WO2014112653A1 - Image generation device, defect inspection device, and defect inspection method - Google Patents

Image generation device, defect inspection device, and defect inspection method Download PDF

Info

Publication number
WO2014112653A1
WO2014112653A1 PCT/JP2014/051160 JP2014051160W WO2014112653A1 WO 2014112653 A1 WO2014112653 A1 WO 2014112653A1 JP 2014051160 W JP2014051160 W JP 2014051160W WO 2014112653 A1 WO2014112653 A1 WO 2014112653A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
dimensional image
sheet
molded body
pixel
Prior art date
Application number
PCT/JP2014/051160
Other languages
French (fr)
Japanese (ja)
Inventor
麻耶 尾崎
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2014557546A priority Critical patent/JP6191623B2/en
Priority to CN201480004738.3A priority patent/CN104919306B/en
Priority to KR1020157016272A priority patent/KR102111823B1/en
Publication of WO2014112653A1 publication Critical patent/WO2014112653A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4038Scaling the whole image or part thereof for image mosaicing, i.e. plane images composed of plane sub-images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30124Fabrics; Textile; Paper

Definitions

  • the present invention relates to an image generation apparatus that generates image data for inspecting a defect in a sheet-like molded body, a defect inspection apparatus including the image generation apparatus, and a defect inspection method.
  • an inspection using a camera is known as a method for inspecting a defect of a sheet-like molded body such as a polarizing film or a retardation film.
  • a sheet-like molded body such as a polarizing film or a retardation film.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-333563 (Patent Document 1) irradiates a sheet-shaped molded body with light by a light source, and captures a transmitted light image transmitted and refracted through the sheet-shaped molded body with a line sensor camera.
  • the defects of the sheet-like molded body are inspected.
  • a method for inspecting a defect of a sheet-like molded body by capturing a reflected light image instead of capturing a transmitted light image is also conventionally known.
  • FIG. 10 an example of a method for inspecting the presence or absence of a dot-like dent defect generated in a sheet-like molded body with a line sensor camera will be described.
  • Sheet materials L shown in FIG. 10 it is assumed that the point-shaped indentations defect L 1 occurs in the width direction X center.
  • the sheet-like molded body L is conveyed in one of the longitudinal directions Y.
  • the dent defect L1 sequentially moves in one of the longitudinal directions Y. To do.
  • the light source (not shown) extending in the width direction X, and the light portion L 2 and the dark L 3 occurs in the sheet materials L.
  • Light source is fixed is located, that the sheet-shaped molded body L is transported, the position of the bright portion L 2 would sequentially move in the longitudinal direction Y while on sheet materials L.
  • the bright portion near the boundary line between L 2 and the dark L 3 are formed so that the imaging range B, the line sensor camera (not shown) is provided.
  • Line sensor camera is positioned relative to the light source is fixed, the sheet-like shaped body L is transported stably and recessed defects L 1 as long as not near the imaging area, FIG.
  • the defect inspection method described with reference to FIG. 10 is based on the premise that the sheet-like molded body L is stably conveyed as described above. However, the sheet-like molded body L may flutter during conveyance and is not necessarily conveyed stably. If the sheet-like molded product L flutters during conveyance, the positional relationship between the sheet-like molded product L, the line sensor camera, and the light source changes, and the defect inspection method may not find a defect well.
  • the state in which the sheet-like molded body flutters is a state in which, for example, when the sheet-like molded body is conveyed in the horizontal direction, a part or all of the sheet-like molded body is shaken violently up and down. For example, when the sheet-shaped molded body is conveyed in the vertical direction, it means a state in which part or all of the sheet-shaped molded body is swaying violently from side to side.
  • FIG. 11 (a) and 11 (b) The case where the sheet-like molded object L flutters is demonstrated using FIG. 11 (a) and 11 (b), no fluttering occurs, the same state as in FIGS. 10 (a) and 10 (b), and in FIG. 11 (c), fluttering occurs.
  • FIG. 11 (c) when the sheet materials L flutters, dents even without defects L 1 is in the vicinity of the imaging area, the image is changed by the fluttering of the vicinity of the boundary between the bright portion L 2 and the dark L 3 As a result, unlike the images G 1 and G 2 , the dark portion L 3 may be greatly reflected in the image G 5 acquired by the line sensor camera.
  • the test image G 6 which would indicate the position of the defect L 1 indentation by dark portion, as shown in FIG. 11 (d)
  • the dent defect L 1 would occur dark portion unrelated, dents the defective L 1 is likely to be misjudged as a defect even unrelated position.
  • the image acquired by the line sensor camera is not incorporated-through dark portion L 3, sheet materials L May be misjudged so that there are no defects.
  • the present invention is to solve such a problem, in the image generation apparatus for generating image data for inspecting the defects of the sheet-shaped molded body, due to fluttering of the sheet-shaped molded body,
  • An object of the present invention is to provide an image generation apparatus capable of preventing erroneous determination of the presence or absence of a defect, a defect inspection apparatus including the image generation apparatus, and a defect inspection method.
  • the present invention An image generation device that generates image data for inspecting a defect in a sheet-like molded body, A transport unit for transporting the sheet-shaped molded body in the longitudinal direction of the sheet-shaped molded body; A light source that includes a light source that extends linearly in the width direction of the sheet-like molded body, and that irradiates the sheet-like molded body with light by the light source; An imaging unit that performs an imaging operation on the sheet-like molded body being conveyed to generate two-dimensional image data representing a two-dimensional image, and includes a bright part corresponding to the light source and the bright part in the two-dimensional image An imaging unit that performs multiple imaging operations on the sheet-like molded body at a position including a dark part having a lower brightness than the part; An inspection image data generation unit that generates inspection image data from a plurality of two-dimensional image data generated by the imaging unit, A boundary extraction unit that extracts a boundary part between the bright part and the dark part in each two-dimensional image represented by each two-
  • a re-extraction unit that extracts the pixels constituting the two-dimensional image data; Synthesis that generates one-dimensional image data composed of pixels extracted by the re-extracting unit, and similarly generates a plurality of one-dimensional image data obtained from a plurality of two-dimensional image data to generate inspection image data.
  • An inspection image data generation unit including: An image generation apparatus is provided.
  • the present invention also provides The image generating device; A display unit for displaying an image represented by the inspection image data generated by the inspection image data generation unit of the image generation device; A defect inspection apparatus is provided.
  • the present invention also provides A defect inspection method for inspecting defects in a sheet-like molded body, In a state where the sheet-shaped molded body is conveyed in the longitudinal direction of the sheet-shaped molded body while irradiating the sheet-shaped molded body with light by a light source extending linearly in the width direction of the sheet-shaped molded body.
  • the boundary line is connected to form an apparent boundary line, and the apparent boundary line is smoothed so that there are no sharp peaks appearing on the apparent boundary line.
  • a defect inspection method including
  • a plurality of two-dimensional image data are obtained by performing a plurality of imaging operations on the sheet-shaped molded body in a state where light is irradiated on the sheet-shaped molded body being conveyed. Is generated. Then, a boundary line portion between a bright portion and a dark portion in each two-dimensional image represented by each two-dimensional image data is extracted. Next, the boundary line portion is connected to form an apparent boundary line, and the apparent boundary line is smoothed so that there is no sharp peak appearing on the apparent boundary line. The pixels constituting the original boundary line obtained by the smoothing are re-extracted from the two-dimensional image data, and one-dimensional image data including the pixels constituting the original boundary line is generated. Similarly, a plurality of one-dimensional image data obtained from a plurality of two-dimensional image data are combined to generate inspection image data.
  • the apparent boundary is caused by the defect.
  • the line is a distorted curve with sharp peaks. Therefore, the original boundary line obtained by smoothing the apparent boundary line is different from the apparent boundary line.
  • the sheet-like molded article flutters during conveyance, and when the defect is not located near the boundary line portion, By fluttering, the apparent boundary line becomes a gentle curve. Therefore, the original boundary line obtained by smoothing the apparent boundary line is almost the same curve as the apparent boundary line or the same curve as the apparent boundary line.
  • one-dimensional image data composed of pixels constituting the original boundary line is generated from each two-dimensional image data, and a plurality of the obtained one-dimensional image data is synthesized to obtain inspection image data.
  • inspection image data indicating the position of the defect according to the positional relationship between the bright part and the dark part.
  • a defect inspection apparatus includes the image generation apparatus according to the present invention and a display unit.
  • the display unit displays an image represented by the inspection image data generated by the inspection image data generation unit of the image generation apparatus.
  • By viewing the image displayed on the basis of the image data for inspection by the display unit it is possible to determine the presence / absence of a defect, and an erroneous determination is made regarding the presence / absence of a defect due to flapping of the sheet-like molded product. Can be prevented.
  • the defect inspection method a plurality of imaging operations are performed on the sheet-shaped molded body in a state where light is irradiated on the sheet-shaped molded body being conveyed in the imaging process.
  • Two-dimensional image data is generated.
  • the boundary extraction step a boundary line portion between a bright part and a dark part in each two-dimensional image represented by each two-dimensional image data is extracted.
  • the boundary line portion is connected to form an apparent boundary line, and the apparent boundary line is smoothed so that there is no sharp peak appearing on the apparent boundary line.
  • the pixels constituting the original boundary line obtained by smoothing are re-extracted from the two-dimensional image data.
  • one-dimensional image data composed of pixels constituting the original boundary line is generated, and a plurality of one-dimensional image data obtained from a plurality of two-dimensional image data is synthesized in the same manner to obtain a bright portion.
  • inspection image data indicating the position of the defect is generated based on the positional relationship between the dark portions and the image represented by the inspection image data is displayed in the display step.
  • the presence or absence of defects can be determined by looking at the image displayed based on the image data for inspection displayed in the display process. It can be prevented from happening.
  • FIG. 1 is a block diagram showing a defect inspection apparatus 100 according to the present invention. It is process drawing which shows the defect inspection method which concerns on this invention. It is a figure which shows the mode of the sheet-like molded object K. FIG. It is a figure which shows the image obtained by imaging with respect to the sheet-like molded object K. FIG. It is a figure which shows the image obtained by imaging with respect to the sheet-like molded object K. FIG. It is a figure which shows the image obtained by imaging with respect to the sheet-like molded object K. FIG. It is a figure which shows the image obtained by imaging with respect to the sheet-like molded object K. FIG. It is a figure which shows the image obtained by imaging with respect to the sheet-like molded object K. FIG. FIG. FIG. FIG. FIG.
  • FIG. 10 is a diagram for describing a specific example of processing by a re-extraction unit 1412. It is a figure for demonstrating an example of the method of test
  • FIG. 1 is a perspective view showing a defect inspection apparatus 100 according to the present invention.
  • FIG. 2 is a block diagram showing a defect inspection apparatus 100 according to the present invention.
  • FIG. 3 is a process diagram showing a defect inspection method according to the present invention.
  • the defect inspection apparatus 100 is an apparatus for inspecting a defect of a sheet-like molded body, and is an apparatus capable of performing the defect inspection method according to the present invention, which is a method for inspecting the defect.
  • the defect inspection apparatus 100 can inspect, for example, an optical film such as a polarizing film or a retardation film as a sheet-like molded body, and is particularly suitable for inspection of a long optical film wound and stored in a web shape. ing.
  • the sheet-like molded body is made of a resin such as a thermoplastic resin, for example.
  • a resin such as a thermoplastic resin
  • the thermoplastic resin extruded from the extruder is passed through the gaps between the rolls to give the surface smoothness and gloss, and the take-up roll cools the transport roll.
  • the thermoplastic resin used as the material of the sheet-like molded body is, for example, methacrylic resin, methyl methacrylate-styrene copolymer, polyolefin such as polyethylene and polypropylene, polycarbonate, polyvinyl chloride, polystyrene, polyvinyl alcohol, and triacetyl cellulose resin.
  • the sheet-like molded body may consist of only one of these thermoplastic resins, or may be a laminate of a plurality of types of these thermoplastic resins.
  • the sheet-like molded body may have any thickness.
  • the sheet-like molded body may have a relatively thin thickness such as a polarizing film or a retardation film, generally called “film”, and a relatively thick thickness generally called “plate”. You may have.
  • nicks point defects
  • line defects linear defects
  • the defect inspection apparatus 100 includes an image generating apparatus 1 according to the present invention and a display unit 21.
  • the image generation apparatus 1 of the defect inspection apparatus 100 includes a conveyance unit 11 that conveys the sheet-shaped molded body K in one of the longitudinal directions (hereinafter referred to as “Y direction”), and the width direction (hereinafter, referred to as “sheet-shaped molded body K”).
  • a light irradiation unit 12 having a light source extending linearly in the “X direction”, an imaging unit 13 that performs an imaging operation on the sheet-like molded body K and generates two-dimensional image data representing a two-dimensional image;
  • an information processing device 14 an information processing device 14.
  • the information processing apparatus 14 includes an inspection image data generation unit 141, and the inspection image data generation unit 141 includes a boundary extraction unit 1411, a re-extraction unit 1442, and a synthesis unit 1413.
  • the information processing apparatus 14 also includes a conveyance control unit (not shown) that controls the operation of the conveyance unit 11.
  • the information processing apparatus 14 is realized by a PC (Personal Computer) or the like.
  • the inspection image data generation unit 141 in the information processing apparatus 14 is an internal hardware of the image processing board or the imaging unit 13 such as a field-programmable gate array (FPGA) or a general-purpose computing on graphics processing unit (GPGPU). Can also be realized.
  • FPGA field-programmable gate array
  • GPGPU general-purpose computing on graphics processing unit
  • the defect inspection method includes an imaging step S1, a boundary extraction step S2, a re-extraction step S3, a synthesis step S4, and a display step S5.
  • the imaging step S ⁇ b> 1 the light source of the light irradiation unit 12 is in a state where the sheet-like molded body is conveyed in the Y direction by the conveyance unit 11 while irradiating the sheet-shaped molded body K with the light source of the light irradiation unit 12.
  • the imaging unit 13 performs a plurality of imaging operations on the sheet-shaped molded body K so that the two-dimensional image includes a bright part corresponding to the above and a dark part whose luminance is lower than that of the bright part.
  • the boundary extraction step S2 changes from a bright part to a dark part in each two-dimensional image represented by each two-dimensional image data generated by the imaging unit 13 in the imaging step S1, or from a dark part to a bright part.
  • the boundary line portion is extracted by the boundary extraction portion 1411.
  • the re-extraction unit 1412 connects the boundary line portions obtained in the boundary extraction step S2 to form an apparent boundary line, and the sharp peak appearing on the apparent boundary line is eliminated. This is a step of smoothing the apparent boundary line and extracting the pixels constituting the original boundary line obtained by the smoothing from the two-dimensional image data.
  • one-dimensional image data including pixels extracted by the re-extracting unit 1412 in the re-extracting step S3 is generated by the synthesizing unit 1413, and a plurality of 1s obtained from a plurality of two-dimensional image data in the same manner
  • This is a step of synthesizing the dimensional image data and generating inspection image data indicating the position of the dent defect or the convex defect by the change in luminance. For example, at the boundary line portion when changing from a bright portion to a dark portion, the position of the dent defect is shown as a dark portion.
  • the display step S5 is a step of displaying an inspection image represented by the inspection image data generated by the combining unit 1413 in the combining step S4 on the display unit 21.
  • FIG. 4 is a diagram showing a state of the sheet-shaped molded body K
  • FIGS. 5 to 8 are diagrams showing images obtained by imaging the sheet-shaped molded body K.
  • FIG. 4 it is assumed that a point-like dent defect K 1 is generated in the sheet-like molded body K. Further, it is assumed that the sheet-like molded body K is conveyed in one direction in the Y direction in the order shown in FIGS. 4 (a), 4 (b), and 4 (c).
  • the light source of the light irradiation portion 12 extending linearly in the X direction, on a sheet-shaped molded body K, the bright portion K 2 extending linearly in the X direction, ⁇ portion K And a dark portion K 3 having a luminance lower than 2 .
  • the bright portion K 2 extends linearly, no fluttering of sheet materials K molded sheet K is conveyed stably, and, when not in the vicinity of the recessed defect K 1 GaAkira portion K 2 It is.
  • FIG. 4 (b) when in the vicinity of the recessed defect K 1 GaAkira section K 2, bright portion K 2 is not a straight line.
  • FIG. 4 (c) unlike FIGS.
  • a two-dot chain line A shown in FIG. 4 indicates an imaging range by the imaging unit 13.
  • the imaging unit 13 within the imaging range, so that the dark portion K 3 adjacent to the bright portion K 2 and ⁇ section K 2 enters, performs the imaging operation.
  • the two-dimensional image that is the imaging result in FIG. 4A is the two-dimensional image shown in FIG. 5A
  • the two-dimensional image that is the imaging result in FIG. 4B is shown in FIG.
  • the two-dimensional image which is a two-dimensional image and is the imaging result in FIG. 4C is the two-dimensional image shown in FIG.
  • Each pixel constituting each two-dimensional image has an integer X coordinate value that continuously increases toward the right side in the X direction in FIGS.
  • the bright portion is a white portion and the dark portion is a hatched portion.
  • a boundary line portion is extracted by the boundary extraction unit 1411 from each two-dimensional image shown in FIGS. 5 (a), 6 (a), and 7 (a).
  • the boundary part is, for example, a part of a part of the bright part in the two-dimensional image that is adjacent to the bright part and changes to a dark part having a larger Y coordinate value than the bright part.
  • the boundary line portion can be extracted by a conventionally known edge extraction method.
