WO2014109369A1 - Laminated body and multi-layered glass - Google Patents

Laminated body and multi-layered glass Download PDF

Info

Publication number
WO2014109369A1
WO2014109369A1 PCT/JP2014/050248 JP2014050248W WO2014109369A1 WO 2014109369 A1 WO2014109369 A1 WO 2014109369A1 JP 2014050248 W JP2014050248 W JP 2014050248W WO 2014109369 A1 WO2014109369 A1 WO 2014109369A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
metal
dielectric
silver
Prior art date
Application number
PCT/JP2014/050248
Other languages
French (fr)
Japanese (ja)
Inventor
すすむ 鈴木
史栄 坂本
秀文 小高
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014109369A1 publication Critical patent/WO2014109369A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements

Definitions

  • the present invention relates to a laminate and a multi-layer glass, and more particularly, to a multi-layer glass having one silver layer, good thermal insulation and obtaining specific optical characteristics, and a multi-layer glass using the same.
  • the silver layer has a neutral color (neutral color) in the visible and transmitted colors and a low resistivity.
  • neutral color neutral color
  • the thickness is about 10 nm, there is little absorption in the visible range, and the reflectance is several tens of percent. The reflectance increases as the wavelength becomes longer, and shows a high reflectance in the infrared region.
  • a silver multilayer film with a silver layer sandwiched between dielectric layers with low reflectivity in the visible range and high reflectivity in the infrared range shows the same appearance as general glass, and has low emissivity and high heat ray reflectivity. Show. Therefore, the silver-based multilayer film is used for highly heat-insulating Low-E glass and heat ray reflective glass having high transmittance in the visible light region. In recent years, with the growing awareness of energy saving, the demand for these glasses has increased.
  • a silver-based multilayer film having two silver layers is known (for example, see Patent Document 1). Moreover, what has two silver layers and a light absorption layer is known as a silver type multilayer film (for example, refer patent document 2, 3).
  • a silver multilayer film having two silver layers is known. Those having two silver layers have good heat shielding properties because the thickness of the silver layer is increased as a whole, but the productivity is not necessarily good because of the increased number of layers. On the other hand, those having one silver layer have good productivity because the number of laminated layers is small, but the heat shielding property is not necessarily good only with a thin silver layer.
  • window glass not only has good heat shielding properties, but also has specific visible light transmittance and visible light reflectance from the viewpoint of use place, usage, design, etc., and transmitted light It is also required that the reflected light has a specific color tone.
  • the present invention has been made in order to solve the above-mentioned problems, and has one silver layer, has good heat shielding properties, and has a good appearance by obtaining specific optical characteristics.
  • the purpose is to provide the body.
  • Another object of the present invention is to provide a multi-layer glass using such a laminate.
  • the laminate of the present invention has a transparent substrate and a laminated film provided on the transparent substrate.
  • the laminated film has a first dielectric layer, a silver layer, a light absorption layer, and a second dielectric layer in order from the transparent substrate side.
  • the first dielectric layer has a refractive index of 1.9 to 2.1 and a geometric thickness of 20 to 30 nm.
  • the silver layer is mainly composed of silver and has a geometric thickness of 11 to 18 nm.
  • the light absorbing layer has a geometric thickness of 1 to 6 nm.
  • the second dielectric layer has a refractive index of 1.9 to 2.1 and a geometric thickness of 35 to 48 nm.
  • the multilayer glass of the present invention has the above-described laminate of the present invention and a counter substrate disposed on the laminate film side of the laminate.
  • the laminated body of the present invention comprises, as a laminated film, a first dielectric layer having a refractive index of 1.9 to 2.1 and a geometric thickness of 20 to 30 nm in order from the transparent substrate side, and silver as a main component.
  • a second dielectric layer having a thickness.
  • Sectional drawing which shows one Embodiment of a laminated body Sectional drawing which shows the 1st structural example of a laminated body. Sectional drawing which shows the 2nd structural example of a laminated body. Sectional drawing which shows the 3rd structural example of a laminated body. Sectional drawing which shows one Embodiment of multilayer glass.
  • FIG. The figure which shows a * b * of the reflected light (board
  • FIG. The figure which shows a * b * of the reflected light (film
  • FIG. The figure which shows a * b * of the reflected light (film
  • FIG. 1 is a cross-sectional view showing an embodiment of a laminate.
  • the laminate 10 has a transparent substrate 11 and a laminate film 12 provided on the transparent substrate 11.
  • the laminated film 12 includes a first dielectric layer 13, a silver layer 14, a light absorbing layer 15, and a second dielectric layer 16 in order from the transparent substrate 11 side.
  • the first dielectric layer 13 has a refractive index of 1.9 to 2.1 and a geometric thickness of 20 to 30 nm.
  • the silver layer 14 is mainly composed of silver and has a geometric thickness of 11 to 18 nm.
  • the light absorption layer 15 has a geometric thickness of 1 to 6 nm.
  • the second dielectric layer 16 has a refractive index of 1.9 to 2.1 and a geometric thickness of 35 to 48 nm.
  • the refractive index in this invention means the refractive index in wavelength 550nm.
  • the laminate 10 is roughly divided into a non-heat treated product and a heat treated product.
  • the non-heat-treated product is simply a laminated film 12 formed into a final product in the final form, and no heat treatment for strengthening or bending is performed after the film formation.
  • the heat-treated product is subjected to a heat treatment for strengthening or bending after the formation of the laminated film 12 to be a final product in a final form.
  • the laminate 10 may be either a non-heat treated product or a heat treated product.
  • the above geometric thicknesses are all in the finished product.
  • the geometric thickness is after the formation of the laminated film 12, and in the case of a heat-treated product, after the formation of the laminated film 12. After heat treatment for strengthening or bending performed.
  • the thickness is assumed to be a geometric thickness unless otherwise specified.
  • the transparent substrate 11 is not particularly limited.
  • a glass plate having an inorganic transparency such as a window glass for buildings, a commonly used float glass, or a soda-lime glass manufactured by a roll-out method is used. Can be used.
  • colorless ones such as clear glass and high transmission glass and green ones such as heat ray absorbing glass can be used. In consideration of visible light transmittance, colorless glass such as clear glass and high transmittance glass is preferable among them.
  • Various tempered glasses such as air-cooled tempered glass and chemically tempered glass can also be used.
  • various glasses such as borosilicate glass, low expansion glass, zero expansion glass, low expansion crystallized glass, and zero expansion crystallized glass can be used.
  • the thickness of the transparent substrate 11 is not necessarily limited, but is preferably 0.5 to 20 mm, for example.
