WO2014112512A1 - Alignment device and alignment method - Google Patents

Alignment device and alignment method Download PDF

Info

Publication number
WO2014112512A1
WO2014112512A1 PCT/JP2014/050545 JP2014050545W WO2014112512A1 WO 2014112512 A1 WO2014112512 A1 WO 2014112512A1 JP 2014050545 W JP2014050545 W JP 2014050545W WO 2014112512 A1 WO2014112512 A1 WO 2014112512A1
Authority
WO
WIPO (PCT)
Prior art keywords
error
processing
mask
speed
distance
Prior art date
Application number
PCT/JP2014/050545
Other languages
French (fr)
Japanese (ja)
Inventor
孔 木村
裕利 中尾
智志 柴
雄也 坂内
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013004357A external-priority patent/JP6076098B2/en
Priority claimed from JP2013030482A external-priority patent/JP6095405B2/en
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020157017132A priority Critical patent/KR101739672B1/en
Priority to CN201480004760.8A priority patent/CN104904002B/en
Publication of WO2014112512A1 publication Critical patent/WO2014112512A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment

Definitions

  • the present invention relates to an alignment technique, and more particularly to a technique for shortening the alignment time.
  • a thin film is once formed on an object to be processed, and the thin film is then formed into a resist and a photo.
  • a photolithographic process of performing patterning by etching using a mask is performed.
  • the chemical substance used for etching and the chemical substance for stripping the resist may damage the organic thin film when the organic thin film to be patterned or the thin film to be patterned is formed on the organic thin film. Therefore, the photolithographic process cannot be employed.
  • a processing mask having a patterned through hole is arranged on the film formation target, and the fine particles of the thin film material that has passed through the through hole reach the surface of the film formation target to form the film formation target.
  • a technique for forming a thin film according to a pattern of through holes on the surface of an object is used.
  • the process mask and the film formation target are aligned with respect to the process using the process mask having the through-hole, and the process mask is placed at a predetermined relative position.
  • the processing mask is separated from the film formation target.
  • the alignment mark and the alignment mark of the film formation target are imaged to detect a position error between the processing mask and the film formation target. The film object was moved relative to each other.
  • the present invention was created to solve the above-described problems of the prior art, and is to provide a technique capable of bringing a substrate and a processing mask close to each other with high accuracy in a short time.
  • An object of the present invention is to provide an alignment method and an alignment apparatus with high alignment accuracy even after a substrate and a processing mask are brought close to each other.
  • the present invention moves a mask holding device in which a processing mask is arranged, a substrate holder in which an object to be processed is arranged, and one or both of the mask holding device and the substrate holder.
  • a horizontal movement device that changes a relative position between the processing mask and the processing object, a proximity movement device that causes the mask holding device and the substrate holder to approach each other, and the mask
  • An imaging device that captures an image of a mask alignment mark of the processing mask arranged on a holding device and a substrate alignment mark of the workpiece to be processed arranged on the substrate holder together to obtain an imaging result, the horizontal movement device,
  • a control device that controls and operates the proximity movement device and the imaging device, and the control device is configured to process the processing obtained from the imaging result.
  • An error distance and an error direction between the relative position of the disk and the workpiece and the relative position in the aligned state are obtained, and the horizontal movement is performed to reduce the error distance.
  • An alignment device that operates a device, wherein the control device operates the imaging device to obtain the imaging result while performing the proximity movement by the proximity movement device, and the error distance from the imaging result. And an error detecting step for obtaining the error direction, and a moving step for starting relative movement between the processing mask and the processing object so as to reduce the error distance by the horizontal movement device. It is a set alignment device.
  • the present invention is an alignment apparatus, the imaging step, the error detection step, the movement step, while making the proximity movement in a state where the processing mask and the suspended portion of the processing object is in contact Is an alignment device set to be repeatedly performed.
  • the present invention is an alignment apparatus, wherein a speed setting step for setting a relative speed is provided after the error detection step is performed and before the moving step is performed.
  • a speed setting step for setting a relative speed is provided after the error detection step is performed and before the moving step is performed.
  • the relative speed is set to zero, and when the error distance is larger than the main allowable error amount, the relative speed is
  • the alignment device is set to a predetermined value, and the moving step is configured to set the relative movement to the relative speed.
  • the mask alignment mark of the processing mask and the substrate alignment mark of the processing object are imaged together with the same imaging device, and the relative position between the processing mask and the processing object when the imaging result is obtained, An error distance and an error direction between a processing mask and a relative position when the processing object is aligned are obtained, and either one or both of the processing mask and the processing object are determined by a horizontal movement device.
  • An error detecting step for obtaining the error distance and the error direction from the imaging result, and the horizontal movement device to calculate the error distance.
  • the present invention is an alignment method, wherein the processing mask and the processing object are in contact with each other while the processing mask and the processing object are separated from each other while the proximity movement is performed.
  • the imaging step, the error detection step, and the movement step are repeatedly performed.
  • the present invention is an alignment method, wherein a speed setting step for setting a relative speed is provided after the error detection step is performed and before the moving step is performed.
  • the relative speed is set to zero, and when the error distance is larger than the main allowable error amount, the relative speed is It is set to a predetermined value, and the moving step is an alignment method for starting the relative movement at the relative speed.
  • the present invention provides a moving device that changes a relative position between a processing mask and a processing object by moving either or both of the processing mask and the processing object, and a mask alignment mark of the processing mask. And a processing alignment mark of the object to be processed at the same time, and an imaging device that obtains an imaging result, and a control device that controls and operates the moving device and the imaging device.
  • An alignment device that changes the relative position so that an error distance included in the error and a relative speed that is a speed of relative movement between the processing mask and the processing object. Is set, an imaging step for obtaining the imaging result by the imaging device, and between the processing mask and the processing object from the imaging result obtained by the control device. The error distance of the relative position is obtained, and from the obtained error distance and the error speed relationship, a speed finding step for obtaining the relative speed, and the working mask and the workpiece to be obtained are obtained by the moving device.
  • a moving step for starting relative movement at a speed is set to be repeatedly performed, and the error speed relation is set with a different relative speed, and an error distance associated with a larger relative speed.
  • the present invention is an alignment apparatus, wherein a constant speed range associated with the relative speed having the same error distance is set in a portion where the error distance is larger than the high accuracy range. Alignment device.
  • the present invention is an alignment apparatus, wherein after the error distance becomes smaller than a predetermined permissible distance, the processing mask and the processing object are moved in a relatively approaching direction and contacted. is there.
  • the present invention is an alignment apparatus, wherein the error distance is at least smaller than a predetermined allowable distance, and the error distance is associated with the relative speed of zero value.
  • the mask alignment mark of the processing mask and the processing alignment mark of the processing object are imaged at the same time by the imaging device to obtain an imaging result, and the position of the processing mask and the position of the processing object are acquired by the control device.
  • the error distance of the relative position between the processing mask and the processing object is obtained from the imaging result obtained by the control device, and obtained.
  • the imaging step, the speed finding step, and the moving step are set to be repeatedly performed, and the relative speed is set differently in the error speed relationship, and the large
  • the error distance associated with the relative speed is an alignment method provided with a high accuracy range that is made larger than the error distance associated with the small relative speed.
  • the present invention is an alignment method, wherein the error speed relationship is an alignment in which a constant speed range in which the error distance is related to the relative speed having the same value is set in a portion where the error distance is larger than the high accuracy range. Is the method.
  • the present invention is an alignment method, wherein after the error distance becomes smaller than a predetermined allowable distance, the processing mask and the processing object are moved in a relatively approaching direction and brought into contact with each other. .
  • the present invention is an alignment method, in which the error distance is associated with the relative velocity having a value of zero in the range where the error distance is at least smaller than a predetermined allowable distance.
  • Reference numeral 2 in FIG. 1 indicates an alignment apparatus of the present invention, and the alignment apparatus 2 is provided in the film forming apparatus 3.
  • the film forming apparatus 3 has a vacuum chamber 10.
  • the alignment device 2 includes a mask holding device 21 and a substrate holder 22, and the mask holding device 21 and the substrate holder 22 are disposed inside the vacuum chamber 10.
  • a vacuum exhaust device 19 is connected to the vacuum chamber 10, and the inside of the vacuum chamber 10 is evacuated and placed in a vacuum atmosphere.
  • the vacuum exhaust device 19 continues to operate, and the inside of the vacuum chamber 10 is continuously evacuated.
  • the processing mask 31 is disposed so as to be replaceable. When the amount of deposits on the processing mask 31 increases, the processing mask 31 is unloaded from the vacuum chamber 10 and another processing mask is disposed in the mask holding device 21. Is done.
  • a substrate 32 which is an object to be processed, is carried into the vacuum chamber 10 and is disposed on the substrate holder 22.
  • the substrate 32 is a transparent substrate such as a glass substrate.
  • the substrate 32 and the processing mask 31 are horizontally placed on the substrate holder 22 and the mask holding device 21, respectively.
  • the substrate 32 disposed on the substrate holder 22 is positioned above the processing mask 31 disposed on the mask holding device 21, and the substrate 32 and the processing mask 31 are separated from each other.
  • a film forming source 11 is disposed below the processing mask 31.
  • the film forming source 11 is a sputtering target, and a sputtering gas source 18 is connected to the vacuum chamber 10 so that the sputtering gas can be introduced into the vacuum chamber 10 from the sputtering gas source 18. Yes.
  • the processing mask 31 is a metal plate, and a through-hole (including a through-groove) 33 having a predetermined pattern is formed on the plate.
  • a through-hole (including a through-groove) 33 having a predetermined pattern is formed on the plate.
  • One side of the processing mask 31 disposed in the mask holding device 21 is a substrate 32. The opposite surface faces the film forming source 11.
  • the alignment device 2 includes a moving device 14 and an imaging device 12.
  • the imaging device 12 has two cameras 12 1 and 12 2 .
  • Transparent windows 15 1 and 15 2 are airtightly provided above the substrate holder 22 in the vacuum chamber 10, and the two cameras 12 1 and 12 2 are disposed outside the vacuum chamber 10.
  • the substrate 32 disposed on the substrate holder 22 inside the vacuum chamber 10 can be imaged through the windows 15 1 and 15 2 .
  • the processing mask 31 and the substrate 32 have a square shape such as a square or a rectangle, and a mask alignment mark and a substrate alignment are arranged at diagonal positions (locations near non-adjacent corners) among the four corners of the processing mask 31 and the substrate 32. At least one mark is provided for each.
  • the substrate 32 is transparent, and the cameras 12 1 and 12 2 can take an image of the processing mask 31 on which the substrate 32 is overlapped by the light transmitted through the substrate 32.
  • the two cameras 12 1 and 12 2 The diagonal location where the mask alignment mark and the substrate alignment mark are located is arranged at a location within the imaging range.
  • the mask alignment mark and the substrate alignment mark located at the same diagonal location are close to each other, and the mask alignment mark and the substrate alignment mark that are close to each other at the diagonal location are adjacent to each other. It is adapted to position the camera 12 1, 12 camera 12 1 of one of the 2, 12 2 of the imaging range.
  • processing mask 31 is stationary relative to the camera 12 1, 12 2, camera 12 1, 12 2, the focus on the mask alignment mark It is located.
  • the substrate alignment mark is located closer to the cameras 12 1 and 12 2 than the focal position, and the image is larger than when it is located at the focal point. Easy to blur.
  • the outline of the mask alignment mark has a cross shape with many corners, and if the image is blurred, the corner cannot be detected and the position cannot be specified.
  • the position can be specified accurately.
  • the outline of the substrate alignment mark has no corners and a larger circle than the mask alignment mark is adopted, so it is difficult to pinpoint the position accurately even if it is located at the focal point, but it is centered even if the image is blurred Can be almost specified, so the position can be specified even with low accuracy.
  • the inside of the contour line is painted black when the contour line is black.
  • the substrate 32 has an edge portion of the substrate 32 in contact with the substrate holder 22, and the central portion of the substrate 32 is not in the substrate holder 22. As a result, due to the weight of the substrate 32, as shown in FIG. 4A, the substrate 32 is bent and the central portion is suspended.
  • the substrate 32 is disposed on the substrate holder 22 in a state where there is no deflection, in that case, in this case, the two substrates respectively located at the diagonal positions apart from each other.
  • the mask alignment mark and the substrate alignment mark are formed so that the alignment mark and the mask alignment mark can be arranged in an overlapping manner. That is, when the processing mask 31 and the substrate 32 are not bent, the distance between the centers of the mask alignment marks at the diagonal positions and the distance between the centers of the substrate alignment marks at the diagonal positions are formed to be equal to each other.
  • the portion of the substrate 32 where the thin film is formed faces the through-hole 33, and the processing mask 31 and the substrate 32 are in a positional relationship in which they are accurately aligned.
  • the distance between the centers of the substrate alignment marks is shortened when the substrate 32 is bent.
  • the two substrate alignment marks at the diagonal locations cannot be placed together on the two mask alignment marks at the diagonal locations.
  • the substrate 32 disposed on the substrate holder 22 and the processing mask 31 disposed on the mask holding device 21 are separated from each other in parallel if the bending of the substrate 32 is ignored. Is located.
  • the separation distance between the processing mask 31 and the substrate 32 is a length of a line segment that is located between the processing mask 31 and the substrate 32 and intersects the processing mask 31 and the substrate 32 perpendicularly when bending is ignored. is there.
  • the processing mask 31 and the bent substrate 32 are arranged in a direction perpendicular to the line segment of the separation distance.
  • the substrate 32 is brought close to the processing mask 31, the lowermost point of the portion where the substrate 32 is bent and droops comes into contact with the processing mask 31.
  • the substrate 32 is brought into close contact with the processing mask 31, if the mask alignment mark and the substrate alignment mark overlap, the processing mask 31 before contact and the bent substrate 32 are accurately aligned. It was in the position relationship that was made.
  • the two camera 12 1 , 12 2 of the imaging device 12 are used to detect the mask alignment mark at the diagonal location.
  • the substrate alignment mark is imaged at the same time, and processing for obtaining the imaging result is performed.
  • 3 (a) is the imaging result 45a, 45b shows a state of displaying on a single or two units on a display of the inside of one of the camera 12 first imaging results 45a, other camera 12 second imaging
  • the result 45b includes one mask alignment mark image 41a and 41b and one substrate alignment mark image 42a and 42b.
  • the distance between the mask alignment mark images 41a and 41b and the distance between the substrate alignment mark images 42a and 42b are not the same, and the mask alignment mark It can be seen that the images 41a and 41b and the substrate alignment mark images 42a and 42b cannot be superimposed.
  • the diagonal line which connected the center of the mask alignment mark located in a corner place is shown.
  • the centers of the substrate alignment mark images 42a and 42b are located on the diagonal line 49, and the center of the substrate alignment mark image 42a in one imaging result 46a is The distance between the center of the mask alignment mark image 41a and the distance between the center of the image 42b of the substrate alignment mark and the center of the image 41b of the mask alignment mark in the other imaging result 46b become equal.
  • the process proceeds to an error detection process.
  • the imaging device 12 is connected to the control device 13, and the imaging results 45a and 45b are output to the control device 13, and the processing mask 31 and the substrate 32 when the imaging results 45a and 45b are obtained from the imaging results 45a and 45b. And the center relationship between the mask alignment mark images 41 a and 41 b in the imaging results 45 a and 45 b by the control device 13.
  • a first and second center having a center on one side of a certain mask side center point and a substrate side center point which is the center of the images 42a and 42b of the substrate alignment mark, and a center on the other side as an end point. are respectively obtained.
  • the positional relationship between the processing mask 31 and the substrate 32 is a positional relationship in which the alignment is accurately performed when the center point on the same side is a fulcrum.
  • Reference numerals 51a and 51b in FIG. 3A are the first and second imaging vectors obtained from the imaging results 45a and 45b, and the imaging obtained from the imaging results 46a and 46b when accurate alignment is performed.
  • the processing mask 31 when the imaging results 45a and 45b are obtained in the imaging process from the difference between the vectors 52a and 52b and the first and second imaging vectors 51a and 51b obtained from the actual imaging results 45a and 45b.
  • An error angle, an error distance, and an error direction between the positional relationship with the substrate 32 and the positional relationship between the processing mask 31 and the substrate 32 when accurately aligned are obtained.
  • the error distance is assumed to be the absolute value of the error value.
  • the processing mask 31 and the substrate 32 are moved relative to each other and the relative position is changed based on the error direction so that the error angle and the error distance become zero, the processing mask 31 and the substrate 32 are aligned. become.
  • the process proceeds to the speed finding process in order to determine the relative speed that is the speed of the relative movement.
  • the control device 13 stores a main allowable error amount and a sub allowable error amount.
  • the calculated error value here, the error distance value
  • the process proceeds to the proximity process described later and indicates that the calculated error value is greater than the sub-allowable error amount
  • the relative speed is obtained by the following procedure.
  • the magnitude comparison regarding error distance shall be performed by an absolute value.
  • the relative speed is set to zero when shifting to the proximity process.
  • the control device 13 stores an error speed relationship (relation between an error value and a relative speed) in which an error distance and a relative speed are associated with each other.
  • FIG. 2 is a graph showing an example of the error speed relationship, where the horizontal axis represents the error value and the vertical axis represents the relative speed.
  • the error value is the error distance.
  • a maximum error distance ⁇ D having a predetermined value and an allowable distance ⁇ F are set ( ⁇ D ⁇ F, F ⁇ D), and the error distance E is equal to or greater than the maximum error distance ⁇ D.
  • the error distance E is associated with a constant non-zero relative speed S, and the error distance E is within the allowable distance ⁇ F or less ( ⁇ F ⁇ E ⁇ In F), the error distance E is associated with a zero relative speed S.
  • the processing mask 31 and the substrate 32 are relatively stationary.
  • the relative speed is set to be small when the error distance is small.
  • the error distance and the relative speed are in a linear function, and within the high accuracy range, the error distance is The smaller the is, the closer the relative speed approaches zero.
  • the relative speed may be set to decrease stepwise in accordance with a function such as a linear function.
  • control device 13 causes the error after the error angle is eliminated by relatively rotating and moving the process mask 31 and the substrate 32 by an angle at which the error angle disappears.
  • the direction and the error distance may be obtained and stored, and the relative speed may be obtained from the stored error distance and error speed relationship.