  • the pixel of interest is sequentially selected from the pixel having the smallest Y coordinate value, and the luminance value of the pixel having one Y coordinate value larger than the pixel of interest is
  • a pixel having a Y coordinate value larger by one than the target pixel may be extracted as a pixel constituting the boundary line portion.
  • the pixel extracted in this way is referred to as an extracted pixel.
  • the boundary line portion constituted by the pixels extracted from the two-dimensional images shown in FIG. 5A, FIG. 6A, and FIG. And FIG. 7 (b) respectively. An apparent boundary line can be obtained by connecting the boundary portions of adjacent pixel columns.
  • the re-extraction step S3 is a step of obtaining a boundary line portion that forms an original boundary line excluding the influence of the defect. Therefore, in the re-extraction step S3, first, the apparent boundary line is smoothed so that there is no sharp peak in the apparent boundary line. For example, a peak whose peak height is a predetermined multiple of the peak width (for example, 1/2 to 2 times) or more is regarded as a sharp peak. The boundary line. In the re-extraction step S3, the pixels constituting the original boundary line thus obtained are extracted from the original two-dimensional image data.
  • the pixels extracted in this way are referred to as re-extracted pixels.
  • the boundary line is the same as the apparent boundary line obtained in the boundary extraction step S2. Therefore, when there is no defect near the boundary between the bright part and the dark part and there is no sharp peak in the apparent boundary obtained in the boundary extraction step S2, the re-extraction step S3 is substantially skipped. May be.
  • apparent boundary lines j 1 , j 2 , and j 3 are shown by two-dot chain lines, respectively.
  • Figure 5 boundary j 1 shown in (b) is a straight line
  • the boundary line j 3 shown in FIG. 7 (b) no sharp peaks are gentle curve. Therefore, for the two-dimensional image shown in FIG. 5A and the two-dimensional image shown in FIG. 7A, it is not necessary to re-extract the pixels in the re-extraction step S3, and the pixels constituting the apparent boundary line However, this is the pixel that constitutes the original boundary line.
  • the boundary line j 2 shown in FIG. 6 (b) is a distorted curve with a sharp peak.
  • This distortion boundaries j 2 The smoothed curve is a straight line j 4 shown by a broken line in Figure 6 (b). Therefore, the original boundary line is the same as j 2 which is the apparent boundary line for the X coordinate values 1 to 4 and 8 to 10, and is the straight line j 4 for the X coordinate values 5 to 7.
  • the data of the pixels constituting the obtained original boundary line is extracted from the original two-dimensional image data.
  • FIG. 6C shows the re-extracted pixel extracted from the two-dimensional image shown in FIG.
  • pixels having X coordinate values of 5 to 7 correspond to boundary portions distorted by defective portions included in the original two-dimensional image data, and have brightness values that are brighter or darker than other pixels.
  • the synthesizing unit 1413 In the synthesizing step S4, the synthesizing unit 1413 generates one-dimensional image data representing the one-dimensional image from the re-extracted pixels extracted from the respective two-dimensional images by the re-extracting unit 1412 in the re-extracting step S3.
  • the one-dimensional image data is image data in which the X coordinate value and the luminance value of the re-extracted pixel are associated with each other.
  • FIG. 5C, FIG. 6D, and FIG. 7C show one-dimensional images corresponding to the two-dimensional images shown in FIG. 5A, FIG. 6A, and FIG. Indicates.
  • a plurality of one-dimensional image data obtained from a plurality of two-dimensional image data is synthesized in the same manner to generate inspection image data.
  • the one-dimensional image data corresponding to the two-dimensional image data previously generated by the imaging unit 13 has a smaller Y coordinate value, and 1 corresponding to the two-dimensional image data generated later by the imaging unit 13.
  • Dimensional image data is obtained by continuously arranging and combining a plurality of one-dimensional image data in the Y direction so that the dimensional image data has a larger Y coordinate value and the X coordinate value of each one-dimensional image data remains unchanged. Is called.
  • FIG. 8 shows an inspection image represented by inspection image data synthesized from the one-dimensional image data representing the one-dimensional image shown in FIGS. 5C, 6D, and 7C. .
  • binarization may be performed on each one-dimensional image data.
  • the luminance value that serves as the threshold for binarization is set so that the bright pixel and the dark pixel in the one-dimensional image represented by the one-dimensional image data have different values after binarization.
  • the threshold value for binarization is an arithmetic average value of the maximum luminance value and the minimum luminance value in the one-dimensional image data.
  • the image data for inspection is synthesized after binarization for each one-dimensional image data. Note that the binarization order is not limited to the above order, and after combining the one-dimensional image data, the binarization is performed on the combined two-dimensional image data. Image data may be generated.
  • an inspection image represented by the inspection image data is displayed on the display unit 21.
  • the inspection image is displayed on the display unit 21 based on, for example, the luminance value of each pixel so that the dark part is black and the bright part is white.
  • the defect inspection apparatus 100 Such is performed by the defect inspection apparatus 100, according to the defect inspection method comprising the steps S1 ⁇ S5, when the defective K 1 dent formed sheet K is occurring in FIG. 4 (b) as shown, the sheet-like shaped body K are conveyed stably, and, when a defect indentation near boundary portion is positioned by the concave viewed defective K 1, as shown in FIG. 6 (b) , the apparent border becomes a distorted curve j 2.
  • the pixels in the two-dimensional image constituting a straight line j 4 to the boundary line j 2 was smoothed, as shown in FIG. 6 (c), will include a dark portion.
  • the defective K 1 dent formed sheet K is generated, as shown in FIG.
  • the sheet-like shaped body K are flapping during transport, and, near the boundary portion when the not recessed defect K 1 is located, the rattling of the sheet-like shaped body K, as shown in FIG. 7 (b), the boundary line j 3 apparent becomes gentle curve. Accordingly, the smoothing and curve the boundary line j 3, or nearly the same curve as the boundary line j 3, or, the same curve as the boundary line j 3, the pixels in the two-dimensional image corresponding to the curve , Which is not greatly separated from the boundary line part which is a part of the bright part, is the same as that shown in FIG. Therefore, each one-dimensional image data shown in FIG. 6D and FIG.
  • the defect inspection apparatus 100 will be described in more detail below.
  • 1 and 2 is a device that conveys a sheet-like molded body K continuous in the Y direction with a constant width in the Y direction.
  • the transport unit 11 includes, for example, a sending roller and a receiving roller that transport the sheet-shaped molded body K in the Y direction, and the transport distance can be measured by a rotary encoder or the like.
  • the conveyance speed at which the conveyance unit 11 conveys the sheet-like molded body K in the Y direction is set to, for example, 2 m / min to 30 m / min.
  • the light irradiation unit 12 is fixed to a linear light source extending in the X direction, which is a direction orthogonal to the Y direction, and a fixing (not shown) that fixes the position of the light source to a fixing position with respect to the sending roller and the receiving roller of the transport unit 11.
  • the light source is arranged on the same side as the imaging unit 13 or on the side opposite to the imaging unit 13 so that the surface of the sheet-like molded body K can be irradiated with light on the basis of the sheet-like molded body K.
  • the light source is arranged so that the distance to the bright part on the surface of the sheet-like molded body K is, for example, 200 mm.
  • the light source is not particularly limited as long as it emits light that does not affect the composition and properties of the sheet-like molded body K, such as a metal halide lamp, a halogen transmission light, and a fluorescent lamp.
  • the light irradiation unit 12 may include a slit member disposed between the light source and the sheet-like molded body K.
  • the slit member is, for example, a light-transmitting plate-like base material made of resin, and has a light-shielding property, and strip-shaped light-shielding region portions extending in the X direction are formed at predetermined intervals in the Y direction. It is a member.
  • a bright / dark pattern in which bright parts and dark parts extending in the X direction are alternately repeated can be formed on the surface of the sheet-like molded body K. This makes it possible to generate inspection image data.
  • the imaging unit 13 includes a CCD (Charge Coupled Device) or CMOS (Complementary Metal-Oxide Semiconductor) area sensor.
  • the imaging unit 13 is arranged so that the surface of the sheet-shaped molded body K can be imaged on the same side as the light source or on the side opposite to the light source with the sheet-shaped molded body K as a reference, and transmission from the sheet-shaped molded body K is performed.
  • Two-dimensional image data is generated by receiving light or reflected light.
  • the imaging unit 13 may generate two-dimensional image data by one area sensor, or may generate two-dimensional image data from data acquired by a plurality of area sensors arranged in the X direction.
  • the imaging unit 13 is arranged so that the imaging range is the entire region in the X direction of the sheet-like molded body K.
  • the length W in the Y direction of the imaging range shown in FIG. 1 is preferably at least twice as long as the conveyance distance of the sheet-like molded body K conveyed during the shutter time of the imaging unit 13.
  • the length W in the Y direction of the imaging range is preferably set so that the imaging operation is performed twice or more for the same portion of the sheet-like molded body K.
  • the shutter time of the imaging unit 13 is 1/30 seconds to 1 second
  • the length W in the Y direction of the imaging range is set to about 5 mm to 50 mm. In this way, by increasing the number of images of the same portion of the sheet-like molded body K, it is possible to inspect defects with high accuracy.
  • the display unit 21 is, for example, a liquid crystal display, an EL (Electroluminescence) display, a plasma display, or the like.
  • the display unit 21 displays the inspection image represented by the inspection image data on the display screen.
  • the inspection image data generation unit 141 includes a control arithmetic circuit such as a CPU (Central Processing Unit), a volatile memory such as a DDR SDRAM (Double Data Rate Synchronous Random Access Memory), and a flash ROM (Mold Ready), an EPROM. (Registered trademark), and a non-volatile memory such as an HDD (Hard Disk Drive).
  • Program data for functioning as a boundary extraction unit 1411, a re-extraction unit 1412, and a synthesis unit 1413 is stored in the non-volatile memory of the inspection image data generation unit 141, and inspection image data is stored in accordance with the program data.
  • the generation unit 141 exhibits the functions of the boundary extraction unit 1411, the re-extraction unit 1412, and the synthesis unit 1413.
  • the inspection image data generation unit 141 can also be realized by hardware inside the image processing board or the imaging unit 13 such as FPGA or GPGPU.
  • the boundary extraction unit 1411 extracts a boundary line part from the two-dimensional image indicated by the two-dimensional image data generated by the imaging unit 13 by a conventionally known edge extraction method.
  • the re-extraction unit 1412 is obtained by connecting the boundary line portion to form an apparent boundary line, and smoothing and smoothing the apparent boundary line so that the sharp peak appearing in the apparent boundary line disappears.
  • the pixels constituting the original boundary line are re-extracted from the two-dimensional image data.
  • the synthesizing unit 1413 generates one-dimensional image data including the re-extracted pixels, and similarly generates a plurality of one-dimensional image data obtained from the plurality of two-dimensional image data, thereby generating inspection image data. To do.
  • the re-extraction by the re-extraction unit 1412 will be described in detail below.
  • the re-extraction unit 1412 re-extracts pixels from the two-dimensional image by the following processes (1) to (8).
  • the pixel having the smallest X coordinate value is set as the first pixel of interest. After the process (1), the process proceeds to the process (2).
  • the current target pixel is set as the peak vertex pixel, and the process proceeds to (3).
  • neither or both of these ⁇ 1> and ⁇ 2> conditions are satisfied, if there is an extracted pixel whose X coordinate value is one larger than the current pixel of interest, one X coordinate value is present than the current pixel of interest.
  • the large extracted pixel is changed to the next pixel of interest, and the process (2) is performed again.
  • neither or both of these ⁇ 1> and ⁇ 2> conditions are satisfied, if there is no extracted pixel whose X coordinate value is one greater than the current pixel of interest, the process proceeds to (5).
  • FIG. 9A shows a part of a two-dimensional image
  • FIG. 9B shows a part of extracted pixels extracted from the two-dimensional image by the boundary extraction unit 1411.
  • Set to 3 to the predetermined number when the pixel of interest pixel P 1 in FIG. 9 (b), the extraction pixel within the range including the target pixel, shown in FIG. 9 (c). Further, it sets 3 to the predetermined number, when the pixel of interest pixel P 2 in FIG. 9 (b), the extraction pixel within the range including the target pixel, shown in FIG. 9 (d).
  • the Y-coordinate value is included is smaller extracted pixels than Y coordinate value of the pixel P 1 is the pixel of interest.
  • the pixel P 1 is not set to the peak apex pixels
  • X coordinate value is greater extracted pixels one is changed to the next target pixel than the pixel P 1.
  • Each extract pixels all Y coordinates shown in FIG. 9 (d) is greater than the Y-coordinate value of the pixel P 2 is the pixel of interest.
  • the processing proceeds to (3).
  • an extracted pixel having a Y coordinate value larger than the peak vertex pixel and the largest X coordinate value is set as a peak left end candidate pixel.
  • an extracted pixel having a Y coordinate value larger than the peak vertex pixel and the smallest X coordinate value is set as a peak right end candidate pixel.
  • processing (4-1) and processing (4-2) are performed sequentially or in parallel.
  • (4-1) It is determined whether or not the condition that the Y coordinate value of the extracted pixel whose X coordinate value is one smaller than the current peak left end candidate pixel is larger than the Y coordinate value of the current peak left end candidate pixel is satisfied. When this condition is satisfied, the extracted pixel whose X coordinate value is one smaller than the current peak left end candidate pixel is changed to the next peak left end candidate pixel, and the process of (4-1) is performed again. If this condition is not satisfied, the current peak left edge candidate pixel is set to the peak left edge pixel corresponding to the current peak vertex pixel (the peak vertex pixel set most recently).
  • (4-2) It is determined whether or not the condition that the Y coordinate value of the extracted pixel whose X coordinate value is one larger than the current peak right end candidate pixel is larger than the Y coordinate value of the current peak right end candidate pixel is satisfied. When this condition is satisfied, the extracted pixel having an X coordinate value one larger than the current peak right end candidate pixel is changed to the next peak right end candidate pixel, and the process of (4-2) is performed again. If this condition is not satisfied, the current peak right edge candidate pixel is set to the peak right edge pixel corresponding to the current peak vertex pixel (the peak vertex pixel set most recently).
  • the current peak left end pixel and the peak right end pixel corresponding to the current peak vertex pixel are set by the processing of (4-1) and the processing of (4-2), the current peak left end pixel or the current peak right end pixel has already been changed. It is determined whether or not the pixel is set as a peak left end pixel or peak right end pixel corresponding to the peak apex pixel.
  • the current peak vertex pixel and the corresponding current peak leftmost pixel and current peak rightmost pixel Cancel the setting.
  • the current peak vertex pixel After canceling the setting of the current peak vertex pixel, the current peak left end pixel, and the current peak right end pixel or leaving them as they are, if there is an extracted pixel whose X coordinate value is one larger than the current target pixel, the current peak pixel If the extracted pixel whose X coordinate value is one larger than the current target pixel is changed by changing the extracted pixel whose X coordinate value is one larger to the next target pixel and the process of (2) is performed again, (5) Proceed to the process.
  • the pixel P 2 is set to the peak apex pixels, pixel P 5 and pixel as a peak leftmost pixel and peak rightmost pixel corresponding P 6 are respectively set. Further, the pixel P 7 is set to another peak apex pixels, pixel P 8 and the pixel P 9 are respectively set as a peak leftmost pixel and peak rightmost pixel corresponding thereto.
  • the pixel with the smallest X coordinate value is set as the first pixel of interest. After the process (5), the process proceeds to the process (6).
  • the distance in the X direction between the peak left end pixel and the peak right end pixel corresponding to the target pixel is a predetermined number of pixels (for example, an extraction target) It is determined whether or not the condition that the total number of pixels in the X direction of the two-dimensional image is (the number of 1/20 to 1/5) or less is satisfied. When this condition is satisfied, the process proceeds to (7).
  • the process proceeds to (8). If this condition is not satisfied and there is a peak vertex pixel having an X coordinate value larger than that of the current pixel of interest, the peak vertex pixel having an X coordinate value larger than that of the current pixel of interest and the closest X coordinate value is determined as the next pixel of interest. The process (6) is performed again. When this condition is not satisfied, if there is no peak vertex pixel having an X coordinate value larger than that of the current pixel of interest, a series of processing ends.
  • the peak vertex pixel P 2 and the corresponding peak left end pixel P 5 and peak right end pixel P 6 satisfy the conditions of (6) and (7).
  • the peak vertex pixel P 7 , and the corresponding peak left end pixel P 8 and peak right end pixel P 9 correspond to the distance between the peak vertex pixel P 7 and the peak left end pixel P 8 in the Y direction, and the peak vertex pixel P 7 .
  • distance in the Y direction between the peak rightmost pixel P 9 is the 1/5 distance in the X direction between the peak leftmost pixel P 8 and peak rightmost pixel P 9, a predetermined value (e.g., 1/2 to 2) times Therefore, the condition (7) is not satisfied.
  • a predetermined value e.g. 1/2 to 2
  • an extracted pixel having the same X coordinate value as that of the re-extracted pixel and having a Y coordinate value different from that of the re-extracted pixel is extracted as a pixel constituting the boundary line portion.
  • Replace pixel with re-extracted pixel is extracted as a pixel constituting the boundary line portion.
  • the boundary portion obtained by replacing a part of the extracted pixels with the re-extracted pixels forms an original boundary line excluding the influence of the defect.
  • the extracted pixel after replacement includes a dark portion corresponding to the boundary line portion distorted by the dent defect included in the original two-dimensional image data. It becomes possible to indicate the position of the dent defect.
  • the re-extraction unit 1412 performs re-extraction by the processes (1) to (8) above, the re-extraction method is not limited to this.
  • a curve expressed by a function is fitted to the boundary line portion extracted by the boundary extraction unit 1411 to obtain a fitting curve (function curve), and then the fitting curve is calculated.
  • a smoothed smoothing curve is obtained, and finally, a pixel in the two-dimensional image fitted to the smoothing curve may be used as an extraction pixel.
  • functions used for fitting include n-order functions, Gaussian functions, Lorentz functions, Forked functions, and combinations of these functions.
  • the least square method can be used as a fitting evaluation method used for fitting.

