WO2014114824A1 - Catalizadores y su uso en la obtención de alcoholes superiores - Google Patents

Catalizadores y su uso en la obtención de alcoholes superiores Download PDF

Info

Publication number
WO2014114824A1
WO2014114824A1 PCT/ES2013/070035 ES2013070035W WO2014114824A1 WO 2014114824 A1 WO2014114824 A1 WO 2014114824A1 ES 2013070035 W ES2013070035 W ES 2013070035W WO 2014114824 A1 WO2014114824 A1 WO 2014114824A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
combination
impregnation
carried out
gas
Prior art date
Application number
PCT/ES2013/070035
Other languages
English (en)
French (fr)
Inventor
Ricardo ARJONA ANTOLÍN
Juan Luís SANZ YAGÜE
Agustín MARTÍNEZ FELIU
Raúl MURCIANO MARTÍNEZ
Original Assignee
Abengoa Bioenergía Nuevas Tecnologías, S. A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Bioenergía Nuevas Tecnologías, S. A. filed Critical Abengoa Bioenergía Nuevas Tecnologías, S. A.
Priority to PCT/ES2013/070035 priority Critical patent/WO2014114824A1/es
Priority to ES201590080A priority patent/ES2549197B1/es
Publication of WO2014114824A1 publication Critical patent/WO2014114824A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)