  • the control device 13 obtains a relative speed from the error distance obtained from the immediately preceding imaging result and the set error speed relationship, and then the process proceeds to the moving process.
  • the processing mask 31 and the substrate 32 are relatively moved by the moving device 14 as follows.
  • the moving device 14 includes a horizontal moving device 14a and a proximity moving device 14b.
  • the horizontal movement device 14a moves the mask holding device 21 and the substrate holder 22 relative to each other within a plane perpendicular to the line segment of the separation distance, thereby allowing the processing mask 31 disposed on the mask holding device 21 to
  • the substrate 32 arranged on the substrate holder 22 is relatively linearly and rotationally moved within a plane perpendicular to the line segment of the separation distance.
  • the moving device 14 is controlled by the control device 13, and the operation of the horizontal moving device 14 a and the operation of the proximity moving device 14 b are controlled by the control device 13.
  • the control device 13 stops the operation of the proximity moving device 14b in advance, and in the moving process, operates the horizontal moving device 14a to change the moving direction of the relative movement between the mask holding device 21 and the substrate holder 22.
  • change based on the error direction obtained in the immediately preceding error detection process and find the relative movement in the immediately preceding speed finding process. It moves at the value of relative speed.
  • the moving step ends. However, even if the moving step ends, the relative movement between the processing mask 31 and the substrate 32 is immediately before. The relative speed obtained in the speed finding step is maintained. When the relative movement speed between the processing mask 31 and the substrate 32 reaches the relative speed obtained in the immediately preceding speed finding process, the moving process is completed while maintaining the relative movement at the relative speed, and the processing is completed. Is transferred to an imaging process.
  • the imaging device 12 uses the two cameras 12 1 and 12 2 to capture a set of mask alignment marks and substrate alignment marks at the same time at diagonal positions, and the imaging results are obtained. obtain. Even during the imaging process, the processing mask 31 and the substrate 32 are relatively moved at the relative speed obtained in the immediately preceding speed finding process, and in this state, the imaging result obtained by imaging is output to the control device 13. Then, the imaging process is completed, and the process proceeds from the imaging process to the error detection process.
  • the error distance is obtained from the immediately preceding imaging result, and the obtained error distance is compared with the sub-allowable error amount.
  • the error distance, the error angle, and the error direction are obtained in the immediately preceding error detecting process. If the relative speed is obtained from the error distance and the error speed relationship while the processing mask 31 and the substrate 32 move relative to each other according to the procedure, the speed finding process is terminated, and the process is shifted to the moving process.
  • the relative movement between the mask holding device 21 and the substrate holder 22 is set to a direction in which the error angle and error distance obtained in the immediately previous error detecting step are reduced, and the relative moving speed is the immediately preceding speed finding.
  • the process is terminated, and the process proceeds to the imaging process.
  • the imaging mask, the error detection step, and the speed finding step are performed while relatively moving the processing mask 31 and the substrate 32.
  • the moving process is repeatedly performed, and the error distance and the error angle are reduced.
  • the processing mask 31 and the substrate 32 are relatively moved, so that an imaging result is obtained in the imaging process.
  • the error may increase and be larger than the sub allowable error amount. That is, even if the processing mask 31 and the substrate 32 are close to each other and alignment is performed, the alignment may pass through the alignment position. If the distance that passes is large, the error will always be smaller than the sub-allowable error amount. I can't.
  • the value of the relative speed set in the speed finding step becomes small, so even if it passes, the distance is shorter than when the relative speed is large, and the error distance is shortened in a short time. Can be less than or equal to the allowable distance.
  • the relative velocity is set to zero in the speed finding step according to the error speed relationship. In that case, with the relative movement between the mask holding device 21 and the substrate holder 22 stopped, the process proceeds to the proximity process described below.
  • the proximity moving device 14 b is configured to bring the mask holding device 21 and the substrate holder 22 close to each other and shorten the distance between the mask holding device 21 and the substrate holder 22.
  • the proximity movement device 14 b can move only one or both of the mask holding device 21 and the substrate holder 22.
  • the control device 13 moves close to move the processing mask 31 and the substrate 32 in close contact with each other.
  • the apparatus 14b is operated to move either one or both of the mask holding device 21 and the substrate holder 22 and start the proximity movement in which the mask holding device 21 and the substrate holder 22 approach each other.
  • the processing mask 31 and the substrate 32 are moved in a direction to shorten the separation distance, but in a direction perpendicular to the separation distance. Since it is not moved, it can be considered that the error distance between the processing mask 31 and the substrate 32 and the size of the error direction do not change even when the proximity movement is started.
  • the error distance is less than or equal to the sub-allowable error amount. Therefore, even if the proximity movement is started, the state where the error distance is less than or equal to the sub-allowable error amount should be maintained. is there.
  • the operation of the proximity movement device 14b has inaccuracy due to mechanical accuracy, vibration, wear, and the like. In this case, the processing mask 31 and the substrate 32 move relative to each other due to the proximity movement, and an error occurs. The distance and the error angle change. If the error distance or error angle increases after the proximity movement is started, alignment is required.
  • the proximity process is terminated after the proximity movement is started, and the processing is shifted to the imaging process. Imaging is terminated after the imaging result is obtained, and the process proceeds to an error detection step.
  • the error detection process ends after the error distance, error angle, and error direction are obtained, and the process proceeds to the speed setting process.
  • the alignment device 2 stores a constant speed value of a predetermined value as a relative speed.
  • an error value here, an absolute value of an error and a magnitude of an error distance
  • the main allowable error amount is compared and the comparison result shows that the error distance is larger than the main allowable error amount, the relative speed is set to the stored constant speed value, and the error distance is the main allowable error.
  • the relative speed is set to zero and the process ends, and the process proceeds to the moving process.
  • the relative movement of the mask holding device 21 and the substrate holder 22 in the direction perpendicular to the direction of the separation distance is set so that the error distance and the error direction are reduced.
  • Use relative speed When the relative moving speed between the mask holding device 21 and the substrate holder 22 reaches the set relative speed, the moving process ends, and the process proceeds to the imaging process. Movement of the processing mask 31 and the substrate 32 at the set relative speed is maintained.
  • the imaging process, the error detection process, the speed setting process, and the movement process are repeatedly performed while moving close to each other, and when the error amount is less than or equal to the main allowable error amount, the separation distance is When it is detected that the error distance is larger than the main allowable error amount without being relatively moved in the vertical direction, the error distance is relatively decreased.
  • the main error allowable amount may be the same value as the sub error allowable amount or a different value.
  • Proximity movement is performed after contact, and the area of the contact portion 43 gradually increases as the proximity movement occurs. Even after contact, the imaging process, error detection process, speed setting process, and movement process are repeated, and in the movement process, the error distance detected in the previous error detection process is larger than the main error tolerance. Is larger, the substrate 32 and the processing mask 31 are relatively moved at a set relative speed in a direction perpendicular to the separation distance while the contact portion 43 slides. Therefore, the contact area increases with the proximity movement, and accordingly, the portion where the substrate 32 hangs gradually decreases. As the drooping portion decreases, the distance between the substrate alignment marks located at the diagonal locations of the substrate 32 increases and approaches a state without deflection.
  • FIG. 4C shows a state when the area of the contact portion 43 is increased, and FIG. 3C shows an accurate distance between the processing mask 31 and the substrate 32 in this state.
  • the imaging results 47a and 47b when the positional relationship is aligned with each other are shown. Even when the contact area increases, the shape when the substrate 32 is viewed from above is the shape when there is no deflection.
  • the imaging vectors 53a and 53b are parallel to the diagonal line 49, have the same size, and have opposite directions, and the substrate alignment mark images 42a and 42b are close to the mask alignment mark images 41a and 41b. Therefore, the size is smaller than the image pickup vectors 52a and 52b when the accurate alignment is performed before the contact.
  • the relative speed in the direction perpendicular to the line segment of the separation distance can be terminated by setting the relative speed to zero before the value becomes larger than the predetermined value.
  • the relative speed may be set to zero when the force required for the relative movement becomes larger than a predetermined value, or the distance between the mask holding device 21 and the substrate holder 22 is detected. Thus, the relative speed may be set to zero when the distance becomes shorter than the predetermined distance due to the proximity movement.
  • the alignment between the processing mask 31 and the substrate 32 is performed. Since the alignment accuracy when the two come into close contact with each other is improved, the place where the thin film on the surface of the substrate 32 is formed can be accurately arranged on the through hole 33 of the processing mask 31.
  • the processing mask 31 and the substrate 32 are brought into full contact with each other and brought into close contact with each other, the processing mask 31 and the substrate 32 are in a state close to an accurately aligned state within the range of the main allowable error. Therefore, in this state, the film forming material particles are released from the film forming source 11, and the film forming material particles (including vapor) that have passed through the through holes 33 of the processing mask 31 reach the surface of the substrate 32. As a result, the thin film is accurately formed on the surface of the substrate 32 within the range of the main allowable error amount at the position where the thin film is to be formed.
  • the release of the particles of the film forming material from the film forming source 11 is stopped, the processing mask 31 and the substrate 32 are separated from each other, the substrate 32 is removed from the substrate holder 22, and the vacuum is removed.
  • the substrate 10 is carried out of the tank 10, an undeposited substrate is placed on the substrate holder 22, alignment is performed in the same procedure as described above, and a film is formed on the substrate surface.
  • the initial range is set in a range where the error distance is larger than the high accuracy range in the error speed relationship when not moving close and the error speed relationship when moving close.
  • the error distance of the initial range is related to a constant relative speed regardless of the magnitude, and the constant relative speed is equal to the maximum relative speed set in the high accuracy range, or The value is larger than that. Therefore, even when the error distance obtained from the picked-up image pickup result is small, the relative speed does not change when the obtained error distance is included in the initial range. Therefore, the alignment device 2 moves linearly at a constant relative speed while the error distance obtained from the imaging result is included in the initial range.
  • the imaging result of the present invention is an image in the field of view including both the mask alignment mark of the processing mask and the substrate alignment mark of the substrate, and the imaging result may be a moving image or a still image. Good. A still image extracted from a moving image is also included in the imaging result.
  • the processing mask 31 and the substrate 32 when the processing mask 31 and the substrate 32 move relative to each other, the processing mask 31 and the substrate 32 can move linearly as a relative movement after the processing mask 31 and the substrate 32 rotate, and can move linearly while rotating.
  • the case of relative movement is included.
  • the relative movement is not limited to linear movement.
  • the film formation source 11 is a sputtering target.
  • a sputtering gas is introduced from a sputtering gas source 18 into a vacuum chamber 10 in a vacuum atmosphere, and a sputtering voltage is applied to the film formation source 11 to generate plasma of the sputtering gas. Then, the film forming material particles, which are sputtering particles, are emitted from the surface of the film forming source 11 to form a patterned thin film.
  • the film formation source 11 is a sputtering target
  • the film formation source of the present invention is not limited to the sputtering target.
  • the film formation source is a vapor deposition source and is disposed in a crucible of the vapor deposition source.
  • the deposited film-forming material may be heated to release particles of the film-forming material that is the vapor of the film-forming material.
  • the alignment method of the present invention is not limited to the case where the substrate and the processing mask are aligned to form a film, but the substrate and the processing mask are aligned, and the surface of the substrate passes through the processing mask. It can be used in a process for processing according to the shape of the hole 33, and can also be applied to an etching method for etching according to the shape of the through-hole 33, for example.
  • the numerical values used for the error speed relationship and the allowable distance may be stored in an external storage circuit connected to the control device 13 or may be recorded on a recording medium. It may be read into an internal storage circuit. In short, it is sufficient that the error speed relationship is set in the alignment device 2.
  • the processing object used in the present invention may be a film of an organic compound having flexibility.
  • the alignment apparatus 2b is provided in the film forming apparatus 3b of the second example of the present invention.
  • the same members as those of the alignment device 2a of the first example are denoted by the same reference numerals, and the description thereof is omitted.
  • the film formation device 3b of the second example the first example The same members as those of the film forming apparatus 3a are denoted by the same reference numerals and description thereof is omitted.
  • the film 32 b faces the processing mask 31 disposed on the mask holding device 21.
  • a winding device 35 and an unwinding device 36 are arranged in the vacuum chamber 10.
  • the unwinding device 36 is provided with an unwinding roll 34 composed of the wound film 32b.
  • the portion of the film 32b facing the processing mask 31 is unwound from the unwinding roll 34, and the processing mask 31 It is a portion that passes through the facing position, and becomes a part of the film 32b that is mounted on the winding device 35.
  • a driving device 37 is connected to the winding device 35.
  • the winding device 35 and the unwinding device 36 are rod-shaped, and when rotated by the driving device 37 with one end of the film 32b fixed, the unwinding roll 34 and the unwinding device 36 are pulled by pulling the film 32b. , And the film 32b is unwound from the unwinding roll 34 and wound by the winding device 35.
  • the film 32b unwound from the unwinding roll 34 travels in the vacuum chamber 10, and passes through the positions where the imaging devices 12 1 and 12 2 take images.
  • a mask alignment mark is formed on the processing mask 31, and a processing alignment mark is formed on the film 32b.
  • the processing alignment mark provided on the film 32b is imaged without interruption even when the film 32b travels, and an error can be obtained from the imaging result.
  • the processing alignment mark is the film 32b.
  • the imaging process obtains the imaging results of the mask alignment mark and the processing alignment mark captured at the same time by the imaging devices 12 1 and 12 2.
  • the speed finding step the error angle, the error distance, and the error direction between the processing mask 31 and the film 32b are detected from the latest imaging result and the set error speed relationship.
  • the portion of the film 32b that faces the processing mask 31 is running so as to be parallel to the processing mask 31, and in the moving process of the alignment device 2b of the second example, the moving device 14
  • the processing mask 31 is rotated and linearly moved with respect to the stationary vacuum chamber 10 and the like while being positioned in the same plane without changing the distance between the plane where the film 32b is located and the plane where the film 32b is located.
  • the mask holding device 21 is rotated and linearly moved to move the processing mask 31 and the film 32b relative to each other. This relative movement is set to the relative speed obtained in the latest speed finding process.
  • the central axis of the film 32b is determined from the imaging result of the imaging process in the speed finding process.
  • an error consisting of an error angle, an error distance in a direction perpendicular to the central axis, and an error direction is obtained.
  • the control device 13 obtains a correction error direction and a correction error distance when the processing mask 31 is rotationally moved so that the error angle becomes zero.
  • the relative speed may be obtained from the relationship between the error distance and the error speed, with the direction as the error direction and the correction error distance as the error distance.
  • the mask holding device 21 is linearly moved with the rotational movement so as to reduce the error.
  • a thin film is formed on the film 32b by the film forming apparatus 3b of the second example, first, an imaging process is performed before or immediately after the film 32b is traveled, and a processing alignment mark and a mask alignment mark are captured by the imaging apparatus. After imaging at 12 1 and 12 2 and obtaining the imaging result, the process proceeds to the speed finding process, and after obtaining the relative speed from the error distance and the error speed relationship, the process proceeds to the moving process and obtained in the speed finding process. The relative movement of the processing mask 31 in the obtained error direction is started at the relative speed.
  • the relative speed is set to zero, and the release of the film forming material particles from the film forming source 11 is started.
  • a film formed on the surface of the traveling film 32b is formed by the film forming material particles that have passed through the through holes 33 (including the through grooves) formed in the processing mask 31. It is formed.
  • the value of the allowable distance may be changed after the start of the release of the film forming material particles.
  • the thin film to be formed has an elongated shape along the running direction, and a plurality of elongated thin films are arranged in parallel to each other on the film 32b.
  • the initial range is set in a range where the error distance is larger than the high accuracy range, and the error distance in the initial range is related to a constant relative speed regardless of the size. .
  • This constant relative speed is equal to or greater than the maximum relative speed set in the high accuracy range, and is imaged after or during the movement process. Even when the error distance obtained from the imaging result becomes small, the relative speed of the same magnitude is associated when the obtained error distance is included in the initial range.
  • the linear movement is performed at a constant relative speed while the error distance obtained from the imaging result is included in the initial range.
  • the imaging result of the present invention is an image in the field of view including both the mask alignment mark of the processing mask and the processing alignment mark of the processing object, and the imaging result is a still image even if it is a moving image. There may be. A still image extracted from a moving image is also included in the imaging result.
  • the present invention includes a case where the processing mask 31 and the processing object rotate and then move linearly as relative movement, and a case where the processing mask 31 and the processing object move relative to each other by linear movement while rotating.
  • the relative movement is not limited to linear movement.
  • the film formation source 11 is a sputtering target.
  • a sputtering gas is introduced from a sputtering gas source 18 into a vacuum chamber 10 in a vacuum atmosphere, and a sputtering voltage is applied to the film formation source 11 to generate plasma of the sputtering gas.
  • the film forming material 11 is sputtered and discharged from the surface of the film forming source 11 to form a patterned thin film.
  • the film forming source 11 is not limited to the sputtering target.
  • the film source is a vapor deposition source, and the film forming material disposed in the crucible of the vapor deposition source may be heated to release particles of the film forming material that is vapor of the film forming material.
  • the alignment method of the present invention is not limited to the case where the processing object and the processing mask are aligned to form a film, but the processing object and the processing mask are aligned and the surface of the processing object is aligned.
  • the numerical values used such as the error speed relationship and the allowable distance may be stored in an external storage circuit connected to the control device 13 or recorded on a recording medium and may be stored by the control device 13. The data may be read into the internal storage circuit. In short, it is sufficient that the error speed relationship is set in the alignment devices 2a and 2b in the first and second examples.

