하여 측정하고, 온도를 측정한 후 준비된 주형틀(400)에 용탕(110)을 주입한다. 몰드 주입시 상기 접종제의 투입량은 중량비(%)로 0.3±0.05%로 한정하는 것이 바람직하다. 이러한 공정을 통하여 엔진 실린더 블록 및 헤드용 고강도 편상 흑연 주철의 제조를 완성한다.
상기와 같이 제조된 본 발명의 고강도 편상 흑연 주철은, 현재 엔진 실린더 블록 및 헤드에 사용되는 인장강도 250~300MPa 범위의 편상 흑연 주철보다 높은 강도를 가지면서도 이와 대등한 가공성과 유동성을 보여준다. 또한 망간(Mn)을 다량 첨가하더라도, 칠(Chill)화 경향이 현저히 낮다. 아울러, 본 발명의 편상 흑연 주철을 단면 두께가 30mm 이상인 후육부와 단면 두께가 5~10mm 정도의 박육부가 동시에 존재하는 복잡한 형상의 엔진 실린더 블록 및 헤드에 적용하더라도, 후육부와 박육부를 구성하는 A+D형 흑연의 함유 비율의 차이가 단면비로 10% 미만인 것이 가능하다.
<내연기관용 엔진 바디>
아울러, 본 발명의 편상 흑연 주철은 인장강도가 350 MPa 이상인 고강도 소재이므로, 내연기관용 엔진 바디, 특히 형상이 복잡하여 후육부와 박육부가 동시에 존재하는 엔진 실린더 블록, 엔진 실린더 헤드 또는 이들 모두에 적용하는 것이 가능하다. 이러한 엔진 바디는 폭발압력이 220 bar를 초과하는 것이 가능하므로, 최근 배기가스 환경규제를 만족할 수 있다.
참고로, 후술되는 용어는 본 발명에서의 기능을 고려하여 설정된 용어로서, 이는 생산자의 의도 또는 관례에 따라 달라질 수 있으므로 그 정의는 본 명세서에 기재된 내용을 토대로 내려져야 할 것이다. 예컨대, 본 발명에서 엔진 바디는 엔진 실린더 블록과 엔진 실린더 헤드와 헤드 커버를 포함하는 엔진의 구성을 의미한다.
본 발명에 따라 편상 흑연 주철이 소재로 적용된 엔진 실린더 블록 및/또는 엔진 실린더 헤드는 단면 두께가 5~10mm 정도인 박육부와 단면 두께가 30mm 이상인 후육부를 포함하며, 상기 박육부를 구성하는 흑연 형태가 A+D형인 것이 바람직하다. 실제로, 본 발명의 편상 흑연 주철이 실린더 블록에 적용된 박육부는 모두 A+D형 흑연 형태인 것을 확인할 수 있다(도 5 ~11 참조).
이하, 본 발명의 실시예에 대해 보다 상세하게 설명한다. 그러나, 하기 실시예들은 본 발명의 이해를 돕기 위해 예시된 것으로, 본 발명의 범위가 이에 한정되는 것으로 해석되어져서는 안되며, 본 발명의 사상을 일탈하지 않고 하기의 실시예들로부터 다양한 변형 및 변경이 가능하다.
<실시예 1-7 및 비교예 1-7>
하기 표 1의 조성에 따라 실시예 1~7 및 비교예 1~7에 의한 편상 흑연 주철을 제조하였다.
표 1
구분 C Si Mn S P Cu Mo Sr Mn/Sr 기타 성분 Fe
실시예1 3.09 2.29 1.479 0.128 0.033 0.738 0.298 0.0047 314 잔량
실시예2 3.08 2.27 1.469 0.125 0.034 0.737 0.304 0.0059 249 잔량
실시예3 3.19 2.18 1.598 0.108 0.037 0.768 0.341 0.0031 515 잔량
실시예4 3.18 2.18 1.301 0.111 0.037 0.694 0.327 0.0060 216 잔량
실시예5 3.05 2.07 1.523 0.130 0.037 0.742 0.258 0.0051 299 잔량
실시예6 3.08 2.23 1.366 0.103 0.029 0.708 0.339 0.0041 333 잔량
실시예7 3.12 2.11 1.578 0.120 0.035 0.771 0.311 0.0035 451 잔량
비교예1 3.20 2.19 1.01 0.129 0.040 0.706 0.254 0.0054 187 잔량
비교예2 3.15 2.22 1.577 0.119 0.027 0.711 0.301 0.0025 631 잔량
비교예3 3.17 2.10 2.37 0.127 0.030 0.689 0.266 0.0041 578 잔량
비교예4 3.21 2.09 0.72 0.110 0.028 0.701 0.291 0.0052 138 잔량
비교예5 3.23 2.25 1.527 0.124 0.030 - - - - - 잔량
