WO2014115606A1 - 球面アクチュエータ、血管内視鏡 - Google Patents

球面アクチュエータ、血管内視鏡 Download PDF

Info

Publication number
WO2014115606A1
WO2014115606A1 PCT/JP2014/050481 JP2014050481W WO2014115606A1 WO 2014115606 A1 WO2014115606 A1 WO 2014115606A1 JP 2014050481 W JP2014050481 W JP 2014050481W WO 2014115606 A1 WO2014115606 A1 WO 2014115606A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical
support
blood vessel
wire
coil
Prior art date
Application number
PCT/JP2014/050481
Other languages
English (en)
French (fr)
Inventor
茂樹 遠山
Original Assignee
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京農工大学 filed Critical 国立大学法人東京農工大学
Priority to JP2014558534A priority Critical patent/JP6180036B2/ja
Publication of WO2014115606A1 publication Critical patent/WO2014115606A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/3137Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for examination of the interior of blood vessels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/108Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors around multiple axes of rotation, e.g. spherical rotor motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/12Constructional details
    • H02N2/123Mechanical transmission means, e.g. for gearing

Definitions

  • the present invention relates to a spherical actuator and a blood vessel endoscope.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-225591 describes a spherical actuator that can increase the movable range of a rotated member.
  • the spherical actuator includes a spherical support member, a fixed member that fixes the support member, and a movable member that is rotatably supported by the support member and rotates along the spherical surface of the support member.
  • the movable member has a plurality of driving force generation portions that are arranged at predetermined intervals and come into contact with the spherical surface of the support member, and a pedestal portion to which the rotated member is attached.
  • the conventional driving force generator includes a contact piece that contacts the spherical surface and a piezoelectric element that vibrates the contact piece. For this reason, it has been difficult to reduce the size of the conventional spherical actuator.
  • An object of the present invention is to obtain a spherical actuator that can be miniaturized.
  • the spherical actuator of the first aspect of the present invention is formed of a spherical member having a spherical spherical surface part at least in part and a bent wire, and is arranged around the spherical member with a space therebetween, A pair of support portions that are in contact with the spherical surface portion to support the spherical member so as to be along the spherical surface portion, and are connected to end portions of the respective support portions, and are capable of inputting vibration to the support portion. And an input unit.
  • the spherical actuator is provided with a plurality of support portions formed of bent wires. And this support part is arrange
  • vibration is input to each support portion by each input portion formed to be connected to the end portion of each support portion.
  • a traveling force due to the vibration is transmitted from the support portion to the spherical portion due to the frictional force generated between the support portion and the spherical portion.
  • the ball member rotates.
  • the spherical member is rotated and moved by the frictional force generated between the support portion formed of the bent wire and the spherical portion. For this reason, for example, it is possible to obtain a spherical actuator that can be reduced in size as compared with a configuration in which a spherical member is supported by a piezoelectric element and the spherical member is rotated and moved by a frictional force generated between the piezoelectric element and the spherical portion. it can.
  • a vibration member is configured by the support portion and the input portion, the vibration member is elastically deformable, and the support portion is deformed by the restoring force generated by elastic deformation of the vibration member. It is characterized by being pressed.
  • the support portion is pressed against the spherical portion by the restoring force generated by the elastic deformation of the vibration member constituted by the support portion and the input portion.
  • a spherical member is arrange
  • the support portion is formed symmetrically with respect to a center line of the ball member as viewed from a support direction for supporting the ball member.
  • the support portion is formed symmetrically with respect to the center line of the spherical member when viewed from the support direction for supporting the spherical member. For this reason, the sphere member can be supported in a stable state as compared with the case where the support portion is not formed symmetrically with respect to the center line of the sphere member when viewed from the support direction for supporting the sphere member.
  • the support portion is formed by bending the wire into a mainspring shape along the spherical surface portion.
  • the support portion is formed by bending the wire into a mainspring shape along the spherical portion. For this reason, the contact area between the support portion and the spherical surface portion is increased, and the ball member can be effectively rotated and moved as compared with the case where the support portion is formed by making the wire wrap around the circle.
  • the blood vessel endoscope according to the first aspect of the present invention is the columnar insertion member whose front end side can be inserted into the blood vessel and the distal end portion of the insertion member according to any one of claims 1 to 4.
  • the spherical actuator according to any one of claims 1 to 4 is attached to the distal end portion of the insertion member. Further, an observation member used for observing the subject is attached to the spherical member of the spherical actuator.
  • the doctor inserts the distal end side of the insertion member into the blood vessel of the subject, and moves the observation member while rotating the ball member to observe the inside of the blood vessel of the subject evenly.
  • a spiral coil that is disposed on the distal end side of the insertion member and through which the distal end side of the insertion member is inserted, a traveling wave input portion that generates a traveling wave in the coil, and an inner peripheral surface of the coil And a cylindrical material that rotates in the circumferential direction to remove foreign substances in blood vessels when traveling waves are generated in the coil.
  • the traveling wave input unit generates a traveling wave in the coil.
  • the cylindrical material rotates in the circumferential direction to remove foreign substances in the blood vessel.
  • an actuator that can be miniaturized can be obtained.
  • FIG. 1 is a perspective view showing a blood vessel endoscope according to a first embodiment of the present invention. It is explanatory drawing used for demonstrating the shape of the support wire with which the spherical actuator which concerns on 2nd Embodiment of this invention was equipped. It is the perspective view which showed the blood vessel endoscope which concerns on 3rd Embodiment of this invention. It is the perspective view which showed the blood vessel endoscope which concerns on 3rd Embodiment of this invention. It is the perspective view which showed the blood vessel endoscope which concerns on 3rd Embodiment of this invention. It is the perspective view which showed the blood vessel endoscope which concerns on 3rd Embodiment of this invention. It is the perspective view which showed the blood vessel endoscope which concerns on 3rd Embodiment of this invention.
  • the blood vessel endoscope 10 includes a catheter 12 as an example of an insertion member that can be inserted into a blood vessel, and a distal end portion (the left end portion in the figure) of the catheter 12. ), A fiberscope 16 (see FIG. 1) as an example of an observation member that is at least partially attached to the spherical actuator 14 and is used to observe the subject, and a thrombus inside the blood vessel. And a work unit 18 that is used for work such as removing the.
  • the catheter 12 is tubular.
  • the outer diameter of the catheter 12 is, for example, ⁇ 0.9 [mm], and the length of the catheter 12 is, for example, 1200 [mm].
  • the catheter 12 is formed of an elastic member that can be elastically deformed and reinforced with a wire mesh (not shown).
  • a grip portion 22 that is held by a doctor when the catheter 12 is inserted into the blood vessel of the subject is attached to the proximal end portion (right end portion in the figure) of the catheter 12. Further, the grip portion 22 is provided with a plurality of (three in this embodiment) operation buttons 20. Then, when the doctor operates the operation button 20, the work unit 18 and a vibration member 38 to be described later are operated.
  • the spherical actuator 14 is formed using a spherical member 30A having a spherical (protruding spherical) spherical portion 30A and a wire, and can be elastically deformed and vibrated. And a plurality of (three in this embodiment) vibrating members 32.