Definitions

  • the present invention relates to a process for obtaining a sulfur multimetallic catalyst and its use in the production of higher alcohols (C2 +), mainly ethanol, by catalytic conversion of synthesis gas.
  • the invention relates to the catalyst obtainable by said process. Therefore, the invention could be framed in the field of catalysts for obtaining alcohols.
  • MoS 2 molybdenum sulphide
  • One of the most used methods in the literature for the preparation of alkalized and co-promoted M0S2 supported catalysts is the sequential or single stage impregnation (co-impregnation) of the support with an aqueous solution of sulfur-free metal precursors.
  • Said impregnation is carried out, generally using a volume of solution equivalent to the pore volume of the support (impregnation to pore volume or incipient humidity), although it is also possible to perform it using an excess of solution with respect to the pore volume.
  • the materials are generally subjected to a calcination treatment to decompose the metal precursors.
  • said calcination treatment can optionally be performed after the addition of each of the metal precursors or in a final stage after the incorporation of the last metal precursor.
  • a thermal decomposition is carried out in the atmosphere inert (between 300-500 ° C) in order to form the active phases of the catalyst, already in its sulphided state.
  • a thermal decomposition is carried out in the atmosphere inert (between 300-500 ° C) in order to form the active phases of the catalyst, already in its sulphided state.
  • a sulfur-containing Mo precursor such as ammonium tetratiomolibdate (NH 4 ) 2MoS 4 , which is heat treated in the presence of N2 at 500 ° C to form M0S2 and then mixed physically by grinding with the alkaline precursor and the support.
  • catalysts which consist mainly of molybdenum sulfide (Mo) or tungsten (W), promoted by one or more alkali metals (group 1) or alkaline earth metals (group 2 ) and optionally co-promoted by transition metals (groups 8, 9 and 10).
  • Mo molybdenum sulfide
  • W tungsten
  • group 1 alkali metals
  • group 2 alkaline earth metals
  • transition metals groups 8, 9 and 10
  • the catalysts are of a mass nature (not supported), they are obtained by a process that initially comprises the thermal decomposition of a sulfur molybdenum precursor (such as (NH4) 2MoS4) at temperatures of 300-600 ° C resulting in sulfide of molybdenum (M0S2).
  • a sulfur molybdenum precursor such as (NH4) 2MoS4)
  • M0S2 sulfide of molybdenum
  • the catalyst can also be prepared by co-precipitation of a multimetallic solid by adding aqueous solutions of a sulfur molybdenum precursor and soluble precursors of the metal promoters, followed by heat treatment of the precipitate obtained, generally in inert atmosphere
  • the present invention relates to a process for obtaining a supported sulfur multimetallic catalyst, the catalyst obtainable by said method and its use in the production of higher alcohols (C 2 +), primarily ethanol, by catalytic conversion of synthesis gas.
  • the present invention presents, individually or jointly, the following advantages over the prior art catalysts:
  • a first aspect of the present invention relates to a process for obtaining a supported sulfur multimetallic catalyst comprising the components M1 M2 x M3 and , characterized in that it comprises the following steps: a) impregnation of a support with a solution that it comprises at least one compound of M1 and at least one compound of M2; b) impregnation of the solid obtained in step (a) with a solution comprising at least one M3 compound; c) sulfurization of the solid obtained in the previous stage; where, M1 is selected from the list comprising molybdenum (Mo), tungsten (W) and any combination thereof; M2 is selected from the list comprising Co, Ni and any combination thereof;
  • M3 is selected from the group of alkalines and any combination thereof;
  • x and M3 are the molar ratios of M2 and M3, respectively, with respect to M1;
  • x has a value between 0.1 -5, preferably between 0.2 and 2;
  • a second aspect of the present invention relates to a catalyst obtainable by the process as described above.
  • a third aspect of the present invention relates to the use of the catalyst as described above for the production of higher alcohols (C2 +) by catalytic conversion of synthesis gas.
  • a fourth aspect of the present invention relates to the process for obtaining higher alcohols (C 2 +) from synthesis gas comprising a step of contact between the catalyst as described above and a gas stream comprising synthesis gas
  • a first aspect of the present invention relates to a process for obtaining a supported sulfur multimetallic catalyst comprising the components M1 M2 x M3 and (hereafter referred to as method of the invention), characterized in that it comprises the following steps: a) impregnation of a support with a solution comprising at least one M1 compound and at least one M2 compound; b) impregnation of the solid obtained in step (a) with a solution comprising at least one M3 compound; c) sulfurization of the solid obtained in the previous stage; where,
  • M1 is selected from the list comprising molybdenum (Mo), tungsten (W) and any combination thereof;
  • x and M3 are the molar ratios of M2 and M3, respectively, with respect to M1;
  • x has a value between 0.1 -5, preferably between 0.2 and 2;
  • y has a value between 0.1-10, preferably between 0.2 and 5; characterized in that the dissolution of the impregnation step (a) further comprises a complexing agent.
  • supported sulfur multimetallic catalyst is meant a catalyst comprising more than one type of metal atom and sulfur, and which It is scattered on a support.
  • the catalyst comprises at least three different metal elements or components.
  • impregnation in the context of the invention means the action of contacting the support with a solution comprising compounds of the metals that are part of the catalytic precursor.
  • catalytic precursor in the context of the invention is meant the dry solid that is obtained after step (b), also called fresh catalyst.
  • the impregnation can be "wet impregnation”, also called “impregnation to excess pore volume” or “impregnation to pore volume”, also called “impregnation to incipient moisture” (also IWI, from the English Incipient Wetness Impregnation).
  • the impregnation of excess pore volume is carried out by impregnating a support with a volume of a solution comprising one or more metal precursors greater than the pore volume of the support.
  • the suspension of the support in the above solution is kept under stirring, preferably for several hours at room temperature and subsequently the solvent is removed by rotary evaporation and dried in an oven.
  • the impregnation to pore volume consists in putting the support in contact with the necessary volume of a solution to fill all the pores thereof, where the solution comprises the metals that are to be incorporated into the support.
  • the "pore volume" impregnation can be carried out in a single stage or in successive stages with intermediate drying.
  • the impregnation of step (a) may be an impregnation to excess pore volume.
  • the impregnation of steps (a) and (b) are "pore volume" impregnations.
  • the impregnations of steps (a) and (b) may comprise one or more drying steps.
  • the impregnation steps (a) and (b) comprise at least one drying step, more preferably at a temperature between 50 ° C and 200 ° C, even more preferably between 70 ° C and 120 ° C and even more preferably between 80 ° C and 1 10 ° C.
  • the dry solid that is obtained after step (b) is the catalytic precursor, also called fresh catalyst.
  • solutions comprising the compounds of M1, M2 and M3 are used.
  • the solvent used is selected from water, ammonia solution and any of its mixtures.
  • the complexing agent is citric acid
  • the solvent is preferably water.
  • the dissolution of the compounds of M1 and M2 also comprises a complexing agent.
  • the catalysts obtained by this process have higher ethanol activities and selectivities than those of the impregnating catalysts that do not comprise a complexing agent in this process step.
  • "Sulfurization" means the process of combining a component with sulfur. In the context of the invention by sulfurization, the process is understood by which the catalytic precursor comprising the support and the compounds of M1, M2 and M3, that is, the solid obtained in step (b) of the process of the invention is it reacts with sulfur so that a catalyst is obtained which mainly comprises the support and the metals M1, M2 and M3 and sulfur.
  • the sulfurization is preferably carried out on the dry solid obtained in the previous step.
  • the stage prior to sulfurization may be the impregnation stage (b) with at least one M3 compound, or the solid activation stage (b ') obtained in the impregnation stage (b), which will be detailed below.
  • alkali group is the group of metals selected from the list comprising lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) and francium (Fr).
  • molar ratios of M2, M3 or complexing agent with respect to M1 we mean the number of moles of M2, M3 or complexing agent per mole of M1.
  • complexing agent is meant any organic compound capable of forming a complex with M1 and / or M2, individually (monometallic complex) or jointly (bimetallic complex).
  • complexing agents in the context of the invention are nitrileacetic acid, ethylenediaminetetraacetic acid, ethylenediamine, triethylene glycol, 1, 2- diaminocyclohexanetratraacetic acid, citric acid, oxalic acid, malonic acid, in addition to the complexing agents listed below as examples of di acids -, tri- and tetracarboxylic.
  • the complex obtained is called chelate and the agent that is capable of forming it is called a chelating agent.
  • the complexing agent is a chelating agent.
  • this chelating agent is a carboxylic acid comprising at least two carboxyl groups (-COOH). These carboxyl groups form the chelate with M1 and M2.
  • dicarboxylic acid are oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, italic acid, isophthalic acid and terephthalic acid.
  • the chelating agent is an organic molecule comprising at least three carboxyl groups.
  • Non-limiting examples of tricarboxylic and tetracarboxylic acids are citric acid, isocitric acid, trimesic acid, aconitic acid, ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA).
  • citric acid isocitric acid
  • trimesic acid trimesic acid
  • aconitic acid ethylenediaminetetraacetic acid
  • EDTA ethylenediaminetetraacetic acid
  • NTA nitrilotriacetic acid
  • NTA nitrilotriacetic acid
  • complexing agents such as nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA) or citric acid have been used.
  • the complexing agent is EDTA or NTA
  • the solvent in which the impregnation of step (a) is carried out preferably comprises ammonia to facilitate its dissolution, that is, an ammoniacal solution is preferably used. Therefore, preferably the complexing agent is selected from the list comprising ethylenediaminetetraacetic acid, nitrileacetic acid, citric acid and any combination thereof, and more preferably the complexing agent is citric acid.
  • the sulfurized multimetallic catalyst may also comprise at least one element selected from the list comprising Re, Ru, Ir, Zn, Ga, In, Ge, Sn, Sm and any combination thereof . These elements would be incorporated into the catalytic precursor in the impregnation step (a), together with the dissolution of the M1 and M2 compounds.
  • the molar ratio of the complexing agent to M1 in the solution of step (a) is 0.1 to 5, preferably 0.3 to 3. Excellent results are they have obtained when the molar ratio of the complexing agent to M1 is between 0.5 and 1.
  • x has a value between 0.3 and 1.
  • y has a value between 0.5 and 1.5. More preferably “x” is approximately 0.5 and "y” is approximately 1.
  • M1 is Mo.
  • the percentage by weight of Mo with respect to the total dry weight of the solid obtained after step (b) is between 2% and 50%, even more preferably between 5% and 30%.
  • M2 is Co.
  • M2 metals are often called co-promoters and increase the overall yield / selectivity to higher alcohols.
  • M3 is preferably selected from the list comprising K, Cs and any of its combinations, more preferably M3 is K.
  • the alkalizing function of M3 allows to obtain optimum performance at higher alcohols (C2 +) and minimize hydrocarbon generation .
  • the support is selected from the list comprising metal carbides, oxides, activated carbon, carbon nanotubes and any combination thereof.
  • metal carbides is meant compounds that are formed from the bond between carbon and a metal, such as transition metal carbides.
  • Non-limiting examples of metal carbides are tungsten carbide or titanium carbide.
  • Oxides means any oxide selected from the list comprising clay, zeolites, hydrotalcites, Si0 2, Ti0 2, AI 2 Ü3, Zr0 2, a lanthanide element oxide and any combination thereof.
  • the carrier is selected from the list comprising active charcoal, Si0 2, Ti0 2, AI 2 Ü3 and any combination thereof.
  • the support is AI 2 Ü3 and even more preferably ⁇ - ⁇ 2 0 3 .
  • the support of ⁇ - ⁇ 2 03 obtained by calcination in muffle at 500 ° C of the Boehmite Catapal B (Sasol) having a high specific surface gives the catalyst good results in terms of performance and selectivity.
  • the specific surface is usually determined by the BET method.
  • the BET method Brunauer-Emmett-Teller
  • the compounds of M1, M2 and M3 that are used in the impregnation steps do not comprise sulfur.
  • the catalytic precursor is subsequently sulphided, in the stage (c) of sulfurization.
  • the compounds of M1, M2 and M3 can be oxides, complexes with organic ligands or salts. Preferably said compounds are salts. Salts in the context of the invention are understood as salts of the compounds either in their anhydrous or hydrated form.
  • the solution used in step (a) comprises at least one compound of M1 and one compound of M2, in addition to the complexing agent.
  • the compound of M1 is selected from molybdic acid (H2M0O4), wolframic acid (H2WO4), molybdenum oxide (VI) (M0O3), tungsten oxide (VI) (WO3), ammonium heptamolybdate (( ⁇ 4) 6 ⁇ 7 ⁇ 24) , ammonium metatungstate (( ⁇ 4 ) 6 ⁇ 2 ⁇ ⁇ 2 ⁇ 4 ⁇ ) and any combination thereof, more preferably the M1 compound is selected from ammonium heptamolybdate, ammonium metatungstate and any combination thereof, even more preferably the M1 compound is ammonium heptamolybdate .
  • M1 compounds mentioned are not soluble in water per se, they are in the presence of the complexing agent.
  • the M2 compound is a salt that is selected from the list comprising a nitrate, chloride, carbonate, acetate and any combination thereof, more preferably nitrate, carbonate, acetate or any combination thereof, and even more preferably a nitrate.
  • M2 is Co
  • the compound of M2 is more preferably cobalt (II) nitrate.
