WO2014115526A1 - Preliminary processing method for molten iron - Google Patents

Preliminary processing method for molten iron Download PDF

Info

Publication number
WO2014115526A1
WO2014115526A1 PCT/JP2014/000236 JP2014000236W WO2014115526A1 WO 2014115526 A1 WO2014115526 A1 WO 2014115526A1 JP 2014000236 W JP2014000236 W JP 2014000236W WO 2014115526 A1 WO2014115526 A1 WO 2014115526A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
furnace
hot metal
desiliconization
height
Prior art date
Application number
PCT/JP2014/000236
Other languages
French (fr)
Japanese (ja)
Inventor
泰志 小笠原
内田 祐一
三木 祐司
伊藤 友彦
手塚 浩一
田中 高太郎
秀光 根岸
川畑 涼
山本 和人
奥山 悟郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112015017155-9A priority Critical patent/BR112015017155B1/en
Priority to CN201480005778.XA priority patent/CN104955965B/en
Priority to KR1020157017305A priority patent/KR101751151B1/en
Priority to JP2014524178A priority patent/JP5761459B2/en
Publication of WO2014115526A1 publication Critical patent/WO2014115526A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/04Removing impurities other than carbon, phosphorus or sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter

Definitions

  • the present invention relates to a hot metal pretreatment method in which a hot metal desiliconization process and a dephosphorization process are continuously performed using a single converter-type refining furnace, with an intermediate exhausting process interposed therebetween.
  • This two-time slagging method is a conventional pretreatment method in a converter-type smelting furnace, that is, a CaO-based solvent is introduced at the start of smelting to perform desiliconization / dephosphorization treatment on the hot metal in the converter-type smelting furnace.
  • a CaO-based solvent is introduced at the start of smelting to perform desiliconization / dephosphorization treatment on the hot metal in the converter-type smelting furnace.
  • the pretreatment method there are the following advantages. That is, (1) Since the desiliconization slag is discharged in the middle, it is possible to treat hot metal with a high silicon content, and it is possible to effectively utilize the silicon in the hot metal as a heat source. (2) Desiliconization slag in the middle Is advantageous in that the amount of CaO-based solvent used in the subsequent dephosphorization process can be reduced.
  • the important point of operation is how to quickly discharge a predetermined amount of desiliconized slag from the furnace in a short time in the exhausting process after the desiliconization process. It becomes. In the case where the amount of desiliconized slag discharged in the evacuation process is small, the above effect cannot be obtained, which is equivalent to the pretreatment method in the conventional converter-type refining furnace described above.
  • steelmaking slag including desiliconized slag and dephosphorized slag contains a large amount of iron oxide, and therefore tends to have a higher density than natural stone sand and blast furnace slag. For this reason, steelmaking slag has not been applied to civil engineering applications where it is feared that steelmaking slag may promote gravitational instability. Furthermore, since the volume per unit mass of steelmaking slag is smaller than that of natural stone sand, etc., an increase in transportation costs is also a drawback as a material for civil engineering work. In order to obtain a material that can be easily used for applications, it is desirable to reduce the bulk specific gravity of the steelmaking slag.
  • the present inventors examined the discharge performance of the desiliconized slag in the discharge process after the desiliconization treatment. As a result, it was found that if the formation of desiliconization slag during desiliconization is small, the flowability of desiliconization slag is low and it is difficult to discharge a sufficient amount of desiliconization slag within a predetermined time. . Accordingly, it has been found that in order to allow a sufficient amount of desiliconized slag to flow out of the furnace quickly in the slagging process, the desiliconized slag must be stably formed during desiliconization blowing.
  • slag forming is a phenomenon in which molten slag contains bubbles and apparently expands in volume.
  • Patent Document 3 discloses that a sublance is measured while applying a constant frequency / amplitude vibration (forced vibration) to the sublance and simultaneously measuring the vibration of the sublance.
  • Forced vibration has been proposed to detect the forming height of the in-furnace slag based on the amount of damping of the forced vibration.
  • this method is based on the premise that the tip of the sublance is buried in the formed slag, and when the forming is small and the tip of the sublance is not buried in the formed slag, it is impossible to detect the forming height. Can not. Further, since the attenuation amount of the forced vibration varies depending on the composition and temperature of the slag to be generated, it is difficult to accurately detect the forming height.
  • Patent Document 4 and Patent Document 5 propose a method of measuring the slag height during refining using a microwave.
  • these technologies are forming detection technology in decarburization and refining of hot metal in the converter, and desiliconization slag in desiliconization in the hot metal pretreatment and converter slag in decarburization and refining in the converter. Since the slag temperature, basicity, and iron oxide concentration differ greatly, the electrical conductivity differs greatly. Therefore, the microwave reflection characteristics differ between desiliconization treatment and decarburization refining. The results cannot be applied to the desiliconization process as it is.
  • the slag level is detected based on the frequency change of the mixed wave of the transmission wave and the reflected wave, or the slag level is detected from the reflectance of the microwave. It is described.
  • the reflectivity of the microwave is very small and most of it is transmitted, so the reflected wave from the hot metal bath surface and the multiple reflected waves at the hot metal bath surface and slag surface are also Since it exists, the method of patent document 4 cannot detect a slag level.
  • Patent Document 5 a transmission / reception antenna is inserted in the furnace, and in a refining furnace exposed to high-temperature slag or hot metal droplets, these droplets adhere to the antenna even in a short time of use. It is difficult to measure continuously during the refining period.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to perform hot metal desiliconization treatment and dephosphorization treatment using a single converter-type refining furnace with an intermediate waste removal step in between.
  • the target amount of desiliconized slag can be quickly and quickly removed from the furnace in a short period of time.
  • the dephosphorization process of the next step it is possible to provide a hot metal pretreatment method that enables sufficient dephosphorization process in terms of cost and quality.
  • Another object of the present invention is to provide a hot metal pretreatment method capable of obtaining a slag having a relatively small bulk specific gravity suitable for various civil engineering materials.
  • a desiliconization process for supplying a gaseous oxygen source from an upper blow lance to hot metal in a converter-type refining furnace to desiliconize the hot metal, and at least a part of the slag generated in the desiliconization process Exhaust process discharged from the converter-type refining furnace, and after the exhaust process, a CaO-based solvent was added to the converter-type refining furnace, and a gaseous oxygen source was supplied from the upper blowing lance to remain.
  • a hot metal pretreatment method characterized in that the desiliconization process is terminated in a state where the ratio of the freeboard in the furnace from the bath surface to the furnace opening is in a predetermined range.
  • the supply flow rate of the gaseous oxygen source from the top blowing lance, the lance height of the top blowing lance, and the gas for stirring from the bottom blowing tuyere Adjusting at least one selected from the group of supply flow rate, composition of slag in the furnace, and amount of forming sedative material, and controlling the slag height in the furnace during desiliconization by this adjustment.
  • the signal of the reflected wave closest to is determined as the signal of the reflected wave from the slag surface, the distance to the slag surface is obtained, and the slag height is measured based on the obtained distance to the slag surface.
  • the hot metal pretreatment method according to any one of [1] to [4] above. [6] Of the reflected wave signals received by the distance meter, the distance to the object corresponding to the reflected wave signal does not change from the start of the desiliconization process, and the reflected waves that exist continuously.
  • the hot metal preliminary processing method according to [5] wherein a signal of a reflected wave from the slag surface is determined after removing the signal as noise.
  • a microwave having a frequency of 10 GHz or less is transmitted into the converter-type refining furnace, a reflected wave from the furnace is received, and the reflected wave reciprocates.
  • the distance from the time to the target object is obtained, and the distance to the target object corresponding to the reflected wave signal from the target wave existing in the range from the furnace port to the hot metal bath surface is desiliconized.
  • the reflected wave signal that is continuously present without any change from the beginning is removed as noise, and the reflected wave signal with the highest reflection intensity is removed except for the reflected wave signal corresponding to the hot metal bath surface.
  • the distance to the slag surface is determined as a signal of a reflected wave from the surface, and the slag height is measured based on the determined distance to the slag surface.
  • the hot metal preparation according to any one of Processing method. [8] After the completion of the dephosphorization process of the pre-charged hot metal in the converter type refining furnace, the hot metal subjected to the dephosphorization process is discharged, and the converter type is discharged without discharging the slag in the furnace generated by the dephosphorization process.
  • Fresh hot metal left in the smelting furnace is charged into the converter-type smelting furnace, the hot metal is subjected to the desiliconization process, and the basicity of the slag in the furnace is set at the end of the desiliconization process. 0.8 to 1.5 or less, the temperature of the hot metal is 1280 ° C. or more and 1380 ° C. or less, the silicon content of the hot metal is 0.10% by mass or less, and in the exhausting process, 30 More than mass% is discharged out of the furnace, and then the dephosphorization process is performed on the hot metal in the furnace.
  • the dephosphorized hot metal is discharged and the furnace generated by the dephosphorization process New hot metal is left in the converter-type smelting furnace without being discharged in the converter-type smelting furnace. Charged with, and performs preliminary processing on the molten iron, the above-mentioned [1] to molten iron pretreatment method according to any one of the above [7] to.
  • the slag height in the furnace is measured during the dephosphorization process after the exhausting process, the supply flow rate of the gaseous oxygen source from the top blowing lance, the lance height of the top blowing lance, and the stirring from the bottom blowing tuyere
  • the above [1] to [8] wherein at least one selected from the group of supply flow rates of the working gas is adjusted, and the slag in the furnace is controlled not to be ejected from the furnace port by this adjustment.
  • the hot metal pretreatment method according to any one of the above.
  • the hot metal desiliconization treatment and the dephosphorization treatment are continuously performed with an intermediate waste removal step interposed therebetween, the desiliconization treatment.
  • the formed desiliconization slag is finished in a state where the height of the formed desiliconization slag is within a predetermined range with respect to the height of the freeboard in the furnace. It is possible to quickly discharge a predetermined amount of desiliconized slag as a target to the outside of the furnace in a short time after suppressing the sudden outflow of slag.
  • the phosphorus concentration of the hot metal can be reduced to a low concentration with a small amount of CaO-based solvent used. It becomes possible.
  • FIG. 1 is a schematic cross-sectional view of a converter-type refining furnace used when carrying out the hot metal pretreatment method according to the present invention.
  • FIG. 2 is a schematic view showing the hot metal pretreatment method according to the present invention in the order of steps.
  • FIG. 3 is a diagram illustrating an example of a reflected wave signal collected using a microwave slag level meter.
  • FIG. 4 is a diagram showing the transition of the slag height in the furnace during the desiliconization process from the measurement result obtained by the microwave slag level meter.
  • FIG. 5 is a diagram showing the relationship between the slag height at the end of the desiliconization process and the intermediate evacuation time.
  • FIG. 6 is a diagram showing the relationship between the slag height at the end of the desiliconization process and the phosphorus concentration in the hot metal after the dephosphorization process.
  • FIG. 7 is a diagram showing the influence of the acid feed rate from the top blowing lance on the slag height.
  • FIG. 8 is a diagram showing the influence of the lance height of the top blowing lance on the slag height.
  • FIG. 9 is a diagram showing the influence of the bottom blowing gas flow rate on the slag height.
  • FIG. 10 is a graph showing the transition of the ratio of the slag height to the height of the free board in the furnace during the desiliconization process in Invention Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 11 is a graph showing the transition of the ratio of the slag height to the height of the free board in the furnace during the dephosphorization process in Invention Example 3 and Comparative Example 2.
  • FIG. 1 is a schematic cross-sectional view of a converter type refining furnace used when carrying out the hot metal pretreatment method according to the present invention
  • FIG. 2 is a schematic view showing the hot metal pretreatment method according to the present invention in the order of steps.
  • FIG. 1 is a diagram showing the desiliconization process of FIG. 2- (B).
  • a converter-type refining furnace 1 capable of top bottom blowing as shown in FIG. 1 is used.
  • the top blowing is performed by supplying an oxygen-containing gas toward the hot metal 5 as a gaseous oxygen source from the tip of the top blowing lance 2 via the top blowing lance 2 that can move up and down inside the converter type refining furnace 1.
  • oxygen-containing gas oxygen gas, oxygen-enriched air, air, or a mixed gas of oxygen gas and inert gas can be used.
  • FIG. 1 shows an example in which oxygen gas 8 is used as the oxygen-containing gas.
  • the oxygen gas 8 is industrial pure oxygen.
  • the bottom blowing is performed through a bottom blowing tuyere 3 provided at the bottom of the converter type refining furnace 1.
  • the bottom blowing gas 9 may be a gas containing oxygen gas or only an inert gas such as argon gas or nitrogen gas. Moreover, it has the function of strengthening the stirring of the hot metal 5 by blowing it into the hot metal and accelerating the melting of the cold iron source, and also has the function of blowing the iron making agent into the hot metal together with the conveying gas from the bottom blowing tuyere 3. It may be a thing. Details of FIG. 1 will be described later.
  • two or more converter-type refining furnaces 1 are used for refining the hot metal 5, and at least one of these converter-type refining furnaces 1 is used for the hot metal pretreatment according to the present invention, and the rest At least one group is used for decarburization refining of the hot metal 5 subjected to the hot metal pretreatment according to the present invention. That is, the pretreatment is performed in the converter type refining furnace 1 for hot metal pretreatment, and then the hot metal 5 subjected to the pretreatment is transferred to the converter type refining furnace 1 for decarburization refining and decarburization treatment is performed. .
  • a charging pot 10 is placed in a converter-type refining furnace 1 in which a cold iron source 7 such as iron scrap is previously charged. Then, the hot metal 5 which has not been subjected to desiliconization and dephosphorization is charged (a hot metal charging step).
  • a gaseous oxygen source or a gaseous oxygen source and a solid oxygen source such as iron oxide are supplied as an oxygen source to the hot metal 5 in the converter-type refining furnace, and desiliconization treatment is performed as shown in FIG. (Desiliconization process). Silicon contained in the hot metal 5 reacts with oxygen in the oxygen source (Si + 2O ⁇ SiO 2 ), and the desiliconization process proceeds. The hot metal temperature rises due to the oxidation heat of silicon by this desiliconization reaction, and the dissolution of the cold iron source 7 in the hot metal is promoted.
  • the desiliconization process and the dephosphorization process are performed by using one converter-type refining furnace 1, and when the desiliconization process is performed, the dephosphorization slag generated by the decharge process of the precharge is performed. However, it remains attached to the furnace wall of the converter type refining furnace 1. Therefore, when the basicity ((mass% CaO) / (mass% SiO 2 )) (hereinafter sometimes simply referred to as “basicity”) of the silica removal slag 6 is not controlled in the silicon removal treatment.
  • the phosphorous oxide (P 2 O 5 ) contained in the remaining dephosphorization slag is decomposed, and so-called “rebound” may occur in which the phosphorus concentration in the hot metal 5 increases. If dephosphorization slag is intentionally left in the furnace in order to reduce the amount of CaO-based solvent used during desiliconization, there is a possibility that the phosphorus concentration pick-up due to dephosphorization will become larger. That is, in order to prevent such recovery, it is preferable to adjust the basicity of the desiliconized slag 6 generated by the desiliconization process.
  • the hot metal temperature is about 1300 ° C.
  • the FeO concentration in the desiliconization slag is about 10 to 20% by mass.
  • the basicity ((mass% CaO) / (mass% SiO 2 )) of the desiliconized slag 6 can be calculated based on the following formula (1).
  • Basicity [(Remaining CaO amount in furnace (kg / molten metal-t)) + (Amount of added CaO in desiliconization treatment (kg / molten metal-t))] / [(Remaining SiO 2 amount in furnace (kg / molten metal) -t)) + (Amount of SiO 2 produced by desiliconization (kg / molten-t))] ...
  • furnace residual amount of CaO and furnace residual amount of SiO 2 is the amount of CaO and SiO 2 amount contained in the dephosphorization slag before the charge remaining in the furnace, generating SiO 2 amount of desiliconization treatment Can be calculated from the change in the Si concentration in the hot metal before and after the silicon removal treatment.
  • the oxygen source for the desiliconization treatment only the oxygen gas 8 from the top blowing lance 2 may be used, or the oxygen gas 8 and a solid oxygen source such as iron oxide (not shown) may be used in combination.
  • a solid oxygen source such as iron oxide (not shown)
  • iron oxide having a function of promoting the hatching of the CaO-based solvent. is there.
  • the converter-type smelting furnace 1 is used as a smelting vessel, the oxygen gas supply rate can be increased, and even if the desiliconization process is performed using only the oxygen gas 8, the CaO-based solvent can be sufficiently used. It is possible to generate the desiliconized slag 6 having the target basicity by promoting the hatching.
  • the converter type refining furnace 1 is tilted to the side opposite to the side where the outlet 4 is installed, and is generated by the desiliconization process.
  • the desiliconized slag 6 containing a large amount of SiO 2 is discharged through a furnace port of the converter-type refining furnace 1 to a slag pot (not shown) disposed on the lower track (exhaust process).
  • the converter-type refining furnace 1 is tilted within a range in which the molten iron 5 does not flow out of the furnace port, and the desiliconized slag 6 is discharged by the overflow from the furnace port, and the slag surface from the lower end of the tilted furnace body
  • the hot metal 5 remaining in the converter type refining furnace is supplied with a CaO-based solvent and an oxygen source, and the hot metal 5 is dephosphorized as shown in FIG. Dephosphorization process).
  • the oxygen source used in this dephosphorization process is mainly composed of the oxygen gas 8 from the top blowing lance 2 as in the desiliconization process, but a part of iron oxide may be used.
  • the present invention is intended to dissolve a large amount of cold iron source 7, and as described above, it is possible to avoid using iron oxide that absorbs heat at the time of heating and decomposition as an oxygen source as much as possible. preferable.
  • the CaO-based medium solvent used in the dephosphorization treatment quick lime, calcium carbonate or the like can be used. However, it is not limited to these, What contains 40 mass% or more of CaO, and contains other components, such as a fluorine, an alumina, and an iron oxide as needed, is also used as a CaO type
  • a method for adding the CaO-based medium solvent granular and lump-shaped ones can be charged from a hopper on the furnace, and powdery ones can be charged through an upper blowing lance 2 or the like.
  • Phosphorus in the hot metal is oxidized to oxygen in the supplied oxygen source to become phosphorus oxide (P 2 O 5 ), which is produced by the incubation of the CaO-based solvent and functions as a dephosphorizing refining agent.
  • P 2 O 5 phosphorus oxide
  • the converter-type refining furnace 1 is tilted to the side where the outlet 4 is installed, and the hot metal 5 in the converter-type refining furnace is passed through the outlet 4. Hot water is poured into a hot metal holding container (not shown) (a hot water discharge step).
  • the converter type refining furnace 1 may be charged with the cold iron source 7 and the hot metal 5 to start the next charge desiliconization process.
  • the cold iron source 7 and the hot metal 5 may be charged to start the next charge desiliconization process.
  • the CaO content in the dephosphorization slag of the previous charge can be used as a CaO source in the desiliconization treatment of the next charge, reducing the amount of CaO-based solvent used during the desiliconization treatment can do.
  • the desiliconization slag 6 when performing desiliconization treatment and dephosphorization treatment on the hot metal 5 in this way, the desiliconization slag 6 of a predetermined amount or more is quickly discharged out of the furnace in the exhausting step.
  • the height of the desiliconized slag 6 is measured during the treatment, and the slag height (distance from the hot metal bath surface when stationary in the furnace to the upper end of the desiliconized slag 6) is the target range. Then, the desiliconization slag 6 is formed during the desiliconization process.
  • the present inventors discharge a sufficient amount of the desiliconization slag 6 within a predetermined time. Make sure it is difficult to do. Therefore, in order to allow a sufficient amount of desiliconized slag 6 to flow out of the furnace quickly in the exhausting process, the desiliconized slag 6 is formed so as to be in a predetermined slag height range at the end of the desiliconization process. It is necessary to let Here, slag forming is a phenomenon in which molten slag contains bubbles and apparently expands in volume.
  • the converter type refining furnace 1 used in the present invention is required to have a function of measuring the slag height in the furnace.
  • a hood 12 for recovering exhaust gas generated from the furnace is provided above the furnace port of the converter type refining furnace 1.
  • a flue 11 for introducing exhaust gas into the dust collector is provided at the top of the.
  • the hood 12 is provided with an opening 13 and an opening 14, the upper blowing lance 2 is inserted into the furnace through the opening 13, and the pseudo-random signal processing radar passes through the opening 14.
  • Two waveguides 16 attached to a system microwave distance meter 15 (hereinafter simply referred to as “microwave slag level meter 15”) are installed.
  • a transmitting antenna 17 and a receiving antenna 18 are provided at positions directly below the opening 14 at the ends of the two waveguides 16, respectively. That is, the microwave slag level meter 15 is configured to measure the height of the desiliconized slag 6 in the furnace.
  • the measurement sensitivity is improved by using a signal obtained by modulating the microwave with a pseudo-random signal.
  • a pseudo-random signal for example, a pseudo-random signal that repeats the same waveform at a frequency of about 6 MHz that is generated by combining an appropriate logic circuit from a high-frequency clock signal of about 800 MHz can be used. This is an example of a case where the clock signal to generate a pseudo-random signal by 2 7 times (128 times) logic circuit is input to round it.
  • a microwave carrier to be used for example, a microwave having a frequency of about 10 GHz is used, and a microwave that is modulated by multiplying a pseudo-random signal and a transmission antenna 17 installed in the opening 14 of the hood 12 on the furnace is used. And radiates toward the inside of the converter type refining furnace 1.
  • the wavelength in the air of the electromagnetic wave with a frequency of 10 GHz is about 3.0 cm, and when it is less than 10 GHz, the wavelength is longer than that, which is sufficiently longer than the dust and smoke particles in the converter type refining furnace. Therefore, it is hardly affected by dust and the wavelength is short, which is advantageous for downsizing of the antenna.
  • the transmitting antenna 17 and the receiving antenna 18 are, for example, horn antennas, and the reflected waves from other than the slag surface are made as small as possible by reducing the directivity sharply.
  • the lower the frequency of the microwave, the less susceptible to dust and the like. Accordingly, the microwave used in the present invention has an upper frequency limit of 10 GHz, preferably lower than 10 GHz, and more preferably 8 GHz or lower. .
  • the frequency of the microwave is too low, there is a problem that the resolution of time and distance is lowered, and the size of the antenna is required, which is not preferable for preventing dust from adhering to the antenna.
  • the electromagnetic wave radiated from the transmitting antenna 17 into the converter type refining furnace is reflected on the slag surface and converted into an electric signal through the receiving antenna 18.
  • the timing at which the input signal is supplied to the receiver of the microwave slag level meter 15 reciprocates the distance from the timing at which the electromagnetic wave is radiated from the transmitting antenna 17 to the slag level in the converter refining furnace.
  • the electromagnetic wave is delayed by the propagation time of the electromagnetic wave until it reaches the receiving antenna 18. This propagation time can be measured by comparing the phase difference of a pseudo-random signal modulated on a microwave carrier wave between the received wave and the transmitted wave.
  • the propagation time can be directly obtained from the time correlation function of the pseudo random signal component modulated into the received wave and the transmitted wave, but the pseudo random signal generated by slightly changing the clock frequency is used.
  • the pseudo random signal generated by slightly changing the clock frequency is used.
  • the phase difference within the repetition frequency period of the pseudo random signal of about 6 MHz that is, the time delay is converted into the time difference within the period of 4 kHz, and the time axis is expanded by about 1500 times,
  • the phase difference between the pseudo-random signal of the received wave and the transmitted wave can be detected.
  • the received reflected wave includes reflected waves from various paths and objects, and the reflected wave from each object has a pseudo-random signal component corresponding to the reflection intensity and the phase delay corresponding to the propagation time. It is included.
  • signal processing using a pseudo-random signal with the above clock signal frequency changed is performed, and the propagation time is increased by about 1500 times when compared with a signal of a transmission wave that has been similarly processed. It expands and the signal according to the propagation time and intensity
  • the signal detected in this way is detected by converting the time delay from the transmission wave into the propagation time, multiplying this by the microwave propagation velocity (3 ⁇ 10 8 m / s), and dividing by 2.
  • the distance to the object corresponding to the received signal can be calculated.
  • FIG. 3 shows the above-described microwave slag level meter when dephosphorization slag generated by the decharge process of the pre-charge is left in the furnace and the desiliconization process is performed after the molten iron 5 of the charge is charged in the furnace.
  • 15 is an example of a reflected wave signal sampled using No. 15.
  • FIG. 3 shows the relationship between the distance from the antenna of the object that is the source of the reflected wave and the intensity of the reflected wave.
  • the horizontal axis of FIG. 3 uses a value obtained by converting the delay time of the detected signal from the transmission wave into the distance from the transmission antenna 17 and the reception antenna 18 to the object.
  • detection signals of reflected waves having peaks at a plurality of positions are shown.
  • a peak whose intensity is less than a certain value reflected wave signal
  • the furnace body refractory and the furnace wall adhesion ground
  • the peak of the reflected wave due to multiple reflection from gold or the top blowing lance 2 was assumed.
  • the peak positions having an intensity of a certain value or more the peak closest to the distance to the furnace mouth with the distance from the antenna larger than the distance to the furnace mouth is the peak of the reflected wave from the slag surface. Peaked.
  • the peak having an intensity of 100 times or more of the background level is larger than the distance to the furnace port and is the most in the distance to the furnace port.
  • a peak corresponding to the surface of the formed desiliconized slag 6 was taken as the peak at the near peak position.
  • the distance from the antenna to the position corresponding to the furnace opening is about 9 m, and a large wide peak whose distance from the antenna is about 19 m corresponds to the hot metal bath surface.
  • the peak that has existed without changing the generation position (distance from the antenna) from the start of the desiliconization process does not correspond to the reflected wave from the slag surface, such a peak If the peak corresponding to the slag surface is determined as described above after removing the noise as a noise, a more reliable measurement is possible.
  • the height relative to the reference surface (antenna position) of the slag surface determined by these methods, the height relative to the reference surface (antenna position) of the hot metal bath surface estimated from the sum of the amount of hot metal and iron scrap charged by the charge The absolute value of the difference was defined as the slag height.
  • FIG. 4 the example which calculated
  • FIG. 5 shows the results of the investigation of the relationship between the slag height at the end of the desiliconization treatment and the intermediate evacuation time, and the relationship between the slag height at the end of the desiliconization treatment and the phosphorus concentration in the hot metal after the completion of the dephosphorization treatment.
  • the survey results are shown in FIG.
  • the horizontal axis in FIGS. 5 and 6 indicates the height of the free board in the furnace with the slag height (also referred to as “empty part”, the space between the hot metal bath surface and the furnace port when stationary) The distance between the hot metal bath surface and the furnace opening).
  • the ratio of the slag height to the height of the freeboard in the furnace exceeds 0.9, the forming of the desiliconized slag 6 will be too intense, and the furnace will be set up once during the evacuation to calm the desiliconized slag 6 It was necessary to take it, and the extension of the intermediate elimination time was invited.
  • the ratio of the slag height to the height of the freeboard in the furnace is less than 0.5, the discharge performance of the desiliconized slag 6 at the time of intermediate discharge is poor, and in the dephosphorization process of the next step, the silicon removal Since the slag 6 remained excessively, the basicity of the slag decreased, and the phosphorus concentration in the hot metal after the dephosphorization treatment increased.
  • the slag height of the desiliconized slag 6 is a predetermined range of 0.5 or more and 0.9 or less, preferably a predetermined range of 0.7 or more and 0.9 or less with respect to the height of the free board in the furnace.
  • the upper limit value and the lower limit value of the predetermined range are considered to be different from each other depending on differences in the furnace profile and the shape of the furnace port, and therefore, FIG. 5 obtained in accordance with the embodiment in each refining furnace. It is more desirable to adjust the above upper limit value and lower limit value within the above range from the data shown in FIG.
  • Fig. 7 shows the results of an investigation on the effect of the change in the slag height due to the change in the oxygen feed rate (oxygen gas supply flow rate) from the top blowing lance 2, and the slag height due to the change in the lance height of the top blowing lance 2
  • FIG. 8 shows the result of the investigation on the influence on the change speed
  • FIG. 9 shows the investigation result on the influence on the change speed of the slag height due to the change in the bottom blowing gas flow rate.
  • the lance height of the upper blowing lance 2 is the distance from the lower end of the upper blowing lance 2 to the hot metal bath surface in a stationary state.
  • the slag composition has a great influence on the slag height, and the slag height tends to increase as the low basicity, high iron oxide concentration, or high alumina concentration increases. It is also effective to add a slag-forming agent based on the height measurement result. Furthermore, when adjusting to reduce the slag height, it is also effective to use a forming soothing material such as a solid coolant or a gas generating substance.
  • the height of the desiliconization slag 6 in the furnace is measured during the desiliconization process, and the supply flow rate of the gaseous oxygen source from the upper blowing lance 2 and the upper blowing lance are determined based on the measurement result. At least one selected from the group of the lance height of 2, the supply flow rate of the stirring gas from the bottom blowing tuyere 3, the composition of the slag in the furnace, and the amount of foaming sedative input, and this adjustment It is preferable to control so that the height of the desiliconized slag 6 is within a predetermined range. Thereby, it is possible to easily adjust the ratio of the slag height to the height of the free board in the furnace at the end of the desiliconization process within the predetermined range.
  • the measurement of the slag height in the furnace is not limited to the desiliconization process, and can be performed in the dephosphorization process as described above.
  • the dephosphorization slag is controlled so as not to be ejected (slipping) from the furnace port, thereby suppressing the ejection loss of the added CaO-based solvent and performing an efficient dephosphorization process. it can. That is, in the dephosphorization process, the ratio of the slag height to the height of the free board in the furnace may be adjusted to be less than 1.0. Even in the dephosphorization treatment, it is preferable to measure the slag height using the microwave slag level meter 15 described above.
  • the basicity of the desiliconization slag 6 is set to 0.5 to 1.5 at the end of the desiliconization process, and the hot metal temperature or the desiliconization slag 6 is increased.
  • the temperature is preferably set to 1280 ° C. or higher.
  • the present inventors have released the desiliconized slag 6 discharged in the slag pot in the above slag pot from the slag pot to the yard and solidified it, and then pulverized it to a particle size of about 30 mm or less.
  • Various characteristics of slag products were investigated.
  • the unit volume mass of dephosphorized slag in the specified particle size and compacted state is about 2.0 to 2.3 kg / L, which is larger than 1.6 to 1.8 kg / L of natural debris material. Therefore, dephosphorization slag is suitable for applications where higher mass is preferred, for example, due to increased stability against waves, but for civil engineering applications where there is a concern that it may promote gravitational instability. Is difficult to apply, and also has the disadvantages of increased transportation costs due to its large bulk specific gravity.
  • the basicity of the desiliconization slag 6 is 0.8 or more and 1.5 or less, and the hot metal temperature or the temperature of the desiliconization slag 6 is 1280 ° C or more and 1380 ° C or less. It is preferable to set the content to 0.10% by mass or less and to discharge 30% by mass or more of the desiliconized slag 6 in the exhausting step.
  • the basicity of the desiliconized slag 6 By setting the basicity of the desiliconized slag 6 to 0.8 or more and 1.5 or less and the hot metal temperature or the temperature of the desiliconized slag 6 to 1280 ° C or more and 1380 ° C or less, it is possible to restore the precharge dephosphorization slag to the hot metal. It is possible to efficiently discharge the desiliconized slag 6 in the exhausting process while preventing phosphorus.
  • the temperature of the desiliconization slag 6 is close to the hot metal temperature at the end of the desiliconization process, either the hot metal temperature or the temperature of the desiliconization slag 6 may be used as an index.
  • the hot metal temperature can be measured by immersing a thermocouple in the hot metal, but instead of the measured value, the temperature and composition of the hot metal before the desiliconization treatment, the amount of various cold iron sources such as iron scrap, and various auxiliary substances such as quick lime
  • the hot metal temperature calculated by calculating the heat balance from the operating conditions such as the amount of raw material used, the amount of various heating agents such as ferrosilicon, and the amount of oxygen gas supplied may be used.
  • the silicon content in the hot metal after desiliconization to 0.10% by mass or less, even if the iron oxide concentration in the slag becomes relatively low, CO gas generation due to the decarburization reaction occurs during the desiliconization process. Since it becomes active, forming of the desiliconization slag 6 is promoted, which is advantageous in increasing the slag height at the end of the desiliconization process. Further, in this case, since the forming of the desiliconized slag 6 is maintained even during the discharging process and the slag height is maintained high, it is advantageous in terms of increasing the discharge efficiency of the desiliconized slag 6.
  • the removal rate of the desiliconized slag 6 in the removal process is preferably 30% by mass or more.
  • dephosphorizing agents such as quick lime in the dephosphorization treatment process without excessive accumulation of dephosphorization slag of the precharge in the furnace and without causing an excessive decrease in the slag basicity in the dephosphorization treatment process.
  • the amount used can be suppressed and the phosphorus concentration in the hot metal can be lowered.
  • the slag height in the furnace at the end of the desiliconization process was measured while satisfying the conditions at the end of the desiliconization process as described above, and the measured slag height was 0 with respect to the height of the freeboard in the furnace.
  • the desiliconization slag 6 is discharged from the converter-type refining furnace 1 at a high removal rate in a relatively short time by adjusting the predetermined ratio such as .5 to 0.9 and performing the removal process. It becomes possible to do.
  • the desiliconized slag 6 discharged to the slag pot in this way is further discharged from the slag pot to the yard and solidified, and then pulverized to a particle size of about 30 mm or less.
  • the unit volume mass is reduced to about 1.2 kg / L or less. As a result, it is suitable for applications where a low specific gravity is desired, and an effect of reducing the transportation cost per construction volume can be obtained.
  • the basicity of the desiliconized slag 6 at the end of the desiliconization treatment is 0.8 to 1.25 and the slag temperature is 1360 ° C. or less to increase the viscosity.
  • Reducing the surface tension by setting the phosphoric acid (P 2 O 5 ) content in the slag at the end of desiliconization to 2% by mass or more, or using an inclined yard when discharging from the slag pot to the yard It is desirable to disperse the discharged slag over a wide range by increasing the cooling rate of the desiliconized slag 6 by discharging the slag pot while moving it.
  • the average evacuation rate of the desiliconized slag 6 And the average unit volume mass increased to about 1.3 kg / L.
  • the hot metal 5 is desiliconized and dephosphorized continuously with an intermediate waste process interposed therebetween.
  • the desiliconization process is completed in a state where the height of the formed desiliconization slag 6 is in a predetermined range with respect to the height of the freeboard in the furnace during the desiliconization process.
  • the subsequent evacuation process it is realized that a sufficient amount of desiliconized slag 6 is quickly discharged out of the furnace.
  • the present invention is not limited to the above description, and various modifications can be made.
  • the slag height is measured using the microwave slag level meter 15, but the measurement of the temperature profile in the height direction in the furnace, the measurement value of the top lance or the vibration meter attached to the furnace body.
  • the slag height can also be measured from the detection information of the slag surface based on the measured value of the volume generated from the furnace body.
  • the slag height is measured by using the converter type refining furnace having a capacity of 330 ton shown in FIG. 1 and measuring the slag height with the hot metal pretreatment (Invention Examples 1 to 3) according to the present invention and the microwave slag level meter.
  • the hot metal preliminary treatment (Comparative Examples 1 and 2) according to the conventional method in which the above control was not performed was performed for 20 charges each.
  • the target value of the phosphorus concentration in the hot metal at the end of the pretreatment was 0.030% by mass.
  • Example 1 of the present invention during the desiliconization process, the slag height during oxygen blowing was measured using a microwave slag level meter, and among the acid feed rate from the top blowing lance, the lance height, and the stirring gas flow rate By adjusting at least one of the above, the ratio of the measured slag height to the freeboard height in the furnace supplies the amount of oxygen necessary for desiliconization obtained by assuming that the desiliconization oxygen efficiency is 50% At the end of the desiliconization treatment, the adjustment was made to be 0.5 to 0.9, intermediate waste was performed, and then the dephosphorization treatment was continued by oxygen blowing.
  • Example 2 of the present invention during the desiliconization process, the slag height during oxygen blowing was measured using a microwave slag level meter, and among the acid feed rate from the top blowing lance, the lance height, and the stirring gas flow rate By adjusting at least one of the above, the ratio of the measured slag height to the freeboard height in the furnace supplies the amount of oxygen necessary for desiliconization obtained by assuming that the desiliconization oxygen efficiency is 50% At the end of the process, an attempt was made to adjust to 0.5 or more, but after the time had elapsed, the ratio of the slag height to the freeboard height in the furnace was less than 0.5. Extend the time, and when the slag height with respect to the height of the freeboard reaches 0.5, finish the desiliconization process and perform intermediate waste removal, and then continue the dephosphorization process by oxygen blowing. It was.
  • the same control as in the present invention example 1 is performed in the desiliconization process, and then intermediate waste is performed, and then the slag height during oxygen blowing is reduced using a microwave slag level meter during the dephosphorization process.
  • the ratio of the slag height to the height of the freeboard in the furnace is 0.8 or more, out of the acid feed rate from the top blowing lance, the lance height, and the stirring gas flow rate
  • the dephosphorization treatment was performed by adjusting at least one of these so that the ratio of the slag height to the height of the free board in the furnace was less than 1.0.
  • Comparative Example 1 and Comparative Example 2 the desiliconization process is terminated at the time when the amount of oxygen necessary for desiliconization obtained by assuming that the desiliconization oxygen efficiency is 50%, and intermediate waste is performed. Then, the dephosphorization process was continued by oxygen blowing.
  • the hot metal temperature was 1300 ° C. or higher as Comparative Example 1, and the hot metal temperature was lower than 1300 ° C. as Comparative Example 2.
  • the reason for dividing the comparative example into Comparative Example 1 and Comparative Example 2 is that when the hot metal temperature is as high as 1300 ° C. or higher, the slag hatching is promoted, and the slag height changes at a high level. When the hot metal temperature is less than 1300 ° C., the slag height is low.
  • the acid feed rate during desiliconization was 30000 Nm 3 / hr
  • the lance height was 2.5 m
  • the bottom blowing gas flow rate was 1200 Nm 3 / hr.
  • the acid feed rate during the dephosphorization treatment was 25000 Nm 3 / hr
  • the lance height was 2.1 m
  • the bottom blowing gas flow rate was 1200 Nm 3 / hr.
  • nitrogen gas was used for both the desiliconization process and the dephosphorization process.
  • Table 1 shows test results of representative examples of Invention Examples 1 to 3 and Comparative Examples 1 and 2.
  • FIG. 10 shows the transition of the ratio of the slag height to the height of the free board in the furnace during the desiliconization process in each of the representative examples of the present invention examples 1 and 2 and comparative examples 1 and 2.
  • FIG. 11 shows the change in the ratio of the slag height to the height of the free board in the furnace during the dephosphorization process in each of the representative examples of Invention Example 3 and Comparative Example 2.
  • FIG. 10 and FIG. 11 representative examples are shown in Invention Examples 1 to 3 and Comparative Examples 1 and 2, respectively.
  • Comparative Example 1 shown in Table 1 using hot metal having a temperature equivalent to that of Example 1 of the present invention the slag height is not controlled.
  • the ratio of the slag height to the board height is 1.0, and the slag flow is severe at the time of intermediate evacuation.
  • the furnace once tilted is raised again, the slag height is lowered using a sedative, and then the middle is again I was rejected. This increased the intermediate elimination time.
  • the desiliconization process by oxygen blowing was continued, and when the ratio of the slag height to the freeboard height in the furnace reached 0.5, the desiliconization process was terminated, and then intermediate waste was performed. It was. Thereby, the rejection rate in the rejection process became as high as 70%.
  • Comparative Example 2 shown in Table 1 using hot metal having the same temperature as Example 2 of the present invention since the slag height is not controlled, the desiliconization oxygen efficiency is assumed to be 50%. At the time when the oxygen amount necessary for the obtained silicon removal was finished, the slag height with respect to the height of the free board in the furnace was less than 0.5. As a result of performing the intermediate waste in that state, the waste rate was lowered, and the basicity of the subsequent dephosphorization treatment was lowered to cause dephosphorization failure.
  • Example 3 of the present invention shown in Table 1 the slag height is controlled during the desiliconization process, and the ratio of the slag height to the freeboard height in the furnace is less than 1.0 during the dephosphorization process.
  • the acid feed rate is in the range of ⁇ 5000 Nm 3 / hr
  • the lance height is in the range of ⁇ 0.5 m
  • the bottom blowing gas flow rate is in the range of ⁇ 1200 Nm 3 / hr, either one or two More species adjustments were made.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

In the present invention, when using one converter-type smelting furnace to continuously carry out molten iron desiliconization processing and dephosphorization processing with a midway slag discharge step therebetween, in the slag discharge step a sufficient amount of slag is promptly discharged to the outside of the furnace, and sufficient dephosphorization processing in terms of cost and quality is carried out. Provided is a preliminary processing method having the following: a desiliconization step for desiliconizing molten iron (5) by supplying a gaseous oxygen source from a top blowing lance (2) to the molten iron (5) in a converter-type smelting furnace; a slag discharge step for discharging from the converter-type smelting furnace at least a portion of the slag generated by the desiliconization step; a dephosphorization processing step for, after the slag discharge step, dephosphorizing the remaining molten iron by adding a CaO solvent into the converter-type smelting furnace and supplying the gaseous oxygen source from the top blowing lance. During the desiliconization, the slag height in the furnace is measured, and in a state where the measured slag height is in a predetermined range of proportion to a free board in the furnace defined by the distance from the molten iron bath surface to the furnace throat, the desiliconization processing is stopped.