Abstract

[Problem] To provide a technique for adhering a processing mask and a substrate to one another with a high degree of alignment accuracy. [Solution] A processing mask (31) and a substrate (32) are made to approach one another after being positioned with a distance in between, and adhered to one another, the two elements being made to approach one another while performing alignment. Therefore, even if an alignment error occurs while having the two elements approach one another, it is possible to eliminate this error. Even if the vertically suspended part of the substrate (32) comes into contact with the processing mask (31), the two elements are brought further together while performing alignment.

Description

アラインメント装置、及びアラインメント方法Alignment device and alignment method
 本発明はアラインメント技術に関し、特に、アラインメント時間を短くする技術に関する。 The present invention relates to an alignment technique, and more particularly to a technique for shortening the alignment time.
 半導体製造工程や液晶表示装置製造工程等の微細加工を必要とする技術分野に於いて、パターニングされた薄膜を形成するために、加工対象物上に一旦薄膜を形成し、その薄膜をレジストとフォトマスクを使用してエッチングしてパターニングするフォトリソグラフ工程が行われている。 In a technical field that requires fine processing such as a semiconductor manufacturing process and a liquid crystal display device manufacturing process, in order to form a patterned thin film, a thin film is once formed on an object to be processed, and the thin film is then formed into a resist and a photo. A photolithographic process of performing patterning by etching using a mask is performed.
 しかしながら、エッチングのために用いる化学物質や、レジストを剥離するための化学物質は、パターニング対象の有機薄膜や、パターニング対象の薄膜が有機薄膜上に形成されている場合には、有機薄膜にダメージを与えるため、フォトリソグラフ工程を採用することができない。 However, the chemical substance used for etching and the chemical substance for stripping the resist may damage the organic thin film when the organic thin film to be patterned or the thin film to be patterned is formed on the organic thin film. Therefore, the photolithographic process cannot be employed.
 そこで成膜工程の前に、成膜対象物上にパターニングされた貫通孔を有する加工マスクを配置し、貫通孔を通過した薄膜材料の微粒子を成膜対象物の表面に到達させ、成膜対象物表面上に貫通孔のパターンに従った薄膜を形成する技術が用いられている。 Therefore, before the film formation process, a processing mask having a patterned through hole is arranged on the film formation target, and the fine particles of the thin film material that has passed through the through hole reach the surface of the film formation target to form the film formation target. A technique for forming a thin film according to a pattern of through holes on the surface of an object is used.
 この貫通孔を有する加工マスクを使用する工程についても、フォトリソグラフ工程の場合と同様に、加工マスクと成膜対象物との位置合わせを行い、予め定められている相対的な位置に加工マスクと成膜対象物とを置いた状態で、成膜材料微粒子に貫通孔を通過させる必要があり、位置合わせを行うためには、加工マスクと成膜対象物とを離間させた状態で、加工マスクのアラインメントマークと成膜対象物のアラインメントマークとを撮像して、加工マスクと成膜対象物との間の位置誤差を検出し、求めた誤差がゼロになる距離と方向に、加工マスクと成膜対象物とを相対移動させていた。 As in the case of the photolithography process, the process mask and the film formation target are aligned with respect to the process using the process mask having the through-hole, and the process mask is placed at a predetermined relative position. In the state where the film formation target is placed, it is necessary to pass the through-holes through the film formation material fine particles, and in order to perform alignment, the processing mask is separated from the film formation target. The alignment mark and the alignment mark of the film formation target are imaged to detect a position error between the processing mask and the film formation target. The film object was moved relative to each other.
 しかしながら、位置の誤差がゼロになるはずの距離と方向に相対移動させても、移動後に加工マスクと成膜対象物とのアラインメントマークを撮像すると、誤差がゼロになっておらず、むしろ、再度アラインメントを行わなければならない程の大きな誤差が検出される。 However, even if it is moved relative to the distance and direction where the position error should be zero, if the alignment mark between the processing mask and the film formation target is imaged after the movement, the error is not zero. A large error is detected that must be aligned.
 これは、加工マスクと成膜対象物とを相対移動させる移動装置が有する機械的誤差に主として起因しており、再度検出された誤差がゼロになる距離と方向に相対移動させた後、再度誤差を検出すると、誤差は未だ大きいことが普通であり、誤差検出と相対移動を多数回数行わなければ所望精度の位置合わせを行うことができない。 This is mainly due to the mechanical error of the moving device that relatively moves the processing mask and the film formation target. After the relative movement in the distance and direction where the detected error becomes zero again, the error again In general, the error is still large, and it is not possible to perform alignment with desired accuracy unless error detection and relative movement are performed many times.
 相対移動と誤差検出とを多数回数行うと、アラインメントに要する時間が長くなる。また、基板と加工マスクとが離間した状態で位置合わせが行われているので、基板と加工マスクとを接近させ、基板と加工マスクとを密着させようとすると、接近中に誤差が発生し、正確に位置合わせした状態で密着させることができない。 ∙ If relative movement and error detection are performed many times, the time required for alignment becomes longer. In addition, since the alignment is performed in a state where the substrate and the processing mask are separated from each other, if the substrate and the processing mask are brought close to each other and an attempt is made to closely contact the substrate and the processing mask, an error occurs during the approach, It cannot be brought into close contact with an accurate alignment.
 本願発明は、上記従来技術の問題点を解決するために創作されたものであり、短時間で高精度に基板と加工マスクとを接近させることができる技術を提供することにある。 The present invention was created to solve the above-described problems of the prior art, and is to provide a technique capable of bringing a substrate and a processing mask close to each other with high accuracy in a short time.
特開2003-306761号公報JP 2003-306761 A 特開2011-231384号公報JP 2011-231384 A
 本発明は、基板と加工マスクとを接近させた後も、位置合わせ精度の高いアラインメント方法、アラインメント装置を提供することを課題とする。 An object of the present invention is to provide an alignment method and an alignment apparatus with high alignment accuracy even after a substrate and a processing mask are brought close to each other.
 上記課題を解決するため、本発明は、加工マスクが配置されるマスク保持装置と、加工対象物が配置される基板ホルダと、前記マスク保持装置と前記基板ホルダとのいずれか一方又は両方を移動させることで、前記加工マスクと前記加工対象物との間の相対的な位置を変える水平移動装置と、前記マスク保持装置と前記基板ホルダとが接近する近接移動をさせる近接移動装置と、前記マスク保持装置に配置された前記加工マスクのマスクアラインメントマークと前記基板ホルダに配置された前記加工対象物の基板アラインメントマークとを一緒に撮像し、撮像結果を得る撮像装置と、前記水平移動装置と、前記近接移動装置と、前記撮像装置とを制御して動作させる制御装置と、を有し、前記制御装置は、前記撮像結果から得られた前記加工マスクと前記加工対象物との相対的な位置と、位置合わせがされた状態での相対的な位置との間の誤差距離と誤差方向とを求め、前記誤差距離を小さくするように前記水平移動装置を動作させるアラインメント装置であって、前記制御装置は、前記近接移動装置によって前記近接移動をさせながら、前記撮像装置を動作させて前記撮像結果を得る撮像工程と、前記撮像結果から前記誤差距離と前記誤差方向を求める誤差検出工程と、前記水平移動装置により、前記誤差距離を小さくするように、前記加工マスクと前記加工対象物との相対移動を開始させる移動工程と、を繰り返し行うように設定されたアラインメント装置である。
 本発明はアラインメント装置であって、前記加工マスクと前記加工対象物の垂下した部分とが接触した状態で、前記近接移動をさせながら、前記撮像工程と、前記誤差検出工程と、前記移動工程とが繰り返し行われるように設定されたアラインメント装置である。
 本発明はアラインメント装置であって、前記誤差検出工程が行われた後、前記移動工程が行われる前に、相対速度を設定する速度設定工程が設けられ、前記速度設定工程では、直前の前記誤差検出工程で求めた前記誤差距離が、予め設定された主許容誤差量以下のときは前記相対速度はゼロに設定され、前記誤差距離が前記主許容誤差量よりも大きいときは、前記相対速度は所定の値に設定され、前記移動工程は、前記相対移動を前記相対速度にするように構成されたアラインメント装置である。
 本発明は、加工マスクのマスクアラインメントマークと加工対象物の基板アラインメントマークとを同じ撮像装置で一緒に撮像し、撮像結果を得たときの前記加工マスクと前記加工対象物の相対位置と、前記加工マスクと前記加工対象物とが位置合わせがされたときの相対位置との間の誤差距離と誤差方向とを求め、水平移動装置によって前記加工マスクと前記加工対象物のいずれか一方又は両方を移動させて前記誤差距離を小さくするアラインメント方法であって、離間した前記加工マスクと前記加工対象物との間の離間距離を短くする近接移動を行いながら、前記撮像装置を動作させて前記撮像結果を得る撮像工程と、前記撮像結果から前記誤差距離と前記誤差方向とを求める誤差検出工程と、前記水平移動装置により、前記誤差距離を小さくするように、前記加工マスクと前記加工対象物とを相対移動させる移動工程と、を繰り返し行うアラインメント方法である。
 本発明はアラインメント方法であって、前記加工マスクと前記加工対象物の垂下した部分とが接触した状態で、前記加工マスクと前記加工対象物とが離間した部分に前記近接移動をさせながら、前記撮像工程と、前記誤差検出工程と、前記移動工程とを繰り返し行うアラインメント方法である。
 本発明はアラインメント方法であって、前記誤差検出工程が行われた後、前記移動工程が行われる前に、相対速度を設定する速度設定工程が設けられ、前記速度設定工程では、直前の前記誤差検出工程で求めた前記誤差距離が、予め設定された主許容誤差量以下のときは前記相対速度はゼロに設定され、前記誤差距離が前記主許容誤差量よりも大きいときは、前記相対速度は所定の値に設定され、前記移動工程は、前記相対速度の前記相対移動を開始させるアラインメント方法である。
 本発明は、加工マスクと加工対象物とのいずれか一方又は両方を移動させることで、加工マスクと加工対象物との間の相対的な位置を変える移動装置と、前記加工マスクのマスクアラインメントマークと前記加工対象物の加工アラインメントマークとを同じ時刻で撮像し、撮像結果を得る撮像装置と、前記移動装置と前記撮像装置とを制御して動作させる制御装置と、を有し、前記制御装置は、前記撮像結果から求めた前記加工マスクと前記加工対象物との相対的な位置と、位置合わせがされた状態の相対的な位置との間の差である誤差を求め、前記誤差を小さくするように前記相対的な位置を変えるアラインメント装置であって、前記誤差に含まれる誤差距離と、前記加工マスクと前記加工対象物との間の相対的な移動の速度である相対速度とが関連づけられた誤差速度関係が設定されており、前記撮像装置によって前記撮像結果を得る撮像工程と、前記制御装置によって得られた前記撮像結果から前記加工マスクと前記加工対象物との間の相対位置の前記誤差距離を求め、求めた前記誤差距離と前記誤差速度関係から、前記相対速度を求める求速度工程と、前記移動装置によって前記加工マスクと前記加工対象物とを、求めた前記相対速度での相対的な移動を開始させる移動工程と、が繰り返し行われるように設定され、前記誤差速度関係には、異なる前記相対速度が設定されていて、大きい前記相対速度に関連付けられた誤差距離は、小さい前記相対速度に関連付けられた誤差距離よりも大きいようにされた高精度範囲が設けられたアラインメント装置である。
 本発明はアラインメント装置であって、前記誤差速度関係には、前記高精度範囲よりも前記誤差距離が大きい部分に、前記誤差距離が同じ値の前記相対速度に関連づけられた一定速度範囲が設定されたアラインメント装置である。
 本発明はアラインメント装置であって、前記誤差距離が、所定の許容距離よりも小さくなった後、前記加工マスクと前記加工対象物とが相対的に近づく方向に移動され、接触されるアラインメント装置である。
 本発明はアラインメント装置であって、前記誤差距離が、少なくとも所定の許容距離よりも小さい範囲では、前記誤差距離にはゼロの値の前記相対速度が関連づけられたアラインメント装置である。
 本発明は、撮像装置によって加工マスクのマスクアラインメントマークと加工対象物の加工アラインメントマークとを同じ時刻で撮像して撮像結果を得て、制御装置によって前記加工マスクの位置と前記加工対象物の位置との間の相対的な誤差を求め、移動装置によって前記加工マスクと前記加工対象物のいずれか一方又は両方を移動させて前記誤差を小さくするアラインメント方法であって、前記誤差に含まれる誤差距離と、前記加工マスクと前記加工対象物との間の相対的な移動の速度である相対速度とを、誤差速度関係として予め関連づけておき、前記撮像装置によって前記撮像結果を得る撮像工程と、前記制御装置によって得られた前記撮像結果から前記加工マスクと前記加工対象物との間の相対位置の前記誤差距離を求め、求めた前記誤差距離と前記誤差速度関係から、前記相対速度を求める求速度工程と、前記移動装置によって前記加工マスクと前記加工対象物とを、求めた前記相対速度で相対的な移動を開始させる移動工程と、を有し、前記撮像工程と、前記求速度工程と、前記移動工程とが繰り返し行われるように設定されおり、前記誤差速度関係には、異なる前記相対速度が設定されていて、大きい前記相対速度と関連付けられた誤差距離は、小さい前記相対速度に関連付けられた誤差距離よりも大きいようにされた高精度範囲が設けられたアラインメント方法である。
 本発明はアラインメント方法であって、前記誤差速度関係には、前記高精度範囲よりも前記誤差距離が大きい部分に、前記誤差距離を同じ値の前記相対速度に関連づけた一定速度範囲を設定したアラインメント方法である。
 本発明はアラインメント方法であって、前記誤差距離が、所定の許容距離よりも小さくなった後、前記加工マスクと前記加工対象物とを相対的に近づく方向に移動させ、接触させるアラインメント方法である。
 本発明はアラインメント方法であって、前記誤差距離が、少なくとも所定の許容距離よりも小さい範囲では、前記誤差距離にはゼロの値の前記相対速度を関連づけたアラインメント方法である。
In order to solve the above problems, the present invention moves a mask holding device in which a processing mask is arranged, a substrate holder in which an object to be processed is arranged, and one or both of the mask holding device and the substrate holder. A horizontal movement device that changes a relative position between the processing mask and the processing object, a proximity movement device that causes the mask holding device and the substrate holder to approach each other, and the mask An imaging device that captures an image of a mask alignment mark of the processing mask arranged on a holding device and a substrate alignment mark of the workpiece to be processed arranged on the substrate holder together to obtain an imaging result, the horizontal movement device, A control device that controls and operates the proximity movement device and the imaging device, and the control device is configured to process the processing obtained from the imaging result. An error distance and an error direction between the relative position of the disk and the workpiece and the relative position in the aligned state are obtained, and the horizontal movement is performed to reduce the error distance. An alignment device that operates a device, wherein the control device operates the imaging device to obtain the imaging result while performing the proximity movement by the proximity movement device, and the error distance from the imaging result. And an error detecting step for obtaining the error direction, and a moving step for starting relative movement between the processing mask and the processing object so as to reduce the error distance by the horizontal movement device. It is a set alignment device.
The present invention is an alignment apparatus, the imaging step, the error detection step, the movement step, while making the proximity movement in a state where the processing mask and the suspended portion of the processing object is in contact Is an alignment device set to be repeatedly performed.
The present invention is an alignment apparatus, wherein a speed setting step for setting a relative speed is provided after the error detection step is performed and before the moving step is performed. When the error distance obtained in the detection step is less than or equal to a preset main allowable error amount, the relative speed is set to zero, and when the error distance is larger than the main allowable error amount, the relative speed is The alignment device is set to a predetermined value, and the moving step is configured to set the relative movement to the relative speed.
In the present invention, the mask alignment mark of the processing mask and the substrate alignment mark of the processing object are imaged together with the same imaging device, and the relative position between the processing mask and the processing object when the imaging result is obtained, An error distance and an error direction between a processing mask and a relative position when the processing object is aligned are obtained, and either one or both of the processing mask and the processing object are determined by a horizontal movement device. An alignment method for reducing the error distance by moving the imaging device while operating the imaging device while performing a proximity movement to shorten a separation distance between the processing mask and the processing object that are separated from each other. An error detecting step for obtaining the error distance and the error direction from the imaging result, and the horizontal movement device to calculate the error distance. As fence, a moving step of relatively moving said workpiece and said processing mask, a repeated alignment method.
The present invention is an alignment method, wherein the processing mask and the processing object are in contact with each other while the processing mask and the processing object are separated from each other while the proximity movement is performed. In this alignment method, the imaging step, the error detection step, and the movement step are repeatedly performed.
The present invention is an alignment method, wherein a speed setting step for setting a relative speed is provided after the error detection step is performed and before the moving step is performed. When the error distance obtained in the detection step is less than or equal to a preset main allowable error amount, the relative speed is set to zero, and when the error distance is larger than the main allowable error amount, the relative speed is It is set to a predetermined value, and the moving step is an alignment method for starting the relative movement at the relative speed.
The present invention provides a moving device that changes a relative position between a processing mask and a processing object by moving either or both of the processing mask and the processing object, and a mask alignment mark of the processing mask. And a processing alignment mark of the object to be processed at the same time, and an imaging device that obtains an imaging result, and a control device that controls and operates the moving device and the imaging device. Obtains an error that is a difference between the relative position of the processing mask and the processing target obtained from the imaging result and the relative position of the aligned state, and reduces the error. An alignment device that changes the relative position so that an error distance included in the error and a relative speed that is a speed of relative movement between the processing mask and the processing object. Is set, an imaging step for obtaining the imaging result by the imaging device, and between the processing mask and the processing object from the imaging result obtained by the control device. The error distance of the relative position is obtained, and from the obtained error distance and the error speed relationship, a speed finding step for obtaining the relative speed, and the working mask and the workpiece to be obtained are obtained by the moving device. And a moving step for starting relative movement at a speed is set to be repeatedly performed, and the error speed relation is set with a different relative speed, and an error distance associated with a larger relative speed. Is an alignment device provided with a high accuracy range that is made larger than the error distance associated with the small relative velocity.
The present invention is an alignment apparatus, wherein a constant speed range associated with the relative speed having the same error distance is set in a portion where the error distance is larger than the high accuracy range. Alignment device.
The present invention is an alignment apparatus, wherein after the error distance becomes smaller than a predetermined permissible distance, the processing mask and the processing object are moved in a relatively approaching direction and contacted. is there.
The present invention is an alignment apparatus, wherein the error distance is at least smaller than a predetermined allowable distance, and the error distance is associated with the relative speed of zero value.