  • the M3 compound is a salt that is selected from the list comprising a nitrate, chloride, carbonate, hydroxycarbonate, acetylacetonate, carboxylate, citrate and any combination thereof, preferably a carbonate.
  • each impregnation can comprise one or several drying steps, preferably oven drying.
  • the method further comprises a step (b ') after (b) and before (c) activating the solid obtained in step (b).
  • This step (b ') is preferably carried out subsequently to the drying step of the impregnation of step (b).
  • the impregnated solid, preferably dried is preferably subjected to an activation step that is preferably carried out by a heat treatment, more preferably at a temperature between 200 ° C and 700 ° C and even more preferably at a temperature between 250 ° C and 550 ° C.
  • this activation step is preferably carried out under a sulfur-free gas stream, more preferably under a gas stream comprising air, N 2 , noble gas, H 2 , synthesis gas or any combination thereof, even more preferably under a gas stream comprising N 2 , noble gas, H 2 or any combination thereof, even more preferably under a stream comprising N 2 , noble gas or any combination thereof.
  • sulfurization of the catalytic solid or precursor is carried out.
  • the sulfuration of step (c) can be carried out by any of the methods known to a person skilled in the art, but preferably this is done by exposing the solid to a gas stream comprising a sulfur compound.
  • the sulfur compound is selected from the list comprising: a compound of formula R1 R2S where R1 and R2 can be the same or different from each other and are selected from hydrogen, alkyl (dC 6 ), aryl, or R1 and R 2 they are united forming an optionally substituted thiophene group.
  • R1 and R2 are the same and are selected from hydrogen, forming hydrogen sulfide (H2S), or alkyl, forming a dialkyl sulfide type compound (R1 R2S, where R1 and R2 are the same and are selected from methyl , ethyl, propyl or benzyl) and more preferably is H 2 S.
  • C1-C6 alkyl linear or branched alkyls comprising 1 to 6 carbon atoms. Non-limiting examples are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, hexyl and isohexyl.
  • the alkyl group may be substituted, preferably by an aryl group.
  • aryl is meant an aromatic carbocyclic chain, having from 6 to 12 carbon atoms, being able to be single or multiple ring, in the latter case with separate and / or condensed rings.
  • a non-limiting example of aryl is a phenyl group.
  • the aryl group may be optionally substituted.
  • the gas stream of step (c) further comprises a gas selected from H 2 , N 2 , noble gas, synthesis gas and any combination thereof.
  • the molar ratio of the sulfur compound in the gas stream is preferably between 1% and 85%, more preferably between 6% and 20% and the sulfurization temperature is between 200 ° C and 750 ° C, more preferably between 300 ° C and 600 ° C.
  • a second aspect of the present invention relates to a catalyst (from now on catalyst of the invention) obtainable by the process of the invention, as described above.
  • a third aspect of the present invention relates to the use of the catalyst of the invention as as described above, for the production of higher alcohols (C 2 +) by catalytic conversion of syngas, preferably the higher alcohol is ethanol.
  • higher (C 2 +) alcohols is meant aliphatic, linear or branched chains, having 2 or more carbon atoms, preferably from 2 to 6 carbon atoms, and with at least one -OH substituent, non-limiting examples are ethanol , propanol, 2-propanol, isopropanol, n-butanol, 2- butanol, isobutanol, 1-pentanol, 2-pentanol, 3-pentanol, isopentanol, 1-hexanol, 2-hexanol, 3-hexanol and isohexanol.
  • a fourth aspect of the present invention relates to the process of obtaining higher alcohols (C 2+ ) from synthesis gas comprising a step (i) of contact between the catalyst of the invention, as described above, and a gas stream comprising synthesis gas.
  • the molar ratio H 2 / CO in this current is between 0.5 and 3, more preferably between 0.5 and 2.
  • the gas stream further preferably comprises a sulfur compound that can be selected from the list comprising a sulfide of formula Ri R 2 S, where R 1 and R 2 have been described above.
  • the sulfur compound may be hydrogen sulfide (H 2 S), or a dialkyl sulfide type compound, and even more preferably it is H 2 S.
  • the concentration of the sulfur compound in the stream Feeding is between 1 and 5000 parts per million. More preferably, it is between 20 and 200 parts per million.
  • the process for obtaining higher alcohols is carried out at a pressure of between 1 and 200 bar, preferably between 10 and 100 bar. In addition, it is preferably carried out at a temperature between 100 ° C and 600 ° C, preferably between 200 ° C and 400 ° C.
  • the process for obtaining higher alcohols is carried out in a fixed bed reactor, preferably it is carried out continuously in a fixed bed reactor.
  • the higher alcohol is ethanol
  • the process further comprises a step (ii) after (i) separating the products obtained in step (i) into at least one gas stream and one liquid stream.
  • the method further comprises a step (iii) after (ii) of recirculation of the gas stream to step (i).
  • the current recirculated to step (i) is between 70% and 95% of the unreacted synthesis gas separated in step (ii), more preferably between 85% and 93% of the unreacted synthesis gas separated in step (ii).
  • the process further comprises a step (iv) of separating methanol from the liquid stream obtained in step (ii).
  • the method further comprises a step (v) of recirculating the methanol separated in step (iv) to step (i).
  • steps (i), (ii), (iii), (iv) and (v) are carried out continuously.
  • CA is the complexing agent used in impregnation (in English, Complexing Agent)
  • x is the percentage by weight of M1 in the catalytic precursor, i, j and k are the molar ratios of M2, M3 and CA, respectively, with respect to M1,
  • the complexing agents (CA) used in the examples are:
  • NTA nitrilotriacetic acid
  • Example 1a Preparation of the catalyst precursor of composition Mo (12.5) Co 0> 5 K ACo, 7 / Y-AI 2 03 (Puralox)
  • the ⁇ - ⁇ 2 03 support used in the preparation of this catalytic precursor is of commercial origin (Puralox TH 100/150, Sasol) and has the following textural properties:
  • Pore volume 0.98 cm 3 / g
  • ⁇ - ⁇ 2 03 4.0 grams of ⁇ - ⁇ 2 03 are impregnated with a pore volume using 6.4 cm 3 of an aqueous solution in which 1.84 grams of ( ⁇ 4) 6 ⁇ 7 ⁇ 2 4-4 ⁇ 2 0 have previously dissolved. 1.40 grams of citric acid and 1.52 grams of Co (N03) 2-6H 2 0. As the volume of the solution exceeds the total pore volume of the support ( ⁇ - ⁇ 2 03), the incorporation of the precursors the support is carried out through several consecutive impregnation stages with intermediate stages of drying in an oven at 100 ° C for 2 hours between each impregnation until the volume of the impregnating solution is fully added. Once the addition is complete, the solid is dried in an oven at 100 ° C for 12 hours.
  • the resulting material is again impregnated at pore volume with an aqueous solution containing 0.87 grams of K2CO3 1.5H2O. After impregnation the solid is dried again in an oven at 100 ° C for approx. 12 hours.
  • Example 1 b Preparation of a catalytic precursor of composition Mo (12.5) Co 0> 5 K EDTAo ; 5 / Y-AI 2 0 3 (Puralox)
  • This catalytic precursor is prepared in the same manner as in Example 1 a but using 4.0 grams of Y-AI2O3 (Puralox) and 7.0 cm 3 of an ammoniacal solution (25% by weight NH 3 ) in which 1, 84 grams of ( ⁇ 4 ) 6 ⁇ 7 ⁇ 2 4 -4 ⁇ 2 0, 1, 52 grams of EDTA and 1.52 grams of Co (N03) 2-6H 2 0 have been dissolved and secondly with a aqueous solution containing 0.87 grams of K2CO3 1 .5H 2 0.
  • Example 1 c Preparation of a catalytic precursor of composition Mo (10.6) Co 0> 5 K ⁇ ; 8 / ⁇ - ⁇ 2 0 3 (Puralox)
  • This catalytic precursor is prepared in the same manner as in Example 1 a but using 4.0 grams of Y-AI2O3 (Puralox) 7.0 cm 3 of an aqueous solution in which 1.84 grams of ( ⁇ 4 ) 6 ⁇ 7 ⁇ 2 4 -4 ⁇ 2 0, 3.59 grams of NTA and 1.52 grams of Co (N0 3 ) 2 -6H 2 0 and secondly with an aqueous solution containing 0.87 grams of K 2 C0 3 - 1 .5H 2 0.
  • Example 1 d Preparation of a comparative catalytic precursor of Mo (15.1) Coo, 5 K / Y-AI2O3 (Puralox) composition
  • a comparative catalytic precursor of Mo (15.1) Coo, 5 K / Y-AI2O3 (Puralox) composition To prepare this catalytic precursor, 4.0 grams of Y-AI2O3 (Puralox) are impregnated with 6.4 cm 3 of an aqueous solution in which 1.84 grams of (NH) 6Mo 7 0 24 -4H 2 have previously been dissolved. 0 and 1, 52 grams of Co (N03) 2-6H 2 0.
  • the Y-AI2O3 support used in the preparation of this catalytic precursor is of commercial origin (Catalox Hta 101, Sasol) and has the following textural properties:
  • Pore volume 0.65 cm 3 / g
  • This catalytic precursor is prepared in the same manner as in Example 1 a but using 4.0 grams of Y-AI2O3 (Catalox) that are first impregnated with 4.7 cm 3 of an aqueous solution in which they have previously been dissolved 1, 84 grams of (NH 4) 6 Mo 7 0 2 -4H 2 0, 1, 40 grams of citric acid and 1, 52 grams of Co (N03) 2-6H 2 0 and secondly with an aqueous solution containing 0.87 grams of K2CO3 1 .5H 2 0.
  • Example 2b Preparation of a comparative catalytic precursor of composition or (16.0) Coo, 5 ⁇ / ⁇ - ⁇ 2 ⁇ 3 (Catalox)
  • This catalytic precursor is prepared in the same manner as in example 1 d but using 4.0 grams of ⁇ - ⁇ 2 0 3 (Catalox) and 4.7 cm 3 of an aqueous solution in which they have previously dissolved 1, 84 grams of (NH 4 ) 6 Mo 7 0 2 -4H 2 0 and 1, 52 grams of Co (N0 3 ) 2-6H 2 0 and secondly with an aqueous solution containing 0.87 grams of K 2 CÜ3 - 1 .5H 2 0.
  • Example 3a Preparation of a catalytic precursor of composition Mo (14) Co 0> 5 K ACo > 7 / Ti0 2
  • the Ti0 2 support used in the preparation of the catalytic precursors studied is of commercial origin (Aeroxide P25, Evonik Industries) and has the following textural properties:
  • Pore volume 0.36 cm 3 / g
  • This catalytic precursor is prepared in the same manner as in example 1 a but using 4.0 grams of Ti0 2 instead of ⁇ - ⁇ 2 03 and using 4.7 cm 3 of an aqueous solution in which 1, 84 grams of (NH 4 ) 6 Mo 7 0 2 -4H 2 0, 1, 40 grams of citric acid and 1.52 grams of Co (N03) 2-6H have been dissolved 2 0 and secondly with an aqueous solution containing 0.87 grams of K 2 CÜ3-1 .5H 2 0.
  • Example 3b Preparation of a comparative catalytic precursor of composition or (15.2) Coo, s / Ti0 2
  • This catalytic precursor is prepared in the same manner as in example 1 d but using 4.0 grams of Ti0 2 and 4.7 cm 3 of an aqueous solution in which 1, 84 grams of (NH 4 ) 6 Mo 7 0 2 -4H 2 0 and previously dissolved 1.52 grams of Co (N0 3 ) 2 -6H 2 0 and secondly with an aqueous solution containing 0.87 grams of K 2 C0 3 -1 .5H 2 0.
  • Example 4a Preparation of a catalyst precursor of composition Mo (19.2) Co 0> 5 K ACo > 7 / Si0 2
  • the Si0 2 support used in the preparation of the catalytic precursors studied is of commercial origin (Silica Gel Spherical, Fluka 93875) and has the following textural properties:
  • Pore volume 0.80 cm 3 / g
  • Example 4b Preparation of a comparative catalytic precursor of composition Mo (22.7) Coo, 5 K / Si0 2
  • This catalytic precursor is prepared in the same manner as in example 1 d but using 4.0 grams of Si0 2 and 14.8 cm 3 of an aqueous solution in which 5.90 grams of ( ⁇ 4) 6 ⁇ 7 ⁇ 2 4-4 ⁇ 2 0 and 4.87 grams of Co (N0 3 ) 2 -6H 2 0 have been dissolved and secondly with an aqueous solution containing 2.79 grams of K 2 C0 3 -1 .5H 2 0.
  • Example 5a Preparation of a catalytic precursor of the invention of composition or (13.4) Coo, 5 ACoj / C
  • the active carbon support (C) used in the preparation of the catalytic precursors studied is of commercial origin (Norit GAC 1240W) and has the following textural properties:
  • Example 5b Preparation of a comparative catalytic precursor of composition Mo (15.3) Coo.s K / C
  • This catalytic precursor is prepared in the same manner as in example 1 d but using 6.0 grams of C and 25.0 cm 3 of an aqueous solution in which 2.76 grams of ( ⁇ 4) 6 ⁇ 7 ⁇ 24-4 ⁇ 2 0 and 2.28 grams of Co (N0 3 ) 2-6H 2 0 have been dissolved and secondly with an aqueous solution containing 1 , 31 grams of K2CO3 1 .5H 2 0.
  • Example 6a Preparation of a catalyst precursor composition of the invention of Mo (17.1) Co 0, 5 K ⁇ , 7 / ⁇ - ⁇ 2 0 3 (Catapal)
  • Pore volume 0.48 cm 3 / g
  • This catalytic precursor is prepared in the same manner as in Example 1 a but using 3.0 grams of Y-AI2O3 (Catapal) and 10.8 cm 3 of an aqueous solution in which 4.32 grams of previously dissolved. ( ⁇ 4) 6 ⁇ 7 ⁇ 24-4 ⁇ 2 0, 3.29 grams of citric acid and 3.56 grams of Co (N03) 2 -6H 2 0 and secondly with an aqueous solution containing 2.04 grams of K 2 C0 3 - 1 .5H 2 0.
  • Catalytic tests were carried out using a fixed bed pressure catalytic reactor.
  • the amount of catalytic precursor used in the tests was 4 grams.
  • the reactor was charged with the catalytic precursor previously pressed and screened with a granulometry of 0.25-0.425 mm and diluted with SiC (granulometry 0.6-0.8 mm) until a total volume of catalytic bed was achieved 10.6 cm 3 .
  • a thermal treatment is carried out in situ with N 2 up to 300 ° C (heating ramp 2 ° C / min). When they reach 300 ° C, the sulfurization process begins using a gaseous stream with 10% H 2 S / H 2 (v / v), increasing the temperature to 400 ° C (2 ° C / min) and maintaining it for 4 hours.
  • the system is then pressurized at 50 bar and once the reactor temperature is pressurized it is increased to 310 ° C using a heating ramp of 4 ° C / min.
  • the start of the reaction is considered when the reaction temperature is reached (310 ° C).
  • the spatial velocity (synthesis gas flow) is adjusted in each catalyst in order to achieve a constant CO conversion of approx. 21-23% (and thus be able to compare selectivities under iso-conversion conditions).
  • reaction products are separated and quantified by a gas chromatograph (model Varian CP-3800) coupled in line to the reactor outlet after depressurization of the output current.
  • a gas chromatograph model Varian CP-3800
  • consecutive analyzes are performed at intervals of approx. 1 hour.
  • the catalyst is tested for a total time of approx. 15 hours.
  • a pseudo-stationary behavior is observed (little variation in activity and selectivity over time) from 10-1 1 hours of reaction.
  • the activity and selectivity data presented correspond to the values obtained in the pseudo-stationary state.
  • Table 1 summarizes the compositions of the catalysts prepared in the examples. The results of activity, selectivity to the main reaction products and ethanol productivity are shown in Table 2.
  • Table 1 Composition of the catalytic precursors of the examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

