WO2017132923A1 - 一种球体直驱机构 - Google Patents

一种球体直驱机构 Download PDF

Info

Publication number
WO2017132923A1
WO2017132923A1 PCT/CN2016/073409 CN2016073409W WO2017132923A1 WO 2017132923 A1 WO2017132923 A1 WO 2017132923A1 CN 2016073409 W CN2016073409 W CN 2016073409W WO 2017132923 A1 WO2017132923 A1 WO 2017132923A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
rigid
telescopic
drive mechanism
base
Prior art date
Application number
PCT/CN2016/073409
Other languages
English (en)
French (fr)
Inventor
秦厚敬
Original Assignee
秦厚敬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 秦厚敬 filed Critical 秦厚敬
Priority to PCT/CN2016/073409 priority Critical patent/WO2017132923A1/zh
Publication of WO2017132923A1 publication Critical patent/WO2017132923A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors

Definitions

  • the invention relates to an image sensor lens head device of a photographic system, in particular to a ball direct drive mechanism.
  • the device uses a spherical bearing to mount the image sensor, and uses three equal-angle circularly mounted telescopic actuators to push the spherical bearing into a two-dimensional space, ⁇ x, ⁇ y, and any one of the rotational movements.
  • Missing The long-range camera image of the gimbal presents fine jitter and tab screen.
  • Image jitter is transmitted directly from the motor low-frequency vibration; the jitter of the frame is caused by the bite precision and backlash of the gear and the connecting rod.
  • Improvement method avoiding the overall low-frequency jitter by the finer stepping high-frequency driving method, taking the image between the static and the static at rest, that is, stopping the image, and adopting the direct drive to improve the positioning accuracy.
  • Improvement method Drive in a fine stepping manner, and adopt stop-and-go image to reduce the noise to maintain the overall data correlation.
  • the uneven deformation of the picture may be derived from the body characteristics of the front-end image sensor; or the image has a large amount of data, large noise, fast lens operation, and lack of back-end compression.
  • Improvement method Improve the image sensor circuit response characteristics or lock some features in the fast moving image to predict the moving path of the object, such as tracking the car, flying objects, tracking and capturing with smart pan/tilt, which can make up for the lack of camera hardware and achieve the moving target.
  • the area is clear for the purpose.
  • the small lens drive piezoelectric motor disclosed in US Pat. No. 7,812,507 B2 comprises a driven spherical member, a support member mounted on the base, a balance ring mounted on the periphery of the spherical member and two bearings, wherein the first bearing is connected to the balance ring.
  • the base support member rotates the balance ring about the first rotation axis
  • the second bearing connects the ball mechanism to the balance ring so that the ball mechanism can rotate about the second rotation axis.
  • the direction of rotation in the first axis of rotation is perpendicular to the direction of the second axis of rotation.
  • This invention uses a plurality of piezoelectric sheets that are fixed to the base and the other end in contact with the drive member, the drive member being coupled to the spherical driven member.
  • the piezoelectric component fixed to the base rotates according to the input control voltage to drive the driving member to rotate. Since the driving component is in close contact with the driven component, the frictional force of the contact surface drives the spherical member to rotate.
  • the existing dynamic tracking pan/tilt mechanism such as the technical solution disclosed in US Pat. No. 7,812,507 B2, has the following difficulties if it is to develop into a similar eye movement: (1) a general small motor device with small driving force, slow acceleration, and difficulty in tracking instantaneous dynamic changes.
  • the existing camera lens is pointed to the pan/tilt to perform translational and tilting motions to simulate the movement behavior of the human eyeball, but the function of the human eyeball to perform rapid rotation is not yet realized.
  • the shadow lens movement pan/tilt also needs to have the characteristics of small size, lightness and thinness, and to design a camera orienting mechanism that has the same function as the human eye and can be applied to the handheld device, and must overcome the working space and size. Basic issues such as speed of movement and reliability of work.
  • the technical problem to be solved by the present invention is to overcome the above-mentioned drawbacks existing in the prior art, and to provide a sphere having a function similar to eye rotation and being miniaturized, simplified, precise, reliable, micro-stepping, and two-dimensional concentric. Direct drive agency.
  • the technical solution adopted by the present invention to solve the technical problem thereof is a ball direct drive mechanism, comprising:
  • a channel member having at least three channels on the channel member
  • At least three telescopic actuators the telescopic actuator being disposed in the guide groove;
  • a rigid ball wherein the rigid ball is provided with an accommodating space for mounting a functional component, the rigid ball is disposed between the telescopic actuator members, and at least three telescopic actuators are The rigid ball is topped for two-dimensional concentric free rotation;
  • the base is disposed on one side of the guide member, and does not directly contact the rigid spherical body, so that the symmetry axis of the guide member passes through the center point of the base and the center of the rigid ball, and the indirect force is applied to the rigid ball by the spring force or the magnetic force of the magnet. A fixed pulling force is generated, which passes through the center of the rigid sphere.
  • the base has magnetic or electromagnetic force
  • the rigid ball has magnetic permeability
  • the base absorbs the rigid sphere by a non-contact magnetic force.
