WO2014114015A1 - 太阳能电池 - Google Patents

太阳能电池 Download PDF

Info

Publication number
WO2014114015A1
WO2014114015A1 PCT/CN2013/071393 CN2013071393W WO2014114015A1 WO 2014114015 A1 WO2014114015 A1 WO 2014114015A1 CN 2013071393 W CN2013071393 W CN 2013071393W WO 2014114015 A1 WO2014114015 A1 WO 2014114015A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
electrode
positive electrode
silicon substrate
negative electrode
Prior art date
Application number
PCT/CN2013/071393
Other languages
English (en)
French (fr)
Inventor
赖忠威
梁硕玮
Original Assignee
友达光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友达光电股份有限公司 filed Critical 友达光电股份有限公司
Publication of WO2014114015A1 publication Critical patent/WO2014114015A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the invention relates to a solar cell. Background technique
  • a solar cell converts light energy into electrical energy, which in turn uses sunlight as the main source. Since solar cells do not generate greenhouse gases during the conversion process, a green energy environment can be realized. In recent years, with the advancement and development of solar technology, solar cells have been widely used in the roofs of houses and the outer walls of buildings.
  • a solar cell generally has a crystalline silicon substrate, a single positive electrode conductive portion, and a single negative electrode conductive portion.
  • the positive electrode conductive portion is located on the backlight surface of the crystalline silicon substrate and is electrically connected to the P-type semiconductor material layer of the silicon substrate.
  • the negative electrode conductive portion is located on the backlight surface of the crystalline silicon substrate and is electrically connected to the N-type semiconductor material layer of the silicon substrate.
  • the output voltage of the solar cell is determined at the time of manufacture. For example, a solar cell of a single crystalline silicon substrate can only output a voltage of 0.6V. To make a solar module with a large output voltage, only a few solar cells can be connected in series to achieve this goal, but the module volume cannot be reduced.
  • 3C electronic products require high voltage (for example, 1 kHz current supply, although a large number of solar cells can be connected to provide sufficient voltage to drive electronic products, but the current is too large, which may cause damage to the product.
  • high voltage for example, 1 kHz current supply
  • One technical example of the present invention is a solar cell.
  • a solar cell includes a crystalline silicon substrate, a plurality of P-type semiconductor material layers, a plurality of N-type semiconductor material layers, a plurality of first positive electrode collector portions, at least one first electrode bus portion, a plurality of first negative electrode collecting portions, a plurality of second positive electrode collecting portions, at least one second electrode bus portion, a plurality of second negative electrode collecting portions, and at least one third electrode bus portion.
  • the crystalline silicon substrate has opposing face and backlight faces.
  • the N-type semiconductor material layer and the P-type semiconductor material layer are alternately arranged on the backlight surface of the crystalline silicon substrate at intervals.
  • the first positive electrode current collecting portion is arranged on the backlight surface of the crystalline silicon substrate, and electrically contacts at least one of the P-type semiconductor material layers.
  • the first electrode bus portion is located on the backlight surface of the crystalline silicon substrate, and is electrically connected to the first positive electrode collecting portion.
  • the first negative electrode collecting portion and the first positive electrode collecting portion are alternately arranged on the backlight surface of the crystalline silicon substrate, and the first negative electrode collecting portion is electrically contacted with the N-type semiconductor material layer One of them is one less.
  • the second positive electrode collecting portion is arranged on the backlight of the crystalline silicon substrate, and is electrically contacted
  • the second electrode bus portion is located on the backlight surface of the crystalline silicon substrate, and is electrically connected to the first negative electrode collecting portion and the second positive electrode collecting portion.
  • the second negative electrode collecting portion and the second positive electrode collecting portion are alternately arranged on the backlight surface of the crystalline silicon substrate, and the second negative electrode collecting portion is electrically contacted with at least one of the N-type semiconductor material layers.
  • the third electrode bus portion is located on the backlight surface of the crystalline silicon substrate, and is electrically connected to the second negative electrode current collecting portion.
  • the second electrode bus portion is located between the first electrode bus portion and the third electrode bus portion.
  • each of the first positive electrode collecting portions and each of the first negative electrode collecting portions has a substantially strip shape in a plan view on a backlight surface of the crystalline silicon substrate.
  • the solar cell further includes a protective layer.
  • the protective layer covers the P-type semiconductor material layer and the N-type semiconductor material layer.
  • the protective layer has a plurality of positive conductive openings and a plurality of negative conductive openings extending through the protective layer, and the first positive collector and the second positive collector respectively electrically contact the P-type semiconductor material layer through at least one of the positive conductive openings At least one.
  • the first negative electrode collector portion and the second negative electrode collector portion respectively electrically contact at least one of the N-type semiconductor material layers through at least one of the negative electrode conductive openings.
  • the first negative electrode collecting portion and the second positive electrode collecting portion are connected to opposite sides of the second electrode bus portion.
  • each of the second positive electrode collecting portions and each of the second negative electrode collecting portions has a substantially strip shape in a plan view on a backlight surface of the crystalline silicon substrate.
  • the second electrode bus line portion has a substantially zigzag shape in a plan view on a backlight surface of the crystalline silicon substrate.
  • the first positive electrode current collecting portion and the first electrode bus line portion have a substantially comb shape in a plan view on a backlight surface of the crystalline silicon substrate.
  • the first negative electrode current collecting portion, the second positive electrode collecting portion, and the second electrode bus portion have a substantially comb shape in a plan view shape on a backlight surface of the crystalline silicon substrate.
  • the second negative electrode collecting portion and the third electrode bus portion have a substantially comb shape in a plan view on a backlight surface of the crystalline silicon substrate.
  • the positive conductive opening has a circular shape, a triangular shape, an N-shaped shape, or a combination thereof, and N is a natural number greater than or equal to 4.
  • the shape of the negative conductive opening is circular, triangular, N-sided or a combination thereof, and N is a natural number greater than or equal to 4.
  • a ⁇ ,,,, ... ⁇ , , in the present invention is administered to buy one or more embodiment, the first negative electrode current collecting portion, a second portion of the positive electrode current collector and the second bus electrode portion are integrally formed.
  • the material of the crystalline silicon substrate comprises single crystal silicon or polycrystalline silicon.
  • the solar cell further includes a plate body.
  • the plate body is in contact with the surface of the protective layer, and has a first positive electrode collecting portion, a first electrode bus portion, a first negative electrode collecting portion, a second electrode bus portion, a second positive electrode collecting portion, and a second negative collecting portion With the third electrode bus portion.
  • the plate body is a metal plate and has a plurality of insulating portions.
  • the insulating portion is located between the third electrode bus portion and the second positive electrode collecting portion, between the second negative electrode collecting portion and the second positive electrode collecting portion, and between the second negative electrode collecting portion and the second electrode bus portion,
  • the second electrode bus portion is between the first positive electrode collecting portion, the first negative electrode collecting portion and the first positive electrode collecting portion, and between the first negative electrode collecting portion and the first electrode bus portion.
  • the material of the insulating portion includes plastic or rubber, or the insulating portion is a gap.
  • the solar cell is a back contact type solar cell.
  • the open circuit voltage of the solar cell is greater than or equal to 1.
  • the output voltage of the solar cell is greater than or equal to 0.8.
  • FIG. 1 is a plan view of a backlight surface of a solar cell according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the solar cell of FIG. 1 along a line segment 2 ⁇ -2 ⁇ ;
  • FIG. 2A is a cross-sectional view showing a solar cell according to another embodiment of the present invention, the cross-sectional position of which is the same as that of FIG.
  • FIG. 3 illustrates that the first positive electrode current collecting portion, the first electrode bus portion, the first negative electrode collecting portion, the second positive electrode collecting portion, the second electrode bus portion, and the second negative electrode have not been formed on the backlight surface of the solar cell of FIG. a plan view of the collector portion and the third electrode bus portion;
  • FIG. 4 is a top plan view of a solar cell according to another embodiment of the present invention.