Description

溶銑の予備処理方法Hot metal pretreatment method
 本発明は、1つの転炉型精錬炉を用いて溶銑の脱珪処理と脱燐処理とを、途中の排滓工程を挟んで連続して行う溶銑の予備処理方法に関する。 The present invention relates to a hot metal pretreatment method in which a hot metal desiliconization process and a dephosphorization process are continuously performed using a single converter-type refining furnace, with an intermediate exhausting process interposed therebetween.
 近年、転炉型精錬炉を用いた溶銑の予備処理技術の開発が進み、以下の予備処理方法が開発されている。即ち、転炉型精錬炉内の溶銑に脱珪処理を行った後に転炉型精錬炉を傾転させて炉内のスラグ(脱珪処理で生成するスラグを「脱珪スラグ」という)の少なくとも1部を排出し、その後、炉内にCaO系媒溶剤を投入し、残留させた溶銑に脱燐処理を行うという精錬方法(この精錬方法を「2回排滓法」という)が開発されている(例えば、特許文献1を参照)。 In recent years, the development of hot metal pretreatment technology using a converter-type refining furnace has progressed, and the following pretreatment methods have been developed. That is, after desiliconizing the molten iron in the converter-type refining furnace, the converter-type refining furnace is tilted to at least slag in the furnace (the slag generated by the desiliconizing process is called “desiliconized slag”). A refining method was developed in which one part was discharged, and then a CaO-based solvent was introduced into the furnace, and the remaining hot metal was dephosphorized (this refining method is called “twice-exhaust method”). (For example, refer to Patent Document 1).
 この2回排滓法は、転炉型精錬炉における従来の予備処理方法、つまり、精錬開始時にCaO系媒溶剤を投入して転炉型精錬炉内の溶銑に脱珪・脱燐処理を行う予備処理方法と比較して、以下の利点がある。即ち、(1)途中で脱珪スラグを排出することから珪素含有量の高い溶銑の処理が可能であり、溶銑中の珪素を熱源として有効活用することが可能、(2)途中で脱珪スラグを排出することで、その後の脱燐処理時でのCaO系媒溶剤の使用量を削減することが可能、という利点がある。 This two-time slagging method is a conventional pretreatment method in a converter-type smelting furnace, that is, a CaO-based solvent is introduced at the start of smelting to perform desiliconization / dephosphorization treatment on the hot metal in the converter-type smelting furnace. Compared with the pretreatment method, there are the following advantages. That is, (1) Since the desiliconization slag is discharged in the middle, it is possible to treat hot metal with a high silicon content, and it is possible to effectively utilize the silicon in the hot metal as a heat source. (2) Desiliconization slag in the middle Is advantageous in that the amount of CaO-based solvent used in the subsequent dephosphorization process can be reduced.
 この2回排滓法においては、脱珪処理後の排滓工程で、如何に速やかに短時間で且つ目標とする所定量の脱珪スラグを炉内から排出するかが、操業の重要なポイントとなる。排滓工程での脱珪スラグの排出量が少ない場合には、上記の効果は得られず、前述した従来の転炉型精錬炉における予備処理方法と同等になる。 The important point of operation is how to quickly discharge a predetermined amount of desiliconized slag from the furnace in a short time in the exhausting process after the desiliconization process. It becomes. In the case where the amount of desiliconized slag discharged in the evacuation process is small, the above effect cannot be obtained, which is equivalent to the pretreatment method in the conventional converter-type refining furnace described above.
 また、脱燐処理の終了後、脱燐処理した溶銑は炉から出湯するものの、脱燐処理で生成したスラグ(脱燐処理で生成するスラグを「脱燐スラグ」という)を炉内に残留させ、脱燐スラグを残留させた転炉型精錬炉に次チャージの溶銑を装入し、この溶銑に対して上記手順に沿って予備処理を行うという精錬方法も開発されている(例えば、特許文献1及び特許文献2を参照)。この精錬方法には、更に、以下の利点がある。即ち、(3)脱燐処理で生成した脱燐スラグを炉内に残すことにより、脱珪処理時でのCaO系媒溶剤の削減、脱燐スラグの顕熱の活用、脱燐スラグ中の鉄分の回収が可能、(4)脱燐スラグを再使用すること及び溶銑中の珪素を熱源として有効活用することで熱効率が高く、冷鉄源の配合比率を高めることが可能、(5)塩基度((質量%CaO)/(質量%SiO2))が比較的高く、エージング処理が必要である脱燐スラグの発生を抑制し、脱燐スラグを、エージング処理を省略しても良好な体積安定性が得られる脱珪スラグに転換することが可能、という利点がある。 In addition, after the dephosphorization process is completed, the dephosphorized hot metal is discharged from the furnace, but the slag generated by the dephosphorization process (slag generated by the dephosphorization process is referred to as “dephosphorization slag”) is left in the furnace. In addition, a refining method has been developed in which molten iron of the next charge is charged into a converter-type refining furnace in which dephosphorization slag remains, and preliminary treatment is performed on the molten iron according to the above procedure (for example, Patent Documents). 1 and Patent Document 2). This refining method further has the following advantages. (3) By leaving the dephosphorization slag generated in the dephosphorization process in the furnace, reducing the CaO-based solvent during the desiliconization process, utilizing the sensible heat of the dephosphorization slag, the iron content in the dephosphorization slag (4) Reusable dephosphorization slag and effective utilization of silicon in the hot metal as a heat source enables high thermal efficiency and increases the ratio of cold iron source, (5) Basicity ((Mass% CaO) / (mass% SiO 2 )) is relatively high, suppresses the generation of dephosphorization slag that requires aging treatment, and provides good volume stability even if the aging treatment is omitted. There is an advantage that it can be converted to desiliconized slag that can be obtained.
 しかし、脱燐スラグを残留させる方法では、脱珪処理後のスラグの排出量が不十分であると、前チャージで残留させた脱燐スラグに由来する燐が炉内に大量に残留し、次の脱燐処理では溶銑の燐濃度を目標レベルまで低下させることが困難となるので、脱珪処理後の排滓工程におけるスラグの排出量を十分に確保する必要がある。一方、スラグの排出量を確保するべく、排滓のための作業時間が長くなると、このような予備処理の実施可能なチャージ数が制限されたり、また、スラグの排出速度を増すために炉体の傾き角度を大きくし過ぎると、スラグとともに流出する溶銑の流出量が増大して鉄歩留まりが低下したりするという問題が起こる。従って、これらの問題が起こらないように、脱珪処理後の排滓工程ではスラグの排出を効率良く行う必要がある。 However, in the method of leaving the dephosphorization slag, if the amount of slag discharged after the desiliconization process is insufficient, a large amount of phosphorus derived from the dephosphorization slag left in the previous charge remains in the furnace. In this dephosphorization treatment, it becomes difficult to reduce the phosphorus concentration of the hot metal to the target level, so it is necessary to secure a sufficient amount of slag discharge in the exhausting step after the desiliconization treatment. On the other hand, if the working time for evacuation becomes longer in order to secure the slag discharge amount, the number of charges that can be carried out for such pretreatment is limited, and the furnace body is increased in order to increase the slag discharge speed. If the inclination angle is too large, the amount of hot metal flowing out together with the slag increases and the iron yield decreases. Therefore, in order to prevent these problems from occurring, it is necessary to efficiently discharge the slag in the discharging process after the desiliconization process.
 また、脱珪スラグや脱燐スラグを含めて製鋼スラグは、多量の鉄酸化物を含有することから、天然石砂材や高炉スラグなどと比較して密度が高い傾向にある。これに起因して、製鋼スラグは、製鋼スラグが重力的不安定性を助長することが懸念されるような土木工事用途には適用されていなかった。更に、製鋼スラグは、単位質量あたりの体積が天然石砂材などと比較して小さくなることから、輸送費用が増大することも土木工事用材料としての欠点であり、従って、製鋼スラグを幅広い土木工事用途に利用し易い材料とするためには、製鋼スラグの嵩比重を減少させることが望ましい。 In addition, steelmaking slag including desiliconized slag and dephosphorized slag contains a large amount of iron oxide, and therefore tends to have a higher density than natural stone sand and blast furnace slag. For this reason, steelmaking slag has not been applied to civil engineering applications where it is feared that steelmaking slag may promote gravitational instability. Furthermore, since the volume per unit mass of steelmaking slag is smaller than that of natural stone sand, etc., an increase in transportation costs is also a drawback as a material for civil engineering work. In order to obtain a material that can be easily used for applications, it is desirable to reduce the bulk specific gravity of the steelmaking slag.
 そこで、本発明者らは、脱珪処理後の排滓工程における脱珪スラグの排出性について検討した。その結果、脱珪処理中での脱珪スラグのフォーミングが少ないと、脱珪スラグの流動性が低く、所定時間内で十分な量の脱珪スラグを排出することは困難であることがわかった。従って、排滓工程で速やかに且つ十分な量の脱珪スラグを炉内から流出させるためには、脱珪吹錬中に脱珪スラグを安定的にフォーミングさせなければならないことを知見した。ここで、スラグのフォーミングとは、溶融状態のスラグが気泡を含み、見掛け上、体積膨脹する現象である。 Therefore, the present inventors examined the discharge performance of the desiliconized slag in the discharge process after the desiliconization treatment. As a result, it was found that if the formation of desiliconization slag during desiliconization is small, the flowability of desiliconization slag is low and it is difficult to discharge a sufficient amount of desiliconization slag within a predetermined time. . Accordingly, it has been found that in order to allow a sufficient amount of desiliconized slag to flow out of the furnace quickly in the slagging process, the desiliconized slag must be stably formed during desiliconization blowing. Here, slag forming is a phenomenon in which molten slag contains bubbles and apparently expands in volume.
 つまり、脱珪処理中のスラグレベルを検知し、脱珪スラグのフォーミングを制御することが重要であることを知見した。但し、脱珪スラグの過剰なフォーミングは、排滓工程時に突沸的なスラグの流出を招き、これを抑える処置が必要となり、却って排滓工程の時間を延長させることから、フォーミングを適度に制御することが重要であることも知見した。これらの知見は、特許文献1及び特許文献2には記載されていない。 That is, it was found that it is important to detect the slag level during the desiliconization process and to control the forming of the desiliconization slag. However, excessive forming of desiliconized slag leads to sudden slag outflow during the evacuation process, and it is necessary to take measures to suppress it. On the contrary, the time of the evacuation process is extended, so the forming is controlled appropriately. It was also found that this is important. These findings are not described in Patent Document 1 and Patent Document 2.
 従来、転炉型精錬炉でのスラグのフォーミングを検知する方法として、特許文献3には、サブランスに一定振動数・振幅の振動(強制振動)を与えると同時にサブランスの振動を測定しながら、サブランスを炉内に挿入し、与えた強制振動の減衰量に基づいて、炉内スラグのフォーミング高さを検出する方法が提案されている。しかしながら、この方法は、サブランスの先端がフォーミングしたスラグに埋没した状態を前提とする技術であり、フォーミングが少なく、サブランスの先端がフォーミングしたスラグに埋没しない場合にはフォーミング高さを検出することはできない。また、生成するスラグの組成や温度によって強制振動の減衰量は変化するので、フォーミング高さを精度良く検出することは困難である。 Conventionally, as a method for detecting the formation of slag in a converter-type refining furnace, Patent Document 3 discloses that a sublance is measured while applying a constant frequency / amplitude vibration (forced vibration) to the sublance and simultaneously measuring the vibration of the sublance. Has been proposed to detect the forming height of the in-furnace slag based on the amount of damping of the forced vibration. However, this method is based on the premise that the tip of the sublance is buried in the formed slag, and when the forming is small and the tip of the sublance is not buried in the formed slag, it is impossible to detect the forming height. Can not. Further, since the attenuation amount of the forced vibration varies depending on the composition and temperature of the slag to be generated, it is difficult to accurately detect the forming height.
 また、特許文献4及び特許文献5には、マイクロ波を用いて精錬中のスラグ高さを測定する方法が提案されている。しかしながら、これらの技術は、転炉での溶銑の脱炭精錬におけるフォーミング検知技術であり、溶銑予備処理の脱珪処理での脱珪スラグと、転炉での脱炭精錬での転炉スラグとは、スラグの温度、塩基度、酸化鉄濃度が大きく異なることから、電気伝導度が大きく異なり、そのために、マイクロ波の反射特性は脱珪処理と脱炭精錬とで異なり、脱炭精錬での実績をそのまま脱珪処理に適用することはできない。 Also, Patent Document 4 and Patent Document 5 propose a method of measuring the slag height during refining using a microwave. However, these technologies are forming detection technology in decarburization and refining of hot metal in the converter, and desiliconization slag in desiliconization in the hot metal pretreatment and converter slag in decarburization and refining in the converter. Since the slag temperature, basicity, and iron oxide concentration differ greatly, the electrical conductivity differs greatly. Therefore, the microwave reflection characteristics differ between desiliconization treatment and decarburization refining. The results cannot be applied to the desiliconization process as it is.
 例えば、特許文献4には、その原理は不明であるが、送信波と反射波との混合波の周波数変化に基づいてスラグレベルを検知することや、マイクロ波の反射率からスラグレベルを検知することが記載されている。しかしながら、電気伝導度の小さい脱珪スラグでは、マイクロ波の反射率は非常に小さくて大部分は透過するので、溶銑浴面からの反射波や、溶銑浴面とスラグ表面での多重反射波も存在することから、特許文献4の方法ではスラグレベルを検知することができない。 For example, although the principle is unknown in Patent Document 4, the slag level is detected based on the frequency change of the mixed wave of the transmission wave and the reflected wave, or the slag level is detected from the reflectance of the microwave. It is described. However, with desiliconized slag with low electrical conductivity, the reflectivity of the microwave is very small and most of it is transmitted, so the reflected wave from the hot metal bath surface and the multiple reflected waves at the hot metal bath surface and slag surface are also Since it exists, the method of patent document 4 cannot detect a slag level.
 また、特許文献5では、送受信用のアンテナを炉内に挿入しており、高温のスラグや溶銑の液滴に晒される精錬炉内では、短時間の使用でもこれらの液滴がアンテナに付着して凝固するので、精錬期間中に連続して測定することは困難である。 Further, in Patent Document 5, a transmission / reception antenna is inserted in the furnace, and in a refining furnace exposed to high-temperature slag or hot metal droplets, these droplets adhere to the antenna even in a short time of use. It is difficult to measure continuously during the refining period.
特開平11-323420号公報Japanese Patent Laid-Open No. 11-323420 特開2001-271113号公報JP 2001-271113 A 特開平5-255726号公報JP-A-5-255726 特開昭59-41409号公報JP 59-41409 A 特開平3-281717号公報JP-A-3-281717
 本発明は上記事情に鑑みてなされたもので、その目的とするところは、1つの転炉型精錬炉を用いて溶銑の脱珪処理と脱燐処理とを、途中の排滓工程を挟んで連続して行う溶銑の予備処理方法において、脱珪処理後の排滓工程では、突沸的なスラグの流出を抑えたうえで、目標とする所定量の脱珪スラグを速やかに短時間で炉外に排出することができ、次工程の脱燐処理では、コスト面及び品質面から十分な脱燐処理を行うことを可能とする、溶銑の予備処理方法を提供することである。また、各種土木工事用材料に適した比較的嵩比重の小さいスラグが得られる、溶銑の予備処理方法を提供することである。 The present invention has been made in view of the above circumstances, and the object of the present invention is to perform hot metal desiliconization treatment and dephosphorization treatment using a single converter-type refining furnace with an intermediate waste removal step in between. In the continuous hot metal pretreatment method, after the desiliconization process, after the degassing process, the target amount of desiliconized slag can be quickly and quickly removed from the furnace in a short period of time. In the dephosphorization process of the next step, it is possible to provide a hot metal pretreatment method that enables sufficient dephosphorization process in terms of cost and quality. Another object of the present invention is to provide a hot metal pretreatment method capable of obtaining a slag having a relatively small bulk specific gravity suitable for various civil engineering materials.
 上記課題を解決するための本発明の要旨は以下のとおりである。
[1]転炉型精錬炉内の溶銑に上吹きランスから気体酸素源を供給して溶銑を脱珪処理する脱珪処理工程と、該脱珪処理工程で生成したスラグの少なくとも一部を前記転炉型精錬炉から排出する排滓工程と、該排滓工程後、前記転炉型精錬炉内にCaO系媒溶剤を添加し、前記上吹きランスから気体酸素源を供給して残留させた溶銑を脱燐処理する脱燐処理工程と、を有する溶銑の予備処理方法であって、前記脱珪処理中に炉内のスラグ高さを測定し、測定されたスラグ高さが炉内の溶銑浴面から炉口までの炉内フリーボードの高さに対して所定の範囲の比率となっている状態で、脱珪処理を終了することを特徴とする、溶銑の予備処理方法。
[2]前記比率の所定の範囲が0.5~0.9の範囲であることを特徴とする、上記[1]に記載の溶銑の予備処理方法。
[3]前記スラグ高さの測定結果に基づいて、前記脱珪処理中に、上吹きランスからの気体酸素源の供給流量、上吹きランスのランス高さ、底吹き羽口からの攪拌用ガスの供給流量、炉内のスラグの組成、フォーミング鎮静材の投入量の群から選択された少なくとも1種を調整し、この調整によって脱珪処理中における炉内のスラグ高さを制御することを特徴とする、上記[1]または上記[2]に記載の溶銑の予備処理方法。
[4]前記脱珪処理中における前記スラグ高さの炉内フリーボードの高さに対する比率が0.5~0.9の範囲内となるように、脱珪処理中における炉内のスラグ高さを制御することを特徴とする、上記[3]に記載の溶銑の予備処理方法。
[5]擬似ランダム信号処理レーダー方式マイクロ波距離計を用い、10GHz以下の周波数のマイクロ波を前記転炉型精錬炉内に送信して反射波を受信し、反射波の往復伝播時間から対象物までの距離を求め、受信した或る所定の強度以上の反射波の信号のうちで、反射波の信号に対応する対象物までの距離が炉口までの距離よりも大きく且つ炉口までの距離に最も近い反射波の信号をスラグ表面からの反射波の信号と判定してスラグ表面までの距離を求め、求めたスラグ表面までの距離に基づいて前記スラグ高さを測定することを特徴とする、上記[1]ないし上記[4]の何れか1項に記載の溶銑の予備処理方法。
[6]前記距離計で受信される反射波の信号のうちで、反射波の信号に対応する対象物までの距離が脱珪処理開始時から変化せずに、継続して存在する反射波の信号をノイズとして除去したうえで、前記スラグ表面からの反射波の信号を判定することを特徴とする、上記[5]に記載の溶銑の予備処理方法。
[7]擬似ランダム信号処理レーダー方式マイクロ波距離計を用い、10GHz以下の周波数のマイクロ波を前記転炉型精錬炉内に送信して炉内からの反射波を受信し、反射波の往復伝播時間から対象物までの距離を求め、炉口から溶銑浴面までの範囲に存在する対象物からの反射波の信号のうちで、反射波の信号に対応する対象物までの距離が脱珪処理開始時から変化せずに、継続して存在する反射波の信号をノイズとして除去したうえで、溶銑浴面に対応する反射波の信号を除いて最も反射強度が高い反射波の信号をスラグ表面からの反射波の信号と判定してスラグ表面までの距離を求め、求めたスラグ表面までの距離に基づいて前記スラグ高さを測定することを特徴とする、上記[1]ないし上記[4]の何れか1項に記載の溶銑の予備処理方法。
[8]前記転炉型精錬炉における前チャージの溶銑の脱燐処理工程終了後、脱燐処理した溶銑を出湯し、脱燐処理で生成した炉内のスラグを排出せずに前記転炉型精錬炉内に残留させた状態で新たな溶銑を前記転炉型精錬炉内に装入し、該溶銑に前記脱珪処理工程を施し、該脱珪処理終了時に、炉内スラグの塩基度を0.8以上1.5以下、溶銑の温度を1280℃以上1380℃以下、溶銑の珪素含有量を0.10質量%以下とし、前記排滓工程では、脱珪処理工程で生成したスラグの30質量%以上を炉外に排出し、その後、炉内の溶銑に前記脱燐処理工程を施し、該脱燐処理工程終了後、脱燐処理した溶銑を出湯し、脱燐処理で生成した炉内のスラグを排出せずに前記転炉型精錬炉内に残留させた状態で新たな溶銑を前記転炉型精錬炉内に装入し、この溶銑に対して予備処理を行うことを特徴とする、上記[1]ないし上記[7]の何れか1項に記載の溶銑の予備処理方法。
[9]排滓工程後の脱燐処理中に炉内のスラグ高さを測定し、上吹きランスからの気体酸素源の供給流量、上吹きランスのランス高さ、底吹き羽口からの攪拌用ガスの供給流量の群から選択された少なくとも1種を調整し、この調整により炉内のスラグが炉口から噴出しないように制御することを特徴とする、上記[1]ないし上記[8]の何れか1項に記載の溶銑の予備処理方法。
The gist of the present invention for solving the above problems is as follows.
[1] A desiliconization process for supplying a gaseous oxygen source from an upper blow lance to hot metal in a converter-type refining furnace to desiliconize the hot metal, and at least a part of the slag generated in the desiliconization process Exhaust process discharged from the converter-type refining furnace, and after the exhaust process, a CaO-based solvent was added to the converter-type refining furnace, and a gaseous oxygen source was supplied from the upper blowing lance to remain. A dephosphorization process for dephosphorizing the hot metal, and measuring the slag height in the furnace during the desiliconization process, and the measured slag height is the hot metal in the furnace A hot metal pretreatment method, characterized in that the desiliconization process is terminated in a state where the ratio of the freeboard in the furnace from the bath surface to the furnace opening is in a predetermined range.
[2] The hot metal pretreatment method according to [1], wherein the predetermined range of the ratio is in a range of 0.5 to 0.9.
[3] Based on the measurement result of the slag height, during the desiliconization process, the supply flow rate of the gaseous oxygen source from the top blowing lance, the lance height of the top blowing lance, and the gas for stirring from the bottom blowing tuyere Adjusting at least one selected from the group of supply flow rate, composition of slag in the furnace, and amount of forming sedative material, and controlling the slag height in the furnace during desiliconization by this adjustment The hot metal pretreatment method according to [1] or [2] above.
[4] The slag height in the furnace during the desiliconization process so that the ratio of the slag height to the height of the freeboard in the furnace during the desiliconization process is in the range of 0.5 to 0.9. The hot metal pretreatment method according to [3], wherein the hot metal is controlled.