  • the first dielectric layer 13 is provided in order to adjust the reflectance in the visible range and the like by the optical interference effect so that the optical characteristics of the laminate 10 become desired characteristics.
  • the first dielectric layer 13 has a refractive index of 1.9 to 2.1. By setting it as such a refractive index, the reflectance etc. in a visible region are adjusted with a light interference effect, and the optical characteristic of the laminated body 10 can be made into a desired characteristic.
  • the first dielectric layer 13 has a thickness of 20 to 30 nm. By setting the thickness of the first dielectric layer 13 within the above range, the optical characteristics of the stacked body 10 can be adjusted to desired characteristics by adjusting the reflectance in the visible range by the optical interference effect.
  • the thickness of the first dielectric layer 13 is preferably 21 nm or more, more preferably 22 nm or more, and further preferably 23 nm or more.
  • the thickness of the first dielectric layer 13 is preferably 29 nm or less, more preferably 28 nm or less, and even more preferably 27 nm or less.
  • the constituent material of the first dielectric layer 13 is not particularly limited as long as it is a dielectric having the above refractive index, and includes various oxides and nitrides.
  • the oxide include an oxide mainly composed of an oxide of at least one element selected from zinc, tin, niobium, and titanium.
  • the nitride include those containing as a main component a nitride of at least one element selected from silicon and aluminum.
  • the oxide aluminum zinc oxide and tin zinc oxide are particularly preferable.
  • the aluminum zinc oxide preferably has an aluminum ratio of 1 to 10 atomic%, more preferably 3 to 7 atomic%, based on the total amount of zinc and aluminum.
  • the tin zinc oxide is preferably one in which the ratio of tin to the total amount of zinc and tin is 10 to 80% by mass, and more preferably 20 to 80% by mass.
  • the first dielectric layer 13 is not necessarily limited to a single-layer structure composed of one kind of dielectric layer, but may be a laminated structure in which two or more kinds of dielectric layers are laminated, although not shown.
  • the refractive indexes of the individual dielectric layers are not necessarily the same, and may be different as long as they are within the refractive index range of 1.9 to 2.1.
  • aluminum zinc oxide is preferred.
  • the aluminum zinc oxide preferably has an aluminum ratio of 1 to 10 atomic%, more preferably 3 to 7 atomic%, based on the total amount of zinc and aluminum.
  • the layer disposed at the position closest to the silver layer 14 is preferably aluminum zinc oxide.
  • the aluminum zinc oxide preferably has an aluminum ratio of 1 to 10 atomic%, more preferably 3 to 7 atomic%, based on the total amount of zinc and aluminum.
  • the thickness of the aluminum zinc oxide is preferably 1 nm or more, and more preferably 3 nm or more.
  • the layers other than the layer disposed at the position closest to the silver layer 14 are not necessarily limited, but tin zinc oxide is preferable.
  • the tin zinc oxide preferably has a tin ratio of 10 to 90% by mass and more preferably 20 to 80% by mass with respect to the total amount of zinc and tin.
  • the silver layer 14 only needs to be composed mainly of silver, and is made of, for example, silver alone or a silver alloy containing a metal such as palladium.
  • the ratio of the metal other than silver to the total amount of silver and a metal element other than silver is preferably 10% by mass or less, more preferably 5% by mass or less, more preferably 3% by mass in terms of heat shielding properties and cost. The following is more preferable.
  • the silver layer 14 consists essentially of silver.
  • the silver layer 14 has a thickness of 11 to 18 nm. By making the thickness of the silver layer 14 relatively large, 11 nm or more, the transmittance in the infrared region is lowered, and the heat shielding property can be improved. Moreover, the optical characteristic of the laminated body 10 can be made into a desired characteristic by the thickness of the silver layer 14 being 18 nm or less.
  • the thickness of the silver layer 14 is preferably 12 nm or more, more preferably 13 nm or more, and further preferably 14 nm or more.
  • the light absorption layer 15 has absorption in the visible light region, reduces visible light transmittance by absorption of visible light, improves thermal insulation, and makes the optical characteristics of the laminate 10 desired characteristics. .
  • the thickness of the light absorption layer 15 is 1 to 6 nm. By setting the thickness of the light absorption layer 15 to 1 nm or more, the visible light transmittance can be effectively reduced by absorbing visible light. Further, by setting the thickness of the light absorption layer 15 to 6 nm or less, excessive absorption of visible light can be suppressed, and the optical characteristics of the laminate 10 can be set to desired characteristics.
  • the thickness of the light absorption layer 15 is preferably 5 nm or less.
  • the constituent material of the light absorption layer 15 is not particularly limited as long as it has absorption in the visible light region.
  • Examples of the constituent material of the light absorption layer 15 include metals or nitrides having absorption in the visible light region.
  • the metal examples include metals such as titanium, zirconium, hafnium, niobium, nickel, and chromium, and alloys containing at least one of these metals.
  • the alloy examples include a titanium zirconium alloy, a titanium hafnium alloy, a nickel chromium alloy, a nickel aluminum alloy, and a nickel iron alloy. Among these, an alloy mainly containing titanium is preferable, an alloy containing 90% by mass or more of titanium is preferable, and only titanium is more preferable.
  • nitride examples include a nitride of at least one element selected from silicon, aluminum, and chromium.
  • the light absorption layer 15 preferably has a metal layer made of the above metal, and more preferably only a metal layer.
  • the light absorption layer 15 preferably has a nitride layer made of the nitride.
  • the light absorption layer 15 may have both a nitride layer and a metal layer.
  • the second dielectric layer 16 is provided in order to adjust the reflectance in the visible range by the optical interference effect and to make the optical characteristics of the laminate 10 desired characteristics.
  • the second dielectric layer 16 has a refractive index of 1.9 to 2.1. By setting it as such a refractive index, the reflectance etc. in a visible region are adjusted with a light interference effect, and the optical characteristic of the laminated body 10 can be made into a desired characteristic.
  • the second dielectric layer 16 is mainly composed of a dielectric film formed from the beginning (dielectric layer from the beginning).
  • the second dielectric layer 16 is not necessarily limited to the original dielectric layer. That is, the second dielectric layer 16 is a dielectric when it is finished, in addition to the original dielectric layer, and is continuous with the original dielectric layer. Is included.
  • Such a dielectric is, for example, a metal film functioning as a barrier film provided as a base layer positioned under the dielectric layer before the initial formation of the dielectric layer.