La presente invención se refiere al procedimiento de obtención de un catalizador multimetálico azufrado soportado, caracterizado porque comprende etapas de impregnación de los diferentes metales y un agente complejante y su posterior sulfuración. La invención también se refiere al catalizador obtenible por dicho procedimiento y a su uso en reacciones de obtención de alcoholes superiores a partir de gas de síntesis.

Description

CATALIZADORES Y SU USO EN LA OBTENCIÓN DE ALCOHOLES SUPERIORES
La presente invención se refiere a un procedimiento de obtención de un catalizador multimetálico azufrado y su uso en la producción de alcoholes superiores (C2+), principalmente etanol, por conversión catalítica de gas de síntesis. Además, la invención se refiere al catalizador obtenible mediante dicho procedimiento. Por tanto, la invención se podría encuadrar en el campo de los catalizadores para la obtención de alcoholes.
ESTADO DE LA TÉCNICA
En la actualidad, tiene lugar un notable incremento en la utilización de alcoholes superiores (C2+), particularmente etanol, como aditivos para la gasolina o directamente como combustibles para motores de combustión interna o pilas de combustible. El etanol, como fuente de combustibles, está actualmente considerado como un candidato idóneo para afrontar el agotamiento de las reservas de petróleo, y las restrictivas políticas medioambientales en materia de combustibles de transporte.
La producción de etanol y otros alcoholes superiores mediante conversión catalítica de gas de síntesis (CO+H2) permite la valorización de fuentes naturales abundantes como son las reservas de gas natural, o de fuentes renovables, como son los distintos tipos de biomasa.
Los catalizadores heterogéneos basados en sulfuro de molibdeno (MoS2), promovidos por uno o varios metales alcalinos o alcalinotérreos y co- promovidos, opcionalmente, por metales de transición, presentan propiedades catalíticas interesantes para la conversión de gas de síntesis en alcoholes superiores, especialmente cuando se emplea gas de síntesis proveniente de la gasificación de biomasa, debido a su elevada tolerancia de azufre. Uno de los métodos más utilizados en la bibliografía para la preparación de catalizadores soportados de M0S2 alcalinizados y co-promovidos es la impregnación secuencial o en una única etapa (co-impregnación) del soporte con una disolución acuosa de precursores metálicos que no contienen azufre. Dicha impregnación se realiza, generalmente empleando un volumen de disolución equivalente al volumen de poro del soporte (impregnación a volumen de poro o a humedad incipiente), aunque es posible también realizarla utilizando un exceso de disolución respecto al volumen de poro. Tras la impregnación (y posterior secado), los materiales son generalmente sometidos a un tratamiento de calcinación para descomponer los precursores metálicos. En la impregnación secuencial, dicho tratamiento de calcinación puede opcionalmente realizarse tras la adición de cada uno de los precursores metálicos o en una última etapa tras la incorporación del último precursor metálico. Debe señalarse que, cuando se utilizan materiales carbonosos (por ejemplo carbón activo o nanotubos de carbono) como soporte, en lugar de someter estos materiales a un tratamiento de calcinación, éste se sustituye por un tratamiento térmico moderado en presencia de un gas inerte. Los materiales preparados mediante los métodos descritos anteriormente son finalmente sulfurados con una corriente de H2S/H2 o CS2/H2 a temperaturas del orden de 400°C. Otro método muy utilizado para la preparación de este tipo de catalizadores es la coimpregnación del soporte con una disolución formada por los precursores metálicos y sulfuro de amonio (NH4)2S. En este caso, tras el secado se realiza una descomposición térmica en atmósfera inerte (entre 300 - 500°C) con el fin de formar las fases activas del catalizador, ya en su estado sulfurado. Una variante de este método implica el empleo de un precursor de Mo que contenga azufre, como por ejemplo el tetratiomolibdato amónico (NH4)2MoS4, el cual se trata térmicamente en presencia de N2 a 500°C para formar M0S2 y a continuación se mezcla físicamente mediante molturacion con el precursor alcalino y el soporte. Por ejemplo, en las patentes US4675344, US4749724, US4752623, US4882360 y US4831060 se describen catalizadores que consisten principalmente en sulfuro de molibdeno (Mo) o tungsteno (W), promovidos por uno o varios metales alcalinos (grupo 1 ) o alcalinotérreos (grupo 2) y co- promovidos, opcionalmente, por metales de transición (grupos 8, 9 y 10). Los catalizadores, cuando se preparan de forma soportada, se obtienen por impregnación de los soportes catalíticos con disoluciones de los precursores metálicos y posteriores activación térmica y sulfuración. Cuando los catalizadores son de naturaleza másica (no soportados), se obtienen por un procedimiento que comprende, inicialmente, la descomposición térmica de un precursor azufrado de molibdeno (como (NH4)2MoS4) a temperaturas de 300-600°C dando lugar a sulfuro de molibdeno (M0S2). En realizaciones particulares de los procedimientos descritos, el catalizador se puede preparar también por co-precipitación de un sólido multimetálico añadiendo disoluciones acuosas de un precursor azufrado de molibdeno y precursores solubles de los promotores metálicos, seguido de un tratamiento térmico del precipitado obtenido, generalmente en atmósfera inerte.
Recientemente se han publicado las solicitudes WO201 1029973 y WO201 1029974 que describen procedimientos de síntesis de catalizadores para obtención de etanol a partir de gas de síntesis que comprenden etapas de co-precipitación y donde la sulfuración se realiza in situ en el reactor.
Dada la gran importancia que han adquirido los procedimientos catalíticos de obtención de alcoholes a partir de gas de síntesis, siguen siendo necesarias mejoras en la actividad y selectividad de los catalizadores utilizados.
DESCRIPCIÓN DE LA INVENCIÓN La presente invención se refiere a un procedimiento de obtención de un catalizador multimetálico azufrado soportado, el catalizador obtenible por dicho procedimiento y su uso en la producción de alcoholes superiores (C2+), principalmente etanol, por conversión catalítica de gas de síntesis.
La presente invención presenta, de forma individual o conjunta, las siguientes ventajas respecto a los catalizadores del estado de la técnica:
- una mayor actividad catalítica;
- una mayor selectividad a alcoholes superiores (C2+)
- una mayor selectividad a etanol;
- una mayor productividad a etanol. En consecuencia, un primer aspecto de la presente invención se refiere a un procedimiento de obtención de un catalizador multimetálico azufrado soportado que comprende los componentes M1 M2xM3y, caracterizado porque comprende las siguientes etapas: a) impregnación de un soporte con una disolución que comprende al menos un compuesto de M1 y al menos un compuesto de M2; b) impregnación del sólido obtenido en la etapa (a) con una disolución que comprende al menos un compuesto de M3; c) sulfuración del sólido obtenido en la etapa anterior; donde, M1 se selecciona de la lista que comprende molibdeno (Mo), tungsteno (W) y cualquiera de sus combinaciones; M2 se selecciona de la lista que comprende Co, Ni y cualquiera de sus combinaciones;
M3 se selecciona del grupo de los alcalinos y cualquiera de sus combinaciones;
"x" e "y" son las relaciones molares de M2 y M3, respectivamente, con respecto a M1 ;
"x" tiene un valor de entre 0,1 -5, preferiblemente entre 0,2 y 2;
"y" tiene un valor de entre 0,1 - 10, preferiblemente entre 0,2 y 5; caracterizado porque la disolución de la etapa (a) de impregnación comprende además un agente complejante. Un segundo aspecto de la presente invención se refiere a un catalizador obtenible por el procedimiento según se ha descrito anteriormente.
Un tercer aspecto de la presente invención se refiere al uso del catalizador según tal y como se ha descrito anteriormente para la producción de alcoholes superiores (C2+) por conversión catalítica de gas de síntesis.
Por último, un cuarto aspecto de la presente invención se refiere al procedimiento de obtención de alcoholes superiores (C2+) a partir de gas de síntesis que comprende una etapa de contacto entre el catalizador según se ha descrito anteriormente y una corriente gaseosa que comprende gas de síntesis.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Un primer aspecto de la presente invención se refiere a un procedimiento de obtención de un catalizador multimetálico azufrado soportado que comprende los componentes M1 M2xM3y (a partir de ahora llamado procedimiento de la invención), caracterizado porque comprende las siguientes etapas: a) impregnación de un soporte con una disolución que comprende al menos un compuesto de M1 y al menos un compuesto de M2; b) impregnación del sólido obtenido en la etapa (a) con una disolución que comprende al menos un compuesto de M3; c) sulfuración del sólido obtenido en la etapa anterior; donde,
M1 se selecciona de la lista que comprende molibdeno (Mo), tungsteno (W) y cualquiera de sus combinaciones;
M2 se selecciona de la lista que comprende Co, Ni y cualquiera de sus combinaciones; M3 se selecciona del grupo de los alcalinos y cualquiera de sus combinaciones;
"x" e "y" son las relaciones molares de M2 y M3, respectivamente, con respecto a M1 ;
"x" tiene un valor de entre 0,1 -5, preferiblemente entre 0,2 y 2;
"y" tiene un valor de entre 0,1 - 10, preferiblemente entre 0,2 y 5; caracterizado porque la disolución de la etapa (a) de impregnación comprende además un agente complejante.
Por "catalizador multimetálico azufrado soportado" se entiende un catalizador que comprende más de un tipo de átomo metálico y azufre, y que está disperso en un soporte. En este caso, el catalizador comprende al menos tres elementos o componentes metálicos diferentes.
El término "impregnación" en el contexto de la invención quiere decir la acción de poner en contacto el soporte con una disolución que comprenda compuestos de los metales que forman parte del precursor catalítico. Como se verá más adelante, por precursor catalítico en el contexto de la invención se entiende el sólido seco que se obtiene tras la etapa (b), también llamado catalizador fresco. La impregnación puede ser "impregnación húmeda", también llamada "impregnación a exceso de volumen de poro" o "impregnación a volumen de poro", también llamada "impregnación a humedad incipiente" (también IWI, del inglés Incipient Wetness Impregnation). La impregnación a exceso de volumen de poro se lleva a cabo impregnando un soporte con un volumen de una disolución que comprende uno o varios precursores metálicos mayor al volumen de poro del soporte. La suspensión del soporte en la disolución anterior se mantiene en agitación, preferiblemente durante varias horas a temperatura ambiente y posteriormente el disolvente se retira mediante rotavaporación y se seca en estufa. La impregnación a volumen de poro consiste en poner en contacto el soporte con el volumen necesario de una disolución para rellenar todos los poros del mismo, donde la disolución comprende los metales que se quieren incorporar en el soporte. La impregnación "a volumen de poro" puede llevarse a cabo en una única etapa o en etapas sucesivas con secados intermedios. La impregnación de la etapa (a) puede ser una impregnación a exceso de volumen de poro. Preferiblemente, la impregnación de las etapas (a) y (b) son impregnaciones "a volumen de poro".