[5] Using a pseudo-random signal processing radar type microwave rangefinder, a microwave having a frequency of 10 GHz or less is transmitted into the converter-type refining furnace to receive a reflected wave. The distance to the object corresponding to the reflected wave signal is greater than the distance to the furnace port and the distance to the furnace port among the received reflected wave signals with a certain intensity or higher. The signal of the reflected wave closest to is determined as the signal of the reflected wave from the slag surface, the distance to the slag surface is obtained, and the slag height is measured based on the obtained distance to the slag surface. The hot metal pretreatment method according to any one of [1] to [4] above.
[6] Of the reflected wave signals received by the distance meter, the distance to the object corresponding to the reflected wave signal does not change from the start of the desiliconization process, and the reflected waves that exist continuously The hot metal preliminary processing method according to [5], wherein a signal of a reflected wave from the slag surface is determined after removing the signal as noise.
[7] Using a pseudo-random signal processing radar-type microwave rangefinder, a microwave having a frequency of 10 GHz or less is transmitted into the converter-type refining furnace, a reflected wave from the furnace is received, and the reflected wave reciprocates. The distance from the time to the target object is obtained, and the distance to the target object corresponding to the reflected wave signal from the target wave existing in the range from the furnace port to the hot metal bath surface is desiliconized. The reflected wave signal that is continuously present without any change from the beginning is removed as noise, and the reflected wave signal with the highest reflection intensity is removed except for the reflected wave signal corresponding to the hot metal bath surface. [1] to [4], wherein the distance to the slag surface is determined as a signal of a reflected wave from the surface, and the slag height is measured based on the determined distance to the slag surface. The hot metal preparation according to any one of Processing method.
[8] After the completion of the dephosphorization process of the pre-charged hot metal in the converter type refining furnace, the hot metal subjected to the dephosphorization process is discharged, and the converter type is discharged without discharging the slag in the furnace generated by the dephosphorization process. Fresh hot metal left in the smelting furnace is charged into the converter-type smelting furnace, the hot metal is subjected to the desiliconization process, and the basicity of the slag in the furnace is set at the end of the desiliconization process. 0.8 to 1.5 or less, the temperature of the hot metal is 1280 ° C. or more and 1380 ° C. or less, the silicon content of the hot metal is 0.10% by mass or less, and in the exhausting process, 30 More than mass% is discharged out of the furnace, and then the dephosphorization process is performed on the hot metal in the furnace. After the dephosphorization process is completed, the dephosphorized hot metal is discharged and the furnace generated by the dephosphorization process New hot metal is left in the converter-type smelting furnace without being discharged in the converter-type smelting furnace. Charged with, and performs preliminary processing on the molten iron, the above-mentioned [1] to molten iron pretreatment method according to any one of the above [7] to.
[9] The slag height in the furnace is measured during the dephosphorization process after the exhausting process, the supply flow rate of the gaseous oxygen source from the top blowing lance, the lance height of the top blowing lance, and the stirring from the bottom blowing tuyere The above [1] to [8], wherein at least one selected from the group of supply flow rates of the working gas is adjusted, and the slag in the furnace is controlled not to be ejected from the furnace port by this adjustment. The hot metal pretreatment method according to any one of the above.
 本発明によれば、1つの転炉型精錬炉を用いて、溶銑の脱珪処理と脱燐処理とを、途中の排滓工程を挟んで連続して行う溶銑の予備処理において、脱珪処理終了の際に、フォーミングした脱珪スラグの高さを炉内フリーボードの高さに対して所定の範囲の比率とした状態で脱珪処理を終了するので、その後の排滓工程では、脱珪スラグの突沸的な流出を抑えたうえで、目標とする所定量の脱珪スラグを速やかに短時間で炉外に排出することが実現される。これにより、排滓工程を遅延させることなく円滑に行うことが可能となるとともに、次工程の脱燐処理では、少ないCaO系媒溶剤の使用量で溶銑の燐濃度を低濃度まで低減することが可能となる。 According to the present invention, in one preliminary treatment of hot metal, which uses a single converter-type smelting furnace, the hot metal desiliconization treatment and the dephosphorization treatment are continuously performed with an intermediate waste removal step interposed therebetween, the desiliconization treatment. At the end of the desiliconization process, the formed desiliconization slag is finished in a state where the height of the formed desiliconization slag is within a predetermined range with respect to the height of the freeboard in the furnace. It is possible to quickly discharge a predetermined amount of desiliconized slag as a target to the outside of the furnace in a short time after suppressing the sudden outflow of slag. As a result, it becomes possible to smoothly carry out the exhausting process without delaying, and in the dephosphorization process of the next process, the phosphorus concentration of the hot metal can be reduced to a low concentration with a small amount of CaO-based solvent used. It becomes possible.
図1は、本発明に係る溶銑の予備処理方法を実施する際に用いる転炉型精錬炉の概略断面図である。FIG. 1 is a schematic cross-sectional view of a converter-type refining furnace used when carrying out the hot metal pretreatment method according to the present invention. 図2は、本発明に係る溶銑の予備処理方法を工程順に示す概略図である。FIG. 2 is a schematic view showing the hot metal pretreatment method according to the present invention in the order of steps. 図3は、マイクロ波スラグレベル計を用いて採取した反射波の信号の1例を示す図である。FIG. 3 is a diagram illustrating an example of a reflected wave signal collected using a microwave slag level meter. 図4は、マイクロ波スラグレベル計により得られた測定結果から脱珪処理中での炉内のスラグ高さの推移を求めた図である。FIG. 4 is a diagram showing the transition of the slag height in the furnace during the desiliconization process from the measurement result obtained by the microwave slag level meter. 図5は、脱珪処理終了時のスラグ高さと中間排滓時間との関係を示す図である。FIG. 5 is a diagram showing the relationship between the slag height at the end of the desiliconization process and the intermediate evacuation time. 図6は、脱珪処理終了時のスラグ高さと脱燐処理終了後の溶銑中燐濃度との関係を示す図である。FIG. 6 is a diagram showing the relationship between the slag height at the end of the desiliconization process and the phosphorus concentration in the hot metal after the dephosphorization process. 図7は、上吹きランスからの送酸速度のスラグ高さに及ぼす影響を示す図である。FIG. 7 is a diagram showing the influence of the acid feed rate from the top blowing lance on the slag height. 図8は、上吹きランスのランス高さのスラグ高さに及ぼす影響を示す図である。FIG. 8 is a diagram showing the influence of the lance height of the top blowing lance on the slag height. 図9は、底吹きガス流量のスラグ高さに及ぼす影響を示す図である。FIG. 9 is a diagram showing the influence of the bottom blowing gas flow rate on the slag height. 図10は、本発明例1、2及び比較例1、2における脱珪処理中の炉内のフリーボードの高さに対するスラグ高さの比率の推移を示す図である。FIG. 10 is a graph showing the transition of the ratio of the slag height to the height of the free board in the furnace during the desiliconization process in Invention Examples 1 and 2 and Comparative Examples 1 and 2. 図11は、本発明例3、比較例2における脱燐処理中の炉内のフリーボードの高さに対するスラグ高さの比率の推移を示す図である。FIG. 11 is a graph showing the transition of the ratio of the slag height to the height of the free board in the furnace during the dephosphorization process in Invention Example 3 and Comparative Example 2.
 以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明に係る溶銑の予備処理方法を実施する際に用いる転炉型精錬炉の概略断面図、図2は、本発明に係る溶銑の予備処理方法を工程順に示す概略図である。尚、図1は、図2-(B)の脱珪処理工程を示す図である。 Hereinafter, the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of a converter type refining furnace used when carrying out the hot metal pretreatment method according to the present invention, and FIG. 2 is a schematic view showing the hot metal pretreatment method according to the present invention in the order of steps. . FIG. 1 is a diagram showing the desiliconization process of FIG. 2- (B).
 本発明による溶銑の予備処理方法では、図1に示すような上底吹き可能な転炉型精錬炉1を用いる。上吹きは、転炉型精錬炉1の内部を昇降可能な上吹きランス2を介して、上吹きランス2の先端から気体酸素源として酸素含有ガスを溶銑5に向けて供給して行われる。酸素含有ガスとしては、酸素ガス、酸素富化空気、空気、酸素ガスと不活性ガスとの混合ガスを使用することができる。図1では、酸素含有ガスとして酸素ガス8を使用した例を示している。ここで、酸素ガス8とは工業用純酸素である。底吹きは、転炉型精錬炉1の底部に設けられた底吹き羽口3を介して行われる。底吹きガス9としては、酸素ガスを含むガスでも、或いはアルゴンガスや窒素ガスなどの不活性ガスのみでもよい。また、溶銑中に吹き込むことにより溶銑5の攪拌を強化して冷鉄源の溶解を促進する機能を有するほか、底吹き羽口3から搬送用ガスとともに造滓剤を溶銑中に吹き込む機能を有するものでもよい。尚、図1の詳細な説明は後述する。 In the hot metal pretreatment method according to the present invention, a converter-type refining furnace 1 capable of top bottom blowing as shown in FIG. 1 is used. The top blowing is performed by supplying an oxygen-containing gas toward the hot metal 5 as a gaseous oxygen source from the tip of the top blowing lance 2 via the top blowing lance 2 that can move up and down inside the converter type refining furnace 1. As the oxygen-containing gas, oxygen gas, oxygen-enriched air, air, or a mixed gas of oxygen gas and inert gas can be used. FIG. 1 shows an example in which oxygen gas 8 is used as the oxygen-containing gas. Here, the oxygen gas 8 is industrial pure oxygen. The bottom blowing is performed through a bottom blowing tuyere 3 provided at the bottom of the converter type refining furnace 1. The bottom blowing gas 9 may be a gas containing oxygen gas or only an inert gas such as argon gas or nitrogen gas. Moreover, it has the function of strengthening the stirring of the hot metal 5 by blowing it into the hot metal and accelerating the melting of the cold iron source, and also has the function of blowing the iron making agent into the hot metal together with the conveying gas from the bottom blowing tuyere 3. It may be a thing. Details of FIG. 1 will be described later.
 本発明においては、溶銑5の精錬に2基以上の転炉型精錬炉1を使用し、そのうちの少なくとも1基の転炉型精錬炉1を本発明に係る溶銑予備処理に使用し、残りの少なくとも1基を、本発明に係る溶銑予備処理の施された溶銑5の脱炭精錬に使用する。つまり、溶銑予備処理用の転炉型精錬炉1で予備処理を行い、次いで、予備処理が施された溶銑5を脱炭精錬用の転炉型精錬炉1に移し替えて脱炭処理を行う。 In the present invention, two or more converter-type refining furnaces 1 are used for refining the hot metal 5, and at least one of these converter-type refining furnaces 1 is used for the hot metal pretreatment according to the present invention, and the rest At least one group is used for decarburization refining of the hot metal 5 subjected to the hot metal pretreatment according to the present invention. That is, the pretreatment is performed in the converter type refining furnace 1 for hot metal pretreatment, and then the hot metal 5 subjected to the pretreatment is transferred to the converter type refining furnace 1 for decarburization refining and decarburization treatment is performed. .
 本発明に係る溶銑5の予備処理方法では、図2-(A)に示すように、予め鉄スクラップなどの冷鉄源7が装入された転炉型精錬炉1に、装入鍋10を介して脱珪処理及び脱燐処理の施されていない溶銑5を装入する(溶銑装入工程)。 In the pretreatment method of the hot metal 5 according to the present invention, as shown in FIG. 2- (A), a charging pot 10 is placed in a converter-type refining furnace 1 in which a cold iron source 7 such as iron scrap is previously charged. Then, the hot metal 5 which has not been subjected to desiliconization and dephosphorization is charged (a hot metal charging step).
 次いで、この転炉型精錬炉内の溶銑5に、酸素源として気体酸素源或いは気体酸素源及び酸化鉄などの固体酸素源を供給して、図2-(B)に示すように脱珪処理を実施する(脱珪処理工程)。溶銑5に含有される珪素と酸素源中の酸素とが反応(Si+2O→SiO2)して脱珪処理が進行する。この脱珪反応による珪素の酸化熱で溶銑温度が上昇し、溶銑中の冷鉄源7の溶解が促進される。 Next, a gaseous oxygen source or a gaseous oxygen source and a solid oxygen source such as iron oxide are supplied as an oxygen source to the hot metal 5 in the converter-type refining furnace, and desiliconization treatment is performed as shown in FIG. (Desiliconization process). Silicon contained in the hot metal 5 reacts with oxygen in the oxygen source (Si + 2O → SiO 2 ), and the desiliconization process proceeds. The hot metal temperature rises due to the oxidation heat of silicon by this desiliconization reaction, and the dissolution of the cold iron source 7 in the hot metal is promoted.
 本発明では、1つの転炉型精錬炉1を用いて脱珪処理及び脱燐処理を実施しており、脱珪処理を実施する際には、前チャージの脱燐処理で生成した脱燐スラグが、転炉型精錬炉1の炉壁に付着して残留する。従って、脱珪処理において、脱珪スラグ6の塩基度((質量%CaO)/(質量%SiO2))(以下、単に「塩基度」とのみ表示することもある)を制御しない場合には、残留した脱燐スラグに含有される燐酸化物(P25)が分解して、溶銑5の燐濃度が上昇する、所謂、「復燐」が発生する虞がある。脱珪処理時でのCaO系媒溶剤の使用量を削減するべく、脱燐スラグを意図的に炉内に残留させる場合には、復燐による燐濃度のピックアップがより大きくなる虞がある。つまり、このような復燐を防止するために、脱珪処理で生成する脱珪スラグ6の塩基度を調整することが好ましい。 In the present invention, the desiliconization process and the dephosphorization process are performed by using one converter-type refining furnace 1, and when the desiliconization process is performed, the dephosphorization slag generated by the decharge process of the precharge is performed. However, it remains attached to the furnace wall of the converter type refining furnace 1. Therefore, when the basicity ((mass% CaO) / (mass% SiO 2 )) (hereinafter sometimes simply referred to as “basicity”) of the silica removal slag 6 is not controlled in the silicon removal treatment. The phosphorous oxide (P 2 O 5 ) contained in the remaining dephosphorization slag is decomposed, and so-called “rebound” may occur in which the phosphorus concentration in the hot metal 5 increases. If dephosphorization slag is intentionally left in the furnace in order to reduce the amount of CaO-based solvent used during desiliconization, there is a possibility that the phosphorus concentration pick-up due to dephosphorization will become larger. That is, in order to prevent such recovery, it is preferable to adjust the basicity of the desiliconized slag 6 generated by the desiliconization process.
 通常の脱珪処理条件においては、溶銑温度が1300℃程度で、且つ、脱珪スラグ中のFeO濃度が10~20質量%程度であり、これらを勘案すると、脱珪処理後の脱珪スラグ6の塩基度を0.8以上とすることで復燐反応が抑制される。 Under normal desiliconization conditions, the hot metal temperature is about 1300 ° C., and the FeO concentration in the desiliconization slag is about 10 to 20% by mass. By setting the basicity to 0.8 or more, the recovery reaction is suppressed.
 脱珪スラグ6の塩基度((質量%CaO)/(質量%SiO2))は、下記の(1)式に基づいて計算することができる。
塩基度=[(炉内残留CaO量(kg/溶銑-t))+(脱珪処理での添加CaO量(kg/溶銑-t))]/[(炉内残留SiO2量(kg/溶銑-t))+(脱珪処理での生成SiO2量(kg/溶銑-t))]・・・(1)
 尚、炉内残留CaO量及び炉内残留SiO2量は、炉内に残留する前チャージの脱燐スラグ中に含有されるCaO量及びSiO2量であり、脱珪処理での生成SiO2量は、脱珪処理前後の溶銑中Si濃度の変化から算出できる。
The basicity ((mass% CaO) / (mass% SiO 2 )) of the desiliconized slag 6 can be calculated based on the following formula (1).
Basicity = [(Remaining CaO amount in furnace (kg / molten metal-t)) + (Amount of added CaO in desiliconization treatment (kg / molten metal-t))] / [(Remaining SiO 2 amount in furnace (kg / molten metal) -t)) + (Amount of SiO 2 produced by desiliconization (kg / molten-t))] ... (1)
Incidentally, furnace residual amount of CaO and furnace residual amount of SiO 2 is the amount of CaO and SiO 2 amount contained in the dephosphorization slag before the charge remaining in the furnace, generating SiO 2 amount of desiliconization treatment Can be calculated from the change in the Si concentration in the hot metal before and after the silicon removal treatment.
 脱珪処理のための酸素源としては、上吹きランス2からの酸素ガス8のみでもよく、また、酸素ガス8と酸化鉄(図示せず)などの固体酸素源とを併用してもよい。短時間で行われる脱珪処理中に目標とする塩基度の脱珪スラグ6を生成させるためには、CaO系媒溶剤の滓化を促進させる機能を有する酸化鉄を使用することが効果的である。但し、本発明の目的の1つである多量の冷鉄源7を溶解させる観点からは、昇熱時及び分解時に吸熱する酸化鉄を多量に用いることは好ましくなく、従って、酸化鉄の使用量は必要最小限にすることが好ましい。また、精錬容器として転炉型精錬炉1を使用するので、酸素ガス供給速度を増大することが可能であり、酸素ガス8のみを用いて脱珪処理を行っても、十分にCaO系媒溶剤の滓化を促進させて目標とする塩基度の脱珪スラグ6を生成させることができる。 As the oxygen source for the desiliconization treatment, only the oxygen gas 8 from the top blowing lance 2 may be used, or the oxygen gas 8 and a solid oxygen source such as iron oxide (not shown) may be used in combination. In order to generate the desiliconized slag 6 having the target basicity during the desiliconization process performed in a short time, it is effective to use iron oxide having a function of promoting the hatching of the CaO-based solvent. is there. However, from the viewpoint of dissolving a large amount of cold iron source 7, which is one of the objects of the present invention, it is not preferable to use a large amount of iron oxide that absorbs heat during heating and decomposition. Is preferably minimized. Moreover, since the converter-type smelting furnace 1 is used as a smelting vessel, the oxygen gas supply rate can be increased, and even if the desiliconization process is performed using only the oxygen gas 8, the CaO-based solvent can be sufficiently used. It is possible to generate the desiliconized slag 6 having the target basicity by promoting the hatching.
 この脱珪処理工程のあとに、図2-(C)に示すように、転炉型精錬炉1を、出湯口4が設置された側とは反対側に傾動させて、脱珪処理で発生した、SiO2を大量に含む脱珪スラグ6を転炉型精錬炉1の炉口を介して下方の軌道上に配置したスラグポット(図示せず)に排出する(排滓工程)。炉口から溶銑5が流出しない範囲で転炉型精錬炉1を傾動させて、炉口からの溢流によって脱珪スラグ6を排出しており、傾動した炉体の炉口下端からのスラグ表面までの高さが高いほど効率的に排出することができるが、脱珪スラグ6を完全に排出することはできず、脱珪スラグ6の一部は炉内に残留する。脱珪スラグ6の排滓工程は、脱珪処理と脱燐処理との間で行われるので、「中間排滓」とも呼ぶ。 After this desiliconization process, as shown in Fig. 2- (C), the converter type refining furnace 1 is tilted to the side opposite to the side where the outlet 4 is installed, and is generated by the desiliconization process. The desiliconized slag 6 containing a large amount of SiO 2 is discharged through a furnace port of the converter-type refining furnace 1 to a slag pot (not shown) disposed on the lower track (exhaust process). The converter-type refining furnace 1 is tilted within a range in which the molten iron 5 does not flow out of the furnace port, and the desiliconized slag 6 is discharged by the overflow from the furnace port, and the slag surface from the lower end of the tilted furnace body The higher the height is, the more efficiently it can be discharged, but the desiliconized slag 6 cannot be completely discharged, and a part of the desiliconized slag 6 remains in the furnace. Since the removal process of the desiliconization slag 6 is performed between the desiliconization process and the dephosphorization process, it is also referred to as “intermediate waste removal”.
