WO2018079887A1 - 편상 흑연 주철 및 주물과 그 제조방법 - Google Patents

편상 흑연 주철 및 주물과 그 제조방법 Download PDF

Info

Publication number
WO2018079887A1
WO2018079887A1 PCT/KR2016/012285 KR2016012285W WO2018079887A1 WO 2018079887 A1 WO2018079887 A1 WO 2018079887A1 KR 2016012285 W KR2016012285 W KR 2016012285W WO 2018079887 A1 WO2018079887 A1 WO 2018079887A1
Authority
WO
WIPO (PCT)
Prior art keywords
cast iron
content
rare earth
manganese
earth element
Prior art date
Application number
PCT/KR2016/012285
Other languages
English (en)
French (fr)
Inventor
이상환
이상목
오정혁
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to PCT/KR2016/012285 priority Critical patent/WO2018079887A1/ko
Publication of WO2018079887A1 publication Critical patent/WO2018079887A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Definitions

  • the present invention relates to flaky graphite cast iron and castings and a method for manufacturing the same, and more particularly, to flaky graphite cast iron and castings having a high strength and excellent workability and having a thickness of 3 mm or less in thickness, and a manufacturing method thereof.
  • Flake Graphite Cast Iron is an inexpensive material with excellent castability, processability and vibration damping. If flake graphite cast iron is used instead of non-ferrous materials, the automotive casting parts can be thinned, and the weight and weight of parts can be reduced to the level of non-ferrous casting parts, and the characteristics and performance can be dramatically improved compared to non-ferrous casting parts.
  • the present invention has been made to solve various problems including the above problems, and an object of the present invention is to provide flake graphite cast iron and castings having high strength and excellent workability and a method of manufacturing the same.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • Mn / S sulfur content
  • the ratio (Mn / RE) to the sum of the contents is in the range of 6.0 to 40.0.
  • the ratio (R.E./S) to the sulfur content of the sum of the rare earth element contents may range from 0.5 to 4.0.
  • the ratio of the manganese content to the sulfur content ranges from 20.0 to 40.0
  • the ratio of the total amount of the rare earth element content of the manganese content (Mn / RE) ranges from 10.0 to 20.0
  • the The ratio (RE / S) of the sum of the rare earth element contents to the sulfur content may range from 1.0 to 3.0.
  • the one or more rare earth elements may include cerium (Ce) and lanthanum (La).
  • a cast made of the above-mentioned flaky graphite cast iron may be provided.
  • the first step Previously, 3.2 to 3.4 weight percent carbon, 2.0 to 2.2 weight percent silicon, 1.8 to 4.0 weight percent manganese, 0.08 to 0.14 weight percent sulfur, less than 0.04 weight percent (greater than 0 weight percent) and the remainder And melting a cast iron material made of iron in a furnace to produce a cast iron melt.
  • the ratio of the manganese content to the sulfur content is in the range of 12.0 to 50.0
  • the ratio of the manganese content to the rare earth element content (Mn / RE) of 6.0 to It may be characterized by having a chemical composition in the range of 40.0.
  • the rare earth element may have a composition range of 0.1 to 0.3% by weight.
  • the rare earth element may include a misch metal containing cerium and lanthanum.
  • the second step may be performed at a temperature of less than 1530 °C.
  • the predetermined amount may include 2/3 or less of the molten cast iron.
  • FIG. 1 is a flow chart schematically showing a method for producing flaky graphite cast iron according to embodiments of the present invention.
  • FIG. 2 is a view schematically showing a method for producing flaky graphite cast iron according to an embodiment of the present invention.
  • the present invention is a flake graphite cast iron having a higher content of manganese (Mn) than in the related art, and it is one of the important technical features to solve the deterioration of impact resistance and workability due to the increase of manganese while achieving high strength due to the increase of manganese. .
  • the pearlite formation temperature is lowered, thereby minimizing the pearlite layer spacing. It can also react with sulfur and rare earth elements to form (RE, Mn) x S y (hereinafter referred to as complex sulfide), which can be a nucleation site of graphite.
  • complex sulfide sulfur and rare earth elements
  • the inventors of the present invention by appropriately adjusting the content of the additive element containing the rare earth element and the ratio between the elements to be added, flake graphite cast iron that solves the workability deterioration due to the high manganese content while containing manganese at a higher level than conventional Was implemented.
  • the flaky graphite cast iron according to the present invention can be successfully applied to thin castings, for example, cast iron parts for automobile engines having a thickness of 3 mm, due to its high strength and excellent workability.
  • the high manganese flaky graphite cast iron according to the present invention is 3.2 to 3.4 wt% carbon, 2.0 to 2.2 wt% silicon, 1.8 to 4.0 wt% manganese, 0.08 to 0.14 wt% sulfur, less than 0.04 wt% More than one percent rare earth element with a total of 0.1 to 0.3 percent by weight of phosphorus, and the remainder may provide flake graphite cast iron consisting of iron.
  • the cast iron of the present invention is not only limited to the chemical composition
  • the ratio of the manganese content to the sulfur content (Mn / S) is in the range of 12.0 to 50.0
  • the total of the rare earth element content of the manganese content may range from 6.0 to 40.0
  • the ratio (RE / S) of the sum of the rare earth element contents to the sulfur content may range from 0.5 to 4.0.
  • the ratio of the manganese content to the sulfur content is in the range of 20.0 to 40.0
  • the ratio of the total amount of the rare earth elements of the manganese content (Mn / RE) is in the range of 10.0 to 20.0
  • the rare earth The ratio (RE / S) of the sum of the element contents to the sulfur content may be in the range of 1.0 to 3.0.
  • the rare earth element may include, for example, a misch metal containing cerium (Ce) and lanthanum (La).
  • a misch metal containing cerium (Ce) and lanthanum (La) may include a micrometal having a composition ratio of 65 wt% cerium and 35 wt% lanthanum.
  • carbon (C) is an element which crystallizes graphite on a matrix as a basic element of cast iron.
  • the flaky graphite cast iron according to the present invention may contain 3.2 to 3.4% by weight of carbon. If the carbon content is less than 3.2% by weight, the tensile strength is increased, but the chil is easily formed under a high cooling rate, and the workability and fluidity deteriorate. If the content exceeds 3.4% by weight, the formation of the chill is suppressed, but the tensile strength may be deteriorated due to excessive crystallization and coarsening of graphite and an increase in the fraction of ferrite.
  • Silicon (Si) is dissolved in iron to increase the hardness and to induce graphitization.
  • the flaky graphite cast iron according to the present invention may comprise 2.0 to 2.2% by weight. If the content of silicon is less than 2.0% by weight, it is advantageous in terms of tensile strength, but graphite nucleation performance is lowered, so that a chill is easily formed. If it exceeds 2.2% by weight, the nucleation performance of graphite increases, but the tensile strength decreases due to the increase in the amount of ferrite formation and the coarsening of the pearlite layer spacing.
  • Phosphorus (P) may comprise, for example, less than 0.04% by weight (greater than zero). Phosphorus may be present as a ternary process steadite with ferrite and iron carbide, forming a compound of iron phosphide (Fe 3 P). If the content of phosphorus is 0.04% by weight or more, there is a problem that brittleness increases rapidly. Therefore, it is preferable to limit the content of phosphorus to less than 0.04%.
  • the flaky graphite cast iron according to the present invention may include manganese (Mn) in a range of 1.8 to 4.0 wt%, which is a higher level than in the related art.
  • Mn manganese
  • the pearlite formation temperature can be reduced and the pearlite layer spacing can be further refined.
  • Increasing the tensile strength may be due to the refinement of the pearlite structure.