According to the present invention, the mask alignment mark of the processing mask and the processing alignment mark of the processing object are imaged at the same time by the imaging device to obtain an imaging result, and the position of the processing mask and the position of the processing object are acquired by the control device. Is an alignment method in which one or both of the processing mask and the processing object is moved by a moving device to reduce the error, and an error distance included in the error And an imaging step of obtaining the imaging result by the imaging device by associating the relative speed, which is a relative movement speed between the processing mask and the processing object, in advance as an error speed relationship; The error distance of the relative position between the processing mask and the processing object is obtained from the imaging result obtained by the control device, and obtained. A speed finding step for obtaining the relative speed from the relationship between the error distance and the error speed, and a moving step for starting relative movement of the working mask and the workpiece by the moving device at the obtained relative speed. And the imaging step, the speed finding step, and the moving step are set to be repeatedly performed, and the relative speed is set differently in the error speed relationship, and the large The error distance associated with the relative speed is an alignment method provided with a high accuracy range that is made larger than the error distance associated with the small relative speed.
The present invention is an alignment method, wherein the error speed relationship is an alignment in which a constant speed range in which the error distance is related to the relative speed having the same value is set in a portion where the error distance is larger than the high accuracy range. Is the method.
The present invention is an alignment method, wherein after the error distance becomes smaller than a predetermined allowable distance, the processing mask and the processing object are moved in a relatively approaching direction and brought into contact with each other. .
The present invention is an alignment method, in which the error distance is associated with the relative velocity having a value of zero in the range where the error distance is at least smaller than a predetermined allowable distance.
 加工マスクと加工対象物とが接触した後も相対移動させるため、近接移動による誤差を小さくすることができる。 Since the relative movement is performed even after the processing mask and the processing object come into contact with each other, the error due to the proximity movement can be reduced.
本発明のアラインメント装置と成膜装置を説明するための図The figure for demonstrating the alignment apparatus and film-forming apparatus of this invention 誤差速度関係を説明するためのグラフGraph to explain the error speed relationship (a)~(c):撮像結果中のマスクアラインメントマークの画像と基板アラインメントマークの画像との位置関係を説明するための図(a)-(c): The figure for demonstrating the positional relationship of the image of a mask alignment mark and the image of a board | substrate alignment mark in an imaging result (a)~(c):近接移動を説明するための図(a) to (c): diagrams for explaining proximity movement 本発明の第二例のアラインメント装置と成膜装置Alignment apparatus and film forming apparatus of second example of the present invention
 図1の符号2は、本発明のアラインメント装置を示しており、このアラインメント装置2は、成膜装置3に設けられている。
 成膜装置3は真空槽10を有している。
 アラインメント装置2は、マスク保持装置21と基板ホルダ22とを有しており、マスク保持装置21と基板ホルダ22とは真空槽10の内部に配置されている。
Reference numeral 2 in FIG. 1 indicates an alignment apparatus of the present invention, and the alignment apparatus 2 is provided in the film forming apparatus 3.
The film forming apparatus 3 has a vacuum chamber 10.
The alignment device 2 includes a mask holding device 21 and a substrate holder 22, and the mask holding device 21 and the substrate holder 22 are disposed inside the vacuum chamber 10.
 真空槽10には真空排気装置19が接続されており、真空槽10の内部は真空排気されて真空雰囲気に置かれている。真空排気装置19は継続して動作しており、真空槽10の内部は継続して真空排気されている。マスク保持装置21には、加工マスク31が交換可能に配置されており、加工マスク31の付着物の量が増加したときには、真空槽10から搬出され、他の加工マスクがマスク保持装置21に配置される。 A vacuum exhaust device 19 is connected to the vacuum chamber 10, and the inside of the vacuum chamber 10 is evacuated and placed in a vacuum atmosphere. The vacuum exhaust device 19 continues to operate, and the inside of the vacuum chamber 10 is continuously evacuated. In the mask holding device 21, the processing mask 31 is disposed so as to be replaceable. When the amount of deposits on the processing mask 31 increases, the processing mask 31 is unloaded from the vacuum chamber 10 and another processing mask is disposed in the mask holding device 21. Is done.
 図1では、真空槽10の内部に、加工対象物である基板32が搬入され、基板ホルダ22に配置されている。基板32は、ガラス基板等の透明な基板である。
 基板32と加工マスク31とは、基板ホルダ22とマスク保持装置21に、それぞれ水平にされている。
In FIG. 1, a substrate 32, which is an object to be processed, is carried into the vacuum chamber 10 and is disposed on the substrate holder 22. The substrate 32 is a transparent substrate such as a glass substrate.
The substrate 32 and the processing mask 31 are horizontally placed on the substrate holder 22 and the mask holding device 21, respectively.
 基板ホルダ22に配置された基板32は、マスク保持装置21に配置された加工マスク31の上方に位置しており、基板32と加工マスク31とは離間されている。加工マスク31の下方には、成膜源11が配置されている。 The substrate 32 disposed on the substrate holder 22 is positioned above the processing mask 31 disposed on the mask holding device 21, and the substrate 32 and the processing mask 31 are separated from each other. A film forming source 11 is disposed below the processing mask 31.
 成膜源11は、この例ではスパッタリングターゲットであり、真空槽10には、スパッタガス源18が接続されており、スパッタガス源18から真空槽10内に、スパッタリングガスを導入できるようにされている。 In this example, the film forming source 11 is a sputtering target, and a sputtering gas source 18 is connected to the vacuum chamber 10 so that the sputtering gas can be introduced into the vacuum chamber 10 from the sputtering gas source 18. Yes.
 加工マスク31は金属製の板であり、その板には所定パターンの貫通孔(貫通溝を含む)33が形成されており、マスク保持装置21に配置された加工マスク31の片面は、基板32と対面し、反対側の面は成膜源11と対面している。 The processing mask 31 is a metal plate, and a through-hole (including a through-groove) 33 having a predetermined pattern is formed on the plate. One side of the processing mask 31 disposed in the mask holding device 21 is a substrate 32. The opposite surface faces the film forming source 11.
 基板32が基板ホルダ22に配置される際には、機械的なアラインメントがされており、加工マスク31と基板32とは、低精度の位置合わせが行われた状態になっている。
 加工マスク31と基板32との間の位置合わせがされたときの位置関係に対し、機械的な位置合わせが行われた状態では、実際の相対位置の誤差は大きくなっており、従って、位置合わせの精度を高くするために、アラインメント装置2による位置合わせを行う。
When the substrate 32 is placed on the substrate holder 22, mechanical alignment is performed, and the processing mask 31 and the substrate 32 are in a state of low-precision alignment.
With respect to the positional relationship when the processing mask 31 and the substrate 32 are aligned, in the state in which the mechanical alignment is performed, the error in the actual relative position is large. In order to increase the accuracy of the alignment, alignment by the alignment device 2 is performed.
 アラインメント装置2は、移動装置14と、撮像装置12とを有している。
 撮像装置12は、二台のカメラ121、122を有している。真空槽10の、基板ホルダ22の上方位置には、透明な窓部151、152が気密に設けられており、二台のカメラ121、122は真空槽10の外部に配置され、窓部151、152を介して、真空槽10の内部の基板ホルダ22に配置された基板32を撮像できるようにされている。
The alignment device 2 includes a moving device 14 and an imaging device 12.
The imaging device 12 has two cameras 12 1 and 12 2 . Transparent windows 15 1 and 15 2 are airtightly provided above the substrate holder 22 in the vacuum chamber 10, and the two cameras 12 1 and 12 2 are disposed outside the vacuum chamber 10. The substrate 32 disposed on the substrate holder 22 inside the vacuum chamber 10 can be imaged through the windows 15 1 and 15 2 .
 加工マスク31と基板32とは、正方形又は長方形の四角形形状であり、加工マスク31と基板32との四隅のうち、対角場所(隣り合っていない角付近の場所)にマスクアラインメントマークと基板アラインメントマークがそれぞれ少なくとも一個ずつ設けられている。 The processing mask 31 and the substrate 32 have a square shape such as a square or a rectangle, and a mask alignment mark and a substrate alignment are arranged at diagonal positions (locations near non-adjacent corners) among the four corners of the processing mask 31 and the substrate 32. At least one mark is provided for each.
 基板32は透明であり、カメラ121、122は、基板32を透過した光によって、基板32が重なった加工マスク31を撮像できるようになっており、二台のカメラ121、122は、マスクアラインメントマークと基板アラインメントマークが位置する対角場所が撮像範囲内に入る場所に配置されている。 The substrate 32 is transparent, and the cameras 12 1 and 12 2 can take an image of the processing mask 31 on which the substrate 32 is overlapped by the light transmitted through the substrate 32. The two cameras 12 1 and 12 2 The diagonal location where the mask alignment mark and the substrate alignment mark are located is arranged at a location within the imaging range.
 機械的なアラインメントがされた状態では、同じ対角場所に位置するマスクアラインメントマークと基板アラインメントマークとは近接しており、対角場所で近接するマスクアラインメントマークと基板アラインメントマークとは、二台のカメラ121、122のうちのいずれかのカメラ121、122の撮像範囲内に位置するようになっている。 In the mechanically aligned state, the mask alignment mark and the substrate alignment mark located at the same diagonal location are close to each other, and the mask alignment mark and the substrate alignment mark that are close to each other at the diagonal location are adjacent to each other. It is adapted to position the camera 12 1, 12 camera 12 1 of one of the 2, 12 2 of the imaging range.
 後述する加工マスク31と基板32とを接近させる近接移動のときに、加工マスク31はカメラ121、122に対して静止されており、カメラ121、122は、マスクアラインメントマークに焦点を位置させている。 When the approach movement to approach the processing mask 31 and the substrate 32 to be described later, processing mask 31 is stationary relative to the camera 12 1, 12 2, camera 12 1, 12 2, the focus on the mask alignment mark It is located.
 従って、マスクアラインメントマークは細部も観察することができるのに対し、基板アラインメントマークは、焦点位置よりもカメラ121、122に近い場所に位置することになり、焦点に位置するときよりも画像がぼけやすい。 Therefore, while the mask alignment mark can also observe details, the substrate alignment mark is located closer to the cameras 12 1 and 12 2 than the focal position, and the image is larger than when it is located at the focal point. Easy to blur.
 そのため、マスクアラインメントマークの輪郭線は、角の多い十字形形状であり、画像がぼけた場合には角部が検出できず、位置が特定できなくなるが、焦点上では、角部を検出して正確に位置を特定できるようにされている。 Therefore, the outline of the mask alignment mark has a cross shape with many corners, and if the image is blurred, the corner cannot be detected and the position cannot be specified. The position can be specified accurately.
 それに対し、基板アラインメントマークの輪郭線は、角が無く、マスクアラインメントマークよりも大きな円形が採用されており、焦点に位置した場合でも正確に位置を特定しにくいが、画像がぼけた場合でも中心はほぼ特定できるので、低精度でも位置を特定することができる。
 なお、十字形形状と円形形状は、輪郭線を黒とすると、輪郭線の内側は黒で塗りつぶしておくことが望ましい。
On the other hand, the outline of the substrate alignment mark has no corners and a larger circle than the mask alignment mark is adopted, so it is difficult to pinpoint the position accurately even if it is located at the focal point, but it is centered even if the image is blurred Can be almost specified, so the position can be specified even with low accuracy.
In the cross shape and the circular shape, it is desirable that the inside of the contour line is painted black when the contour line is black.
 次に、マスクアラインメントマークと基板アラインメントマークとの位置関係について説明すると、先ず、基板32は、基板32の縁部分が基板ホルダ22と接触されており、基板32の中央部分は基板ホルダ22には接触しないようにされている、その結果、基板32の重量により、図4(a)に示すように、基板32は撓んで中央部分が垂下している。 Next, the positional relationship between the mask alignment mark and the substrate alignment mark will be described. First, the substrate 32 has an edge portion of the substrate 32 in contact with the substrate holder 22, and the central portion of the substrate 32 is not in the substrate holder 22. As a result, due to the weight of the substrate 32, as shown in FIG. 4A, the substrate 32 is bent and the central portion is suspended.
 加工マスク31には撓みが無いが、基板32にも撓みが無い状態で基板ホルダ22に配置されたときのことを考えると、その場合は、離間した対角場所にそれぞれ位置する二個の基板アラインメントマークとマスクアラインメントマークとを重ねて配置することができるように、マスクアラインメントマークと基板アラインメントマークとが形成されている。つまり、加工マスク31と基板32に撓みが無いときには、対角場所のマスクアラインメントマークの中心間の距離と、対角場所の基板アラインメントマークの中心間の距離は等しく形成されており、重ねて配置されたときには、基板32の薄膜を形成する部分が貫通孔33と対面し、加工マスク31と基板32とは、正確な位置合わせがされた位置関係になっている。 In consideration of the case where the processing mask 31 is not bent, but the substrate 32 is disposed on the substrate holder 22 in a state where there is no deflection, in that case, in this case, the two substrates respectively located at the diagonal positions apart from each other. The mask alignment mark and the substrate alignment mark are formed so that the alignment mark and the mask alignment mark can be arranged in an overlapping manner. That is, when the processing mask 31 and the substrate 32 are not bent, the distance between the centers of the mask alignment marks at the diagonal positions and the distance between the centers of the substrate alignment marks at the diagonal positions are formed to be equal to each other. When this is done, the portion of the substrate 32 where the thin film is formed faces the through-hole 33, and the processing mask 31 and the substrate 32 are in a positional relationship in which they are accurately aligned.
 基板アラインメントマークの中心間を結ぶ直線の長さは、基板32が撓むと短縮されるから、基板アラインメントマークの中心間の距離は、基板32が撓むと短くなるので、基板32が撓んでいるときには、対角場所の二個の基板アラインメントマークを、対角場所の二個のマスクアラインメントマーク上に一緒に重ねて配置することはできなくなる。 Since the length of the straight line connecting the centers of the substrate alignment marks is shortened when the substrate 32 is bent, the distance between the centers of the substrate alignment marks is shortened when the substrate 32 is bent. The two substrate alignment marks at the diagonal locations cannot be placed together on the two mask alignment marks at the diagonal locations.
 基板32が基板ホルダ22に配置された時には、基板ホルダ22に配置された基板32と、マスク保持装置21に配置された加工マスク31とは、基板32の撓みを無視すると、互いに平行に離間して位置している。
 加工マスク31と基板32との間の離間距離は、撓みを無視すると、加工マスク31と基板32との間に位置し、加工マスク31と基板32とに垂直に交叉する線分の長さである。
When the substrate 32 is disposed on the substrate holder 22, the substrate 32 disposed on the substrate holder 22 and the processing mask 31 disposed on the mask holding device 21 are separated from each other in parallel if the bending of the substrate 32 is ignored. Is located.
The separation distance between the processing mask 31 and the substrate 32 is a length of a line segment that is located between the processing mask 31 and the substrate 32 and intersects the processing mask 31 and the substrate 32 perpendicularly when bending is ignored. is there.
 基板32の撓みを考慮して、加工マスク31と基板32とが正確に位置合わせされた位置関係を規定すると、加工マスク31と撓んだ基板32とを、離間距離の線分に垂直な方向には移動しないようにして、接近させたときに、先ず、基板32が撓んで垂下した部分の最下点が加工マスク31に接触するので、接触した部分が摺動しないようにして更に接近させて、基板32を加工マスク31に密着させたときに、マスクアラインメントマークと基板アラインメントマークとが重なり合った場合には、接触前の加工マスク31と撓んだ基板32とは、正確に位置合わせがされた位置関係にあったことになる。 When the positional relationship in which the processing mask 31 and the substrate 32 are accurately aligned is defined in consideration of the bending of the substrate 32, the processing mask 31 and the bent substrate 32 are arranged in a direction perpendicular to the line segment of the separation distance. When the substrate 32 is brought close to the processing mask 31, the lowermost point of the portion where the substrate 32 is bent and droops comes into contact with the processing mask 31. When the substrate 32 is brought into close contact with the processing mask 31, if the mask alignment mark and the substrate alignment mark overlap, the processing mask 31 before contact and the bent substrate 32 are accurately aligned. It was in the position relationship that was made.
 基板32が撓んだ状態での位置合わせ方法を開始するためには、先ず、撮像工程で、撮像装置12の二台のカメラ121、122を用いて、対角場所のマスクアラインメントマークと基板アラインメントマークとを同時刻に撮像し、撮像結果を得る処理を行う。 In order to start the alignment method in a state in which the substrate 32 is bent, first, in the imaging step, the two camera 12 1 , 12 2 of the imaging device 12 are used to detect the mask alignment mark at the diagonal location. The substrate alignment mark is imaged at the same time, and processing for obtaining the imaging result is performed.
 図3(a)は、撮像結果45a、45bを一台又は二台のディスプレイ上に表示した状態を示しており、一方のカメラ121の撮像結果45aの中と、他方のカメラ122の撮像結果45bの中には、マスクアラインメントマークの画像41a、41bと基板アラインメントマークの画像42a、42bとがそれぞれ一個ずつ含まれている。 3 (a) is the imaging result 45a, 45b shows a state of displaying on a single or two units on a display of the inside of one of the camera 12 first imaging results 45a, other camera 12 second imaging The result 45b includes one mask alignment mark image 41a and 41b and one substrate alignment mark image 42a and 42b.
 二台のカメラ121、122の撮影結果45a、45bから、マスクアラインメントマークの画像41a、41b間の距離と、基板アラインメントマークの画像42a、42b間の距離とが同じでなく、マスクアラインメントマークの画像41a、41bと基板アラインメントマークの画像42a、42bとを重ね合わせることはできないことが分かる。 From the imaging results 45a and 45b of the two cameras 12 1 and 12 2 , the distance between the mask alignment mark images 41a and 41b and the distance between the substrate alignment mark images 42a and 42b are not the same, and the mask alignment mark It can be seen that the images 41a and 41b and the substrate alignment mark images 42a and 42b cannot be superimposed.