  • the accommodating space of the rigid ball is provided with a transverse through hole, and the horizontal through hole is provided with a cross bar, and the cross bar is connected to the central hole of the base through an elastic telescopic member.
  • the telescopic actuator is provided with a protective cap.
  • the telescopic actuator is made of a piezoelectric material or a solenoid valve.
  • the functional component is a sensor or a mirror or a link member.
  • the base is “a hollow ball socket mount capable of mounting an image sensor”
  • the telescopic actuator is “a three-axis telescopic actuator arranged in a circular arrangement with an equiangular distribution”
  • the present invention can be considered as “installable”
  • the hollow spherical head socket of the image sensor, the "three-axis telescopic actuator using a circular arrangement of equal-angle distribution” and the "pre-force mechanism for closely fitting the lens and the piezoelectric telescopic actuator” are composed of three blocks.
  • the three sets of independent telescopic actuators and the voltage waveform that is, the combination of three different driving forces, instantly produce a slight push/pull effect on the ball.
  • the rotation of the sphere as a whole is the cumulative result of a large number of tiny displacements.
  • the lens direction can be set to rotate. Only three telescopic actuators are not placed orthogonally, and ( ⁇ x, ⁇ y) rotation occurs with the same stylish lens spin effect (S).
  • This spin effect (S) can rotate the camera to present "head" when oriented in different orientations.
  • the effect of the upper and lower feet, this feature makes the invention more capable of surpassing the rotation of the human eye.
  • the invention embeds the small camera lens in the axial through hole of a rigid spherical body, and forms a three-point support by the controllable vibration component (at least three telescopic actuators), and supports the rigid spherical body to form a rotation behavior similar to the eyeball. Pointing to the motion, making a two-dimensional concentric rotating platform, the purpose is to increase the search range and image quality.
  • the invention provides a novel conceptual structure with miniaturization, simplification, precision, reliability, micro-stepping, two-dimensional concentric spherical direct drive mechanism, and can complete a two-dimensional stereo inch rotation mechanism in a volume range of 1 cubic centimeter.
  • the angular velocity ( ⁇ ) and angular acceleration ( ⁇ ) can reach 1000 deg/sec and 50,000 deg/sec 2 to approximate the dynamic range of the eyeball, achieving a micro-inch lens module similar to the eyeball without backlash.
  • high-speed photography can be added to the high-speed photography to increase the pleasure of photography.
  • two or more cameras can simultaneously monitor an object, and the geometric relationship can be used to quickly calculate the spatial position of the object in the image, and the basic platform for 3D physical image distance measurement can be achieved.
  • the effect of the invention can expand the image application and the image capturing flexibility of the digital camera, and respectively control the three sets of the telescopic actuator components of the three sets of high-speed driving circuits and directly apply to the hollow ball bearing seat, and synthesize the three groups of propulsion forces.
  • Controlling the hollow ball head socket that is, the camera lens device exhibits eye movement, fast and precise control of two-dimensional rotation ( ⁇ x, ⁇ y) and spin (S) positioning.
  • ⁇ x, ⁇ y two-dimensional rotation
  • S spin
  • three sets of piezoelectric ceramics are used as driving components to drive a rigid spherical seat of 1 cm diameter with an angular velocity ( ⁇ ) and an angular acceleration ( ⁇ ) of up to 1000 deg/sec and 50,000 deg/sec 2 .
  • FIG. 1 is a schematic view showing the structure of a small lens driving piezoelectric motor disclosed in U.S. Patent No. 7,812,507 B2.
  • FIG. 2 is a schematic view showing the relationship between the hollow ball head, the guide groove member and the base of the present invention.
  • Figure 3 is a perspective view of a three-dimensional support structure of the present invention.
  • Figure 4 is a schematic view of the mechanical spring preload of the present invention.
  • Figure 5 is a schematic view showing the structure of the telescopic actuator and the cap member of the present invention.
  • FIG. 6 is a schematic view showing the structure of a chassis fixing member of the present invention.
  • Fig. 7 is a schematic view showing the waveform of the sawtooth of the driving piezoelectric component of the present invention.
  • the present embodiment includes a base 4, a channel member 3, three telescopic actuators 5, and a rigid ball 1.
  • the inner circular hole 2 of the rigid ball 1 is provided with an image sensor, a channel member. 3 of the three guide slots 7 (see Figure 3), can be accommodated separately
  • the three telescopic actuators 5, and the caps 6 of the three telescopic actuators 5, can stand against the rigid sphere 1 in three points and can rotate freely in two dimensions concentrically by ⁇ x, ⁇ y (see Fig. 2). Due to the advancement of CMOS semiconductor process technology, the size of CMOS image sensors has been greatly reduced.
  • Image sensor manufacturers such as omni vision and Apitec have introduced high-quality image sensor modules with a size of about 3 ⁇ 3 ⁇ 3mm to attack the mobile device market. .
  • These miniaturized image sensors can be housed in the accommodation space of the circular hole 2 having a diameter of 3 mm to 4 mm.
  • a center of the inner wall of the circular hole 2 of the rigid sphere 1 is provided with a transverse through hole 8 for loading the telescopic crossbar 9, and the crossbar 9 is used for connecting an elastically stretchable member 10 to the central hole 12 of the base 4.