  • deterioration of workability may be accompanied with an increase in tensile strength, but in the present invention, the total amount of rare earth elements is included in the range of 0.1 to 0.3 wt%, and sulfur (S) is included in the range of 0.08 to 0.14 wt%.
  • the ratio of the manganese content to the sulfur content is in the range of 12.0 to 50.0, and the ratio of the total of the rare earth element contents of the manganese content ( It is necessary to keep the Mn / RE) in the range of 6.0 to 40.0 and the ratio (RE / S) to the sulfur content of the sum of the rare earth element contents in the range of 0.5 to 4.0.
  • the ratio of the manganese content to the sulfur content is in the range of 20.0 to 40.0
  • the ratio of the total amount of the rare earth element content of the manganese content (Mn / RE) is in the range of 10.0 to 20.0
  • the ratio (RE / S) of the sum of the rare earth element contents to the sulfur content may be in the range of 1.0 to 3.0.
  • the range of 0.1 to 0.3% by weight is preferable in order to obtain a healthy graphite structure of form A through the formation of a suitable complex sulfide in the above-described content range of manganese.
  • the present invention has a technical feature of a novel manufacturing method for producing flake graphite cast iron by appropriately adding rare earth elements while dividing and casting molten iron with ladle, unlike the conventional method for producing flake graphite cast iron.
  • the flake graphite cast iron implemented by the manufacturing method of the present invention is a flake graphite cast iron having a higher content of manganese (Mn) than in the prior art, while implementing high strength according to the increase of manganese, and impact resistance and workability according to the increase of manganese. Resolving the deterioration is one of the important technical features.
  • the pearlite formation temperature is lowered, thereby minimizing the pearlite layer spacing. It can also react with sulfur and rare earth elements to form (RE, Mn) x S y (hereinafter referred to as complex sulfide), which can be a nucleation site of graphite.
  • complex sulfide sulfur and rare earth elements
  • the inventors of the present invention solve the deterioration of workability due to the high manganese content while containing manganese at a higher level than the conventional one by appropriately adjusting the content of the additive element containing rare earth elements and the added elements Graphite cast iron was implemented.
  • the inventors of the present invention have found that the rare earth element is simply not added to the melting furnace in which the cast iron melt is dissolved, and thus, the casting does not satisfy the originally intended content during casting due to scattering or slag removal.
  • the molten cast iron into the ladle by adding a rare earth element appropriately to provide a manufacturing method for implementing the flake graphite cast iron, it is possible to manufacture a flake graphite cast iron of superior strength than conventional.
  • FIG. 1 is a flow chart schematically showing a method for producing flaky graphite cast iron according to embodiments of the present invention.
  • a first step (S100) of tapping a predetermined amount of molten cast iron into a ladle is performed by adding a rare earth element to the ladle.
  • the molten metal tapped into the ladle goes through a fourth step of moving the predetermined distance and tapping the mold again.
  • 3.2 to 3.4% by weight of carbon, 2.0 to 2.2% by weight of silicon, 1.8 to 4.0% by weight of manganese, 0.08 to 0.14% by weight of sulfur, less than 0.04% by weight (0% by weight) Phosphorus and remainder) may comprise melting a cast iron material consisting of iron in a furnace to produce a cast iron melt.
  • the ratio of the manganese content to the sulfur content may range from 12.0 to 50.0
  • the ratio of the total amount of the rare earth element content of the manganese content (Mn / RE) may include a range from 6.0 to 40.0. have.
  • the ratio of the total of the rare earth element content to the sulfur content may include a range of 0.5 to 4.0.
  • a predetermined amount of the molten cast iron 20 may be tapped into the ladle 30.
  • the temperature of the molten cast iron 20 tapping into the ladle 30 may include, for example, 1400 to 1530 °C temperature range.
  • the predetermined amount may include two thirds of the cast iron molten metal 20.
  • the rare earth element 40 can be added as an inoculating agent within 30.
  • the rare earth element 40 may have a composition range of 0.1 to 0.3% by weight, and the rare earth element 40 may include a micrometal containing cerium and lanthanum. In this case, the amount of the micrometal added may include 0.5% of the cast iron molten metal 20.
  • the remaining amount of the molten cast iron 20 in the blast furnace 10 may be tapped into the ladle 30 to which the rare earth element 40 is added.
  • the temperature of the molten cast iron 20 tapping into the ladle 30 may include, for example, 1400 to 1530 °C temperature range.
  • the cast iron molten metal 20 in the ladle 30 is, for example, less than 1400 to 1530 ° C. It can be maintained in the temperature range of.
  • the method for producing flake graphite cast iron containing the above-described composition can minimize the disappearance of graphite nucleation sites, and can implement high-strength high manganese flake graphite cast iron.
  • the flaky graphite cast iron can be successfully applied to thin castings, for example, cast iron parts for automobile engines having a thickness of 3 mm due to its high strength and excellent workability.
  • the composition of the high manganese flake graphite cast iron implemented by the manufacturing method of the present invention and the function and function of each component are the same as described above, and thus will be omitted.
  • the molten metal having a composition as shown in Table 1 was maintained at about 1,500 to 1,530 ° C., and then a part of the molten metal was tapped on the ladle, followed by micrometals (65 wt% cerium and 35 wt%) as rare earth elements.
  • the composition ratio of lanthanum) was added and inoculated. After the inoculation treatment was completed, the remaining molten metal remaining in the furnace was tapped with the inoculated ladle. After stirring and slag removal in the ladle, the specimen was prepared by injecting molten metal into a cylindrical specimen mold and a wedge specimen mold at 1,400 ° C.
  • Experimental Examples 1 to 4 and Comparative Examples 1 to 4 prepared according to the composition of ⁇ Table 1>, the depth of the chill (chill), the number of process cells, the size of the fracture cell, the pearlite layer spacing, tensile strength, hardness respectively measured ⁇ 2>.
  • the size of the process cell in the case of the experimental example, as the content of manganese increases, the size of the process cell decreases, thereby increasing the process cell density (the number of process cells per unit area).
  • the process cell size increases, and thus, the number of process cells decreases. That is, in the case of the experimental example, the process cell is miniaturized as the manganese content is increased, but in the case of the comparative example, the process cell is coarsened as the manganese content is increased.
  • the process cell size and the pearlite layer spacing was finer than the comparative example, and thus showed a relatively higher tensile strength.
  • the hardness was lower in the case of the experimental example than the comparative example.
  • the tensile strengths showed excellent values of 300 MPa and 350 MPa or more, the hardness was found to be an appropriate level not high in strength.
  • the tensile strength increases greatly, but it can be seen that the hardness does not increase significantly compared to the tensile strength. This can act as an advantageous advantage in the simultaneous satisfaction of high strength of the cast iron and workability.
  • the flaky graphite cast iron according to the embodiments of the present invention described above is excellent in high strength and workability, for example, to implement a high strength thin cast iron having a thickness of 3 mm or less.
  • the high-strength thin cast iron having a thickness of 3 mm or less may be applied to an engine body for an internal combustion engine, an engine cylinder block having a thick shape and a thin portion at the same time, an engine cylinder head, or both.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