  • the outer diameter of the spherical member 30 is ⁇ 0.7 [mm].
  • the outer diameter of the wire used to form the vibrating member 32 is, for example, ⁇ 0.1 [mm].
  • the vibration member 32 includes a support wire 34 as an example of a support portion that comes into contact with the spherical surface portion 30A along the spherical surface portion 30A of the spherical member 30 by bending the wire.
  • the support wires 34 are arranged around the ball member 30 at intervals.
  • the ball member 30 is supported by the three support wires 34.
  • the vibration member 32 includes a pair of input wires 36 as an example of a pair of input portions that are formed to be connected to respective end portions of the support wire 34 and capable of inputting vibration to the support wire 34.
  • the pair of input wires 36 are arranged inside the peripheral wall of the catheter 12 along the longitudinal direction of the catheter 12. As shown in FIG. 8, the base end portions (the right end portion in the figure) of the pair of input wires 36 protrude from the grasping portion 22 attached to the base end portion of the catheter 12 and are exposed.
  • the base end portions of the pair of input wires 36 are each provided with a vibration member 38 (for example, a Langevin type vibrator) that applies vibration to the base end portions of the input wires 36 to vibrate the vibration member 32. ing.
  • the distal end portions (left end portions in the figure) of the pair of input wires 36 are exposed to protrude outside from a ring-shaped ring member 12A attached to the end surface of the distal end portion of the catheter 12. As shown in FIG. 1, the support wire 34 described above is connected to the exposed tip of the input wire 36.
  • the spherical member 30 supported by the support wire 34 is formed with a cylindrical circular hole 30B extending along the center line of the spherical member 30. Details of the spherical actuator 14 will be described later.
  • the fiberscope 16 includes a plurality of optical fibers 40 attached to the inside of the spherical member 30 along the extending direction of the circular hole 30B so as to surround the circular hole 30B.
  • the optical fiber 40 includes an optical fiber 40A that sends light irradiated to the subject from the base end to the tip, and a wide-angle lens (not shown) attached to the tip and takes in the light reflected from the subject from the tip. And an optical fiber 40B to be sent to the end.
  • the tip ends of the optical fibers 40A and 40B are attached to the spherical member 30.
  • the proximal end side of the optical fiber 40B is attached to an image sensor (not shown: CCD, for example) disposed inside the grip portion 22 (see FIG. 8) through the inside of the catheter 12.
  • This imaging device converts light transmitted by the optical fiber 40B into an electrical signal.
  • the proximal end side of the optical fiber 40A is attached to a light emitting element (not shown) disposed inside the grip portion 22 through the inside of the catheter 12.
  • the light emitted from the light emitting element is sent from the proximal end portion of the optical fiber 40A to the distal end portion by the optical fiber 40A.
  • the subject is illuminated by the light emitted from the tip of the optical fiber 40A.
  • the working unit 18 is provided with a cylindrical columnar member 50 that is inserted into the catheter 12 and whose front end side can be advanced and retracted into the circular hole 30 ⁇ / b> B of the spherical member 30. Yes. Further, the end surface 50A on the distal end side of the columnar member 50 is provided with a columnar protruding portion 52 protruding outside. A nipper 54 used for excising a thrombus or the like is attached to the distal end side of the protrusion 52.
  • the circular member 56 is formed with three circular holes 56 extending in the longitudinal direction of the cylindrical member 50. And a chemical
  • the spherical actuator 14 will be described in detail.
  • the protruding direction in which the distal end side of the input wire 36 protrudes from the ring member 12 ⁇ / b> A is referred to as the Z direction, and is perpendicular to the Z direction.
  • the direction is referred to as the X direction, and the Z direction and the direction orthogonal to the X direction are referred to as the Y direction.
  • the spherical actuator 14 includes the spherical member 30 and the three vibrating members 32 having the support wires 34 that support the spherical member 30.
  • the support wire 34 has a circular shape (C shape) with the distal end side in the Z direction (left side in FIG. 1) spaced apart, and a spherical surface along the spherical portion 30 ⁇ / b> A of the spherical member 30. It is in contact with the part 30A.
  • the ball member 30 is supported by the three support wires 34 as described above.
  • the pair of distal ends in the Z direction of the support wire 34 are bent in a direction away from the ball member 30 and connected to the distal ends of the pair of input wires 36.
  • the three support wires 34 are arranged around the Z direction at a pitch of 120 [°]. Furthermore, an imaginary line (dashed line C shown in FIG. 5) passing through the center F of the circular support wire 34 and the center E of the spherical member 30 is in the Z direction with respect to the XY plane passing through the center E of the spherical member 30. It is tilted about 10 [°] to 15 [°] toward the base end side (lower side in FIG. 5).
  • the support wire 34 when the support wire 34 is viewed from the direction of the alternate long and short dash line C (when the support wire 34 is viewed from the support direction in which the support wire 34 supports the ball member 30), the support wire 34 is, as shown in FIG. 30 formed symmetrically with respect to a center line D extending in the Z direction.
  • the vibration member 32 can be elastically deformed, and the support wire 34 is pressed against the spherical portion 30A by the restoring force generated by the elastic deformation of the vibration member 32.
  • the support wire 34 when one vibration member 38 (see FIG. 8) applies vibration from the proximal end portion of the input wire 36 so that a traveling wave is generated in each vibration member 32, the support wire 34 has a circular shape. A traveling wave traveling in the circumferential direction is generated. The traveling force due to the traveling wave is transmitted from the supporting wire 34 to the spherical portion 30 ⁇ / b> A by the frictional force generated between the supporting wire 34 where the traveling wave is generated and the spherical portion 30 ⁇ / b> A of the spherical member 30. As a result, the ball member 30 rotates around the rotation axis passing through the center E of the ball member 30.
  • FIG. 6 shows the traveling wave angular velocity vectors ⁇ 1 to ⁇ 3 generated in the three support wires 34 and the angular velocity vector of the spherical member 30 (combined vector ⁇ described later).
  • the direction of the arrow of each vector indicates the direction of the rotation axis of the rotation operation by the traveling wave generated in each support wire 34, and the length of each vector indicates the magnitude of the angular velocity (rotation torque) of the rotation operation. ing.
  • the number of traveling waves (frequency) passing through the support wire 34 per unit time is made different between the support wires 34, so that the angular velocity (rotational torque) becomes different between the support wires 34. .
  • the direction and size of the combined vector ⁇ can be changed.
  • the doctor When inserting the blood vessel endoscope 10 (see FIG. 8) into the blood vessel of the subject, the doctor holds the grasping portion 22 of the blood vessel endoscope 10 and inserts the blood vessel endoscope 10 from the distal end portion into the blood vessel.
  • the endoscope 10 is inserted into the blood vessel of the subject using a guide member (not shown).
  • the doctor observes the inside (subject) of the blood vessel of the subject while viewing the image inside the blood vessel displayed on the display (not shown) via the fiberscope 16 (see FIG. 1) and the image sensor.
  • the doctor operates the operation button 20 provided in the grip portion 22 to operate the vibration member 38 to generate a traveling wave in each vibration member 32.
  • traveling waves traveling in the circumferential direction are generated in the support wire 34.
  • the traveling force due to the traveling wave is generated from the support wire 34 as shown in FIGS. It is transmitted to the spherical portion 30.
  • the ball member 30 rotates. Thereby, the doctor can observe the part which he wants to observe in the inside of a test subject's blood vessel uniformly.
  • the doctor when the doctor sees the image inside the blood vessel and finds a thrombus, the doctor operates the operation button 20 at the position where the thrombus is found, and stops the rotational movement of the ball member 30. Further, the doctor operates the operation button 20 to project the distal end side of the work unit 18 from the ball member 30 as shown in FIGS. 1 and 2. Then, the doctor removes the thrombus using the nipper 54 while viewing the image inside the blood vessel.