  • a metal film functioning as a barrier film provided as a base layer positioned under the dielectric layer before the initial formation of the dielectric layer. Examples are those that are oxidized when the dielectric layer is formed into a dielectric, and have a refractive index of 1.9 to 2.1.
  • an adhesive film provided as a base layer located under the protective film, and when the protective film is subsequently formed An oxide that has been oxidized into a dielectric and has a refractive index of 1.9 to 2.1 can be used.
  • the film formed as a barrier film or an adhesive film as described above is also a dielectric having a refractive index of 1.9 to 2.1 when it is a finished product, If it is continuously disposed as a dielectric relative to the layer, it is included in the second dielectric layer 16. That is, it is included in the thickness of the second dielectric layer 16.
  • the second dielectric layer 16 has a thickness of 35 to 48 nm. By setting the thickness of the second dielectric layer 16 within the above range, it is possible to adjust the reflectance in the visible range by the optical interference effect, and to make the optical characteristics of the stacked body 10 desired characteristics.
  • the thickness of the second dielectric layer 16 is preferably 37 nm or more, more preferably 38 nm or more, and further preferably 39 nm or more.
  • the thickness of the second dielectric layer 16 is preferably 47 nm or less.
  • the constituent material of the second dielectric layer 16 is not particularly limited as long as it is a dielectric having the above-described refractive index, and various oxides and nitrides can be used.
  • the oxide include an oxide mainly composed of an oxide of at least one element selected from zinc, tin, niobium, and titanium.
  • the nitride include those containing as a main component a nitride of at least one element selected from silicon and aluminum.
  • the constituent material of the second dielectric layer 16 that is a dielectric from the beginning is preferably an oxide, and particularly preferably aluminum zinc oxide or tin zinc oxide.
  • the aluminum zinc oxide preferably has an aluminum ratio of 1 to 10 atomic%, more preferably 3 to 7 atomic%, based on the total amount of zinc and aluminum.
  • the tin zinc oxide preferably has a tin ratio of 10 to 90% by mass, more preferably 20 to 80% by mass with respect to the total amount of zinc and tin.
  • the portion that has been a dielectric material from the beginning is not necessarily limited to a single-layer structure composed of one kind of dielectric layer, but may be a laminated structure in which two or more kinds of dielectric layers are laminated, although not shown. .
  • the refractive indexes of the individual dielectric layers are not necessarily the same, and may be different as long as they are within the refractive index range of 1.9 to 2.1.
  • aluminum zinc oxide or tin zinc oxide is preferable.
  • the aluminum zinc oxide preferably has an aluminum ratio of 1 to 10 atomic%, more preferably 3 to 7 atomic%, based on the total amount of zinc and aluminum.
  • the stacking order is not necessarily limited, and may be the order of aluminum zinc oxide and tin zinc oxide in order from the transparent substrate 11 side, or the order of tin zinc oxide and aluminum zinc oxide. Among these, the order of aluminum zinc oxide and tin zinc oxide is more preferable.
  • a metal oxide layer formed by oxidation of a metal film functioning as a barrier film is disposed on the light absorption layer 15 side of the second dielectric layer 16.
  • the metal oxide include metals such as titanium, zirconium, hafnium, niobium, nickel, and chromium, and alloys containing at least one of these metals.
  • the alloy include a titanium zirconium alloy, a titanium hafnium alloy, a nickel chromium alloy, a nickel aluminum alloy, and a nickel iron alloy.
  • the thickness of the metal oxide layer is usually about 1 to 3 nm.
  • FIG. 2 shows a first configuration example of the laminate 10.
  • the first configuration example is a preferable configuration example of the non-heat treated product.
  • the light absorption layer 15 preferably has a metal layer 151.
  • the metal oxide layer 17 is formed by oxidation of a metal film that functions as a barrier film. If the refractive index is in the range of 1.9 to 2.1, the metal oxide layer 17 is included in the second dielectric layer 16. If the refractive index is outside the range of 1.9 to 2.1, it is not included in the second dielectric layer 16.
  • the metal oxide layer 17 is preferably made of an oxide of the same metal as that contained in the metal layer 151.
  • the light absorbing layer 15 (metal layer 151), the metal oxide layer 17, and the second dielectric layer 16 are formed on the metal layer after a relatively thick metal film is formed on the silver layer 14.
  • the second dielectric layer 16 can be formed. That is, when the second dielectric layer 16 is formed, a part of the metal film on the second dielectric layer 16 side can be oxidized to form the metal oxide layer 17, and the silver layer 14 of the metal film can be formed.
  • the metal layer 151 can be formed by leaving the remaining portion on the side without being oxidized. In this case, the metal film is used for forming the metal layer 151 and also used as a barrier film for suppressing oxidation of the silver layer 14 when the second dielectric layer 16 is formed. With such a configuration, the light absorption layer 15 (metal layer 151) can be formed while suppressing the oxidation of the silver layer 14, and the productivity can be improved.
  • the thickness of the metal layer 151 is 1 to 6 nm.
  • the thickness of the metal layer 151 is more preferably 5 nm or less, further preferably 4 nm or less, and particularly preferably 3 nm or less.
  • the constituent material of the metal layer 151 include metals such as titanium, zirconium, hafnium, niobium, nickel, and chromium, and alloys containing at least one of these metals.
  • the alloy include a titanium zirconium alloy, a titanium hafnium alloy, a nickel chromium alloy, a nickel aluminum alloy, and a nickel iron alloy. Among these, an alloy mainly containing titanium is preferable, an alloy containing 90% by mass or more of titanium is more preferable, and only titanium is more preferable.
  • the metal oxide layer 17 is preferably made of the same metal oxide as the metal contained in the metal layer 151.
  • the metal oxide layer 17 is formed, for example, by oxidizing a part of the metal film that becomes the metal layer 151 when the second dielectric layer 16 is formed.
  • the thickness of the metal oxide layer 17 is usually about 1 to 3 nm.
  • an adhesive layer 18 and a protective layer 19 are provided in this order from the second dielectric layer 16 side as necessary.
  • the adhesive layer 18 is provided as necessary to improve the adhesiveness between the second dielectric layer 16 and the protective layer 19.
  • the constituent material of the adhesive layer 18 is not particularly limited as long as the adhesion between the second dielectric layer 16 and the protective layer 19 can be improved, but a nitride or a dielectric having a refractive index of 1.9 to 2.5 is preferable.
  • an oxide of titanium is preferable.
  • the adhesive layer 18 may be formed as a nitride film and then oxidized into an oxide film when the protective layer 19 is formed.
  • a thickness of 0.5 nm or more is preferable. By setting the thickness to 0.5 nm or more, the adhesion between the second dielectric layer 16 and the protective layer 19 can be effectively improved.