 排滓工程後は、転炉型精錬炉内に残留させた溶銑5にCaO系媒溶剤及び酸素源を供給して、図2-(D)に示すように、溶銑5を脱燐処理する(脱燐処理工程)。脱燐処理工程において、炉内のスラグの塩基度は1.3~3.5の範囲に調整する。この脱燐処理工程において使用する酸素源は、脱珪処理と同様に、上吹きランス2からの酸素ガス8を主体とするが、一部酸化鉄を使用しても構わない。但し、本発明は多量の冷鉄源7の溶解を目的の1つとするものであり、前述したように、昇熱時及び分解時に吸熱する酸化鉄を酸素源として使用することはできるだけ避けることが好ましい。 After the slagging step, the hot metal 5 remaining in the converter type refining furnace is supplied with a CaO-based solvent and an oxygen source, and the hot metal 5 is dephosphorized as shown in FIG. Dephosphorization process). In the dephosphorization process, the basicity of the slag in the furnace is adjusted to a range of 1.3 to 3.5. The oxygen source used in this dephosphorization process is mainly composed of the oxygen gas 8 from the top blowing lance 2 as in the desiliconization process, but a part of iron oxide may be used. However, the present invention is intended to dissolve a large amount of cold iron source 7, and as described above, it is possible to avoid using iron oxide that absorbs heat at the time of heating and decomposition as an oxygen source as much as possible. preferable.
 脱燐処理で使用するCaO系媒溶剤としては、生石灰や炭酸カルシウムなどが使用できる。但し、これらに限定されず、CaOを40質量%以上含有し、必要に応じてフッ素やアルミナ、酸化鉄などの他の成分を含有するものも、脱燐処理時のCaO系媒溶剤として使用することができる。このCaO系媒溶剤の添加方法としては、粒状及び塊状のものは炉上のホッパーから、粉状のものは上吹きランス2を介するなどして投入することができる。 As the CaO-based medium solvent used in the dephosphorization treatment, quick lime, calcium carbonate or the like can be used. However, it is not limited to these, What contains 40 mass% or more of CaO, and contains other components, such as a fluorine, an alumina, and an iron oxide as needed, is also used as a CaO type | system | group solvent solvent at the time of a dephosphorization process. be able to. As a method for adding the CaO-based medium solvent, granular and lump-shaped ones can be charged from a hopper on the furnace, and powdery ones can be charged through an upper blowing lance 2 or the like.
 溶銑中の燐は供給される酸素源中の酸素に酸化されて燐酸化物(P25)となり、この燐酸化物が、CaO系媒溶剤の滓化によって生成され、脱燐精錬剤として機能するスラグ中に3CaO・P25なる安定形態の化合物として取り込まれ、溶銑5の脱燐反応が進行する。脱燐処理後には、燐酸化物を含有する脱燐スラグが生成される。 Phosphorus in the hot metal is oxidized to oxygen in the supplied oxygen source to become phosphorus oxide (P 2 O 5 ), which is produced by the incubation of the CaO-based solvent and functions as a dephosphorizing refining agent. Incorporated into the slag as a stable compound of 3CaO · P 2 O 5 , the dephosphorization reaction of the hot metal 5 proceeds. After the dephosphorization treatment, dephosphorization slag containing a phosphorus oxide is generated.
 脱燐反応が進行して溶銑中燐濃度が所定の値に低下したなら、脱燐処理を終了する。次いで、図2-(E)に示すように、転炉型精錬炉1を出湯口4が設置された側に傾転させ、転炉型精錬炉内の溶銑5を、出湯口4を介して溶銑保持容器(図示せず)に出湯する(出湯工程)。 When the phosphorus removal reaction proceeds and the phosphorus concentration in the hot metal is lowered to a predetermined value, the phosphorus removal treatment is terminated. Next, as shown in FIG. 2- (E), the converter-type refining furnace 1 is tilted to the side where the outlet 4 is installed, and the hot metal 5 in the converter-type refining furnace is passed through the outlet 4. Hot water is poured into a hot metal holding container (not shown) (a hot water discharge step).
 この出湯工程後、炉内の脱燐スラグを排出せずに、転炉型精錬炉1に冷鉄源7及び溶銑5を装入し、次チャージの脱珪処理工程を開始してもよく、また、炉内の脱燐スラグを排出した後、冷鉄源7及び溶銑5を装入し、次チャージの脱珪処理工程を開始してもよい。炉内に生成された脱燐スラグの全量または大半を炉内に残留させて次チャージの脱珪処理を開始した場合には、前チャージの脱燐スラグの有する熱量及び鉄分を次チャージの脱珪処理において回収することができるとともに、前チャージの脱燐スラグ中のCaO分を次チャージの脱珪処理におけるCaO源として活用することができ、脱珪処理時のCaO系媒溶剤の使用量を削減することができる。 After discharging the hot water, without discharging the dephosphorization slag in the furnace, the converter type refining furnace 1 may be charged with the cold iron source 7 and the hot metal 5 to start the next charge desiliconization process, In addition, after the dephosphorization slag in the furnace is discharged, the cold iron source 7 and the hot metal 5 may be charged to start the next charge desiliconization process. When all or most of the dephosphorization slag generated in the furnace is left in the furnace and the next charge desiliconization process is started, the heat and iron content of the decharged slag from the previous charge are depleted. It can be recovered in the treatment, and the CaO content in the dephosphorization slag of the previous charge can be used as a CaO source in the desiliconization treatment of the next charge, reducing the amount of CaO-based solvent used during the desiliconization treatment can do.
 本発明では、このようにして溶銑5に脱珪処理及び脱燐処理を施す際に、排滓工程で所定量以上の脱珪スラグ6を迅速に炉外へ流出させることを目的として、脱珪処理中に脱珪スラグ6の高さを測定し、脱珪処理終了時点で測定されるスラグ高さ(炉内の静止時の溶銑浴面から脱珪スラグ6の上端までの距離)が目標範囲となるように、脱珪処理中に脱珪スラグ6をフォーミングさせる。尚、本発明者らは、脱珪処理終了時点での脱珪スラグ6のフォーミングが少ないと、脱珪スラグ6の流動性が低いので、所定時間内で十分な量の脱珪スラグ6を排出することが困難であることを確認している。従って、排滓工程で速やかに且つ十分な量の脱珪スラグ6を炉内から流出させるためには、脱珪処理終了時に所定のスラグ高さの範囲となるように、脱珪スラグ6をフォーミングさせる必要がある。ここで、スラグのフォーミングとは、溶融スラグが気泡を含み、見掛け上、体積膨脹する現象である。 In the present invention, when performing desiliconization treatment and dephosphorization treatment on the hot metal 5 in this way, the desiliconization slag 6 of a predetermined amount or more is quickly discharged out of the furnace in the exhausting step. The height of the desiliconized slag 6 is measured during the treatment, and the slag height (distance from the hot metal bath surface when stationary in the furnace to the upper end of the desiliconized slag 6) is the target range. Then, the desiliconization slag 6 is formed during the desiliconization process. In addition, since the fluidity of the desiliconization slag 6 is low when the forming of the desiliconization slag 6 is small at the end of the desiliconization process, the present inventors discharge a sufficient amount of the desiliconization slag 6 within a predetermined time. Make sure it is difficult to do. Therefore, in order to allow a sufficient amount of desiliconized slag 6 to flow out of the furnace quickly in the exhausting process, the desiliconized slag 6 is formed so as to be in a predetermined slag height range at the end of the desiliconization process. It is necessary to let Here, slag forming is a phenomenon in which molten slag contains bubbles and apparently expands in volume.
 従って、本発明で使用する転炉型精錬炉1は、炉内のスラグ高さを測定する機能を備えていることが必要となる。 Therefore, the converter type refining furnace 1 used in the present invention is required to have a function of measuring the slag height in the furnace.
 図1に示した本発明で用いる転炉型精錬炉1では、転炉型精錬炉1の炉口の上方には、炉内から発生する排ガスを回収するためのフード12が設けられ、フード12の上部には排ガスを集塵機に導入するための煙道11が設けられている。フード12には開口部13及び開口部14が設けられており、開口部13を貫通して上吹きランス2が炉内に挿入され、また、開口部14を貫通して、擬似ランダム信号処理レーダー方式マイクロ波距離計15(以下、単に「マイクロ波スラグレベル計15」と記す)に取り付けられた2本の導波管16が設置されている。2本の導波管16の先端には、それぞれ送信アンテナ17及び受信アンテナ18が開口部14の直下位置に設けられている。つまり、マイクロ波スラグレベル計15によって炉内の脱珪スラグ6の高さが測定されるように構成されている。 In the converter type refining furnace 1 used in the present invention shown in FIG. 1, a hood 12 for recovering exhaust gas generated from the furnace is provided above the furnace port of the converter type refining furnace 1. A flue 11 for introducing exhaust gas into the dust collector is provided at the top of the. The hood 12 is provided with an opening 13 and an opening 14, the upper blowing lance 2 is inserted into the furnace through the opening 13, and the pseudo-random signal processing radar passes through the opening 14. Two waveguides 16 attached to a system microwave distance meter 15 (hereinafter simply referred to as “microwave slag level meter 15”) are installed. A transmitting antenna 17 and a receiving antenna 18 are provided at positions directly below the opening 14 at the ends of the two waveguides 16, respectively. That is, the microwave slag level meter 15 is configured to measure the height of the desiliconized slag 6 in the furnace.
 フォーミングした脱珪スラグ6のマイクロ波に対する反射率は10-4以下と極めて小さいので、本発明の一つの実施形態では、擬似ランダム信号でマイクロ波を変調した信号を利用することによって、測定感度を高めたレーダーを使用している。擬似ランダム信号としては、例えば、800MHz程度の高周波のクロック信号から適当な論理回路を組み合わせて発生させる、6MHz程度の周波数で同じ波形を繰り返す擬似ランダム信号を用いることができる。これは、クロック信号が27回(128回)入力されて一巡する論理回路によって擬似ランダム信号を発生させた場合の例である。 Since the reflectivity of the formed siliconized slag 6 with respect to the microwave is as small as 10 −4 or less, in one embodiment of the present invention, the measurement sensitivity is improved by using a signal obtained by modulating the microwave with a pseudo-random signal. Using enhanced radar. As the pseudo-random signal, for example, a pseudo-random signal that repeats the same waveform at a frequency of about 6 MHz that is generated by combining an appropriate logic circuit from a high-frequency clock signal of about 800 MHz can be used. This is an example of a case where the clock signal to generate a pseudo-random signal by 2 7 times (128 times) logic circuit is input to round it.
 使用するマイクロ波の搬送波としては、例えば周波数約10GHzのマイクロ波を使用し、擬似ランダム信号を乗算して変調させたマイクロ波を、炉上のフード12の開口部14に設置した送信アンテナ17を介して転炉型精錬炉1の内部に向けて放射する。 As a microwave carrier to be used, for example, a microwave having a frequency of about 10 GHz is used, and a microwave that is modulated by multiplying a pseudo-random signal and a transmission antenna 17 installed in the opening 14 of the hood 12 on the furnace is used. And radiates toward the inside of the converter type refining furnace 1.
 ここで、周波数10GHzの電磁波の空中での波長は約3.0cmであり、10GHz未満の場合には波長はそれ以上であり、転炉型精錬炉内の粉塵や煙の粒子に比べて十分長いので、粉塵などの影響を受けにくく、しかも波長が短いので、アンテナの小形化に有利である。また送信アンテナ17及び受信アンテナ18は例えばホーンアンテナを用い、指向性を鋭く絞ることによりスラグ表面以外からの反射波を可及的に小さくする。マイクロ波の周波数は、低い方が粉塵などの影響を受けにくく、従って、本発明で使用するマイクロ波としては、周波数の上限値を10GHzとし、10GHzよりも低い方が好ましく、8GHz以下がより好ましい。但し、マイクロ波の周波数が低すぎると、時間及び距離の分解能が低下する問題があるとともに、アンテナの大型化が必要となり、アンテナへのダストの付着を防止するうえでも好ましくないことから、マイクロ波の周波数は2GHz以上とすることが好ましい。 Here, the wavelength in the air of the electromagnetic wave with a frequency of 10 GHz is about 3.0 cm, and when it is less than 10 GHz, the wavelength is longer than that, which is sufficiently longer than the dust and smoke particles in the converter type refining furnace. Therefore, it is hardly affected by dust and the wavelength is short, which is advantageous for downsizing of the antenna. The transmitting antenna 17 and the receiving antenna 18 are, for example, horn antennas, and the reflected waves from other than the slag surface are made as small as possible by reducing the directivity sharply. The lower the frequency of the microwave, the less susceptible to dust and the like. Accordingly, the microwave used in the present invention has an upper frequency limit of 10 GHz, preferably lower than 10 GHz, and more preferably 8 GHz or lower. . However, if the frequency of the microwave is too low, there is a problem that the resolution of time and distance is lowered, and the size of the antenna is required, which is not preferable for preventing dust from adhering to the antenna. Is preferably 2 GHz or more.
 送信アンテナ17から転炉型精錬炉内に向けて放射された電磁波はスラグ表面で反射され、受信アンテナ18を介して電気信号に変換される。マイクロ波スラグレベル計15の受信器へ入力信号が供給されるタイミングは、当然、送信アンテナ17から電磁波が放射されたタイミングから、電磁波が転炉型精錬炉内のスラグレベルまでの距離を往復し、受信アンテナ18に到達するまでの電磁波の伝播時間だけ遅延している。この伝播時間は、マイクロ波の搬送波に変調させた疑似ランダム信号の位相差を受信波と送信波とで比較することにより測定できる。 The electromagnetic wave radiated from the transmitting antenna 17 into the converter type refining furnace is reflected on the slag surface and converted into an electric signal through the receiving antenna 18. Naturally, the timing at which the input signal is supplied to the receiver of the microwave slag level meter 15 reciprocates the distance from the timing at which the electromagnetic wave is radiated from the transmitting antenna 17 to the slag level in the converter refining furnace. The electromagnetic wave is delayed by the propagation time of the electromagnetic wave until it reaches the receiving antenna 18. This propagation time can be measured by comparing the phase difference of a pseudo-random signal modulated on a microwave carrier wave between the received wave and the transmitted wave.
 その際、受信波と送信波とに変調された疑似ランダム信号成分の時間相関関数から、直接伝播時間を求めることもできるが、僅かにクロック周波数を変更して発生させた擬似ランダム信号を利用して信号処理を行うことで、時間相関関数の時間軸を大幅に拡大して分解能の高い測定を行うことが可能となる。 At that time, the propagation time can be directly obtained from the time correlation function of the pseudo random signal component modulated into the received wave and the transmitted wave, but the pseudo random signal generated by slightly changing the clock frequency is used. By performing signal processing in this way, it is possible to perform measurement with high resolution by greatly expanding the time axis of the time correlation function.
 例えば、800MHzの高周波のクロック信号から倫理回路を用いて発生させた約6MHzの周波数で同じ波形を繰り返す擬似ランダム信号に対して、4kHzだけ周波数を変化させたクロック信号(例えば、800.004MHz)から同じ論理回路を用いて発生させた擬似ランダム信号を利用する場合、両者の擬似ランダム信号を乗算すると、両者の位相が一致しない場合には乗算結果はクロック周波数程度以上の高周波成分のみとなるが、両者の位相が一致する場合には2つの同じ波形の擬似ランダム信号の乗算結果には直流成分あるいは低周波成分が生じることになる。そこで、更にローパスフィルタにより擬似ランダム信号の繰り返し周波数程度よりも高い周波数の信号成分を除去すると、4kHzの周期で2つの擬似ランダム信号の位相が一致するタイミングが検出される。これは、両者の擬似ランダム信号は、基準とするクロック周波数が4kHzだけ異なることから、少しずつ位相差が変化して、4kHzの周期で1回だけ位相が一致することによる。 For example, from a pseudo-random signal that repeats the same waveform at a frequency of about 6 MHz generated from an 800 MHz high-frequency clock signal using an ethical circuit, from a clock signal (for example, 800.004 MHz) whose frequency is changed by 4 kHz. When using pseudo-random signals generated using the same logic circuit, multiplying both pseudo-random signals, if both phases do not match, the multiplication result is only a high-frequency component about the clock frequency, When the two phases coincide with each other, a direct current component or a low frequency component is generated in the multiplication result of two pseudo-random signals having the same waveform. Therefore, when a signal component having a frequency higher than the repetition frequency of the pseudo random signal is further removed by the low-pass filter, a timing at which the phases of the two pseudo random signals coincide with each other at a period of 4 kHz is detected. This is because the pseudo-random signals of the two differ in the reference clock frequency by 4 kHz, so that the phase difference changes little by little and the phases coincide with each other only once in the period of 4 kHz.
 このようにして、約6MHzの擬似ランダム信号の繰り返し周波数の周期内での位相差、即ち時間遅れが、4kHzの周期内での時間差に変換されて、時間軸を約1500倍に拡大して、受信波と送信波の擬似ランダム信号の位相差を検出できる。 In this way, the phase difference within the repetition frequency period of the pseudo random signal of about 6 MHz, that is, the time delay is converted into the time difference within the period of 4 kHz, and the time axis is expanded by about 1500 times, The phase difference between the pseudo-random signal of the received wave and the transmitted wave can be detected.
 受信した反射波には、様々な経路及び対象物からの反射波が含まれており、それぞれの対象物からの反射波には、反射強度及び伝播時間分の位相遅れに対応した擬似ランダム信号成分が含まれている。このような反射波に対して、上記のクロック信号周波数を変更した擬似ランダム信号を用いた信号処理を行って、同様に信号処理した、送信波の信号と比較すると、伝播時間を約1500倍に拡大して、それぞれの対象物からの反射波成分の伝播時間及び強度に応じた信号が検出される。 The received reflected wave includes reflected waves from various paths and objects, and the reflected wave from each object has a pseudo-random signal component corresponding to the reflection intensity and the phase delay corresponding to the propagation time. It is included. For such a reflected wave, signal processing using a pseudo-random signal with the above clock signal frequency changed is performed, and the propagation time is increased by about 1500 times when compared with a signal of a transmission wave that has been similarly processed. It expands and the signal according to the propagation time and intensity | strength of the reflected wave component from each target object is detected.
 このようにして検出された信号について、送信波からの時間遅れを伝播時間に換算し、これにマイクロ波の伝播速度(3×108m/s)を乗じて、2で割ることにより、検出された信号に対応する対象物までの距離を算出できる。 The signal detected in this way is detected by converting the time delay from the transmission wave into the propagation time, multiplying this by the microwave propagation velocity (3 × 10 8 m / s), and dividing by 2. The distance to the object corresponding to the received signal can be calculated.
 図3は、前チャージの脱燐処理で生成した脱燐スラグを炉内に残留させ、当該チャージの溶銑5を炉内に装入した後に脱珪処理を行う際に、上記マイクロ波スラグレベル計15を用いて採取した反射波の信号の1例である。図3では、反射波の発生源となる対象物のアンテナからの距離と、その反射波の強度との関係を示している。図3の横軸は、検出された信号の送信波からの遅れ時間を、送信アンテナ17及び受信アンテナ18から対象物までの距離に換算した値を用いている。前述のような信号処理を行った場合には、図3のような反射波の検出信号が、4kHzの周期で得られるので、更に平均化処理を行って信号/ノイズの比を向上させつつ、スラグレベルの変化を連続的に計測することが可能である。 FIG. 3 shows the above-described microwave slag level meter when dephosphorization slag generated by the decharge process of the pre-charge is left in the furnace and the desiliconization process is performed after the molten iron 5 of the charge is charged in the furnace. 15 is an example of a reflected wave signal sampled using No. 15. FIG. 3 shows the relationship between the distance from the antenna of the object that is the source of the reflected wave and the intensity of the reflected wave. The horizontal axis of FIG. 3 uses a value obtained by converting the delay time of the detected signal from the transmission wave into the distance from the transmission antenna 17 and the reception antenna 18 to the object. When the signal processing as described above is performed, a detection signal of a reflected wave as shown in FIG. 3 is obtained with a period of 4 kHz, so that further averaging processing is performed to improve the signal / noise ratio, It is possible to continuously measure changes in the slag level.
 図3では複数の位置にピークを持つ反射波の検出信号が示されているが、強度が或る一定の値未満のピーク(反射波の信号)に関しては、炉体耐火物や炉壁付着地金、或いは上吹きランス2からの多重反射による反射波のピークであるとした。そして、或る一定の値以上の強度を持つピーク位置のうちで、アンテナからの距離が炉口までの距離よりも大きく、且つ炉口までの距離に最も近いピークをスラグ表面からの反射波のピークとした。 In FIG. 3, detection signals of reflected waves having peaks at a plurality of positions are shown. With respect to a peak whose intensity is less than a certain value (reflected wave signal), the furnace body refractory and the furnace wall adhesion ground The peak of the reflected wave due to multiple reflection from gold or the top blowing lance 2 was assumed. Among the peak positions having an intensity of a certain value or more, the peak closest to the distance to the furnace mouth with the distance from the antenna larger than the distance to the furnace mouth is the peak of the reflected wave from the slag surface. Peaked.