Las impregnaciones de las etapas (a) y (b) pueden comprender uno o varios pasos de secado. Preferiblemente, las etapas (a) y (b) de impregnación comprenden al menos un paso de secado, más preferiblemente a una temperatura entre 50°C y 200°C, aún más preferiblemente entre 70°C y 120°C y aún más preferiblemente entre 80°C y 1 10°C. El sólido seco que se obtiene tras la etapa (b) es el precursor catalítico, también llamado catalizador fresco.
Para las diferentes impregnaciones se utilizan disoluciones que comprenden los compuestos de M1 , M2 y M3. El disolvente utilizado se selecciona de agua, solución amoniacal y cualquiera de sus mezclas. Cuando el agente complejante es ácido cítrico, el disolvente es preferiblemente agua.
En la etapa (a) de impregnación, la disolución de los compuestos de M1 y M2, además comprende un agente complejante. Los catalizadores obtenidos por este proceso presentan actividades y selectividades a etanol más elevadas que las de los catalizadores preparados por impregnación que no comprenden un agente complejante en este paso del procedimiento. Por "sulfuración" se entiende el proceso de combinar un componente con azufre. En el contexto de la invención por sulfuración se entiende el proceso por el cual el precursor catalítico que comprende el soporte y los compuestos de M1 , M2 y M3, es decir, el sólido obtenido en la etapa (b) del procedimiento de la invención se hace reaccionar con azufre de manera que se obtiene un catalizador que comprende principalmente el soporte y los metales M1 , M2 y M3 y azufre. La sulfuración se lleva a cabo preferiblemente sobre el sólido seco obtenido en la etapa anterior. La etapa anterior a la sulfuración puede ser la etapa (b) de impregnación con al menos un compuesto de M3, o la etapa (b') de activación del sólido obtenido en la etapa (b) de impregnación, que se detallará más adelante.
El "grupo de los alcalinos" es el grupo de metales seleccionados de la lista que comprende litio (Li), sodio (Na), potasio (K), rubidio (Rb), cesio (Cs) y francio (Fr). En el contexto de la invención, por relaciones molares de M2, M3 o agente complejante respecto a M1 entendemos el número de moles de M2, M3 o agente complejante por cada mol de M1 . Por "agente complejante" se entiende a cualquier compuesto orgánico capaz de formar un complejo con M1 y/o M2, de forma individual (complejo monometálico) o conjunta (complejo bimetálico). Ejemplos de agentes complejantes en el contexto de la invención son ácido nitriloacético, ácido etilendiaminotetraacético, etilendiamina, trietilenglicol, ácido 1 ,2- diaminociclohexanotetraacético, ácido cítrico, ácido oxálico, ácido malónico, además de los agentes complejantes citados a continuación como ejemplos de ácidos di-, tri- y tetracarboxílicos. Cuando dicho complejo posee forma de anillo el complejo obtenido se denomina quelato y el agente que es capaz de formarlo se denomina agente quelante.
En una realización del primer aspecto de la presente invención, el agente complejante es un agente quelante. Preferiblemente, este agente quelante es un ácido carboxílico que comprende al menos dos grupos carboxilo (- COOH). Estos grupos carboxilo forman el quelato con M1 y M2. Ejemplos no limitantes de ácido dicarboxílico son ácido oxálico, ácido malónico, ácido succínico, ácido glutárico, ácido adípico, ácido itálico, ácido isoftálico y ácido tereftálico. Aún más preferiblemente el agente quelante es una molécula orgánica que comprende al menos tres grupos carboxilo. Ejemplos no limitantes de ácido tricarboxílico y tetracarboxílico son ácido cítrico, ácido isocítrico, ácido trimésico, ácido aconítico, ácido etilendiaminotetraacético (EDTA) y ácido nitrilotriacético (NTA). Obviamente es también posible utilizar como agente quelante ácidos carboxílicos en sus formas desprotonadas, es decir, en forma de sal. Como se puede observar en los ejemplos, se han empleado agentes complejantes como el ácido nitrilotriácetico (NTA), el ácido etilendiaminotetraacético (EDTA) o el ácido cítrico. En todos los casos, se ha obtenido una mejora en la actividad del catalizador, así como en la selectividad a alcoholes y específicamente, en la selectividad a etanol. En particular el uso del ácido cítrico ha proporcionado catalizadores con las mayores actividades y las mayores selectividades a etanol. Cuando el agente complejante es EDTA o NTA, el disolvente en el que se lleva a cabo la impregnación de la etapa (a) comprende preferiblemente amoniaco para facilitar su disolución, es decir, se emplea preferiblemente una disolución amoniacal. Por tanto, preferiblemente el agente complejante se selecciona de la lista que comprende ácido etilendiaminotetraacético, ácido nitriloacético, ácido cítrico y cualquiera de sus combinaciones, y más preferiblemente el agente complejante es ácido cítrico. En otra realización del primer aspecto de la presente invención, el catalizador multimetálico azufrado puede también comprender al menos un elemento seleccionado de la lista que comprende Re, Ru, Ir, Zn, Ga, In, Ge, Sn, Sm y cualquiera de sus combinaciones. Estos elementos se incorporarían al precursor catalítico en la etapa (a) de impregnación, junto a la disolución de los compuestos de M1 y M2.
En otra realización del primer aspecto de la presente invención, la relación molar del agente complejante con respecto a M1 en la disolución de la etapa (a) es de 0,1 a 5, preferiblemente es de 0,3 a 3. Excelentes resultados se han obtenido cuando la relación molar del agente complejante con respecto a M1 es de entre 0,5 y 1 .
En otra realización del primer aspecto de la presente invención, "x" tiene un valor de entre 0,3 y 1 . Preferiblemente "y" tiene un valor de entre 0,5 y 1 ,5. Más preferiblemente "x" es aproximadamente 0,5 e "y" es aproximadamente 1 . En otra realización del primer aspecto de la presente invención, M1 es Mo. Preferiblemente, el tanto por ciento en peso de Mo respecto al peso total en seco del sólido que se obtiene tras la etapa (b) (también llamado precursor catalítico o catalizador fresco) es de entre 2% y 50%, aún más preferiblemente entre 5% y 30%.
En otra realización del primer aspecto de la presente invención, M2 es Co. En este tipo de catalizadores, los metales M2 suelen llamarse co-promotores y aumentan el rendimiento/selectividad global a alcoholes superiores.
Por otro lado, M3 preferiblemente se selecciona de la lista que comprende K, Cs y cualquiera de sus combinaciones, más preferiblemente M3 es K. La función alcalinizadora de M3 permite obtener un rendimiento óptimo a alcoholes superiores (C2+) y minimizar la generación de hidrocarburos.
En otra realización del primer aspecto de la presente invención, el soporte se selecciona de la lista que comprende carburos metálicos, óxidos, carbón activo, nanotubos de carbono y cualquiera de sus combinaciones. Por carburos metálicos se entiende compuestos que se forman a partir de la unión entre carbono y un metal, como por ejemplo los carburos de metales de transición. Ejemplos no limitantes de carburos metálicos son el carburo de wolframio o el carburo de titanio. Por óxidos se entiende cualquier óxido seleccionado de la lista que comprende arcilla, zeolitas, hidrotalcitas, Si02, Ti02, AI2Ü3, Zr02, óxido de un elemento lantánido y cualquiera de sus combinaciones. Preferiblemente, el soporte se selecciona de la lista que comprende carbón activo, Si02, Ti02, AI2Ü3 y cualquiera de sus combinaciones. Más preferiblemente el soporte es AI2Ü3 y aún más preferiblemente γ-ΑΙ203. Como se puede observar en los ejemplos el soporte de γ-ΑΙ203 obtenido por calcinación en mufla a 500°C de la boehmita Catapal B (Sasol) que tiene una elevada superficie específica proporciona al catalizador buenos resultados en cuanto a rendimiento y selectividad. La superficie específica normalmente se determina mediante el método BET. Para un experto en la materia el método BET (Brunauer-Emmett-Teller) para el cálculo de la superficie específica es bien conocido y sobradamente detallado en cualquier manual de química de superficies general. En otra realización del primer aspecto de la presente invención los compuestos de M1 , M2 y M3 que se utilizan en las etapas de impregnación no comprenden azufre. El precursor catalítico se sulfura posteriormente, en la etapa (c) de sulfuración. Los compuestos de M1 , M2 y M3 pueden ser óxidos, complejos con ligandos orgánicos o sales. Preferiblemente dichos compuestos son sales. Por sales en el contexto de la invención se entiende sales de los compuestos ya sea tanto en su forma anhidra como hidratada. En una realización del primer aspecto de la presente invención, la disolución utilizada en la etapa (a) comprende al menos un compuesto de M1 y un compuesto de M2, además del agente complejante. Preferiblemente el compuesto de M1 se selecciona de entre ácido molíbdico (H2M0O4), ácido wolfrámico (H2WO4), óxido de molibdeno (VI) (M0O3), óxido de wolframio (VI) (WO3), heptamolibdato amónico ((ΝΗ4)6Μθ7θ24), metatungstato amónico ((ΝΗ4)6Η2ν ΐ2θ4ο) y cualquiera de sus combinaciones, más preferiblemente el compuesto de M1 se selecciona de entre heptamolibdato amónico, metatungstato amónico y cualquiera de sus combinaciones, aún más preferiblemente el compuesto de M1 es heptamolibdato amónico.
Aunque algunos de los compuestos de M1 citados no son solubles en agua per se, lo son en presencia del agente complejante.
Preferiblemente el compuesto de M2 es una sal que se selecciona de la lista que comprende un nitrato, cloruro, carbonato, acetato y cualquiera de sus combinaciones, más preferiblemente nitrato, carbonato, acetato o cualquiera de sus combinaciones, y aún más preferiblemente un nitrato. Ya que preferiblemente M2 es Co, el compuesto de M2 es más preferiblemente nitrato de cobalto (II).
En otra realización del primer aspecto de la presente invención, el compuesto de M3 es una sal que se selecciona de la lista que comprende un nitrato, cloruro, carbonato, hidroxi-carbonato, acetilacetonato, carboxilato, citrato y cualquiera de sus combinaciones, preferiblemente un carbonato.
Tal y como se ha comentado anteriormente, cada impregnación puede comprender uno o varios pasos de secado, preferiblemente secado en estufa.
En otra realización del primer aspecto de la presente invención, el procedimiento además comprende una etapa (b') posterior a (b) y anterior a (c) de activación del sólido obtenido en la etapa (b). Esta etapa (b') se lleva a cabo preferiblemente posteriormente al paso de secado de la impregnación de la etapa (b). En ella, el sólido impregnado, preferiblemente seco, se somete preferiblemente a una etapa de activación que se realiza preferentemente mediante un tratamiento térmico, más preferentemente a una temperatura de entre 200°C y 700°C y aún más preferentemente a una temperatura comprendida entre 250°C y 550°C. Además, esta etapa de activación se lleva a cabo preferiblemente bajo una corriente de gas libre de azufre, más preferiblemente bajo una corriente de gas que comprende aire, N2, gas noble, H2, gas de síntesis o cualquiera de sus combinaciones, aún más preferiblemente bajo una corriente de gas que comprende N2, gas noble, H2 o cualquiera de sus combinaciones, aún más preferiblemente bajo una corriente que comprende N2, gas noble o cualquiera de sus combinaciones. De manera posterior a la etapa (b) o (b'), se lleva a cabo la sulfuración del sólido o precursor catalítico. La sulfuración de la etapa (c) se puede realizar por cualquiera de los métodos conocidos por un experto en la materia, pero preferiblemente ésta se realiza mediante exposición del sólido a una corriente gaseosa que comprende un compuesto azufrado. Preferiblemente, el compuesto azufrado se selecciona de la lista que comprende: un compuesto de fórmula R1 R2S donde R1 y R2 pueden ser iguales o diferentes entre sí y se seleccionan de entre hidrógeno, alquilo (d-C6), arilo, o R1 y R2 están unidos formando un grupo tiofeno, opcionalmente sustituido. Preferiblemente, R1 y R2 son iguales y se selecciona de entre hidrógeno, formando el sulfuro de hidrógeno (H2S), o alquilo, formando un compuesto de tipo sulfuro de dialquilo (R1 R2S, donde R1 y R2 son iguales y se seleccionan de entre metilo, etilo, propilo o bencilo) y más preferiblemente es H2S.