  • FIG. 5 is a view showing that the backlight surface of the solar cell of FIG. 4 has not formed the first positive electrode current collecting portion, the first electrode bus portion, the first negative electrode collecting portion, the second positive electrode collecting portion, the second electrode bus portion, and the second negative electrode.
  • FIG. 6 is a top view of a backlight of a solar cell according to another embodiment of the present invention
  • FIG. 7 is a view showing that the backlight of the solar cell of FIG. 6 has not formed a first positive electrode collecting portion, a first electrode negative electrode collecting portion, and a top view of the third electrode bus portion;
  • FIG. 8 is an exploded view of a solar cell according to another embodiment of the present invention.
  • FIG. 9 is an exploded view of a solar cell according to still another embodiment of the present invention.
  • Solar cell 110 Crystalline silicon substrate
  • First positive electrode collecting portion 152 First positive electrode collecting portion
  • FIG. 1 is a plan view of a backlight surface 114 of a solar cell 100 in accordance with an embodiment of the present invention.
  • FIG. 2A is a cross-sectional view of the solar cell 100 of FIG. 1 taken along line 2A-2A.
  • the solar cell 100 includes a crystalline silicon substrate 110, a plurality of P-type semiconductor material layers 120, a plurality of N-type semiconductor material layers 130, a plurality of first positive electrode collector portions 152, and a first electrode bus.
  • the crystalline silicon substrate 110 has opposing face 42 and backlight face 114.
  • the N-type semiconductor material layer 130 and the P-type semiconductor material layer 120 are alternately arranged on the backlight surface 114 of the crystalline silicon substrate 110 at intervals, that is, viewed from a top view, the two are alternately arranged in a strip shape on the backlight surface 114. .
  • the first positive electrode electricity collecting portion 152 and the first negative electrode electricity collecting portion 162 are alternately arranged alternately on the backlight surface 1U of the crystalline silicon substrate 110, and the second positive electrode collecting portion 154 and the second negative electrode collecting portion 164 are alternately arranged at intervals.
  • the first electrode bus portion 150, the second electrode bus portion 170, and the third electrode bus portion 160 are located on the backlight surface 114 of the crystalline silicon substrate 110.
  • the solar cell 100 may also optionally include protective layers 142, 148.
  • the protective layer 142 covers the P-type semiconductor material layer 120 and the N-type semiconductor material layer 130, and the protective layer 142 has a plurality of positive conductive openings 144 and a plurality of negative conductive openings 146 extending through the protective layer 142.
  • the first positive electrode collecting portion 152 and the second positive electrode collecting portion 154 are electrically contacted with the corresponding P-type semiconductor material layer 120 through the corresponding positive conductive opening 144, respectively, and the first negative electrode collecting portion 162 and the second negative electrode set
  • the electrical portion 164 is electrically contacted with the corresponding N-type semiconductor material layer 130 through the corresponding negative conductive opening 146, respectively.
  • the light-incident surface 112 of the crystalline silicon substrate 110 may also be covered by the anti-reflective layer 149 and the protective layer 148, and the material of the crystalline silicon substrate 110 may comprise single crystal silicon or polycrystalline silicon.
  • the solar cell 100 may be a back contact solar cell, for example, an interdigitated back contact type solar cell, but is not intended to limit the present invention.
  • FIG. 2B is a cross-sectional view of a solar cell 100 in accordance with another embodiment of the present invention, the cross-sectional position of which is the same as that of FIG. 2A.
  • the solar cell 100 of FIG. 2B differs from that of FIG. 2A in that the N-type semiconductor material layer 130 of the solar cell 100 extends from the light-emitting surface 112 of the crystalline silicon substrate 110 to the backlight surface 1 and the solar cell 100 further includes a plurality of through-crystals.
  • the electrode of the silicon substrate 110 is electrically connected to the first negative electrode collector portion 162 and the N-type semiconductor material layer 130 for conducting the electric energy generated by the light-incident surface 112 to the first negative electrode collector portion 162.
  • the solar cell 100 of FIG. 2B may be a Metal Wrap Through (MWT) solar cell. , , , , , ,One, , ,
  • FIG. 3 illustrates that the first positive electrode current collecting portion 152, the first electrode bus portion 150, the first negative electrode collecting portion 162, the second positive electrode collecting portion 154, and the second electrode are not formed on the backlight surface 114 of the solar cell 100 of FIG.
  • the first positive electrode collector portion 152 is arranged on the surface 143 of the protective layer 142.
  • Each of the first positive electrode collectors 152 electrically contacts at least one of the tantalum semiconductor material layers 120 through at least one of the positive conductive openings 144.
  • the first electrode bus portion 150 is located on the surface 143 of the protective layer 142 and electrically connected to the plurality of first positive electrode collector portions 152.
  • first negative electrode electricity collecting portion 162 is alternately arranged on the surface 143 of the protective layer 142 at intervals from the first positive electrode electricity collecting portion 152.
  • Each of the first negative electrode collector portions 162 passes through at least one of the negative electrode conductive openings 146 to electrically contact at least one of the germanium-type semiconductor material layers 130.
  • the second positive electrode collecting portion 154 is arranged on the surface 143 of the protective layer 142, which extends in the same axial direction as the first positive electrode collecting portion 152, but is not connected to each other. Each of the second positive electrode collectors 154 electrically contacts at least one of the bismuth semiconductor material layers 120 through at least one of the positive conductive openings 144.
  • the second electrode bus portion 170 is located approximately in the middle of the surface 143 of the protective layer 142, and is electrically connected to the plurality of first negative electrode collecting portions 162 and the plurality of second positive electrode collecting portions 154, wherein the plurality of first negative electrode collecting portions 162 and the plurality of second positive electrode collecting portions 154 are respectively connected to opposite sides of the second electrode bus portion 170 and extend in opposite directions.
  • the second negative electrode collecting portion 164 and the second positive electrode collecting portion 154 are alternately arranged on the surface 143 of the protective layer 142 at intervals, and the second negative electrode collecting portion 164 and the first negative electrode collecting portion 162 extend in the same axial direction, but mutually Not connected.
  • Each of the second negative electrode collectors 164 electrically contacts at least one of the bismuth semiconductor material layers 130 through at least one of the negative conductive openings 146.
  • the third electrode bus portion 160 is located on the surface 143 of the protective layer 142 and electrically connected to the plurality of second negative electrode collecting portions 164.
  • the second electrode bus portion 170 is located between the first electrode bus portion 150 and the third electrode bus portion 160, and the first electrode bus portion 150 and the third electrode bus portion 160 are respectively adjacent to the surface 143 of the protective layer 142. Relative to the sides.
  • the second electrode bus portion 170 of the solar cell 100 is electrically connected to the first negative electrode collecting portion 162 and the second positive electrode collecting portion 154, the first positive electrode collecting portion 152 and the electrode bus portion are electrically connected.
  • the first negative electrode collecting portion 162 and the second electrode bus portion 170 can be regarded as electrodes of one battery sub-unit, and the second positive electrode collecting portion 154, the second electrode bus portion 170, and the second negative electrode collecting portion 164 are
  • the third electrode bus portion 160 can be regarded as an electrode of another battery subunit.
  • the solar cell 100 having the single crystalline silicon substrate 110 can have a voltage effect after the two solar cells are connected in series, so that the output voltage of the solar cell 100 can be increased.
  • the solar cell 100 of FIG. 1 is the same as the silicon substrate of a known solar cell, the solar cell 100 of FIG.
  • a solar cell of a single crystalline silicon substrate has an open circuit voltage value of not more than 0.75 volts according to the above specification, and an output voltage value of not more than 0.6 volt.
  • the experimental result of the present invention is that the solar cell 100 having a single crystalline silicon substrate 110 has an open circuit voltage of about 1 volt, preferably greater than 1 volt, and an output voltage of about 0.8 volt, in the above specification or illumination. Preferably, the difference can be greater than 0.8 volts, which differs from the different crystalline silicon solar cell structures and the different methods used to fabricate the solar cells.
  • the voltage required for 3C electronics is generally greater than IV, and the smaller current typically extends the life of 3C electronics. Since the solar cell 100 raises the output voltage, the output current of the solar cell 100 is lowered, so that the solar cell 100 can be widely used in 3C electronic products. When a solar module with a specific output voltage is fabricated, it is not necessary to increase the output voltage by connecting a plurality of solar cells 100 in series, and the module package is more flexible, thereby saving space and material cost of the solar module.