  • the traveling force due to the traveling wave is transmitted from the support wire 34 to the spherical portion 30A by the frictional force generated between the support wire 34 formed by bending the wire and the spherical portion 30A.
  • the ball member 30 is configured to rotate.
  • the spherical actuator 14 can be reduced in size as compared with a configuration in which the spherical member 30 is supported by a piezoelectric element and the spherical member 30 is rotationally moved by a frictional force generated between the piezoelectric element and the spherical portion 30A. Can be obtained.
  • the spherical actuator 14 can be reduced in size, the spherical actuator 14 can be reduced in size and used in the blood vessel endoscope 10 as described above. And a doctor can observe the inside of a blood vessel uniformly.
  • the support wire 34 is pressed against the spherical portion 30A by a restoring force generated by the elastic deformation of the vibration member 32.
  • the ball member 30 is disposed at a predetermined position. For example, it is possible to press the support wire 34 against the spherical surface portion 30 ⁇ / b> A with a cheaper configuration as compared with the case where a new biasing member is provided and the support wire is pressed against the spherical surface portion by the biasing force of the biasing member.
  • the support wire 34 is pressed against the spherical portion 30A by a restoring force generated by the elastic deformation of the vibration member 32. Thereby, a frictional force can be generated between the support wire 34 and the spherical portion 30A.
  • each support wire 34 is formed symmetrically with respect to the center line D of the spherical member 30 when viewed from the supporting direction for supporting the spherical member 30. Therefore, the sphere member 30 is more stable than the case where the support wire 34 is not formed symmetrically with respect to the center line D of the sphere member 30 when the support wire 34 is viewed from the support direction in which the sphere member 30 is supported. Can be supported.
  • the support wire 74 of the spherical actuator 70 according to the second embodiment is formed by bending the wire into a mainspring shape (spiral shape) along the spherical portion 30A as shown in FIG. Further, a support member 76 (indicated by a two-dot chain line in FIG. 9) for supporting the center side of the support wire 74 is provided so as to protrude from the ring member 12A.
  • the operations and effects other than the operations and effects exhibited by the support wire are the same as those in the first embodiment.
  • the support wire 74 is formed by bending the wire into a mainspring shape, the contact area between the support wire 74 and the spherical surface portion 30A is smaller than in the case where the support portion is formed by rounding the wire in a circular shape. As a result, the ball member 30 can be effectively rotated and moved.
  • the ball member 30 is rotationally moved using the three vibration members 32.
  • the ball member 30 may be rotated by using two or four or more vibrating members without being limited to three.
  • the outer surface of the spherical member 30 is spherical.
  • the portion that contacts the support wire 34 is within the movable range.
  • the spherical member 30 only needs to have a spherical shape, and the spherical member 30 only needs to have a spherical spherical portion at least partially.
  • the operation of the vascular endoscope 10 has been described by taking the case of removing a thrombus as an example.
  • a drug solution is sent to the inside of the blood vessel through the circular hole 56, The contents inside the blood vessel may be collected through the hole 56.
  • a vascular endoscope may be used simply for observing the inside of a blood vessel.
  • the tubular (hollow) catheter 12 is used as the insertion member that can be inserted into the blood vessel.
  • a solid insertion member may be used.
  • the spherical actuator 14 is used for the blood vessel endoscope 10.
  • the present invention is not limited to the blood vessel endoscope, and for example, the spherical actuator may be used for a microscope or the like. .
  • the support wire 34 has a circular shape in which the distal end side in the Z direction is separated, but may have a circular shape in which another direction such as a proximal end side in the Z direction is separated.
  • the blood vessel endoscope 80 does not include an operation unit, and instead is used to crush thrombus or the like (an example of a foreign object) in a blood vessel.
  • the crushing member 82 is provided.
  • the crushing member 82 is disposed on the distal end side of the catheter 12.
  • the crushing member 82 includes a spiral coil 84 through which the distal end side of the catheter 12 is inserted, and a cylindrical cylindrical material 86 whose inner peripheral surface is in contact with the coil 84 and covers the coil 84 from the outside. Has been.
  • a pair of restricting portions 92 that protrude toward the outer peripheral surface of the catheter 12 are formed on the distal end side and the proximal end side of the cylindrical material 86.
  • a coil 84 is disposed between the pair of restricting portions 92.
  • the crushing member 82 includes a regulating means (not shown) that regulates the movement of the cylindrical member 86 in the longitudinal direction of the catheter 12. The cylindrical material 86 can be moved in the circumferential direction of the catheter 12.
  • a plurality of spiral grooves 88 are formed on the outer peripheral surface of the cylindrical material 86 from the distal end to the proximal end of the cylindrical material 86.
  • the cross section in the direction perpendicular to the longitudinal direction of the groove 88 is U-shaped with a narrowed opening. Then, on both edges of the groove portion 88, protrusions 90 having sharp angles are formed so that the tips are opposed to each other.
  • the ends of a pair of input wires are connected to both ends of the coil 84, respectively.
  • the pair of input wires passes through the inside of the peripheral wall of the catheter 12 along the longitudinal direction of the catheter 12. Further, the proximal end portions of the pair of input wires are exposed to the outside from a grip portion 22 (see FIG. 8) attached to the proximal end portion of the catheter 12.
  • the base end part of a pair of input wire is provided with the vibration member which is not shown in figure which applies a vibration to the base end part of an input wire.
  • the doctor When inserting the blood vessel endoscope 80 into the blood vessel of the subject, the doctor holds the grasping portion 22 (see FIG. 8) of the blood vessel endoscope 80 and inserts the blood vessel endoscope 80 from the distal end portion into the blood vessel.
  • the endoscope 80 is inserted into the blood vessel of the subject using a guide member (not shown).
  • the doctor observes the inside (subject) of the blood vessel of the subject while viewing the image inside the blood vessel displayed on the display (not shown) via the fiber scope 16 (see FIG. 10) and the imaging device.
  • the cylindrical member 86 is rotated in the circumferential direction of the catheter 12 (arrow H direction shown in FIG. 11) in order to crush the thrombus.
  • vibration is applied to the coil 84 via the input wire so that a traveling wave traveling in a spiral shape is generated in the coil 84. Thereby, a traveling wave traveling in a spiral shape is generated in the coil 82. Due to the frictional force between the coil 84 in which the traveling wave is generated and the inner peripheral surface of the cylindrical member 86, the traveling force due to the traveling wave is transmitted from the coil 84 to the cylindrical member 86. As a result, as shown in FIGS. 10 and 11, the cylindrical member 86 rotates in the circumferential direction of the catheter 12 (the direction of arrow H shown in FIG. 11).
  • the groove 88 formed in the cylindrical material 86 also rotates. And the protrusion 90 formed in the both edges of the groove part 88 contacts a thrombus, and crushes a thrombus.
  • the thrombus formed on the peripheral wall of the blood vessel of the subject can be crushed.
  • the doctor can confirm that the thrombus formed on the peripheral wall of the blood vessel of the subject has been crushed by looking at the image inside the blood vessel displayed on the display via the fiber scope 16 and the imaging device. it can.
  • a traveling wave is generated in the coil 82 so that the cylindrical member 86 rotates in the direction of arrow H shown in FIG.
  • a traveling wave may be generated in the coil 82 so as to rotate.
  • the support wire 34 of the first embodiment is used for the blood vessel endoscope 80 of the third embodiment
  • the support wire 74 of the second embodiment may be used.
  • Vascular Endoscope 10
  • Catheter an example of an insertion member
  • Spherical actuator 16
  • Fiberscope an example of observation member
  • Sphere member 30A Spherical surface portion
  • Vibrating member 34
  • Support wire an example of a support portion
  • Input wire (example of input unit)
  • Spherical Actuator 74
  • Support Wire (Example of Support Part)
  • Vascular Endoscope 84 Coil 86 Cylindrical Material