본 발명은 3.2 내지 3.4 중량%의 탄소, 2.0 내지 2.2 중량%의 규소, 1.8 내지 4.0 중량%의 망간, 0.08 내지 0.14 중량%의 황, 0.04 중량% 미만(0중량% 초과)의 인, 총합이 0.1 내지 0.3 중량%인 하나 이상의 희토류원소 및 나머지는 철로 이루어지며, 상기 망간 함량의 상기 황 함량에 대한 비(Mn/S)가 12.0 내지 50.0 범위이며, 상기 망간 함량의 상기 희토류원소 함량의 총합에 대한 비(Mn/R.E.)가 6.0 내지 40.0 범위이며, 상기 희토류원소 함량의 총합의 상기 황 함량에 대한 비(R.E./S)가 0.5 내지 4.0 범위인 것을 특징으로 하는 편상 흑연 주철을 제공한다.

Description

편상 흑연 주철 및 주물과 그 제조방법
본 발명은 편상 흑연 주철 및 주물과 그 제조방법에 관한 것으로서, 더 상세하게는 높은 강도와 우수한 가공성을 가지며 두께 3mm급 이하의 박육화가 가능한 편상 흑연 주철 및 주물과 그 제조방법에 관한 것이다.
편상 흑연 주철(Flake Graphite Cast Iron)은 가격이 싸고, 주조성, 가공성 및 진동감쇠성 등이 매우 우수한 소재이다. 비철계 소재 대신 편상 흑연 주철을 사용하여 자동차용 주물부품을 박육화할 수 있다면, 부품 중량을 비철계 주물부품 수준으로 가볍게 하면서, 특성 및 성능을 비철계 주물부품에 비하여 획기적으로 향상시킬 수 있다
그러나 편상 흑연 주철 부품의 박육화에는 많은 기술적 어려움이 따른다. 박육화가 진행될수록 응고시 냉각속도가 빨라지게 되며, 이러한 빠른 냉각속도로 인하여 취약한 기계적 특성을 보이는 조직인 칠(chill)의 형성 가능성이 증가된다. 또한 주물의 두께가 얇아짐에 따라 부족해지는 강도도 문제가 될 수 있다.
한편, 칠 조직이 억제되었다 하더라도 편상 흑연 주철 부품의 고강도화에는 많은 기술적 어려움이 존재한다. 고강도화를 위해 합금원소를 첨가할 경우 탄화물이 안정화될 뿐만 아니라 제조비용이 증가하게 되고, 강도와 함께 경도가 동반 증가함에 따라 가공성이 크게 저하되는 문제점 등이 있다.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 높은 강도 및 우수한 가공성 가지는 편상 흑연 주철 및 주물과 그 제조방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 관점에 따르면, 3.2 내지 3.4 중량%의 탄소, 2.0 내지 2.2 중량%의 규소, 1.8 내지 4.0 중량%의 망간, 0.08 내지 0.14 중량%의 황, 0.04 중량% 미만(0중량% 초과)의 인, 총합이 0.1 내지 0.3 중량%인 하나 이상의 희토류원소 및 나머지는 철로 이루어지며, 상기 망간 함량의 상기 황 함량에 대한 비(Mn/S)가 12.0 내지 50.0 범위, 상기 망간 함량의 상기 희토류원소 함량의 총합에 대한 비(Mn/R.E.)가 6.0 내지 40.0 범위인 것을 특징으로 하는 편상 흑연 주철이 제공된다. 나아가, 상기 희토류원소 함량의 총합의 상기 황 함량에 대한 비(R.E./S)가 0.5 내지 4.0 범위일 수 있다.
보다 구체적으로, 상기 망간 함량의 상기 황 함량에 대한 비(Mn/S)가 20.0 내지 40.0 범위, 상기 망간 함량의 상기 희토류원소 함량의 총합에 대한 비(Mn/R.E.)가 10.0 내지 20.0 범위, 상기 희토류원소 함량의 총합의 상기 황 함량에 대한 비(R.E./S)가 1.0 내지 3.0 범위일 수 있다.
상기 하나 이상의 희토류원소는 세륨(Ce) 및 란탄(La)을 포함할 수 있다.
본 발명의 다른 관점에 따르면 상술한 편상 흑연 주철로 이루어진 주물이 제공될 수 있다.
본 발명의 또 다른 관점에 따르면, 주철 용탕의 소정의 양을 레이들로 출탕하는 제 1 단계; 상기 레이들에 희토류원소를 첨가하는 제 2 단계; 및 상기 주철 용탕의 나머지 양을 상기 레이들로 출탕하는 제 3 단계; 및 상기 레이들로부터 상기 주철 용탕을 몰드로 출탕하는 제 4 단계; 를 포함하는, 편상 흑연 주철의 제조방법을 제공한다.
상기 편상 흑연 주철의 제조방법에 있어서, 상기 제 1 단계; 이전에, 3.2 내지 3.4 중량%의 탄소, 2.0 내지 2.2 중량%의 규소, 1.8 내지 4.0 중량%의 망간, 0.08 내지 0.14 중량%의 황, 0.04 중량% 미만(0중량% 초과)의 인 및 나머지는 철로 이루어진 주철 재료를 용광로에서 용융하여 주철 용탕을 제조하는 단계;를 포함할 수 있다.
상기 편상 흑연 주철의 제조방법에 있어서, 상기 망간 함량의 상기 황 함량에 대한 비(Mn/S)가 12.0 내지 50.0 범위, 상기 망간 함량의 상기 희토류원소 함량에 대한 비(Mn/R.E.)가 6.0 내지 40.0 범위의 화학 조성을 지닌 것을 특징으로 할 수 있다.
상기 편상 흑연 주철의 제조방법에 있어서, 상기 희토류원소는 0.1 내지 0.3 중량% 조성범위를 가질 수 있다.
상기 편상 흑연 주철의 제조방법에 있어서, 상기 희토류원소는 세륨 및 란탄을 함유하는 미시메탈(misch metal)을 포함할 수 있다.
상기 편상 흑연 주철의 제조방법에 있어서, 상기 제 2 단계;는 1530 ℃ 미만의 온도에서 수행될 수 있다.
상기 편상 흑연 주철의 제조방법에 있어서, 상기 소정의 양은 상기 주철 용탕의 2/3 이하를 포함할 수 있다.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 고강도 및 우수한 가공성을 가지는 편상 흑연 주철 및 그 제조방법을 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 실시예들에 따른 편상 흑연 주철의 제조방법을 개략적으로 도시하는 순서도이다.
도 2는 본 발명의 일 실시예에 따른 편상 흑연 주철의 제조방법을 개략적으로 도시하는 도면이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.