Abstract

A defect inspection device (100) is provided with: a transport unit (11) that transports a sheet-like molded body; a light irradiation unit (12) that irradiates light on the sheet-like molded body; an imaging unit (13) that generates two-dimensional image data by means of an imaging operation; a boundary extraction unit (1411) that extracts boundary line parts between light and dark parts in two-dimensional images represented by the two-dimensional image data; a re-extraction unit (1412) that connects the boundary line parts extracted by the boundary extraction unit (1411) to form apparent boundary lines, smooths the apparent boundary lines in such a manner that sharp peaks appearing on the apparent boundary lines disappear, and extracts, from the two-dimensional image data, pixels constituting intrinsic boundary lines obtained by smoothing; and a synthesizing unit (1413) that generates one-dimensional image data comprising the pixels extracted by the re-extraction unit (1412), and generates inspection image data by synthesizing a plurality of one-dimensional image data obtained from a plurality of two-dimensional image data.

Description

画像生成装置、欠陥検査装置および欠陥検査方法Image generating apparatus, defect inspection apparatus, and defect inspection method
 本発明は、シート状成形体の欠陥を検査するための画像データを生成する画像生成装置、該画像生成装置を備える欠陥検査装置、および欠陥検査方法に関する。 The present invention relates to an image generation apparatus that generates image data for inspecting a defect in a sheet-like molded body, a defect inspection apparatus including the image generation apparatus, and a defect inspection method.
 従来から、偏光フィルムや位相差フィルムなどのシート状成形体の欠陥を検査するための方法として、カメラを用いた検査が知られている。たとえば、特開2007−333563号公報(特許文献1)には、光源によってシート状成形体に光を照射し、該シート状成形体を透過および屈折した透過光像をラインセンサカメラによって撮像することで、該シート状成形体の欠陥を検査している。また、透過光像を撮像する代わりに、反射光像を撮像することでシート状成形体の欠陥を検査する方法も、従来から知られている。 Conventionally, an inspection using a camera is known as a method for inspecting a defect of a sheet-like molded body such as a polarizing film or a retardation film. For example, Japanese Patent Application Laid-Open No. 2007-333563 (Patent Document 1) irradiates a sheet-shaped molded body with light by a light source, and captures a transmitted light image transmitted and refracted through the sheet-shaped molded body with a line sensor camera. Thus, the defects of the sheet-like molded body are inspected. In addition, a method for inspecting a defect of a sheet-like molded body by capturing a reflected light image instead of capturing a transmitted light image is also conventionally known.
 図10を用いて、シート状成形体に生じた点状の凹み欠陥の有無をラインセンサカメラによって検査する方法の一例について説明する。図10に示すシート状成形体Lは、その幅方向X中央に点状の凹み欠陥Lが生じているものとする。シート状成形体Lは、その長手方向Yの一方に搬送されており、その結果、図10(a)~図10(c)に示すように、凹み欠陥Lは長手方向Y一方に順次移動する。 With reference to FIG. 10, an example of a method for inspecting the presence or absence of a dot-like dent defect generated in a sheet-like molded body with a line sensor camera will be described. Sheet materials L shown in FIG. 10, it is assumed that the point-shaped indentations defect L 1 occurs in the width direction X center. The sheet-like molded body L is conveyed in one of the longitudinal directions Y. As a result, as shown in FIGS. 10 (a) to 10 (c), the dent defect L1 sequentially moves in one of the longitudinal directions Y. To do.
 図10(a)~図10(c)に示すように、幅方向Xに延びる図示しない光源によって、シート状成形体Lに明部Lと暗部Lとが生じている。光源は位置が固定されており、シート状成形体Lが搬送されることで、明部Lの位置は、シート状成形体L上において長手方向Y他方に順次移動することになる。この明部Lと暗部Lとの境界線付近が撮像範囲Bとなるように、図示しないラインセンサカメラが設けられる。ラインセンサカメラは、光源に対して位置が固定されており、シート状成形体Lが安定して搬送され、かつ凹み欠陥Lが撮像エリア付近にない限り、図10(a)および図10(c)に示すように、明部Lと暗部Lとの境界線付近の像は同様のものとなり、ラインセンサカメラによって取得される画像G,Gも同様のものとなる。ただし、図10(b)に示すように、凹み欠陥Lが撮像エリア付近にある場合、明部Lと暗部Lとの境界線付近の像は該凹み欠陥Lによって変化し、その結果、ラインセンサカメラによって取得される画像Gには、画像G,Gとは異なり、暗部Lが大きく写り込む。したがって、図10(d)のように、ラインセンサカメラによって取得される画像を順次合成していくことで、暗部によって凹み欠陥Lの位置が示される検査用画像Gを合成することができる。 As shown in FIG. 10 (a) ~ FIG 10 (c), the light source (not shown) extending in the width direction X, and the light portion L 2 and the dark L 3 occurs in the sheet materials L. Light source is fixed is located, that the sheet-shaped molded body L is transported, the position of the bright portion L 2 would sequentially move in the longitudinal direction Y while on sheet materials L. The bright portion near the boundary line between L 2 and the dark L 3 are formed so that the imaging range B, the line sensor camera (not shown) is provided. Line sensor camera is positioned relative to the light source is fixed, the sheet-like shaped body L is transported stably and recessed defects L 1 as long as not near the imaging area, FIG. 10 (a) and 10 ( As shown in c), the images in the vicinity of the boundary line between the bright part L 2 and the dark part L 3 are the same, and the images G 1 and G 3 acquired by the line sensor camera are also the same. However, as shown in FIG. 10 (b), if the dent defect L 1 is near the imaging area, an image of the vicinity of the boundary between the bright portion L 2 and the dark L 3 is changed by the recess viewed defective L 1, the As a result, unlike the images G 1 and G 3 , the dark portion L 3 is greatly reflected in the image G 2 acquired by the line sensor camera. Accordingly, as shown in FIG. 10 (d), the by sequentially combining images acquired by the line sensor camera, it is possible to synthesize the test image G 4 where the position of the defect L 1 indentation by dark part is shown .
 図10を用いて説明したような欠陥検査の方法は、上述したように、シート状成形体Lが安定して搬送されることを前提とする。しかしながら、シート状成形体Lは搬送中にばたつく場合があり、必ずしも安定して搬送されるものではない。シート状成形体Lが搬送中にばたつくと、該シート状成形体Lとラインセンサカメラおよび光源との位置関係が変化し、上記欠陥検査の方法ではうまく欠陥が発見できない場合がある。
 なお、本発明において、シート状成形体がばたつく状態とは、例えば水平方向にシート状成形体を搬送している場合には、シート状成形体の一部または全部が上下に激しく揺れ動いている状態をいい、例えば垂直方向にシート状成形体を搬送している場合は、シート状成形体の一部または全部が左右に激しく揺れ動いている状態をいう。
The defect inspection method described with reference to FIG. 10 is based on the premise that the sheet-like molded body L is stably conveyed as described above. However, the sheet-like molded body L may flutter during conveyance and is not necessarily conveyed stably. If the sheet-like molded product L flutters during conveyance, the positional relationship between the sheet-like molded product L, the line sensor camera, and the light source changes, and the defect inspection method may not find a defect well.
In the present invention, the state in which the sheet-like molded body flutters is a state in which, for example, when the sheet-like molded body is conveyed in the horizontal direction, a part or all of the sheet-like molded body is shaken violently up and down. For example, when the sheet-shaped molded body is conveyed in the vertical direction, it means a state in which part or all of the sheet-shaped molded body is swaying violently from side to side.
 図11を用いて、シート状成形体Lがばたついた場合について説明する。図11(a)および図11(b)では、ばたつきは生じておらず、図10(a)および図10(b)と同じ状態であり、図11(c)では、ばたつきが生じているものとする。図11(c)に示すように、シート状成形体Lがばたつくと、凹み欠陥Lが撮像エリア付近になくとも、明部Lと暗部Lとの境界線付近の像はばたつきによって変化し、その結果、ラインセンサカメラによって取得される画像Gには、画像G,Gとは異なり、暗部Lが大きく写り込む場合がある。このような場合、暗部によって凹み欠陥Lの位置を示すはずの検査用画像Gに、図11(d)に示すように、凹み欠陥Lとは関係のない暗部が生じてしまい、凹み欠陥Lとは関係のない位置にも欠陥があるように誤って判断されるおそれがある。また、図11とは異なるばたつきの状態では、凹み欠陥Lが撮像エリア付近にあるときに、ラインセンサカメラによって取得される画像に暗部Lが写り込まないこともあり、シート状成形体Lに欠陥がないように誤って判断されるおそれがある。 The case where the sheet-like molded object L flutters is demonstrated using FIG. 11 (a) and 11 (b), no fluttering occurs, the same state as in FIGS. 10 (a) and 10 (b), and in FIG. 11 (c), fluttering occurs. And As shown in FIG. 11 (c), when the sheet materials L flutters, dents even without defects L 1 is in the vicinity of the imaging area, the image is changed by the fluttering of the vicinity of the boundary between the bright portion L 2 and the dark L 3 As a result, unlike the images G 1 and G 2 , the dark portion L 3 may be greatly reflected in the image G 5 acquired by the line sensor camera. In this case, the test image G 6 which would indicate the position of the defect L 1 indentation by dark portion, as shown in FIG. 11 (d), the dent defect L 1 would occur dark portion unrelated, dents the defective L 1 is likely to be misjudged as a defect even unrelated position. In a state different fluttering and 11, when the dent defect L 1 is near the imaging area, also it is possible that the image acquired by the line sensor camera is not incorporated-through dark portion L 3, sheet materials L May be misjudged so that there are no defects.
 本発明は、このような課題を解決するためのものであり、シート状成形体の欠陥を検査するための画像データを生成する画像生成装置において、シート状成形体のばたつき等に起因して、欠陥の有無について誤った判断が生じるのを防ぐことができる画像生成装置、該画像生成装置を備える欠陥検査装置、および欠陥検査方法を提供することを目的とする。 The present invention is to solve such a problem, in the image generation apparatus for generating image data for inspecting the defects of the sheet-shaped molded body, due to fluttering of the sheet-shaped molded body, An object of the present invention is to provide an image generation apparatus capable of preventing erroneous determination of the presence or absence of a defect, a defect inspection apparatus including the image generation apparatus, and a defect inspection method.
 本発明は、
 シート状成形体の欠陥を検査するための画像データを生成する画像生成装置であって、
 シート状成形体を該シート状成形体の長手方向に搬送する搬送部と、
 シート状成形体の幅方向に直線状に延びる光源を備え、該光源によってシート状成形体に光を照射する光照射部と、
 搬送中の前記シート状成形体に対して撮像動作を行って2次元画像を表す2次元画像データを生成する撮像部であって、該2次元画像内に前記光源に対応する明部と該明部よりも輝度が低い暗部とが含まれる位置でシート状成形体に対して複数回の撮像動作を行う撮像部と、
 前記撮像部によって生成された複数の2次元画像データから検査用画像データを生成する検査用画像データ生成部であって、
 各2次元画像データによって表される各2次元画像内の前記明部と前記暗部との境界線部を抽出する境界抽出部と、
 前記境界線部を繋いで見かけ上の境界線となし、該見かけ上の境界線に現れた鋭いピークがなくなるよう、該見かけ上の境界線を平滑化し、平滑化して得られた本来の境界線を構成する画素を2次元画像データから抽出する再抽出部と、
 前記再抽出部によって抽出された画素からなる1次元画像データを生成し、同様にして複数の2次元画像データから得られた複数の1次元画像データを合成して検査用画像データを生成する合成部と、
を含む検査用画像データ生成部と、
 を備える画像生成装置を提供する。
The present invention
An image generation device that generates image data for inspecting a defect in a sheet-like molded body,
A transport unit for transporting the sheet-shaped molded body in the longitudinal direction of the sheet-shaped molded body;
A light source that includes a light source that extends linearly in the width direction of the sheet-like molded body, and that irradiates the sheet-like molded body with light by the light source;
An imaging unit that performs an imaging operation on the sheet-like molded body being conveyed to generate two-dimensional image data representing a two-dimensional image, and includes a bright part corresponding to the light source and the bright part in the two-dimensional image An imaging unit that performs multiple imaging operations on the sheet-like molded body at a position including a dark part having a lower brightness than the part;
An inspection image data generation unit that generates inspection image data from a plurality of two-dimensional image data generated by the imaging unit,
A boundary extraction unit that extracts a boundary part between the bright part and the dark part in each two-dimensional image represented by each two-dimensional image data;
The boundary line is connected to form an apparent boundary line, and the apparent boundary line is smoothed so that there are no sharp peaks appearing on the apparent boundary line. A re-extraction unit that extracts the pixels constituting the two-dimensional image data;
Synthesis that generates one-dimensional image data composed of pixels extracted by the re-extracting unit, and similarly generates a plurality of one-dimensional image data obtained from a plurality of two-dimensional image data to generate inspection image data. And
An inspection image data generation unit including:
An image generation apparatus is provided.
 また本発明は、
 前記画像生成装置と、
 前記画像生成装置の検査用画像データ生成部によって生成された検査用画像データによって表される画像を表示する表示部と、
を備える欠陥検査装置を提供する。
The present invention also provides
The image generating device;
A display unit for displaying an image represented by the inspection image data generated by the inspection image data generation unit of the image generation device;
A defect inspection apparatus is provided.
 また本発明は、
 シート状成形体の欠陥を検査するための欠陥検査方法であって、
 シート状成形体の幅方向に直線状に延びる光源によって該シート状成形体に光を照射しながら該シート状成形体を該シート状成形体の長手方向に搬送している状態で、該シート状成形体に対して撮像動作を行って2次元画像を表す2次元画像データを生成する撮像工程であって、該2次元画像内に前記光源に対応する明部と該明部よりも輝度が低い暗部とが含まれるようにシート状成形体に対して複数回の撮像動作を行う撮像工程と、
 前記撮像工程において生成された各2次元画像データによって表される名2次元画像内の前記明部と前記暗部との境界線部を抽出する境界抽出工程と、
 前記境界線部を繋いで見かけ上の境界線となし、該見かけ上の境界線に現れた鋭いピークがなくなるよう、該見かけ上の境界線を平滑化し、平滑化して得られた本来の境界線を構成する画素を2次元画像データから抽出する再抽出工程と、
 前記再抽出工程において抽出された画素からなる1次元画像データを生成し、同様にして複数の2次元画像データから得られた複数の1次元画像データを合成して検査用画像データを生成する合成工程と、
 前記合成工程において生成された検査用画像データによって表される画像を表示する表示工程と、
を含む欠陥検査方法を提供する。
The present invention also provides
A defect inspection method for inspecting defects in a sheet-like molded body,
In a state where the sheet-shaped molded body is conveyed in the longitudinal direction of the sheet-shaped molded body while irradiating the sheet-shaped molded body with light by a light source extending linearly in the width direction of the sheet-shaped molded body. An imaging step of performing an imaging operation on a molded body to generate two-dimensional image data representing a two-dimensional image, and the brightness of the bright part corresponding to the light source in the two-dimensional image is lower than that of the bright part An imaging step of performing an imaging operation a plurality of times on the sheet-like molded body so as to include a dark part; and
A boundary extraction step for extracting a boundary portion between the bright portion and the dark portion in the name two-dimensional image represented by each two-dimensional image data generated in the imaging step;
The boundary line is connected to form an apparent boundary line, and the apparent boundary line is smoothed so that there are no sharp peaks appearing on the apparent boundary line. A re-extraction step of extracting pixels constituting the two-dimensional image data;
1-dimensional image data composed of the pixels extracted in the re-extraction step is generated, and a plurality of 1-dimensional image data obtained from a plurality of 2-dimensional image data is similarly combined to generate inspection image data. Process,
A display step of displaying an image represented by the inspection image data generated in the synthesis step;
A defect inspection method including
 本発明によれば、画像生成装置では、搬送中のシート状成形体に光が照射された状態で、該シート状成形体に対して複数回の撮像動作が行われて複数の2次元画像データが生成される。そして、各2次元画像データによって表される各2次元画像内の明部と暗部との境界線部が抽出される。次いで、該境界線部を繋いで見かけ上の境界線となし、該見かけ上の境界線に現れた鋭いピークがなくなるよう、該見かけ上の境界線が平滑化される。そうして平滑化されて得られた本来の境界線を構成する画素が2次元画像データから再抽出され、本来の境界線を構成する画素からなる1次元画像データが生成される。同様にして複数の2次元画像データから得られた複数の1次元画像データが合成されて検査用画像データが生成される。 According to the present invention, in the image generation device, a plurality of two-dimensional image data are obtained by performing a plurality of imaging operations on the sheet-shaped molded body in a state where light is irradiated on the sheet-shaped molded body being conveyed. Is generated. Then, a boundary line portion between a bright portion and a dark portion in each two-dimensional image represented by each two-dimensional image data is extracted. Next, the boundary line portion is connected to form an apparent boundary line, and the apparent boundary line is smoothed so that there is no sharp peak appearing on the apparent boundary line. The pixels constituting the original boundary line obtained by the smoothing are re-extracted from the two-dimensional image data, and one-dimensional image data including the pixels constituting the original boundary line is generated. Similarly, a plurality of one-dimensional image data obtained from a plurality of two-dimensional image data are combined to generate inspection image data.
 シート状成形体に欠陥が生じている場合において、該シート状成形体が安定して搬送されており、かつ、境界線部付近に欠陥が位置しているとき、該欠陥によって、見かけ上の境界線は鋭いピークが現れた歪な曲線となる。したがって、この見かけ上の境界線を平滑化して得られた本来の境界線は、見かけ上の境界線とは異なる。また、シート状成形体に欠陥が生じている場合において、該シート状成形体が搬送中にばたついており、かつ、境界線部付近に欠陥が位置していないとき、該シート状成形体のばたつきによって、見かけ上の境界線はなだらかな曲線となる。したがって、この見かけ上の境界線を平滑化して得られた本来の境界線は、見かけ上の境界線とほぼ同一の曲線か、または、見かけ上の境界線と同一の曲線である。 When a defect is generated in the sheet-shaped molded body, when the sheet-shaped molded body is stably conveyed and a defect is located near the boundary line portion, the apparent boundary is caused by the defect. The line is a distorted curve with sharp peaks. Therefore, the original boundary line obtained by smoothing the apparent boundary line is different from the apparent boundary line. Further, when a defect is generated in the sheet-like molded article, the sheet-like molded article flutters during conveyance, and when the defect is not located near the boundary line portion, By fluttering, the apparent boundary line becomes a gentle curve. Therefore, the original boundary line obtained by smoothing the apparent boundary line is almost the same curve as the apparent boundary line or the same curve as the apparent boundary line.
 よって、各2次元画像データより、本来の境界線を構成する画素からなる1次元画像データを生成し、そうして得られた複数の1次元画像データを合成して検査用画像データとすることで、明部および暗部の位置関係によって欠陥の位置を示す検査用画像データを生成することができる。その結果、この検査用画像データに基づいてシート状成形体の欠陥の有無を判断することができ、シート状成形体のばたつき等に起因して、欠陥の有無について誤った判断が生じるのを防ぐことができる。 Therefore, one-dimensional image data composed of pixels constituting the original boundary line is generated from each two-dimensional image data, and a plurality of the obtained one-dimensional image data is synthesized to obtain inspection image data. Thus, it is possible to generate inspection image data indicating the position of the defect according to the positional relationship between the bright part and the dark part. As a result, it is possible to determine the presence or absence of defects in the sheet-like molded body based on the inspection image data, and prevent erroneous determination of the presence or absence of defects due to flapping of the sheet-like molded body. be able to.
 また本発明によれば、欠陥検査装置は、前記の本発明に係る画像生成装置と、表示部とを備える。表示部は、画像生成装置の検査用画像データ生成部によって生成された検査用画像データで表される画像を表示する。表示部によって検査用画像データに基づいて表示される画像を見ることで、欠陥の有無を判断することができ、シート状成形体のばたつき等に起因して、欠陥の有無について誤った判断が生じるのを防ぐことができる。 According to the present invention, a defect inspection apparatus includes the image generation apparatus according to the present invention and a display unit. The display unit displays an image represented by the inspection image data generated by the inspection image data generation unit of the image generation apparatus. By viewing the image displayed on the basis of the image data for inspection by the display unit, it is possible to determine the presence / absence of a defect, and an erroneous determination is made regarding the presence / absence of a defect due to flapping of the sheet-like molded product. Can be prevented.