 図3(a)の撮像結果45a、45b(及び同図(b)の撮像結果46a、46b、同図(c)の撮像結果47a、47b)中の符号49は、加工マスク31上で、対角場所に位置するマスクアラインメントマークの中心を結んだ対角線を示している。 Reference numeral 49 in the imaging results 45a and 45b in FIG. 3A (and the imaging results 46a and 46b in FIG. 3B and the imaging results 47a and 47b in FIG. The diagonal line which connected the center of the mask alignment mark located in a corner place is shown.
 撓みにより基板32が変形するときは、基板32の中心が撓みの最下点になるものとすると、撓んだ基板32を真上から見たときの形状は、基板32の最下点を中心にして縮小されたように見える。撓みの無い状態の基板32と、撓んだ基板32とは相似の関係にあるものとすると、マスクアラインメントマークと基板アラインメントマークとの間が正確に位置合わせされた位置関係にあるときには、図3(b)の撮像結果46a、46bのように、基板アラインメントマークの画像42a、42bの中心が、対角線49上に位置し、且つ、一方の撮像結果46a中の基板アラインメントマークの画像42aの中心とマスクアラインメントマークの画像41aの中心との間の距離と、他方の撮像結果46b中の基板アラインメントマークの画像42bの中心とマスクアラインメントマークの画像41bの中心との間の距離とが等しくなる。 When the substrate 32 is deformed by bending, the center of the substrate 32 becomes the lowest point of bending, and the shape when the bent substrate 32 is viewed from directly above is centered on the lowest point of the substrate 32. It seems to have been reduced. Assuming that the substrate 32 in an unbent state and the bent substrate 32 are in a similar relationship, when the mask alignment mark and the substrate alignment mark are in a correctly aligned positional relationship, FIG. Like the imaging results 46a and 46b of (b), the centers of the substrate alignment mark images 42a and 42b are located on the diagonal line 49, and the center of the substrate alignment mark image 42a in one imaging result 46a is The distance between the center of the mask alignment mark image 41a and the distance between the center of the image 42b of the substrate alignment mark and the center of the image 41b of the mask alignment mark in the other imaging result 46b become equal.
 低精度で位置合わせがされたときの図3(a)の撮像結果45a、45bでは、基板アラインメントマークの画像42a、42bの中心と、マスクアラインメントマークの画像41a、41bの中心とは、正確に位置合わせがされた位置関係のときに示される関係にはならない。
 撮像工程によって、撮像結果45a、45bが得られた後、処理は誤差検出工程に移行される。
In the imaging results 45a and 45b of FIG. 3A when alignment is performed with low accuracy, the centers of the substrate alignment mark images 42a and 42b and the centers of the mask alignment mark images 41a and 41b are accurately The relationship is not shown when the positional relationship is aligned.
After the imaging results 45a and 45b are obtained by the imaging process, the process proceeds to an error detection process.
 撮像装置12は、制御装置13に接続されており、撮像結果45a、45bは制御装置13に出力され、撮像結果45a、45bから、撮像結果45a、45bを求めたときの加工マスク31と基板32との位置関係と、正確に位置合わせがされたときの位置関係との間の誤差を求めるために、制御装置13により、撮像結果45a、45b中のマスクアラインメントマークの画像41a、41bの中心であるマスク側中心点と、基板アラインメントマークの画像42a、42bの中心である基板側中心点とのいずれか一方の側の中心を始点とし、他方の側の中心を終点とした第一、第二の撮像ベクトルがそれぞれ求められる。 The imaging device 12 is connected to the control device 13, and the imaging results 45a and 45b are output to the control device 13, and the processing mask 31 and the substrate 32 when the imaging results 45a and 45b are obtained from the imaging results 45a and 45b. And the center relationship between the mask alignment mark images 41 a and 41 b in the imaging results 45 a and 45 b by the control device 13. A first and second center having a center on one side of a certain mask side center point and a substrate side center point which is the center of the images 42a and 42b of the substrate alignment mark, and a center on the other side as an end point. Are respectively obtained.
 そのような第一、第二の撮像ベクトルは、同じ側の中心点を支点としたときに、加工マスク31と基板32との間の位置関係が、正確に位置合わせがされた位置関係になっているときは、対角線49と平行であり、互いの大きさが等しく、また、向きが反対になっている。 In such first and second imaging vectors, the positional relationship between the processing mask 31 and the substrate 32 is a positional relationship in which the alignment is accurately performed when the center point on the same side is a fulcrum. Are parallel to the diagonal line 49, have the same size, and are opposite in direction.
 図3(a)の符号51a、51bは、撮像結果45a、45bから得られた第一、第二の撮像ベクトルであり、正確な位置合わせがされたときの撮像結果46a、46bから得られる撮像ベクトル52a、52bと、実際の撮像結果45a、45bから求めた第一、第二の撮像ベクトル51a、51bとの差から、撮像工程で撮像結果45a、45bが得られたときの加工マスク31と基板32との位置関係と、正確に位置合わせされたときの加工マスク31と基板32との位置関係との間の誤差角度と誤差距離及び誤差方向とが求められる。誤差距離は、誤差の値の絶対値であるものとする。 Reference numerals 51a and 51b in FIG. 3A are the first and second imaging vectors obtained from the imaging results 45a and 45b, and the imaging obtained from the imaging results 46a and 46b when accurate alignment is performed. The processing mask 31 when the imaging results 45a and 45b are obtained in the imaging process from the difference between the vectors 52a and 52b and the first and second imaging vectors 51a and 51b obtained from the actual imaging results 45a and 45b. An error angle, an error distance, and an error direction between the positional relationship with the substrate 32 and the positional relationship between the processing mask 31 and the substrate 32 when accurately aligned are obtained. The error distance is assumed to be the absolute value of the error value.
 加工マスク31と基板32とを相対的に移動させ、誤差角度と誤差距離とがゼロになるように誤差方向に基づいて相対位置を変えれば、加工マスク31と基板32とは位置合わせされたことになる。
 誤差検出工程で誤差距離と誤差角度と誤差方向とが求められると、相対移動の速度である相対速度を決定するために、処理は求速度工程に移行する。
If the processing mask 31 and the substrate 32 are moved relative to each other and the relative position is changed based on the error direction so that the error angle and the error distance become zero, the processing mask 31 and the substrate 32 are aligned. become.
When the error distance, the error angle, and the error direction are obtained in the error detection process, the process proceeds to the speed finding process in order to determine the relative speed that is the speed of the relative movement.
 制御装置13には、主許容誤差量と副許容誤差量とが記憶されており、求速度工程では、算出した誤差の値(ここでは誤差距離の値)と副許容誤差量とが比較され、比較結果が、算出した誤差の値が副許容誤差量以下を示している場合には、後述する近接工程に移行し、算出した誤差の値が副許容誤差量よりも大きいことを示している場合には、相対速度を次の手順で求める。なお、誤差距離に関する大小の比較は、絶対値で行うものとする。求速度工程では、近接工程に移行させる際には、相対速度をゼロに設定するものとする。 The control device 13 stores a main allowable error amount and a sub allowable error amount. In the speed finding step, the calculated error value (here, the error distance value) is compared with the sub allowable error amount, When the comparison result indicates that the calculated error value is less than or equal to the sub-allowable error amount, the process proceeds to the proximity process described later and indicates that the calculated error value is greater than the sub-allowable error amount The relative speed is obtained by the following procedure. In addition, the magnitude comparison regarding error distance shall be performed by an absolute value. In the speed finding process, the relative speed is set to zero when shifting to the proximity process.
 相対移動の速度を相対速度とすると、制御装置13には、誤差距離と相対速度とが関連づけられた誤差速度関係(誤差の値と相対速度の関係)が記憶されている。
 図2は、誤差速度関係の一例を示したグラフであり、横軸は誤差の値、縦軸は相対速度である。誤差の値は誤差距離である。
Assuming that the relative movement speed is a relative speed, the control device 13 stores an error speed relationship (relation between an error value and a relative speed) in which an error distance and a relative speed are associated with each other.
FIG. 2 is a graph showing an example of the error speed relationship, where the horizontal axis represents the error value and the vertical axis represents the relative speed. The error value is the error distance.
 誤差速度関係には、所定の値を有する最大誤差距離±Dと、許容距離±Fとが設定されており(-D<-F、F<D)、誤差距離Eが最大誤差距離±D以上の範囲(E≦-D,D≦E)では、誤差距離Eは、ゼロではない一定の相対速度Sに関連付けられており、誤差距離Eが許容距離±F以下の範囲(-F≦E≦F)では、誤差距離Eは、ゼロの相対速度Sに関連付けられている。相対速度Sがゼロの場合は、加工マスク31と基板32とは相対的に静止される。 For the error speed relationship, a maximum error distance ± D having a predetermined value and an allowable distance ± F are set (−D <−F, F <D), and the error distance E is equal to or greater than the maximum error distance ± D. In the range (E ≦ −D, D ≦ E), the error distance E is associated with a constant non-zero relative speed S, and the error distance E is within the allowable distance ± F or less (−F ≦ E ≦ In F), the error distance E is associated with a zero relative speed S. When the relative speed S is zero, the processing mask 31 and the substrate 32 are relatively stationary.
 誤差距離Eが許容距離±Fよりも大きく、最大誤差距離±Dよりも小さい高精度範囲内では(-D<E<-F,F<E<D)、異なる値の相対速度が設定されていて、大きい相対速度と関連付けられた誤差距離は、小さい相対速度に関連付けられた誤差距離よりも大きいようにされている。 Within a high accuracy range where the error distance E is larger than the allowable distance ± F and smaller than the maximum error distance ± D (−D <E <−F, F <E <D), different relative speeds are set. Thus, the error distance associated with the large relative velocity is made larger than the error distance associated with the small relative velocity.
 この高精度範囲内では、誤差距離が小さくなると、相対速度が小さくなるように設定されており、特に、誤差距離と相対速度は一次関数の関係にされており、高精度範囲内では、誤差距離が小さくなるほど、相対速度はゼロに近づく。 Within this high accuracy range, the relative speed is set to be small when the error distance is small. In particular, the error distance and the relative speed are in a linear function, and within the high accuracy range, the error distance is The smaller the is, the closer the relative speed approaches zero.
 なお、シミュレーションによると、一次関数の傾きは、大きい方が誤差距離Eが許容距離±F以下の範囲になる時間は短かった。
 なお、一次関数などの関数に従って、徐々に小さくなる設定に限らず、相対速度は、段階的に小さくなるように設定してもよい。
According to the simulation, when the slope of the linear function is larger, the time during which the error distance E is within the allowable distance ± F or less is shorter.
It should be noted that the relative speed may be set to decrease stepwise in accordance with a function such as a linear function.
 なお、求速度工程では、制御装置13が、加工マスク31と基板32とを、誤差角度が無くなる角度だけ加工マスク31と基板32とを相対的に回転移動させて誤差角度を解消した後の誤差方向と誤差距離とを求めて記憶し、記憶された誤差距離と誤差速度関係とから相対速度を求めるようにしてもよい。 In the speed finding process, the control device 13 causes the error after the error angle is eliminated by relatively rotating and moving the process mask 31 and the substrate 32 by an angle at which the error angle disappears. The direction and the error distance may be obtained and stored, and the relative speed may be obtained from the stored error distance and error speed relationship.
 求速度工程では、制御装置13は、直前の撮像結果から求めた誤差距離と設定された誤差速度関係とから相対速度を求め、その後、処理は移動工程に移行される。
 移動工程では、移動装置14によって、次のように、加工マスク31と基板32とが相対移動される。
In the speed finding process, the control device 13 obtains a relative speed from the error distance obtained from the immediately preceding imaging result and the set error speed relationship, and then the process proceeds to the moving process.
In the moving process, the processing mask 31 and the substrate 32 are relatively moved by the moving device 14 as follows.
 移動装置14は、水平移動装置14aと、近接移動装置14bとを有している。
 水平移動装置14aは、マスク保持装置21と基板ホルダ22とを、離間距離の線分に対して垂直な平面内で相対的に移動させることで、マスク保持装置21に配置された加工マスク31と、基板ホルダ22に配置された基板32との間を、離間距離の線分と垂直な平面内で、相対的に直線移動と回転移動とをさせる。
 移動装置14は制御装置13によって制御されており、水平移動装置14aの動作と、近接移動装置14bの動作とは、制御装置13によって制御されている。
The moving device 14 includes a horizontal moving device 14a and a proximity moving device 14b.
The horizontal movement device 14a moves the mask holding device 21 and the substrate holder 22 relative to each other within a plane perpendicular to the line segment of the separation distance, thereby allowing the processing mask 31 disposed on the mask holding device 21 to The substrate 32 arranged on the substrate holder 22 is relatively linearly and rotationally moved within a plane perpendicular to the line segment of the separation distance.
The moving device 14 is controlled by the control device 13, and the operation of the horizontal moving device 14 a and the operation of the proximity moving device 14 b are controlled by the control device 13.
 制御装置13は、予め近接移動装置14bの動作は停止させておき、移動工程では、水平移動装置14aを動作させ、マスク保持装置21と基板ホルダ22との間の相対的な移動の移動方向を、直前の誤差検出工程で求めた誤差距離と誤差角度とが小さくなるように、直前の誤差検出工程で求めた誤差方向に基づいて変更し、相対的な移動を、直前の求速度工程で求めた相対速度の値で移動するようにする。 The control device 13 stops the operation of the proximity moving device 14b in advance, and in the moving process, operates the horizontal moving device 14a to change the moving direction of the relative movement between the mask holding device 21 and the substrate holder 22. In order to reduce the error distance and error angle obtained in the immediately preceding error detection process, change based on the error direction obtained in the immediately preceding error detection process, and find the relative movement in the immediately preceding speed finding process. It moves at the value of relative speed.
 相対移動の速度が、直前の求速度工程で求めた相対速度になったところで、移動工程は終了するが、移動工程が終了しても加工マスク31と基板32との間の相対移動は、直前の求速度工程で求めた相対速度に維持される。
 加工マスク31と基板32との間の相対的な移動の速度が、直前の求速度工程で求めた相対速度になると、その相対速度での相対移動を維持しながら、移動工程は終了し、処理は撮像工程に移行される。
When the relative movement speed reaches the relative speed obtained in the immediately preceding speed finding step, the moving step ends. However, even if the moving step ends, the relative movement between the processing mask 31 and the substrate 32 is immediately before. The relative speed obtained in the speed finding step is maintained.
When the relative movement speed between the processing mask 31 and the substrate 32 reaches the relative speed obtained in the immediately preceding speed finding process, the moving process is completed while maintaining the relative movement at the relative speed, and the processing is completed. Is transferred to an imaging process.
 撮像工程では、上述したように、撮像装置12が二台のカメラ121、122を用いて、マスクアラインメントマークと基板アラインメントマークとの組を対角場所で同時刻に撮像し、撮像結果を得る。
 撮像工程中も、加工マスク31と基板32とは、直前の求速度工程で求めた相対速度で相対移動しており、その状態で、撮像して求められた撮像結果は、制御装置13に出力されて撮像工程は終了し、処理は撮像工程から誤差検出工程に移行される。
In the imaging step, as described above, the imaging device 12 uses the two cameras 12 1 and 12 2 to capture a set of mask alignment marks and substrate alignment marks at the same time at diagonal positions, and the imaging results are obtained. obtain.
Even during the imaging process, the processing mask 31 and the substrate 32 are relatively moved at the relative speed obtained in the immediately preceding speed finding process, and in this state, the imaging result obtained by imaging is output to the control device 13. Then, the imaging process is completed, and the process proceeds from the imaging process to the error detection process.
 誤差検出工程では、直前の撮像結果から誤差距離が求められ、求めた誤差距離と副許容誤差量とが比較される。ここでは比較結果から、処理は求速度工程に移行されたものとすると、直前の誤差検出工程では、誤差距離と、誤差角度と、誤差方向とが求められており、求速度工程では、上述した手順によって、加工マスク31と基板32とが相対移動しながら誤差距離と誤差速度関係とから相対速度を求めると、求速度工程は終了し、処理は移動工程に移行される。 In the error detection step, the error distance is obtained from the immediately preceding imaging result, and the obtained error distance is compared with the sub-allowable error amount. Here, based on the comparison result, assuming that the process has been shifted to the speed finding process, the error distance, the error angle, and the error direction are obtained in the immediately preceding error detecting process. If the relative speed is obtained from the error distance and the error speed relationship while the processing mask 31 and the substrate 32 move relative to each other according to the procedure, the speed finding process is terminated, and the process is shifted to the moving process.
 移動工程では、マスク保持装置21と基板ホルダ22との相対的な移動を、直前の誤差検出工程で求めた誤差角度と誤差距離とが小さくなる方向にして、相対移動の速度が直前の求速度工程で求めた相対速度になったところで、終了し、処理を撮像工程に移行させる。 In the moving step, the relative movement between the mask holding device 21 and the substrate holder 22 is set to a direction in which the error angle and error distance obtained in the immediately previous error detecting step are reduced, and the relative moving speed is the immediately preceding speed finding. When the relative speed obtained in the process is reached, the process is terminated, and the process proceeds to the imaging process.
 このように、マスク保持装置21と基板ホルダ22とを相対的に移動させることで、加工マスク31と基板32とを相対的に移動させながら、撮像工程と、誤差検出工程と、求速度工程と、移動工程とが繰り返し行われており、誤差距離と誤差角度は小さくなる。 As described above, by relatively moving the mask holding device 21 and the substrate holder 22, the imaging mask, the error detection step, and the speed finding step are performed while relatively moving the processing mask 31 and the substrate 32. The moving process is repeatedly performed, and the error distance and the error angle are reduced.
 なお、撮像工程での処理が行われた後、次の撮像工程での処理が行われるまでに、加工マスク31と基板32とは、相対移動しているので、撮像工程で撮像結果が求められた後、一旦誤差が許容距離よりも小さくなったとしても、次の撮像工程で撮像結果が求められたときには、誤差が増大し、副許容誤差量よりも大きくなっている場合がある。
 つまり、加工マスク31と基板32とが近づいて位置合わせが行われても、位置合わせされた位置を通り過ぎてしまう場合があり、通り過ぎる距離が大きいと、いつまでも誤差を副許容誤差量以下の大きさにすることができない。