 具体的には、図3のような反射波の検出信号において、バックグランドレベルの100倍以上の強度を持つピークの中で、炉口までの距離よりも大きく、且つ炉口までの距離に最も近いピーク位置のものを、フォーミングした脱珪スラグ6の表面に対応するピークとした。尚、図3において、アンテナから炉口に相当する位置までの距離は約9mであり、アンテナからの距離が19m程度の幅の広い大きなピークは、溶銑浴面に対応するものである。 Specifically, in the detection signal of the reflected wave as shown in FIG. 3, the peak having an intensity of 100 times or more of the background level is larger than the distance to the furnace port and is the most in the distance to the furnace port. A peak corresponding to the surface of the formed desiliconized slag 6 was taken as the peak at the near peak position. In FIG. 3, the distance from the antenna to the position corresponding to the furnace opening is about 9 m, and a large wide peak whose distance from the antenna is about 19 m corresponds to the hot metal bath surface.
 また、脱珪処理開始時から発生位置(アンテナからの距離)が変化せずに継続して存在するピークは、スラグ表面からの反射波に対応するものではないと判断できるので、このようなピークをノイズとして除いたうえで、上記のようにしてスラグ表面に対応するピークを判定するようにすれば、更に信頼性の高い計測が可能である。 In addition, since it can be determined that the peak that has existed without changing the generation position (distance from the antenna) from the start of the desiliconization process does not correspond to the reflected wave from the slag surface, such a peak If the peak corresponding to the slag surface is determined as described above after removing the noise as a noise, a more reliable measurement is possible.
 また、脱珪処理開始時から継続して位置が変化せずに存在するピークをノイズとして除いたうえで、炉口から溶銑浴面までの範囲の位置に対応するピークのうち、溶銑浴面に対応する反射波のピークを除いて、最も強度が高いピークをスラグ表面からの反射波と判定して、スラグ表面までの距離を算出する方法も有効であり、信頼性の高い計測が可能である。 In addition, after removing the peak that does not change position continuously from the start of desiliconization as noise, out of the peaks corresponding to the position in the range from the furnace port to the hot metal bath surface, It is also effective to calculate the distance to the slag surface by determining the peak with the highest intensity as the reflected wave from the slag surface, excluding the corresponding reflected wave peak, enabling highly reliable measurement. .
 これらの方法で判定したスラグ表面の基準面(アンテナの位置)に対する高さから、当該チャージで投入した溶銑及び鉄スクラップ量の和から推定される溶銑浴面の基準面(アンテナの位置)に対する高さを減じ、その差の絶対値をスラグ高さとした。図4に、マイクロ波スラグレベル計15により得られた測定結果から脱珪処理中での炉内のスラグ高さの推移を求めた例を示す。得られたスラグ高さの妥当性については、フォーミングした脱珪スラグ6の炉口からの噴出(スラグのスロッピング)のタイミングとの照合により確認した。 From the height relative to the reference surface (antenna position) of the slag surface determined by these methods, the height relative to the reference surface (antenna position) of the hot metal bath surface estimated from the sum of the amount of hot metal and iron scrap charged by the charge The absolute value of the difference was defined as the slag height. In FIG. 4, the example which calculated | required transition of the slag height in the furnace during the desiliconization process from the measurement result obtained by the microwave slag level meter 15 is shown. The validity of the obtained slag height was confirmed by collating with the timing of ejection of the formed desiliconized slag 6 from the furnace port (slag slopping).
 また、本発明者らは、脱珪処理終了時のスラグ高さと中間排滓時間との関係、及び、脱珪処理終了時のスラグ高さと脱燐処理終了後の溶銑中燐濃度との関係について調査した。脱珪処理終了時のスラグ高さと中間排滓時間との関係の調査結果を図5に示し、また、脱珪処理終了時のスラグ高さと脱燐処理終了後の溶銑中燐濃度との関係の調査結果を図6に示す。図5及び図6の横軸は、スラグ高さの炉内のフリーボード(「空塔部」ともいい、静止時の溶銑浴面と炉口との間の空間)の高さ(静止状態での溶銑浴面と炉口との間の距離)に対する比率で示している。 In addition, the present inventors are concerned with the relationship between the slag height at the end of the desiliconization treatment and the intermediate waste time, and the relationship between the slag height at the end of the desiliconization treatment and the phosphorus concentration in the hot metal after the completion of the dephosphorization treatment. investigated. FIG. 5 shows the results of the investigation of the relationship between the slag height at the end of the desiliconization treatment and the intermediate evacuation time, and the relationship between the slag height at the end of the desiliconization treatment and the phosphorus concentration in the hot metal after the completion of the dephosphorization treatment. The survey results are shown in FIG. The horizontal axis in FIGS. 5 and 6 indicates the height of the free board in the furnace with the slag height (also referred to as “empty part”, the space between the hot metal bath surface and the furnace port when stationary) The distance between the hot metal bath surface and the furnace opening).
 スラグ高さの炉内フリーボードの高さに対する比率が0.9を超えると、脱珪スラグ6のフォーミングが激しすぎ、排滓中に一旦炉を立てて脱珪スラグ6を鎮静させる対応を採る必要があり、中間排滓時間の延長を招いた。一方、スラグ高さの炉内フリーボードの高さに対する比率が0.5未満の場合は、中間排滓時の脱珪スラグ6の排出性が悪く、次工程の脱燐処理においては、脱珪スラグ6が過剰に残留するためにスラグの塩基度が低下し、脱燐処理後の溶銑中の燐濃度が増加した。 If the ratio of the slag height to the height of the freeboard in the furnace exceeds 0.9, the forming of the desiliconized slag 6 will be too intense, and the furnace will be set up once during the evacuation to calm the desiliconized slag 6 It was necessary to take it, and the extension of the intermediate elimination time was invited. On the other hand, when the ratio of the slag height to the height of the freeboard in the furnace is less than 0.5, the discharge performance of the desiliconized slag 6 at the time of intermediate discharge is poor, and in the dephosphorization process of the next step, the silicon removal Since the slag 6 remained excessively, the basicity of the slag decreased, and the phosphorus concentration in the hot metal after the dephosphorization treatment increased.
 即ち、脱珪スラグ6のスラグ高さが、炉内のフリーボードの高さに対して0.5以上0.9以下の所定の範囲、好ましくは0.7以上0.9以下の所定の範囲の比率となっている状態で脱珪処理を終了することで、その後の排滓工程では、迅速に十分な量の脱珪スラグ6を炉外に排出することが実現され、これにより、次工程の脱燐処理では、少ないCaO系媒溶剤の使用量で溶銑の燐濃度を低濃度まで低減することが可能となることを確認した。尚、上記の所定の範囲の上限値及び下限値は、炉内プロフィールや炉口の形状の違いによっても最適値が異なると考えられるので、各精錬炉における実施形態に即して求めた図5及び図6のデータから、上記の上限値及び下限値を適宜上記の範囲内で調整することがより望ましい。 That is, the slag height of the desiliconized slag 6 is a predetermined range of 0.5 or more and 0.9 or less, preferably a predetermined range of 0.7 or more and 0.9 or less with respect to the height of the free board in the furnace. By completing the desiliconization process in the state of the ratio, it is realized that a sufficient amount of desiliconization slag 6 is quickly discharged out of the furnace in the subsequent exhausting process. In this dephosphorization treatment, it was confirmed that the phosphorus concentration of the hot metal can be reduced to a low concentration with a small amount of CaO-based solvent used. Note that the upper limit value and the lower limit value of the predetermined range are considered to be different from each other depending on differences in the furnace profile and the shape of the furnace port, and therefore, FIG. 5 obtained in accordance with the embodiment in each refining furnace. It is more desirable to adjust the above upper limit value and lower limit value within the above range from the data shown in FIG.
 更に、本発明者らは、脱珪処理中の上吹きランス2での上吹き条件及び底吹きガス流量を変化させる実験を行い、これらの操業因子がスラグ高さの変化に及ぼす影響について調査した。上吹きランス2からの送酸速度(酸素ガス供給流量)の変化によるスラグ高さの変化速度に及ぼす影響の調査結果を図7に示し、上吹きランス2のランス高さの変化によるスラグ高さ変化速度に及ぼす影響の調査結果を図8に示し、底吹きガス流量の変化によるスラグ高さの変化速度に及ぼす影響の調査結果を図9に示す。上吹きランス2からの送酸速度を高めるとスラグ高さが増大し(図7)、上吹きランス2のランス高さを大きくするとスラグ高さが増大し(図8)、また、底吹き羽口3からの攪拌用ガス流量を増加することでスラグ高さが減少すること(図9)がわかった。ここで、上吹きランス2のランス高さとは、上吹きランス2の下端から静止状態の溶銑浴面までの距離である。 Furthermore, the present inventors conducted experiments to change the top blowing conditions and bottom blowing gas flow rate in the top blowing lance 2 during the desiliconization process, and investigated the influence of these operating factors on the change in slag height. . Fig. 7 shows the results of an investigation on the effect of the change in the slag height due to the change in the oxygen feed rate (oxygen gas supply flow rate) from the top blowing lance 2, and the slag height due to the change in the lance height of the top blowing lance 2 FIG. 8 shows the result of the investigation on the influence on the change speed, and FIG. 9 shows the investigation result on the influence on the change speed of the slag height due to the change in the bottom blowing gas flow rate. Increasing the acid delivery speed from the top blowing lance 2 increases the slag height (FIG. 7). Increasing the lance height of the top blowing lance 2 increases the slag height (FIG. 8). It was found that the slag height was decreased by increasing the stirring gas flow rate from the port 3 (FIG. 9). Here, the lance height of the upper blowing lance 2 is the distance from the lower end of the upper blowing lance 2 to the hot metal bath surface in a stationary state.
 また、スラグ組成もスラグ高さに及ぼす影響は大きく、低塩基度、高酸化鉄濃度、或いは高アルミナ濃度の場合ほどスラグ高さは増大する傾向となるので、スラグ組成を調整するために、スラグ高さの測定結果に基づいて造滓剤の投入を行うことも有効である。更に、スラグ高さを減少させる調整を行う際には、固形の冷却剤やガス発生物質などのフォーミング鎮静材を用いることも効果的である。 In addition, the slag composition has a great influence on the slag height, and the slag height tends to increase as the low basicity, high iron oxide concentration, or high alumina concentration increases. It is also effective to add a slag-forming agent based on the height measurement result. Furthermore, when adjusting to reduce the slag height, it is also effective to use a forming soothing material such as a solid coolant or a gas generating substance.
 つまり、本発明においては、脱珪処理中に炉内の脱珪スラグ6の高さを測定するとともに、この測定結果に基づいて、上吹きランス2からの気体酸素源の供給流量、上吹きランス2のランス高さ、底吹き羽口3からの攪拌用ガスの供給流量、炉内のスラグの組成、フォーミング鎮静材の投入量の群から選択された少なくとも1種を調整し、この調整により炉内の脱珪スラグ6の高さが所定の範囲内になるように制御することが好ましい。これにより、脱珪処理終了時におけるスラグ高さの炉内のフリーボードの高さに対する比率を、上記の所定の範囲に調整することが容易に実現できる。 That is, in the present invention, the height of the desiliconization slag 6 in the furnace is measured during the desiliconization process, and the supply flow rate of the gaseous oxygen source from the upper blowing lance 2 and the upper blowing lance are determined based on the measurement result. At least one selected from the group of the lance height of 2, the supply flow rate of the stirring gas from the bottom blowing tuyere 3, the composition of the slag in the furnace, and the amount of foaming sedative input, and this adjustment It is preferable to control so that the height of the desiliconized slag 6 is within a predetermined range. Thereby, it is possible to easily adjust the ratio of the slag height to the height of the free board in the furnace at the end of the desiliconization process within the predetermined range.
 炉内のスラグ高さの測定は、脱珪処理に限ることはなく、脱燐処理においても上記に沿って行うことができる。脱燐処理では、脱燐スラグが炉口から噴出(スロッピング)しないように制御することで、添加したCaO系媒溶剤の噴出ロス分を抑制して、効率的な脱燐処理を行うことができる。つまり、脱燐処理においては、炉内のフリーボードの高さに対するスラグ高さの比率が1.0未満となるように調整すればよい。脱燐処理でも、上記説明のマイクロ波スラグレベル計15を用いてスラグ高さを測定することが好ましい。 The measurement of the slag height in the furnace is not limited to the desiliconization process, and can be performed in the dephosphorization process as described above. In the dephosphorization process, the dephosphorization slag is controlled so as not to be ejected (slipping) from the furnace port, thereby suppressing the ejection loss of the added CaO-based solvent and performing an efficient dephosphorization process. it can. That is, in the dephosphorization process, the ratio of the slag height to the height of the free board in the furnace may be adjusted to be less than 1.0. Even in the dephosphorization treatment, it is preferable to measure the slag height using the microwave slag level meter 15 described above.
 また、本発明において、排滓工程における脱珪スラグ6の排滓率(排滓率(質量%)=(排出スラグ質量)×100/[(脱珪処理工程で生成したスラグ質量)+(前チャージの残留スラグ質量)])は30質量%以上を確保することが好ましい。これは、その後の脱燐処理工程においては脱燐反応を進めるうえで脱燐スラグの塩基度を1.3~3.5に調整する必要があり、排滓率が30質量%を下回ると、脱燐処理工程で添加すべきCaO系媒溶剤の量が多くなってしまうからである。また、残留する脱珪スラグ量が多くなり過ぎると、脱燐処理におけるスラグ量が多くなり、脱燐処理中のスラグフォーミングが抑制できず、転炉型精錬炉1の炉口からのスラグの噴出による操業支障が生じる虞もある。 Further, in the present invention, the removal rate of the desiliconization slag 6 in the removal step (removal rate (mass%) = (discharge slag mass) × 100 / [(slag mass generated in the desiliconization treatment step) + (previous The charge residual slag mass)]) is preferably 30% by mass or more. This is because it is necessary to adjust the basicity of the dephosphorization slag to 1.3 to 3.5 in order to proceed with the dephosphorization reaction in the subsequent dephosphorization treatment step, and when the rejection rate is less than 30% by mass, This is because the amount of the CaO-based solvent to be added in the dephosphorization process increases. In addition, if the amount of desiliconization slag remaining is too large, the amount of slag in the dephosphorization process increases, and slag forming during the dephosphorization process cannot be suppressed, and slag is ejected from the furnace port of the converter refining furnace 1. There is also a risk that operational troubles may occur.
 また、脱珪スラグ6の排滓率を増大するために、脱珪処理終了時において、脱珪スラグ6の塩基度は0.5以上1.5以下とし、且つ、溶銑温度或いは脱珪スラグ6の温度を1280℃以上とすることが好ましい。脱珪スラグ6の塩基度が0.5未満の場合、粘度が上昇してスラグの流動性が低くなり、排出速度や排滓率の低下を招き易くなり、塩基度が1.5を超える場合、固相スラグが生じることでスラグ流動性が低くなる。また、スラグ温度が1280℃を下回っても、同様に固相スラグの増加によるスラグ流動性の低下、並びに、液相スラグ自体の粘性上昇が生じることから、脱珪スラグ6の流動性が低くなりスラグの排出速度や排滓率の低下を招き易くなる。 Further, in order to increase the removal rate of the desiliconization slag 6, the basicity of the desiliconization slag 6 is set to 0.5 to 1.5 at the end of the desiliconization process, and the hot metal temperature or the desiliconization slag 6 is increased. The temperature is preferably set to 1280 ° C. or higher. When the basicity of the desiliconized slag 6 is less than 0.5, the viscosity increases and the fluidity of the slag decreases, which tends to cause a decrease in the discharge rate and the rejection rate, and the basicity exceeds 1.5. The solid phase slag is generated, so that the slag fluidity is lowered. Moreover, even if the slag temperature falls below 1280 ° C., the decrease in slag fluidity due to the increase in the solid phase slag and the increase in viscosity of the liquid phase slag itself occur. The slag discharge speed and the reduction rate are likely to decrease.
 本発明者らは、上記排滓工程でスラグポットに排出された脱珪スラグ6をスラグポットからヤードに放流して固化させ、その後、粒径30mm程度以下に粉砕して製造した土木工事用のスラグ製品について、各種特性を調査した。また、この調査結果に基づき、各種土木工事用材料に適した比較的嵩比重の小さいスラグを得ることのできる、溶銑の予備処理方法について、更に検討した。 The present inventors have released the desiliconized slag 6 discharged in the slag pot in the above slag pot from the slag pot to the yard and solidified it, and then pulverized it to a particle size of about 30 mm or less. Various characteristics of slag products were investigated. In addition, based on the results of this investigation, we further studied a hot metal pretreatment method capable of obtaining a slag having a relatively low bulk specific gravity suitable for various civil engineering materials.
 規定の粒度及び締固め状態での脱燐スラグの単位体積質量は、2.0~2.3kg/L程度であり、天然土石材の1.6~1.8kg/Lに比べて大きい。そのために、脱燐スラグは、例えば、波浪に対する安定性が高まるなどして質量が大きい方が好まれる用途には適する反面、逆に重力的不安定性を助長することが懸念される土木工事用途には適用し難く、また、嵩比重が大きいことから輸送費用が増大するという欠点もあった。 The unit volume mass of dephosphorized slag in the specified particle size and compacted state is about 2.0 to 2.3 kg / L, which is larger than 1.6 to 1.8 kg / L of natural debris material. Therefore, dephosphorization slag is suitable for applications where higher mass is preferred, for example, due to increased stability against waves, but for civil engineering applications where there is a concern that it may promote gravitational instability. Is difficult to apply, and also has the disadvantages of increased transportation costs due to its large bulk specific gravity.
 従って、嵩比重の大きい脱燐スラグの発生量を極力低減し、脱燐スラグを低嵩比重の脱珪スラグ6に転換するためには、前チャージの脱燐処理工程後、炉内の溶銑を出湯した後、炉内の脱燐スラグを排出せず、炉内に前チャージの脱燐スラグを残留させたまま新たな溶銑を装入し、この溶銑に脱珪処理工程を施し、この脱珪処理後、排滓工程によって脱珪スラグ6の一部を精錬炉から排出し、その後、炉内に残留させた溶銑に脱燐処理工程を施す、という手順を繰り返して行う予備処理方法を採用することが好ましい。その際に、脱珪処理終了時において、脱珪スラグ6の塩基度は0.8以上1.5以下とし、溶銑温度或いは脱珪スラグ6の温度を1280℃以上1380℃以下とし、溶銑中珪素含有量を0.10質量%以下として、且つ、排滓工程では、脱珪スラグ6の30質量%以上を排出することが好ましい。 Therefore, in order to reduce the generation amount of dephosphorization slag having a large bulk specific gravity as much as possible and to convert the dephosphorization slag into the desiliconization slag 6 having a low bulk specific gravity, after the pre-charge dephosphorization process, After the hot water has been discharged, the dephosphorization slag in the furnace is not discharged, but the hot metal is charged with dephosphorization slag remaining in the furnace, and this hot metal is subjected to a desiliconization process. After the treatment, a preliminary treatment method is adopted in which a part of the desiliconization slag 6 is discharged from the smelting furnace by the exhausting process and then the dephosphorization process is performed on the hot metal remaining in the furnace. It is preferable. At that time, at the end of the desiliconization treatment, the basicity of the desiliconization slag 6 is 0.8 or more and 1.5 or less, and the hot metal temperature or the temperature of the desiliconization slag 6 is 1280 ° C or more and 1380 ° C or less. It is preferable to set the content to 0.10% by mass or less and to discharge 30% by mass or more of the desiliconized slag 6 in the exhausting step.
 脱珪スラグ6の塩基度を0.8以上1.5以下とし、溶銑温度或いは脱珪スラグ6の温度を1280℃以上1380℃以下とすることにより、前チャージの脱燐スラグから溶銑への復燐を防止しつつ、排滓工程での脱珪スラグ6の排出を効率的に行うことができる。ここで、脱珪処理終了時においては、脱珪スラグ6の温度は溶銑温度に近いので、溶銑温度或いは脱珪スラグ6の温度のどちらを指標としても構わない。溶銑温度は熱電対を溶銑に浸漬することによって測定できるが、測定値に代えて、脱珪処理前の溶銑の温度及び成分、鉄スクラップなどの各種冷鉄源の使用量、生石灰などの各種副原料の使用量、フェロシリコンなどの各種昇熱剤の使用量、並びに、酸素ガス供給量などの操業条件から、熱収支を計算して算出される溶銑温度を用いても構わない。 By setting the basicity of the desiliconized slag 6 to 0.8 or more and 1.5 or less and the hot metal temperature or the temperature of the desiliconized slag 6 to 1280 ° C or more and 1380 ° C or less, it is possible to restore the precharge dephosphorization slag to the hot metal. It is possible to efficiently discharge the desiliconized slag 6 in the exhausting process while preventing phosphorus. Here, since the temperature of the desiliconization slag 6 is close to the hot metal temperature at the end of the desiliconization process, either the hot metal temperature or the temperature of the desiliconization slag 6 may be used as an index. The hot metal temperature can be measured by immersing a thermocouple in the hot metal, but instead of the measured value, the temperature and composition of the hot metal before the desiliconization treatment, the amount of various cold iron sources such as iron scrap, and various auxiliary substances such as quick lime The hot metal temperature calculated by calculating the heat balance from the operating conditions such as the amount of raw material used, the amount of various heating agents such as ferrosilicon, and the amount of oxygen gas supplied may be used.