 また本発明によれば、欠陥検査方法では、撮像工程において搬送中のシート状成形体に光が照射された状態で、該シート状成形体に対して複数回の撮像動作が行われて複数の2次元画像データが生成される。そして、境界抽出工程において各2次元画像データによって表される各2次元画像内の明部と暗部との境界線部が抽出される。次いで、再抽出工程において、該境界線部を繋いで見かけ上の境界線となし、該見かけ上の境界線に現れた鋭いピークがなくなるよう、該見かけ上の境界線が平滑化される。そうして平滑化されて得られた本来の境界線を構成する画素が、2次元画像データから再抽出される。さらに、合成工程において、本来の境界線を構成する画素からなる1次元画像データが生成され、同様にして複数の2次元画像データから得られた複数の1次元画像データが合成されて、明部および暗部の位置関係によって欠陥の位置を示す検査用画像データが生成され、表示工程において検査用画像データによって表される画像が表示される。表示工程において表示された、検査用画像データに基づいて表される画像を見ることで、欠陥の有無を判断することができ、シート状成形体のばたつき等に起因して、欠陥の有無について誤った判断が生じるのを防ぐことができる。 According to the present invention, in the defect inspection method, a plurality of imaging operations are performed on the sheet-shaped molded body in a state where light is irradiated on the sheet-shaped molded body being conveyed in the imaging process. Two-dimensional image data is generated. Then, in the boundary extraction step, a boundary line portion between a bright part and a dark part in each two-dimensional image represented by each two-dimensional image data is extracted. Next, in the re-extraction step, the boundary line portion is connected to form an apparent boundary line, and the apparent boundary line is smoothed so that there is no sharp peak appearing on the apparent boundary line. The pixels constituting the original boundary line obtained by smoothing are re-extracted from the two-dimensional image data. Further, in the synthesizing step, one-dimensional image data composed of pixels constituting the original boundary line is generated, and a plurality of one-dimensional image data obtained from a plurality of two-dimensional image data is synthesized in the same manner to obtain a bright portion. Then, inspection image data indicating the position of the defect is generated based on the positional relationship between the dark portions and the image represented by the inspection image data is displayed in the display step. The presence or absence of defects can be determined by looking at the image displayed based on the image data for inspection displayed in the display process. It can be prevented from happening.
本発明に係る欠陥検査装置100を示す斜視図である。It is a perspective view which shows the defect inspection apparatus 100 which concerns on this invention. 本発明に係る欠陥検査装置100を示すブロック図である。1 is a block diagram showing a defect inspection apparatus 100 according to the present invention. 本発明に係る欠陥検査方法を示す工程図である。It is process drawing which shows the defect inspection method which concerns on this invention. シート状成形体Kの様子を示す図である。It is a figure which shows the mode of the sheet-like molded object K. FIG. シート状成形体Kに対する撮像によって得られる画像を示す図である。It is a figure which shows the image obtained by imaging with respect to the sheet-like molded object K. FIG. シート状成形体Kに対する撮像によって得られる画像を示す図である。It is a figure which shows the image obtained by imaging with respect to the sheet-like molded object K. FIG. シート状成形体Kに対する撮像によって得られる画像を示す図である。It is a figure which shows the image obtained by imaging with respect to the sheet-like molded object K. FIG. シート状成形体Kに対する撮像によって得られる画像を示す図である。It is a figure which shows the image obtained by imaging with respect to the sheet-like molded object K. FIG. 再抽出部1412による処理の具体例を説明するための図である。FIG. 10 is a diagram for describing a specific example of processing by a re-extraction unit 1412. シート状成形体Lに生じた点状の凹み欠陥の有無をラインセンサカメラによって検査する方法の一例について説明するための図である。It is a figure for demonstrating an example of the method of test | inspecting the presence or absence of the dotted | punctate dent defect which arose in the sheet-like molded object L with the line sensor camera. シート状成形体Lがばたついた場合について説明するための図である。It is a figure for demonstrating the case where the sheet-like molded object L flutters.
 以下に、本発明に係る画像生成装置、欠陥検査装置および欠陥検査方法について説明する。図1は、本発明に係る欠陥検査装置100を示す斜視図である。図2は、本発明に係る欠陥検査装置100を示すブロック図である。図3は、本発明に係る欠陥検査方法を示す工程図である。欠陥検査装置100は、シート状成形体の欠陥を検査するための装置であり、該欠陥を検査するための方法である、本発明に係る欠陥検査方法を実施可能な装置である。欠陥検査装置100は、シート状成形体として、たとえば、偏光フィルムや位相差フィルムなどの光学フィルムを検査可能であり、特にウェブ状に巻いて保管および輸送される長尺の光学フィルムの検査に適している。 Hereinafter, an image generation apparatus, a defect inspection apparatus, and a defect inspection method according to the present invention will be described. FIG. 1 is a perspective view showing a defect inspection apparatus 100 according to the present invention. FIG. 2 is a block diagram showing a defect inspection apparatus 100 according to the present invention. FIG. 3 is a process diagram showing a defect inspection method according to the present invention. The defect inspection apparatus 100 is an apparatus for inspecting a defect of a sheet-like molded body, and is an apparatus capable of performing the defect inspection method according to the present invention, which is a method for inspecting the defect. The defect inspection apparatus 100 can inspect, for example, an optical film such as a polarizing film or a retardation film as a sheet-like molded body, and is particularly suitable for inspection of a long optical film wound and stored in a web shape. ing.
 シート状成形体は、たとえば、熱可塑性樹脂などの樹脂からなる。樹脂からなるシート状成形体としては、たとえば、押出機から押し出された熱可塑性樹脂をロールの隙間に通して表面に平滑さや光沢を付与する処理が施され、引取ロールにより搬送ロール上を冷却されながら引き取られることにより成形されたものが挙げられる。シート状成形体の材料となる熱可塑性樹脂は、たとえば、メタクリル樹脂、メタクリル酸メチル−スチレン共重合体、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリカーボネート、ポリ塩化ビニル、ポリスチレン、ポリビニルアルコール、トリアセチルセルロール樹脂などである。シート状成形体は、これら熱可塑性樹脂のうちの1つのみからなっていてもよく、これら熱可塑性樹脂の複数種類を積層したものであってもよい。 The sheet-like molded body is made of a resin such as a thermoplastic resin, for example. As the sheet-like molded body made of resin, for example, the thermoplastic resin extruded from the extruder is passed through the gaps between the rolls to give the surface smoothness and gloss, and the take-up roll cools the transport roll. However, what was shape | molded by being taken up is mentioned. The thermoplastic resin used as the material of the sheet-like molded body is, for example, methacrylic resin, methyl methacrylate-styrene copolymer, polyolefin such as polyethylene and polypropylene, polycarbonate, polyvinyl chloride, polystyrene, polyvinyl alcohol, and triacetyl cellulose resin. Etc. The sheet-like molded body may consist of only one of these thermoplastic resins, or may be a laminate of a plurality of types of these thermoplastic resins.
 シート状成形体は、どのような厚みを持つものであってもよい。たとえば、シート状成形体は、偏光フィルムや位相差フィルムなどの、一般に「フィルム」と呼ばれるような比較的薄い厚みを持つものであってもよく、一般に「板」と呼ばれるような比較的厚い厚みを持つものであってもよい。 The sheet-like molded body may have any thickness. For example, the sheet-like molded body may have a relatively thin thickness such as a polarizing film or a retardation film, generally called “film”, and a relatively thick thickness generally called “plate”. You may have.
 このようなシート状成形体の欠陥の例としては、成形時に生じる気泡、フィッシュアイ、異物、タイヤ跡、打痕、傷などの点状の欠陥(点欠陥)、折り目跡などにより生じるいわゆるクニック(knick)、厚さの違いにより生じるいわゆる原反スジなどの線状の欠陥(線欠陥)が挙げられる。 Examples of such defects in the sheet-like molded product include so-called nicks (point defects) caused by bubbles, fish eyes, foreign matter, tire marks, dent marks, scratches, and crease marks generated during molding. knick) and linear defects (line defects) such as so-called original stripes caused by the difference in thickness.
 図1および図2に示すように、欠陥検査装置100は、本発明に係る画像生成装置1と、表示部21とを備える。欠陥検査装置100の画像生成装置1は、シート状成形体Kをその長手方向(以下、「Y方向」と称する)一方に搬送する搬送部11と、シート状成形体Kの幅方向(以下、「X方向」と称する)に直線状に延びる光源を有する光照射部12と、シート状成形体Kに対して撮像動作を行って2次元画像を表す2次元画像データを生成する撮像部13と、情報処理装置14とを備える。情報処理装置14は、検査用画像データ生成部141を有し、該検査用画像データ生成部141は、境界抽出部1411と再抽出部1442と合成部1413とを含む。情報処理装置14は、搬送部11の動作を制御する図示しない搬送制御部も有する。情報処理装置14は、PC(Personal Computer)などによって実現される。なお、情報処理装置14における検査用画像データ生成部141は、FPGA(Field−programmable gate array)やGPGPU(General−purpose computing on graphics processing units)など、画像処理ボードや撮像部13の内部のハードウェアによって実現することもできる。 As shown in FIGS. 1 and 2, the defect inspection apparatus 100 includes an image generating apparatus 1 according to the present invention and a display unit 21. The image generation apparatus 1 of the defect inspection apparatus 100 includes a conveyance unit 11 that conveys the sheet-shaped molded body K in one of the longitudinal directions (hereinafter referred to as “Y direction”), and the width direction (hereinafter, referred to as “sheet-shaped molded body K”). A light irradiation unit 12 having a light source extending linearly in the “X direction”, an imaging unit 13 that performs an imaging operation on the sheet-like molded body K and generates two-dimensional image data representing a two-dimensional image; And an information processing device 14. The information processing apparatus 14 includes an inspection image data generation unit 141, and the inspection image data generation unit 141 includes a boundary extraction unit 1411, a re-extraction unit 1442, and a synthesis unit 1413. The information processing apparatus 14 also includes a conveyance control unit (not shown) that controls the operation of the conveyance unit 11. The information processing apparatus 14 is realized by a PC (Personal Computer) or the like. Note that the inspection image data generation unit 141 in the information processing apparatus 14 is an internal hardware of the image processing board or the imaging unit 13 such as a field-programmable gate array (FPGA) or a general-purpose computing on graphics processing unit (GPGPU). Can also be realized.
 図3に示すように、本発明に係る欠陥検査方法は、撮像工程S1と、境界抽出工程S2と、再抽出工程S3と、合成工程S4と、表示工程S5とを含む。
 撮像工程S1では、光照射部12の光源によってシート状成形体Kに光を照射しながら、搬送部11によってシート状成形体をY方向一方に搬送している状態で、光照射部12の光源に対応する明部と該明部よりも輝度が低い暗部とが2次元画像内に含まれるように、撮像部13によってシート状成形体Kに対して複数回の撮像動作を行う。
As shown in FIG. 3, the defect inspection method according to the present invention includes an imaging step S1, a boundary extraction step S2, a re-extraction step S3, a synthesis step S4, and a display step S5.
In the imaging step S <b> 1, the light source of the light irradiation unit 12 is in a state where the sheet-like molded body is conveyed in the Y direction by the conveyance unit 11 while irradiating the sheet-shaped molded body K with the light source of the light irradiation unit 12. The imaging unit 13 performs a plurality of imaging operations on the sheet-shaped molded body K so that the two-dimensional image includes a bright part corresponding to the above and a dark part whose luminance is lower than that of the bright part.
 境界抽出工程S2は、撮像工程S1において撮像部13によって生成された各2次元画像データで表される各2次元画像内の明部から暗部に変わる境界線部、または、暗部から明部に変わる境界線部を、境界抽出部1411によって抽出する工程である。
 再抽出工程S3は、再抽出部1412によって、境界抽出工程S2において得られた境界線部を繋げて見かけ上の境界線となし、該見かけ上の境界線に現れた鋭いピークがなくなるよう、該見かけ上の境界線を平滑化し、平滑化して得られた本来の境界線を構成する画素を2次元画像データから抽出する工程である。
The boundary extraction step S2 changes from a bright part to a dark part in each two-dimensional image represented by each two-dimensional image data generated by the imaging unit 13 in the imaging step S1, or from a dark part to a bright part. In this step, the boundary line portion is extracted by the boundary extraction portion 1411.
In the re-extraction step S3, the re-extraction unit 1412 connects the boundary line portions obtained in the boundary extraction step S2 to form an apparent boundary line, and the sharp peak appearing on the apparent boundary line is eliminated. This is a step of smoothing the apparent boundary line and extracting the pixels constituting the original boundary line obtained by the smoothing from the two-dimensional image data.
 合成工程S4は、再抽出工程S3において再抽出部1412によって抽出された画素からなる1次元画像データを、合成部1413によって生成し、同様にして複数の2次元画像データから得られた複数の1次元画像データを合成して、輝度の変化によって凹み欠陥または凸欠陥の位置を示す検査用画像データを生成する工程である。たとえば明部から暗部に変わる際の境界線部では、輝度の暗い箇所として凹み欠陥の位置が示される。
 表示工程S5は、合成工程S4において合成部1413によって生成された検査用画像データで表される検査用画像を表示部21に表示する工程である。
In the synthesizing step S4, one-dimensional image data including pixels extracted by the re-extracting unit 1412 in the re-extracting step S3 is generated by the synthesizing unit 1413, and a plurality of 1s obtained from a plurality of two-dimensional image data in the same manner This is a step of synthesizing the dimensional image data and generating inspection image data indicating the position of the dent defect or the convex defect by the change in luminance. For example, at the boundary line portion when changing from a bright portion to a dark portion, the position of the dent defect is shown as a dark portion.
The display step S5 is a step of displaying an inspection image represented by the inspection image data generated by the combining unit 1413 in the combining step S4 on the display unit 21.
 図4~図8を用いて各工程S1~S5について説明する。図4は、シート状成形体Kの様子を示す図であり、図5~図8は、シート状成形体Kに対する撮像によって得られる画像を示す図である。図4に示すように、シート状成形体Kには点状の凹み欠陥Kが生じているとする。また、シート状成形体Kは、図4(a)、図4(b)、図4(c)に示す順に、Y方向一方に搬送されているとする。 Each step S1 to S5 will be described with reference to FIGS. FIG. 4 is a diagram showing a state of the sheet-shaped molded body K, and FIGS. 5 to 8 are diagrams showing images obtained by imaging the sheet-shaped molded body K. FIG. As shown in FIG. 4, it is assumed that a point-like dent defect K 1 is generated in the sheet-like molded body K. Further, it is assumed that the sheet-like molded body K is conveyed in one direction in the Y direction in the order shown in FIGS. 4 (a), 4 (b), and 4 (c).
 図4(a)に示すように、X方向に直線状に延びる光照射部12の光源は、シート状成形体K上に、X方向に直線状に延びる明部Kと、該明部Kよりも輝度が低い暗部Kとを生じさせる。明部Kが直線状に延びるのは、シート状成形体Kが安定的に搬送されてシート状成形体Kのばたつきがなく、かつ、凹み欠陥Kが明部Kの近傍にないときである。図4(b)に示すように、凹み欠陥Kが明部Kの近傍にあると、明部Kは直線状ではなくなる。図4(c)は、図4(a)および図4(b)とは異なり、搬送中にシート状成形体Kがばたついた場合を示しており、この場合、凹み欠陥Kは明部K近傍にはないけれども、シート状成形体Kのばたつきに起因して、明部Kは直線状ではなくなっている。 As shown in FIG. 4 (a), the light source of the light irradiation portion 12 extending linearly in the X direction, on a sheet-shaped molded body K, the bright portion K 2 extending linearly in the X direction,該明portion K And a dark portion K 3 having a luminance lower than 2 . The bright portion K 2 extends linearly, no fluttering of sheet materials K molded sheet K is conveyed stably, and, when not in the vicinity of the recessed defect K 1 GaAkira portion K 2 It is. As shown in FIG. 4 (b), when in the vicinity of the recessed defect K 1 GaAkira section K 2, bright portion K 2 is not a straight line. FIG. 4 (c), unlike FIGS. 4 (a) and 4 (b), shows a case where the sheet-like shaped body K during conveyance is flapping, in this case, recessed defects K 1 Ming Although part K 2 is not in the vicinity, due to the fluttering of the sheet-like shaped body K, bright portion K 2 is no longer a straight line.
 図4に示す2点鎖線Aは、撮像部13による撮像範囲を示している。撮像工程S1では、撮像部13は、この撮像範囲内に、明部Kおよび該明部Kに隣接する暗部Kが入るように、撮像動作を行う。図4(a)における撮像結果である2次元画像が、図5(a)に示す2次元画像であり、図4(b)における撮像結果である2次元画像が、図6(a)に示す2次元画像であり、図4(c)における撮像結果である2次元画像が、図7(a)に示す2次元画像である。各2次元画像を構成する各画素は、図5、図6、および図7においてX方向右側になるほど連続的に大きくなる整数のX座標値と、Y方向下側になるほど連続的に大きくなる整数のY座標値とが割り当てられる。なお、図5(a)、図6(a)、および図7(a)では、明部を白色部とし、暗部を斜線部としている。 A two-dot chain line A shown in FIG. 4 indicates an imaging range by the imaging unit 13. In imaging step S1, the imaging unit 13, within the imaging range, so that the dark portion K 3 adjacent to the bright portion K 2 and該明section K 2 enters, performs the imaging operation. The two-dimensional image that is the imaging result in FIG. 4A is the two-dimensional image shown in FIG. 5A, and the two-dimensional image that is the imaging result in FIG. 4B is shown in FIG. The two-dimensional image which is a two-dimensional image and is the imaging result in FIG. 4C is the two-dimensional image shown in FIG. Each pixel constituting each two-dimensional image has an integer X coordinate value that continuously increases toward the right side in the X direction in FIGS. 5, 6, and 7, and an integer that continuously increases toward the lower side in the Y direction. Y coordinate values are assigned. In FIG. 5A, FIG. 6A, and FIG. 7A, the bright portion is a white portion and the dark portion is a hatched portion.
 境界抽出工程S2では、図5(a)、図6(a)、および図7(a)に示す各2次元画像から、境界抽出部1411によって、境界線部を抽出する。境界線部は、たとえば、2次元画像内の明部の一部分のうち、該明部に隣接し、該明部よりもY座標値が大きい暗部に変化する部分である。境界線部は、従来公知のエッジ抽出方法によって抽出可能である。たとえば、2次元画像におけるY方向に沿った1列の画素列のデータについて、Y座標値が最も小さい画素から順に注目画素とし、該注目画素よりもY座標値が1つ大きい画素の輝度値が該注目画素の輝度値よりも所定の閾値以上大きいときに、該注目画素よりもY座標値が1つ大きい画素を、境界線部を構成する画素として抽出すればよい。以降では、このようにして抽出された画素を抽出画素と呼ぶ。図5(a)、図6(a)、および図7(a)に示す各2次元画像から抽出された画素によって構成される境界線部を、図5(b)、図6(b)、および図7(b)に、それぞれ示す。隣り合った画素列の境界線部を繋ぐことで、見かけ上の境界線が得られる。 In the boundary extraction step S2, a boundary line portion is extracted by the boundary extraction unit 1411 from each two-dimensional image shown in FIGS. 5 (a), 6 (a), and 7 (a). The boundary part is, for example, a part of a part of the bright part in the two-dimensional image that is adjacent to the bright part and changes to a dark part having a larger Y coordinate value than the bright part. The boundary line portion can be extracted by a conventionally known edge extraction method. For example, with respect to the data of one pixel column along the Y direction in the two-dimensional image, the pixel of interest is sequentially selected from the pixel having the smallest Y coordinate value, and the luminance value of the pixel having one Y coordinate value larger than the pixel of interest is When the luminance value of the target pixel is greater than a predetermined threshold value, a pixel having a Y coordinate value larger by one than the target pixel may be extracted as a pixel constituting the boundary line portion. Hereinafter, the pixel extracted in this way is referred to as an extracted pixel. The boundary line portion constituted by the pixels extracted from the two-dimensional images shown in FIG. 5A, FIG. 6A, and FIG. And FIG. 7 (b) respectively. An apparent boundary line can be obtained by connecting the boundary portions of adjacent pixel columns.
 明部と暗部との境界線付近に欠陥が存在している場合、このようにして得られた見かけ上の境界線は、該欠陥の影響を受けて、鋭いピークが出現している。再抽出工程S3は、該欠陥の影響を除外した本来の境界線をなす境界線部を得る工程である。そのために、再抽出工程S3では、まず、見かけ上の境界線に鋭いピークがなくなるよう、見かけ上の境界線を平滑化する。例えば、ピークの高さが、ピークの幅の所定倍(例えば1/2倍~2倍)以上のピークを、鋭いピークと見なし、かかる鋭いピークがなくなるよう、このピークの底辺の直線を、本来の境界線とする。再抽出工程S3では、そうして得られた本来の境界線を構成する画素を、元の2次元画像データから抽出する。以降では、このようにして抽出された画素を再抽出画素と呼ぶ。