Note that, after the processing in the imaging process is performed and before the processing in the next imaging process is performed, the processing mask 31 and the substrate 32 are relatively moved, so that an imaging result is obtained in the imaging process. After that, even if the error once becomes smaller than the allowable distance, when the imaging result is obtained in the next imaging step, the error may increase and be larger than the sub allowable error amount.
That is, even if the processing mask 31 and the substrate 32 are close to each other and alignment is performed, the alignment may pass through the alignment position. If the distance that passes is large, the error will always be smaller than the sub-allowable error amount. I can't.
 本発明では、誤差距離が小さくなると、求速度工程で設定する相対速度の値は小さくなるので、通り過ぎたとしても、その距離は相対速度が大きい場合よりも短くなっており、短時間で誤差距離を許容距離以下にすることができる。
 誤差検出工程で求めた誤差距離が、許容距離以下になったときには、求速度工程では、上記誤差速度関係に従って、相対速度はゼロに設定されるものとする。その場合、マスク保持装置21と基板ホルダ22との相対移動は停止された状態で、処理は下記の近接工程に移行する。
In the present invention, when the error distance becomes small, the value of the relative speed set in the speed finding step becomes small, so even if it passes, the distance is shorter than when the relative speed is large, and the error distance is shortened in a short time. Can be less than or equal to the allowable distance.
When the error distance obtained in the error detection step is equal to or smaller than the allowable distance, the relative velocity is set to zero in the speed finding step according to the error speed relationship. In that case, with the relative movement between the mask holding device 21 and the substrate holder 22 stopped, the process proceeds to the proximity process described below.
 近接移動装置14bは、マスク保持装置21と基板ホルダ22とを接近させ、マスク保持装置21と基板ホルダ22との間の離間した距離を短くするように構成されている。近接移動装置14bは、マスク保持装置21と基板ホルダ22とのうち、いずれか一方だけ、又は両方を移動させることができる。 The proximity moving device 14 b is configured to bring the mask holding device 21 and the substrate holder 22 close to each other and shorten the distance between the mask holding device 21 and the substrate holder 22. The proximity movement device 14 b can move only one or both of the mask holding device 21 and the substrate holder 22.
 近接工程に移行する前は、加工マスク31と基板32との間は離間しているが、近接工程では、加工マスク31と基板32とを密着した状態にするために、制御装置13は近接移動装置14bを動作させ、マスク保持装置21と基板ホルダ22とのいずれか一方、又は両方を移動させ、マスク保持装置21と基板ホルダ22とが接近する近接移動を開始させる。 Before shifting to the proximity process, the processing mask 31 and the substrate 32 are separated from each other, but in the proximity process, the control device 13 moves close to move the processing mask 31 and the substrate 32 in close contact with each other. The apparatus 14b is operated to move either one or both of the mask holding device 21 and the substrate holder 22 and start the proximity movement in which the mask holding device 21 and the substrate holder 22 approach each other.
 近接工程によって、加工マスク31と基板32との近接移動を開始したときには、加工マスク31と基板32とは、離間距離を短縮させる方向に移動されるが、離間距離に対して垂直な方向には移動されないため、近接移動が開始されても、加工マスク31と基板32との間の誤差距離と誤差方向の大きさは変わらないと考えることができる。 When the proximity movement of the processing mask 31 and the substrate 32 is started by the proximity process, the processing mask 31 and the substrate 32 are moved in a direction to shorten the separation distance, but in a direction perpendicular to the separation distance. Since it is not moved, it can be considered that the error distance between the processing mask 31 and the substrate 32 and the size of the error direction do not change even when the proximity movement is started.
 近接移動が開始される際には、誤差距離は、副許容誤差量以下であったから、近接移動が開始されても、誤差距離が、副許容誤差量以下である状態は維持されるべきものである。
 しかしながら近接移動装置14bの動作には、機械精度、振動、摩耗などに起因する不正確性があり、その場合には、近接移動に伴って、加工マスク31と基板32とが相対移動し、誤差距離や誤差角度の大きさは変化する。近接移動が開始された後、誤差距離や誤差角度が大きくなると、位置合わせが必要になる。
When the proximity movement is started, the error distance is less than or equal to the sub-allowable error amount. Therefore, even if the proximity movement is started, the state where the error distance is less than or equal to the sub-allowable error amount should be maintained. is there.
However, the operation of the proximity movement device 14b has inaccuracy due to mechanical accuracy, vibration, wear, and the like. In this case, the processing mask 31 and the substrate 32 move relative to each other due to the proximity movement, and an error occurs. The distance and the error angle change. If the error distance or error angle increases after the proximity movement is started, alignment is required.
 誤差距離や誤差角度の大きさを監視するために、近接工程は、近接移動が開始された後、終了し、処理が撮像工程に移行される。
 撮像は、撮像結果が得られた後、終了し、処理は誤差検出工程に移行される。
 誤差検出工程は、誤差距離と、誤差角度と、誤差方向とが求められた後、終了し、処理は速度設定工程に移行される。
In order to monitor the magnitude of the error distance and the error angle, the proximity process is terminated after the proximity movement is started, and the processing is shifted to the imaging process.
Imaging is terminated after the imaging result is obtained, and the process proceeds to an error detection step.
The error detection process ends after the error distance, error angle, and error direction are obtained, and the process proceeds to the speed setting process.
 アラインメント装置2には、所定の値の定速値が相対速度として記憶されており、速度設定工程では、誤差の値(ここでは、誤差の絶対値であり誤差距離の大きさである。)と、主許容誤差量とが比較され、比較結果が、誤差距離が主許容誤差量よりも大きいことを示しているときは、相対速度は記憶された定速値に設定され、誤差距離が主許容誤差量以下の時は、相対速度はゼロに設定されて終了し、処理は移動工程に移行される。 The alignment device 2 stores a constant speed value of a predetermined value as a relative speed. In the speed setting step, an error value (here, an absolute value of an error and a magnitude of an error distance) is used. The main allowable error amount is compared and the comparison result shows that the error distance is larger than the main allowable error amount, the relative speed is set to the stored constant speed value, and the error distance is the main allowable error. When the error amount is less than or equal to the error amount, the relative speed is set to zero and the process ends, and the process proceeds to the moving process.
 移動工程では、上述したように、誤差距離と誤差方向とが小さくなるように、マスク保持装置21と基板ホルダ22とを、離間距離の方向とは垂直な方向への、相対移動を設定された相対速度にする。
 マスク保持装置21と基板ホルダ22との相対的な移動速度が、設定された相対速度になると、移動工程は終了し、処理は撮像工程に移行される。加工マスク31と基板32とは、設定された相対速度での移動が維持される。
In the moving process, as described above, the relative movement of the mask holding device 21 and the substrate holder 22 in the direction perpendicular to the direction of the separation distance is set so that the error distance and the error direction are reduced. Use relative speed.
When the relative moving speed between the mask holding device 21 and the substrate holder 22 reaches the set relative speed, the moving process ends, and the process proceeds to the imaging process. Movement of the processing mask 31 and the substrate 32 at the set relative speed is maintained.
 このように、近接移動をしながら、撮像工程と、誤差検出工程と、速度設定工程と、移動工程とが繰り返し行われており、誤差量が主許容誤差量以下の時は、離間距離とは垂直な方向には相対移動されず、誤差距離が主許容誤差量よりも大きいことが検出されると、誤差距離が小さくなるように、相対移動されるようになっている。
 主誤差許容量は、副誤差許容量と同じ値であってもよいし、異なる値であっても良い。
In this way, the imaging process, the error detection process, the speed setting process, and the movement process are repeatedly performed while moving close to each other, and when the error amount is less than or equal to the main allowable error amount, the separation distance is When it is detected that the error distance is larger than the main allowable error amount without being relatively moved in the vertical direction, the error distance is relatively decreased.
The main error allowable amount may be the same value as the sub error allowable amount or a different value.
 撮像工程と、誤差検出工程と、速度設定工程と、移動工程とが繰り返し行われている間、マスク保持装置21と基板ホルダ22との近接移動は継続して行われており、近接移動前の、基板32の垂下部分の下端と、加工マスク31の表面との間の距離を移動すると、基板32の垂下部分の下端と、加工マスク31の表面とは、図4(b)に示すように、接触する。 While the imaging process, the error detection process, the speed setting process, and the moving process are repeatedly performed, the proximity movement between the mask holding device 21 and the substrate holder 22 is continuously performed, When the distance between the lower end of the hanging portion of the substrate 32 and the surface of the processing mask 31 is moved, the lower end of the hanging portion of the substrate 32 and the surface of the processing mask 31 are as shown in FIG. ,Contact.
 接触した後も近接移動がされており、接触部分43の面積は、近接移動に従って、徐々に大きくなる。
 接触した後も、撮像工程と、誤差検出工程と、速度設定工程と、移動工程とは繰り返し行われており、移動工程では、直前の誤差検出工程で検出された誤差距離が主誤差許容量よりも大きいときに、基板32と加工マスク31とは、接触部分43が摺動しながら、離間距離と垂直な方向に、設定された相対速度で相対移動される。
 従って、接触面積は近接移動に伴って増加し、それに伴い、基板32が垂下した部分は次第に減少する。
 垂下部分の減少に伴い、基板32の対角場所に位置する基板アラインメントマーク間の距離は大きくなり、撓みの無い状態に近づく。
Proximity movement is performed after contact, and the area of the contact portion 43 gradually increases as the proximity movement occurs.
Even after contact, the imaging process, error detection process, speed setting process, and movement process are repeated, and in the movement process, the error distance detected in the previous error detection process is larger than the main error tolerance. Is larger, the substrate 32 and the processing mask 31 are relatively moved at a set relative speed in a direction perpendicular to the separation distance while the contact portion 43 slides.
Therefore, the contact area increases with the proximity movement, and accordingly, the portion where the substrate 32 hangs gradually decreases.
As the drooping portion decreases, the distance between the substrate alignment marks located at the diagonal locations of the substrate 32 increases and approaches a state without deflection.
 図4(c)には、接触部分43の面積が増加したときの状態が示されており、図3(c)には、この状態のときに、加工マスク31と基板32との間が正確に位置合わせされた位置関係になったときの撮像結果47a、47bが示されており、接触面積が増加しても、基板32を上方から見たときの形状は、撓みがないときの形状の相似であり、撮像ベクトル53a、53bは、対角線49と平行で、大きさが等しく、方向が反対であり、基板アラインメントマークの画像42a、42bは、マスクアラインメントマークの画像41a、41bに近づいているため、接触する前の正確な位置合わせがされたときの撮像ベクトル52a、52bよりも大きさが小さくなっている。 FIG. 4C shows a state when the area of the contact portion 43 is increased, and FIG. 3C shows an accurate distance between the processing mask 31 and the substrate 32 in this state. The imaging results 47a and 47b when the positional relationship is aligned with each other are shown. Even when the contact area increases, the shape when the substrate 32 is viewed from above is the shape when there is no deflection. The imaging vectors 53a and 53b are parallel to the diagonal line 49, have the same size, and have opposite directions, and the substrate alignment mark images 42a and 42b are close to the mask alignment mark images 41a and 41b. Therefore, the size is smaller than the image pickup vectors 52a and 52b when the accurate alignment is performed before the contact.
 接触面積が大きくなると、加工マスク31と基板32とを相対的に移動させる際に必要な力が大きくなり、水平方向移動装置14aの負担が大きくなるため、近接移動は継続しても、接触面積が所定値よりも大きくなる前に、相対速度をゼロに設定して、離間距離の線分とは垂直な方向の相対移動を終了させることができる。 As the contact area increases, the force required to move the processing mask 31 and the substrate 32 relatively increases, and the burden on the horizontal movement device 14a increases. The relative speed in the direction perpendicular to the line segment of the separation distance can be terminated by setting the relative speed to zero before the value becomes larger than the predetermined value.
 また、その相対速度は、相対移動に必要な力が所定値よりも大きくなったときにゼロに設定してもよいし、また、マスク保持装置21と基板ホルダ22との間の距離を検出して、近接移動によって、所定距離よりも短くなったときに、相対速度をゼロに設定しても良い。 The relative speed may be set to zero when the force required for the relative movement becomes larger than a predetermined value, or the distance between the mask holding device 21 and the substrate holder 22 is detected. Thus, the relative speed may be set to zero when the distance becomes shorter than the predetermined distance due to the proximity movement.
 以上説明したように、本発明によれば、加工マスク31と基板32とが接触していても、加工マスク31と基板32との間の位置合わせが行われるから、加工マスク31と基板32とが密着したときの位置合わせ精度は向上するので、基板32の表面の薄膜を形成する場所を、加工マスク31の貫通孔33上に正確に配置することができる。 As described above, according to the present invention, even if the processing mask 31 and the substrate 32 are in contact with each other, the alignment between the processing mask 31 and the substrate 32 is performed. Since the alignment accuracy when the two come into close contact with each other is improved, the place where the thin film on the surface of the substrate 32 is formed can be accurately arranged on the through hole 33 of the processing mask 31.
 従って、加工マスク31と基板32とが全面的に接触して密着されたときには、加工マスク31と基板32とは、主許容誤差の範囲内で、正確に位置合わせがされた状態に近い状態になるので、その状態で成膜源11から成膜材料の粒子を放出させ、加工マスク31の貫通孔33を通過した成膜材料の粒子(蒸気を含む)を基板32の表面に到達させる。その結果、基板32の表面には、薄膜を形成すべき位置に主許容誤差量の範囲内で、正確に薄膜が形成される。 Therefore, when the processing mask 31 and the substrate 32 are brought into full contact with each other and brought into close contact with each other, the processing mask 31 and the substrate 32 are in a state close to an accurately aligned state within the range of the main allowable error. Therefore, in this state, the film forming material particles are released from the film forming source 11, and the film forming material particles (including vapor) that have passed through the through holes 33 of the processing mask 31 reach the surface of the substrate 32. As a result, the thin film is accurately formed on the surface of the substrate 32 within the range of the main allowable error amount at the position where the thin film is to be formed.
 薄膜が所定膜厚に成長したところで、成膜源11からの成膜材料の粒子の放出を停止し、加工マスク31と基板32との間を離間させ、基板32を基板ホルダ22から取り外し、真空槽10の外部に搬出すると共に、未成膜の基板を基板ホルダ22に配置し、上記と同じ手順でアラインメントを行い、基板表面に成膜する。 When the thin film has grown to a predetermined thickness, the release of the particles of the film forming material from the film forming source 11 is stopped, the processing mask 31 and the substrate 32 are separated from each other, the substrate 32 is removed from the substrate holder 22, and the vacuum is removed. The substrate 10 is carried out of the tank 10, an undeposited substrate is placed on the substrate holder 22, alignment is performed in the same procedure as described above, and a film is formed on the substrate surface.
<他の例>
 上記速度設定工程では、誤差距離が主許容誤差量よりも大きいときに、一定値にしていたが、速度設定工程に替え、求速度工程を行い、近接移動させないときの誤差速度関係と同じ関係又は異なる関係を用いて、誤差距離の値に関連した大きさの相対速度を、近接移動するときの、相対移動の値にしてもよい。この場合、誤差が小さくなると、加工マスクと加工対象物との間の相対速度も小さくなるので、加工マスクと加工対象物とが通り過ぎる距離が小さくなり、高精度の位置合わせを短時間ですることができる。
<Other examples>
In the above speed setting process, when the error distance is larger than the main permissible error amount, it was a constant value, but instead of the speed setting process, the speed determination process is performed, and the same relationship as the error speed relationship when not moving close or Using a different relationship, the relative speed having the magnitude related to the value of the error distance may be used as the value of the relative movement when moving close. In this case, if the error is reduced, the relative speed between the processing mask and the workpiece is also reduced, so the distance that the machining mask and the workpiece pass is reduced, and high-accuracy alignment takes a short time. Can do.
 また、近接移動しないときの誤差速度関係と近接移動するときの誤差速度関係とには、高精度範囲よりも誤差距離が大きい範囲に、初期範囲が設定されている。初期範囲の誤差距離は、その大きさによらず、一定値の相対速度に関連づけられていて、その一定値の相対速度は、高精度範囲に設定された最大の相対速度と等しいか、又は、それよりも大きな値にされている。従って、撮像された撮像結果から求めた誤差距離が小さくなった場合でも、求められた誤差距離が初期範囲に含まれる場合は、相対速度は変わらない。従って、上記アラインメント装置2では、撮像結果から求められた誤差距離が初期範囲に含まれている間は、一定の相対速度で直線移動することになる。 Also, the initial range is set in a range where the error distance is larger than the high accuracy range in the error speed relationship when not moving close and the error speed relationship when moving close. The error distance of the initial range is related to a constant relative speed regardless of the magnitude, and the constant relative speed is equal to the maximum relative speed set in the high accuracy range, or The value is larger than that. Therefore, even when the error distance obtained from the picked-up image pickup result is small, the relative speed does not change when the obtained error distance is included in the initial range. Therefore, the alignment device 2 moves linearly at a constant relative speed while the error distance obtained from the imaging result is included in the initial range.
 なお、本発明の撮像結果は、加工マスクのマスクアラインメントマークと、基板の基板アラインメントマークとの両方を含む視野内の画像であり、撮像結果は、動画であっても、静止画であってもよい。また、動画から抽出された静止画でも撮像結果に含まれる。 The imaging result of the present invention is an image in the field of view including both the mask alignment mark of the processing mask and the substrate alignment mark of the substrate, and the imaging result may be a moving image or a still image. Good. A still image extracted from a moving image is also included in the imaging result.