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Surgical Instruments (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

 小型化可能な球面アクチュエータを得ること及びこれを用いた血管内視鏡を得ることである。 球面アクチュエータ(14)には、曲げられたワイヤで形成される支持ワイヤ(34)が複数備えられている。この支持ワイヤ(34)が、球部材(30)の周囲に互いに間隔をあけて配置され、球面部(30A)に沿うように球面部(30A)と接触して球部材(30)を支持している。そして、支持ワイヤ(34)と球面部(30A)との間に生じる摩擦力により、球部材(30)が回転移動する。このように、曲げられたワイヤで形成された支持ワイヤ(34)を備えることで、小型化可能な球面アクチュエータを得ることができる。

Description

球面アクチュエータ、血管内視鏡
 本発明は、球面アクチュエータ及び血管内視鏡に関する。
 特許文献1(特開2009-225591号公報)には、被回動部材の可動範囲を大きくすることができる球面アクチュエータが記載されている。
 この球面アクチュエータは、球状の支持部材と、この支持部材を固定する固定部材と、支持部材に回動自在に支持されて支持部材の球面に沿って回動する可動部材とを備えている。この可動部材は、所定の間隔をあけて配置されて支持部材の球面に接触する複数の駆動力発生部と、被回動部材が取り付けられる台座部とを有している。
 しかしながら、従来の構成の駆動力発生部は、球面に接触する接触片と、この接触片を振動させる圧電素子とを備えている。このため、従来の球面アクチュエータを小型化することは困難であった。
 本発明の課題は、小型化可能な球面アクチュエータを得ることである。
 本発明の第一態様の球面アクチュエータは、少なくとも一部に球面状の球面部を有する球部材と、曲げられたワイヤで形成され、前記球部材の周囲に互いに間隔をあけて配置されると共に、前記球面部に沿うように前記球面部と接触して前記球部材を支持する複数の支持部と、夫々の前記支持部の端部に繋がって形成され、前記支持部に振動を入力可能な一対の入力部と、を備えることを特徴とする。
 上記構成によれば、球面アクチュエータには、曲げられたワイヤで形成される支持部が複数備えられている。そして、この支持部が、球部材の周囲に互いに間隔をあけて配置され、球面部に沿うように球面部と接触して球部材を支持している。
 さらに、夫々の支持部の端部に繋がって形成される夫々の入力部によって、夫々の支持部に振動が入力される。夫々の支持部に振動が入力されることで、支持部と球面部との間に生じる摩擦力により、振動による進行力が支持部から球面部へ伝わる。これにより、球部材が回転移動する。
 このように、曲げられたワイヤで形成された支持部と球面部との間で生じる摩擦力によって球部材を回転移動させる構成となっている。このため、例えば、球部材を圧電素子で支持してこの圧電素子と球面部との間で生じる摩擦力によって球部材を回転移動させる構成と比して、小型化可能な球面アクチュエータを得ることができる。
 上記態様において、前記支持部と前記入力部とで振動部材が構成され、前記振動部材は弾性変形可能であり、前記振動部材が弾性変形することで生じる復元力により前記支持部が前記球面部に押し付けられることを特徴とする。
 上記構成によれば、支持部と入力部とで構成される振動部材が弾性変形することで生じる復元力により、支持部が球面部に押し付けられる。これにより、球部材が所定の位置に配置される。
 例えば、新たに付勢部材を備え、この付勢部材の付勢力により支持部を球面部に押し付ける場合と比して、安価な構成で支持部を球面部に押し付けることができる。
 上記態様において、前記支持部は、前記球部材を支持する支持方向から見て、前記球部材の中心線に対して対称に形成されていることを特徴とする。
 上記構成によれば、支持部は、球部材を支持する支持方向から見て、球部材の中心線に対して対称に形成されている。このため、支持部が球部材を支持する支持方向から見て、球部材の中心線に対して対称に形成されていない場合と比して、球部材を安定した状態で支持することができる。
 上記態様において、前記支持部は、前記球面部に沿うように前記ワイヤをぜんまい状に曲げることで形成されていることを特徴とする。
 上記構成によれば、支持部は、球面部に沿うようにワイヤをぜんまい状に曲げることで形成されている。このため、ワイヤを円形状に一周させて支持部を形成させる場合と比して、支持部と球面部との接触面積が広くなり、球部材を効果的に回転移動させることができる。
 本発明の第一態様の血管内視鏡は、先端側が血管の内部に挿入可能な柱状の挿入部材と、前記挿入部材の先端部に取り付けられる請求項1~4の何れか1項に記載の球面アクチュエータと、前記球面アクチュエータの球部材に取り付けられ、被写体を観察するのに用いられる観察部材と、を備えることを特徴とする。
 上記構成によれば、挿入部材の先端部に、請求項1~4の何れか1項に記載される球面アクチュエータが取り付けられている。さらに、被写体を観察するのに用いられる観察部材が、球面アクチュエータの球部材に取り付けられている。
 例えば医師は、挿入部材の先端側を例えば被験者の血管の内部に挿入し、球部材を回転移動させながら観察部材を移動させて被験者の血管の内部を満遍なく観察する。
 このように、請求項1~4の何れか1項に記載される球面アクチュエータを用いることで、請求項1~4の何れか1項に記載される球面アクチュエータを用いない場合と比して、血管の内部を満遍なく観察することができる。
 上記態様において、前記挿入部材の先端側に配置され、内部に前記挿入部材の先端側が挿通する螺旋状のコイルと、前記コイルに進行波を生じさせる進行波入力部と、内周面が前記コイルと接触して前記コイルを外側から覆う円筒状に形成され、前記コイルに進行波が生じると周方向に回転して血管内の異物を除去する円筒材と、を備えることを特徴とする。
 上記構成によれば、進行波入力部が、コイルに進行波を生じさせる。そして、コイルに進行が生じると、円筒材が周方向に回転して血管内の異物を除去する。
 このように、簡易な方法で、血管内の異物を除去することができる。
 本発明によれば、小型化可能なアクチュエータを得ることができる。
本発明の第1実施形態に係る球面アクチュエータを示した斜視図である。 本発明の第1実施形態に係る球面アクチュエータを示した斜視図である。 本発明の第1実施形態に係る球面アクチュエータを示した斜視図である。 本発明の第1実施形態に係る球面アクチュエータを示した斜視図である。 本発明の第1実施形態に係る球面アクチュエータに備えられた球部材を3個の支持ワイヤで支持する状態を説明するのに用いた説明図である。 本発明の第1実施形態に係る球面アクチュエータに備えられた球部材の回転動作を説明するのに用いた説明図である。 本発明の第1実施形態に係る球面アクチュエータに備えられた支持ワイヤの形状を説明するのに用いた説明図である。 本発明の第1実施形態に係る血管内視鏡を示した斜視図である。 本発明の第2実施形態に係る球面アクチュエータに備えられた支持ワイヤの形状を説明するのに用いた説明図である。 本発明の第3実施形態に係る血管内視鏡を示した斜視図である。 本発明の第3実施形態に係る血管内視鏡を示した斜視図である。 本発明の第3実施形態に係る血管内視鏡を示した斜視図である。