  • the rigid ball 1 can remain in close contact with the protective cap 6 of the actuator even when the gimbal is turned downward. Referring to FIG.
  • the cap 6 of the actuator is fitted or adhered to the upper side of the telescopic actuator 5, and its function is to protect the telescopic actuator 5 from causing damage caused by the telescopic actuator 5 directly rubbing against the rigid ball 1.
  • the coefficient of friction between the rigid ball 1 and the rigid ball 1 can be controlled by controlling the surface material properties of the actuator cap 6. It is also possible to adjust the shape of the actuator cap 6 such as the groove 11 (not limited thereto) to adjust the amplitude of the vibration and the movement trajectory of the contact point.
  • the rigid sphere 1 can also be made of a magnetic material that is magnetically permeable, such as a ferrous material.
  • the base 4 can be a permanent magnet material or a vertical positive pressure required to form a frictional force through an electromagnet controlled by an electric power to provide non-contact.
  • the spring force is replaced by the magnetic force, and the rigid ball 1 and the actuator cap 6 are pressed by the spring, so that the rotation angle of the rigid ball 1 is no longer restricted by the spring mechanism; the electric control electromagnet
  • the magnetic force can dynamically compensate for the vertical positive pressure direction and the direction of gravity change Force state.
  • a plurality of rigid spheres 1 of the present invention can carry a flat plate or directly contact with the ground, and the frictional contact during rotation can form a two-dimensional directional relative motion, which can be used as a driving device of the two-dimensional inspection platform.
  • the telescopic actuator 5 can be made of a voltage deformation such as a piezoelectric material, or an electromagnetic deformation such as a solenoid valve, which is deformed in proportion to an applied voltage.
  • the friction drive can accept three different sets of deformations, and the overall net friction effect is used to drive the movement and direction of the object.
  • the applied voltage waveform causes the telescopic actuator 5 and the like to generate three sets of high-frequency, extremely small-stroke vibrations, which are respectively transmitted to the rigid sphere 1 through three contact points such as the actuator guard cap 6 to achieve a rigid circle controlled by friction.
  • the ball 1 rotates.
  • the friction drive is a state in which a stable contact or a sliding contact is generated on the surface of the sphere by using three contact points supporting the rigid sphere 1.
  • Friction works between slipping and non-slipping. It is similar to the principle of car ABS braking. Stable contact can transmit power. Once it slips, it cannot transmit power. The vibration is a reciprocating behavior. If the contact point does not slip, between the push and pull, the rigid ball 1 is only shaken in place and does not rotate. If the push and pull respectively can produce unequal microrotation, it is possible to accumulate the expected rotation stroke during the push and pull process.
  • FIG. 7 is a driving voltage waveform of a set of the telescopic actuators 5, but is not limited thereto, and represents a shape variable of the telescopic actuator 5, and the second derivative function is an acceleration waveform of the contact point (JT1).
  • Figure 7 is regarded as the waveform of the applied force.
  • F1 shown in Fig. 7 is the design value of the maximum static friction. Less than F1 is the static friction range, and greater than F1 is the dynamic friction range. Taking a cycle of the driving voltage waveform to illustrate, the force that drives the ball to rotate increases from zero, and the applied force is less than Before the F1, the rigid ball 1 can be smoothly rotated, which is a static friction range; when the force exceeds F1, the sliding occurs, and the rigid ball 1 cannot be effectively driven.
  • the rigid ball 1 is gradually stopped due to the lack of driving force; after the maximum force peak is reached
  • the thrust steering is a pulling force, and enters the static frictional force (coefficient) range at the moment when the rigid spherical ball 1 stops rotating, and the rigid ball 1 is pulled in the reverse direction due to the direction of the force application, until the end of one cycle.
  • the thrust and the pulling force are in an unequal band acceleration, so that a net displacement in one direction can be generated.
  • the periodic voltage wave type driving actuator T1 pushes the rigid ball 1 to perform a rotary motion.
  • the magnitude of the friction force is equal to the vertical positive pressure multiplied by the friction coefficient
  • the pre-force mechanism can control the vertical positive pressure to set the magnitude of the F1.
  • Three sets of independent high-speed drive circuits are respectively controlled to directly apply three sets of independent actuators to the rigid sphere 1.
  • the three sets of motion assemblies control the rigid sphere 1, that is, the camera lens device exhibits similar eye movement, and is quickly and accurately controlled. Two-dimensional rotation ( ⁇ x, ⁇ y) and spin (S) positioning.
  • the rigid sphere 1 accumulates the full stroke of the rotation between the movements of most of the inches. This tiny inch can be stopped at any time and started at any time. Each moment of the inch is an independent event.
  • This kind of micro-inch drive method is different from the existing motor and gear combination. It has an absolute advantage in comparing the trajectory of random objects and the sharpness of image taken at the moment of stagnation.
  • the invention controls the output of the three telescopic actuators by controlling the voltage waveforms of the three telescopic actuators respectively, and accumulates and finally obtains the expected two-dimensional rotation. The movement ( ⁇ x, ⁇ y), even the positioning of the spin (S).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)