 また、脱珪処理後の溶銑中珪素含有量を0.10質量%以下とすることにより、スラグ中酸化鉄濃度が比較的低くなっても、脱珪処理中に脱炭反応によるCOガス発生が活発となるので、脱珪スラグ6のフォーミングが促進され、脱珪処理終了時においてスラグ高さを高くすることに有利になる。また、この場合には、排滓工程中にも脱珪スラグ6のフォーミングが維持されてスラグ高さが高く維持されるので、脱珪スラグ6の排出効率を高める点でも有利である。 In addition, by setting the silicon content in the hot metal after desiliconization to 0.10% by mass or less, even if the iron oxide concentration in the slag becomes relatively low, CO gas generation due to the decarburization reaction occurs during the desiliconization process. Since it becomes active, forming of the desiliconization slag 6 is promoted, which is advantageous in increasing the slag height at the end of the desiliconization process. Further, in this case, since the forming of the desiliconized slag 6 is maintained even during the discharging process and the slag height is maintained high, it is advantageous in terms of increasing the discharge efficiency of the desiliconized slag 6.
 排滓工程での脱珪スラグ6の排滓率は30質量%以上とすることが好ましい。これにより、前チャージの脱燐スラグを炉内に過剰に蓄積させることなく、また脱燐処理工程でのスラグ塩基度の過剰な低下を招くことなく、脱燐処理工程において生石灰などの脱燐剤使用量を抑制して溶銑中燐濃度を低下させることができる。 滓 The removal rate of the desiliconized slag 6 in the removal process is preferably 30% by mass or more. As a result, dephosphorizing agents such as quick lime in the dephosphorization treatment process without excessive accumulation of dephosphorization slag of the precharge in the furnace and without causing an excessive decrease in the slag basicity in the dephosphorization treatment process. The amount used can be suppressed and the phosphorus concentration in the hot metal can be lowered.
 上記のように脱珪処理終了時における条件を満たしつつ、脱珪処理終了時の炉内のスラグ高さを測定し、測定されたスラグ高さが、炉内フリーボードの高さに対して0.5~0.9などの所定の比率となるように調整して、排滓工程を行うことにより、比較的短時間で高い排滓率で脱珪スラグ6を転炉型精錬炉1から排出することが可能となる。このようにしてスラグポットに排出された脱珪スラグ6を、更にスラグポットからヤードに放流して固化させ、その後、粒径30mm程度以下に粉砕して製造した土木工事用のスラグ製品では、比較的微小な気泡を粒子内に含むことから、単位体積質量が1.2kg/L程度以下に低減される。その結果、低比重が望まれる用途に適するとともに、施工体積当りの運搬費用を低減する効果も得られる。 The slag height in the furnace at the end of the desiliconization process was measured while satisfying the conditions at the end of the desiliconization process as described above, and the measured slag height was 0 with respect to the height of the freeboard in the furnace. The desiliconization slag 6 is discharged from the converter-type refining furnace 1 at a high removal rate in a relatively short time by adjusting the predetermined ratio such as .5 to 0.9 and performing the removal process. It becomes possible to do. The desiliconized slag 6 discharged to the slag pot in this way is further discharged from the slag pot to the yard and solidified, and then pulverized to a particle size of about 30 mm or less. Since microscopic bubbles are included in the particles, the unit volume mass is reduced to about 1.2 kg / L or less. As a result, it is suitable for applications where a low specific gravity is desired, and an effect of reducing the transportation cost per construction volume can be obtained.
 単位体積質量が小さいスラグ製品を安定して製造するためには、脱珪処理終了時の脱珪スラグ6の塩基度を0.8以上1.25以下、スラグ温度を1360℃以下として粘度を増大させること、脱珪処理終了時のスラグ中の燐酸(P25)含有量を2質量%以上として表面張力を低下させること、スラグポットからヤードに放流する際に、傾斜したヤードを用いたり、スラグポットを移動させながら放流したりすることにより、放流するスラグを広範囲に分散させ、脱珪スラグ6の冷却速度を高めること、などが望ましい。尚、脱珪処理終了時のスラグ高さが、炉内フリーボードの高さに対して、0.5未満の比率で排滓工程を行ったチャージ群では、脱珪スラグ6の平均排滓率は30質量%未満となるとともに、平均単位体積質量は1.3kg/L程度に増大した。 In order to stably produce a slag product having a small unit volume mass, the basicity of the desiliconized slag 6 at the end of the desiliconization treatment is 0.8 to 1.25 and the slag temperature is 1360 ° C. or less to increase the viscosity. Reducing the surface tension by setting the phosphoric acid (P 2 O 5 ) content in the slag at the end of desiliconization to 2% by mass or more, or using an inclined yard when discharging from the slag pot to the yard It is desirable to disperse the discharged slag over a wide range by increasing the cooling rate of the desiliconized slag 6 by discharging the slag pot while moving it. In addition, in the charge group in which the slag height at the end of the desiliconization process was performed at a ratio of less than 0.5 with respect to the height of the freeboard in the furnace, the average evacuation rate of the desiliconized slag 6 And the average unit volume mass increased to about 1.3 kg / L.
 以上説明したように、本発明によれば、1つの転炉型精錬炉1を用いて、溶銑5の脱珪処理と脱燐処理とを、途中の排滓工程を挟んで連続して行う溶銑の予備処理において、脱珪処理の際に、フォーミングした脱珪スラグ6の高さが炉内フリーボードの高さに対して所定範囲の比率となっている状態で脱珪処理を終了するので、その後の排滓工程では、迅速に十分な量の脱珪スラグ6を炉外に排出することが実現される。 As described above, according to the present invention, using one converter-type refining furnace 1, the hot metal 5 is desiliconized and dephosphorized continuously with an intermediate waste process interposed therebetween. In the preliminary processing, the desiliconization process is completed in a state where the height of the formed desiliconization slag 6 is in a predetermined range with respect to the height of the freeboard in the furnace during the desiliconization process. In the subsequent evacuation process, it is realized that a sufficient amount of desiliconized slag 6 is quickly discharged out of the furnace.
 尚、本発明は上記説明の範囲に限るものではなく、種々の変更が可能である。例えば、上記説明では、マイクロ波スラグレベル計15を用いてスラグ高さを測定しているが、炉内の高さ方向温度プロフィールの測定、上吹きランスまたは炉体に取り付けた振動計の測定値、炉体から生じる音量の測定値などによるスラグ面の検知情報からもスラグ高さを測定することができる。 Note that the present invention is not limited to the above description, and various modifications can be made. For example, in the above description, the slag height is measured using the microwave slag level meter 15, but the measurement of the temperature profile in the height direction in the furnace, the measurement value of the top lance or the vibration meter attached to the furnace body. The slag height can also be measured from the detection information of the slag surface based on the measured value of the volume generated from the furnace body.
 図1に示す容量330トンの転炉型精錬炉を用い、本発明に係る溶銑予備処理(本発明例1~3)と、マイクロ波スラグレベル計によってスラグ高さを測定するものの、スラグ高さの制御を行わない従来法による溶銑予備処理(比較例1、2)とを、それぞれ20チャージずつ実施した。予備処理終了時の溶銑中燐濃度の目標値は、何れも0.030質量%とした。 The slag height is measured by using the converter type refining furnace having a capacity of 330 ton shown in FIG. 1 and measuring the slag height with the hot metal pretreatment (Invention Examples 1 to 3) according to the present invention and the microwave slag level meter. The hot metal preliminary treatment (Comparative Examples 1 and 2) according to the conventional method in which the above control was not performed was performed for 20 charges each. The target value of the phosphorus concentration in the hot metal at the end of the pretreatment was 0.030% by mass.
 本発明例1では、脱珪処理中、マイクロ波スラグレベル計を用いて酸素吹錬中のスラグ高さを測定し、上吹きランスからの送酸速度、ランス高さ、攪拌用ガス流量のうちの少なくとも1種を調整して、測定したスラグ高さの炉内のフリーボードの高さに対する比率が、脱珪酸素効率を50%と仮定することにより得られる脱珪に必要な酸素量を供給し終えた脱珪処理終了時点で0.5~0.9となるように調整し、中間排滓を行い、その後、酸素吹錬により脱燐処理を継続して行った。 In Example 1 of the present invention, during the desiliconization process, the slag height during oxygen blowing was measured using a microwave slag level meter, and among the acid feed rate from the top blowing lance, the lance height, and the stirring gas flow rate By adjusting at least one of the above, the ratio of the measured slag height to the freeboard height in the furnace supplies the amount of oxygen necessary for desiliconization obtained by assuming that the desiliconization oxygen efficiency is 50% At the end of the desiliconization treatment, the adjustment was made to be 0.5 to 0.9, intermediate waste was performed, and then the dephosphorization treatment was continued by oxygen blowing.
 本発明例2では、脱珪処理中、マイクロ波スラグレベル計を用いて酸素吹錬中のスラグ高さを測定し、上吹きランスからの送酸速度、ランス高さ、攪拌用ガス流量のうちの少なくとも1種を調整して、測定したスラグ高さの炉内のフリーボードの高さに対する比率が、脱珪酸素効率を50%と仮定することにより得られる脱珪に必要な酸素量を供給し終えた時点で0.5以上となるように調整しようとしたが、当該時間経過後に、炉内のフリーボードの高さに対するスラグ高さの比率が0.5未満であったため、酸素吹錬時間を延長し、フリーボードの高さに対するスラグ高さが0.5に到達した時点で脱珪処理を終了して中間排滓を行い、その後、酸素吹錬により脱燐処理を継続して行った。 In Example 2 of the present invention, during the desiliconization process, the slag height during oxygen blowing was measured using a microwave slag level meter, and among the acid feed rate from the top blowing lance, the lance height, and the stirring gas flow rate By adjusting at least one of the above, the ratio of the measured slag height to the freeboard height in the furnace supplies the amount of oxygen necessary for desiliconization obtained by assuming that the desiliconization oxygen efficiency is 50% At the end of the process, an attempt was made to adjust to 0.5 or more, but after the time had elapsed, the ratio of the slag height to the freeboard height in the furnace was less than 0.5. Extend the time, and when the slag height with respect to the height of the freeboard reaches 0.5, finish the desiliconization process and perform intermediate waste removal, and then continue the dephosphorization process by oxygen blowing. It was.
 本発明例3では、脱珪処理で本発明例1と同様の制御を行った後に中間排滓を行い、その後、脱燐処理中にマイクロ波スラグレベル計を用いて酸素吹錬中のスラグ高さを測定し、炉内のフリーボードの高さに対するスラグ高さの比率が0.8以上となった際には、上吹きランスからの送酸速度、ランス高さ、攪拌用ガス流量のうちの少なくとも1種を調整して、炉内のフリーボードの高さに対するスラグ高さの比率が1.0未満となるように調整して脱燐処理を行った。 In the present invention example 3, the same control as in the present invention example 1 is performed in the desiliconization process, and then intermediate waste is performed, and then the slag height during oxygen blowing is reduced using a microwave slag level meter during the dephosphorization process. When the ratio of the slag height to the height of the freeboard in the furnace is 0.8 or more, out of the acid feed rate from the top blowing lance, the lance height, and the stirring gas flow rate The dephosphorization treatment was performed by adjusting at least one of these so that the ratio of the slag height to the height of the free board in the furnace was less than 1.0.
 比較例1及び比較例2では、脱珪酸素効率を50%と仮定することにより得られる脱珪に必要な酸素量を供給し終えた時点で脱珪処理を終了し、中間排滓を行い、その後、酸素吹錬により脱燐処理を継続して行った。ここで、溶銑温度が1300℃以上を比較例1、溶銑温度が1300℃未満を比較例2とした。比較例1と比較例2とに比較例を区分する理由は、溶銑温度が1300℃以上と高い場合には、スラグの滓化が促進され、スラグ高さが高位で推移し、これに対して、溶銑温度が1300℃未満の場合には、スラグ高さが低位で推移することに基づく。 In Comparative Example 1 and Comparative Example 2, the desiliconization process is terminated at the time when the amount of oxygen necessary for desiliconization obtained by assuming that the desiliconization oxygen efficiency is 50%, and intermediate waste is performed. Then, the dephosphorization process was continued by oxygen blowing. Here, the hot metal temperature was 1300 ° C. or higher as Comparative Example 1, and the hot metal temperature was lower than 1300 ° C. as Comparative Example 2. The reason for dividing the comparative example into Comparative Example 1 and Comparative Example 2 is that when the hot metal temperature is as high as 1300 ° C. or higher, the slag hatching is promoted, and the slag height changes at a high level. When the hot metal temperature is less than 1300 ° C., the slag height is low.
 本発明例1~3及び比較例1、2とも、脱珪処理時の送酸速度は30000Nm3/hr、ランス高さは2.5m、底吹きガス流量は1200Nm3/hrを基準条件とした。また、脱燐処理時の送酸速度は25000Nm3/hr、ランス高さは2.1m、底吹きガス流量は1200Nm3/hrを基準条件とした。底吹きガスとしては、脱珪処理及び脱燐処理ともに窒素ガスを使用した。 In each of Invention Examples 1 to 3 and Comparative Examples 1 and 2, the acid feed rate during desiliconization was 30000 Nm 3 / hr, the lance height was 2.5 m, and the bottom blowing gas flow rate was 1200 Nm 3 / hr. . Further, the acid feed rate during the dephosphorization treatment was 25000 Nm 3 / hr, the lance height was 2.1 m, and the bottom blowing gas flow rate was 1200 Nm 3 / hr. As the bottom blowing gas, nitrogen gas was used for both the desiliconization process and the dephosphorization process.
 表1に、本発明例1~3及び比較例1、2のそれぞれの代表例の試験結果を示す。また、図10に、本発明例1、2及び比較例1、2のそれぞれの代表例における脱珪処理中の炉内のフリーボードの高さに対するスラグ高さの比率の推移を示す。また、図11に、本発明例3、比較例2のそれぞれの代表例における脱燐処理中の炉内のフリーボードの高さに対するスラグ高さの比率の推移を示す。表1、図10、図11では、それぞれの代表例を、本発明例1~3及び比較例1、2で表示している。 Table 1 shows test results of representative examples of Invention Examples 1 to 3 and Comparative Examples 1 and 2. FIG. 10 shows the transition of the ratio of the slag height to the height of the free board in the furnace during the desiliconization process in each of the representative examples of the present invention examples 1 and 2 and comparative examples 1 and 2. FIG. 11 shows the change in the ratio of the slag height to the height of the free board in the furnace during the dephosphorization process in each of the representative examples of Invention Example 3 and Comparative Example 2. In Table 1, FIG. 10, and FIG. 11, representative examples are shown in Invention Examples 1 to 3 and Comparative Examples 1 and 2, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す本発明例1では、溶銑温度が高く、脱珪処理初期の滓化速度が高いためにスラグ高さが高く推移した。そこで、脱珪処理開始2分後より底吹きガス流量を2400Nm3/hrに増加させた。これにより、スラグ高さの増加が抑制され、脱珪酸素効率を50%と仮定することにより得られる脱珪に必要な酸素量を供給し終えた時点における、炉内のフリーボードの高さに対するスラグ高さの比率は0.8となった。 In Invention Example 1 shown in Table 1, since the hot metal temperature was high and the hatching rate at the initial stage of the desiliconization process was high, the slag height was high. Therefore, the bottom blowing gas flow rate was increased to 2400 Nm 3 / hr 2 minutes after the start of the desiliconization treatment. As a result, an increase in the slag height is suppressed, and the amount of oxygen necessary for desiliconization obtained by assuming that the desiliconization oxygen efficiency is 50% is supplied to the height of the free board in the furnace. The ratio of slag height was 0.8.
 これに対して、本発明例1と同等の温度の溶銑を使用した、表1に示す比較例1では、スラグ高さの制御を行わないことから、脱珪処理終了時点での炉内のフリーボードの高さに対するスラグ高さの比率が1.0となり、中間排滓時にスラグの流出が激しく、一度傾動させた炉を再び起こし、鎮静剤を用いてスラグ高さを低くしてから再度中間排滓した。これにより、中間排滓時間が長くなった。 On the other hand, in Comparative Example 1 shown in Table 1 using hot metal having a temperature equivalent to that of Example 1 of the present invention, the slag height is not controlled. The ratio of the slag height to the board height is 1.0, and the slag flow is severe at the time of intermediate evacuation. The furnace once tilted is raised again, the slag height is lowered using a sedative, and then the middle is again I was rejected. This increased the intermediate elimination time.
 表1に示す本発明例2では、溶銑温度が低く、脱珪処理初期の滓化速度が低いためにスラグ高さが低く推移した。そこで、脱珪処理開始2分後より上吹きランスからの送酸速度を50000Nm3/hrに増加し、且つ、ランス高さも3.5mに増加して酸素吹錬を行った。しかし、脱珪酸素効率を50%と仮定することにより得られる脱珪に必要な酸素量を供給し終えた時点では、炉内のフリーボードの高さに対するスラグ高さの比率が0.5未満となった。そこで、酸素吹錬による脱珪処理を継続し、炉内のフリーボードの高さに対するスラグ高さの比率が0.5となった時点で脱珪処理を終了し、その後、中間排滓を行った。これにより、排滓工程での排滓率は70%と高くなった。 In Invention Example 2 shown in Table 1, since the hot metal temperature was low and the hatching rate at the initial stage of the desiliconization process was low, the slag height was low. Therefore, the oxygen feeding rate from the top blowing lance was increased to 50000 Nm 3 / hr and the lance height was also increased to 3.5 m after 2 minutes from the start of the desiliconization treatment, and oxygen blowing was performed. However, the ratio of the slag height to the height of the free board in the furnace is less than 0.5 when the supply of the oxygen amount necessary for desiliconization obtained by assuming that the desiliconization oxygen efficiency is 50%. It became. Therefore, the desiliconization process by oxygen blowing was continued, and when the ratio of the slag height to the freeboard height in the furnace reached 0.5, the desiliconization process was terminated, and then intermediate waste was performed. It was. Thereby, the rejection rate in the rejection process became as high as 70%.
 これに対して、本発明例2と同等の温度の溶銑を使用した表1に示す比較例2では、スラグ高さの制御を行わないことから、脱珪酸素効率を50%と仮定することにより得られる脱珪に必要な酸素量を供給し終えた時点では、炉内のフリーボードの高さに対するスラグ高さが0.5未満となった。その状態で中間排滓を行った結果、排滓率が低下し、その後の脱燐処理の塩基度が低下して脱燐不良を引き起こした。 On the other hand, in Comparative Example 2 shown in Table 1 using hot metal having the same temperature as Example 2 of the present invention, since the slag height is not controlled, the desiliconization oxygen efficiency is assumed to be 50%. At the time when the oxygen amount necessary for the obtained silicon removal was finished, the slag height with respect to the height of the free board in the furnace was less than 0.5. As a result of performing the intermediate waste in that state, the waste rate was lowered, and the basicity of the subsequent dephosphorization treatment was lowered to cause dephosphorization failure.
 表1に示す本発明例3では、脱珪処理時にスラグ高さを制御するとともに、脱燐処理中には、炉内のフリーボードの高さに対するスラグ高さの比率が1.0未満となるように、基準値に対して送酸速度を±5000Nm3/hrの範囲、ランス高さを±0.5mの範囲、底吹きガス流量を±1200Nm3/hrの範囲の何れか1種または2種以上の調整を実施した。これにより、脱燐処理中のスロッピングを防止することができ、炉内に装入したCaO系媒溶剤の炉外噴出を防ぐことができ、その結果、脱燐処理終了時の溶銑中燐濃度を低減させることができた。これに対して比較例2では、脱燐処理にスロッピング(スラグ噴出)が発生し、脱燐処理終了時の溶銑中燐濃度は目標値を達成できなかった。 In Example 3 of the present invention shown in Table 1, the slag height is controlled during the desiliconization process, and the ratio of the slag height to the freeboard height in the furnace is less than 1.0 during the dephosphorization process. Thus, with respect to the reference value, the acid feed rate is in the range of ± 5000 Nm 3 / hr, the lance height is in the range of ± 0.5 m, and the bottom blowing gas flow rate is in the range of ± 1200 Nm 3 / hr, either one or two More species adjustments were made. As a result, slopping during the dephosphorization process can be prevented, and the CaO-based solvent introduced into the furnace can be prevented from being blown out of the furnace. As a result, the phosphorus concentration in the hot metal at the end of the dephosphorization process Was able to be reduced. On the other hand, in Comparative Example 2, slopping (slag ejection) occurred in the dephosphorization process, and the phosphorus concentration in the hot metal at the end of the dephosphorization process could not achieve the target value.
 1 転炉型精錬炉
 2 上吹きランス
 3 底吹き羽口
 4 出湯口
 5 溶銑
 6 脱珪スラグ
 7 冷鉄源
 8 酸素ガス
 9 底吹きガス
 10 装入鍋
 11 煙道
 12 フード
 13 開口部
 14 開口部
 15 マイクロ波スラグレベル計
 16 導波管
 17 送信アンテナ
 18 受信アンテナ
DESCRIPTION OF SYMBOLS 1 Converter type refining furnace 2 Top blowing lance 3 Bottom blowing tuyere 4 Outlet 5 Hot metal 6 Desiliconization slag 7 Cold iron source 8 Oxygen gas 9 Bottom blowing gas 10 Charging pan 11 Flue 12 Hood 13 Opening 14 Opening 15 Microwave Slag Level Meter 16 Waveguide 17 Transmitting Antenna 18 Receiving Antenna