  • the thickness of the adhesive layer 18 is usually sufficient if it is 5 nm.
  • the protective layer 19 is not particularly limited as long as it can improve the scratch resistance of the surface, but a dielectric having a refractive index of 1.9 to 2.4 is preferable.
  • the constituent material of the protective layer 19 is preferably a zirconium titanium oxide film from the viewpoint of scratch resistance.
  • the thickness of the protective layer 19 is preferably 1 nm or more. By setting the thickness of the protective layer 19 to 1 nm or more, the scratch resistance can be effectively improved.
  • the thickness of the protective layer 19 is more preferably 2 nm or more. Further, the thickness of the protective layer 19 is preferably 10 nm or less, more preferably 7 nm or less, and even more preferably 5 nm or less from the viewpoint of suppressing an excessive decrease in visible light transmittance.
  • the adhesive layer 18 is regarded as a part of the second dielectric layer 16 when it is a dielectric having a refractive index of 1.9 to 2.1 when it is a finished product. Further, when the adhesive layer 18 is a dielectric having a refractive index of 1.9 to 2.1 and the protective layer 19 is a dielectric having a refractive index of 1.9 to 2.1, The protective layer 19 is also regarded as a part of the second dielectric layer 16.
  • FIG. 3 shows a second configuration example of the laminate 10.
  • the second configuration example is a preferable configuration example of the heat-treated product.
  • the light absorption layer 15 preferably has a nitride layer 152.
  • the metal oxide layer 17 and the 2nd dielectric material layer 16 are formed by oxidation of a metal film that functions as a barrier film.
  • the light absorption layer 15 (nitride layer 152), the metal oxide layer 17 and the second dielectric layer 16 are formed by forming a nitride layer 152 on the silver layer 14 and forming the nitride layer 152 on the nitride layer 152. It can be formed by forming a metal film and forming the second dielectric layer 16 on the metal film. That is, when the second dielectric layer 16 is formed, the metal film can be oxidized to form the metal oxide layer 17. In this case, the metal film functions as a barrier film that suppresses oxidation of the silver layer 14 when the second dielectric layer 16 is formed.
  • the nitride layer 152 has a function of suppressing the reaction between the silver layer 14 and the upper layer thereof during heat treatment or the like and maintaining absorption as an optical property. With such a configuration, the light absorption layer 15 (nitride layer 152) can be formed while suppressing the oxidation of the silver layer 14, and the productivity is improved.
  • the thickness of the nitride layer 152 is preferably 1 nm or more from the viewpoint of effectively reducing the visible light transmittance by assisting the absorption of visible light and suppressing deterioration of the silver layer 14, and 1.5 nm or more. Is more preferable.
  • Examples of the constituent material of the nitride layer 152 include a nitride of at least one element selected from silicon, aluminum, and chromium.
  • the metal oxide layer 17 is formed by oxidation of a metal film that functions as a barrier film when the second dielectric layer 16 is formed.
  • the metal film is preferably made of a metal having absorption in the visible light region.
  • the metal include metals such as titanium, zirconium, hafnium, niobium, nickel, chromium, and alloys containing at least one of these metals.
  • the alloy include a titanium zirconium alloy, a titanium hafnium alloy, a nickel chromium alloy, a nickel aluminum alloy, and a nickel iron alloy.
  • the thickness of the metal oxide layer 17 is usually about 1 to 3 nm.
  • an adhesive layer 18 and a protective layer are provided in this order from the second dielectric layer 16 side as necessary.
  • the adhesive layer 18 is provided as necessary in order to improve the adhesion between the second dielectric layer 16 and the protective layer.
  • the constituent material of the adhesive layer 18 is not particularly limited as long as the adhesion between the second dielectric layer 16 and the protective layer can be improved, but a nitride or dielectric having a refractive index of 1.9 to 2.5 is preferable. In particular, an oxide of titanium is preferable.
  • the adhesive layer 18 is formed as a nitride film, for example, and then oxidized when forming the protective layer to become an oxide film.
  • a thickness of 0.5 nm or more is preferable. By setting the thickness to 0.5 nm or more, the adhesiveness between the second dielectric layer 16 and the protective layer can be effectively improved.
  • the thickness of the adhesive layer 18 is usually sufficient if it is 5 nm.
  • the protective layer may disappear when a heat treatment for strengthening or bending is performed, and may not exist in the finished product.
  • An example of such a protective layer is a carbon film containing carbon as a main component.
  • the thickness of the protective layer is preferably 1 nm or more. By setting the thickness of the protective layer to 1 nm or more, the scratch resistance can be effectively improved.
  • the thickness of the protective layer is more preferably 2 nm or more. Further, the thickness of the protective layer is preferably 10 nm or less, more preferably 7 nm or less, and further preferably 5 nm or less.
  • a protective layer similar to that in the first configuration example can be provided.
  • the adhesive layer 18 is regarded as a part of the second dielectric layer 16 if it is a dielectric having a refractive index of 1.9 to 2.1 when it is a finished product.
  • the adhesive layer 18 is a dielectric having a refractive index of 1.9 to 2.1
  • the protective layer is a dielectric having a refractive index of 1.9 to 2.1.
  • the protective layer is also considered part of the second dielectric layer 16.
  • FIG. 4 shows a third configuration example of the laminate 10.
  • the third configuration example is another preferable configuration example of the heat-treated product.
  • a metal layer 151 can be further provided as the light absorption layer 15 between the nitride layer 152 and the metal oxide layer 17 in the second configuration example.
  • the metal oxide layer 17 is preferably made of an oxide of the same metal as that contained in the metal layer 151.
  • the configurations of the second dielectric layer 16, the adhesive layer 18, and the protective layer can be basically the same as those of the second configuration example.
  • the light absorption layer 15 (the nitride layer 152 and the metal layer 151), the metal oxide layer 17, and the second dielectric layer 16 are formed by forming the nitride layer 152 on the silver layer 14,
  • the metal layer can be formed on the nitride layer 152 so as to be thicker than that in the configuration example 2, and the second dielectric layer 16 can be formed on the metal film. That is, when the second dielectric layer 16 is formed, a part of the metal film on the second dielectric layer 16 side can be oxidized to form the metal oxide layer 17, and the silver layer 14 of the metal film can be formed.
  • the metal layer 151 can be formed by leaving the remaining portion on the side without being oxidized.
  • the metal film is used for forming the metal layer 151 as the light absorption layer 15 and also used as a barrier film for suppressing oxidation of the silver layer 14 when forming the second dielectric layer 16.