Abstract

一种球体直驱机构,包括底座(4)、导槽构件(3),导槽构件(3)上设有至少三个导槽(7);至少三个伸缩致动器(5),伸缩致动器(5)设于所述导槽(7);及一刚性圆球(1),刚性圆球(1)内设有可安装功能性组件的容置空间,刚性圆球(1)设于伸缩致动器(5)之间,至少有三个伸缩致动器(5)抵顶刚性圆球(1)以进行二维同心自由转动。将小型数字相机模块设置于此球型机构,可做二维(θx/θy)同心旋转,模拟人眼球精准追踪定位的功能;其角速度(ω)与角加速度(α)可达1000deg/sec与50,000deg/sec 2近似眼球动态范围。

Description

一种球体直驱机构 【技术领域】
本发明涉及一种摄影系统之影像传感器镜头云台装置,具体地说,是一种球体直驱机构。该装置利用球状承座安装影像传感器,并利用三个等角度圆形分布安装之伸缩致动器推动球状承座作-二维空间,θx、θy,任一方位之旋转运动。
【背景技术】
用数字控制旋转云台以马达及齿轮或连杆为动力或传动方法,运动迟缓、不精准、不稳定,通常仅适用于室内短程监控目的。在长程摄像纪录及实物动态追踪两项目中与专业摄影师的摄像效果比对,发现以数字控制转台记录的影像呈现下列缺失,其原因及现有改善方法如下:
(1)缺失:云台的长程摄像影像呈现细微抖动及跳格画面。
原因:影像抖动是直接传自马达低频震动;画格的跳动是因齿轮及连杆的咬合精度及背隙所造成。
改善方法:以更细微步进高频驱动方式避免整体性低频抖动,动静之间在静止时取像,即停格取像,并采直接传动改善定位精度问题。
(2)缺失:镜头慢速运转拍摄移动物体时,如篮球比 赛,播放画面尚称流畅,但对追踪快速移动物体时,画面播放呈现破碎的小方块屏蔽。
原因:动态的连续画面因抖动或噪声致画面之数据关联性降低,压缩编码时效率不佳,舍弃过多的数据即呈现破碎的小方块屏蔽。
改善方法:以细微步进方式驱动,并采停格取像,降低噪声可保持整体数据关联性。
(3)缺失:对局部快速移动的物体,如风扇叶片或摄像头,画面呈不均匀拉扯变形。
原因:画面呈不均匀地拉扯变形可能源自前端影像感知器本体特性;或画面的数据量大、噪声大、镜头运转快、后端压缩不及都有此一现象。
改善方法:提升影像感知器电路反应特征或锁定快速移动影像中之部分特征来预测物体移动路径,如追踪赛车、飞行物,用聪明的云台追踪取像,可弥补摄影机硬件不足,达成移动目标区清楚的目的。
但是,整体而言,一般商用数字控制云台以轨迹动态追踪物体时,其捕捉画面内容的稳定能力尚不及商业应用。然人类的眼睛是可在颠颇的环境下动态追踪外界目标物。
美国专利US7812507B2公开之小型镜头驱动压电马达包括一被驱动球状构件、一安装于底座之支撑构件、一安装于球状构件外围之平衡环与两个轴承,其中第一个轴承连结平衡环 于至底座支撑构件使平衡环可以第一个旋转轴为中心做转动,第二个轴承连接球状机构至平衡环使球状机构可以第二旋转轴为中心做转动。第一旋转轴中之旋转方向与第二旋转轴之方向互相垂直,此发明使用了一些压电单,固定于基座,另一端与驱动构件接触,驱动构件连接于球状被驱动构件。固定于底座之压电组件依输入之控制电压做伸缩运动而带动驱动构件转动,由于驱动构件与被驱动构件紧密接触,接触面之摩擦力传动球状构件转动。现有动态追踪云台机构,如美国专利US7812507B2公开的技术方案,如要发展成类似眼球运动,将出现下列困难:(1)一般小型马达装置,驱动力量小,加速慢,难以追踪瞬间动态变化;(2)间接驱动,传动效率较低,浪费驱动力量;(3)缺乏垂直正压力的控制机制,表面长期磨损会使摩擦力驱动方式缺乏精确性;(4)θx、θy分离式旋转设计,不易同心旋转,所占空间大,转动惯性增大,驱动力也须加大,制造成本相对提高;(5)θx、θy双轴向受压力后易变形呈歪斜状,不同心旋转摄像头会抖动;(6)传动机构的累积公差以及长期磨擦造成接触点的表面材料磨损,影响摩擦系数及正向压力,损失传动力及定位的精确性;(7)电路进出路线幅度较大,旋转易发生空间干涉问题;以及(8)无法对镜头方向轴做自旋修正。
现有之相机镜头指向云台可做平移与倾斜运动来摸拟人类眼球之运动行为,但尚无法实现人类眼球可做快速旋转之功能。再者,用于手持式装置(如手机、笔电与平板计算机)之摄 影镜头运动云台,还需要具备小型、轻薄等特性,而要设计一个具备与人类眼球相同功能并能适用于手持式装置之相机镜头指向机构(camera orienting mechanism),还必须克服工作空间、尺寸、运动速度及工作可靠性等根本问题。