Claims (9)

  1.  転炉型精錬炉内の溶銑に上吹きランスから気体酸素源を供給して溶銑を脱珪処理する脱珪処理工程と、該脱珪処理工程で生成したスラグの少なくとも一部を前記転炉型精錬炉から排出する排滓工程と、該排滓工程後、前記転炉型精錬炉内にCaO系媒溶剤を添加し、前記上吹きランスから気体酸素源を供給して残留させた溶銑を脱燐処理する脱燐処理工程と、を有する溶銑の予備処理方法であって、前記脱珪処理中に炉内のスラグ高さを測定し、測定されたスラグ高さが炉内の溶銑浴面から炉口までの炉内フリーボードの高さに対して所定の範囲の比率となっている状態で、脱珪処理を終了することを特徴とする、溶銑の予備処理方法。 A desiliconization process for supplying a gaseous oxygen source to the hot metal in the converter type refining furnace from the top blowing lance to desiliconize the hot metal, and at least part of the slag generated in the desiliconization process is converted into the converter type An exhausting process for discharging from the refining furnace, and after the exhausting process, a CaO-based medium solvent is added into the converter type refining furnace, and a gaseous oxygen source is supplied from the upper blowing lance to remove the remaining hot metal. A hot metal pretreatment method comprising: measuring a slag height in the furnace during the desiliconization process, and measuring the slag height from the hot metal bath surface in the furnace. A hot metal preliminary treatment method, characterized in that the desiliconization process is terminated in a state where the ratio is within a predetermined range with respect to the height of the in-furnace freeboard to the furnace opening.
  2.  前記比率の所定の範囲が0.5~0.9の範囲であることを特徴とする、請求項1に記載の溶銑の予備処理方法。 The hot metal pretreatment method according to claim 1, wherein the predetermined range of the ratio is in the range of 0.5 to 0.9.
  3.  前記スラグ高さの測定結果に基づいて、前記脱珪処理中に、上吹きランスからの気体酸素源の供給流量、上吹きランスのランス高さ、底吹き羽口からの攪拌用ガスの供給流量、炉内のスラグの組成、フォーミング鎮静材の投入量の群から選択された少なくとも1種を調整し、この調整によって脱珪処理中における炉内のスラグ高さを制御することを特徴とする、請求項1または請求項2に記載の溶銑の予備処理方法。 Based on the measurement result of the slag height, during the desiliconization process, the supply flow rate of the gaseous oxygen source from the top blowing lance, the lance height of the top blowing lance, the supply flow rate of the stirring gas from the bottom blowing tuyere The composition of the slag in the furnace, adjusting at least one selected from the group of the amount of forming sedative material, the slag height in the furnace during the desiliconization process is controlled by this adjustment, The hot metal pretreatment method according to claim 1 or 2.
  4.  前記脱珪処理中における前記スラグ高さの炉内フリーボードの高さに対する比率が0.5~0.9の範囲内となるように、脱珪処理中における炉内のスラグ高さを制御することを特徴とする、請求項3に記載の溶銑の予備処理方法。 The slag height in the furnace during the desiliconization process is controlled so that the ratio of the slag height to the height of the freeboard in the furnace during the desiliconization process is in the range of 0.5 to 0.9. The hot metal pretreatment method according to claim 3, wherein:
  5.  擬似ランダム信号処理レーダー方式マイクロ波距離計を用い、10GHz以下の周波数のマイクロ波を前記転炉型精錬炉内に送信して反射波を受信し、反射波の往復伝播時間から対象物までの距離を求め、受信した或る所定の強度以上の反射波の信号のうちで、反射波の信号に対応する対象物までの距離が炉口までの距離よりも大きく且つ炉口までの距離に最も近い反射波の信号をスラグ表面からの反射波の信号と判定してスラグ表面までの距離を求め、求めたスラグ表面までの距離に基づいて前記スラグ高さを測定することを特徴とする、請求項1ないし請求項4の何れか1項に記載の溶銑の予備処理方法。 Using a pseudo-random signal processing radar-type microwave rangefinder, a microwave with a frequency of 10 GHz or less is transmitted into the converter type refining furnace to receive a reflected wave, and the distance from the round-trip propagation time of the reflected wave to the object Among the received reflected wave signals having a certain intensity or higher, the distance to the object corresponding to the reflected wave signal is larger than the distance to the furnace port and closest to the distance to the furnace port The reflected wave signal is determined as a reflected wave signal from the slag surface, a distance to the slag surface is obtained, and the slag height is measured based on the obtained distance to the slag surface. The hot metal pretreatment method according to any one of claims 1 to 4.
  6.  前記距離計で受信される反射波の信号のうちで、反射波の信号に対応する対象物までの距離が脱珪処理開始時から変化せずに、継続して存在する反射波の信号をノイズとして除去したうえで、前記スラグ表面からの反射波の信号を判定することを特徴とする、請求項5に記載の溶銑の予備処理方法。 Among the reflected wave signals received by the distance meter, the distance to the object corresponding to the reflected wave signal does not change from the start of the desiliconization process, and the reflected wave signal that exists continuously is noise. The hot metal preliminary processing method according to claim 5, wherein a signal of a reflected wave from the surface of the slag is determined after the removal.
  7.  擬似ランダム信号処理レーダー方式マイクロ波距離計を用い、10GHz以下の周波数のマイクロ波を前記転炉型精錬炉内に送信して炉内からの反射波を受信し、反射波の往復伝播時間から対象物までの距離を求め、炉口から溶銑浴面までの範囲に存在する対象物からの反射波の信号のうちで、反射波の信号に対応する対象物までの距離が脱珪処理開始時から変化せずに、継続して存在する反射波の信号をノイズとして除去したうえで、溶銑浴面に対応する反射波の信号を除いて最も反射強度が高い反射波の信号をスラグ表面からの反射波の信号と判定してスラグ表面までの距離を求め、求めたスラグ表面までの距離に基づいて前記スラグ高さを測定することを特徴とする、請求項1ないし請求項4の何れか1項に記載の溶銑の予備処理方法。 Using a pseudo-random signal processing radar type microwave rangefinder, a microwave with a frequency of 10 GHz or less is transmitted to the converter type refining furnace, a reflected wave from the furnace is received, and the target is determined from the round-trip propagation time of the reflected wave. Find the distance to the object, and among the reflected wave signals from the object existing in the range from the furnace port to the hot metal bath surface, the distance to the object corresponding to the reflected wave signal is The reflected wave signal that is continuously present without any change is removed as noise, and the reflected wave signal with the highest reflection intensity is reflected from the slag surface except for the reflected wave signal corresponding to the hot metal bath surface. The distance to the slag surface is determined by determining the signal as a wave, and the slag height is measured based on the obtained distance to the slag surface. Pretreatment method of hot metal as described in .
  8.  前記転炉型精錬炉における前チャージの溶銑の脱燐処理工程終了後、脱燐処理した溶銑を出湯し、脱燐処理で生成した炉内のスラグを排出せずに前記転炉型精錬炉内に残留させた状態で新たな溶銑を前記転炉型精錬炉内に装入し、該溶銑に前記脱珪処理工程を施し、該脱珪処理終了時に、炉内スラグの塩基度を0.8以上1.5以下、溶銑の温度を1280℃以上1380℃以下、溶銑の珪素含有量を0.10質量%以下とし、前記排滓工程では、脱珪処理工程で生成したスラグの30質量%以上を炉外に排出し、その後、炉内の溶銑に前記脱燐処理工程を施し、該脱燐処理工程終了後、脱燐処理した溶銑を出湯し、脱燐処理で生成した炉内のスラグを排出せずに前記転炉型精錬炉内に残留させた状態で新たな溶銑を前記転炉型精錬炉内に装入し、この溶銑に対して予備処理を行うことを特徴とする、請求項1ないし請求項7の何れか1項に記載の溶銑の予備処理方法。 After completion of the dephosphorization process of the pre-charged hot metal in the converter type refining furnace, the hot metal that has been dephosphorized is discharged and the slag generated in the dephosphorization process is discharged without discharging the slag in the furnace. In this state, fresh hot metal is charged into the converter type refining furnace, and the hot metal is subjected to the desiliconization process. At the end of the desiliconization process, the basicity of the furnace slag is set to 0.8. 1.5 or less, the hot metal temperature is 1280 ° C. or higher and 1380 ° C. or lower, the silicon content of the hot metal is 0.10% by mass or less, and in the exhausting step, 30% by mass or more of the slag generated in the desiliconization process Then, the dephosphorization process is performed on the hot metal in the furnace, and after the dephosphorization process, the dephosphorized hot metal is discharged, and the slag in the furnace generated by the dephosphorization process is discharged. New hot metal is left in the converter type refining furnace without being discharged and left in the converter type refining furnace. ON is, and performs preliminary processing on the molten pig iron, molten iron pretreatment method according to any one of claims 1 to 7.
  9.  排滓工程後の脱燐処理中に炉内のスラグ高さを測定し、上吹きランスからの気体酸素源の供給流量、上吹きランスのランス高さ、底吹き羽口からの攪拌用ガスの供給流量の群から選択された少なくとも1種を調整し、この調整により炉内のスラグが炉口から噴出しないように制御することを特徴とする、請求項1ないし請求項8の何れか1項に記載の溶銑の予備処理方法。 The slag height in the furnace was measured during the dephosphorization process after the exhausting process, the supply flow rate of the gaseous oxygen source from the top blowing lance, the lance height of the top blowing lance, and the stirring gas from the bottom blowing tuyere 9. At least one selected from a group of supply flow rates is adjusted, and control is performed so that slag in the furnace is not ejected from the furnace port by this adjustment. The hot metal pretreatment method according to claim 1.
PCT/JP2014/000236 2013-01-24 2014-01-20 Preliminary processing method for molten iron WO2014115526A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112015017155-9A BR112015017155B1 (en) 2013-01-24 2014-01-20 method for performing hot metal pretreatment
CN201480005778.XA CN104955965B (en) 2013-01-24 2014-01-20 The preprocess method of molten iron
KR1020157017305A KR101751151B1 (en) 2013-01-24 2014-01-20 Preliminary processing method for molten iron
JP2014524178A JP5761459B2 (en) 2013-01-24 2014-01-20 Hot metal pretreatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013010700 2013-01-24
JP2013-010700 2013-01-24