 <第1実施形態>
 本発明の第1実施形態に係る球面アクチュエータ及び血管内視鏡の一例について図1~図8に従って説明する。
 (全体構成)
 第1実施形態に係る血管内視鏡10は、図8に示されるように、血管の内部に挿入可能な挿入部材の一例としてのカテーテル12と、カテーテル12の先端部(図中左側の端部)に取り付けられた球面アクチュエータ14と、球面アクチュエータ14に少なくとも一部が取り付けられると共に被写体を観察するのに用いられる観察部材の一例としてのファイバースコープ16(図1参照)と、血管の内部の血栓を除去する等の作業に用いられる作業ユニット18と、を備えている。
 〔カテーテル〕
 カテーテル12は、管状とされている。また、カテーテル12の外径は、一例として、φ0.9〔mm〕で、カテーテル12の長さは、一例として、1200〔mm〕とされている。また、カテーテル12は、弾性変形が可能な弾性部材で成形され、ワイヤーメッシュ(図示省略)で補強されている。
 さらに、カテーテル12の基端部(図中右側の端部)には、カテーテル12を被験者の血管の内部に挿入する際に、医師が把持する把持部22が取り付けられている。さらに、この把持部22には、複数(本実施形態では3個)の操作ボタン20が備えられている。そして、医師がこの操作ボタン20を操作することで、作業ユニット18や後述する加振部材38が稼働するようになっている。
 〔球面アクチュエータ〕
 球面アクチュエータ14は、図1に示されるように、球面状(突出した球面状)の球面部30Aを有する球部材30と、ワイヤを用いて形成され、弾性変形が可能とされると共に振動可能とされる複数(本実施例では3個)の振動部材32と、を備えている。
 球部材30の外径は、一例として、φ0.7〔mm〕とされている。また、振動部材32を形成するのに用いられるワイヤの外径は、一例として、φ0.1〔mm〕とされている。
 振動部材32は、ワイヤを曲げることで球部材30の球面部30Aに沿うように球面部30Aと接触する支持部の一例としての支持ワイヤ34を備えている。支持ワイヤ34は、球部材30の周囲に互いに間隔をあけて配置されている。そして、3個の支持ワイヤ34によって球部材30が支持されている。さらに、振動部材32は、支持ワイヤ34の夫々の端部に繋がって形成され、支持ワイヤ34に振動を入力可能な一対の入力部の一例としての一対の入力ワイヤ36を備えている。
 一対の入力ワイヤ36は、カテーテル12の長手方向に沿ってカテーテル12の周壁の内部に配置されている。図8に示されるように、一対の入力ワイヤ36の基端部(図中右側の端部)は、カテーテル12の基端部に取り付けられた把持部22から外部に突出して露出している。そして、一対の入力ワイヤ36の基端部には、入力ワイヤ36の基端部に振動を印加して振動部材32を加振する加振部材38(例えば、ランジュバン型振動子)が夫々備えられている。
 また、一対の入力ワイヤ36の先端部(図中左側の端部)は、カテーテル12の先端部の端面に取り付けられたリング状のリング部材12Aから外部に突出して露出している。図1に示されるように、この露出した入力ワイヤ36の先端部に前述した支持ワイヤ34が繋がって形成されている。
 一方、支持ワイヤ34によって支持される球部材30には、球部材30の中心線に沿って延びる円柱状の円孔30Bが形成されている。なお、球面アクチュエータ14の詳細については、後述する。
 〔ファイバースコープ〕
 ファイバースコープ16は、円孔30Bを囲むように、円孔30Bの延伸方向に沿って球部材30の内部に取り付けられた複数の光ファイバー40から構成されている。そして、光ファイバー40は、被写体に照射される光を基端部から先端部に送る光ファイバー40Aと、先端部に広角レンズ(図示省略)が取り付けられると共に被写体から反射した光を先端部から取り込んで基端部に送る光ファイバー40Bとを備えている。
 具体的には、光ファイバー40A、40Bの先端側が、球部材30に取り付けられている。そして、光ファイバー40Bの基端側は、カテーテル12の内部を通って把持部22(図8参照)の内部に配置された撮像素子(図示省略:例えばCCD)に取り付けられている。この撮像素子が、光ファイバー40Bによって送られる光を電気信号に変換するようになっている。
 また、光ファイバー40Aの基端側は、カテーテル12の内部を通って把持部22の内部に配置された発光素子(図示省略)に取り付けられている。この発光素子から発光された光が、光ファイバー40Aによって光ファイバー40Aの基端部から先端部へ送られる。そして、光ファイバー40Aの先端部から出射された光によって、被写体が照らされるようになっている。
 〔作業ユニット〕
 作業ユニット18は、図1、図2に示されるように、カテーテル12の内部に挿入されると共に、先端側が球部材30の円孔30Bに進退自在とされる円柱状の円柱部材50を備えている。さらに、円柱部材50の先端側の端面50Aには、外部に突出する円柱状の突出部52が備えられている。そして、突出部52の先端側には、血栓等を切除するのに用いられるニッパ54が取り付けられている。
 さらに、円柱部材50には、円柱部材50の長手方向に延びる3個の円孔56が形成されている。そして、この円孔56を介して薬液剤が血管の内部に送られ、また、血管の内部の容物が回収されるようになっている。
 (要部構成)
 次に、球面アクチュエータ14について詳細に説明する。なお、以下の説明においては、便宜上、図1に示されるように、入力ワイヤ36の先端側が、リング部材12Aから外部に突出する突出方向をZ方向と称し、Z方向に対して直交する一の方向をX方向と称し、Z方向及びX方向に対して直交する方向をY方向と称する。
 球面アクチュエータ14は、前述したように球部材30と、この球部材30を支持する支持ワイヤ34を有する3個の振動部材32と、を備えている。
 また、支持ワイヤ34は、図1に示されるように、Z方向の先端側(図1の左側)が離間した円形状(C形状)とされ、球部材30の球面部30Aに沿うように球面部30Aと接触している。そして、球部材30は、前述したように3個の支持ワイヤ34によって支持されている。
 また、支持ワイヤ34においてZ方向の一対の先端側は、球部材30から離れる方向に折り曲げられて一対の入力ワイヤ36の先端部と繋がっている。