  • the light absorption layer 15 (the metal layer 151 and the nitride layer 152) can be formed while suppressing the oxidation of the silver layer 14, and the productivity can be improved.
  • the thickness of the metal layer 151 is not particularly limited, and is preferably determined as appropriate according to the thickness of the nitride layer 152 so that the thickness of the light absorption layer 15 is 6 nm or less as a whole.
  • the constituent material of the metal layer 151 can be the same constituent material as the constituent material of the metal layer 151 of the configuration example 1 or the constituent material of the metal film of the configuration example 2.
  • the laminate 10 preferably has the following optical characteristics.
  • the optical characteristics of the present invention can be obtained by measuring with a “C light source 2 ° visual field” as a light source.
  • the post-heat-treated product preferably has the following optical characteristics.
  • the solar heat gain coefficient (SHGC) is preferably 0.37 to 0.43.
  • Solar heat gain is a measure of how much heat from sunlight is blocked. That is, the solar heat gain rate (SHGC) is the ratio of the energy released to the indoor side with respect to the energy incident from the outdoor side in the multi-layer glass or single plate glass.
  • the solar heat acquisition rate is represented by a numerical value between 0 and 1. The smaller the solar heat gain rate, the less solar heat is transmitted.
  • the solar heat gain rate (SHGC) is an index used by National Fenestration Rating Council.
  • a solar radiation acquisition rate is calculated
  • the transparent substrate 11 and the counter substrate of the laminate 10 are preferably glass plates, and the hollow layer is preferably an air layer.
  • the laminated body 10 is disposed so as to be on the outdoor side, and the laminated film 12 is disposed on the hollow layer side.
  • the thickness of the transparent substrate 11 and the counter substrate is preferably about 3 to 6 mm, and the thickness of the hollow layer is preferably about 6 to 18 mm.
  • the visible light transmittance (T v ) is preferably 66 to 72%, and the visible light reflectance (R v1 ) on the transparent substrate 11 side (hereinafter simply referred to as the substrate side) is preferably 20 to 25%, and the laminated film 12 side
  • the visible light reflectance (R v2 ) (hereinafter referred to simply as “film side”) is preferably 13 to 20%.
  • the reflectance difference (R v1 ⁇ R v2 ) between the visible light reflectance (R v1 ) on the substrate side and the visible light reflectance (R v2 ) on the film side is preferably 3.5% or more, and is preferably 4.0% or more. Is more preferable.
  • the visible light transmittance (T v ) and the visible light reflectance (R v ) are both defined in JIS R3106: 1998.
  • the transmitted light and reflected light of the laminate 10 preferably have the following color tone. That is, in the L * a * b * color system, the transmitted light preferably has a * of ⁇ 4 to ⁇ 1 and b * of 3 to 8.
  • the reflected light on the substrate side preferably has a * of ⁇ 4 to 1 and b * of ⁇ 13 to ⁇ 8.
  • the reflected light on the film side preferably has a * of -1 to 7 and b * of -20 to -11.
  • a glass plate for a building is required to have a low solar heat acquisition rate from the viewpoint of cooling efficiency and the like, and the colors of transmitted light and reflected light are important from the viewpoint of design. Since the laminated body 10 of the embodiment has a low solar heat acquisition rate and has predetermined optical characteristics, it is preferably used for a glass plate for buildings, particularly a glass plate for high-rise buildings, specifically a window. It is suitably used for applications such as glass.
  • a dielectric film that becomes the first dielectric layer 13 a silver film that becomes the silver layer 14, a metal film that becomes the metal layer 151 and the metal oxide layer 17 on the transparent substrate 11.
  • a dielectric film to be the second dielectric layer 16 an adhesive film to be the adhesive layer 18, and a protective film to be the protective layer 19, if necessary, can be sequentially formed.
  • the film forming method is not particularly limited, but a sputtering method is preferably used.
  • Sputtering methods include DC sputtering using a metal target, AC and RF sputtering using metal and non-metal targets. In all cases, magnetron sputtering can be used. Sputtering is performed in an inert gas or in a reactive gas as required.
  • Each film is formed as follows, for example.
  • the dielectric film to be the first dielectric layer 13 is, for example, reactive sputtering in an oxidizing atmosphere containing argon and oxygen using a metal target made of metal contained in the dielectric film as a sputtering target.
  • the film is formed by
  • the silver film to be the silver layer 14 is formed by sputtering in a non-oxidizing atmosphere consisting only of argon containing no oxygen, for example, using a silver target containing silver as a main component as a sputtering target.
  • the metal film to be the metal layer 151 and the metal oxide layer 17 for example, a metal target made of metal contained in the metal film is used as a sputtering target, and sputtering is performed in a non-oxidizing atmosphere made only of argon not containing oxygen.
  • the film is formed by
  • the metal film is partly oxidized to form the metal oxide layer 17 when the dielectric film to be the second dielectric layer 16 is formed, and the remaining part is not oxidized to the metal layer 151. Therefore, the metal film is preferably formed thicker than the metal layer 151.
  • the thickness of the metal film oxidized to become the metal oxide layer 17 is about 1 to 3 nm. Therefore, the thickness of the metal film is preferably 1 nm or more thicker than the thickness of the metal layer 151.
  • the dielectric film to be the second dielectric layer 16 is, for example, sputtered in an oxidizing atmosphere containing argon and oxygen using a metal target made of metal contained in the electric film as a sputtering target. Form a film. During the film formation, as described above, a part of the metal film is oxidized to become the metal oxide layer 17, and the remaining part is not oxidized to become the metal layer 151.
  • the adhesive film to be the adhesive layer 18 is formed, for example, by sputtering in an atmosphere containing argon and nitrogen using a metal target such as titanium as a sputtering target.
  • the protective film to be the protective layer 19 is formed, for example, by performing sputtering in an oxidizing atmosphere containing argon and oxygen using a metal target such as titanium as a sputtering target.
  • a dielectric film to be the first dielectric layer 13 a silver film to be the silver layer 14, a nitride film to be the nitride layer 152, a metal layer 151, a metal film to be the metal oxide layer 17, and a dielectric film to be the second dielectric layer 16 are sequentially formed, and then heat treatment for strengthening or bending can be performed. If necessary, an adhesive film to be the adhesive layer 18 and a protective film to be the protective layer 19 are sequentially formed on the second dielectric layer 16.
  • the heat treatment is preferably performed, for example, in air at 650 to 750 ° C. for 1 to 10 minutes.
  • membrane similar to a non-heat-treated product it can form into a film fundamentally similarly to a non-heat-treated product.