본 발명은, 종래에 비해 망간(Mn)의 함량이 높은 편상 흑연 주철로서, 망간의 증가에 따른 고강도화를 구현하면서도 망간의 증가에 따른 내충격성 및 가공성의 악화를 해결하는 것을 중요한 기술적 특징 중 하나로 한다.
망간이 첨가될 경우 펄라이트 형성온도가 낮아져서 펄라이트 층상간격이 미세화되는 효과가 있다. 또한 황 및 희토류원소와 반응하여 흑연의 핵생성자리(nucleation site)가 될 수 있는 (R.E.,Mn)xSy (이하 복합황화물 이라함)을 형성할 수 있다. 그러나 망간 함량이 과다할 경우 기계적 특성이 취약한 칠(chill) 조직의 형성 등으로 인해 내충격성 및 가공성이 크게 악화되며, 따라서 현재 상용화된 편상 흑연 주철의 경우에는 첨가되는 함량을 0.4~0.9중량% 수준으로 제한하고 있다.
본 발명의 발명자는 희토류원소를 포함하는 첨가원소의 함량과 첨가되는 원소들간의 비율을 적절히 조절함으로써 망간을 종래에 비해 더 높은 수준으로 함유하면서도 높은 망간의 함량으로 인한 가공성 악화를 해결한 편상 흑연 주철을 구현하였다. 특히 본 발명을 따르는 편상 흑연 주철은 고강도 및 우수한 가공성으로 인해 박육 주물, 예를 들어 3mm 급 두께를 가지는 자동차 엔진용 주철부품에 성공적으로 적용될 수 있다.
구체적으로 본 발명에 따른 고망간 편상 흑연 주철은 3.2 내지 3.4 중량%의 탄소, 2.0 내지 2.2 중량%의 규소, 1.8 내지 4.0 중량%의 망간, 0.08 내지 0.14 중량%의 황, 0.04 중량% 미만(0중량% 초과)의 인, 총합이 0.1 내지 0.3 중량%인 하나 이상의 희토류원소 및 나머지는 철로 이루어진 편상 흑연 주철을 제공할 수 있다.
또한, 본 발명의 주철은, 상기 화학조성에 한정될 뿐 아니라,상기 망간 함량의 상기 황 함량에 대한 비(Mn/S)가 12.0 내지 50.0 범위, 상기 망간 함량의 상기 희토류원소 함량의 총합에 대한 비(Mn/R.E.)가 6.0 내지 40.0 범위, 상기 희토류원소 함량의 총합의 상기 황 함량에 대한 비(R.E./S)가 0.5 내지 4.0 범위인 것을 특징으로 할 수 있다.
더욱 구체적으로 상기 망간 함량의 상기 황 함량에 대한 비(Mn/S)가 20.0 내지 40.0 범위, 상기 망간 함량의 상기 희토류원소 함량의 총합에 대한 비(Mn/R.E.)가 10.0 내지 20.0 범위, 상기 희토류원소 함량의 총합의 상기 황 함량에 대한 비(R.E./S)가 1.0 내지 3.0 범위인 것을 특징으로 할 수 있다.
이때, 상기 희토류원소는, 예를 들어, 세륨(Ce) 및 란탄(La)을 함유하는 미시메탈(misch metal)을 포함할 수 있다. 구체적인 예를 들어, 65중량% 세륨과 35중량%의 란탄의 조성비를 가지는 미시메탈을 포함할 수 있다.
이하, 본 발명인 편상 흑연 주철에서 각각의 구성성분의 작용 기능 및 특성에 미치는 영향을 상세히 설명하고, 각 구성성분의 수치한정이 갖는 기술적 의의에 대해 상술한다.
본 발명의 구성 성분 중 탄소(C)는 주철의 기본원소로서 기지에 흑연을 정출시키는 원소이다. 본 발명에 따른 편상 흑연 주철은 탄소를 3.2 내지 3.4 중량%를 포함할 수 있다. 탄소의 함유량이 3.2 중량% 미만이면 인장강도는 높아지나, 고 냉각속도 하에서 칠이 형성되기 쉽고, 가공성 및 유동성이 나빠진다. 3.4 중량%를 초과하면 칠 형성이 억제되나, 흑연의 과다한 정출 및 조대화, 페라이트의 분율 증가 등으로 인장강도가 악화될 수 있다.
규소(Si)는 철에 고용되어 경도를 높이는 작용 및 흑연화를 유도하는 작용을 한다. 본 발명에 따른 편상 흑연 주철은 2.0 내지 2.2 중량%를 포함할 수 있다. 상기 규소의 함유량이 2.0 중량% 미만이면 인장강도 측면에서는 유리하나, 흑연 핵생성능이 낮아져서 칠이 형성되기 쉽다. 2.2 중량%를 초과하면 흑연의 핵생성능이 증가하나, 페라이트 형성량 증가, 펄라이트 층상간격의 조대화 등으로 인장강도가 낮아진다.
인(P)은, 예컨대, 0.04 중량% 미만(0 초과)을 포함할 수 있다. 인은 인화철(Fe3P)의 화합물을 형성하여 페라이트, 탄화철과 함께 3원 공정 스테다이트(steadite)로서 존재할 수 있다. 상기 인의 함유량이 0.04 중량% 이상이면 취성이 급격히 증가하는 문제점이 있다. 따라서 상기 인의 함유량을 0.04% 미만으로 한정하는 것이 바람직하다.
본 발명에 따른 편상 흑연 주철은 망간(Mn)을 종래에 비해 높은 수준인 1.8 내지 4.0 중량% 범위까지 포함할 수 있다. 망간의 함량이 증가하면, 펄라이트 형성온도가 감소하면서 펄라이트 층상간격이 감소하면서 더 미세화될 수 있다. 이러한 펄라이트 조직의 미세화로 인장강도의 증가가 나타날 수 있다. 다만, 인장강도의 증가와 함께 가공성의 악화도 같이 나타날 수 있으나, 본 발명에서는 희토류원소 함량의 총합을 0.1 내지 0.3 중량% 범위로 포함시켰으며, 황(S)은 0.08 내지 0.14 중량% 범위로 포함시킴으로써 상술한 문제점 해결할 수 있었다.
또한 제조된 편상 흑연 주철의 고강도 및 우수한 가공성을 확보하기 위해서는 상기 망간 함량의 상기 황 함량에 대한 비(Mn/S)가 12.0 내지 50.0 범위, 상기 망간 함량의 상기 희토류원소 함량의 총합에 대한 비(Mn/R.E.)가 6.0 내지 40.0 범위, 상기 희토류원소 함량의 총합의 상기 황 함량에 대한 비(R.E./S)가 0.5 내지 4.0 범위로 유지하는 것이 필요하다. 보다 바람직하게는 상기 망간 함량의 상기 황 함량에 대한 비(Mn/S)가 20.0 내지 40.0 범위, 상기 망간 함량의 상기 희토류원소 함량의 총합에 대한 비(Mn/R.E.)가 10.0 내지 20.0 범위, 상기 희토류원소 함량의 총합의 상기 황 함량에 대한 비(R.E./S)가 1.0 내지 3.0 범위로 할 수 있다.
이러한 조건 하에서 주철의 기지에는 망간, 희토류원소 및 황의 반응으로 형성된 다수의 복합황화물이 미세하게 분포하면서 바람직한 흑연구조인 A형태의 흑연구조가 나타났다.