  • the front stage process of the solar cell 100 does not need to be changed, and the output voltage thereof can pass through the first positive electrode collecting portion 152 and the first electrode bus portion 15 ( ⁇ first negative electrode collecting portion 162 and second positive electrode collecting portion 154)
  • the number of the second electrode bus portion 170, the second negative electrode collecting portion 164, and the third electrode bus portion 160 is adjusted.
  • the solar cell 100 can have a high output voltage characteristic.
  • the portion 150, the second electrode bus portion 170, and the third electrode bus portion 160 have a substantially strip shape on the backlight surface 114 of the crystalline silicon substrate 110, but are not limited to strips.
  • the first positive electrode current collecting portion 152 and the first electrode bus portion 150 have a substantially comb shape on the backlight surface 114 of the crystalline silicon substrate 110, and the first negative electrode current collecting portion 162 and the second positive electrode current collecting portion are substantially comb-shaped.
  • the overall shape of the 154 and the second electrode bus portion 170 on the backlight surface 114 of the crystalline silicon substrate 110 is substantially comb-shaped, and the second negative electrode collector portion 164 and the third electrode bus portion 160 are on the crystalline silicon substrate 110.
  • the overall planar shape of the backlight surface 114 is substantially comb-shaped, but is not limited to a comb shape.
  • the shape of the positive electrode conductive opening 144 and the negative electrode conductive opening 146 are both circular.
  • the shape of the positive conductive opening 144 may be a triangle, a ridge, or a combination thereof
  • the shape of the negative conductive opening 146 may also be a circle, a triangle, a ridge, or a combination thereof. Is a natural number greater than or equal to 4. ⁇ , , , , ⁇ .
  • the portion 160 may form a metal (eg, copper:) layer on the protective layer 142 on the crystalline silicon substrate 110 by screen printing.
  • the first negative electrode current collecting portion 162, the second positive electrode collecting portion 154, and the second electrode bus portion 170 may be integrally formed, and the second negative electrode collecting portion 164 and the third electrode bus portion 160 may be integrally formed.
  • the first positive electrode current collecting portion 152 and the first electrode bus portion 150 may be integrally formed, but the present invention is not limited.
  • the first negative electrode collecting portion 162, the second positive electrode collecting portion 154, and the second electrode bus portion 170 may also be connected to each other by means of splicing.
  • FIG. 4 is a top plan view of a solar cell 100a in accordance with another embodiment of the present invention. 5 shows that the backlight surface 114 114 ′ of the solar cell 100 a of FIG. 4 has not formed the first positive electrode collector portion 152 , 152 ′, the first electrode bus portion 150 , 150 ′, the first negative electrode collector portion 162 , 162 ′, A plan view of the second positive electrode current collecting portions 154, 154', the second electrode bus portions 170, 170', the second negative electrode collecting portions 164, 164', and the third electrode bus portions 160, 160'. 4 and FIG.
  • the solar cell 100a includes a crystalline silicon substrate 110, 110', a plurality of P-type semiconductor material layers 120, 120', a plurality of N-type semiconductor material layers 130, 130', and protective layers 142, 142. ', a plurality of first positive electrode collecting portions 152, 152', first electrode bus portions 150, 150', a plurality of first negative electrode collecting portions 162, 162', and a plurality of second positive electrode collecting portions 154, 154' Second electrode bus portions 170, 170', a plurality of second negative electrode collector portions 164, 164' and third electrode bus portions 160, 160.
  • the solar cell 100a has two crystalline silicon substrates 110, 110' and an annulus 190, and the first electrode bus portion 150 of the crystalline silicon substrate 110 is electrically connected via the crucible 190.
  • the third electrode bus portion 160' is located on the crystalline silicon substrate 110'.
  • the solar cell 100a can be regarded as four sets of battery sub-units connected in series with each other, and has a higher output voltage than the solar cell 100 shown in FIG. 1).
  • FIG. 6 is a top plan view of a backlight surface 114 of a solar cell 100b in accordance with yet another embodiment of the present invention.
  • 7 shows that the first positive electrode current collecting portion 152, the first electrode bus portion 150, the first negative electrode collecting portion 162, the second positive electrode collecting portion 154, and the second electrode have not been formed on the backlight surface 114 of the solar cell 100b of FIG.
  • the solar cell 100b includes a crystalline silicon substrate 110 , a plurality of P-type semiconductor material layers 120 , a plurality of N-type semiconductor material layers 130 , a protective layer 142 , and a plurality of first positive electrode collector portions 152 .
  • the difference from the embodiment of FIG. 1 is that the number of the first negative electrode collecting portion 162, the second positive electrode collecting portion 154 and the second electrode bus portion 170 is large, and the second electrode bus portion 170 is on the crystalline silicon substrate.
  • the top view shape of the backlight surface 114 of the 110 is sawtooth.
  • the shape of the positive electrode conductive opening 144 and the negative electrode conductive opening 146 are both quadrilateral or elongated.
  • the solar cell 100b has four sets of battery sub-units connected in series with each other, having a higher output voltage than the solar cell 100 see Fig. 1;
  • FIG. 8 is an exploded view of a solar cell 100c according to another embodiment of the present invention.
  • the solar cell 100c further includes a plate body 180.
  • the board body 180 may be a circuit board having a first positive electrode collector portion 152, a first electrode bus portion 150, a first negative electrode collector portion 162, a second electrode bus portion 170, a second positive electrode collector portion 154, and a second negative electrode.
  • the collector portion 164 and the third electrode bus portion 160 When the crystalline silicon substrate 110 is fixed on the plate body 180 in the direction D, the plate body 180 is in contact with the surface 143 of the protective layer 142 such that the first positive electrode collecting portion 152 and the second positive electrode collecting portion 154 are in electrical contact with the P-type.
  • the semiconductor material layer 120 is shown in the first negative electrode collecting portion 162 and the second negative electrode collecting portion 164 electrically contacting the N-type semiconductor material layer 130 (see FIG. K).
  • FIG. 9 is an exploded view of a solar cell 100d according to still another embodiment of the present invention.
  • the plate body 180 is a metal plate and has a plurality of insulating portions 182.
  • the insulating portion 182 is located between the third electrode bus portion 160 and the second positive electrode collecting portion 154, between the second negative electrode collecting portion 164 and the second positive electrode collecting portion 154, and the second negative electrode collecting portion 164 and the second electrode.
  • the material of the insulating portion 182 may include plastic or rubber, or may be designed as a gap, and has the effect of isolating the insulation.
  • the solar cell 100d can be regarded as two sets of battery sub-units connected in series to each other.
  • the second electrode bus portion of the solar cell since the second electrode bus portion of the solar cell is electrically connected to the first negative electrode collecting portion and the second positive electrode collecting portion, the first positive electrode collecting portion and the first electrode are compared.
  • the bus portion, the negative electrode collecting portion, and the second electrode bus portion may be regarded as one battery sub-unit, and the second positive electrode collecting portion, the second electrode bus portion, the second negative electrode collecting portion, and the third electrode bus portion may be regarded as Another battery subunit.
  • a solar cell having a single crystalline silicon substrate can have a voltage effect after the two solar cells are connected in series, thereby increasing the output voltage of the solar cell.
  • the front-end process of the solar cell does not need to be changed, and its output voltage can pass through the first positive electrode set. , , ⁇ , ⁇ , , ⁇ , , electric part, first electrode bus part, first negative electrode collecting part, second positive electrode collecting part, second electrode bus part, second negative electrode collecting part and third electrode
  • the number of bus sections is adjusted so that solar cells can be used in 3C electronics.
  • the solar cell with a single crystalline silicon substrate disclosed in the present invention can have a voltage effect after the two solar cells are connected in series, thereby increasing the output voltage of the solar cell. Since the solar cell increases the output voltage, the output current of the solar cell is lowered, so that the solar cell can be widely used in 3C electronic products.
  • a solar module with a specific output voltage is produced, it is not necessary to increase the output voltage by connecting a plurality of solar cells in series, and the module package is more flexible, thereby saving the space and material cost of the solar module, and the method can also reduce the output. Current, to avoid excessive current, resulting in product damage. In addition, the front-end process of the solar cell does not need to be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能电池(100)包含结晶硅基材(110)、多个P型半导体材料层(120)、多个N型半导体材料层(130)、多个第一正极集电部(152)、至少一第一电极总线部(150)、多个第一负极集电部(162)、多个第二正极集电部(154)、至少一第二电极总线部(170)、多个第二负极集电部(164)与至少一第三电极总线部(160)。太阳能电池(100)通过第一正极集电部(152)、第一电极总线部(150)、第一负极集电部(162)、第二电极总线部(170)、第二正极集电部(154)、第二负极集电部(164)与第三电极总线部(160)的排列方式组成多个电池次单元来提升其输出电压。