【发明内容】
本发明要解决的技术问题是,克服现有技术存在的上述缺陷,提供一种具有类似眼球旋转功能,且小型化、简单化、精确化、可靠化、微步进化、二维同心的球体直驱机构。
本发明解决其技术问题采用的技术方案是,一种球体直驱机构,包括:
一底座;
一导槽构件,所述导槽构件上至少有三个导槽;
至少三个伸缩致动器,所述伸缩致动器设于所述导槽;
以及一刚性圆球,所述刚性圆球内设有一可安装功能性组件的容置空间,所述刚性圆球设于所述各伸缩致动器构件之间,至少有三个伸缩致动器抵顶所述刚性圆球以进行二维同心自由转动;
所述底座设置在导槽构件的一侧,没有直接接触刚性圆球体,使得导槽构件的对称轴穿过底座中心点及刚性圆球球心,利用弹簧力或者磁铁的磁力对刚性圆球间接产生一固定拉力,所述拉力方向穿过刚性圆球之球心。
进一步,所述底座具磁性或电磁力,所述刚性圆球具导磁 性,所述底座以非接触磁力吸附所述刚性圆球。
进一步,所述刚性圆球之容置空间设有一横向通孔,所述横向通孔装设有一横杆,所述横杆通过一弹性伸缩构件连接至所述底座之中心孔。
进一步,所述伸缩致动器设有护帽。
进一步,所述伸缩致动器由压电材料制成或是电磁阀。
进一步,所述功能性组件为感知器或是反射镜或是联杆构件。
所述底座为“可安装影像传感器之中空球头承座”,所述伸缩致动器为“使用等角度分布圆形排列之三轴伸缩致动器”,本发明可认为是由“可安装影像传感器之中空球头承座”、“使用等角度分布圆形排列之三轴伸缩致动器”与“使镜头与压电伸缩致动器紧密贴合之预力机构”三区块所构成;借由预力机构对中空球头承座提供固定正压力,使圆球表面与致动器间的摩擦力相对更稳定。三组独立的伸缩致动器及电压波形即三组不同的驱动力量的组合变化,其瞬间对圆球产生微小的推/拉效果。圆球整体的旋转即多数个微小位移量之累积结果。凭借独立控制三个伸缩致动器产生适当之合力矩,镜头方向可做设定之旋转。唯三个伸缩致动器并非正交安置,(θx、θy)旋转发生的同时尚有镜头自旋效果(S),这自旋效果(S)可转动摄像机在不同方位取向时可呈现“头上脚下”的效果,这一特性使本发明更具有超越人类眼球旋转的表现。
本发明将小型相机镜头埋设于一刚性圆球体之轴心通孔内,并用可控震动组件(至少三个伸缩致动器)形成三点支撑,托住刚性圆球体,形成类似眼球旋转行为之指向运动,做成二维同心之旋转平台,目的在于增加搜寻范围与影像取像质量。
本发明提供一全新概念结构的小型化、简单化、精确化、可靠化、微步进化、二维同心的球体直驱机构,可在1立方厘米的容积范围内完成二维立体寸进旋转机制,其角速度(ω)与角加速度(α)可达1000deg/sec与50,000deg/sec2近似眼球动态范围,达成类似眼球无背隙功能之微寸进镜头模块。未来以动态追踪的方法切入高速摄影可以增加照相的乐趣;或以两台以上摄影机同步监控一对象,利用几何关系可以迅速计算出影像中对象的空间位置,达成3D实物影像距离量测的基础平台,以数字化展现人类视力的测距能力。我们期待因为极小型化、灵活、精准新世代云台的发明,对于影像视觉辨识的精确度,搜寻、高速定位目标物,远程视讯控制系统的临场感,自动化系统的智能化系提供未来大量发展应用的远景。
本发明之效果可扩展数字相机的影像应用及搜像灵活性,以三组高速驱动电路分别控制三组寸进的伸缩致动器构件同时直接施加于中空球头承座,三组推进力量的合成控制中空球头承座亦即相机镜头装置呈现类似眼球运动,快速且精准控制之二维旋转(θx、θy)及自旋(S)定位。实验证明,以三组压电陶瓷 为驱动组件,驱使1cm直径的刚性球型承座,其运动角速度(ω)与角加速度(α)可达1000deg/sec与50,000deg/sec2
【附图说明】
图1是美国专利US7812507B2所公开之小型镜头驱动压电马达结构示意图。
图2是本发明之中空球头、导槽构件及底座之间立体关系结构示意图。
图3是本发明之三维支撑结构立体图。
图4是本发明之机械式弹簧预力示意图。
图5是本发明之伸缩致动器与护帽构件结构示意图。
图6是本发明之底盘固定构件结构示意图。
图7是本发明驱动压电组件之锯齿波形示意图。
图中:1-刚性圆球;2-内圆孔;3-导槽构件;4-底座;5-伸缩致动器;6-护帽;7-导槽;8-横向通孔;9-横杆;10-弹性伸缩构件;11-刻槽;12-中心孔
【具体实施方式】
以下结合附图和实施方式对本发明作进一步详细说明,以使本领域技术人员可轻易地理解本发明并能够实施。不得将以下所述之实施例解释为对本发明保护范围的限制。