망간의 함량이 1.8중량% 미만이면, 강도향상의 효과가 충분하지 않았으며, 4.0중량%를 초과하면, 흑연화가 매우 힘들어져서, 조직은 칠(chill)화되기 십상이고, 내충격성 및 가공성이 급격히 떨어지는 양상을 나타내었다.
희토류원소의 경우, 상술한 망간의 함량 범위에서 적절한 복합황화물 형성을 통해 A형태의 건전한 흑연조직을 얻기 위해서는 0.1 내지 0.3중량% 범위가 바람직하였다.
황의 경우에는, 함유량이 0.08 중량% 미만이면 망간, 희토류원소 등과의 반응을 통한 복합황화물의 형성이 충분치 못하여, 고 냉각속도 하에서 칠이 형성되기 쉽다. 0.14 중량%를 초과하면 과잉의 황이 탄화물 안정화 원소로 작용하게 되어 칠이 형성되기 쉽고, 황의 편석으로 인한 기계적 특성 저하가 발생할 수 있다.
이하에서는, 본 발명의 일 실시예에 따른 편상 흑연 주철의 제조방법을 설명한다. 본 발명은, 종래의 편상 흑연 주철의 제조방법과는 다르게, 주철 용탕을 레이들로 분할 출탕하면서, 희토류원소를 적절하게 첨가하여 편상 흑연 주철을 제조하는 새로운 제조방법을 기술적 특징으로 한다. 또한, 본 발명의 제조방법으로 구현된 편상 흑연 주철은, 종래에 비해 망간(Mn)의 함량이 높은 편상 흑연 주철로서, 망간의 증가에 따른 고강도화를 구현하면서도 망간의 증가에 따른 내충격성 및 가공성의 악화를 해결하는 것을 중요한 기술적 특징 중 하나로 한다.
망간이 첨가될 경우 펄라이트 형성온도가 낮아져서 펄라이트 층상간격이 미세화되는 효과가 있다. 또한 황 및 희토류원소와 반응하여 흑연의 핵생성자리(nucleation site)가 될 수 있는 (R.E.,Mn)xSy (이하 복합황화물 이라함)을 형성할 수 있다. 그러나 망간 함량이 과다할 경우 기계적 특성이 취약한 칠(chill) 조직의 형성 등으로 인해 내충격성 및 가공성이 크게 악화되며, 따라서 현재 상용화된 편상 흑연 주철의 경우에는 첨가되는 함량을 0.4 ~ 0.9 중량% 수준으로 제한하고 있다.
또한, 본 발명의 발명자는 희토류원소를 포함하는 첨가원소의 함량과 첨가되는 원소들간의 비율을 적절히 조절함으로써 망간을 종래에 비해 더 높은 수준으로 함유하면서도 높은 망간의 함량으로 인한 가공성 악화를 해결한 편상 흑연 주철을 구현하였다.
이때 본 발명의 발명자는 상기 희토류원소를 단순히 주철 용탕이 용해되는 용해로에 첨가할 경우 비산되거나 슬래그로 제거되는 등의 원인에 의해 주조시에는 원래 의도했던 함량을 만족하지 못하는 문제가 있음을 발견하였다. 이를 해결하기 위하여 주철 용탕을 레이들로 분할 출탕하면서, 희토류원소를 적절하게 첨가하여, 편상 흑연 주철을 구현하는 제조방법을 제공함으로써, 종래보다 우수한 고강도의 편상 흑연 주철을 제조할 수 있다.
도 1은 본 발명의 실시예들에 따른 편상 흑연 주철의 제조방법을 개략적으로 도시하는 순서도이다.
도 1을 참조하면, 본 발명의 실시예들에 따른 편상 흑연 주철의 제조방법은, 주철 용탕의 소정의 양을 레이들로 출탕하는 제 1 단계(S100), 상기 레이들에 희토류원소를 첨가하는 제 2 단계(S200) 및 상기 주철 용탕의 나머지 양을 상기 레이들로 출탕하는 제 3 단계(S100)를 포함할 수 있다. 레이들로 출탕된 용탕은 소정 거리를 이동하여 몰드에 다시 출탕되는 제 4 단계를 거치게 된다.
또한, 제 1 단계(S100) 이전에, 3.2 내지 3.4 중량%의 탄소, 2.0 내지 2.2 중량%의 규소, 1.8 내지 4.0 중량%의 망간, 0.08 내지 0.14 중량%의 황, 0.04 중량% 미만(0 중량% 초과)의 인 및 나머지는 철로 이루어진 주철 재료를 용광로에서 용융하여 주철 용탕을 제조하는 단계를 포함할 수 있다.
이때, 상기 망간 함량의 상기 황 함량에 대한 비(Mn/S)가 12.0 내지 50.0 범위, 상기 망간 함량의 상기 희토류원소 함량의 총합에 대한 비(Mn/R.E.)가 6.0 내지 40.0 범위를 포함할 수 있다. 또한, 상기 희토류원소 함량의 총합의 상기 황 함량에 대한 비(R.E./S)가 0.5 내지 4.0 범위를 포함할 수 있다.
구체적인 예를 들어, 도 2를 참조하면, 본 발명의 실시예들에 따른 편상 흑연 주철의 제조방법은, 도 2의 (a)와 같이, 용광로(10)에 3.2 내지 3.4 중량%의 탄소, 2.0 내지 2.2 중량%의 규소, 1.8 내지 4.0 중량%의 망간, 0.08 내지 0.14 중량%의 황, 0.04 중량% 미만(0 중량% 초과)의 인 및 나머지는 철로 이루어진 주철 용탕(20)을 준비할 수 있다.
그런 다음에, 도 2의 (b)와 같이, 주철 용탕(20)의 소정의 양을 레이들(30)로 출탕할 수 있다. 이때, 레이들(30)로 출탕되는 주철 용탕(20)의 온도는, 예컨대, 1400 내지 1530 ℃ 온도범위를 포함할 수 있다. 또한, 상기 소정의 양은 주철 용탕(20)의 2/3을 포함할 수 있다.
그런 다음에, 도 2의 (c)와 같이, 상기 소정의 양의 주철 용탕(20)이 들어있는 레이들(30)을, 예를 들어, 1530 ℃ 미만의 온도범위에서 유지한 후, 레이들(30) 내에 접종제로 희토류원소(40)를 첨가할 수 있다.
또한, 희토류원소(40)는 0.1 내지 0.3 중량%의 조성범위를 가질 수 있으며, 희토류원소(40)는 세륨 및 란탄을 함유하는 미시메탈을 포함할 수 있다. 이때, 상기 미시메탈의 첨가양은 상기 출탕된 주철 용탕(20)의 0.5 %를 포함할 수 있다.
그런 다음에, 도 2의 (d)와 같이, 용광로(10) 내의 주철 용탕(20)의 나머지 양을 희토류원소(40)가 첨가된 레이들(30)에 출탕할 수 있다. 이때, 레이들(30)로 출탕되는 주철 용탕(20)의 온도는, 예컨대, 1400 내지 1530 ℃ 온도범위를 포함할 수 있다. 또한, 용탕(20)의 나머지 양을 희토류원소(40)가 첨가된 레이들(30)에 출탕한 후, 레이들(30) 내의 주철 용탕(20)을, 예를 들어, 1400 내지 1530 ℃ 미만의 온도범위로 유지할 수 있다.