  • the thickness of the metal film is such that all of the metal film is oxidized when the dielectric film to be the second dielectric layer 16 is formed.
  • the thickness of the metal film is set so that all of the metal film is not oxidized during the formation of the dielectric film to be the second dielectric layer 16.
  • the nitride film to be the nitride layer 152 is formed by sputtering in an atmosphere containing argon and nitrogen, for example, using a metal target made of metal contained in the nitride film as a sputtering target.
  • the protective film serving as the protective layer 19 is formed by sputtering in a non-oxidizing atmosphere using, for example, a carbon target as a sputtering target.
  • a carbon film is formed as a protective film, it disappears by a subsequent heat treatment for strengthening or bending.
  • FIG. 5 shows one embodiment of the double glazing.
  • the multilayer glass 20 is disposed so that the laminate 10 and the counter substrate 21 are spaced apart from each other with a spacer 22 interposed therebetween.
  • a primary sealant 23 seals between the laminate 10 and the spacer 22 and between the counter substrate 21 and the spacer 22.
  • the peripheral edge between the laminated body 10 and the counter substrate 21 is sealed by the secondary sealing material 24.
  • a desiccant 27 for suppressing condensation in the hollow layer 26 through the through hole 25 is disposed inside the spacer 22.
  • the hollow layer 26 is filled with air or argon gas.
  • the laminate 10 is disposed on the outdoor side with respect to the counter substrate 21.
  • the laminated body 10 is arrange
  • a laminated body is suitable for buildings, it is not necessarily limited to buildings, and can be used for vehicles such as automobiles as far as applicable.
  • the configuration of the laminated film is not limited to the above-described configuration, and other layers can be included as necessary and within the limits not departing from the object of the present invention.
  • Example 1 Film formation was performed by the sputtering method with the film configuration shown in Table 1, and a laminate (non-heat-treated product) having the configuration shown in FIG. 2 was manufactured. Note that the configurations and thicknesses shown in Table 1 are the configurations and thicknesses when the respective films are formed, and do not necessarily match the configurations and thicknesses in the final form.
  • the dielectric film (1) is the first dielectric layer 13
  • the silver film is the silver layer 14
  • the metal film is partly oxidized to become the metal oxide layer 17, and the remainder is not oxidized and is a metal layer.
  • the dielectric film (2) becomes the second dielectric layer 16
  • the adhesive film becomes the adhesive layer 18 by oxidation
  • the protective film becomes the protective layer 19.
  • the metal oxide layer 17, the adhesive layer 18, and the protective layer 19 all have a refractive index outside the range of 1.9 to 2.1. Therefore, the second dielectric layer 16 is not included.
  • the sputtering apparatus As the sputtering apparatus, an in-line type sputtering apparatus equipped with a target for forming each film in the sputtering chamber was used. A 3 mm thick soda lime glass plate was introduced into this in-line type sputtering apparatus, and evacuated in the load lock chamber until the degree of vacuum was 2 ⁇ 10 ⁇ 6 Torr or less. Subsequently, a glass plate was introduced into the sputtering chamber, and films were sequentially formed with the film configurations shown in Table 1.
  • a tin-zinc oxide film (a ratio of tin to 50% by mass with respect to the total amount of tin and zinc) and an aluminum zinc oxide film (aluminum with respect to the total amount of aluminum and zinc) Is a silver film, a titanium film as the metal film, and an aluminum zinc oxide film as the dielectric film (2) (the ratio of aluminum to the total amount of aluminum and zinc is 5.0).
  • a zirconium titanium oxide film (the ratio of titanium oxide to the total amount of zirconium oxide and titanium oxide is 45% by mass) It was deposited, to produce a laminate.
  • the tin-zinc oxide film uses a zinc-tin alloy target (the ratio of tin to 50% by mass with respect to the total amount of zinc and tin) and introduces argon (Ar) and oxygen (O 2 ). (The ratio of the gas pressure of argon and oxygen (P Ar / PO 2 ) was 10/9), and the power density was 3.6 W / cm 2 .
  • the aluminum zinc oxide film uses an alloy target of zinc and aluminum (a ratio of aluminum with respect to the total amount of zinc and aluminum is 5.0 atomic%) and introduces argon (Ar) and oxygen (O 2 ) (the ratio of the gas pressure of argon and oxygen (P Ar / P O2 ) is 10/9), and the power density was 3.6 W / cm 2 .
  • the silver film was formed using a silver target with an introduction gas of Ar 100% and a power density of 1.4 W / cm 2 .
  • the titanium film was formed using a titanium target with an introduction gas of Ar 100% and a power density of 0.7 W / cm 2 .
  • the titanium nitride film uses a titanium target, and the introduced gas is a mixed gas of argon (Ar) and oxygen (O 2 ) (the ratio of the gas pressure of argon and oxygen (P Ar / P O2 ) is 70/30).
  • the film was formed with a power density of 3.6 W / cm 2 .
  • the zirconium-titanium oxide film uses an alloy target of zirconium and titanium (the ratio of titanium to the total amount of zirconium and titanium is 45% by mass), and the introduced gas is argon (Ar) and oxygen (O 2 ). (The ratio of the gas pressure of argon and oxygen (P Ar / PO 2 ) was 10/9), and the power density was 3.6 W / cm 2 .
  • Example 2 As shown in Table 1, a laminate (non-heat treated product) was manufactured in the same manner as in Example 1 except that no titanium nitride film was provided.
  • Example 3 Film formation and heat treatment were performed by the sputtering method with the film configuration shown in Table 2, and a laminate (heat treatment product) having the metal layer 151 and the nitride layer 152 as the light absorption layer 15 as shown in FIG. 4 was manufactured. The heat treatment was performed in air at 730 ° C. for 6 minutes.
  • the dielectric film (1) is the first dielectric layer 13
  • the silver film is the silver layer 14
  • the nitride film is the nitride layer 152
  • the metal film is partially oxidized to form the metal oxide layer 17
  • the remainder is not oxidized and becomes the metal layer 151 of the light absorption layer 15
  • the dielectric film (2) becomes the second dielectric layer 16
  • the adhesive film becomes the adhesive layer 18 by oxidation.
  • the protective film is formed as a protective layer, but disappears by the subsequent heat treatment.
  • the protective film was formed by using a carbon target with an introduction gas of Ar 100% and a power density of 2.1 W / cm 2 . Other layers were formed under the same conditions as in Example 1.
  • Example number 5 the visible light transmittance (T v ), the visible light reflectance (R v1 ) on the substrate side, and the visible light reflectance (R v2 ) on the film side Asked.