Description

太阳能电池 技术领域
本发明有关一种太阳能电池。 背景技术
太阳能电池 (solar cell)可将光能转换为电能, 其中光能又以太阳光为主要来 源。 由于太阳能电池在转换过程中不会产生温室气体, 因此可以实现绿色能源 的环境。 近年来, 随着太阳能科技的进歩与发展, 太阳能电池已广泛地应用于 住宅的屋顶与大楼的外墙。
公知太阳能电池一般具有结晶硅基板、 单一的正极导电部与单一的负极导 电部。 其中, 正极导电部位于结晶硅基板的背光面上, 且与硅基板的 P型半导 体材料层导通。 负极导电部位于结晶硅基板的背光面上, 且与硅基板的 N型半 导体材料层导通。 太阳能电池在制作时的输出电压就已决定, 例如单一结晶硅 基板的太阳能电池就只能固定输出 0.6V的电压。若要制作较大输出电压的太阳 能模块, 只能以串联数个太阳能电池来达成此目的, 但会造成模块体积无法减 小。
此外, 3C电子产品需高电压 (:例如 1VM氏电流的电力供给, 当串联多个太阳 能电池时虽可提供足够的电压驱动电子产品, 但其电流过大却有可能造成产品 损毁。 发明公开
本发明的一技术示例为一种太阳能电池。
根据本发明一实施方式, 一种太阳能电池包含结晶硅基材、 多个 P型半导 体材料层、 多个 N型半导体材料层、 多个第一正极集电部、 至少一第一电极总 线部、 多个第一负极集电部、 多个第二正极集电部、 至少一第二电极总线部、 多个第二负极集电部与至少一第三电极总线部。 结晶硅基材具有相对的迎光面 与背光面。 N型半导体材料层与 P型半导体材料层间隔地交替排列在结晶硅基 材的背光面上。 第一正极集电部排列于结晶硅基材的背光面, 且分别电性接触 P型半导体材料层其中至少一者。 第一电极总线部位于结晶硅基材的背光面, , 并电性连接第一正极集电部。 第一负极集电部与第一正极集电部间隔地交替排 列于结晶硅基材的背光面, 且第一负极集电部分别电性接触 N型半导体材料层 其中全少一者。 ;二正极集电部排列于结晶硅基材的背光曲, 且分别电性接触
P型半导体材料层其中至少一者。 第二电极总线部位于结晶硅基材的背光面, 并电性连接第一负极集电部与第二正极集电部。 第二负极集电部与第二正极集 电部间隔地交替排列于结晶硅基材的背光面, 且第二负极集电部分别电性接触 N型半导体材料层其中至少一者。 第三电极总线部位于结晶硅基材的背光面, 并电性连接第二负极集电部。
在本发明一或多个实施方式中, 上述第二电极总线部位于第一电极总线部 与第三电极总线部之间。
在本发明一或多个实施方式中, 上述每一第一正极集电部与每一第一负极 集电部在结晶硅基材的背光面上的俯视形状大致呈条状。
在本发明一或多个实施方式中, 上述太阳能电池更包含保护层。 保护层覆 盖 P型半导体材料层与 N型半导体材料层。 保护层具有多个正极导电开口与多 个负极导电开口贯穿保护层, 且第一正极集电部与第二正极集电部分别通过正 极导电开口其中至少一者电性接触 P型半导体材料层其中至少一者。 第一负极 集电部与第二负极集电部分别通过负极导电开口其中至少一者电性接触 N型半 导体材料层其中至少一者。
在本发明一或多个实施方式中, 上述第一负极集电部与第二正极集电部分 别连接于第二电极总线部的相对两侧。
在本发明一或多个实施方式中, 上述每一第二正极集电部与每一第二负极 集电部在结晶硅基材的背光面上的俯视形状大致呈条状。
在本发明一或多个实施方式中, 上述第二电极总线部在结晶硅基材的背光 面上的俯视形状大致呈锯齿状。
在本发明一或多个实施方式中, 上述第一正极集电部与第一电极总线部在 结晶硅基材的背光面上的整体俯视形状大致呈梳状。
在本发明一或多个实施方式中, 上述第一负极集电部、 第二正极集电部与 第二电极总线部在结晶硅基材的背光面上的整体俯视形状大致呈梳状。
在本发明一或多个实施方式中, 上述第二负极集电部与第三电极总线部在 结晶硅基材的背光面上的整体俯视形状大致呈梳状。
在本发明一或多个实施方式中, 上述正极导电开口的形状为圆形、 三角形、 N边形或上述的组合, N为大于或等于 4的自然数。
在本发明一或多个实施方式中, 上述负极导电开口的形状为圆形、 三角形、 N边形或上述的组合, N为大于或等于 4的自然数。 一 Λ 、 , , , … ^ , , 在本发明一或多个买施方式中, 上述第一负极集电部、 第二正极集电部与 第二电极总线部为一体成型。
在本发明一或多个实施方式中, 上述结晶硅基材的材质包含单晶硅或多晶 硅。
在本发明一或多个实施方式中, 上述太阳能电池更包含板体。 板体与保护 层的表面接触, 且具有第一正极集电部、 第一电极总线部、 第一负极集电部、 第二电极总线部、 第二正极集电部、 第二负极集电部与第三电极总线部。
在本发明一或多个实施方式中, 上述板体为金属板, 且具有多个绝缘部。 绝缘部位于第三电极总线部与第二正极集电部之间、 第二负极集电部与第二正 极集电部之间、 第二负极集电部与第二电极总线部之间、 第二电极总线部与第 一正极集电部之间、 第一负极集电部与第一正极集电部之间、 及第一负极集电 部与第一电极总线部之间。
在本发明一或多个实施方式中, 上述绝缘部的材质包含塑胶、 橡胶, 或上 述绝缘部为间隙。
在本发明一或多个实施方式中, 上述太阳能电池为背接触型太阳能电池。 在本发明一或多个实施方式中, 上述太阳能电池的开路电压大于或等于 1 在本发明一或多个实施方式中, 上述太阳能电池的输出电压大于或等于 0.8
附图简要说明
图 1绘示根据本发明一实施方式的太阳能电池的背光面的俯视图; 图 2Α绘示图 1的太阳能电池沿线段 2Α-2Α的剖面图;
图 2Β绘示根据本发明另一实施方式的太阳能电池的剖面图,其剖面位置与 图 2Α相同;
图 3绘示图 1的太阳能电池的背光面尚未形成第一正极集电部、 第一电极 总线部、 第一负极集电部、 第二正极集电部、 第二电极总线部、 第二负极集电 部与第三电极总线部的俯视图;
图 4绘示根据本发明另一实施方式的太阳能电池的俯视图。
图 5绘示图 4的太阳能电池的背光面尚未形成第一正极集电部、 第一电极 总线部、 第一负极集电部、 第二正极集电部、 第二电极总线部、 第二负极集电 部与第三电极总线部的俯视图。 , , 、 、 ^ , , , , , , ,一
图 6绘示根据本发明又一买施方式的太阳能电池的背光曲的俯视图; 图 7绘示图 6的太阳能电池的背光面尚未形成第一正极集电部、 第一电极 负极集电 部与第三电极总线部的俯视图;
图 8绘示根据本发明另一实施方式的太阳能电池的分解图;
图 9绘示根据本发明又一实施方式的太阳能电池的分解图。
其中, 附图标记:
100: 太阳能电池 100a 太阳能电池
100b: 太阳能电池 100c 太阳能电池
100d: 太阳能电池 110: 结晶硅基材
110': 结晶硅基材 112: 迎光面
114: 背光面 114 背光面
120: P型半导体材料层 120 P型半导体材料层
130: N型半导体材料层 130 N型半导体材料层
142: 保护层 142 保护层
143: 表面 144 正极导电开口
146: 负极导电开口 148 保护层
149: 抗反射层 150 第一电极总线部
152: 第一正极集电部 152 第一正极集电部
154: 第二正极集电部 154 第二正极集电部
160: 第三电极总线部 160 第三电极总线部
162: 第一负极集电部 162 第一负极集电部
164: 第二负极集电部 164 第二负极集电部
166: 电极 170 第二电极总线部
170: 第二电极总线部 182
180: 板体 190 : 悍带
2A-2A: D: 方向 实现本发明的最佳方式
以下将以附图公开本发明的多个实施方式, 为明确说明起见, 许多实务上 的细节将在以下叙述中一并说明。 然而, 应了解到, 这些实务上的细节不应用 以限制本发明。 也就是说, 在本发明部分实施方式中, 这些实务上的细节是非 必要的。 此外, 为简化附图起见, 一些公知惯用的结构与元仵在附图中将以简 单示意的方式绘示之。