 明部と暗部との境界線付近に欠陥が存在していない場合、境界抽出工程S2で得られた見かけ上の境界線には鋭いピークが出現しておらず、再抽出工程S3で得られる本来の境界線は、境界抽出工程S2で得られた見かけ上の境界線と同じとなる。そのため、明部と暗部との境界線付近に欠陥が存在せず、境界抽出工程S2で得られた見かけ上の境界線に鋭いピークが存在しない場合は、再抽出工程S3を実質的にスキップしてもよい。
When a defect exists in the vicinity of the boundary line between the bright part and the dark part, the apparent boundary line obtained in this way is affected by the defect and a sharp peak appears. The re-extraction step S3 is a step of obtaining a boundary line portion that forms an original boundary line excluding the influence of the defect. Therefore, in the re-extraction step S3, first, the apparent boundary line is smoothed so that there is no sharp peak in the apparent boundary line. For example, a peak whose peak height is a predetermined multiple of the peak width (for example, 1/2 to 2 times) or more is regarded as a sharp peak. The boundary line. In the re-extraction step S3, the pixels constituting the original boundary line thus obtained are extracted from the original two-dimensional image data. Hereinafter, the pixels extracted in this way are referred to as re-extracted pixels.
When there is no defect near the boundary between the bright part and the dark part, no sharp peak appears in the apparent boundary obtained in the boundary extraction step S2, and the original obtained in the re-extraction step S3. The boundary line is the same as the apparent boundary line obtained in the boundary extraction step S2. Therefore, when there is no defect near the boundary between the bright part and the dark part and there is no sharp peak in the apparent boundary obtained in the boundary extraction step S2, the re-extraction step S3 is substantially skipped. May be.
 図5(b)、図6(b)、および図7(b)に、見かけ上の境界線j,j,jを、それぞれ2点鎖線で示す。図5(b)に示す境界線jは直線であり、図7(b)に示す境界線jは、鋭いピークのない、なだらかな曲線である。したがって、図5(a)に示す2次元画像および図7(a)に示す2次元画像については、再抽出工程S3において画素の再抽出を行う必要はなく、見かけ上の境界線を構成する画素が、本来の境界線を構成する画素となる。これに対して、図6(b)に示す境界線jは、鋭いピークを有する歪な曲線である。この歪な境界線jを平滑化した曲線は、図6(b)に破線で示す直線jである。したがって、本来の境界線は、X座標値1~4および8~10については見かけ上の境界線であったjと同じとなり、X座標値5~7については直線jとなる。再抽出工程S3においては、得られた本来の境界線を構成する画素のデータを、元の2次元画像データから抽出する。図6(a)に示す2次元画像内から抽出された再抽出画素を、図6(c)に示す。再抽出画素のうち、X座標値5~7の画素は、元の2次元画像データに含まれる欠陥部によって歪んだ境界線部に対応し、他の画素より明るいか暗い輝度値を有する。 In FIG. 5B, FIG. 6B, and FIG. 7B, apparent boundary lines j 1 , j 2 , and j 3 are shown by two-dot chain lines, respectively. Figure 5 boundary j 1 shown in (b) is a straight line, the boundary line j 3 shown in FIG. 7 (b), no sharp peaks are gentle curve. Therefore, for the two-dimensional image shown in FIG. 5A and the two-dimensional image shown in FIG. 7A, it is not necessary to re-extract the pixels in the re-extraction step S3, and the pixels constituting the apparent boundary line However, this is the pixel that constitutes the original boundary line. In contrast, the boundary line j 2 shown in FIG. 6 (b) is a distorted curve with a sharp peak. This distortion boundaries j 2 The smoothed curve is a straight line j 4 shown by a broken line in Figure 6 (b). Therefore, the original boundary line is the same as j 2 which is the apparent boundary line for the X coordinate values 1 to 4 and 8 to 10, and is the straight line j 4 for the X coordinate values 5 to 7. In the re-extraction step S3, the data of the pixels constituting the obtained original boundary line is extracted from the original two-dimensional image data. FIG. 6C shows the re-extracted pixel extracted from the two-dimensional image shown in FIG. Among the re-extracted pixels, pixels having X coordinate values of 5 to 7 correspond to boundary portions distorted by defective portions included in the original two-dimensional image data, and have brightness values that are brighter or darker than other pixels.
 合成工程S4では、再抽出工程S3において再抽出部1412によって各2次元画像内から抽出された再抽出画素から、合成部1413によって、1次元画像を表す1次元画像データを生成する。1次元画像データは、再抽出画素のX座標値と輝度値とが対応付けられた画像データである。図5(c)、図6(d)、および図7(c)に、図5(a)、図6(a)、および図7(a)に示す各2次元画像に対応する1次元画像を示す。 In the synthesizing step S4, the synthesizing unit 1413 generates one-dimensional image data representing the one-dimensional image from the re-extracted pixels extracted from the respective two-dimensional images by the re-extracting unit 1412 in the re-extracting step S3. The one-dimensional image data is image data in which the X coordinate value and the luminance value of the re-extracted pixel are associated with each other. FIG. 5C, FIG. 6D, and FIG. 7C show one-dimensional images corresponding to the two-dimensional images shown in FIG. 5A, FIG. 6A, and FIG. Indicates.
 さらに、合成工程S4では、同様にして複数の2次元画像データから得られた複数の1次元画像データを合成して検査用画像データを生成する。合成は、撮像部13によって先に生成された2次元画像データに対応する1次元画像データの方が小さなY座標値を有し、撮像部13によって後に生成された2次元画像データに対応する1次元画像データの方が大きなY座標値を有するように、かつ、各1次元画像データのX座標値はそのままとして、複数の1次元画像データをY方向に連続的に配置して組み合わせることで行われる。図8に、図5(c)、図6(d)、および図7(c)に示す1次元画像を表す1次元画像データから合成された検査用画像データによって表される検査用画像を示す。 Furthermore, in the synthesis step S4, a plurality of one-dimensional image data obtained from a plurality of two-dimensional image data is synthesized in the same manner to generate inspection image data. In the synthesis, the one-dimensional image data corresponding to the two-dimensional image data previously generated by the imaging unit 13 has a smaller Y coordinate value, and 1 corresponding to the two-dimensional image data generated later by the imaging unit 13. Dimensional image data is obtained by continuously arranging and combining a plurality of one-dimensional image data in the Y direction so that the dimensional image data has a larger Y coordinate value and the X coordinate value of each one-dimensional image data remains unchanged. Is called. FIG. 8 shows an inspection image represented by inspection image data synthesized from the one-dimensional image data representing the one-dimensional image shown in FIGS. 5C, 6D, and 7C. .
 合成工程S4では、各1次元画像データに対して2値化を行ってもよい。2値化の閾値となる輝度値は、1次元画像データが表す1次元画像内の明部の画素と暗部の画素とが2値化後に互いに異なる値となるように設定される。たとえば、2値化の閾値は、該1次元画像データにおける最大輝度値と最小輝度値との相加平均値である。2値化が行われる場合、各1次元画像データに対する2値化の後に、検査用画像データの合成が行われる。なお、2値化の順序は、上記の順序に限定されるものではなく、1次元画像データを合成した後、その合成後の2次元画像データに対して2値化を行うことによって、検査用画像データを生成するようにしてもよい。 In the synthesis step S4, binarization may be performed on each one-dimensional image data. The luminance value that serves as the threshold for binarization is set so that the bright pixel and the dark pixel in the one-dimensional image represented by the one-dimensional image data have different values after binarization. For example, the threshold value for binarization is an arithmetic average value of the maximum luminance value and the minimum luminance value in the one-dimensional image data. When binarization is performed, the image data for inspection is synthesized after binarization for each one-dimensional image data. Note that the binarization order is not limited to the above order, and after combining the one-dimensional image data, the binarization is performed on the combined two-dimensional image data. Image data may be generated.
 表示工程S5では、検査用画像データによって表される検査用画像を、表示部21に表示させる。検査用画像は、たとえば、各画素の輝度値に基づいて、暗部が黒となり、明部が白となるように、表示部21に表示される。 In the display step S5, an inspection image represented by the inspection image data is displayed on the display unit 21. The inspection image is displayed on the display unit 21 based on, for example, the luminance value of each pixel so that the dark part is black and the bright part is white.
 このような、欠陥検査装置100によって実施される、各工程S1~S5を含む欠陥検査方法によれば、シート状成形体Kに凹み欠陥Kが生じている場合において、図4(b)に示すように、該シート状成形体Kが安定して搬送されており、かつ、境界線部近傍に凹み欠陥が位置しているとき、該凹み欠陥Kによって、図6(b)に示すように、見かけ上の境界線は歪な曲線jとなる。したがって、この境界線jを平滑化した直線jを構成する2次元画像内の画素は、図6(c)に示すように、暗部を含むことになる。また、シート状成形体Kに凹み欠陥Kが生じている場合において、図4(c)に示すように、該シート状成形体Kが搬送中にばたついており、かつ、境界線部近傍に凹み欠陥Kが位置していないとき、該シート状成形体Kのばたつきによって、図7(b)に示すように、見かけ上の境界線jはなだらかな曲線となる。したがって、この境界線jを平滑化した曲線は、境界線jとほぼ同一の曲線か、または、境界線jと同一の曲線であり、該曲線に対応する2次元画像内の画素は、明部の一部である境界線部から大きく離れることはなく、図7(b)に示すものと同一である。よって、これらの各部分から、図6(d)および図7(c)に示す各1次元画像データを生成し、複数の1次元画像データを合成して検査用画像データとすることで、暗部によって欠陥の位置を示す検査用画像データを生成することができる。その結果、この検査用画像データに基づいて表示される、図8に示す検査用画像を見ることで、欠陥の有無を判断することができ、シート状成形体Kのばたつき等に起因して、欠陥の有無について誤った判断が生じるのを防ぐことができる。 Such is performed by the defect inspection apparatus 100, according to the defect inspection method comprising the steps S1 ~ S5, when the defective K 1 dent formed sheet K is occurring in FIG. 4 (b) as shown, the sheet-like shaped body K are conveyed stably, and, when a defect indentation near boundary portion is positioned by the concave viewed defective K 1, as shown in FIG. 6 (b) , the apparent border becomes a distorted curve j 2. Thus, the pixels in the two-dimensional image constituting a straight line j 4 to the boundary line j 2 was smoothed, as shown in FIG. 6 (c), will include a dark portion. Further, when the defective K 1 dent formed sheet K is generated, as shown in FIG. 4 (c), the sheet-like shaped body K are flapping during transport, and, near the boundary portion when the not recessed defect K 1 is located, the rattling of the sheet-like shaped body K, as shown in FIG. 7 (b), the boundary line j 3 apparent becomes gentle curve. Accordingly, the smoothing and curve the boundary line j 3, or nearly the same curve as the boundary line j 3, or, the same curve as the boundary line j 3, the pixels in the two-dimensional image corresponding to the curve , Which is not greatly separated from the boundary line part which is a part of the bright part, is the same as that shown in FIG. Therefore, each one-dimensional image data shown in FIG. 6D and FIG. 7C is generated from each of these portions, and a plurality of one-dimensional image data is synthesized to obtain inspection image data. By this, it is possible to generate inspection image data indicating the position of the defect. As a result, the presence or absence of defects can be determined by looking at the inspection image shown in FIG. 8 displayed based on this inspection image data. It is possible to prevent an erroneous determination as to whether or not there is a defect.
 欠陥検査装置100について、以下に、より詳細に説明する。図1および図2に示す搬送部11は、一定幅でY方向に連続するシート状成形体KをY方向に搬送する装置である。搬送部11は、たとえば、シート状成形体KをY方向に搬送する送出ローラと受取ローラとを備え、ロータリーエンコーダなどにより搬送距離が計測可能となっている。搬送部11がシート状成形体KをY方向に搬送する搬送速度は、たとえば、2m/分~30m/分に設定される。 The defect inspection apparatus 100 will be described in more detail below. 1 and 2 is a device that conveys a sheet-like molded body K continuous in the Y direction with a constant width in the Y direction. The transport unit 11 includes, for example, a sending roller and a receiving roller that transport the sheet-shaped molded body K in the Y direction, and the transport distance can be measured by a rotary encoder or the like. The conveyance speed at which the conveyance unit 11 conveys the sheet-like molded body K in the Y direction is set to, for example, 2 m / min to 30 m / min.
 光照射部12は、Y方向に直交する方向であるX方向に延びる直線状の光源と、該光源の位置が搬送部11の送出ローラおよび受取ローラに対する固定位置となるように固定する図示しない固定部材とを備える。光源は、シート状成形体Kを基準として、撮像部13と同じ側、または撮像部13と反対側において、該シート状成形体Kの表面に光を照射できるよう配置される。光源は、シート状成形体Kの表面における明部までの距離が、たとえば200mmとなるように配置されている。光源としては、メタルハライドランプ、ハロゲン伝送ライト、蛍光灯など、シート状成形体Kの組成および性質に影響を与えない光を発光するものであれば、特に限定されない。 The light irradiation unit 12 is fixed to a linear light source extending in the X direction, which is a direction orthogonal to the Y direction, and a fixing (not shown) that fixes the position of the light source to a fixing position with respect to the sending roller and the receiving roller of the transport unit 11. A member. The light source is arranged on the same side as the imaging unit 13 or on the side opposite to the imaging unit 13 so that the surface of the sheet-like molded body K can be irradiated with light on the basis of the sheet-like molded body K. The light source is arranged so that the distance to the bright part on the surface of the sheet-like molded body K is, for example, 200 mm. The light source is not particularly limited as long as it emits light that does not affect the composition and properties of the sheet-like molded body K, such as a metal halide lamp, a halogen transmission light, and a fluorescent lamp.
 光照射部12は、光源とシート状成形体Kとの間に配置されるスリット部材を備えていてもよい。スリット部材は、たとえば、樹脂からなる透光性を有する板状の基材に、遮光性を有し、X方向に延びる帯状の遮光領域部が、Y方向に所定の間隔をあけて形成された部材である。光照射部12がこのようなスリット部材を備える場合、シート状成形体Kの表面に、X方向に延びる明部と暗部とが交互に繰返される明暗パターンを形成することができ、この明暗パターンを利用して検査用画像データを生成することが可能になる。 The light irradiation unit 12 may include a slit member disposed between the light source and the sheet-like molded body K. The slit member is, for example, a light-transmitting plate-like base material made of resin, and has a light-shielding property, and strip-shaped light-shielding region portions extending in the X direction are formed at predetermined intervals in the Y direction. It is a member. When the light irradiation part 12 is provided with such a slit member, a bright / dark pattern in which bright parts and dark parts extending in the X direction are alternately repeated can be formed on the surface of the sheet-like molded body K. This makes it possible to generate inspection image data.
 撮像部13は、CCD(Charge Coupled Device)またはCMOS(Complementary Metal−Oxide Semiconductor)のエリアセンサからなる。撮像部13は、シート状成形体Kを基準として、光源と同じ側、または光源と反対側において、該シート状成形体Kの表面を撮像できるよう配置され、該シート状成形体Kからの透過光または反射光を受光して2次元画像データを生成する。撮像部13は、1つのエリアセンサによって2次元画像データを生成してもよいし、X方向に配列された複数のエリアセンサによって取得されるデータから2次元画像データを生成してもよい。撮像部13は、撮像範囲がシート状成形体KのX方向の全領域となるように配置される。 The imaging unit 13 includes a CCD (Charge Coupled Device) or CMOS (Complementary Metal-Oxide Semiconductor) area sensor. The imaging unit 13 is arranged so that the surface of the sheet-shaped molded body K can be imaged on the same side as the light source or on the side opposite to the light source with the sheet-shaped molded body K as a reference, and transmission from the sheet-shaped molded body K is performed. Two-dimensional image data is generated by receiving light or reflected light. The imaging unit 13 may generate two-dimensional image data by one area sensor, or may generate two-dimensional image data from data acquired by a plurality of area sensors arranged in the X direction. The imaging unit 13 is arranged so that the imaging range is the entire region in the X direction of the sheet-like molded body K.
 図1に示す撮像範囲のY方向における長さWは、撮像部13のシャッタ時間に搬送されるシート状成形体Kの搬送距離の少なくとも2倍以上であることが好ましい。換言すれば、撮像範囲のY方向における長さWは、シート状成形体Kの同一部分に対して、2回以上撮像動作が行われるように設定されることが好ましい。たとえば、撮像部13のシャッタ時間が1/30秒~1秒であるとき、撮像範囲のY方向における長さWは、5mm~50mm程度に設定される。このように、シート状成形体Kの同一部分の撮像数を増加させることにより、高精度に欠陥を検査することができる。 The length W in the Y direction of the imaging range shown in FIG. 1 is preferably at least twice as long as the conveyance distance of the sheet-like molded body K conveyed during the shutter time of the imaging unit 13. In other words, the length W in the Y direction of the imaging range is preferably set so that the imaging operation is performed twice or more for the same portion of the sheet-like molded body K. For example, when the shutter time of the imaging unit 13 is 1/30 seconds to 1 second, the length W in the Y direction of the imaging range is set to about 5 mm to 50 mm. In this way, by increasing the number of images of the same portion of the sheet-like molded body K, it is possible to inspect defects with high accuracy.
 表示部21は、たとえば、液晶ディスプレイ、EL(Electroluminescence)ディスプレイ、プラズマディスプレイなどである。表示部21は、表示画面に、検査用画像データによって表される検査用画像を表示する。 The display unit 21 is, for example, a liquid crystal display, an EL (Electroluminescence) display, a plasma display, or the like. The display unit 21 displays the inspection image represented by the inspection image data on the display screen.
 検査用画像データ生成部141は、CPU(Central Processing Unit)などの制御演算回路、DDR SDRAM(Double Data Rate Synchronous Dynamic Random Access Memory)などの揮発性メモリ、および、フラッシュROM(Read Only Memory)、EEPROM(登録商標)、HDD(Hard Disk Drive)などの不揮発性メモリから構成される。検査用画像データ生成部141の不揮発性メモリには、境界抽出部1411、再抽出部1412、および合成部1413として機能するためのプログラムデータが記憶されており、該プログラムデータに従って、検査用画像データ生成部141は、境界抽出部1411、再抽出部1412、および合成部1413の機能を発揮する。なお、検査用画像データ生成部141は、FPGAやGPGPUなど、画像処理ボードや撮像部13の内部のハードウェアによって実現することもできる。 The inspection image data generation unit 141 includes a control arithmetic circuit such as a CPU (Central Processing Unit), a volatile memory such as a DDR SDRAM (Double Data Rate Synchronous Random Access Memory), and a flash ROM (Mold Ready), an EPROM. (Registered trademark), and a non-volatile memory such as an HDD (Hard Disk Drive). Program data for functioning as a boundary extraction unit 1411, a re-extraction unit 1412, and a synthesis unit 1413 is stored in the non-volatile memory of the inspection image data generation unit 141, and inspection image data is stored in accordance with the program data. The generation unit 141 exhibits the functions of the boundary extraction unit 1411, the re-extraction unit 1412, and the synthesis unit 1413. The inspection image data generation unit 141 can also be realized by hardware inside the image processing board or the imaging unit 13 such as FPGA or GPGPU.
 境界抽出部1411は、従来公知のエッジ抽出方法によって、撮像部13により生成された2次元画像データが示す2次元画像内から境界線部を抽出する。再抽出部1412は、境界線部を繋いで見かけ上の境界線となし、該見かけ上の境界線に現れた鋭いピークがなくなるよう、該見かけ上の境界線を平滑化し、平滑化して得られた本来の境界線を構成する画素を2次元画像データから再抽出する。合成部1413は、再抽出された画素からなる1次元画像データを生成し、同様にして複数の2次元画像データから得られた複数の1次元画像データを合成して、検査用画像データを生成する。 The boundary extraction unit 1411 extracts a boundary line part from the two-dimensional image indicated by the two-dimensional image data generated by the imaging unit 13 by a conventionally known edge extraction method. The re-extraction unit 1412 is obtained by connecting the boundary line portion to form an apparent boundary line, and smoothing and smoothing the apparent boundary line so that the sharp peak appearing in the apparent boundary line disappears. The pixels constituting the original boundary line are re-extracted from the two-dimensional image data. The synthesizing unit 1413 generates one-dimensional image data including the re-extracted pixels, and similarly generates a plurality of one-dimensional image data obtained from the plurality of two-dimensional image data, thereby generating inspection image data. To do.