  • the solar heat gain rate (SHGC) when it was set as the multilayer glass as shown in FIG. 5 was calculated
  • Table 3 shows the results of the visible light transmittance (T v ), the visible light reflectance (R v1 , R v2 ), and the solar heat gain rate (SHGC).
  • the visible light transmittance (T v ) and the visible light reflectance (R v ) were measured by measuring the visible light transmittance at a wavelength of 300 to 2500 nm using a Hitachi U-4100 spectrophotometer, and specified in JIS R3106: 1998. Calculated according to
  • the transmitted light and reflected light were calculated in accordance with JIS Z 8729 by measuring a * and b * in the L * a * b * color system based on JIS Z 8722.
  • the solar heat acquisition rate is a glass plate (thickness 6 mm) for the transparent substrate 11 of the laminated film 12, and a glass plate (thickness 6 mm) for the counter substrate 21. It calculated
  • the laminates of Examples 1 to 3 having a predetermined laminate structure have a visible light transmittance (T v ) of 66 to 72% and a visible light reflectance on the substrate side.
  • T v1 visible light transmittance
  • R v2 visible light reflectance
  • R v2 visible light reflectance
  • reflectance difference R v1 ⁇ R v2
  • a * of transmitted light is -4 to -1 and b * are 3 to 8
  • a * of the reflected light on the substrate side is -4 to 1 and b * is -13 to -8
  • a * of the reflected light on the film side is -1 to 7 and b * satisfies ⁇ 20 to ⁇ 13
  • SHGC solar radiation acquisition rate
  • Example 1 Comparative Example 1 As shown in Table 4, a laminate (non-heat treated product) was manufactured in the same manner as in Example 1 by changing the thicknesses of the dielectric films (1) and (2) and the metal film.
  • the thickness after the formation of all films is as shown below.
  • the thicknesses of the dielectric films (1), (2), the silver film, and the protective film (zirconium titanium oxide and carbon) after film formation are all the same as the thickness immediately after the film formation. .
  • the thickness of the entire metal film (titanium) after film formation is oxidized and increased during the film formation of other films, and is therefore about twice the thickness immediately after film formation.
  • the thickness of the adhesive film after the entire film is formed is oxidized and increased at the time of forming other films, so that the thickness is less than 1.5 times that immediately after the film formation.
  • the thickness immediately after the film formation and the thickness after the heat treatment is as shown below.
  • the thicknesses of the dielectric films (1), (2), the silver film, and the protective film (zirconium titanium oxide) after the heat treatment are all the same as the thickness immediately after the film formation. Since the thickness of the metal film (titanium) after the heat treatment is oxidized and increased during the heat treatment, it is about twice the thickness immediately after the film formation. Since the thickness of the adhesive film after the heat treatment is increased by oxidation during the heat treatment, the thickness is less than 1.5 times that immediately after the film formation.
  • the protective film (carbon) disappears due to oxidation during heat treatment.
  • SYMBOLS 10 Laminated body, 11 ... Transparent substrate, 12 ... Laminated film, 13 ... 1st dielectric layer, 14 ... Silver layer, 15 ... Light absorption layer, 16 ... 2nd dielectric layer, 17 ... Metal oxide layer 18 ... Adhesive layer, 19 ... Protective layer, 20 ... Multi-layer glass, 21 ... Counter substrate, 22 ... Spacer, 23 ... Primary sealing material, 24 ... Secondary sealing material, 25 ... Through hole, 26 ... Hollow layer, 27 ... Desiccant, 151 ... Metal layer, 152 ... Nitride layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

A laminated body including a transparent substrate and a laminated film that is provided upon the transparent substrate. The laminated film includes, in order from the transparent substrate side, a first dielectric layer, a silver layer, a light-absorbing layer, and a second dielectric layer. The first dielectric layer has a refractive index of 1.9-2.1 and a geometrical thickness of 20-30nm. The silver layer includes silver as a main component and has a geometrical thickness of 11-18nm. The light-absorbing layer has a geometrical thickness of 1-6nm. The second dielectric layer has a refractive index of 1.9-2.1 and a geometrical thickness of 35-48nm.

Description

積層体および複層ガラスLaminate and double glazing
 本発明は、積層体および複層ガラスに係り、特に1の銀層を有し、遮熱性が良好で、かつ特定の光学特性が得られる積層体、およびこれを用いた複層ガラスに関する。 The present invention relates to a laminate and a multi-layer glass, and more particularly, to a multi-layer glass having one silver layer, good thermal insulation and obtaining specific optical characteristics, and a multi-layer glass using the same.
 銀層は、可視域で透過色および反射色が中性色(ニュートラル色)であり、また低抵抗率を示す。例えば、厚さが10nm程度の場合、可視域での吸収が少なく、反射率は数10%である。波長が長くなるにつれて反射率が増加し、赤外域では高反射率を示す。 The silver layer has a neutral color (neutral color) in the visible and transmitted colors and a low resistivity. For example, when the thickness is about 10 nm, there is little absorption in the visible range, and the reflectance is several tens of percent. The reflectance increases as the wavelength becomes longer, and shows a high reflectance in the infrared region.
 銀層を誘電体層で挟み、可視域では低反射率かつ赤外域では高反射率とした銀系多層膜は、一般的なガラスと同等の外観を示し、低放射率かつ高熱線反射率を示す。このため、銀系多層膜は、高断熱Low-Eガラス、可視光域では高透過率である熱線反射ガラスに用いられる。近年、省エネ意識の高まりとともに、これらのガラスの需要が増大している。 A silver multilayer film with a silver layer sandwiched between dielectric layers with low reflectivity in the visible range and high reflectivity in the infrared range shows the same appearance as general glass, and has low emissivity and high heat ray reflectivity. Show. Therefore, the silver-based multilayer film is used for highly heat-insulating Low-E glass and heat ray reflective glass having high transmittance in the visible light region. In recent years, with the growing awareness of energy saving, the demand for these glasses has increased.
 銀系多層膜として、2の銀層を有するものが知られている(例えば、特許文献1参照)。また、銀系多層膜として、2の銀層および光吸収層を有するものが知られている(例えば、特許文献2、3参照)。 A silver-based multilayer film having two silver layers is known (for example, see Patent Document 1). Moreover, what has two silver layers and a light absorption layer is known as a silver type multilayer film (for example, refer patent document 2, 3).