参照图2、3,本实施例包括底座4、导槽构件3、三个伸缩致动器5、刚性圆球1,刚性圆球1之内圆孔2系预留安装影像传感器,导槽构件3之三个导槽7(参见图3),可分别容纳 三个伸缩致动器5,及三个伸缩致动器5之护帽6,可以分三个点顶住刚性圆球1并可循θx、θy,二维同心自由转动(参见图2)。由于CMOS半导体制程技术之精进,使CMOS影像传感器之尺寸大幅缩小,影像传感器大厂如omni vision、Apitec等皆推出大小约3×3×3mm之高画质影像传感器模块以抢攻移动式装置市场。这些小型化的影像传感器可装入直径3mm至4mm之内圆孔2之容置空间中。参照图4,刚性圆球1之内圆孔2之内壁中心,设置一横向通孔8以便装入伸缩横杆9,横杆9用于连接一弹性伸缩构件10至底座4之中心孔12,以施加一经过球心之预力,即使云台翻转朝下时,刚性圆球1依然可与致动器的护帽6保持紧密贴合。参照图5,致动器的护帽6系套装或黏着于伸缩致动器5之上方,其功用是保护伸缩致动器5避免伸缩致动器5直接与刚性圆球1摩擦而造成损坏,并可借由控制致动器护帽6之表面材料特性,控制与刚性圆球1之间之摩擦系数。还可借由致动器护帽6形状的改变如刻槽11(不限于此),以调整其震幅及接触点之运动轨迹。
刚性圆球1亦可由导磁之磁性材料制成,如铁质材料所构成,底座4可为永久磁铁材质或透过电力控制之电磁铁构成摩擦力所需之垂直正压力,以提供非接触性之外加磁场,以磁力替换弹簧力,简化刚性圆球1与致动器护帽6由弹簧之紧迫接触,使刚性圆球1的旋转角度不再受弹簧机构的限制;电力控制的电磁铁磁力可以动态补偿垂直正压力方向与重力方向有改变时的预 力状态。
另,多个本发明的刚性圆球1可承载一平板或直接与地面接触,转动时摩擦力的接触可形成二维方向性的相对运动,可用为二维检视平台的驱动装置。
伸缩致动器5可为电压的形变如压电材料制成,亦或是电磁的形变如电磁阀,都是形变比例于施加电压。当三组伸缩致动器分别形变时,摩擦力驱动是可接受三组不同的形变,并以整体的净摩擦力效果来驱动对象的移动及方向。施加的电压波形使伸缩致动器5等产生三组高频率、极微量行程的震动,分别通过致动器护帽6等三个接触点传递至刚性圆球1,达成以摩擦力控制刚性圆球1转动。摩擦力驱动是运用支撑刚性圆球1的三个接触点在球体表面产生稳定接触或滑动接触二种状态。摩擦力在打滑与不打滑之间运作与汽车ABS煞车原理相似,稳定接触可以传递力量,一旦打滑就无法传递力量。震动是往复式的行为,如果接触点不打滑,在推、拉往复之间,刚性圆球1只是原地抖动并无转动。如推、拉分别可产生不对等的微转动,则就可能在不断推、拉过程中累积所预期的转动行程。图7是其中一组伸缩致动器5的驱动电压波形(但不限于此),表示伸缩致动器5的形变量,其二次导函数即为接触点(JT1)之加速度波形,暂就将图7视为施力的波型。图7所示F1为最大静摩擦力的设计值。小于F1为静磨擦范围,大于F1为动磨擦范围。以驱动电压波形的一周期来做说明,驱动圆球转动的力量自零开始增加,在施力小于 F1之前可以顺利推动刚性圆球1转动,属静摩擦力范围;施力超过F1就发生滑动,无法有效驱动刚性圆球1,刚性圆球1因缺少推动力也逐渐停止;施力达到最大值顶峰后,推力转向为拉力,在刚性圆球1转动停止的一瞬间进入静摩擦力(系数)范围,因施力转变方向,拉动刚性圆球1反向转动,直到一个周期结束。按图7中上升及下降不对称的施力波型的设计,推力与拉力是在一个不对等的波段加速度,故可以产生出一个单方向转动的净位移量。依此循环动作,周期电压波型驱动致动器T1推动刚性圆球1做旋转运动。
其中,摩擦力的大小等于垂直正压力乘以摩擦系数,借预力机构可控制垂直正压力,以设定F1的大小值。以三组独立的高速驱动电路分别控制三组独立的致动器直接施加于刚性圆球1,三组运动的总成控制刚性圆球1亦即相机镜头装置呈现类似眼球运动,快速且精准控制之二维旋转(θx、θy)及自旋(S)定位。
刚性圆球1就在这多数次寸进的动静之间,累积出转动的全行程。这种微小的寸进可以随时停止,随时启动,每一次瞬间的寸进都是一个独立事件。这种微量寸进的驱动方法有别于现有马达与齿轮的组合,对随机追踪外界物体的轨迹及停滞瞬间时取像的清晰度,二者与现有技术比较,有绝对的优势,是本发明的一大特征。本发明借控制三个伸缩致动器之电压波型分别来控制三个伸缩致动器之出力,并累加后最终得到预期的二维转 动(θx、θy),甚至自旋(S)的定位。
以上所述为本发明之较佳实施例,然其并非用以限定本发明。在不脱离本发明之精神和范围内,本领域技术人员所作若干改动与润饰,仍属于本专利保护范围。