Por "alquilo C1-C6" se entiende alquilos lineales o ramificados que comprenden de 1 a 6 átomos de carbono. Ejemplos no limitantes son metilo, etilo, propilo, isopropilo, butilo, isobutilo, pentilo, isopentilo, hexilo e isohexilo. El grupo alquilo puede estar sustituido, preferiblemente por un grupo arilo.
Por "arilo" se entiende una cadena carbocíclica aromática, que tiene de 6 a 12 átomos de carbono, pudiendo ser de anillo único ó múltiple, en este último caso con anillos separados y/o condensados. Un ejemplo, no limitante, de arilo es un grupo fenilo. El grupo arilo puede estar opcionalmente sustituido.
Preferiblemente la corriente gaseosa de la etapa (c) comprende además un gas seleccionado de entre H2, N2, gas noble, gas de síntesis y cualquiera de sus combinaciones. Además, la proporción molar del compuesto azufrado en la corriente gaseosa es preferiblemente de entre 1 % y 85%, más preferiblemente entre 6% y 20% y la temperatura de sulfuración es de entre 200°C y 750°C, más preferiblemente entre 300°C y 600°C. Un segundo aspecto de la presente invención se refiere a un catalizador (a partir de ahora catalizador de la invención) obtenible por el procedimiento de la invención, según se ha descrito anteriormente. Un tercer aspecto de la presente invención se refiere al uso del catalizador de la invención, según tal y como se ha descrito anteriormente, para la producción de alcoholes superiores (C2+) por conversión catalítica de gas de síntesis, preferiblemente el alcohol superior es etanol. Por alcoholes superiores (C2+) se entiende a cadenas alifáticas, lineales o ramificadas, que tienen 2 o más átomos de carbono, preferiblemente de 2 a 6 átomos de carbono, y con al menos un sustituyente -OH, ejemplos no limitantes son etanol, propanol, 2-propanol, isopropanol, n-butanol, 2- butanol, isobutanol, 1 -pentanol, 2-pentanol, 3-pentanol, isopentanol, 1 - hexanol, 2-hexanol, 3-hexanol e isohexanol.
Por último, un cuarto aspecto de la presente invención se refiere al procedimiento de obtención de alcoholes superiores (C2+) a partir de gas de síntesis que comprende una etapa (i) de contacto entre el catalizador de la invención, según se ha descrito anteriormente, y una corriente gaseosa que comprende gas de síntesis. Preferiblemente, la relación molar H2/CO en esta corriente es de entre 0,5 y 3, más preferiblemente entre 0,5 y 2.
En una realización del cuarto aspecto de la presente invención, la corriente de gas además comprende preferiblemente un compuesto azufrado que se puede seleccionar de la lista que comprende un sulfuro de fórmula Ri R2S, donde R1 y R2 se han descrito anteriormente. Más preferiblemente, el compuesto azufrado puede ser sulfuro de hidrógeno (H2S), o un compuesto de tipo sulfuro de dialquilo, y aún más preferiblemente es H2S. En una realización aún más preferida, la concentración del compuesto azufrado en la corriente de alimentación es de entre 1 y 5000 partes por millón. Más preferiblemente, es de entre 20 y 200 partes por millón. En una realización del cuarto aspecto de la presente invención, el procedimiento de obtención de alcoholes superiores se lleva a cabo a una presión de entre 1 y 200 bar, preferiblemente entre 10 y 100 bar. Además, preferiblemente se lleva a cabo a una temperatura de entre 100°C y 600°C, preferiblemente entre 200°C y 400°C.
En otra realización del cuarto aspecto de la presente invención, el procedimiento de obtención de alcoholes superiores se lleva a cabo en un reactor de lecho fijo, preferiblemente se lleva a cabo en continuo en un reactor de lecho fijo.
En otra realización del cuarto aspecto de la presente invención, el alcohol superior es etanol.
En otra realización del cuarto aspecto de la presente invención, el procedimiento comprende además una etapa (ii) posterior a (i) de separación de los productos obtenidos en el paso (i) en al menos una corriente gaseosa y una corriente líquida.
En otra realización del cuarto aspecto de la presente invención, el procedimiento además comprende una etapa (iii) posterior a (ii) de recirculación de la corriente gaseosa a la etapa (i). Preferiblemente, la corriente recirculada a la etapa (i) es entre un 70% y un 95% del gas de síntesis no reaccionado separado en la etapa (ii), más preferiblemente entre un 85% y un 93% del gas de síntesis no reaccionado separado en la etapa (ii).
En otra realización del cuarto aspecto de la presente invención, el procedimiento además comprende una etapa (iv) de separación de metanol de la corriente líquida obtenida en la etapa (ii). En otra realización del cuarto aspecto de la presente invención, el procedimiento además comprende una etapa (v) de recirculación del metanol separado en la etapa (iv) a la etapa (i). En otra realización del cuarto aspecto de la presente invención, las etapas (i), (ii), (iii), (iv) y (v) se llevan a cabo de manera continua.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
EJEMPLOS
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que ponen de manifiesto las mejoras en actividad, selectividad y productividad a etanol de los catalizadores obtenidos por el procedimiento de la invención.
La nomenclatura utilizada en todos los ejemplos será la siguiente:
Figure imgf000018_0001
donde M1 , M2 y M3 han sido definidos anteriormente,
CA es el agente complejante utilizado en la impregnación (del inglés, Complexing Agent)
x es el porcentaje en peso de M1 en el precursor catalítico, i, j y k son las relaciones molares de M2, M3 y CA, respectivamente, con respecto a M1 ,
y S es el soporte. Los agentes complejantes (CA) utilizados en los ejemplos son:
- ácido cítrico (AC), C6H807;
- ácido etilendiaminotetraacético (EDTA), CioHi6N208.
- ácido nitrilotriacético (NTA), C6H9N06.
Ejemplo 1a. Preparación del precursor catalítico de composición Mo(12,5) Co0>5 K ACo,7/Y-AI203 (Puralox)
De acuerdo con la nomenclatura establecida, este precursor catalítico ha sido preparado en presencia de ácido cítrico, con un % de Mo en peso de 12,5% (catalizador fresco o precursor catalítico, es decir, el sólido que se obtiene de la etapa (b) seco), unas relaciones molares Mo:Co:K:AC = 1 ,0:0,5:1 ,0:0,7 y utilizando Y-AI203 Como soporte. El soporte γ-ΑΙ203 empleado en la preparación de este precursor catalítico es de origen comercial (Puralox TH 100/150, Sasol) y posee las siguientes propiedades texturales:
Superficie específica (BET) = 151 m2/g
Volumen de poro = 0,98 cm3/g
Diámetro medio de poro = 23.4 nm.
Se impregnan a volumen de poro 4,0 gramos de γ-ΑΙ203 empleando 6,4 cm3 de una disolución acuosa en la que previamente se han disuelto 1 ,84 gramos de (ΝΗ4)6Μθ7θ24-4Η20, 1 ,40 gramos de ácido cítrico y 1 ,52 gramos de Co(N03)2-6H20. Como el volumen de la disolución supera el volumen de poro total del soporte (γ-ΑΙ203), la incorporación de los precursores al soporte se realiza mediante diversas etapas consecutivas de impregnación con etapas intermedias de secado en estufa a 100°C durante 2 horas entre cada impregnación hasta conseguir adicionar totalmente el volumen de la disolución impregnante. Una vez completada la adición, el sólido se seca en estufa a 100°C durante 12 horas. A continuación, el material resultante se impregna nuevamente a volumen de poro con una disolución acuosa que contiene 0,87 gramos de K2CO3 1 .5H2O. Tras la impregnación el sólido se seca de nuevo en estufa a 100°C durante aprox. 12 horas.
Ejemplo 1 b. Preparación de un precursor catalítico de composición Mo(12,5) Co0>5 K EDTAo;5/Y-AI203 (Puralox)
Este precursor catalítico se prepara de la misma manera que en el ejemplo 1 a pero utilizando 4,0 gramos de Y-AI2O3 (Puralox) y 7,0 cm3 de una disolución amoniacal (25% en peso de NH3) en la que previamente se han disuelto 1 ,84 gramos de (ΝΗ4)6Μθ7θ24-4Η20, 1 ,52 gramos de EDTA y 1 ,52 gramos de Co(N03)2-6H20 y en segundo lugar con una disolución acuosa que contiene 0,87 gramos de K2CO3 1 .5H20.
Ejemplo 1 c. Preparación de un precursor catalítico de composición Mo(10,6) Co0>5 K ΝΤΑι;8/γ-ΑΙ203 (Puralox)
Este precursor catalítico se prepara de la misma manera que en el ejemplo 1 a pero utilizando 4,0 gramos de Y-AI2O3 (Puralox) 7,0 cm3 de una disolución acuosa en la que previamente se han disuelto 1 ,84 gramos de (ΝΗ4)6Μθ7θ24-4Η20, 3,59 gramos de NTA y 1 ,52 gramos de Co(N03)2-6H20 y en segundo lugar con una disolución acuosa que contiene 0,87 gramos de K2C03- 1 .5H20.
Ejemplo 1 d. Preparación de un precursor catalítico comparativo de composición Mo(15,1 ) Coo,5 K/Y-AI2O3 (Puralox) Para preparar este precursor catalítico se impregnan 4,0 gramos de Y-AI2O3 (Puralox) con 6,4 cm3 de una disolución acuosa en la que previamente se han disuelto 1 ,84 gramos de (NH )6Mo7024-4H20 y 1 ,52 gramos de Co(N03)2-6H20. Como el volumen de la disolución supera el volumen de poro total del soporte (γ-ΑΙ203), la incorporación de los precursores al soporte se realiza mediante diversas etapas consecutivas de impregnación con etapas intermedias de secado en estufa a 100°C hasta conseguir adicionar totalmente el volumen de la disolución impregnante. Una vez completada la adición, el sólido se seca en estufa a 100°C durante 12 horas. A continuación, el material resultante se impregna nuevamente a volumen de poro con una disolución acuosa que contiene 0,87 gramos de K2CO3 1 .5H20. Tras la impregnación el sólido se seca de nuevo en estufa a 100°C durante aprox. 12 horas. Ejemplo 2a. Preparación de un precursor catalítico de composición Mo(13,4) Co0>5 K ACo,7/Y-AI203 (Catalox)
El soporte Y-AI2O3 empleado en la preparación este precursor catalítico es de origen comercial (Catalox Hta 101 , Sasol) y posee las siguientes propiedades texturales:
Superficie específica (BET) = 78 m2/g
Volumen de poro = 0,65 cm3/g
Diámetro medio de poro = 36,9 nm. Este precursor catalítico se prepara de la misma manera que en el ejemplo 1 a pero utilizando 4,0 gramos de Y-AI2O3 (Catalox) que se impregnan en primer lugar con 4,7 cm3 de una disolución acuosa en la que previamente se han disuelto 1 ,84 gramos de (NH4)6Mo702 -4H20, 1 ,40 gramos de ácido cítrico y 1 ,52 gramos de Co(N03)2-6H20 y en segundo lugar con una disolución acuosa que contiene 0,87 gramos de K2CO3 1 .5H20. Ejemplo 2b. Preparación de un precursor catalítico comparativo de composición o(16,0) Coo,5 Κ/γ-ΑΙ2θ3 (Catalox)