图 1绘示根据本发明一实施方式的太阳能电池 100的背光面 114的俯视 ¾ 图 2A绘示图 1的太阳能电池 100沿线段 2A-2A的剖面图。 同时参阅图 1与图 2A, 太阳能电池 100包含结晶硅基材 110、 多个 P型半导体材料层 120、 多个 N 型半导体材料层 130、 多个第一正极集电部 152、 第一电极总线部 150、 多个第 一负极集电部 162、 多个第二正极集电部 154、 第二电极总线部 170、 多个第二 负极集电部 164与第三电极总线部 160。
结晶硅基材 110具有相对的迎光面 112与背光面 114。 N型半导体材料层 130与 P型半导体材料层 120间隔地交替排列于结晶硅基材 110的背光面 114 上, 亦即, 由俯视图观之, 前述两者呈条状交替排列于背光面 114上。 第一正 极集电部 152与第一负极集电部 162间隔地交替排列于结晶硅基材 110的背光 面 1U且第二正极集电部 154与第二负极集电部 164间隔地交替排列于结晶硅 基材 110的背光面 114。 此外, 第一电极总线部 150、 第二电极总线部 170与第 三电极总线部 160位于结晶硅基材 110的背光面 114。
在本实施方式中, 太阳能电池 100还可选择性地包含保护层 142、 148。 保 护层 142覆盖 P型半导体材料层 120与 N型半导体材料层 130, 且保护层 142 具有多个正极导电开口 144与多个负极导电开口 146贯穿保护层 142。 其中, 第一正极集电部 152与第二正极集电部 154分别通过对应的正极导电开口 144 电性接触对应的 P型半导体材料层 120, 且第一负极集电部 162与第二负极集 电部 164分别通过对应的负极导电开口 146电性接触对应的 N型半导体材料层 130。 此外, 结晶硅基材 110的迎光面 112还可由抗反射层 149与保护层 148覆 盖, 且结晶硅基材 110的材质可以包含单晶硅或多晶硅。
此外, 在本实施方式中, 太阳能电池 100可以为背接触型太阳能电池 (back contact solar cell ), 例如为交指背接触型太阳能电池, 但并不以限制本发明。 举 例来说, 图 2B绘示根据本发明另一实施方式的太阳能电池 100的剖面图, 其剖 面位置与图 2A相同。 图 2B的太阳能电池 100与图 2A不同的地方在于: 太阳 能电池 100的 N型半导体材料层 130由结晶硅基材 110的迎光面 112延伸至背 光面 1 且太阳能电池 100还包含多个贯穿结晶硅基材 110的电极 其中, 电极 166电性接触第一负极集电部 162与 N型半导体材料层 130, 用以将迎光 面 112产生的电能传导至第一负极集电部 162。 图 2B的太阳能电池 100可以为 金属贯穿式 (Metal Wrap Through; MWT)太阳能电池。 , , , , , ,一, , ,
图 3绘示图 1的太阳能电池 100的背光面 114尚未形成第一正极集电部 152、 第一电极总线部 150、 第一负极集电部 162、 第二正极集电部 154、 第二 电极总线部 170、 第二负极集电部 164与第三电极总线部 160的俯视图。 同时 参阅图 1、 图 2与图 3, 第一正极集电部 152排列于保护层 142的表面 143。 每 一第一正极集电部 152均通过正极导电开口 144其中至少一者电性接触 Ρ型半 导体材料层 120其中至少一者。 第一电极总线部 150位于保护层 142的表面 143, 并电性连接多个第一正极集电部 152。
此外, 第一负极集电部 162与第一正极集电部 152间隔地交替排列于保护 层 142的表面 143。 每一第一负极集电部 162均通过负极导电开口 146其中至 少一者电性接触 Ν型半导体材料层 130其中至少一者。
第二正极集电部 154排列于保护层 142的表面 143, 其与第一正极集电部 152以同一轴向延伸, 但彼此不连接。 每一第二正极集电部 154均通过正极导 电开口 144其中至少一者电性接触 Ρ型半导体材料层 120其中至少一者。 第二 电极总线部 170位于保护层 142的表面 143约略中间处, 并电性连接多个第一 负极集电部 162与多个第二正极集电部 154, 其中多个第一负极集电部 162与 多个第二正极集电部 154分别连接于第二电极总线部 170的相对两侧并往相反 方向延伸。
第二负极集电部 164与第二正极集电部 154间隔地交替排列于保护层 142 的表面 143, 第二负极集电部 164与第一负极集电部 162以同一轴向延伸, 但 彼此不连接。 每一第二负极集电部 164均通过负极导电开口 146其中至少一者 电性接触 Ν型半导体材料层 130其中至少一者。 第三电极总线部 160位于保护 层 142的表面 143, 并电性连接多个第二负极集电部 164。 此外, 第二电极总线 部 170位于第一电极总线部 150与第三电极总线部 160之间, 而第一电极总线 部 150与第三电极总线部 160则分别邻近于保护层 142的表面 143的相对两侧 边。
具体而言, 由于太阳能电池 100的第二电极总线部 170电性连接第一负极 集电部 162与第二正极集电部 154, 因此第一正极集电部 152、 电极总线部
150、 第一负极集电部 162与第二电极总线部 170可视为一个电池次单元的电 极, 而第二正极集电部 154、 第二电极总线部 170、 第二负极集电部 164与第三 电极总线部 160可视为另一个电池次单元的电极。 如此一来, 具单一结晶硅基 材 110的太阳能电池 100便可具有两太阳能电池串联后的电压效果, 因此可提 升太阳能电池 100的输出电压。 举例釆说, 当图 1的结晶硅基材 110与公知太阳能电池的硅基板相同时, 若公知太阳能电池依照 IEC60904规范或光照度 1000W/m2下可输出 0.6V的电 压, 则图 1的太阳能电池 100理论上可输出 1.2V的电压, 也就是公知太阳能电 池输出电压的两倍。 依目前技术而言, 单一结晶硅基板的太阳能电池依照上述 规范而得到的开路电压值不大于 0.75伏特, 输出电压值不大于 0.6伏特。 而本 发明的实验结果为在上述规范或照度下, 具单一结晶硅基材 110的太阳能电池 100的开路电压约等于 1伏特, 较佳的情况可大于 1伏特, 输出电压可约等于 0.8伏特, 较佳的情况可大于 0.8伏特, 这些差异来自于不同的结晶硅太阳能电 池结构以及制造太阳能电池所选用的不同方法。
此外, 3C电子产品所需的电压一般大于 IV, 且较小的电流通常可延长 3C 电子产品的使用寿命。 由于太阳能电池 100提升了输出电压, 因此降低了太阳 能电池 100的输出电流, 使得太阳能电池 100可广泛地使用于 3C电子产品中。 当制作特定输出电压的太阳能模块时, 不需以串联多个太阳能电池 100的方式 来增加输出电压, 在模块封装上较具弹性, 可节省太阳能模块的空间与材料成 本。
另外, 太阳能电池 100的前段工艺不需改变, 且其输出电压可通过第一正 极集电部 152、第一电极总线部 15(λ第一负极集电部 162、第二正极集电部 154 第二电极总线部 170、 第二负极集电部 164与第三电极总线部 160的数量来调 整。 如此一来, 太阳能电池 100可具高输出电压的特性。
在本实施方式中, 每一第一正极集电部 152、 每一第二正极集电部 154、 每 一第一负极集电部 162、 每一第二负极集电部 164、 第一电极总线部 150、 第二 电极总线部 170与第三电极总线部 160在结晶硅基材 110的背光面 114上的俯 视形状大致呈条状, 但并不以条状为限。 此外, 第一正极集电部 152与第一电 极总线部 150在结晶硅基材 110的背光面 114上的整体俯视形状大致呈梳状, 第一负极集电部 162、 第二正极集电部 154与第二电极总线部 170在结晶硅基 材 110的背光面 114上的整体俯视形状大致呈梳状, 且第二负极集电部 164与 第三电极总线部 160在结晶硅基材 110的背光面 114上的整体俯视形状大致呈 梳状, 但并不以梳状为限。