 図5に示されるように、3個の支持ワイヤ34は、Z方向回りに、120〔°〕のピッチで配置されている。さらに、円形状の支持ワイヤ34の中心Fと球部材30の中心Eとを通る仮想線(図5に示す一点鎖線C)は、球部材30の中心Eを通るXY平面に対して、Z方向の基端側(図5の下側)へ10〔°〕~15〔°〕程度傾いている。
 また、支持ワイヤ34を一点鎖線C方向から見ると(支持ワイヤ34を支持ワイヤ34が球部材30を支持する支持方向から見ると)、支持ワイヤ34は、図7に示されるように、球部材30のZ方向に延びる中心線Dに対して対称に形成されている。
 さらに、前述したように、振動部材32は弾性変形が可能とされおり、振動部材32が弾性変形することで生じる復元力により支持ワイヤ34が球面部30Aに接触して押し付けられている。
 そして、このような構成において、各振動部材32に進行波が生じるように、一方の加振部材38(図8参照)が入力ワイヤ36の基端部から振動を印加すると、支持ワイヤ34に円周方向に進む進行波が生じる。そして、この進行波が生じる支持ワイヤ34と球部材30の球面部30Aとの間に生じる摩擦力により、進行波による進行力が支持ワイヤ34から球面部30Aへ伝わる。これにより、球部材30が球部材30の中心Eを通る回転軸周りに回転移動するようになっている。
 なお、振動部材32に一方向に進む進行波を生じさせる場合は、一方の加振部材38だけを稼働させ、一方の加振部材38が一方の入力ワイヤ36の基端部から振動を印加する。これに対して、振動部材32に他方向に進む進行波を生じさせる場合は、他方の加振部材38だけを稼働させ、他方の加振部材38が他方の入力ワイヤ36の基端部から振動を印加するようになっている(図8参照)。
 ここで、球部材30が回転移動する回転軸及び回転速度について説明する。
 図6には、3個の支持ワイヤ34に生じる進行波の角速度ベクトルω1~ω3と、球部材30の角速度ベクトル(後述する合成ベクトルω)と、が示されている。各ベクトルの矢印の向きは、各支持ワイヤ34に生じた進行波による回動動作の回転軸の方向を示し、各ベクトルの長さは、回動動作の角速度(回転トルク)の大きさを示している。
 3個の支持ワイヤ34が、それぞれ角速度ベクトルω1~ω3で示される回転トルクを発生すると、3つの角速度ベクトルω1~ω3の合成ベクトルωの向きを回転軸とする回転トルクが球部材30に作用する。これにより、球部材30は、合成ベクトルωの周りに回転移動するようになっている。
 この構成により、単位時間当たりに支持ワイヤ34を通過する進行波の数(周波数)を、各支持ワイヤ34間で異ならせることで、角速度(回転トルク)が各支持ワイヤ34間で異なるようになる。これにより、合成ベクトルωの向き及び大きさを変えることができるようになっている。
 (作用・効果)
 次に、血管内視鏡10の作用等について説明する。
 血管内視鏡10(図8参照)を被験者の血管の内部に挿入する際には、医師は、血管内視鏡10の把持部22を把持し、血管内視鏡10の先端部から血管内視鏡10を被験者の血管の内部に図示せぬガイド部材を用いて挿入する。
 そして、医師は、ファイバースコープ16(図1参照)及び撮像素子を介してディスプレイ(図示省略)に表示された血管の内部の画像を見ながら被験者の血管の内部(被写体)を観察する。
 ここで、医師は、把持部22に備えられた操作ボタン20を操作して、加振部材38を稼働させて各振動部材32に進行波を生じさせる。各振動部材32に進行波が生じることで、支持ワイヤ34に円周方向に進む進行波が生じる。そして、この進行波が生じる支持ワイヤ34と球部材30の球面部30Aとの間に摩擦力により、図1、図3、図4に示されるように、進行波による進行力が支持ワイヤ34から球面部30へ伝わる。そして、球部材30が回転移動する。これにより、医師は被験者の血管の内部において観察したい部分を満遍なく観察することができる。
 さらに、医師が、血管の内部の映像を見て血栓を見つけると、医師は、血栓を見つけた位置で、操作ボタン20を操作して球部材30の回転移動を停止させる。また、医師は、操作ボタン20を操作して、図1、図2に示されるように、作業ユニット18の先端側を球部材30から突出させる。そして、医師は、血管の内部の映像を見ながら、ニッパ54を用いて血栓を切除する。
 以上説明したように、球面アクチュエータ14においては、ワイヤを曲げて形成された支持ワイヤ34と球面部30Aとの間に生じる摩擦力により、進行波による進行力が支持ワイヤ34から球面部30Aへ伝わる。そして、球部材30が回転移動させる構成となっている。このため、例えば、球部材30を圧電素子で支持して圧電素子と球面部30Aとの間で生じる摩擦力によって球部材30を回転移動させる構成と比して、小型化が可能な球面アクチュエータ14を得ることができる。
 また、球面アクチュエータ14の小型化が可能とされるため、前述したように、この球面アクチュエータ14を小型化して血管内視鏡10に用いることができる。そして、医師が、血管の内部を満遍なく観察することができる。
 また、球面アクチュエータ14においては、振動部材32が弾性変形することで生じる復元力により支持ワイヤ34が球面部30Aに押し付けられる。これにより、球部材30が所定の位置に配置される。例えば、新たに付勢部材を備え、この付勢部材の付勢力により支持ワイヤを球面部に押し付ける場合と比して、安価な構成で支持ワイヤ34を球面部30Aに押し付けることができる。
 また、球面アクチュエータ14においては、振動部材32が弾性変形することで生じる復元力により支持ワイヤ34が球面部30Aに押し付けられる。これにより、支持ワイヤ34と球面部30Aとの間に摩擦力を生じさせることができる。
 また、球面アクチュエータ14においては、各支持ワイヤ34は、球部材30を支持する支持方向から見て、球部材30の中心線Dに対して対称に形成されている。このため、支持ワイヤ34を支持ワイヤ34が球部材30を支持する支持方向から見て、球部材30の中心線Dに対して対称に形成されていない場合と比して、球部材30を安定した状態で支持することができる。
 <第2実施形態>
 次に、本発明の第2実施形態に係る球面アクチュエータ及び血管内視鏡の一例について図9を用いて説明する。なお、第1実施形態と同一部材については、同一符号を付してその説明を省略する。また、第1実施形態と異なる部分のみ説明し、他の部分の説明は省略する。
 第2実施形態に係る球面アクチュエータ70の支持ワイヤ74は、図9に示されるように、球面部30Aに沿うようにワイヤをぜんまい状(渦巻き状)に曲げることで形成されている。また、支持ワイヤ74の中央側を支持する支持部材76(図9には二点鎖線で示す)が、リング部材12Aから突出して備えられている。なお、支持ワイヤが奏する作用及び効果以外の作用及び効果については、第1実施形態と同様である。
 支持ワイヤ74が、ワイヤをぜんまい状に曲げることで形成されているため、ワイヤを円形状に一周させて支持部を形成させる場合と比して、支持ワイヤ74と球面部30Aとの接触面積が広くなり、球部材30を効果的に回転移動させることができる。