Claims (6)

  1. 一种球体直驱机构,其特征在于,包括有:
    一底座;
    一导槽构件,所述导槽构件上设有至少三个导槽;
    至少三个伸缩致动器,所述伸缩致动器设于所述导槽;以及
    一刚性圆球,所述刚性圆球内设有一可安装功能性组件的容置空间,且所述刚性圆球设于所述伸缩致动器之间,至少有三个伸缩致动器抵顶所述刚性圆球以进行二维同心自由转动;
    所述底座设置在导槽构件的一侧,没有直接接触刚性圆球体,使得导槽构件的对称轴穿过底座中心点及刚性圆球球心,利用弹簧力或者磁铁的磁力对刚性圆球间接产生一固定拉力,所述拉力方向穿过刚性圆球之球心。
  2. 如权利要求1所述的球体直驱机构,其特征在于,所述底座具磁性或电磁力,所述刚性圆球具导磁性,所述底座以非接触磁力吸附所述刚性圆球。
  3. 如权利要求1或2所述的球体直驱机构,其特征在于,所述刚性圆球之容置空间具有一横向通孔,所述横向通孔装设有一横杆,所述横杆以一弹性伸缩构件连接至所述底座之中心孔。
  4. 如权利要求1-3之一所述的球体直驱机构,其特征在于,所述伸缩致动器设有护帽。
  5. 如权利要求1-4之一所述的球体直驱机构,其特征在于,所述 伸缩致动器由压电材料制成或是电磁阀。
  6. 如权利要求1-5之一所述的球体直驱机构,其特征在于,所述功能性组件为感知器或是反射镜或是联杆构件。
PCT/CN2016/073409 2016-02-04 2016-02-04 一种球体直驱机构 WO2017132923A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073409 WO2017132923A1 (zh) 2016-02-04 2016-02-04 一种球体直驱机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073409 WO2017132923A1 (zh) 2016-02-04 2016-02-04 一种球体直驱机构

Publications (1)

Publication Number Publication Date
WO2017132923A1 true WO2017132923A1 (zh) 2017-08-10

Family

ID=59499226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073409 WO2017132923A1 (zh) 2016-02-04 2016-02-04 一种球体直驱机构

Country Status (1)

Country Link
WO (1) WO2017132923A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109618079A (zh) * 2018-12-07 2019-04-12 高新兴科技集团股份有限公司 一种基于直驱电机驱动的球机
CN112032528A (zh) * 2020-08-29 2020-12-04 温州宇岚科技有限公司 一种可实现智能监控无死角旋转装置
CN113382152A (zh) * 2021-08-13 2021-09-10 深圳实现创新科技有限公司 一种单驱式小体积防爆安防摄像头及其调节方法
CN113892893A (zh) * 2021-12-09 2022-01-07 杭州圣轩实业有限公司 一种耳鼻喉内窥镜支架