상술한 조성의 함량을 포함하는 편상 흑연 주철의 제조방법은 흑연 핵생성자리의 소멸을 최소화 할 수 있으며, 고강도의 고망간 편상 흑연 주철을 구현할 수 있다. 또한, 상기 편상 흑연 주철은, 고강도 및 우수한 가공성으로 인해 박육 주물, 예컨대, 3mm 급 두께를 가지는 자동차 엔진용 주철부품에 성공적으로 적용될 수 있다. 본 발명에 제조방법으로 구현된 고망간 편상 흑연 주철의 조성과 각각의 구성성분의 작용 기능 및 특성은 앞에서 설명한 내용과 동일하므로 생략한다.
이하, 본 발명의 이해를 돕기 위해서 실험예를 제공한다. 다만, 하기의 실험예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 아래의 실험예들에 의해서 한정되는 것은 아니다.
(실험예)
용해로에 하기 <표 1>과 같은 조성을 갖는 용탕을 1,500 ~ 1,530 ℃정도로 유지하다가 레이들(Ladle)에 일부를 출탕한 후 상기 레이들에 희토류원소로서 미시메탈(65중량% 세륨과 35중량%의 란탄의 조성비)을 넣어 접종 처리하였다. 접종 처리가 완료된 후 상기 용해로에 잔류하는 나머지 용탕을 상기 접종 처리된 레이들로 출탕하였다. 레이들 내에서 용탕 교반 및 슬래그(Slag) 제거를 한 후 1,400 ℃에서 원통형 시편용 주형과 쐐기형 시편용 주형에 용탕을 주입하여 시편을 제조 하였다.
구분 C (wt%) Si (wt%) S (wt%) Mn (wt%) R.E.(wt%) 흑연형태
실험예1 3.3 2.0 0.11 0.9 0.23 A
실험예2 3.3 2.1 0.10 2.0 0.21 A
실험예3 3.3 2.2 0.08 2.9 0.18 A
실험예4 3.3 2.1 0.10 4.0 0.20 A
비교예1 3.2 2.2 0.12 0.8 A
비교예2 3.3 2.2 0.14 1.9 A+B
비교예3 3.2 2.1 0.10 2.9 A+B+D
비교예4 3.4 2.2 0.12 3.8 A+B+D
상기 <표 1>의 조성에 따라 제조된 실험예 1 내지 4 및 비교예 1 내지 4의 칠(chill) 깊이, 공정셀수, 공절셀크기, 펄라이트 층상간격, 인장강도, 경도를 각각 측정하여 <표 2>에 나타내었다.
구분 칠(Chill) 깊이(㎜) 공정셀 수(/㎟) 공정셀 크기(㎛) 층상간격(㎚) 인장강도(MPa) 경도(HB)
실험예1 4.7 2.05 797 251 234 208
실험예2 7.5 2.18 754 162 309 233
실험예3 8.5 2.69 700 123 328 248
실험예4 8.9 2.86 598 107 359 285
비교예1 10.1 1.15 1379 323 195 168
비교예2 20.7 0.65 1372 186 276 246
비교예3 완전 칠화 0.40 1739 176 292 306
비교예4 완전 칠화 0.25 2370 118 309 495
<표 1> 및 <표 2>를 참조하면, 희토류원소 첨가 이외에 다른 합금원소의 함량이 거의 동일한 시편간의 특성을 비교할 경우, 희토류원소가 첨가된 경우(실시예 1 내지 4)가 그렇지 않은 경우(비교예 1 내지 4)에 비해 더 작은 칠 깊이를 나타내었다. 또한 망간(Mn)의 함유량이 증가할수록 실험예 및 비교예 모두 칠 깊이가 증가하는 경향을 보이나, 실험예의 경우, 망간의 함유량 증가에 따른 칠 깊이의 증가 경향이 비교예보다 둔화되는 것을 알 수 있다. 이로부터 망간의 함유량이 증가됨에 따라 나타나는 칠(chill) 조직화를 희토류원소가 억제하였음을 알 수 있다.
펄라이트 층상간격의 경우, 실험예 및 비교예 모두 망간의 함유량이 증가됨에 따라 미세화되는 경향을 보였으나, 희토류원소가 첨가된 경우(실시예 1 내지 4)가 그렇지 않은 경우(비교예 1 내지 4)에 비해 더 미세화되는 결과를 나타내었다.
공정셀의 크기와 관련하여, 실험예의 경우, 망간의 함유량이 증가할수록 공정셀 크기가 감소하고, 이로 인하여, 공정셀 밀도(단위면적당 공정셀의 수)가 증가하는 것을 확인할 수 있었다. 이에 반하여, 비교예의 경우, 망간의 함유량이 증가할수록 오히려 공정셀 크기가 증가하고, 이로 인하여, 공정셀 수가 감소하는 것을 알 수 있다. 즉, 실험예의 경우, 망간 함유량의 증가에 따라 공정셀이 미세화 되나, 비교예의 경우에는 이와 반대로 망간 함유량의 증가에 따라 공정셀이 조대화 되는 것을 알 수 있다.
형성된 흑연형태의 경우도 실험예의 경우, 망간의 함유량이 증가하여도 A형 흑연 비율이 높은 상태로 유지되나, 비교예의 경우, 망간의 함유량이 증가함에 따라 A형 흑연 비율이 급격히 줄어들고, B, D 형태가 늘어났다.
실험예의 경우, 비교예에 비해 공정셀의 크기 및 펄라이트 층상간격이 더 미세하였으며, 이로 인해 상대적으로 더 높은 인장강도를 나타내었다. 그러나 경도는 오히려 실험예의 경우가 비교예에 비해 더 낮은 값을 나타내었다. 특히 망간의 함량이 2중량% 이상인 실험예 2 내지 4의 경우에는 인장강도가 300MPa 및 350MPa 이상급의 우수한 값을 나타내었음에도, 경도는 강도 대비 높지 않은 적정 수준인 것으로 확인되었다.
이로부터 본 발명에 있어서는 망간의 함유량이 높은 수준임에 따라 인장강도는 크게 증가하나, 경도는 인장강도에 비하여 크게 증가하지 않는 것을 알 수 있다. 이는, 주철의 고강도화 및 가공성의 동시 만족 시에 유리한 이점으로 작용할 수 있다.
상술한 본 발명의 실시예들에 따른 편상 흑연 주철은 고강도화 및 가공성이 우수하여, 예를 들어, 3㎜ 이하 두께의 고강도 박육 주철을 구현할 수 있다. 또한, 상기 3㎜ 이하 두께의 고강도 박육 주철은, 내연기관용 엔진 바디, 형상이 복잡하여 후육부와 박육부가 동시에 존재하는 엔진 실린더 블록, 엔진 실린더 헤드 또는 이들 모두에 적용될 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (11)