 再抽出部1412による再抽出について、以下に詳細に説明する。再抽出部1412は、以下の(1)~(8)の処理によって、2次元画像内からの画素の再抽出を行う。 The re-extraction by the re-extraction unit 1412 will be described in detail below. The re-extraction unit 1412 re-extracts pixels from the two-dimensional image by the following processes (1) to (8).
 (1)境界抽出部1411によって抽出された抽出画素のうち、X座標値が最も小さい画素を、最初の注目画素とする。(1)の処理の後は、(2)の処理へ進む。 (1) Among the extracted pixels extracted by the boundary extraction unit 1411, the pixel having the smallest X coordinate value is set as the first pixel of interest. After the process (1), the process proceeds to the process (2).
 (2)境界線部を構成する抽出画素であって、注目画素から+X方向に所定数(たとえば、抽出対象となる2次元画像のX方向における全画素数の1/40~1/20の数)までの範囲内の抽出画素および−X方向に該所定数までの範囲内の抽出画素を想定して、<1>これらの範囲内の全ての抽出画素のY座標値が、該注目画素のY座標値以上であり、かつ、<2>+X方向の該範囲内の抽出画素のうちの少なくとも1つおよび−X方向の該範囲内の抽出画素のうちの少なくとも1つが、いずれも、該注目画素のY座標値よりも大きいY座標値を有するという条件
を満たすか否かを判定する。
 これら<1>および<2>の両方の条件を満たす場合、現注目画素をピーク頂点画素に設定し、(3)の処理へ進む。
 これら<1>および<2>の両方またはいずれかの条件を満たさない場合において、現注目画素よりもX座標値が1つ大きい抽出画素があるときには、現注目画素よりもX座標値が1つ大きい抽出画素を次の注目画素に変更して、(2)の処理を再度行う。
 これら<1>および<2>の両方またはいずれかの条件を満たさない場合において、現注目画素よりもX座標値が1つ大きい抽出画素がないときには、(5)の処理へ進む。
(2) Extraction pixels constituting the boundary line portion, and a predetermined number in the + X direction from the target pixel (for example, a number of 1/40 to 1/20 of the total number of pixels in the X direction of the two-dimensional image to be extracted) ) And extraction pixels within the range up to the predetermined number in the −X direction, <1> the Y coordinate values of all the extraction pixels within these ranges are At least one of the extracted pixels in the range in the <2> + X direction and at least one of the extracted pixels in the range in the −X direction that are greater than or equal to the Y coordinate value and the attention pixel It is determined whether or not the condition of having a Y coordinate value larger than the Y coordinate value of the pixel is satisfied.
If both the conditions <1> and <2> are satisfied, the current target pixel is set as the peak vertex pixel, and the process proceeds to (3).
When neither or both of these <1> and <2> conditions are satisfied, if there is an extracted pixel whose X coordinate value is one larger than the current pixel of interest, one X coordinate value is present than the current pixel of interest. The large extracted pixel is changed to the next pixel of interest, and the process (2) is performed again.
When neither or both of these <1> and <2> conditions are satisfied, if there is no extracted pixel whose X coordinate value is one greater than the current pixel of interest, the process proceeds to (5).
 図9を用いて、再抽出部1412による処理の具体例を説明する。図9(a)は、2次元画像の一部を示し、図9(b)は、境界抽出部1411によって該2次元画像から抽出された抽出画素の一部を示している。上記所定数を3と設定し、図9(b)の画素Pを注目画素とするときの、該注目画素を含む上記範囲内の抽出画素を、図9(c)に示す。また、上記所定数を3と設定し、図9(b)の画素Pを注目画素とするときの、該注目画素を含む上記範囲内の抽出画素を、図9(d)に示す。図9(c)に示す抽出画素には、そのY座標値が、注目画素である画素PのY座標値よりも小さい抽出画素が含まれている。したがって、画素Pはピーク頂点画素に設定されず、画素PよりもX座標値が1つ大きい抽出画素が次の注目画素に変更される。図9(d)に示す各抽出画素すべてのY座標値は、注目画素である画素PのY座標値よりも大きい。したがって、画素Pはピーク頂点画素に設定され、(3)の処理へ進む。 A specific example of processing by the re-extraction unit 1412 will be described with reference to FIG. FIG. 9A shows a part of a two-dimensional image, and FIG. 9B shows a part of extracted pixels extracted from the two-dimensional image by the boundary extraction unit 1411. Set to 3 to the predetermined number, when the pixel of interest pixel P 1 in FIG. 9 (b), the extraction pixel within the range including the target pixel, shown in FIG. 9 (c). Further, it sets 3 to the predetermined number, when the pixel of interest pixel P 2 in FIG. 9 (b), the extraction pixel within the range including the target pixel, shown in FIG. 9 (d). The extraction pixel shown in FIG. 9 (c), the Y-coordinate value is included is smaller extracted pixels than Y coordinate value of the pixel P 1 is the pixel of interest. Thus, the pixel P 1 is not set to the peak apex pixels, X coordinate value is greater extracted pixels one is changed to the next target pixel than the pixel P 1. Each extract pixels all Y coordinates shown in FIG. 9 (d) is greater than the Y-coordinate value of the pixel P 2 is the pixel of interest. Thus, the pixel P 2 is set to the peak apex pixels, the processing proceeds to (3).
 (3)ピーク頂点画素よりもX座標値が小さな抽出画素のうち、Y座標値がピーク頂点画素よりも大きく、かつ、X座標値が最も大きな抽出画素を、ピーク左端候補画素とする。また、ピーク頂点画素よりもX座標値が大きな抽出画素のうち、Y座標値がピーク頂点画素よりも大きく、かつ、X座標値が最も小さな抽出画素を、ピーク右端候補画素とする。図9(b)に示す画素Pがピーク頂点画素に設定されたときには、画素Pがピーク左端候補画素となり、画素Pがピーク右端候補画素となる。(3)の処理の後は、(4)の処理へ進む。 (3) Among extracted pixels having an X coordinate value smaller than the peak vertex pixel, an extracted pixel having a Y coordinate value larger than the peak vertex pixel and the largest X coordinate value is set as a peak left end candidate pixel. Of the extracted pixels having an X coordinate value larger than that of the peak vertex pixel, an extracted pixel having a Y coordinate value larger than the peak vertex pixel and the smallest X coordinate value is set as a peak right end candidate pixel. When the pixel P 2 is set to the peak apex pixels shown in FIG. 9 (b), the pixel P 3 is the peak left candidate pixel, the pixel P 4 reaches a peak right edge candidate pixel. After the process (3), the process proceeds to the process (4).
 (4)以下の(4−1)の処理と、(4−2)の処理とを、順次、または、並列して行う。
 (4−1)現ピーク左端候補画素よりもX座標値が1つ小さい抽出画素のY座標値が、現ピーク左端候補画素のY座標値よりも大きいという条件を満たすか否かを判定する。
この条件を満たす場合、現ピーク左端候補画素よりもX座標値が1つ小さい抽出画素を次のピーク左端候補画素に変更して、(4−1)の処理を再度行う。この条件を満たさない場合、現ピーク左端候補画素を、現ピーク頂点画素(直近で設定されたピーク頂点画素)に対応するピーク左端画素に設定する。
 (4−2)現ピーク右端候補画素よりもX座標値が1つ大きい抽出画素のY座標値が、現ピーク右端候補画素のY座標値よりも大きいという条件を満たすか否かを判定する。
この条件を満たす場合、現ピーク右端候補画素よりもX座標値が1つ大きい抽出画素を次のピーク右端候補画素に変更して、(4−2)の処理を再度行う。この条件を満たさない場合、現ピーク右端候補画素を、現ピーク頂点画素(直近で設定されたピーク頂点画素)に対応するピーク右端画素に設定する。
(4) The following processing (4-1) and processing (4-2) are performed sequentially or in parallel.
(4-1) It is determined whether or not the condition that the Y coordinate value of the extracted pixel whose X coordinate value is one smaller than the current peak left end candidate pixel is larger than the Y coordinate value of the current peak left end candidate pixel is satisfied.
When this condition is satisfied, the extracted pixel whose X coordinate value is one smaller than the current peak left end candidate pixel is changed to the next peak left end candidate pixel, and the process of (4-1) is performed again. If this condition is not satisfied, the current peak left edge candidate pixel is set to the peak left edge pixel corresponding to the current peak vertex pixel (the peak vertex pixel set most recently).
(4-2) It is determined whether or not the condition that the Y coordinate value of the extracted pixel whose X coordinate value is one larger than the current peak right end candidate pixel is larger than the Y coordinate value of the current peak right end candidate pixel is satisfied.
When this condition is satisfied, the extracted pixel having an X coordinate value one larger than the current peak right end candidate pixel is changed to the next peak right end candidate pixel, and the process of (4-2) is performed again. If this condition is not satisfied, the current peak right edge candidate pixel is set to the peak right edge pixel corresponding to the current peak vertex pixel (the peak vertex pixel set most recently).
 (4−1)の処理および(4−2)の処理によって、現ピーク頂点画素に対応するピーク左端画素およびピーク右端画素が設定された後、現ピーク左端画素または現ピーク右端画素が、既に他のピーク頂点画素に対応するピーク左端画素またはピーク右端画素として設定されているか否か
を判定する。
 現ピーク左端画素または現ピーク右端画素が既に他のピーク頂点画素に対応するピーク左端画素またはピーク右端画素に設定されているときには、現ピーク頂点画素ならびにそれに対応する現ピーク左端画素および現ピーク右端画素の設定を解除する。現ピーク左端画素または現ピーク右端画素が他のピーク頂点画素に対応するピーク左端画素またはピーク右端画素に設定されていないときには、現ピーク頂点画素ならびにそれに対応する現ピーク左端画素および現ピーク右端画素の設定は、解除せずにそのままとする。
 現ピーク頂点画素、現ピーク左端画素、および現ピーク右端画素の設定を解除、または、そのままとした後は、現注目画素よりもX座標値が1つ大きい抽出画素があれば、現注目画素よりもX座標値が1つ大きい抽出画素を次の注目画素に変更して、(2)の処理を再度行い、現注目画素よりもX座標値が1つ大きい抽出画素がなければ、(5)の処理へ進む。
After the peak left end pixel and the peak right end pixel corresponding to the current peak vertex pixel are set by the processing of (4-1) and the processing of (4-2), the current peak left end pixel or the current peak right end pixel has already been changed. It is determined whether or not the pixel is set as a peak left end pixel or peak right end pixel corresponding to the peak apex pixel.
When the current peak leftmost pixel or current peak rightmost pixel is already set to the peak leftmost pixel or peak rightmost pixel corresponding to another peak vertex pixel, the current peak vertex pixel and the corresponding current peak leftmost pixel and current peak rightmost pixel Cancel the setting. When the current peak left edge pixel or the current peak right edge pixel is not set to the peak left edge pixel or peak right edge pixel corresponding to another peak vertex pixel, the current peak vertex pixel and the corresponding current peak left edge pixel and current peak right edge pixel The setting is left as it is without cancellation.
After canceling the setting of the current peak vertex pixel, the current peak left end pixel, and the current peak right end pixel or leaving them as they are, if there is an extracted pixel whose X coordinate value is one larger than the current target pixel, the current peak pixel If the extracted pixel whose X coordinate value is one larger than the current target pixel is changed by changing the extracted pixel whose X coordinate value is one larger to the next target pixel and the process of (2) is performed again, (5) Proceed to the process.
 図9(b)に示す例の場合、上記(1)~(4)の処理によって、画素Pがピーク頂点画素に設定され、それに対応するピーク左端画素およびピーク右端画素として画素Pおよび画素Pがそれぞれ設定される。また、画素Pがもう1つのピーク頂点画素に設定され、それに対応するピーク左端画素およびピーク右端画素として画素Pおよび画素Pがそれぞれ設定される。 In the example shown in FIG. 9 (b), by treatment of (1) to (4), the pixel P 2 is set to the peak apex pixels, pixel P 5 and pixel as a peak leftmost pixel and peak rightmost pixel corresponding P 6 are respectively set. Further, the pixel P 7 is set to another peak apex pixels, pixel P 8 and the pixel P 9 are respectively set as a peak leftmost pixel and peak rightmost pixel corresponding thereto.
 (5)ピーク頂点画素のうち、X座標値が最も小さい画素を、最初の注目画素とする。
(5)の処理の後は、(6)の処理へ進む。
(5) Among the peak vertex pixels, the pixel with the smallest X coordinate value is set as the first pixel of interest.
After the process (5), the process proceeds to the process (6).
 (6)注目画素に対応するピーク左端画素とピーク右端画素とのX方向における距離(ピーク右端画素のX座標値−ピーク左端画素のX座標値)が、所定画素数(たとえば、抽出対象となる2次元画像のX方向における全画素数の(1/20~1/5)の数)以下であるという条件
を満たすか否かを判定する。
 この条件を満たす場合、(7)の処理へ進む。
 この条件を満たさない場合において、現注目画素よりもX座標値が大きいピーク頂点画素があるときには、現注目画素よりもX座標値が大きく、X座標値が最も近いピーク頂点画素を次の注目画素に変更して、(6)の処理を再度行う。
 この条件を満たさない場合において、現注目画素よりもX座標値が大きいピーク頂点画素がないときには、一連の処理を終了する。
(6) The distance in the X direction between the peak left end pixel and the peak right end pixel corresponding to the target pixel (the X coordinate value of the peak right end pixel−the X coordinate value of the peak left end pixel) is a predetermined number of pixels (for example, an extraction target) It is determined whether or not the condition that the total number of pixels in the X direction of the two-dimensional image is (the number of 1/20 to 1/5) or less is satisfied.
When this condition is satisfied, the process proceeds to (7).
If this condition is not satisfied and there is a peak vertex pixel having an X coordinate value larger than that of the current pixel of interest, the peak vertex pixel having an X coordinate value larger than that of the current pixel of interest and the closest X coordinate value is determined as the next pixel of interest. The process (6) is performed again.
When this condition is not satisfied, if there is no peak vertex pixel having an X coordinate value larger than that of the current pixel of interest, a series of processing ends.
 (7)現注目画素と現注目画素に対応するピーク左端画素とのY方向における距離(ピーク左端画素のY座標値−ピーク頂点画素のY座標値)、または、現注目画素と現注目画素に対応するピーク右端画素とのY方向における距離(ピーク右端画素のY座標値−ピーク頂点画素のY座標値)のうち、短い方の距離が、ピーク左端画素とピーク右端画素とのX方向における距離(ピーク右端画素のX座標値−ピーク左端画素のX座標値)の所定倍(たとえば、1/2倍~2倍)以上であるという条件
を満たすか否かを判定する。
 この条件を満たす場合、(8)の処理へ進む。
 この条件を満たさない場合において、現注目画素よりもX座標値が大きいピーク頂点画素があるときには、現注目画素よりもX座標値が大きく、X座標値が最も近いピーク頂点画素を次の注目画素に変更して、(6)の処理を再度行う。
 この条件を満たさない場合において、現注目画素よりもX座標値が大きいピーク頂点画素がないときには、一連の処理を終了する。
(7) The distance in the Y direction between the current target pixel and the peak left end pixel corresponding to the current target pixel (Y coordinate value of the peak left end pixel−Y coordinate value of the peak vertex pixel), or the current target pixel and the current target pixel Of the distances in the Y direction with the corresponding peak right end pixel (Y coordinate value of the peak right end pixel−Y coordinate value of the peak apex pixel), the shorter distance is the distance in the X direction between the peak left end pixel and the peak right end pixel. It is determined whether or not a condition that a predetermined multiple (for example, ½ to 2 times) or more of (X coordinate value of peak right end pixel−X coordinate value of peak left end pixel) is satisfied is satisfied.
When this condition is satisfied, the process proceeds to (8).
If this condition is not satisfied and there is a peak vertex pixel having an X coordinate value larger than that of the current pixel of interest, the peak vertex pixel having an X coordinate value larger than that of the current pixel of interest and the closest X coordinate value is determined as the next pixel of interest. The process (6) is performed again.
When this condition is not satisfied, if there is no peak vertex pixel having an X coordinate value larger than that of the current pixel of interest, a series of processing ends.
 図9(b)に示す例の場合、ピーク頂点画素P、ならびに、それに対応するピーク左端画素Pおよびピーク右端画素Pは、(6)の条件および(7)の条件を満たす。ピーク頂点画素P、ならびに、それに対応するピーク左端画素Pおよびピーク右端画素Pは、ピーク頂点画素Pとピーク左端画素PとのY方向における距離、および、ピーク頂点画素Pとピーク右端画素PとのY方向における距離が、ピーク左端画素Pとピーク右端画素PとのX方向における距離の1/5であり、所定値(たとえば、1/2~2)倍以上ではないので、(7)の条件を満たさない。
 このように、(6)の条件および(7)の条件によって、欠陥に起因すると考えられる鋭いピークのみが選択され、欠陥に起因しないと考えられる緩いピークは選択されないことになる。
In the case of the example shown in FIG. 9B, the peak vertex pixel P 2 and the corresponding peak left end pixel P 5 and peak right end pixel P 6 satisfy the conditions of (6) and (7). The peak vertex pixel P 7 , and the corresponding peak left end pixel P 8 and peak right end pixel P 9 correspond to the distance between the peak vertex pixel P 7 and the peak left end pixel P 8 in the Y direction, and the peak vertex pixel P 7 . distance in the Y direction between the peak rightmost pixel P 9 is the 1/5 distance in the X direction between the peak leftmost pixel P 8 and peak rightmost pixel P 9, a predetermined value (e.g., 1/2 to 2) times Therefore, the condition (7) is not satisfied.
Thus, only the sharp peak considered to be caused by the defect is selected according to the conditions (6) and (7), and the loose peak considered not to be caused by the defect is not selected.
 (8)現注目画素に対応するピーク左端画素とピーク右端画素とを結ぶ線分を表す式を算出し、該線分上の画素を抽出して、再抽出画素とする。ただし、X方向においてピーク左端画素とピーク右端画素との間に位置し、Y方向において隣接する2つの画素M(x,y)、N(x,y+1)の間を該線分が通るときは、画素N(x,y+1)を再抽出画素とする。境界抽出部1411によって抽出された抽出画素のうち、再抽出画素と同じX座標値を持ち、かつ再抽出画素と異なるY座標値を持つ抽出画素については、境界線部を構成する画素として、抽出画素を再抽出画素で置き換える。このようにして、抽出画素の一部を再抽出画素に置き換えて得られた境界線部は、欠陥による影響を除外した本来の境界線をなす。図9(e)に示すように、置換え後の抽出画素は、元の2次元画像データに含まれる凹み欠陥によって歪んだ境界線部に対応して暗部を含むものとなっており、該暗部によって凹み欠陥の位置を示すことが可能になる。 (8) An expression representing a line segment connecting the peak left end pixel and the peak right end pixel corresponding to the current pixel of interest is calculated, and the pixels on the line segment are extracted to be re-extracted pixels. However, the line between two pixels M (x p , y q ) and N (x p , y q +1) located between the peak left end pixel and the peak right end pixel in the X direction and adjacent in the Y direction When the minute passes, the pixel N (x p , y q +1) is set as the re-extracted pixel. Among the extracted pixels extracted by the boundary extraction unit 1411, an extracted pixel having the same X coordinate value as that of the re-extracted pixel and having a Y coordinate value different from that of the re-extracted pixel is extracted as a pixel constituting the boundary line portion. Replace pixel with re-extracted pixel. In this way, the boundary portion obtained by replacing a part of the extracted pixels with the re-extracted pixels forms an original boundary line excluding the influence of the defect. As shown in FIG. 9 (e), the extracted pixel after replacement includes a dark portion corresponding to the boundary line portion distorted by the dent defect included in the original two-dimensional image data. It becomes possible to indicate the position of the dent defect.
 再抽出部1412は、以上の(1)~(8)の処理によって、再抽出を行っているけれども、再抽出の方法はこれに限られない。たとえば、他の再抽出の方法として、境界抽出部1411によって抽出された境界線部に、関数で表現される曲線をフィッティングさせて、フィッティングカーブ(関数曲線)を求め、次に、該フィッティングカーブを平滑化した平滑化曲線を求め、最後に、該平滑化曲線にフィッティングする2次元画像内の画素を、抽出画素としてもよい。フィッティングに用いる関数としては、n次関数、ガウス関数、ローレンツ関数、フォークト関数、これらの関数の組み合わせなどが挙げられる。フィッティングを行う際に用いるフィッティングの評価方法としては、たとえば最小二乗法を用いることができる。 Although the re-extraction unit 1412 performs re-extraction by the processes (1) to (8) above, the re-extraction method is not limited to this. For example, as another re-extraction method, a curve expressed by a function is fitted to the boundary line portion extracted by the boundary extraction unit 1411 to obtain a fitting curve (function curve), and then the fitting curve is calculated. A smoothed smoothing curve is obtained, and finally, a pixel in the two-dimensional image fitted to the smoothing curve may be used as an extraction pixel. Examples of functions used for fitting include n-order functions, Gaussian functions, Lorentz functions, Forked functions, and combinations of these functions. As a fitting evaluation method used for fitting, for example, the least square method can be used.
 1 画像生成装置
 11 搬送部
 12 光照射部
 13 撮像部
 14 情報処理装置
 21 表示部
 100 欠陥検査装置
 141 検査用画像データ生成部
 1411 境界抽出部
 1412 再抽出部
 1413 合成部
DESCRIPTION OF SYMBOLS 1 Image generation apparatus 11 Conveyance part 12 Light irradiation part 13 Imaging part 14 Information processing apparatus 21 Display part 100 Defect inspection apparatus 141 Inspection image data generation part 1411 Boundary extraction part 1412 Re-extraction part 1413 Synthesis | combination part