비교예6 3.18 2.12 1.301 0.129 0.028 0.706 0.251 - - 0.03% Sb 잔량
비교예7 3.24 2.17 0.62 0.085 0.030 0.68 0.193 0.0175 35 잔량
먼저 표 1의 조성에 따라 탄소(C), 실리콘(Si), 망간(Mn), 황(S), 인(P)이 함유된 원탕을 준비하였다. 인(P)의 경우, 별도로 첨가하지 않고, 주조를 하기 위한 원재료에 포함된 불순물로 사용하되, 단지 그 함량이 0.06% 이하가 되도록 조절하였다.
출탕 전에 탄소 당량 측정기를 이용하여 탄소 당량(CE)을 측정하여 탄소(C)의 함량을 3.0~3.2%로 조절하고, 구리(Cu), 몰리브덴(Mo), 망간(Mn) 등의 합금철을 상기 표 1과 같은 조성으로 조절하였다. 스트론튬(Sr)을 첨가하여 용융을 완료한 후, 출탕을 실시하였다. 이때 출탕과 동시에 Fe-Si 계 접종제를 투입하여 1차 접종을 실시하였다. 레들에 출탕을 완료한 후 용탕의 온도를 측정하고, 준비된 주형에 용탕을 주입하였다. 이때 주입과 동시에 Fe-Si 계 접종제를 투입하여 2차 접종을 실시함으로써 엔진 실린더 블록 및 헤드용 편상 흑연 주철 제품을 제조하였다.
상기 표 1의 조성에 따라 제조된 실시예 1~7 및 비교예 1~7의 주철의 탄소 당량, 인장강도, 브리넬 경도, Chill 깊이를 각각 측정하여 하기 표 2에 나타내었다.
표 2
구분 탄소 당량(C.E.) 인장강도(N/mm2) 경도(HBW) Chill 깊이(mm) 유동도(mm) 박육부흑연형태
실시예1 3.85 360 263 1 743 A+D
실시예2 3.84 355 245 1 752
실시예3 3.92 375 279 2 738
실시예4 3.91 358 258 1 760
실시예5 3.74 362 266 1 746
실시예6 3.82 359 256 1 765
실시예7 3.82 362 258 2 759
비교예1 3.93 341 239 1 771 A+D+E
비교예2 3.89 372 299 6 703 D+E
비교예3 3.87 385 310 8 643 D+E
비교예4 3.91 322 231 4 775 A+D
비교예5 3.98 298 217 1 673 A
비교예6 3.87 352 277 4 732 A+D+E
비교예7 3.96 331 224 0 788 A+B
상기 표 2에서 보는 바와 같이, Mn/Sr 비가 216~515 범위로 조절된 실시예 1~7에 따른 주철의 인장강도는 355~375 MPa 범위이며, 브리넬 경도값은 245~279 HBW 범위인 것을 알 수 있었다. 또한 Chill 깊이가 3mm 이하이며, 유동도 시험편의 나선의 길이가 730mm 이상인 것을 알 수 있었다.
또한 인장강도 300 MPa급 소재인 비교예 7, 비교예 1 및 비교예 5를 제외한 비교예 2~3 및 6은 모두 D+E형 흑연 형태를 갖는 것에 비해, 본원 실시예 1~7의 편상 흑연 주철이 실린더 블록에 적용된 박육부는 모두 A+D형 흑연 형태를 가진다는 것을 알 수 있었다(표 2 및 도 5 ~ 18 참조).
참고로, 비교예 1, 3~4의 주철은 실시예 1~7 의 조성의 함량 및 제조 과정은 동일하나, 망간(Mn)의 함량과 Mn/Sr 비가 본 발명의 조성 범위에 벗어난 예이다.
비교예 2는 실시예 1~7의 조성의 함량 및 제조 과정은 동일하나, 스트론튬(Sr)의 함량과 Mn/Sr 비가 본 발명의 조성 범위에서 벗어난 예이다.
비교예 5는 구리(Cu), 몰리브덴(Mo) 등의 합금철 첨가 없이 단순히 망간(Mn)과 황(S)을 추가로 첨가한 소재이다.
비교예 6은 실시예 1~7의 조성의 함량 및 제조 과정은 동일하나, 스트론튬(Sr)을 첨가하지 않고 안티몬(Sb)을 추가로 첨가한 소재이다.
비교예 7은 엔진 실린더 블록 및 헤드용 고강도 편상 흑연 주철을 제조하기 위하여 종래에 개발된 인장강도 300 MPa급 소재이다.
결과적으로, 본 발명에 따른 고강도 편상 흑연 주철은 안정적인 인장강도와 경도, Chill 깊이와 유동성을 모두 가지고 있기 때문에, 인장강도 350 MPa 이상의 고강도를 요구하는 엔진 실린더 블록 및 헤드에 유용하게 적용할 수 있음을 알 수 있다.