Este precursor catalítico se prepara de la misma manera que en el ejemplo 1 d pero utilizando 4,0 gramos de γ-ΑΙ203 (Catalox) y 4,7 cm3 de una disolución acuosa en la que previamente se han disuelto 1 ,84 gramos de (NH4)6Mo702 -4H20 y 1 ,52 gramos de Co(N03)2-6H20 y en segundo lugar con una disolución acuosa que contiene 0,87 gramos de K2CÜ3- 1 .5H20. Ejemplo 3a. Preparación de un precursor catalítico de composición Mo(14) Co0>5 K ACo>7/Ti02
El soporte Ti02 empleado en la preparación de los precursores catalíticos estudiados es de origen comercial (Aeroxide P25, Evonik Industries) y posee las siguientes propiedades texturales:
Superficie específica (BET) = 60 m2/g
Volumen de poro = 0,36 cm3/g Este precursor catalítico se prepara de la misma manera que en el ejemplo 1 a pero utilizando 4,0 gramos de Ti02 en vez de γ-ΑΙ203 y utilizando 4,7 cm3 de una disolución acuosa en la que previamente se han disuelto 1 ,84 gramos de (NH4)6Mo702 -4H20, 1 ,40 gramos de ácido cítrico y 1 ,52 gramos de Co(N03)2-6H20 y en segundo lugar con una disolución acuosa que contiene 0,87 gramos de K2CÜ3-1 .5H20.
Ejemplo 3b. Preparación de un precursor catalítico comparativo de composición o(15,2) Coo,s /Ti02 Este precursor catalítico se prepara de la misma manera que en el ejemplo 1 d pero utilizando 4,0 gramos de Ti02 y 4,7 cm3 de una disolución acuosa en la que previamente se han disuelto 1 ,84 gramos de (NH4)6Mo702 -4H20 y 1 ,52 gramos de Co(N03)2-6H20 y en segundo lugar con una disolución acuosa que contiene 0,87 gramos de K2C03-1 .5H20.
Ejemplo 4a. Preparación de un precursor catalítico de composición Mo(19,2) Co0>5 K ACo>7/Si02
El soporte Si02 empleado en la preparación de los precursores catalíticos estudiados es de origen comercial (Silica Gel Spherical, Fluka 93875) y posee las siguientes propiedades texturales:
Superficie específica (BET) = 484 m2/g;
Volumen de poro = 0,80 cm3/g
Diámetro medio de poro = 5,7 nm Este precursor catalítico se prepara de la misma manera que en el ejemplo 1 a pero utilizando 4,0 gramos de Si02 en vez de γ-ΑΙ203 y utilizando 14,8 cm3 de una disolución acuosa en la que previamente se han disuelto 5,90 gramos de (ΝΗ4)6Μθ7θ24-4Η20, 4,50 gramos de ácido cítrico y 4,87 gramos de Co(N03)2-6H20 y en segundo lugar con una disolución acuosa que contiene 2,79 gramos de K2C03-1 .5H20.
Ejemplo 4b. Preparación de un precursor catalítico comparativo de composición Mo(22,7) Coo,5 K /Si02 Este precursor catalítico se prepara de la misma manera que en el ejemplo 1 d pero utilizando 4,0 gramos de Si02 y 14,8 cm3 de una disolución acuosa en la que previamente se han disuelto 5,90 gramos de (ΝΗ4)6Μθ7θ24-4Η20 y 4,87 gramos de Co(N03)2-6H20 y en segundo lugar con una disolución acuosa que contiene 2,79 gramos de K2C03-1 .5H20. Ejemplo 5a. Preparación de un precursor catalítico de la invención de composición o(13,4) Coo,5 ACoj/C
El soporte carbón activo (C) empleado en la preparación de los precursores catalíticos estudiados es de origen comercial (Norit GAC 1240W) y posee las siguientes propiedades texturales:
Superficie específica (BET) = 1200 m2/g Este precursor catalítico se prepara de la misma manera que en el ejemplo 1 a pero utilizando 6,0 gramos de carbón activo (C) en vez de Y-AI2O3 y utilizando 25,0 cm3 de una disolución acuosa en la que previamente se han disuelto 2,76 gramos de (ΝΗ4)6Μθ7θ24-4Η20, 2,10 gramos de ácido cítrico y 2,28 gramos de Co(N03)2-6H20 y en segundo lugar con una disolución acuosa que contiene 1 ,31 gramos de K2CO3 1 .5H20.
Ejemplo 5b. Preparación de un precursor catalítico comparativo de composición Mo(15,3) Coo.s K/C Este precursor catalítico se prepara de la misma manera que en el ejemplo 1 d pero utilizando 6,0 gramos de C y 25,0 cm3 de una disolución acuosa en la que previamente se han disuelto 2,76 gramos de (ΝΗ4)6Μθ7θ24-4Η20 y 2,28 gramos de Co(N03)2-6H20 y en segundo lugar con una disolución acuosa que contiene 1 ,31 gramos de K2CO3 1 .5H20.
Ejemplo 6a. Preparación de un precursor catalítico de la invención de composición Mo(17,1) Co0,5 K ΑΟο,7/γ-ΑΙ203 (Catapal)
El soporte Y-AI2O3 empleado en la preparación este precursor catalítico es de origen comercial (obtenida por calcinación en mufla a 500°C de la boehmita Catapal B, Sasol) y posee las siguientes propiedades texturales: Superficie específica (BET) = 243 m2/g
Volumen de poro = 0,48 cm3/g
Diámetro medio de poro = 7,6 nm. Este precursor catalítico se prepara de la misma manera que en el ejemplo 1 a pero utilizando 3,0 gramos de Y-AI2O3 (Catapal) y 10,8 cm3 de una disolución acuosa en la que previamente se han disuelto 4,32 gramos de (ΝΗ4)6Μθ7θ24-4Η20, 3,29 gramos de ácido cítrico y 3,56 gramos de Co(N03)2-6H20 y en segundo lugar con una disolución acuosa que contiene 2,04 gramos de K2C03- 1 .5H20.
Comparativa de actividad de los catalizadores
Los ensayos catalíticos se llevaron a cabo empleando un reactor catalítico de lecho fijo a presión. La cantidad de precursor catalítico utilizada en los ensayos fue de 4 gramos. En todos los casos, el reactor se cargó con el precursor catalítico previamente prensado y tamizado con una granulometría de 0,25-0,425 mm y diluido con SiC (granulometría 0,6-0,8 mm) hasta conseguir un volumen total de lecho catalítico de 10,6 cm3.
Para la activación de los precursores catalíticos se realiza un tratamiento térmico in situ con N2 hasta 300°C (rampa de calentamiento 2°C/min). Cuando se alcanzan los 300°C comienza el proceso de sulfuración utilizando una corriente gaseosa con un 10% H2S/H2 (v/v) aumentado la temperatura hasta los 400°C (2°C/min) y manteniéndola durante 4 horas.
Al finalizar la etapa de sulfuración, se enfría el lecho hasta los 100°C en flujo de N2 y éste se sustituye por dos corrientes, una de ellas es gas de síntesis con una composición volumétrica 45%H2/45%CO/10%Ar (relación molar H2/CO=1 , Ar (argón) empleado como patrón interno para los análisis cromatográficos) y otra corriente de 1500 ppm de H2S/H2 utilizándose el caudal adecuado para que la concentración de azufre a la entrada del reactor sea de 50 ppm (como H2S).
A continuación el sistema se presuriza a 50 bar y una vez presurizado la temperatura del reactor se incrementa hasta 310°C utilizando una rampa de calentamiento de 4°C/min. El inicio de la reacción se considera cuando se alcanza la temperatura de reacción (310°C). La velocidad espacial (flujo de gas de síntesis) se ajusta en cada catalizador con el objetivo de conseguir una conversión constante de CO de aprox. un 21 -23% (y poder así comparar selectividades en condiciones de iso-conversión).
Los productos de reacción se separan y cuantifican mediante un cromatógrafo de gases (modelo Varían CP-3800) acoplado en línea a la salida del reactor tras la despresurización de la corriente de salida. Durante la reacción se realizan análisis consecutivos a intervalos de aprox. 1 hora. Generalmente el catalizador se ensaya durante un tiempo total de aprox. 15 horas. Se observa un comportamiento pseudo-estacionario (poca variación de la actividad y selectividad con el tiempo) a partir de las 10-1 1 horas de reacción. Los datos de actividad y selectividad que se presentan corresponden a los valores obtenidos en el estado pseudo-estacionario.
En la tabla 1 se resumen las composiciones de los catalizadores preparados en los ejemplos. Los resultados de actividad, selectividad a los principales productos de reacción y productividad a etanol se muestran en la tabla 2.
Tabla 1 . Composición de los precursores catalíticos de los ejemplos.
Ej. Composición
1 a Mo(12,5) Co0,5 K AC0,7/Y-AI2O3 (Puralox)
1 b Mo(12,5) Coo,5 K EDTA0,5/Y-AI2O3 (Puralox)
1 c Mo(10,6) Coo,5 K ΝΤΑι,8/γ-ΑΙ2Ο3 (Puralox)
1 d Mo(15,1 ) Co0,5 Κ/γ-ΑΙ2Ο3 (Puralox)
Figure imgf000027_0001
Tabla 2. Comportamiento catalítico de los catalizadores de los ejemplos.
Selectividad (%)
Selectividad (%) respecto al total
Conv Activ. respecto al total '" de R-OH iv
CO (mmolco/ C2+- C3+- Prod. w gMo-h)" HC CO2 R-OH EtOH OH OH EtOHv
1a 20,9 17,92 16,9 40,6 41,8 23,0 34,4 11,4 11,9
1b 20,6 15,91 17,9 45,9 35,5 17,9 29,9 12,0 8,2
1c 22,1 13,98 16,3 44,2 38,9 17,7 33,1 15,4 6,0
1d 21,0 12,41 21,0 43,9 34,2 15,8 28,0 12,2 6,8
2a 20,9 15,70 14,7 33,8 50,9 27,2 38,9 11,7 13,5
2b 22,4 12,65 18,4 39,7 41,2 21,3 33,1 11,8 9,9
3a 22,8 22,39 18,0 37,7 43,6 18,4 36,1 17,7 13,3
3b 22,5 16,57 22,1 47,5 27,5 11,1 21,9 10,8 6,4
4a 23,9 17,74 19,8 39,9 39,2 21,7 30,8 9,1 17,1
4b 23,5 12,52 22,2 39,3 36,8 20,7 29,8 9,1 13,4
5a 22,8 28,59 19,1 40,3 39,9 16,5 31,1 14,6 14,6
5b 23,1 20,94 26,9 43,5 27,9 12,0 21,1 9,1 8,9
6a 21,1 18,16 16,5 36,8 45,7 23,9 33,9 10,0 17,1 1 Conversión de CO en %; " Actividad en mmolco/givio-h; 111 HC: hidrocarburos, R-OH: alcoholes totales; lv EtOH: etanol, C2+-OH: alcoholes de 2 o más C, C3+-OH: alcoholes de 3 o más C; v Productividad a EtOH en gEtoH/(kgprecat-h), donde kgprecat se refiere a kilogramos de precursor catalítico cargado en el reactor.
Estos ensayos catalíticos muestran que en todos los casos el uso de agentes complejantes en la impregnación proporciona catalizadores que presentan mayor actividad y selectividad a etanol que sus análogos en los que no se ha utilizado agente complejante.
En el caso del ácido cítrico, además hay una mejora en la productividad a etanol. Esta mejora en el comportamiento es extrapolable a diversos soportes de distinta naturaleza química. Estos datos ponen de relevancia que excepcionalmente el empleo de ácido cítrico en la etapa de impregnación del soporte proporciona unos catalizadores con un magnífico comportamiento catalítico en la reacción de síntesis de alcoholes superiores (C2+). Es importante mencionar que los ensayos se realizaron en unas condiciones de temperatura y presión fijas (310°C y 50 bar, respectivamente) y a una velocidad espacial adecuada para que se obtuviese una conversión de CO próxima al 21 -23% y que por tanto, los valores de productividad obtenidos no son los óptimos en cada caso. No obstante, las condiciones de estos ensayos sí son apropiadas para establecer comparativas entre diferentes sistemas catalíticos.
Ejemplo comparativo co-precipitación. Los catalizadores de la invención no pueden ser preparados por co- precipitación (por un procedimiento similar al descrito en las solicitudes WO201 1029973 y WO201 1029974) como se ilustra en este ejemplo comparativo. Para ello se llevaron a cabo tres preparaciones diferentes:
1 ) una solución acuosa de nitrato de cobalto (II) hexahidratado y citrato potásico se añadió sobre una disolución acuosa de heptamolibdato amónico previamente ajustada a pH 9,8 mediante la adición de una disolución amoniacal (25% en peso de NH3);
2) disoluciones independientes de nitrato de cobalto (II) hexahidratado y citrato potásico, respectivamente, se añadieron sobre una disolución acuosa de heptamolibdato amónico previamente ajustada a pH 9,8 mediante la adición de una disolución amoniacal (25% en peso de NH3);
3) una solución acuosa de nitrato de cobalto (II) hexahidratado se añadió sobre una disolución acuosa de heptamolibdato amónico y citrato potásico previamente ajustada pH 9,8 mediante la adición de una disolución amoniacal (25% en peso de NH3);
En ninguno de los tres casos se obtuvo un precipitado. Este ejemplo muestra que cuando se utiliza un precursor alcalino cuyo contra-ión es citrato utilizando el método de síntesis empleado en las solicitudes de patente WO201 1029973 y WO201 1029974 no se obtiene un precipitado, y por tanto, los catalizadores obtenidos por el proceso de la invención son diferentes a los catalizadores de las solicitudes citadas.