Claims (3)

  1.  シート状成形体の欠陥を検査するための画像データを生成する画像生成装置であって、 シート状成形体を該シート状成形体の長手方向に搬送する搬送部と、
     シート状成形体の幅方向に直線状に延びる光源を備え、該光源によってシート状成形体に光を照射する光照射部と、
     搬送中の前記シート状成形体に対して撮像動作を行って2次元画像を表す2次元画像データを生成する撮像部であって、該2次元画像内に前記光源に対応する明部と該明部よりも輝度が低い暗部とが含まれる位置でシート状成形体に対して複数回の撮像動作を行う撮像部と、
     前記撮像部によって生成された複数の2次元画像データから検査用画像データを生成する検査用画像データ生成部であって、
     各2次元画像データによって表される各2次元画像内の前記明部と前記暗部との境界線部を抽出する境界抽出部と、
     前記境界線部を繋いで見かけ上の境界線となし、該見かけ上の境界線に現れた鋭いピークがなくなるよう、該見かけ上の境界線を平滑化し、平滑化して得られた本来の境界線を構成する画素を2次元画像データから抽出する再抽出部と、
     前記再抽出部によって抽出された画素からなる1次元画像データを生成し、同様にして複数の2次元画像データから得られた複数の1次元画像データを合成して検査用画像データを生成する合成部と、
    を含む検査用画像データ生成部と、
     を備える画像生成装置。
    An image generation device that generates image data for inspecting a defect of a sheet-shaped molded body, the transport unit configured to transport the sheet-shaped molded body in the longitudinal direction of the sheet-shaped molded body,
    A light source that includes a light source that extends linearly in the width direction of the sheet-like molded body, and that irradiates the sheet-like molded body with light by the light source;
    An imaging unit that performs an imaging operation on the sheet-like molded body being conveyed to generate two-dimensional image data representing a two-dimensional image, and includes a bright part corresponding to the light source and the bright part in the two-dimensional image An imaging unit that performs multiple imaging operations on the sheet-like molded body at a position including a dark part having a lower brightness than the part;
    An inspection image data generation unit that generates inspection image data from a plurality of two-dimensional image data generated by the imaging unit,
    A boundary extraction unit that extracts a boundary part between the bright part and the dark part in each two-dimensional image represented by each two-dimensional image data;
    The boundary line is connected to form an apparent boundary line, and the apparent boundary line is smoothed so that there are no sharp peaks appearing on the apparent boundary line. A re-extraction unit that extracts the pixels constituting the two-dimensional image data;
    Synthesis that generates one-dimensional image data composed of pixels extracted by the re-extracting unit, and similarly generates a plurality of one-dimensional image data obtained from a plurality of two-dimensional image data to generate inspection image data. And
    An inspection image data generation unit including:
    An image generation apparatus comprising:
  2.  請求項1に記載の画像生成装置と、
     前記画像生成装置の検査用画像データ生成部によって生成された検査用画像データによって表される画像を表示する表示部と、
     を備える欠陥検査装置。
    An image generation apparatus according to claim 1;
    A display unit for displaying an image represented by the inspection image data generated by the inspection image data generation unit of the image generation device;
    A defect inspection apparatus comprising:
  3.  シート状成形体の欠陥を検査するための欠陥検査方法であって、
     シート状成形体の幅方向に直線状に延びる光源によって該シート状成形体に光を照射しながら該シート状成形体を該シート状成形体の長手方向に搬送している状態で、該シート状成形体に対して撮像動作を行って2次元画像を表す2次元画像データを生成する撮像工程であって、該2次元画像内に前記光源に対応する明部と該明部よりも輝度が低い暗部とが含まれるようにシート状成形体に対して複数回の撮像動作を行う撮像工程と、
     前記撮像工程において生成された各2次元画像データによって表される各2次元画像内の前記明部と前記暗部との境界線部を抽出する境界抽出工程と、
     前記境界線部を繋いで見かけ上の境界線となし、該見かけ上の境界線に現れた鋭いピークがなくなるよう、該見かけ上の境界線を平滑化し、平滑化して得られた本来の境界線を構成する画素を2次元画像データから抽出する再抽出工程と、
     前記再抽出工程において抽出された画素からなる1次元画像データを生成し、同様にして複数の2次元画像データから得られた複数の1次元画像データを合成して検査用画像データを生成する合成工程と、
     前記合成工程において生成された検査用画像データによって表される画像を表示する表示工程と、
     を含む欠陥検査方法。
    A defect inspection method for inspecting defects in a sheet-like molded body,
    In a state where the sheet-shaped molded body is conveyed in the longitudinal direction of the sheet-shaped molded body while irradiating the sheet-shaped molded body with light by a light source extending linearly in the width direction of the sheet-shaped molded body. An imaging step of performing an imaging operation on a molded body to generate two-dimensional image data representing a two-dimensional image, and the brightness of the bright part corresponding to the light source in the two-dimensional image is lower than that of the bright part An imaging step of performing an imaging operation a plurality of times on the sheet-like molded body so as to include a dark part; and
    A boundary extraction step of extracting a boundary portion between the bright portion and the dark portion in each two-dimensional image represented by each two-dimensional image data generated in the imaging step;
    The boundary line is connected to form an apparent boundary line, and the apparent boundary line is smoothed so that there are no sharp peaks appearing on the apparent boundary line. A re-extraction step of extracting pixels constituting the two-dimensional image data;
    1-dimensional image data composed of the pixels extracted in the re-extraction step is generated, and a plurality of 1-dimensional image data obtained from a plurality of 2-dimensional image data is similarly combined to generate inspection image data. Process,
    A display step of displaying an image represented by the inspection image data generated in the synthesis step;
    Including defect inspection method.
PCT/JP2014/051160 2013-01-16 2014-01-15 Image generation device, defect inspection device, and defect inspection method WO2014112653A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014557546A JP6191623B2 (en) 2013-01-16 2014-01-15 Image generating apparatus, defect inspection apparatus, and defect inspection method
CN201480004738.3A CN104919306B (en) 2013-01-16 2014-01-15 Video generation device, flaw detection apparatus and defect detecting method
KR1020157016272A KR102111823B1 (en) 2013-01-16 2014-01-15 Image generation device, defect inspection device, and defect inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-005685 2013-01-16
JP2013005685 2013-01-16