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041482A (zh) * 1988-09-30 1990-04-18 洛克威尔国际有限公司 压电致动器
US20010017665A1 (en) * 1999-12-21 2001-08-30 Bernd Ackermann Actuator having a sphere and piezoelectric drives
CN101162877A (zh) * 2007-08-30 2008-04-16 南京航空航天大学 圆环形多自由度超声电机及电激励方法
CN101291120A (zh) * 2007-03-28 2008-10-22 株式会社东芝 驱动机构、包括该驱动机构的摄像装置和全息记录装置
CN102922526A (zh) * 2012-10-25 2013-02-13 上海大学 基于球形超声电机的仿生机械眼球
CN103104792A (zh) * 2013-01-22 2013-05-15 Tcl集团股份有限公司 仿生摄像头、驱动仿生摄像头的偏置方法、及媒体终端
WO2014115606A1 (ja) * 2013-01-22 2014-07-31 国立大学法人東京農工大学 球面アクチュエータ、血管内視鏡

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041482A (zh) * 1988-09-30 1990-04-18 洛克威尔国际有限公司 压电致动器
US20010017665A1 (en) * 1999-12-21 2001-08-30 Bernd Ackermann Actuator having a sphere and piezoelectric drives
CN101291120A (zh) * 2007-03-28 2008-10-22 株式会社东芝 驱动机构、包括该驱动机构的摄像装置和全息记录装置
CN101162877A (zh) * 2007-08-30 2008-04-16 南京航空航天大学 圆环形多自由度超声电机及电激励方法
CN102922526A (zh) * 2012-10-25 2013-02-13 上海大学 基于球形超声电机的仿生机械眼球
CN103104792A (zh) * 2013-01-22 2013-05-15 Tcl集团股份有限公司 仿生摄像头、驱动仿生摄像头的偏置方法、及媒体终端
WO2014115606A1 (ja) * 2013-01-22 2014-07-31 国立大学法人東京農工大学 球面アクチュエータ、血管内視鏡

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109618079A (zh) * 2018-12-07 2019-04-12 高新兴科技集团股份有限公司 一种基于直驱电机驱动的球机
CN112032528A (zh) * 2020-08-29 2020-12-04 温州宇岚科技有限公司 一种可实现智能监控无死角旋转装置
CN112032528B (zh) * 2020-08-29 2021-12-24 温州宇岚科技有限公司 一种可实现智能监控无死角旋转装置
CN113382152A (zh) * 2021-08-13 2021-09-10 深圳实现创新科技有限公司 一种单驱式小体积防爆安防摄像头及其调节方法
CN113382152B (zh) * 2021-08-13 2021-10-22 深圳实现创新科技有限公司 一种单驱式小体积防爆安防摄像头及其调节方法
CN113892893A (zh) * 2021-12-09 2022-01-07 杭州圣轩实业有限公司 一种耳鼻喉内窥镜支架
CN113892893B (zh) * 2021-12-09 2022-06-21 深圳市宏济医疗技术开发有限公司 一种耳鼻喉内窥镜支架

Similar Documents

Publication Publication Date Title
CN107340667B (zh) 一种整合相机模组的防抖微型云台
WO2017132923A1 (zh) 一种球体直驱机构
US9225899B2 (en) Camera drive device
JP4550850B2 (ja) 圧電モータシステム
US9179067B2 (en) Camera drive device with a moveable unit that is freely rotatable relative to a fixed unit
US9264619B2 (en) Camera drive device
US20210348714A1 (en) Actuator assemblies and methods of controlling the same
JP6974052B2 (ja) 振れ補正機能付き光学ユニット
US20090297137A1 (en) Omni-directional camera system
CN105144694A (zh) 用于曲面光学传感器的防抖纠正系统
CN110901936B (zh) 无人机及其机载航拍稳像云台
US20240160085A1 (en) Controllable aperture stop, compact camera module and electronic device
WO2019037162A1 (zh) 一种弹簧系统及采用该弹簧系统的镜头防抖装置
JP4897016B2 (ja) 圧電モータ
CN113489905A (zh) 摄像模组、电子设备和电子设备的控制方法
CN212251812U (zh) 磁吸防抖云台结构
CN111664324B (zh) 滚珠式微型防抖云台
TWI572806B (zh) 球體直驅機構
CN114911025B (zh) 一种潜望式镜头驱动装置、摄像装置及移动终端
CN213271668U (zh) 微型防抖云台
US11077961B2 (en) Satellites attitude control system
CN114785923A (zh) 防抖云台、摄像头模组、电子设备、拍摄方法及装置
CN212251814U (zh) 滚珠式微型防抖云台
JP2005311761A (ja) 全方位カメラ
JP2022085650A (ja) レンズ装置、撮像装置、撮像システム、移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888748

Country of ref document: EP

Kind code of ref document: A1