 また、本発明において、加工マスク31と基板32とが相対移動するときには、加工マスク31と基板32とが回転移動した後、相対移動として直線移動する場合と、回転移動しながら直線移動することが相対移動である場合とが含まれる。要するに、相対移動は直線移動に限定されるものでもない。 In the present invention, when the processing mask 31 and the substrate 32 move relative to each other, the processing mask 31 and the substrate 32 can move linearly as a relative movement after the processing mask 31 and the substrate 32 rotate, and can move linearly while rotating. The case of relative movement is included. In short, the relative movement is not limited to linear movement.
 上記成膜源11は、スパッタリングターゲットであり、真空雰囲気にされた真空槽10中に、スパッタガス源18からスパッタリングガスを導入し、成膜源11にスパッタ電圧を印加してスパッタリングガスのプラズマを発生させ、成膜源11の表面からスパッタリング粒子である成膜材料の粒子を放出させ、パターニングされた薄膜を形成している。 The film formation source 11 is a sputtering target. A sputtering gas is introduced from a sputtering gas source 18 into a vacuum chamber 10 in a vacuum atmosphere, and a sputtering voltage is applied to the film formation source 11 to generate plasma of the sputtering gas. Then, the film forming material particles, which are sputtering particles, are emitted from the surface of the film forming source 11 to form a patterned thin film.
 従って、上記成膜源11はスパッタリングターゲットであるが、本発明の成膜源はスパッタリングターゲットに限定されるものではなく、例えば、成膜源は蒸着源であって、蒸着源のるつぼ内に配置された成膜材料を加熱して、成膜材料の蒸気である成膜材料の粒子を放出させるようにしてもよい。 Therefore, although the film formation source 11 is a sputtering target, the film formation source of the present invention is not limited to the sputtering target. For example, the film formation source is a vapor deposition source and is disposed in a crucible of the vapor deposition source. The deposited film-forming material may be heated to release particles of the film-forming material that is the vapor of the film-forming material.
 更に、本発明のアラインメント方法は、基板と加工マスクとを位置合わせして成膜する場合に限定されるものではなく、基板と加工マスクとを位置合わせし、基板の表面を、加工マスクの貫通孔33の形状に従って加工する工程に用いることができ、例えば、貫通孔33の形状に従ってエッチングするエッチング方法にも適用することができる。 Furthermore, the alignment method of the present invention is not limited to the case where the substrate and the processing mask are aligned to form a film, but the substrate and the processing mask are aligned, and the surface of the substrate passes through the processing mask. It can be used in a process for processing according to the shape of the hole 33, and can also be applied to an etching method for etching according to the shape of the through-hole 33, for example.
 なお、上記誤差速度関係や許容距離などに用いられる数値は、制御装置13に接続された外部記憶回路に記憶させておいてもよく、また、記録媒体に記録しておいて、制御装置13によって内部記憶回路に読み込むものであってもよい。要するに、アラインメント装置2に誤差速度関係が設定されていればよい。
<第二例>
 以上は、柔軟性を有さない基板と加工マスクとをアラインメントする例を説明したが、本発明に用いる加工対象物は、柔軟性を有する有機化合物のフィルムであってもよい。
The numerical values used for the error speed relationship and the allowable distance may be stored in an external storage circuit connected to the control device 13 or may be recorded on a recording medium. It may be read into an internal storage circuit. In short, it is sufficient that the error speed relationship is set in the alignment device 2.
<Second example>
The example in which the substrate having no flexibility and the processing mask are aligned has been described above, but the processing object used in the present invention may be a film of an organic compound having flexibility.
 図5の符号2bは、加工対象物がフィルム32bである第二例のアラインメント装置を示している。このアラインメント装置2bは、本発明の第二例の成膜装置3bに設けられている。 5 indicates a second example alignment apparatus in which the object to be processed is a film 32b. The alignment apparatus 2b is provided in the film forming apparatus 3b of the second example of the present invention.
 第二例のアラインメント装置2bについては、第一例のアラインメント装置2aと同じ部材には同じ符号を付して説明を省略し、同様に、第二例の成膜装置3bについては、第一例の成膜装置3aと同じ部材には同じ符号を付して説明を省略する。図5に示した第二例の成膜装置3bでは、フィルム32bは、マスク保持装置21に配置された加工マスク31と対面されている。 For the alignment device 2b of the second example, the same members as those of the alignment device 2a of the first example are denoted by the same reference numerals, and the description thereof is omitted. Similarly, for the film formation device 3b of the second example, the first example The same members as those of the film forming apparatus 3a are denoted by the same reference numerals and description thereof is omitted. In the film forming apparatus 3 b of the second example shown in FIG. 5, the film 32 b faces the processing mask 31 disposed on the mask holding device 21.
 真空槽10内には、巻取装置35と、巻出装置36とが配置されている。
 巻出装置36には、巻き取られたフィルム32bから成る巻出ロール34が装着されており、フィルム32bの加工マスク31と対面する部分は、巻出ロール34から巻き出され、加工マスク31と対面する位置を通る部分であり、巻取装置35に装着されたフィルム32bの一部となる。
In the vacuum chamber 10, a winding device 35 and an unwinding device 36 are arranged.
The unwinding device 36 is provided with an unwinding roll 34 composed of the wound film 32b. The portion of the film 32b facing the processing mask 31 is unwound from the unwinding roll 34, and the processing mask 31 It is a portion that passes through the facing position, and becomes a part of the film 32b that is mounted on the winding device 35.
 巻取装置35には、駆動装置37が接続されている。巻取装置35と巻出装置36とは棒状であり、フィルム32bの一端が固定された状態で駆動装置37によって回転されると、フィルム32bを牽引して巻出ロール34と巻出装置36とを回転させ、巻出ロール34からフィルム32bが巻き出されて巻取装置35によって巻き取られる。 A driving device 37 is connected to the winding device 35. The winding device 35 and the unwinding device 36 are rod-shaped, and when rotated by the driving device 37 with one end of the film 32b fixed, the unwinding roll 34 and the unwinding device 36 are pulled by pulling the film 32b. , And the film 32b is unwound from the unwinding roll 34 and wound by the winding device 35.
 巻出ロール34から巻き出されたフィルム32bは真空槽10内を走行し、撮像装置121、122が撮像する位置を通過する。
 加工マスク31には、マスクアラインメントマークが形成されており、フィルム32bには加工アラインメントマークが形成されている。
The film 32b unwound from the unwinding roll 34 travels in the vacuum chamber 10, and passes through the positions where the imaging devices 12 1 and 12 2 take images.
A mask alignment mark is formed on the processing mask 31, and a processing alignment mark is formed on the film 32b.
 ここで、フィルム32bに設けられた加工アラインメントマークは、フィルム32bが走行した際も、間断なく撮像され、撮像結果から誤差を求めることができるようにされており、例えば、加工アラインメントマークはフィルム32bの長手方向に沿って切れ目無く設けられていたり、又は、長手方向に沿って列設されている。 Here, the processing alignment mark provided on the film 32b is imaged without interruption even when the film 32b travels, and an error can be obtained from the imaging result. For example, the processing alignment mark is the film 32b. Are provided along the longitudinal direction without any breaks, or are arranged along the longitudinal direction.
 いずれにしろ、フィルム32bが停止しているときでも、走行しているときでも、撮像工程では、撮像装置121、122で同時刻に撮像したマスクアラインメントマークと加工アラインメントマークの撮像結果が求められ、求速度工程では、直近の撮像結果と、設定された誤差速度関係とから、加工マスク31とフィルム32bとの間の誤差角度と、誤差距離と、誤差方向とが検出される。 In any case, whether the film 32b is stopped or traveling, the imaging process obtains the imaging results of the mask alignment mark and the processing alignment mark captured at the same time by the imaging devices 12 1 and 12 2. In the speed finding step, the error angle, the error distance, and the error direction between the processing mask 31 and the film 32b are detected from the latest imaging result and the set error speed relationship.
 加工マスク31と対面する部分のフィルム32bは、加工マスク31に対して平行になるように走行されており、この第二例のアラインメント装置2bの移動工程では、移動装置14が、加工マスク31が位置する平面とフィルム32bが位置する平面との間の距離を変えず、同じ平面内に位置させながら、加工マスク31が、静止している真空槽10などに対して回転移動と直線移動するようにマスク保持装置21を回転移動と直線移動させことで、加工マスク31とフィルム32bとを相対移動させる。この相対移動は、直近の求速度工程で求めた相対速度にされる。 The portion of the film 32b that faces the processing mask 31 is running so as to be parallel to the processing mask 31, and in the moving process of the alignment device 2b of the second example, the moving device 14 The processing mask 31 is rotated and linearly moved with respect to the stationary vacuum chamber 10 and the like while being positioned in the same plane without changing the distance between the plane where the film 32b is located and the plane where the film 32b is located. The mask holding device 21 is rotated and linearly moved to move the processing mask 31 and the film 32b relative to each other. This relative movement is set to the relative speed obtained in the latest speed finding process.
 フィルム32bの幅方向の中央位置を結び、長手方向に伸びる直線、又はフィルム32の走行方向に伸びる直線を中心軸線と呼ぶと、求速度工程では、撮像工程の撮像結果から、フィルム32bの中心軸線が伸びる方向の誤差は求めず、誤差角度と、中心軸線と垂直な方向の誤差距離と、誤差方向とから成る誤差を求めるようにされている。 If the straight line extending in the longitudinal direction or the straight line extending in the running direction of the film 32 is referred to as the central axis, connecting the central positions in the width direction of the film 32b, the central axis of the film 32b is determined from the imaging result of the imaging process in the speed finding process. However, an error consisting of an error angle, an error distance in a direction perpendicular to the central axis, and an error direction is obtained.
 なお、求速度工程では、第一例と同様に、制御装置13が、誤差角度がゼロになるように加工マスク31を回転移動させたときの修正誤差方向と修正誤差距離とを求め、修正誤差方向を誤差方向にし、修正誤差距離を誤差距離にして、誤差距離と誤差速度関係から相対速度を求めるようにしてもよい。
 移動工程では、誤差を少なくするようにマスク保持装置21が回転移動と直線移動される。
In the speed finding process, as in the first example, the control device 13 obtains a correction error direction and a correction error distance when the processing mask 31 is rotationally moved so that the error angle becomes zero. The relative speed may be obtained from the relationship between the error distance and the error speed, with the direction as the error direction and the correction error distance as the error distance.
In the moving process, the mask holding device 21 is linearly moved with the rotational movement so as to reduce the error.
 第二例の成膜装置3bでフィルム32b上に薄膜を形成する際には、先ず、フィルム32bを走行させる前又は直後に、撮像工程を行って、加工アラインメントマークとマスクアラインメントマークとを撮像装置121、122で撮像し、撮像結果を得た後、求速度工程に移行され、誤差距離と誤差速度関係とから相対速度を求めた後、移動工程に移行され、求速度工程で求められた相対速度で、求められた誤差方向への加工マスク31の相対移動を開始する。 When a thin film is formed on the film 32b by the film forming apparatus 3b of the second example, first, an imaging process is performed before or immediately after the film 32b is traveled, and a processing alignment mark and a mask alignment mark are captured by the imaging apparatus. After imaging at 12 1 and 12 2 and obtaining the imaging result, the process proceeds to the speed finding process, and after obtaining the relative speed from the error distance and the error speed relationship, the process proceeds to the moving process and obtained in the speed finding process. The relative movement of the processing mask 31 in the obtained error direction is started at the relative speed.
 このような、撮像工程と、求速度工程と、移動工程とを繰り返し行うようにされており、フィルム32bが走行している間に、走行に伴い誤差が大きくなっても、誤差を小さくすることができる。 Such an imaging process, a speed finding process, and a moving process are repeated, and even if the error increases as the film 32b travels, the error can be reduced. Can do.
 誤差距離が許容距離以下のときには、相対速度はゼロにされ、成膜源11から成膜材料の粒子の放出が開始される。放出された成膜材料の粒子のうち、加工マスク31に形成された貫通孔33(貫通溝を含む)を通過した成膜材料の粒子によって、走行中のフィルム32bの表面にパターニングされた薄膜が形成される。成膜材料の粒子の放出開始後、許容距離の値を変更してもよい。 When the error distance is less than or equal to the allowable distance, the relative speed is set to zero, and the release of the film forming material particles from the film forming source 11 is started. Of the released film forming material particles, a film formed on the surface of the traveling film 32b is formed by the film forming material particles that have passed through the through holes 33 (including the through grooves) formed in the processing mask 31. It is formed. The value of the allowable distance may be changed after the start of the release of the film forming material particles.
 成膜源11から成膜材料の粒子の放出が開始された後、即ち薄膜形成中も、撮像工程と、求速度工程と、移動工程とを繰り返し行って誤差が小さくなるようにされている。
 形成される薄膜は、走行方向に沿った細長の形状であり、フィルム32b上には、複数本の細長の形状の薄膜が互いに平行に配置される。
After the discharge of the film forming material particles from the film forming source 11 is started, that is, during the thin film formation, the imaging process, the speed finding process, and the moving process are repeated to reduce the error.
The thin film to be formed has an elongated shape along the running direction, and a plurality of elongated thin films are arranged in parallel to each other on the film 32b.
 フィルム32bが走行を開始すると、加工マスク31とフィルム32bとの間に生じる距離は変動するが、発生した誤差は移動工程で小さくされており、高精度のパターンの薄膜を得ることができる。 When the film 32b starts running, the distance generated between the processing mask 31 and the film 32b varies, but the generated error is reduced in the moving process, and a thin film with a highly accurate pattern can be obtained.
<他の例>
 上記誤差速度関係では、高精度範囲よりも誤差距離が大きい範囲に、初期範囲が設定されており、初期範囲の誤差距離は、その大きさによらず、一定値の相対速度に関連づけられている。
<Other examples>
In the above error speed relationship, the initial range is set in a range where the error distance is larger than the high accuracy range, and the error distance in the initial range is related to a constant relative speed regardless of the size. .
 この一定値の相対速度は、高精度範囲に設定された最大の相対速度と等しいか、又は、それよりも大きな値にされており、移動工程を行った後、又は移動工程中に撮像された撮像結果から求めた誤差距離が小さくなった場合でも、求められた誤差距離が初期範囲に含まれる場合は、同じ大きさの相対速度が関連づけられている。 This constant relative speed is equal to or greater than the maximum relative speed set in the high accuracy range, and is imaged after or during the movement process. Even when the error distance obtained from the imaging result becomes small, the relative speed of the same magnitude is associated when the obtained error distance is included in the initial range.
 上記第一、第二例のアラインメント装置2a、2bでも、撮像結果から求められた誤差距離が初期範囲に含まれている間は、一定の相対速度で直線移動することになる。 Even in the alignment devices 2a and 2b of the first and second examples, the linear movement is performed at a constant relative speed while the error distance obtained from the imaging result is included in the initial range.
 なお、本発明の撮像結果には、加工マスクのマスクアラインメントマークと、加工対象物の加工アラインメントマークとの両方を含む視野内の画像であり、撮像結果は、動画であっても、静止画であってもよい。また、動画から抽出された静止画でも撮像結果に含まれる。 The imaging result of the present invention is an image in the field of view including both the mask alignment mark of the processing mask and the processing alignment mark of the processing object, and the imaging result is a still image even if it is a moving image. There may be. A still image extracted from a moving image is also included in the imaging result.
 また、本発明には、加工マスク31と加工対象物とが回転移動した後、相対移動として直線移動する場合と、回転移動しながら直線移動することで相対移動する場合とが含まれる。また、相対移動が直線移動に限定されるものでもない。 Further, the present invention includes a case where the processing mask 31 and the processing object rotate and then move linearly as relative movement, and a case where the processing mask 31 and the processing object move relative to each other by linear movement while rotating. Further, the relative movement is not limited to linear movement.
 上記成膜源11は、スパッタリングターゲットであり、真空雰囲気にされた真空槽10中に、スパッタガス源18からスパッタリングガスを導入し、成膜源11にスパッタ電圧を印加してスパッタリングガスのプラズマを発生させ、成膜源11の表面からスパッタリング粒子である成膜材料の粒子を放出させ、パターニングされた薄膜を形成したが、成膜源11はスパッタリングターゲットに限定されるものではなく、例えば、成膜源は蒸着源であって、蒸着源のるつぼ内に配置された成膜材料を加熱して、成膜材料の蒸気である成膜材料の粒子を放出させるようにしてもよい。 The film formation source 11 is a sputtering target. A sputtering gas is introduced from a sputtering gas source 18 into a vacuum chamber 10 in a vacuum atmosphere, and a sputtering voltage is applied to the film formation source 11 to generate plasma of the sputtering gas. The film forming material 11 is sputtered and discharged from the surface of the film forming source 11 to form a patterned thin film. However, the film forming source 11 is not limited to the sputtering target. The film source is a vapor deposition source, and the film forming material disposed in the crucible of the vapor deposition source may be heated to release particles of the film forming material that is vapor of the film forming material.
 更に、本発明のアラインメント方法は、加工対象物と加工マスクとを位置合わせして成膜する場合に限定されるものではなく、加工対象物と加工マスクとを位置合わせし、加工対象物の表面を、加工マスクの貫通孔33の形状に従って加工する工程に用いることができ、例えば、貫通孔33の形状に従ってエッチングする工程なども含まれる。 Furthermore, the alignment method of the present invention is not limited to the case where the processing object and the processing mask are aligned to form a film, but the processing object and the processing mask are aligned and the surface of the processing object is aligned. Can be used in a process of processing according to the shape of the through hole 33 of the processing mask, and includes a process of etching according to the shape of the through hole 33, for example.
 なお、上記誤差速度関係や許容距離などの用いられる数値は、制御装置13に接続された外部記憶回路に記憶させておいてもよく、また、記録媒体に記録しておいて、制御装置13によって内部記憶回路に読み込むものであってもよく、要するに、第一例、第二例のアラインメント装置2a、2bに誤差速度関係が設定されていればよい。
It should be noted that the numerical values used such as the error speed relationship and the allowable distance may be stored in an external storage circuit connected to the control device 13 or recorded on a recording medium and may be stored by the control device 13. The data may be read into the internal storage circuit. In short, it is sufficient that the error speed relationship is set in the alignment devices 2a and 2b in the first and second examples.
3……成膜装置
10……真空槽
11……成膜源
12、121、122……撮像装置
13……制御装置
14……移動装置
21……マスク保持装置
22……基板ホルダ
31……加工マスク
32……基板
 