Publications (1)

Publication Number Publication Date
WO2014112653A1 true WO2014112653A1 (en) 2014-07-24

Family

ID=51209738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051160 WO2014112653A1 (en) 2013-01-16 2014-01-15 Image generation device, defect inspection device, and defect inspection method

Country Status (5)

Country Link
JP (1) JP6191623B2 (en)
KR (1) KR102111823B1 (en)
CN (1) CN104919306B (en)
TW (1) TWI607212B (en)
WO (1) WO2014112653A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020102130A (en) * 2018-12-25 2020-07-02 東芝三菱電機産業システム株式会社 Data collection and reproduction system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6144371B1 (en) 2016-01-14 2017-06-07 株式会社フジクラ Intermittently connected optical fiber tape inspection method, inspection apparatus, and manufacturing method
JP7007324B2 (en) * 2019-04-25 2022-01-24 ファナック株式会社 Image processing equipment, image processing methods, and robot systems
JP7324116B2 (en) 2019-10-15 2023-08-09 キヤノン株式会社 Foreign matter inspection device and foreign matter inspection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126744A (en) * 1995-11-06 1997-05-16 Nissan Motor Co Ltd Device for inspecting coated film smoothness
JPH10260027A (en) * 1997-03-17 1998-09-29 Sumitomo Electric Ind Ltd Foreign matter detecting/removing device for insulating tape
JP2004184397A (en) * 2002-10-08 2004-07-02 Nippon Steel Corp Method for inspecting defect in shape of band-like body and apparatus therefor
WO2010058557A1 (en) * 2008-11-21 2010-05-27 住友化学株式会社 Device for examining defect of molded sheet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3178644B2 (en) * 1995-02-10 2001-06-25 セントラル硝子株式会社 Defect detection method for transparent plate
WO2003005007A1 (en) * 2001-07-05 2003-01-16 Nippon Sheet Glass Co., Ltd. Method and device for inspecting defect of sheet-shaped transparent body
DE10316707B4 (en) * 2003-04-04 2006-04-27 Schott Ag Method and device for detecting defects in transparent material
JP2006038477A (en) * 2004-07-22 2006-02-09 Toray Ind Inc Flaw inspection device, flaw inspecting method and sheet manufacturing method
JP2007333563A (en) * 2006-06-15 2007-12-27 Toray Ind Inc Inspection device and inspection method for light transmitting sheet
JP5280782B2 (en) * 2008-06-19 2013-09-04 グンゼ株式会社 Film adhesion portion inspection method and film adhesion portion inspection apparatus
JP5498708B2 (en) * 2009-02-16 2014-05-21 日本写真印刷株式会社 Appearance inspection apparatus and resin molded product manufacturing method
KR101114362B1 (en) * 2009-03-09 2012-02-14 주식회사 쓰리비 시스템 optical apparatus for inspection
TWI536003B (en) * 2011-08-31 2016-06-01 富士軟片股份有限公司 Apparatus and method of detecting defect for patterned retardation film and method of manufacturing patterned retardation film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126744A (en) * 1995-11-06 1997-05-16 Nissan Motor Co Ltd Device for inspecting coated film smoothness
JPH10260027A (en) * 1997-03-17 1998-09-29 Sumitomo Electric Ind Ltd Foreign matter detecting/removing device for insulating tape
JP2004184397A (en) * 2002-10-08 2004-07-02 Nippon Steel Corp Method for inspecting defect in shape of band-like body and apparatus therefor
WO2010058557A1 (en) * 2008-11-21 2010-05-27 住友化学株式会社 Device for examining defect of molded sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020102130A (en) * 2018-12-25 2020-07-02 東芝三菱電機産業システム株式会社 Data collection and reproduction system
JP7020392B2 (en) 2018-12-25 2022-02-16 東芝三菱電機産業システム株式会社 Data collection and playback system

Also Published As

Publication number Publication date
JPWO2014112653A1 (en) 2017-01-19
TW201435333A (en) 2014-09-16
JP6191623B2 (en) 2017-09-06
CN104919306A (en) 2015-09-16
KR20150106878A (en) 2015-09-22
CN104919306B (en) 2017-11-21
TWI607212B (en) 2017-12-01
KR102111823B1 (en) 2020-05-15

Similar Documents

Publication Publication Date Title
KR102168143B1 (en) Image generating device, defect inspecting device, and defect inspecting method
WO2010058557A1 (en) Device for examining defect of molded sheet
JP4726983B2 (en) Defect inspection system, and defect inspection imaging apparatus, defect inspection image processing apparatus, defect inspection image processing program, recording medium, and defect inspection image processing method used therefor
KR102023231B1 (en) Defect inspection apparatus, and defect inspection method
JP6191623B2 (en) Image generating apparatus, defect inspection apparatus, and defect inspection method
JP6191622B2 (en) Image generating apparatus, defect inspection apparatus, and defect inspection method
JP2013140050A (en) Defect inspection device and defect inspection method
JP2007218629A (en) Flaw inspecting device and flaw inspection method
JP6642223B2 (en) Transparent plate surface inspection device, transparent plate surface inspection method, and glass plate manufacturing method
JP2018105706A (en) Image imaging system for defect inspection, defect inspection system, film manufacturing method, image imaging method for defect inspection, defect inspection method and film manufacturing method
JP2016004020A (en) Image processing apparatus, image acquisition apparatus, image processing method, and image acquisition method
JP2015075483A (en) Defect detection method of optically transparent film
JP2014206528A (en) Panel inspection method and apparatus for the same
JP2012237585A (en) Defect inspection method
JP6074284B2 (en) Method and apparatus for measuring shape of belt-like rubber member
JP2018009800A (en) Imaging device for defect inspection, defect inspecting system, film manufacturing device, imaging method for defect inspection, defect inspecting method, and film manufacturing method
JP5231779B2 (en) Appearance inspection device
JP2021004748A (en) Appearance inspection management system, appearance inspection management device, appearance inspection management method, and program
JP2015059854A (en) Defect inspection method and defect inspection device
JP2011145305A (en) Defect inspection system, and photographing device for defect inspection, image processing apparatus for defect inspection, image processing program for defect inspection, recording medium, and image processing method for defect inspection used for the same
JP5087165B1 (en) Adjustment device for outputting data for adjusting surface inspection device, adjustment data output method and program
JP2018146454A (en) Inspection device and inspection program
JP2012159399A (en) Method for inspecting defect of substrate separated into multiple panels
JP2010151484A (en) Device and method for inspecting substrate
JP2009162642A (en) Device and method for inspecting substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557546

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157016272

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740557

Country of ref document: EP

Kind code of ref document: A1