  1. 3.2 내지 3.4 중량%의 탄소, 2.0 내지 2.2 중량%의 규소, 1.8 내지 4.0 중량%의 망간, 0.08 내지 0.14 중량%의 황, 0.04 중량% 미만(0중량% 초과)의 인, 총합이 0.1 내지 0.3 중량%인 하나 이상의 희토류원소 및 나머지는 철로 이루어지며,
    상기 망간 함량의 상기 황 함량에 대한 비(Mn/S)가 12.0 내지 50.0 범위이며, 상기 망간 함량의 상기 희토류원소 함량의 총합에 대한 비(Mn/R.E.)가 6.0 내지 40.0 범위이며, 상기 희토류원소 함량의 총합의 상기 황 함량에 대한 비(R.E./S)가 0.5 내지 4.0 범위인 것을 특징으로 하는, 편상 흑연 주철.
  2. 제 1 항에 있어서,
    상기 망간 함량의 상기 황 함량에 대한 비(Mn/S)가 20.0 내지 40.0 범위, 상기 망간 함량의 상기 희토류원소 함량의 총합에 대한 비(Mn/R.E.)가 10.0 내지 20.0 범위, 상기 희토류원소 함량의 총합의 상기 황 함량에 대한 비(R.E./S)가 1.0 내지 3.0 범위인 것을 특징으로 하는, 편상 흑연 주철.
  3. 제 1 항에 있어서,
    상기 하나 이상의 희토류원소는 세륨 및 란탄을 함유하는 미시메탈(misch metal)을 포함하는, 편상 흑연 주철.
  4. 제 1 항 내지 제 3 항 중 어느 하나의 편상 흑연 주철로 이루어진 주물.
  5. 주철 용탕의 소정의 양을 레이들로 출탕하는 제 1 단계;
    상기 레이들에 희토류원소를 첨가하는 제 2 단계;
    상기 주철 용탕의 나머지 양을 상기 레이들로 출탕하는 제 3 단계; 및
    상기 레이들로부터 상기 주철 용탕을 몰드로 출탕하는 제 4 단계;
    를 포함하는, 편상 흑연 주철의 제조방법.
  6. 제 5 항에 있어서,
    상기 제 1 단계; 이전에,
    3.2 내지 3.4 중량%의 탄소, 2.0 내지 2.2 중량%의 규소, 1.8 내지 4.0 중량%의 망간, 0.08 내지 0.14 중량%의 황, 0.04 중량% 미만(0중량% 초과)의 인 및 나머지는 철로 이루어진 주철 재료를 용광로에서 용융하여 주철 용탕을 제조하는 단계;를 포함하는, 편상 흑연 주철의 제조방법.
  7. 제 6 항에 있어서,
    상기 망간 함량의 상기 황 함량에 대한 비(Mn/S)가 12.0 내지 50.0 범위이며, 상기 망간 함량의 상기 희토류원소 함량에 대한 비(Mn/R.E.)가 6.0 내지 40.0 범위이며, 상기 희토류원소 함량의 총합의 상기 황 함량에 대한 비(R.E./S)가 0.5 내지 4.0 범위의 화학 조성을 지닌 것을 특징으로 하는, 편상 흑연 주철의 제조방법.
  8. 제 5 항에 있어서,
    상기 희토류원소는 0.1 내지 0.3 중량% 조성범위를 가지는, 편상 흑연 주철의 제조방법.
  9. 제 5 항에 있어서,
    상기 희토류원소는 세륨 및 란탄을 함유하는 미시메탈(misch metal)을 포함하는, 편상 흑연 주철의 제조방법.
  10. 제 5 항에 있어서,
    상기 제 2 단계;는 1530 ℃ 미만의 온도에서 수행되는, 편상 흑연 주철의 제조방법.
  11. 제 5 항에 있어서,
    상기 소정의 양은 상기 주철 용탕의 2/3 이하를 포함하는, 편상 흑연 주철의 제조방법.
PCT/KR2016/012285 2016-10-28 2016-10-28 편상 흑연 주철 및 주물과 그 제조방법 WO2018079887A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/012285 WO2018079887A1 (ko) 2016-10-28 2016-10-28 편상 흑연 주철 및 주물과 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/012285 WO2018079887A1 (ko) 2016-10-28 2016-10-28 편상 흑연 주철 및 주물과 그 제조방법