Claims (15)

  1. 전체 중량%로서, 탄소(C) 3.0~3.2%, 규소(Si) 2.0~2.3%, 망간(Mn) 1.3~1.6%, 황(S) 0.1~0.13%, 인(P) 0.06% 이하, 구리(Cu) 0.6~0.8%, 몰리브덴(Mo) 0.25~0.35%, 스트론튬(Sr) 0.003~0.006%, 및 100%를 만족시키는 잔량의 철(Fe)을 포함하며, 상기 망간(Mn) 함량의 상기 스트론튬(Sr) 함량에 대한 비(Mn/Sr)가 216~515 범위의 화학 조성을 지닌 것을 특징으로 하는 편상 흑연 주철.
  2. 제1항에 있어서, 상기 망간(Mn) 함량의 상기 스트론튬(Sr) 함량에 대한 비(Mn/Sr)가 299~451 범위의 화학 조성을 지닌 것을 특징으로 하는 편상 흑연 주철.
  3. 제1항에 있어서, 인장강도(Tensile Strength)가 355~375 MPa인 것을 특징으로 하는 편상 흑연 주철.
  4. 제1항에 있어서, 브리넬 경도값(BHW)이 245~279인 것을 특징으로 하는 편상 흑연 주철.
  5. 제1항에 있어서, 쐐기 시험편의 칠(Chill) 깊이가 3mm 이하인 것을 특징으로 하는 편상 흑연 주철.
  6. 제1항에 있어서, 유동도 시험편의 나선의 길이가 730mm 이상인 것을 특징으로 하는 편상 흑연 주철.
  7. 제1항에 있어서, 탄소 당량(CE: Carbon Equivalent)이 3.70~4.0 범위인 것을 특징으로 하는 편상 흑연 주철.
  8. 제1항의 편상 흑연 주철을 소재로 이루어지는 엔진 실린더 블록, 엔진 실린더 헤드 또는 이들 모두를 구비하는 것을 특징으로 하는 내연기관용 엔진 바디.
  9. 제8항에 있어서, 상기 엔진 실린더 블록 또는 엔진 실린더 헤드는 단면 두께가 5~10mm 범위인 박육부와 단면 두께가 30mm를 초과하는 후육부를 포함하며, 상기 박육부를 구성하는 흑연 형태가 A+D형인 것을 특징으로 하는 내연기관용 엔진 바디.
  10. 제8항에 있어서, 상기 엔진 바디는 폭발 압력이 220 bar를 초과하는 것을 특징으로 하는 내연기관용 엔진 바디.
  11. (i) 전체 중량%에 대하여 탄소(C) 3.0~3.2%, 규소(Si) 2.0~2.3%, 망간(Mn) 1.3~1.6%, 황(S) 0.10~0.13%, 인(P) 0.06% 이하, 구리(Cu) 0.6~0.8%, 몰리브덴(Mo) 0.25~0.35%, 및 잔량의 철(Fe)을 포함하는 주철 용탕을 제조하는 단계;
    (ii) 상기 용융된 주철 용탕에 스트론튬(Sr)을 첨가하되, 상기 망간(Mn) 함량의 상기 스트론튬(Sr) 함량에 대한 비(Mn/Sr)가 216~515 범위가 되도록 조절하여 첨가하는 단계; 및
    (iii) 상기 주철 용탕을 레들에 출탕하여 준비된 주형에 주입하는 단계
    를 포함하는 고강도 편상 흑연 주철의 제조방법.
  12. 제11항에 있어서, 상기 스트로튬(Sr)의 첨가량은 주철 용탕 전체 중량% 대비 0.003 내지 0.006% 범위인 것을 특징으로 하는 고강도 편상 흑연 주철의 제조방법.
  13. 제11항에 있어서, 상기 단계 (i)의 주철 용탕은, 전체 중량%에 대하여 탄소(C) 3.0~3.2%, 규소(Si) 2.0~2.3%, 망간(Mn) 1.3~1.6%, 황(S) 0.10~0.13%, 인(P) 0.06% 이하 및 잔량의 철(Fe)을 포함하는 주철 재료를 용광로에서 용융하여 제조된 주철 용탕에, 구리(Cu) 0.6~0.8%, 및 몰리브덴(Mo) 0.25~0.35%를 첨가하여 제조되는 것을 특징으로 하는 고강도 편상 흑연 주철의 제조방법.
  14. 제11항에 있어서, 상기 단계 (iii)는 Fe-Si계 접종제를 1회 이상 첨가하는 것을 특징으로 하는 고강도 편상 흑연 주철의 제조방법.
  15. 제14항에 있어서, 상기 Fe-Si계 접종제는 주철 용탕을 레들에 출탕시, 주형에 용탕을 주입시, 또는 이들 단계 모두에 첨가되는 것을 특징으로 하는 고강도 편상 흑연 주철의 제조방법.
PCT/KR2014/000091 2013-01-23 2014-01-06 고강도 편상 흑연 주철 및 이의 제조방법, 상기 주철을 포함하는 내연기관용 엔진바디 WO2014115979A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14743824.6A EP2949771B1 (en) 2013-01-23 2014-01-06 High-strength flake graphite cast iron, manufacturing method thereofor, and engine body for internal combustion engine including cast iron
CN201480005692.7A CN104937121B (zh) 2013-01-23 2014-01-06 高强度片状石墨铸铁及其制备方法和包含所述铸铁的内燃机用发动机机体
US14/762,858 US9719157B2 (en) 2013-01-23 2014-01-06 High-strength flake graphite cast iron, manufacturing method thereof, and engine body for internal combustion engine including cast iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0007367 2013-01-23
KR1020130007367A KR102076368B1 (ko) 2013-01-23 2013-01-23 고강도 편상 흑연 주철 및 이의 제조방법, 상기 주철을 포함하는 내연기관용 엔진바디