此外, 在本实施方式中, 正极导电开口 144与负极导电开口 146的形状均 为圆形。 然而在其他实施方式中, 正极导电开口 144的形状可为三角形、 Ν边 形或上述的组合, 且负极导电开口 146的形状也可为圆形、 三角形、 Ν边形或 上述的组合, 其中 Ν为大于或等于 4的自然数。 ^ , , , , , ^ .
第一正极集电部 152、 第一电极总线部 150、 第一负极集电部 162、 第二正 极集电部 154、 第二电极总线部 170、 第二负极集电部 164与第三电极总线部 160可通过网印的方式将金属 (:例如铜:)层形成于结晶硅基材 110上的保护层 142。 如此一来, 第一负极集电部 162、 第二正极集电部 154与第二电极总线部 170可以为一体成型, 第二负极集电部 164与第三电极总线部 160可以为一体 成型, 且第一正极集电部 152与第一电极总线部 150可以为一体成型, 但并不 限制本发明。 举例来说, 第一负极集电部 162、 第二正极集电部 154与第二电 极总线部 170亦可采用悍接的方式彼此连接。
应了解到, 已叙述过的元件与材料将不在重复赘述, 合先叙明。 在以下叙 述中, 将说明其他型式的太阳能电池。
图 4绘示根据本发明另一实施方式的太阳能电池 100a的俯视图。 图 5绘示 图 4的太阳能电池 100a的背光面 114 114'尚未形成第一正极集电部 152、 152'、 第一电极总线部 150、 150'、 第一负极集电部 162、 162'、 第二正极集电部 154、 154'、 第二电极总线部 170、 170'、 第二负极集电部 164、 164'与第三电极总线 部 160、 160'的俯视图。 同时参阅图 4与图 5, 太阳能电池 100a包含结晶硅基 材 110、 110'、 多个 P型半导体材料层 120、 120'、 多个 N型半导体材料层 130、 130'、保护层 142、 142'、 多个第一正极集电部 152、 152'、第一电极总线部 150、 150'、 多个第一负极集电部 162、 162'、 多个第二正极集电部 154、 154'、 第二 电极总线部 170、 170'、 多个第二负极集电部 164、 164'与第三电极总线部 160、 160,。
与图 1的实施方式不同的地方在于: 太阳能电池 100a具有两结晶硅基材 110、 110'及悍带 190, 且位于结晶硅基材 110的第一电极总线部 150经悍带 190 电性连接位于结晶硅基材 110' 的第三电极总线部 160'。 如此一来, 太阳能电池 100a可视为四组彼此串联的电池次单元, 具有较太阳能电池 100见图 1)更高的 输出电压。
图 6绘示根据本发明又一实施方式的太阳能电池 100b的背光面 114的俯视 图。 图 7绘示图 6的太阳能电池 100b的背光面 114尚未形成第一正极集电部 152、 第一电极总线部 150、 第一负极集电部 162、 第二正极集电部 154、 第二 电极总线部 170、 第二负极集电部 164与第三电极总线部 160的俯视图。 同时 参阅图 6与图 7, 太阳能电池 100b包含结晶硅基材 110、 多个 P型半导体材料 层 120、 多个 N型半导体材料层 130、 保护层 142、 多个第一正极集电部 152、 第一电极总线部 150、 多个第一负极集电部 162、 多个第二正极集电部 154、 多 Λ , _ Λ ^ ^ , ^ , ,
个第二电极总线部 170、 多个第二负极集电部 164与第三电极总线部 160。
与图 1的实施方式不同的地方在于: 第一负极集电部 162、 第二正极集电 部 154与第二电极总线部 170的数量较多, 且第二电极总线部 170在结晶硅基 材 110的背光面 114上的俯视形状呈锯齿状。 此外, 正极导电开口 144与负极 导电开口 146的形状均为四边形或长条形。 在本实施方式中, 太阳能电池 100b 具有四组彼此串联的电池次单元, 具有较太阳能电池 100见图 1;)更高的输出电 压。
图 8绘示根据本发明另一实施方式的太阳能电池 100c的分解图。 与图 1的 实施方式不同的地方在于: 太阳能电池 100c还包含板体 180。 板体 180可以为 电路板, 具有第一正极集电部 152、第一电极总线部 150、第一负极集电部 162、 第二电极总线部 170、 第二正极集电部 154、 第二负极集电部 164与第三电极总 线部 160。 当结晶硅基材 110以方向 D固定于板体 180上时, 板体 180与保护 层 142的表面 143接触, 使得第一正极集电部 152与第二正极集电部 154电性 接触 P型半导体材料层 120见图 第一负极集电部 162与第二负极集电部 164电性接触 N型半导体材料层 130(见图 K)。
在本实施方式中, 太阳能电池 100c可视为两组彼此串联的电池次单元。 图 9绘示根据本发明又一实施方式的太阳能电池 100d的分解图。 与图 8的 实施方式不同的地方在于: 板体 180为金属板, 且具有多个绝缘部 182。 绝缘 部 182位于第三电极总线部 160与第二正极集电部 154之间、 第二负极集电部 164与第二正极集电部 154之间、 第二负极集电部 164与第二电极总线部 170 之间、 第二电极总线部 170与第一正极集电部 152之间、 第一负极集电部 162 与第一正极集电部 152之间、 及第一负极集电部 162与第一电极总线部 150之 间。 其中, 绝缘部 182的材质可以包含塑胶或橡胶, 亦可设计成间隙, 具有隔 离绝缘的效果。
在本实施方式中, 太阳能电池 100d可视为两组彼此串联的电池次单元。 在本发明的太阳能电池与现有技术相较, 由于太阳能电池的第二电极总线 部电性连接第一负极集电部与第二正极集电部, 因此第一正极集电部、 第一电 极总线部、 负极集电部与第二电极总线部可视为一个电池次单元, 而第二 正极集电部、 第二电极总线部、 第二负极集电部与第三电极总线部可视为另一 个电池次单元。 如此一来, 具单一结晶硅基材的太阳能电池便可具有两太阳能 电池串联后的电压效果, 因此可提升太阳能电池的输出电压。
此外, 太阳能电池的前段工艺不需改变, 且其输出电压可通过第一正极集 , , , ^ , ^ , , ^ , , 电部、 第一电极总线部、 第一负极集电部、 第二正极集电部、 第二电极总线部、 第二负极集电部与第三电极总线部的数量来调整使太阳能电池可使用于 3C电 子产品中。 当制作特定输出电压的太阳能模块时, 不需以串联多个太阳能电池 的方式来增加输出电压, 可节省太阳能模块的空间与材料成本, 且此方式亦可 降低输出电流, 避免电流过大造成产品损毁。
虽然本发明已以实施方式揭露如上, 然其并非用以限定本发明, 任何本领 域技术人员, 在不脱离本发明的精神和范围内, 当可作各种的更动与润饰, 因 此本发明的保护范围当视后附的申请专利范围所界定者为准。 工业应用性
本发明公开的具单一结晶硅基材的太阳能电池可具有两太阳能电池串联后 的电压效果, 因此可提升太阳能电池的输出电压。 由于太阳能电池提升了输出 电压, 因此降低了太阳能电池的输出电流, 使得太阳能电池可广泛地使用于 3C 电子产品中。 当制作特定输出电压的太阳能模块时, 不需以串联多个太阳能电 池的方式来增加输出电压, 在模块封装上较具弹性, 可节省太阳能模块的空间 与材料成本, 且此方式亦可降低输出电流, 避免电流过大造成产品损毁。 另外, 太阳能电池的前段工艺不需改变。