 なお、本発明を特定の実施形態について詳細に説明したが、本発明は係る実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態をとることが可能であることは当業者にとって明らかである。例えば、上記第1、第2実施形態では、3個の振動部材32を用いて球部材30を回転移動させたが。3個に限定されず、2個又は4個以上の振動部材を用いて球部材30を回転移動させてもよい。
 また、上記第1、第2実施形態では、球部材30の外表面が、球面状とされたが、球部材30を回転移動させた際に、可動範囲において、支持ワイヤ34と接触する部分が球面状であればよく、球部材30は、少なくとも一部に球面状の球面部を有していればよい。
 また、上記第1、第2実施形態では、血栓を切除する場合を例にとって、血管内視鏡10の作用を説明したが、円孔56を介して薬液剤を血管の内部に送ったり、円孔56を介して血管の内部の容物を回収したりしてもよい。さらには、単に、血管の内部を観察するためだけに血管内視鏡を用いてもよい。
 また、上記第1、第2実施形態では、血管の内部に挿入可能な挿入部材として管状(空洞)のカテーテル12を用いて説明したが、中実の挿入部材を用いてもよい。
 また、上記第1、第2実施形態では、球面アクチュエータ14を血管内視鏡10に用いて説明したが、血管内視鏡に限定されず、例えば、球面アクチュエータをマイクロスコープ等に用いてもよい。
 また、上記第1実施形態では、支持ワイヤ34は、Z方向の先端側が離間した円形状とされが、Z方向の基端側等の他の方向が離間した円形状であってもよい。
 <第3実施形態>
 次に、本発明の第3実施形態に係る球面アクチュエータ及び血管内視鏡の一例について図10~図12を用いて説明する。なお、第1実施形態と同一部材については、同一符号を付してその説明を省略する。また、第1実施形態と異なる部分のみ説明し、他の部分の説明は省略する。
 (構成)
 第3実施形態に係る血管内視鏡80は、図10に示されるように、操作ユニットを備えておらず、これに替えて、血管内の血栓等(異物の一例)を破砕するために用いられる破砕部材82を備えている。
 この破砕部材82は、カテーテル12の先端側に配置されている。そして、破砕部材82は、内部にカテーテル12の先端側が挿通する螺旋状のコイル84と、内周面がコイル84と接触してコイル84を外側から覆う円筒状の円筒材86とを含んで構成されている。
 この円筒材86の先端側及び基端側には、図12に示されるように、カテーテル12の外周面に向けて突出する一対の規制部92が形成されている。そして、この一対の規制部92の間にコイル84が配置されている。これにより、コイル84におけるカテーテル12の長手方向の移動が規制されている。さらに、破砕部材82は、円筒材86におけるカテーテル12の長手方向の移動を規制する図示せぬ規制手段を備えている。なお、円筒材86は、カテーテル12の周方向に移動が可能とされている。
 さらに、円筒材86の外周面には、円筒材86の先端から基端にかけて螺旋状の溝部88が複数形成されている。溝部88の長手方向に対して直交する方向の断面は、図12に示されるように、開口が窄められたU字状とされている。そして、溝部88の両縁には、鋭角に尖った突起90が互いに先端を対向させるように形成されている。
 また、コイル84の両端には、図示せぬ一対の入力ワイヤの先端部が夫々繋がっている。そして、この一対の入力ワイヤは、カテーテル12の長手方向に沿ってカテーテル12の周壁の内部を通っている。また、一対の入力ワイヤの基端部は、カテーテル12の基端部に取り付けられた把持部22(図8参照)から外部に突出して露出している。そして、一対の入力ワイヤの基端部には、入力ワイヤの基端部に振動を印加する図示せぬ加振部材が備えられている。
 以上の構成により、加振部材が入力ワイヤに振動を印加することで、コイル84に進行波が生じるようになっている。つまい、コイル84に進行波を生じさせる進行波入力部は、入力ワイヤと加振部材とを含んで構成されている。
 (作用)
 次に、血管内視鏡80に備えられる破砕部材82の作用について説明する。
 血管内視鏡80を被験者の血管の内部に挿入する際には、医師は、血管内視鏡80の把持部22(図8参照)を把持し、血管内視鏡80の先端部から血管内視鏡80を被験者の血管の内部に図示せぬガイド部材を用いて挿入する。
 そして、医師は、ファイバースコープ16(図10参照)及び撮像素子を介してディスプレイ(図示省略)に表示された血管の内部の画像を見ながら被験者の血管の内部(被写体)を観察する。
 そして、医師が、血管の周壁等に形成される血栓を発見した場合には、血栓を粉砕するために、円筒材86をカテーテル12の周方向(図11に示す矢印H方向)に回転させる。
 具体的には、コイル84に螺旋状に進む進行波が生じるように、入力ワイヤを介してコイル84に振動(超音波振動)を印加する。これにより、コイル82に螺旋状に進む進行波が生じる。この進行波が生じているコイル84と円筒材86の内周面との間の摩擦力により、進行波による進行力がコイル84から円筒材86へ伝わる。これにより、図10、図11に示されるように、円筒材86が、カテーテル12の周方向(図11に示す矢印H方向)に回転する。
 円筒材86が回転することで、円筒材86に形成される溝部88も回転する。そして、溝部88の両縁に形成される突起90が、血栓と接触して血栓を粉砕する。このように、コイル84を用いて円筒材86を回転させることで、被験者の血管の周壁等に形成される血栓を粉砕することができる。
 そして、医師は、ファイバースコープ16及び撮像素子を介してディスプレイに表示された血管の内部の画像を見ることで、被験者の血管の周壁等に形成された血栓が粉砕されたのを確認することができる。
 なお、本発明を特定の実施形態について詳細に説明したが、本発明は係る実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態をとることが可能であることは当業者にとって明らかである。例えば、上記第3実施形態では、円筒材86が、図11に示す矢印H方向に回転するように、コイル82に進行波を生じさせたが、矢印H方向に対して逆方向に円筒材86が回転するようにコイル82に進行波を生じさせてもよい。
 また、上記第3実施形態の血管内視鏡80には、第1実施形態の支持ワイヤ34が用いられたが、第2実施形態の支持ワイヤ74が用いられてもよい。
 (符号の説明)
10    血管内視鏡
12    カテーテル(挿入部材の一例)
14    球面アクチュエータ
16    ファイバースコープ(観察部材の一例)
30    球部材
30A   球面部
32    振動部材
34    支持ワイヤ(支持部の一例)
36    入力ワイヤ(入力部の一例)
70    球面アクチュエータ
74    支持ワイヤ(支持部の一例)
80     血管内視鏡
84    コイル
86    円筒材