Publications (1)

Publication Number Publication Date
WO2014115979A1 true WO2014115979A1 (ko) 2014-07-31

Family

ID=51227743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000091 WO2014115979A1 (ko) 2013-01-23 2014-01-06 고강도 편상 흑연 주철 및 이의 제조방법, 상기 주철을 포함하는 내연기관용 엔진바디

Country Status (5)

Country Link
US (1) US9719157B2 (ko)
EP (1) EP2949771B1 (ko)
KR (1) KR102076368B1 (ko)
CN (1) CN104937121B (ko)
WO (1) WO2014115979A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021210268A1 (de) 2021-09-16 2023-03-16 Mahle International Gmbh Schichtgesinterter Ventilsitzring, Verfahren zu dessen Herstellung, Kombinationen damit und deren Verwendung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580401A (en) * 1995-03-14 1996-12-03 Copeland Corporation Gray cast iron system for scroll machines
US20020036033A1 (en) * 2000-01-28 2002-03-28 Subramanian Sundaresa V. Process for producing gray cast iron for use in high speed machining with cubic boron nitride and silicon nitride tools and the gray cast iron so produced
KR20100031131A (ko) * 2007-06-26 2010-03-19 고쿠리츠다이가꾸호진 이와테다이가꾸 편상 흑연 주철 및 이의 제조방법
KR20110132563A (ko) * 2009-02-12 2011-12-08 텍시드 도 브라질 엘티디에이. 연소기관 및 일반 주조물용 고저항 회주철 합금을 얻기 위한 방법
JP2012041571A (ja) * 2010-08-12 2012-03-01 Nippon Piston Ring Co Ltd 大型鋳造製品用の片状黒鉛鋳鉄及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2749238A (en) * 1949-09-10 1956-06-05 Int Nickel Co Method for producing cast ferrous alloy
JP3063947B2 (ja) * 1993-07-27 2000-07-12 株式会社坂戸工作所 破砕切断機
FR2712606B1 (fr) * 1993-11-19 1996-02-09 Tech Ind Fonderie Centre Procédé d'élaboration d'une charge de fonte à graphite sphéroïdal à caractéristiques mécaniques élevées.
JP3050368B2 (ja) * 1995-10-18 2000-06-12 トヨタ自動車株式会社 プレス成形用一体金型の製造方法
JP3959764B2 (ja) * 1996-11-29 2007-08-15 いすゞ自動車株式会社 高強度鋳鉄の製造方法及び高強度鋳鉄
KR200306190Y1 (ko) * 1999-04-26 2003-03-04 대모 엔지니어링 주식회사 유압 크래셔
JP3999109B2 (ja) * 2002-11-21 2007-10-31 アイシン高丘株式会社 耐候性鋳鉄及びその製造方法
US20070023106A1 (en) * 2003-07-16 2007-02-01 Milan Lampic-Oplander Cast iron material
RU2274672C1 (ru) * 2004-10-27 2006-04-20 Открытое акционерное общество "ГАЗ" (ОАО "ГАЗ") Чугун
CN1927544A (zh) * 2006-09-16 2007-03-14 阮桂华 研磨盘
RU2334008C1 (ru) * 2007-01-25 2008-09-20 Юлия Алексеевна Щепочкина Чугун
JP2008195993A (ja) 2007-02-09 2008-08-28 Kimura Chuzosho:Kk 溶接性に優れた片状黒鉛鋳鉄材
DE102010024403A1 (de) * 2010-06-19 2011-12-22 Sms Siemag Aktiengesellschaft Verfahren und Vorrichtung zur Schrottmesserspaltverstellung bei Grobblechscheren