Publications (1)

Publication Number Publication Date
WO2018079887A1 true WO2018079887A1 (ko) 2018-05-03

Family

ID=62023703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012285 WO2018079887A1 (ko) 2016-10-28 2016-10-28 편상 흑연 주철 및 주물과 그 제조방법

Country Status (1)

Country Link
WO (1) WO2018079887A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871870A (en) * 1973-05-01 1975-03-18 Nippon Kokan Kk Method of adding rare earth metals or their alloys into liquid steel
KR20100031131A (ko) * 2007-06-26 2010-03-19 고쿠리츠다이가꾸호진 이와테다이가꾸 편상 흑연 주철 및 이의 제조방법
KR20110072048A (ko) * 2009-12-22 2011-06-29 두산인프라코어 주식회사 Cgi 주철 및 그 제조방법
KR20130087213A (ko) * 2012-01-27 2013-08-06 두산인프라코어 주식회사 희토류 원소를 이용한 고강도 편상 흑연 주철 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871870A (en) * 1973-05-01 1975-03-18 Nippon Kokan Kk Method of adding rare earth metals or their alloys into liquid steel
KR20100031131A (ko) * 2007-06-26 2010-03-19 고쿠리츠다이가꾸호진 이와테다이가꾸 편상 흑연 주철 및 이의 제조방법
KR20110072048A (ko) * 2009-12-22 2011-06-29 두산인프라코어 주식회사 Cgi 주철 및 그 제조방법
KR20130087213A (ko) * 2012-01-27 2013-08-06 두산인프라코어 주식회사 희토류 원소를 이용한 고강도 편상 흑연 주철 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSHINORI ET AL.: "Effects of Minor Elements on Mechanical Properties of Flake Graphite Cast Iron Using High Manganese Steel Sheet Scrap", JOURNAL OF JAPAN FOUNDRY ENGINEERING SOCIETY, vol. 75, no. 11, 2003, pages 743 - 748, XP055606326 *

Similar Documents

Publication Publication Date Title
CN103343279B (zh) 一种曲轴用铸态珠光体球铁材料及其制备方法
US6508981B1 (en) High temperature oxidation resistant ductile iron
ES2397636B1 (es) Aleación para fundición de tipo AlMgSi
CN105283571B (zh) 球状石墨铸铁
EP3732304B1 (en) Cast iron inoculant and method for production of cast iron inoculant
WO2011152617A2 (ko) 알루미늄 합금 및 알루미늄 합금 주물
CN109957631B (zh) 一种高镍奥氏体球墨铸铁熔体的处理方法
WO2011078500A2 (ko) Cgi 주철 및 그 제조방법
WO2015126083A1 (ko) 엔진 배기계 부품용 구상흑연 주철
WO2018079887A1 (ko) 편상 흑연 주철 및 주물과 그 제조방법
WO2015137627A1 (ko) 내열 구상흑연주철, 이의 제조 방법 및 이를 포함하는 엔진 배기계
KR102075802B1 (ko) 가공성이 우수한 고강도 편상 흑연 주철 및 그 제조방법
KR20130087213A (ko) 희토류 원소를 이용한 고강도 편상 흑연 주철 및 그 제조방법
JPH1096040A (ja) 被削性に優れた高強度ねずみ鋳鉄
CN108950368B (zh) 一种变速器壳体用球墨铸铁
CN108950369B (zh) 一种变速器壳体用球墨铸铁的制备方法
JP2634707B2 (ja) 球状黒鉛鋳鉄の製造方法
US5100612A (en) Spheroidal graphite cast iron
JPH09263867A (ja) 鋳物用アルミニウム合金
KR102202259B1 (ko) 편상 흑연 주철, 이의 제조 방법 및 이를 포함하는 카운터 웨이트
KR20170002154A (ko) 편상 흑연 주철의 제조방법
KR20170002153A (ko) 편상 흑연 주철 및 주물
GB2039301A (en) Slow fade inocculant and a process for the inocculation ofmolten cast iron
NL2030335B1 (en) Low - temperature impact - resistant high - strenght as - cast nodular cast iron and production method thereof
WO2022220534A1 (en) Aluminum alloys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920255

Country of ref document: EP

Kind code of ref document: A1