3 ... Film forming apparatus 10 ... Vacuum chamber 11 ... Film forming sources 12, 12 1 , 12 2 ... Imaging device 13 ... Control device 14 ... Moving device 21 ... Mask holding device 22 ... Substrate holder 31 ... Processing mask 32 ... Substrate

Claims (14)

  1.  加工マスクが配置されるマスク保持装置と、
     加工対象物が配置される基板ホルダと、
     前記マスク保持装置と前記基板ホルダとのいずれか一方又は両方を移動させることで、前記加工マスクと前記加工対象物との間の相対的な位置を変える水平移動装置と、
     前記マスク保持装置と前記基板ホルダとが接近する近接移動をさせる近接移動装置と、
     前記マスク保持装置に配置された前記加工マスクのマスクアラインメントマークと前記基板ホルダに配置された前記加工対象物の基板アラインメントマークとを一緒に撮像し、撮像結果を得る撮像装置と、
     前記水平移動装置と、前記近接移動装置と、前記撮像装置とを制御して動作させる制御装置と、
    を有し、
     前記制御装置は、前記撮像結果から得られた前記加工マスクと前記加工対象物との相対的な位置と、位置合わせがされた状態での相対的な位置との間の誤差距離と誤差方向とを求め、前記誤差距離を小さくするように前記水平移動装置を動作させるアラインメント装置であって、
     前記制御装置は、前記近接移動装置によって前記近接移動をさせながら、
     前記撮像装置を動作させて前記撮像結果を得る撮像工程と、
     前記撮像結果から前記誤差距離と前記誤差方向を求める誤差検出工程と、
     前記水平移動装置により、前記誤差距離を小さくするように、前記加工マスクと前記加工対象物との相対移動を開始させる移動工程と、を繰り返し行うように設定されたアラインメント装置。
    A mask holding device on which a processing mask is arranged;
    A substrate holder on which a workpiece is placed;
    A horizontal movement device that changes a relative position between the processing mask and the processing object by moving one or both of the mask holding device and the substrate holder;
    A proximity movement device for performing a proximity movement in which the mask holding device and the substrate holder approach each other;
    An imaging device that captures an image together with a mask alignment mark of the processing mask disposed in the mask holding device and a substrate alignment mark of the processing object disposed in the substrate holder;
    A control device that controls and operates the horizontal movement device, the proximity movement device, and the imaging device;
    Have
    The control device includes an error distance and an error direction between a relative position of the processing mask and the processing target obtained from the imaging result, and a relative position in a state of alignment. An alignment device that operates the horizontal movement device so as to reduce the error distance,
    While the control device makes the proximity movement by the proximity movement device,
    An imaging step of operating the imaging device to obtain the imaging result;
    An error detection step of obtaining the error distance and the error direction from the imaging result;
    An alignment device set to repeatedly perform a moving step of starting relative movement between the processing mask and the processing object so as to reduce the error distance by the horizontal moving device.
  2.  前記加工マスクと前記加工対象物の垂下した部分とが接触した状態で、前記近接移動をさせながら、前記撮像工程と、前記誤差検出工程と、前記移動工程とが繰り返し行われるように設定された請求項1記載のアラインメント装置。 The imaging step, the error detection step, and the moving step are set to be repeatedly performed while the proximity movement is performed in a state where the processing mask and a suspended portion of the processing object are in contact with each other. The alignment device according to claim 1.
  3.  前記誤差検出工程が行われた後、前記移動工程が行われる前に、相対速度を設定する速度設定工程が設けられ、前記速度設定工程では、直前の前記誤差検出工程で求めた前記誤差距離が、予め設定された主許容誤差量以下のときは前記相対速度はゼロに設定され、前記誤差距離が前記主許容誤差量よりも大きいときは、前記相対速度は所定の値に設定され、
     前記移動工程は、前記相対移動を前記相対速度にするように構成された請求項1又は請求項2のいずれか1項記載のアラインメント装置。
    After the error detection step is performed and before the movement step is performed, a speed setting step for setting a relative speed is provided. In the speed setting step, the error distance obtained in the immediately preceding error detection step is The relative speed is set to zero when it is equal to or less than a preset main allowable error amount, and the relative speed is set to a predetermined value when the error distance is larger than the main allowable error amount,
    The alignment apparatus according to claim 1, wherein the moving step is configured to set the relative movement to the relative speed.
  4.  加工マスクのマスクアラインメントマークと加工対象物の基板アラインメントマークとを同じ撮像装置で一緒に撮像し、撮像結果を得たときの前記加工マスクと前記加工対象物の相対位置と、前記加工マスクと前記加工対象物とが位置合わせがされたときの相対位置との間の誤差距離と誤差方向とを求め、水平移動装置によって前記加工マスクと前記加工対象物のいずれか一方又は両方を移動させて前記誤差距離を小さくするアラインメント方法であって、
     離間した前記加工マスクと前記加工対象物との間の離間距離を短くする近接移動を行いながら、
     前記撮像装置を動作させて前記撮像結果を得る撮像工程と、
     前記撮像結果から前記誤差距離と前記誤差方向とを求める誤差検出工程と、
     前記水平移動装置により、前記誤差距離を小さくするように、前記加工マスクと前記加工対象物とを相対移動させる移動工程と、を繰り返し行うアラインメント方法。
    The mask alignment mark of the processing mask and the substrate alignment mark of the processing target are imaged together with the same imaging device, and the relative position between the processing mask and the processing target when the imaging result is obtained, the processing mask, and the An error distance and an error direction between the relative position when the processing object is aligned are obtained, and either or both of the processing mask and the processing object are moved by a horizontal movement device, An alignment method for reducing the error distance,
    While performing proximity movement to shorten the separation distance between the processing mask and the processing object that are separated,
    An imaging step of operating the imaging device to obtain the imaging result;
    An error detection step of obtaining the error distance and the error direction from the imaging result;
    An alignment method in which the horizontal movement device repeatedly performs a moving step of relatively moving the processing mask and the processing target so as to reduce the error distance.
  5.  前記加工マスクと前記加工対象物の垂下した部分とが接触した状態で、前記加工マスクと前記加工対象物とが離間した部分に前記近接移動をさせながら、前記撮像工程と、前記誤差検出工程と、前記移動工程とを繰り返し行う請求項4記載のアラインメント方法。 The imaging step, the error detection step, while moving the proximity to the portion where the processing mask and the processing target object are separated in a state where the processing mask and the suspended portion of the processing target object are in contact with each other The alignment method according to claim 4, wherein the moving step is repeatedly performed.
  6.  前記誤差検出工程が行われた後、前記移動工程が行われる前に、相対速度を設定する速度設定工程が設けられ、前記速度設定工程では、直前の前記誤差検出工程で求めた前記誤差距離が、予め設定された主許容誤差量以下のときは前記相対速度はゼロに設定され、前記誤差距離が前記主許容誤差量よりも大きいときは、前記相対速度は所定の値に設定され、
     前記移動工程は、前記相対速度の前記相対移動を開始させる請求項4又は請求項5のいずれか1項記載のアラインメント方法。
    After the error detection step is performed and before the movement step is performed, a speed setting step for setting a relative speed is provided. In the speed setting step, the error distance obtained in the immediately preceding error detection step is The relative speed is set to zero when it is equal to or less than a preset main allowable error amount, and the relative speed is set to a predetermined value when the error distance is larger than the main allowable error amount,
    The alignment method according to claim 4, wherein the moving step starts the relative movement at the relative speed.
  7.  加工マスクと加工対象物とのいずれか一方又は両方を移動させることで、加工マスクと加工対象物との間の相対的な位置を変える移動装置と、
     前記加工マスクのマスクアラインメントマークと前記加工対象物の加工アラインメントマークとを同じ時刻で撮像し、撮像結果を得る撮像装置と、
     前記移動装置と前記撮像装置とを制御して動作させる制御装置と、
    を有し、
     前記制御装置は、前記撮像結果から求めた前記加工マスクと前記加工対象物との相対的な位置と、位置合わせがされた状態の相対的な位置との間の差である誤差を求め、前記誤差を小さくするように前記相対的な位置を変えるアラインメント装置であって、
     前記誤差に含まれる誤差距離と、前記加工マスクと前記加工対象物との間の相対的な移動の速度である相対速度とが関連づけられた誤差速度関係が設定されており、
     前記撮像装置によって前記撮像結果を得る撮像工程と、
     前記制御装置によって得られた前記撮像結果から前記加工マスクと前記加工対象物との間の相対位置の前記誤差距離を求め、求めた前記誤差距離と前記誤差速度関係から、前記相対速度を求める求速度工程と、
     前記移動装置によって前記加工マスクと前記加工対象物とを、求めた前記相対速度での相対的な移動を開始させる移動工程と、
    が繰り返し行われるように設定され、
     前記誤差速度関係には、異なる前記相対速度が設定されていて、大きい前記相対速度に関連付けられた誤差距離は、小さい前記相対速度に関連付けられた誤差距離よりも大きいようにされた高精度範囲が設けられたアラインメント装置。
    A moving device that changes the relative position between the processing mask and the processing object by moving either or both of the processing mask and the processing object;
    An imaging device that captures an image of a mask alignment mark of the processing mask and a processing alignment mark of the processing object at the same time, and obtains an imaging result;
    A control device that controls and operates the moving device and the imaging device;
    Have
    The control device obtains an error that is a difference between a relative position of the processing mask and the processing target obtained from the imaging result and a relative position of the aligned state, An alignment device that changes the relative position to reduce errors,
    An error speed relationship is set in which an error distance included in the error and a relative speed that is a relative movement speed between the processing mask and the processing object are associated with each other,
    An imaging step of obtaining the imaging result by the imaging device;
    The error distance of the relative position between the processing mask and the object to be processed is obtained from the imaging result obtained by the control device, and the relative speed is obtained from the obtained error distance and the error speed relationship. Speed process,
    A moving step of starting relative movement of the processing mask and the processing object at the determined relative speed by the moving device;
    Is set to repeat,
    In the error speed relation, different relative speeds are set, and an error distance associated with a large relative speed is larger than an error distance associated with a small relative speed. Alignment device provided.
  8.  前記誤差速度関係には、前記高精度範囲よりも前記誤差距離が大きい部分に、前記誤差距離が同じ値の前記相対速度に関連づけられた一定速度範囲が設定された請求項7記載のアラインメント装置。 The alignment apparatus according to claim 7, wherein a constant speed range related to the relative speed having the same value of the error distance is set in a portion where the error distance is larger than the high accuracy range in the error speed relationship.
  9.  前記誤差距離が、所定の許容距離よりも小さくなった後、前記加工マスクと前記加工対象物とが相対的に近づく方向に移動され、接触される請求項7又は請求項8のいずれか1項記載のアラインメント装置。 9. The method according to claim 7, wherein after the error distance becomes smaller than a predetermined permissible distance, the processing mask and the processing object are moved and brought into contact with each other relatively. The alignment device described.
  10.  前記誤差距離が、少なくとも所定の許容距離よりも小さい範囲では、前記誤差距離にはゼロの値の前記相対速度が関連づけられた請求項9記載のアラインメント装置。 10. The alignment device according to claim 9, wherein the relative distance having a value of zero is associated with the error distance in a range where the error distance is at least smaller than a predetermined allowable distance.
  11.  撮像装置によって加工マスクのマスクアラインメントマークと加工対象物の加工アラインメントマークとを同じ時刻で撮像して撮像結果を得て、制御装置によって前記加工マスクの位置と前記加工対象物の位置との間の相対的な誤差を求め、移動装置によって前記加工マスクと前記加工対象物のいずれか一方又は両方を移動させて前記誤差を小さくするアラインメント方法であって、
     前記誤差に含まれる誤差距離と、前記加工マスクと前記加工対象物との間の相対的な移動の速度である相対速度とを、誤差速度関係として予め関連づけておき、
     前記撮像装置によって前記撮像結果を得る撮像工程と、
     前記制御装置によって得られた前記撮像結果から前記加工マスクと前記加工対象物との間の相対位置の前記誤差距離を求め、求めた前記誤差距離と前記誤差速度関係から、前記相対速度を求める求速度工程と、
     前記移動装置によって前記加工マスクと前記加工対象物とを、求めた前記相対速度で相対的な移動を開始させる移動工程と、
     を有し、
     前記撮像工程と、前記求速度工程と、前記移動工程とが繰り返し行われるように設定されおり、
     前記誤差速度関係には、異なる前記相対速度が設定されていて、大きい前記相対速度と関連付けられた誤差距離は、小さい前記相対速度に関連付けられた誤差距離よりも大きいようにされた高精度範囲が設けられたアラインメント方法。
    The imaging device captures the mask alignment mark of the processing mask and the processing alignment mark of the processing target object at the same time to obtain an imaging result, and the control device determines between the position of the processing mask and the processing target position. An alignment method for obtaining a relative error and reducing the error by moving either one or both of the processing mask and the processing object by a moving device,
    An error distance included in the error and a relative speed that is a relative movement speed between the processing mask and the processing object are associated in advance as an error speed relationship,
    An imaging step of obtaining the imaging result by the imaging device;
    The error distance of the relative position between the processing mask and the object to be processed is obtained from the imaging result obtained by the control device, and the relative speed is obtained from the obtained error distance and the error speed relationship. Speed process,
    A moving step of starting relative movement of the processing mask and the processing object by the moving device at the determined relative speed;
    Have
    The imaging step, the speed finding step, and the moving step are set to be repeated,
    In the error speed relationship, different relative speeds are set, and an error distance associated with a large relative speed is larger than an error distance associated with a small relative speed. Alignment method provided.
  12.  前記誤差速度関係には、前記高精度範囲よりも前記誤差距離が大きい部分に、前記誤差距離を同じ値の前記相対速度に関連づけた一定速度範囲を設定した請求項11記載のアラインメント方法。 12. The alignment method according to claim 11, wherein in the error speed relationship, a constant speed range in which the error distance is associated with the relative speed having the same value is set in a portion where the error distance is larger than the high accuracy range.
  13.  前記誤差距離が、所定の許容距離よりも小さくなった後、前記加工マスクと前記加工対象物とを相対的に近づく方向に移動させ、接触させる請求項11又は請求項12のいずれか1項記載のアラインメント方法。 13. The method according to claim 11, wherein, after the error distance becomes smaller than a predetermined allowable distance, the processing mask and the processing target are moved in a relatively approaching direction and brought into contact with each other. Alignment method.
  14.  前記誤差距離が、少なくとも所定の許容距離よりも小さい範囲では、前記誤差距離にはゼロの値の前記相対速度を関連づけた請求項13記載のアラインメント方法。 14. The alignment method according to claim 13, wherein the relative distance having a value of zero is associated with the error distance in a range where the error distance is smaller than at least a predetermined allowable distance.
PCT/JP2014/050545 2013-01-15 2014-01-15 Alignment device and alignment method WO2014112512A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157017132A KR101739672B1 (en) 2013-01-15 2014-01-15 Alignment device and alignment method
CN201480004760.8A CN104904002B (en) 2013-01-15 2014-01-15 Alignment device and alignment methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-004357 2013-01-15
JP2013004357A JP6076098B2 (en) 2013-01-15 2013-01-15 Alignment device and alignment method
JP2013030482A JP6095405B2 (en) 2013-02-19 2013-02-19 Alignment method
JP2013-030482 2013-02-19

Publications (1)

Publication Number Publication Date
WO2014112512A1 true WO2014112512A1 (en) 2014-07-24

Family

ID=51209601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050545 WO2014112512A1 (en) 2013-01-15 2014-01-15 Alignment device and alignment method

Country Status (3)

Country Link
KR (1) KR101739672B1 (en)
CN (1) CN104904002B (en)
WO (1) WO2014112512A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519921A3 (en) * 2017-05-05 2020-02-15 Suss Microtec Lithography Gmbh METHOD AND DEVICE FOR ALIGNING A FIRST SUBSTRATE TO A SECOND SUBSTRATE
WO2020122344A1 (en) * 2018-12-14 2020-06-18 주식회사 엘트린 Substrate bonding apparatus
US10916464B1 (en) 2019-07-26 2021-02-09 Applied Materials, Inc. Method of pre aligning carrier, wafer and carrier-wafer combination for throughput efficiency
JP2021143408A (en) * 2020-03-13 2021-09-24 キヤノントッキ株式会社 Mask attachment device, film deposition apparatus, mask attachment method, film deposition method, method of manufacturing electronic device, mask, substrate carrier, and set of substrate carrier and mask
KR20210123161A (en) * 2020-04-02 2021-10-13 주식회사 엘트린 Substrate bonding apparatus
US11189516B2 (en) 2019-05-24 2021-11-30 Applied Materials, Inc. Method for mask and substrate alignment
US11414740B2 (en) 2019-06-10 2022-08-16 Applied Materials, Inc. Processing system for forming layers
US11538706B2 (en) 2019-05-24 2022-12-27 Applied Materials, Inc. System and method for aligning a mask with a substrate
US11631813B2 (en) 2019-03-15 2023-04-18 Applied Materials, Inc. Deposition mask and methods of manufacturing and using a deposition mask
US11718904B2 (en) 2014-12-10 2023-08-08 Applied Materials, Inc. Mask arrangement for masking a substrate in a processing chamber, apparatus for depositing a layer on a substrate, and method for aligning a mask arrangement for masking a substrate in a processing chamber

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425478B (en) * 2016-01-04 2019-09-17 京东方科技集团股份有限公司 A kind of pair of box device
KR101979149B1 (en) * 2018-04-27 2019-05-15 캐논 톡키 가부시키가이샤 Alignment method, deposition method using the same and electronic device
CN111948901B (en) * 2020-08-18 2024-03-29 上海华力微电子有限公司 Mask and preparation method thereof
CN112964639B (en) * 2021-02-24 2021-12-28 福莱盈电子股份有限公司 LCM detection method and equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126964A (en) * 2000-10-23 2002-05-08 Hitachi Ltd Control device of positioning stage
JP2011216788A (en) * 2010-04-01 2011-10-27 Nikon Corp Substrate bonding apparatus and method of bonding substrate
JP2012009340A (en) * 2010-06-25 2012-01-12 Hitachi High-Technologies Corp Sample stage apparatus
WO2012039310A1 (en) * 2010-09-22 2012-03-29 株式会社アルバック Method for manufacturing organic el element, film forming apparatus, and organic el element
JP2013008954A (en) * 2011-06-22 2013-01-10 Asml Netherlands Bv Positioning device, lithographic apparatus, positioning method, and device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126964A (en) * 2000-10-23 2002-05-08 Hitachi Ltd Control device of positioning stage
JP2011216788A (en) * 2010-04-01 2011-10-27 Nikon Corp Substrate bonding apparatus and method of bonding substrate
JP2012009340A (en) * 2010-06-25 2012-01-12 Hitachi High-Technologies Corp Sample stage apparatus
WO2012039310A1 (en) * 2010-09-22 2012-03-29 株式会社アルバック Method for manufacturing organic el element, film forming apparatus, and organic el element
JP2013008954A (en) * 2011-06-22 2013-01-10 Asml Netherlands Bv Positioning device, lithographic apparatus, positioning method, and device manufacturing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11718904B2 (en) 2014-12-10 2023-08-08 Applied Materials, Inc. Mask arrangement for masking a substrate in a processing chamber, apparatus for depositing a layer on a substrate, and method for aligning a mask arrangement for masking a substrate in a processing chamber
AT519921A3 (en) * 2017-05-05 2020-02-15 Suss Microtec Lithography Gmbh METHOD AND DEVICE FOR ALIGNING A FIRST SUBSTRATE TO A SECOND SUBSTRATE
WO2020122344A1 (en) * 2018-12-14 2020-06-18 주식회사 엘트린 Substrate bonding apparatus
KR20200073482A (en) * 2018-12-14 2020-06-24 주식회사 엘트린 Substrate bonding apparatus
KR102161093B1 (en) 2018-12-14 2020-09-29 주식회사 엘트린 Substrate bonding apparatus
US11631813B2 (en) 2019-03-15 2023-04-18 Applied Materials, Inc. Deposition mask and methods of manufacturing and using a deposition mask
US11538706B2 (en) 2019-05-24 2022-12-27 Applied Materials, Inc. System and method for aligning a mask with a substrate
US11189516B2 (en) 2019-05-24 2021-11-30 Applied Materials, Inc. Method for mask and substrate alignment
US11414740B2 (en) 2019-06-10 2022-08-16 Applied Materials, Inc. Processing system for forming layers
US10916464B1 (en) 2019-07-26 2021-02-09 Applied Materials, Inc. Method of pre aligning carrier, wafer and carrier-wafer combination for throughput efficiency
US11183411B2 (en) 2019-07-26 2021-11-23 Applied Materials, Inc. Method of pre aligning carrier, wafer and carrier-wafer combination for throughput efficiency
JP7113861B2 (en) 2020-03-13 2022-08-05 キヤノントッキ株式会社 Mask mounting device, film forming device, mask mounting method, film forming method, electronic device manufacturing method
JP2021143408A (en) * 2020-03-13 2021-09-24 キヤノントッキ株式会社 Mask attachment device, film deposition apparatus, mask attachment method, film deposition method, method of manufacturing electronic device, mask, substrate carrier, and set of substrate carrier and mask
KR102446236B1 (en) 2020-04-02 2022-09-22 (주)엘트린 Substrate bonding apparatus
KR20210123161A (en) * 2020-04-02 2021-10-13 주식회사 엘트린 Substrate bonding apparatus

Also Published As

Publication number Publication date
CN104904002A (en) 2015-09-09
CN104904002B (en) 2017-08-18
KR101739672B1 (en) 2017-05-24
KR20150088883A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
WO2014112512A1 (en) Alignment device and alignment method
JP5864929B2 (en) Imprint apparatus and article manufacturing method
JP6095405B2 (en) Alignment method
JP2008139741A (en) Substrate processing apparatus
EP3373322B1 (en) Control method and control program for focused ion beam device
US11629430B2 (en) Fabrication process using vapour deposition through a positioned shadow mask
JP2020183546A (en) Alignment device, film deposition apparatus, alignment method, film deposition method, and manufacturing method of electronic device
JP4522142B2 (en) Exposure apparatus, exposure method, and substrate manufacturing method
JP2008298906A (en) Exposure apparatus, exposure method, and method of manufacturing display panel substrate
TW202115486A (en) Position detection apparatus, position detection method, lithography apparatus, and method of manufacturing article
JP6076098B2 (en) Alignment device and alignment method
JP2012133122A (en) Proximity exposing device and gap measuring method therefor
CN115628685A (en) Method and equipment for measuring critical dimension and method for positioning critical dimension in grading manner
US10036967B2 (en) Lithography apparatus, lithography method, and article manufacturing method
JP2022038048A (en) Mark detection device, alignment device, film-forming device, mark detection method, and film-forming method
JP5687165B2 (en) Proximity exposure apparatus, substrate positioning method for proximity exposure apparatus, and display panel substrate manufacturing method
KR20210017943A (en) Film-forming system, method for locating error portion of film-forming system, computer readable recording medium, computer program recorded in recording medium
JP7266555B2 (en) Alignment method and vapor deposition method
TWI820413B (en) Information processing apparatus, information processing method, article manufacturing system and article manufacturing method
JP2013205678A (en) Proximity exposure device, substrate positioning method of proximity exposure device, and manufacturing method of display panel substrate
JP6722130B2 (en) Control method of focused ion beam device
TW202232256A (en) Information processing apparatus, information processing method, article manufacturing system, and article manufacturing method
JPWO2014109008A1 (en) Deformation measuring apparatus and sheet processing apparatus
JP5441800B2 (en) Proximity exposure apparatus, substrate positioning method for proximity exposure apparatus, display panel substrate manufacturing method, and minute angle detection method using optical displacement meter
JP2020034608A (en) Lithographic apparatus and method of manufacturing article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157017132

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740957

Country of ref document: EP

Kind code of ref document: A1