Claims

WO 2014/114015 α« - .i™r -t^ PCT/CN2013/071393 权利要求书
1. 一种太阳能电池, 包含:
一结晶硅基材, 具有相对的一迎光面与一背光面;
多个 P型半导体材料层;
多个 N型半导体材料层, 与这些 P型半导体材料层间隔地交替排列于该 结晶硅基材的该背光面上;
多个第一正极集电部, 排列于该结晶硅基材的该背光面, 且分别电性接触 这些 P型半导体材料层其中至少一者;
至少一第一电极总线部, 位于该结晶硅基材的该背光面, 并电性连接这些 第一正极集电部;
多个第一负极集电部, 与这些第一正极集电部间隔地交替排列于该结晶硅 基材的该背光面, 且分别电性接触这些 N型半导体材料层其中至少一者; 多个第二正极集电部, 排列于该结晶硅基材的该背光面, 且分别电性接触 这些 P型半导体材料层其中至少一者;
至少一第二电极总线部, 位于该结晶硅基材的该背光面, 并电性连接这些 第一负极集电部与这些第二正极集电部;
多个第二负极集电部, 与这些第二正极集电部间隔地交替排列于该结晶硅 基材的该背光面, 且分别电性接触这些 N型半导体材料层其中至少一者; 以 及
至少一第三电极总线部, 位于该结晶硅基材的该背光面, 并电性连接这些 第二负极集电部。
2. 根据权利要求 1所述的太阳能电池, 其中该第二电极总线部位于该第 一电极总线部与该第三电极总线部之间。
3. 根据权利要求 1所述的太阳能电池, 其中每一这些第一正极集电部与 每一这些第一负极集电部在该结晶硅基材的该背光面上的俯视形状大致呈条 状。
4. 根据权利要求 1所述的太阳能电池, 还包含:
一保护层, 覆盖这些 P型半导体材料层与这些 N型半导体材料层, 该保 护层具有多个正极导电开口与多个负极导电开口贯穿该保护层, 且这些第一正 极集电部与这些第二正极集电部分别通过这些正极导电开口其中至少一者电 性接触这些 P型半导体材料层其中至少一者,这些第一负极集电部与这些第二 负极集电部分别通过这些负极导电开口其中至少一者电性接触这些 N型半导 体材料层其中至少一者。
5. 根据权利要求 1所述的太阳能电池, 其中这些第一负极集电部与这些 第二正极集电部分别连接于该第二电极总线部的相对两侧。
6. 根据权利要求 1所述的太阳能电池, 其中每一这些第二正极集电部与 每一这些第二负极集电部在该结晶硅基材的该背光面上的俯视形状大致呈条 状。
7. 根据权利要求 1所述的太阳能电池, 其中该第二电极总线部在该结晶 硅基材的该背光面上的俯视形状大致呈锯齿状。
8. 根据权利要求 1所述的太阳能电池, 其中这些第一正极集电部与该第 一电极总线部在该结晶硅基材的该背光面上的整体俯视形状大致呈梳状。
9. 根据权利要求 1所述的太阳能电池, 其中这些第一负极集电部、 这些 第二正极集电部与该第二电极总线部在该结晶硅基材的该背光面上的整体俯 视形状大致呈梳状。
10. 根据权利要求 1所述的太阳能电池, 其中这些第二负极集电部与该第 三电极总线部在该结晶硅基材的该背光面上的整体俯视形状大致呈梳状。
11. 根据权利要求 4所述的太阳能电池, 其中这些正极导电开口的形状为 圆形、 三角形、 N边形或上述的组合, N为大于或等于 4的自然数。
12. 根据权利要求 4所述的太阳能电池, 其中这些负极导电开口的形状为 圆形、 三角形、 N边形或上述的组合, N为大于或等于 4的自然数。
13. 根据权利要求 1所述的太阳能电池, 其中这些第一负极集电部、 这些 第二正极集电部与该第二电极总线部为一体成型。
14. 根据权利要求 1所述的太阳能电池, 其中该结晶硅基材的材质包含单 晶硅或多晶硅。
15. 根据权利要求 4所述的太阳能电池, 还包含:
一板体, 与该保护层的该表面接触, 且具有这些第一正极集电部、 该第一 电极总线 这些第一负极集电 该第二电极总线 这些第二正极集电部、 这些第二负极集电部与该第三电极总线部。
16. 根据权利要求 15所述的太阳能电池, 其中该板体为一金属板, 且具 有多个绝缘部, 位于该第三电极总线部与这些第二正极集电部之间、 这些第二 负极集电部与这些第二正极集电部之间、这些第二负极集电部与该第二电极总 线部之间、 该第二电极总线部与这些第一正极集电部之间、 这些第一负极集电 部与这些第一正极集电部之间、及这些第一负极集电部与该第一电极总线部之 间。
17. 根据权利要求 16所述的太阳能电池, 其中这些绝缘部的材质包含塑 胶、 橡胶, 或这些绝缘部为间隙。
18. 根据权利要求 1所述的太阳能电池, 其中该太阳能电池为背接触型太 阳能电池。
19. 根据权利要求 1所述的太阳能电池, 其中该太阳能电池的开路电压大 于或等于 1伏特。
20. 根据权利要求 1所述的太阳能电池, 其中该太阳能电池的输出电压大 于或等于 0.8伏特。
PCT/CN2013/071393 2013-01-25 2013-02-05 太阳能电池 WO2014114015A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310029957.4 2013-01-25
CN2013100299574A CN103151395A (zh) 2013-01-25 2013-01-25 太阳能电池