Publications (1)

Publication Number Publication Date
WO2014115526A1 true WO2014115526A1 (en) 2014-07-31

Family

ID=51227319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000236 WO2014115526A1 (en) 2013-01-24 2014-01-20 Preliminary processing method for molten iron

Country Status (6)

Country Link
JP (1) JP5761459B2 (en)
KR (1) KR101751151B1 (en)
CN (1) CN104955965B (en)
BR (1) BR112015017155B1 (en)
TW (1) TWI576437B (en)
WO (1) WO2014115526A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180126A (en) * 2015-03-23 2016-10-13 Jfeスチール株式会社 Slag height measuring device, slag height measuring method and preliminary treatment method of hot pig iron
JP2016197019A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 Level gauge, and level measuring method
CN107002154A (en) * 2014-12-16 2017-08-01 杰富意钢铁株式会社 The preprocess method of iron liquid
JP2017156345A (en) * 2016-02-26 2017-09-07 Jfeスチール株式会社 Antenna for charge level measuring apparatus, charge level measuring method, and converter furnace preparation processing method
KR20170103850A (en) 2015-02-10 2017-09-13 제이에프이 스틸 가부시키가이샤 Method for inhibiting foaming of molten slag, and method for manufacturing slag product
JP2018036224A (en) * 2016-09-02 2018-03-08 新日鐵住金株式会社 Level measurement method and level measurement device
JP2018053347A (en) * 2016-09-30 2018-04-05 Jfeスチール株式会社 Slag height measuring device, slag height measuring method and preliminary treatment method of molten iron
JP2018095935A (en) * 2016-12-15 2018-06-21 新日鐵住金株式会社 Preliminary treatment method for molten iron
JP7568923B2 (en) 2021-01-05 2024-10-17 日本製鉄株式会社 Refining Method
JP7568922B2 (en) 2021-01-05 2024-10-17 日本製鉄株式会社 Refining Method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012257A1 (en) * 2016-07-14 2018-01-18 新日鐵住金株式会社 Method for estimating phosphorus concentration in molten steel and converter blowing control device
CN106011381B (en) * 2016-07-22 2018-04-24 唐山正丰钢铁有限公司 A kind of molten steel extra furnace dephosphorization production technology
TWI703219B (en) * 2018-04-24 2020-09-01 日商日本製鐵股份有限公司 Dephosphorization method of hot metal
CN112834696A (en) * 2020-12-30 2021-05-25 中煤科工集团重庆研究院有限公司 Resistance reducing agent slag carrying capacity detection method and device
CN114606360A (en) * 2022-02-20 2022-06-10 山西太钢不锈钢股份有限公司 Production process of high-silicon molten iron low lime in CONARC electric furnace

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230929A (en) * 1984-04-27 1985-11-16 Nippon Steel Corp Method for operating converter
JPH03281716A (en) * 1990-03-30 1991-12-12 Nkk Corp Instrument for measuring slag level in furnace
JPH059533A (en) * 1991-07-01 1993-01-19 Sumitomo Metal Ind Ltd Method for treating molten iron
JPH0987722A (en) * 1995-09-26 1997-03-31 Nippon Steel Corp Method for refining molten crude stainless steel
JPH10152714A (en) * 1996-11-25 1998-06-09 Nippon Steel Corp Method for refining molten iron
JP2000273519A (en) * 1999-03-24 2000-10-03 Kawasaki Steel Corp Method for removing slag from torpedo car
JP2001271113A (en) * 2000-03-27 2001-10-02 Nippon Steel Corp Converter-refining method for by-producing steel manufacturing slag having low free lime content
JP2004190101A (en) * 2002-12-12 2004-07-08 Nippon Steel Corp Method for pre-treating molten iron

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2038825A1 (en) * 1990-03-30 1991-10-01 Akio Nagamune In-furnace slag level measuring apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230929A (en) * 1984-04-27 1985-11-16 Nippon Steel Corp Method for operating converter
JPH03281716A (en) * 1990-03-30 1991-12-12 Nkk Corp Instrument for measuring slag level in furnace
JPH059533A (en) * 1991-07-01 1993-01-19 Sumitomo Metal Ind Ltd Method for treating molten iron
JPH0987722A (en) * 1995-09-26 1997-03-31 Nippon Steel Corp Method for refining molten crude stainless steel
JPH10152714A (en) * 1996-11-25 1998-06-09 Nippon Steel Corp Method for refining molten iron
JP2000273519A (en) * 1999-03-24 2000-10-03 Kawasaki Steel Corp Method for removing slag from torpedo car
JP2001271113A (en) * 2000-03-27 2001-10-02 Nippon Steel Corp Converter-refining method for by-producing steel manufacturing slag having low free lime content
JP2004190101A (en) * 2002-12-12 2004-07-08 Nippon Steel Corp Method for pre-treating molten iron

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002154A (en) * 2014-12-16 2017-08-01 杰富意钢铁株式会社 The preprocess method of iron liquid
CN115074489A (en) * 2014-12-16 2022-09-20 杰富意钢铁株式会社 Pretreatment method of molten iron
KR20170103850A (en) 2015-02-10 2017-09-13 제이에프이 스틸 가부시키가이샤 Method for inhibiting foaming of molten slag, and method for manufacturing slag product
CN107208169A (en) * 2015-02-10 2017-09-26 杰富意钢铁株式会社 The foaming sedation methods and the manufacture method of clinker product of molten slag
JP2016180126A (en) * 2015-03-23 2016-10-13 Jfeスチール株式会社 Slag height measuring device, slag height measuring method and preliminary treatment method of hot pig iron
JP2016197019A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 Level gauge, and level measuring method
JP2017156345A (en) * 2016-02-26 2017-09-07 Jfeスチール株式会社 Antenna for charge level measuring apparatus, charge level measuring method, and converter furnace preparation processing method
JP2018036224A (en) * 2016-09-02 2018-03-08 新日鐵住金株式会社 Level measurement method and level measurement device
JP2018053347A (en) * 2016-09-30 2018-04-05 Jfeスチール株式会社 Slag height measuring device, slag height measuring method and preliminary treatment method of molten iron
JP2018095935A (en) * 2016-12-15 2018-06-21 新日鐵住金株式会社 Preliminary treatment method for molten iron
JP7568923B2 (en) 2021-01-05 2024-10-17 日本製鉄株式会社 Refining Method
JP7568922B2 (en) 2021-01-05 2024-10-17 日本製鉄株式会社 Refining Method

Also Published As

Publication number Publication date
BR112015017155B1 (en) 2021-06-08
JP5761459B2 (en) 2015-08-12
JPWO2014115526A1 (en) 2017-01-26
BR112015017155A2 (en) 2020-10-13
TW201437377A (en) 2014-10-01
TWI576437B (en) 2017-04-01
CN104955965A (en) 2015-09-30
KR20150088889A (en) 2015-08-03
KR101751151B1 (en) 2017-06-26
CN104955965B (en) 2017-09-22

Similar Documents

Publication Publication Date Title
JP5761459B2 (en) Hot metal pretreatment method
JP6172194B2 (en) Hot metal pretreatment method
JP6693536B2 (en) Converter steelmaking method
JP2017133060A (en) Method for refining molten iron
JP6252531B2 (en) Slag height measuring device, slag height measuring method and hot metal pretreatment method
JP5343506B2 (en) Hot phosphorus dephosphorization method
JP5967139B2 (en) Hot metal pretreatment method
JP2003239009A (en) Dephosphorization refining method of hot metal
JP5983900B1 (en) Hot metal pretreatment method
JP5289906B2 (en) Forming suppression method in dephosphorization process
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP2004083989A (en) Method for producing molten low phosphorus iron
JP5522202B2 (en) How to remove hot metal
JP5402383B2 (en) Steelmaking refining process using converter and method for producing low phosphorus steel
JP2000160222A (en) Method for dealing with slag foaming at the time of pre- treating molten iron
JP2003147425A (en) Method for desiliconizing molten iron
JP2001131626A (en) Desiliconizing treatment method of molten iron
JP2004115910A (en) Method for refining molten iron
JP5341583B2 (en) Dephosphorization slag outflow prevention method
JP2010126744A (en) Method for dephosphorizing molten pig iron
JP2007119814A (en) Method for refining molten iron
JPH0517809A (en) Hearth desulfurization method for blast furnace
JPS6393811A (en) Pretreating method for molten iron
JP2000282123A (en) Method for desiliconizing molten iron
JP2010126745A (en) Method for dephosphorizing molten pig iron

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014524178

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157017305

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015/08512

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201505115

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14743579

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015017155

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015017155

Country of ref document: BR

Free format text: ESCLARECA O NUMERO DE PCT O QUAL A PRESENTE FASE NACIONAL SE VINCULA, TENDO EM VISTA QUE O NUMERO APONTADO NO FORMULARIO SE REFERE A PEDIDO INTERNACIONAL DIVERGENTE DO REQUERIDO. FOI POSSIVEL ENCONTRAR UM NUMERO DE PCT NA GRU DO PEDIDO, MAS E FULCRAL O ESCLARECIMENTO DO NUMERO CORRETO PARA QUE O EXAME DE ADMISSIBILIDADE POSSA CONTINUAR.

ENP Entry into the national phase

Ref document number: 112015017155

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150717