Claims

REIVINDICACIONES
1 .- Procedimiento de obtención de un catalizador multimetálico azufrado soportado que comprende los componentes M1 M2xM3y, caracterizado porque comprende las siguientes etapas: a) impregnación de un soporte con una disolución que comprende al menos un compuesto de M1 y al menos un compuesto de M2; b) impregnación del sólido obtenido en la etapa (a) con una disolución que comprende al menos un compuesto de M3; c) sulfuración del sólido obtenido en la etapa anterior; donde,
M1 se selecciona de la lista que comprende molibdeno (Mo), tungsteno (W) y cualquiera de sus combinaciones; M2 se selecciona de la lista que comprende Co, Ni y cualquiera de sus combinaciones;
M3 se selecciona del grupo de los alcalinos y cualquiera de sus combinaciones;
"x" e "y" son las relaciones molares de M2 y M3 con respecto a M1 ;
"x" tiene un valor de entre 0,1 y 5, preferiblemente entre 0,2 y 2;
"y" tiene un valor de entre 0,1 y 10, preferiblemente entre 0,2 y 5; caracterizado porque la disolución de la etapa (a) de impregnación comprende además un agente complejante.
2. - El procedimiento según la reivindicación anterior donde el agente complejante es un agente quelante.
3. - El procedimiento según cualquiera de las reivindicaciones anteriores donde el agente complejante se selecciona del grupo que comprende ácido etilendiaminotetraacético, ácido nitrilotriacético, ácido cítrico y cualquiera de sus combinaciones.
4. - El procedimiento según cualquiera de las reivindicaciones anteriores donde el agente complejante es ácido cítrico.
5. - El procedimiento según cualquiera de las reivindicaciones anteriores donde la relación molar del agente complejante con respecto a M1 en la disolución de la etapa (a) es de 0,1 a 5, preferiblemente es de 0,3 a 3.
6. - El procedimiento según cualquiera de las reivindicaciones anteriores, donde x tiene un valor de entre 0,3 y 1 .
7. - El procedimiento según cualquiera de las reivindicaciones anteriores, donde y tiene un valor de entre 0,5 y 1 ,5.
8. - El procedimiento según cualquiera de las reivindicaciones anteriores, donde M1 es Mo.
9.- El procedimiento según cualquiera de las reivindicaciones anteriores, donde el % en peso de Mo respecto al peso total en seco del sólido obtenido en la etapa (b) es de entre 2% y 50%, preferiblemente entre 5% y 30%.
10.- El procedimiento según cualquiera de las reivindicaciones anteriores, donde M2 es Co.
1 1 .- El procedimiento según cualquiera de las reivindicaciones anteriores, donde M3 es K, Cs o cualquiera de sus combinaciones, preferiblemente M3 es K.
12.- El procedimiento según cualquiera de las reivindicaciones anteriores, donde el soporte se selecciona de la lista que comprende carburos metálicos, óxidos, carbón activo, nanotubos de carbono y cualquiera de sus combinaciones.
13.- El procedimiento según cualquiera de las reivindicaciones anteriores, donde el soporte se selecciona de la lista que comprende carbón activo, S1O2, T1O2, AI2O3 y cualquiera de sus combinaciones.
14. - El procedimiento según la reivindicación anterior donde los compuestos de M1 , M2 y M3 no comprenden azufre.
15. - El procedimiento según cualquiera de las reivindicaciones anteriores, donde las impregnaciones de las etapas (a) y (b) son impregnaciones a volumen de poro.
16. - El procedimiento según cualquiera de las reivindicaciones 1 a 14, donde la impregnación de la etapa (a) es una impregnación a exceso de volumen de poro.
17.- El procedimiento según cualquiera de las reivindicaciones anteriores, donde el disolvente de las etapas de impregnación de las etapas (a) y (b) es agua.
18.- El procedimiento según cualquiera de las reivindicaciones anteriores, donde el compuesto de M1 se selecciona de entre ácido molíbdico, ácido wolfrámico, óxido de molibdeno (VI), óxido de wolframio (VI), heptamolibdato amónico, metatungstato amónico y cualquiera de sus combinaciones, preferiblemente el compuesto de M1 se selecciona de entre heptamolibdato amónico, metatungstato amónico y cualquiera de sus combinaciones.
19. - El procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque el compuesto de M2 es un nitrato, cloruro, carbonato, acetato o combinaciones de los mismos, preferiblemente el compuesto de M2 es un nitrato.
20. - El procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque el compuesto de M3 es un nitrato, cloruro, carbonato, hidroxi-carbonato, acetilacetonato, carboxilato, citrato o cualquiera de sus combinaciones, preferiblemente el compuesto de M3 es un carbonato.
21 . - El procedimiento según cualquiera de las reivindicaciones anteriores que además comprende una etapa (b') posterior a (b) y anterior a (c) de activación del sólido obtenido en la etapa (b).
22. - El procedimiento según la reivindicación anterior, caracterizado porque la activación de la etapa (b') se realiza mediante un tratamiento térmico.
23. - El procedimiento según cualquiera de las reivindicaciones 21 o 22, donde la activación de la etapa (b') se lleva a cabo a una temperatura de entre 200°C y 700°C.
24. - El procedimiento según la reivindicación anterior, caracterizado porque la activación de la etapa (b') se lleva a cabo a una temperatura comprendida entre 250°C y 550°C.
25. - El procedimiento según cualquiera de las reivindicaciones 21 a 24, donde la etapa de activación de la etapa (b') se lleva a cabo bajo una corriente de gas libre de azufre.
26. - El procedimiento según la reivindicación anterior, donde la corriente de gas comprende aire, N2, gas noble, H2, gas de síntesis o cualquiera de sus combinaciones, preferiblemente la corriente de gas comprende N2, gas noble, H2 o cualquiera de sus combinaciones.
27. - El procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque la etapa (c) de sulfuración se lleva a cabo mediante exposición del sólido obtenido en la etapa anterior, (b) o (b'), a una corriente gaseosa que comprende al menos un compuesto azufrado.
28. - El procedimiento según la reivindicación anterior, caracterizado porque el compuesto azufrado se selecciona de la lista que comprende: un compuesto de fórmula Ri R2S donde Ri y R2 pueden ser iguales o diferentes entre sí y se seleccionan de entre hidrógeno, alquilo (Ci-Ce), arilo, o Ri y R2 están unidos formando un grupo tiofeno.
29. - El procedimiento según las cualquiera de las reivindicaciones 27 o 28, donde la corriente gaseosa además comprende un gas seleccionado de entre H2, N2, gas noble, gas de síntesis y cualquiera de sus combinaciones.
30. - El procedimiento según cualquiera de las reivindicaciones 27 a 29, donde la proporción molar del compuesto azufrado en la corriente gaseosa es de entre 1 % y 85% molar, preferiblemente entre 6% y 20%.
31 . - El procedimiento según cualquiera de las reivindicaciones anteriores, donde la temperatura de la etapa (c) sulfuración es entre 200°C y 750°C, preferiblemente entre 300°C y 600°C.
32.- Catalizador obtenible por el procedimiento según cualquiera de las reivindicaciones anteriores.
33. - Uso del catalizador según la reivindicación anterior, para la producción de alcoholes superiores (C2+) por conversión catalítica de gas de síntesis.
34. - Uso del catalizador según la reivindicación anterior, donde el alcohol superior es etanol.
35. - Procedimiento de obtención de alcoholes superiores (C2+) a partir de gas de síntesis que comprende una etapa (i) de contacto entre el catalizador según la reivindicación 32 y una corriente gaseosa que comprende gas de síntesis.
36. - El procedimiento según la reivindicación anterior, donde la corriente gaseosa además comprende H2S.
37.- El procedimiento según cualquiera de las reivindicaciones 35 o 36 caracterizado porque se lleva a cabo a una presión de entre 1 y 200 bar, preferiblemente entre 10 y 100 bar.
38. - El procedimiento según cualquiera de las reivindicaciones 35 a 37 caracterizado porque se lleva a cabo a una temperatura de entre 100°C y
600°C, preferiblemente entre 200°C y 400°C.
39. - El procedimiento según cualquiera de las reivindicaciones 35 a 38 caracterizado porque se lleva a cabo en un reactor de lecho fijo.
40. El procedimiento según cualquiera de las reivindicaciones 35 a 39 donde el alcohol superior es etanol.
41 . El procedimiento según cualquiera de las reivindicaciones 35 a 40 que comprende además una etapa (ii) posterior a (i) de separación de los productos obtenidos en el paso (i) en al menos una corriente gaseosa y una corriente líquida.
42. El procedimiento según la reivindicación anterior que además comprende una etapa (iii) posterior a (ii) de recirculación de la corriente gaseosa a la etapa (i).
43. El procedimiento según la reivindicación anterior donde la corriente recirculada a la etapa (i) es entre un 70% y un 95% del gas de síntesis no reaccionado separado en la etapa (ii), preferiblemente entre un 85% y un 93% del gas de síntesis no reaccionado separado en la etapa (ii).
44. El procedimiento según cualquiera de las reivindicaciones 41 a 43, que además comprende una etapa (iv) de separación de metanol de la corriente líquida obtenida en la etapa (ii).
45. El procedimiento según la reivindicación anterior que además comprende una etapa (v) de recirculación del metanol separado en la etapa (iv) a la etapa (i).
46. El procedimiento según cualquiera de las reivindicaciones 35 a 43 caracterizado porque las etapas (i), (ii), (iii), (iv) y (v) se llevan a cabo de manera continua.
PCT/ES2013/070035 2013-01-28 2013-01-28 Catalizadores y su uso en la obtención de alcoholes superiores WO2014114824A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/ES2013/070035 WO2014114824A1 (es) 2013-01-28 2013-01-28 Catalizadores y su uso en la obtención de alcoholes superiores
ES201590080A ES2549197B1 (es) 2013-01-28 2013-01-28 Catalizadores y su uso en la obtención de alcoholes superiores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/070035 WO2014114824A1 (es) 2013-01-28 2013-01-28 Catalizadores y su uso en la obtención de alcoholes superiores

Publications (1)

Publication Number Publication Date
WO2014114824A1 true WO2014114824A1 (es) 2014-07-31

Family

ID=48227320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070035 WO2014114824A1 (es) 2013-01-28 2013-01-28 Catalizadores y su uso en la obtención de alcoholes superiores

Country Status (2)

Country Link
ES (1) ES2549197B1 (es)
WO (1) WO2014114824A1 (es)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675344A (en) 1984-07-30 1987-06-23 The Dow Chemical Company Method for adjusting methanol to higher alcohol ratios
US4749724A (en) 1983-03-18 1988-06-07 The Dow Chemical Company Process for producing alcohols from synthesis gas
US4752623A (en) 1984-07-30 1988-06-21 The Dow Chemical Company Mixed alcohols production from syngas
US4831060A (en) 1984-07-30 1989-05-16 The Dow Chemical Company Mixed alcohols production from syngas
US4882360A (en) 1984-07-30 1989-11-21 The Dow Chemical Company Process for producing alcohols from synthesis gas
EP0482817A1 (en) * 1990-10-17 1992-04-29 Sumitomo Metal Mining Company Limited Method for preparing a catalyst for hydrogenation of hydrocarbon oil
WO2011029973A1 (es) 2009-09-10 2011-03-17 Abengoa Bioenergía Nuevas Tecnologías, S. A. Procedimiento de obtención de un catalizador multimetálico azufrado y su uso en un proceso de producción de alcoholes superiores por conversión catalítica de gas de síntesis
WO2011029974A1 (es) 2009-09-10 2011-03-17 Abengoa Bioenergía Nuevas Tecnologías, S. A. Procemiento de obtención de un sólido multimetálico azufrado y su empleo como catalizador en un proceso de producción de alcoholes superiores a partir de gas de síntesis
GB2491698A (en) * 2011-06-06 2012-12-12 Johnson Matthey Plc A water-gas shift catalyst

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851382A (en) * 1995-12-18 1998-12-22 Texaco Inc. Selective hydrodesulfurization of cracked naphtha using hydrotalcite-supported catalysts

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749724A (en) 1983-03-18 1988-06-07 The Dow Chemical Company Process for producing alcohols from synthesis gas
US4675344A (en) 1984-07-30 1987-06-23 The Dow Chemical Company Method for adjusting methanol to higher alcohol ratios
US4752623A (en) 1984-07-30 1988-06-21 The Dow Chemical Company Mixed alcohols production from syngas
US4831060A (en) 1984-07-30 1989-05-16 The Dow Chemical Company Mixed alcohols production from syngas
US4882360A (en) 1984-07-30 1989-11-21 The Dow Chemical Company Process for producing alcohols from synthesis gas
EP0482817A1 (en) * 1990-10-17 1992-04-29 Sumitomo Metal Mining Company Limited Method for preparing a catalyst for hydrogenation of hydrocarbon oil
WO2011029973A1 (es) 2009-09-10 2011-03-17 Abengoa Bioenergía Nuevas Tecnologías, S. A. Procedimiento de obtención de un catalizador multimetálico azufrado y su uso en un proceso de producción de alcoholes superiores por conversión catalítica de gas de síntesis
WO2011029974A1 (es) 2009-09-10 2011-03-17 Abengoa Bioenergía Nuevas Tecnologías, S. A. Procemiento de obtención de un sólido multimetálico azufrado y su empleo como catalizador en un proceso de producción de alcoholes superiores a partir de gas de síntesis
EP2476487A1 (en) * 2009-09-10 2012-07-18 Abengoa Bioenergía Nuevas Tecnologías, S. A. Method for obtaining a multimetallic sulfureous catalyst and use thereof in a method for producing higher alcohols by catalytic conversion of synthesis gas
GB2491698A (en) * 2011-06-06 2012-12-12 Johnson Matthey Plc A water-gas shift catalyst

Also Published As

Publication number Publication date
ES2549197R1 (es) 2015-11-18
ES2549197B1 (es) 2016-09-20
ES2549197A2 (es) 2015-10-23

Similar Documents

Publication Publication Date Title
FI71883C (fi) Katalysatorsystem foer framstaellning av blandningar av metanol och hoegre alkoholer ur syntesgas.
KR101359990B1 (ko) 황에 대한 내구성이 우수한 메탄 개질용 촉매, 이의 제조방법 및 이를 이용한 메탄개질 방법
JP2014519976A5 (es)
EP3354341B1 (en) Method of production of perovskite structure catalysts, perovskite structure catalysts and use thereof for high temperature decomposition of n2o
CN103962123A (zh) 一种ZrO2负载的耐硫甲烷化催化剂及其制备方法
CA2918039C (en) Nitrous oxide decomposition catalyst
WO2015077268A1 (en) CERIA-SUPPORTED METAL CATALYSTS FOR THE SELECTIVE REDUCTION OF NOx
WO2018215943A1 (en) Copper-zinc-zirconium-based catalyst for direct hydrogenation of co2 to methanol
WO2016075353A1 (es) Procedimiento de obtención de 1-octanol
AU2014353383B2 (en) Catalyst materials useful for sour gas shift reactions and methods for using them
ES2549197B1 (es) Catalizadores y su uso en la obtención de alcoholes superiores
JP2014033992A (ja) 排気ガス浄化用触媒およびその製造方法
ES2355465B1 (es) Procedimiento de obtención de un sólido multimet�?lico azufrado y su empleo como catalizador en un proceso de producción de alcoholes superiores a partir de gas de s�?ntesis.
ES2355464B1 (es) Procedimiento de obtención de un catalizador multimetálico azufrado y su uso en un proceso de producción de alcoholes superiores por conversión catalítica de gas de síntesis.
KR101251499B1 (ko) 질소 산화물 제거용 제올라이트 촉매, 이의 제조 방법 및 이를 이용한 질소 산화물 제거 방법
JP2008284512A (ja) 酸素吸放出材及びそれを含む排ガス浄化用触媒
KR20190071266A (ko) 알루미나 담체에 혼합금속산화물을 첨가한 n2o 분해 촉매의 제조 방법
Liu et al. Selective Synergistic Catalytic Elimination of NO x and CH3SH via Engineering Deep Oxidation Sites against Toxic Byproducts Formation
WO2000059600A1 (en) Catalyst systems for reduction of oxides of nitrogen
JP2012223768A (ja) アンモニア分解触媒及びアンモニア分解方法
US20160256853A1 (en) Nitrogen oxide reduction catalyst and method of preparing the same
JPH0532593A (ja) エチレンアミンの製造方法
JP4817405B2 (ja) 水素化脱硫触媒及びその製造方法
JP2005066525A (ja) 水素製造用触媒及びそれを用いた水素の製造方法
WO2019224412A1 (es) Proceso catalítico para la producción de hidrocarburos y compuestos aromáticos a partir de compuestos oxigenados presentes en mezclas acuosas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13719575

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: P201590080

Country of ref document: ES

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13719575

Country of ref document: EP

Kind code of ref document: A1