Publications (1)

Publication Number Publication Date
WO2014114015A1 true WO2014114015A1 (zh) 2014-07-31

Family

ID=48549360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071393 WO2014114015A1 (zh) 2013-01-25 2013-02-05 太阳能电池

Country Status (4)

Country Link
US (1) US20140209158A1 (zh)
CN (1) CN103151395A (zh)
TW (1) TW201431104A (zh)
WO (1) WO2014114015A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746003B (zh) * 2013-12-24 2016-11-23 北京汉能创昱科技有限公司 一种背接触晶体硅太阳能电池及其制造方法
TW201535755A (zh) * 2014-03-14 2015-09-16 Au Optronics Corp 太陽能電池結構
CN105742375B (zh) * 2014-12-10 2017-09-22 北京创昱科技有限公司 一种背接触晶硅电池及其制备方法
TWI538230B (zh) * 2015-03-23 2016-06-11 茂迪股份有限公司 背接觸太陽能電池組及其製造方法
CN106158990B (zh) * 2016-07-21 2017-08-08 英利能源(中国)有限公司 Ibc电池、电池组及制备方法
CN106784051A (zh) * 2017-01-22 2017-05-31 泰州乐叶光伏科技有限公司 提高功率的ibc电池互联结构
JP6741626B2 (ja) * 2017-06-26 2020-08-19 信越化学工業株式会社 高効率裏面電極型太陽電池及びその製造方法
RU2710390C1 (ru) * 2019-05-31 2019-12-26 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Фотопреобразователь с увеличенной фотоактивной площадью
CN112683975A (zh) * 2020-12-18 2021-04-20 天津理工大学 叉指型微电极阵列电化学传感器及制备方法与应用、专用测试盒

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138286A (zh) * 1995-03-03 1996-12-18 三菱电机株式会社 布线结构体、它的制造方法以及使用它的电路板
US20090183759A1 (en) * 2008-01-21 2009-07-23 Sanyo Electric Co., Ltd. Solar cell module
KR20100068947A (ko) * 2008-12-15 2010-06-24 엘지전자 주식회사 태양전지
CN201608193U (zh) * 2010-02-26 2010-10-13 苏州阿特斯阳光电力科技有限公司 一种晶体硅太阳电池的背面电极结构
CN102024855A (zh) * 2009-09-17 2011-04-20 夏普株式会社 太阳能电池模块基板及太阳能电池模块
CN102763226A (zh) * 2009-12-09 2012-10-31 速力斯公司 使用薄平面半导体的高效光伏背触点太阳能电池结构和制造方法
US20120312358A1 (en) * 2010-02-24 2012-12-13 Kyocera Corporation Solar cell module and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138286A (zh) * 1995-03-03 1996-12-18 三菱电机株式会社 布线结构体、它的制造方法以及使用它的电路板
US20090183759A1 (en) * 2008-01-21 2009-07-23 Sanyo Electric Co., Ltd. Solar cell module
KR20100068947A (ko) * 2008-12-15 2010-06-24 엘지전자 주식회사 태양전지
CN102024855A (zh) * 2009-09-17 2011-04-20 夏普株式会社 太阳能电池模块基板及太阳能电池模块
CN102763226A (zh) * 2009-12-09 2012-10-31 速力斯公司 使用薄平面半导体的高效光伏背触点太阳能电池结构和制造方法
US20120312358A1 (en) * 2010-02-24 2012-12-13 Kyocera Corporation Solar cell module and method for manufacturing same
CN201608193U (zh) * 2010-02-26 2010-10-13 苏州阿特斯阳光电力科技有限公司 一种晶体硅太阳电池的背面电极结构

Also Published As

Publication number Publication date
US20140209158A1 (en) 2014-07-31
TW201431104A (zh) 2014-08-01
CN103151395A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2014114015A1 (zh) 太阳能电池
TWI413266B (zh) 太陽能電池模組
JP5927437B2 (ja) 太陽電池モジュール
WO2010150833A1 (ja) 薄膜複合電池およびその製造方法
JP2015119634A (ja) 光起電性装置及びその製造方法
JP2019519939A (ja) 光電池セル、光電池セルアレイ、太陽電池セル、および光電池セル作製方法
WO2018001188A1 (zh) 电池片组件、电池片矩阵和太阳能电池组件
KR20140095658A (ko) 태양 전지
WO2011052875A3 (en) Solar cell, method of manufacturing the same, and solar cell module
TWI497731B (zh) 太陽能電池及太陽能發電模組
US10644181B2 (en) Photovoltaic module
TWI502756B (zh) 具有粗細匯流排電極之太陽能電池
TWI478361B (zh) 太陽能電池模組
TWI472044B (zh) 太陽能電池
JP3972233B2 (ja) 太陽電池モジュール
TWM504356U (zh) 四柵匯流排太陽能電池
JP4563085B2 (ja) 薄膜太陽電池
CN117295349B (zh) 薄膜电池组件、钙钛矿电池组件及光伏系统
JP2001036105A (ja) 太陽電池モジュール
JP2004040034A (ja) 光電変換素子モジュール
TWI734077B (zh) 太陽光電模組
CN101807621B (zh) 太阳能电池模块修复装置与修复方法
JPS6214954B2 (zh)
JPH10242491A (ja) 太陽電池装置及びそれを用いた太陽電池パネル
CN104813481A (zh) 光伏组件及相关方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/11/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13872547

Country of ref document: EP

Kind code of ref document: A1