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580401A (en) * 1995-03-14 1996-12-03 Copeland Corporation Gray cast iron system for scroll machines
US20020036033A1 (en) * 2000-01-28 2002-03-28 Subramanian Sundaresa V. Process for producing gray cast iron for use in high speed machining with cubic boron nitride and silicon nitride tools and the gray cast iron so produced
KR20100031131A (ko) * 2007-06-26 2010-03-19 고쿠리츠다이가꾸호진 이와테다이가꾸 편상 흑연 주철 및 이의 제조방법
KR20110132563A (ko) * 2009-02-12 2011-12-08 텍시드 도 브라질 엘티디에이. 연소기관 및 일반 주조물용 고저항 회주철 합금을 얻기 위한 방법
JP2012041571A (ja) * 2010-08-12 2012-03-01 Nippon Piston Ring Co Ltd 大型鋳造製品用の片状黒鉛鋳鉄及びその製造方法

Also Published As

Publication number Publication date
EP2949771B1 (en) 2018-03-14
US20150368763A1 (en) 2015-12-24
KR102076368B1 (ko) 2020-02-12
CN104937121B (zh) 2017-03-29
EP2949771A4 (en) 2016-09-07
CN104937121A (zh) 2015-09-23
KR20140095138A (ko) 2014-08-01
US9719157B2 (en) 2017-08-01
EP2949771A1 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
US8372335B2 (en) Austenitic ductile cast iron
WO2013073817A1 (en) Alloy cast iron and manufacturing method of vane using the same
WO2017111510A1 (ko) 열간 가공성이 우수한 비자성 강재 및 그 제조방법
WO2011078500A2 (ko) Cgi 주철 및 그 제조방법
CN108707813A (zh) 铸态高强度球铁及其制造工艺
WO2015137627A1 (ko) 내열 구상흑연주철, 이의 제조 방법 및 이를 포함하는 엔진 배기계
WO2014115979A1 (ko) 고강도 편상 흑연 주철 및 이의 제조방법, 상기 주철을 포함하는 내연기관용 엔진바디
KR20130087213A (ko) 희토류 원소를 이용한 고강도 편상 흑연 주철 및 그 제조방법
US9689059B2 (en) High strength flake graphite cast iron having excellent workability and preparation method thereof
CN111850385B (zh) 一种硅钼涡轮增压器壳体及其制备方法
WO2016072679A1 (ko) 강도와 충격 인성이 우수한 선재 및 그 제조방법
WO2018143499A1 (ko) 높은 열전도성의 철-구리 합금 및 그 제조방법
US9708694B2 (en) Method for manufacturing high strength flake graphite cast iron for an engine body and flake graphite cast iron for an engine body
WO2020105885A1 (ko) 열간가공성 및 인장 특성이 우수한 보론 함유 스테인리스강 및 그 제조 방법
CN107636183A (zh) 黑心可锻铸铁及其制造方法
WO2016104961A1 (ko) 구상 흑연 주철 및 이의 제조방법, 이로부터 제조된 유압기기용 부품
CN115786809B (zh) 一种高强度Fe-Ni-Cr高膨胀钢及其制造方法
WO2020027380A1 (ko) 용접부 저온인성이 우수한 ti, nb 첨가 페라이트계 스테인리스강
KR20230025184A (ko) 제조성이 우수한 cgi 주철 및 그 제조방법
KR20090093291A (ko) Cgi 주철
WO2020085862A1 (ko) 스케일 박리성이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법
WO2018079887A1 (ko) 편상 흑연 주철 및 주물과 그 제조방법
CN115386785A (zh) 一种高强度灰铸铁缸盖铸件的熔炼浇注工艺
KR20110027058A (ko) CGI 주철의 Mg 접종 방법과 이를 이용하여 제조된 실린더 블록 및 실린더 헤드
WO2018110851A1 (ko) 강도 및 연성이 우수한 선재 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14762858

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014743824

Country of ref document: EP