Claims (6)

  1.  少なくとも一部に球面状の球面部を有する球部材と、
     曲げられたワイヤで形成され、前記球部材の周囲に互いに間隔をあけて配置されると共に、前記球面部に沿うように前記球面部と接触して前記球部材を支持する複数の支持部と、
     夫々の前記支持部の端部に繋がって形成され、前記支持部に振動を入力可能な一対の入力部と、
     を備える球面アクチュエータ。
  2.  前記支持部と前記入力部とで振動部材が構成され、
     前記振動部材は弾性変形可能であり、
     前記振動部材が弾性変形することで生じる復元力により前記支持部が前記球面部に押し付けられる請求項1に記載の球面アクチュエータ。
  3.  前記支持部は、前記球部材を支持する支持方向から見て、前記球部材の中心線に対して対称に形成されている請求項1又は2に記載の球面アクチュエータ。
  4.  前記支持部は、前記球面部に沿うように前記ワイヤをぜんまい状に曲げることで形成されている請求項1又は2に記載の球面アクチュエータ。
  5.  先端側が血管の内部に挿入可能な柱状の挿入部材と、
     前記挿入部材の先端部に取り付けられる請求項1~4の何れか1項に記載の球面アクチュエータと、
     前記球面アクチュエータの球部材に取り付けられ、被写体を観察するのに用いられる観察部材と、
     を備える血管内視鏡。
  6.  前記挿入部材の先端側に配置され、内部に前記挿入部材の先端側が挿通する螺旋状のコイルと、
     前記コイルに進行波を生じさせる進行波入力部と、
     内周面が前記コイルと接触して前記コイルを外側から覆う円筒状に形成され、前記コイルに進行波が生じると周方向に回転して血管内の異物を除去する円筒材と、
     を備える請求項5に記載の血管内視鏡。
PCT/JP2014/050481 2013-01-22 2014-01-14 球面アクチュエータ、血管内視鏡 WO2014115606A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014558534A JP6180036B2 (ja) 2013-01-22 2014-01-14 球面アクチュエータ、血管内視鏡

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013009491 2013-01-22
JP2013-009491 2013-04-26

Publications (1)

Publication Number Publication Date
WO2014115606A1 true WO2014115606A1 (ja) 2014-07-31

Family

ID=51227398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050481 WO2014115606A1 (ja) 2013-01-22 2014-01-14 球面アクチュエータ、血管内視鏡

Country Status (2)

Country Link
JP (1) JP6180036B2 (ja)
WO (1) WO2014115606A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017132923A1 (zh) * 2016-02-04 2017-08-10 秦厚敬 一种球体直驱机构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326369A (ja) * 1993-05-13 1994-11-25 Olympus Optical Co Ltd アクチュエータ装置
WO2005114824A1 (ja) * 2004-05-21 2005-12-01 Tadashi Moriya 超音波モータ
WO2007055052A1 (ja) * 2005-11-10 2007-05-18 Kabushiki Kaisha Toyota Jidoshokki 超音波モータ
JP2011182485A (ja) * 2010-02-26 2011-09-15 Hitachi-Ge Nuclear Energy Ltd マニピュレータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326369A (ja) * 1993-05-13 1994-11-25 Olympus Optical Co Ltd アクチュエータ装置
WO2005114824A1 (ja) * 2004-05-21 2005-12-01 Tadashi Moriya 超音波モータ
WO2007055052A1 (ja) * 2005-11-10 2007-05-18 Kabushiki Kaisha Toyota Jidoshokki 超音波モータ
JP2011182485A (ja) * 2010-02-26 2011-09-15 Hitachi-Ge Nuclear Energy Ltd マニピュレータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017132923A1 (zh) * 2016-02-04 2017-08-10 秦厚敬 一种球体直驱机构

Also Published As

Publication number Publication date
JP6180036B2 (ja) 2017-08-16
JPWO2014115606A1 (ja) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6500774B2 (ja) レーザ走査型内視鏡装置
EP2114004A1 (en) Ultrasonic operation device and microtube inside system
WO2015194317A1 (ja) 内視鏡装置
JP6322775B1 (ja) 内視鏡システム
WO2012086064A1 (ja) 内視鏡装置
JP6367019B2 (ja) 滅菌ドレープ
JP6656188B2 (ja) 内視鏡
JP5490339B1 (ja) 挿入機器
JP2010000210A (ja) プローブ
JP6180036B2 (ja) 球面アクチュエータ、血管内視鏡
JP6653668B2 (ja) 超音波内視鏡
WO2018003606A1 (ja) 内視鏡システム
WO2018079061A1 (ja) 内視鏡
WO2017149815A1 (ja) 超音波内視鏡
JP6205479B2 (ja) 医療装置
JP2012040202A (ja) マニピュレータ
JP2008220430A (ja) 医療器具
JPWO2016203818A1 (ja) 内視鏡
WO2015125359A1 (ja) 摩擦駆動アクチュエータ
JP6602580B2 (ja) 内視鏡システム
JP4578850B2 (ja) 超音波処置具
JP4355022B2 (ja) 可撓性内視鏡
JP6250232B1 (ja) 湾曲操作装置及びこれを適用した内視鏡
JP6856690B2 (ja) 医療用観察装置および医療用観察システム
JP4951427B2 (ja) 超音波プローブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014558534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743257

Country of ref document: EP

Kind code of ref document: A1