米国特許第6576349号明細書US Pat. No. 6,576,349 米国特許第7687149号明細書US Pat. No. 7,687,149 米国特許第7670641号明細書US Pat. No. 7,706,641
 上記したように、銀系多層膜として、2の銀層を有するものが知られている。2の銀層を有するものは、銀層の厚さが全体として厚くなることから遮熱性は良好となるが、積層数が多くなることから必ずしも生産性が良好でない。一方、1の銀層を有するものは、積層数が少なくなることから生産性は良好となるが、厚みの薄い銀層だけでは必ずしも遮熱性が良好でない。 As described above, a silver multilayer film having two silver layers is known. Those having two silver layers have good heat shielding properties because the thickness of the silver layer is increased as a whole, but the productivity is not necessarily good because of the increased number of layers. On the other hand, those having one silver layer have good productivity because the number of laminated layers is small, but the heat shielding property is not necessarily good only with a thin silver layer.
 また、窓ガラスへの適用においては、単に遮熱性が良好なだけでなく、使用場所、使用用途、意匠性等の観点から、特定の可視光透過率や可視光反射率を有するとともに、透過光や反射光が特定の色調を有することも求められる。 Also, in application to window glass, not only has good heat shielding properties, but also has specific visible light transmittance and visible light reflectance from the viewpoint of use place, usage, design, etc., and transmitted light It is also required that the reflected light has a specific color tone.
 本発明は、上記課題を解決するためになされたものであって、1の銀層を有するものであって、遮熱性が良好で、かつ特定の光学特性が得られることにより外観の良好な積層体の提供を目的とする。また、本発明は、このような積層体を用いた複層ガラスの提供を目的とする。 The present invention has been made in order to solve the above-mentioned problems, and has one silver layer, has good heat shielding properties, and has a good appearance by obtaining specific optical characteristics. The purpose is to provide the body. Another object of the present invention is to provide a multi-layer glass using such a laminate.
 本発明の積層体は、透明基板と、この透明基板上に設けられた積層膜とを有する。積層膜は、透明基板側から順に、第1の誘電体層、銀層、光吸収層、および第2の誘電体層を有する。第1の誘電体層は、1.9~2.1の屈折率および20~30nmの幾何学的厚さを有する。銀層は、銀を主成分とし11~18nmの幾何学的厚さを有する。光吸収層は、1~6nmの幾何学的厚さを有する。第2の誘電体層は、1.9~2.1の屈折率および35~48nmの幾何学的厚さを有する。 The laminate of the present invention has a transparent substrate and a laminated film provided on the transparent substrate. The laminated film has a first dielectric layer, a silver layer, a light absorption layer, and a second dielectric layer in order from the transparent substrate side. The first dielectric layer has a refractive index of 1.9 to 2.1 and a geometric thickness of 20 to 30 nm. The silver layer is mainly composed of silver and has a geometric thickness of 11 to 18 nm. The light absorbing layer has a geometric thickness of 1 to 6 nm. The second dielectric layer has a refractive index of 1.9 to 2.1 and a geometric thickness of 35 to 48 nm.
 本発明の複層ガラスは、上記した本発明の積層体と、この積層体の積層膜側に配置された対向基板とを有する。 The multilayer glass of the present invention has the above-described laminate of the present invention and a counter substrate disposed on the laminate film side of the laminate.
 本発明の積層体は、積層膜として、透明基板側から順に、1.9~2.1の屈折率および20~30nmの幾何学的厚さを有する第1の誘電体層、銀を主成分とし11~18nmの幾何学的厚さを有する銀層、1~6nmの幾何学的厚さを有する光吸収層、および1.9~2.1の屈折率および35~48nmの幾何学的厚さを有する第2の誘電体層を有する。これにより、1の銀層を有するものでも、遮熱性を良好にでき、かつ特定の光学特性が得られ外観を良好とすることができる。 The laminated body of the present invention comprises, as a laminated film, a first dielectric layer having a refractive index of 1.9 to 2.1 and a geometric thickness of 20 to 30 nm in order from the transparent substrate side, and silver as a main component. A silver layer having a geometric thickness of 11-18 nm, a light-absorbing layer having a geometric thickness of 1-6 nm, and a refractive index of 1.9-2.1 and a geometric thickness of 35-48 nm A second dielectric layer having a thickness. Thereby, even if it has one silver layer, heat-shielding property can be made favorable, a specific optical characteristic can be acquired, and an external appearance can be made favorable.
積層体の一実施形態を示す断面図。Sectional drawing which shows one Embodiment of a laminated body. 積層体の第1の構成例を示す断面図。Sectional drawing which shows the 1st structural example of a laminated body. 積層体の第2の構成例を示す断面図。Sectional drawing which shows the 2nd structural example of a laminated body. 積層体の第3の構成例を示す断面図。Sectional drawing which shows the 3rd structural example of a laminated body. 複層ガラスの一実施形態を示す断面図。Sectional drawing which shows one Embodiment of multilayer glass. 実施例1、2の透過光のaを示す図。The figure which shows a * b * of the transmitted light of Example 1,2. 実施例1、2の反射光(基板側)のaを示す図。The figure which shows a * b * of the reflected light (board | substrate side) of Example 1,2. 実施例1、2の反射光(膜側)のaを示す図。The figure which shows a * b * of the reflected light (film | membrane side) of Example 1,2. 実施例3の透過光のaを示す図。The figure which shows a * b * of the transmitted light of Example 3. FIG. 実施例3の反射光(基板側)のaを示す図。The figure which shows a * b * of the reflected light (board | substrate side) of Example 3. FIG. 実施例3の反射光(膜側)のaを示す図。The figure which shows a * b * of the reflected light (film | membrane side) of Example 3. FIG.
 以下、本発明の積層体の実施形態について説明する。
 図1は、積層体の一実施形態を示す断面図である。
Hereinafter, embodiments of the laminate of the present invention will be described.
FIG. 1 is a cross-sectional view showing an embodiment of a laminate.
 積層体10は、透明基板11と、この透明基板11上に設けられる積層膜12とを有する。積層膜12は、透明基板11側から順に、第1の誘電体層13、銀層14、光吸収層15、および第2の誘電体層16を有する。 The laminate 10 has a transparent substrate 11 and a laminate film 12 provided on the transparent substrate 11. The laminated film 12 includes a first dielectric layer 13, a silver layer 14, a light absorbing layer 15, and a second dielectric layer 16 in order from the transparent substrate 11 side.
 第1の誘電体層13は、1.9~2.1の屈折率および20~30nmの幾何学的厚さを有する。銀層14は、銀を主成分とし11~18nmの幾何学的厚さを有する。光吸収層15は、1~6nmの幾何学的厚さを有する。第2の誘電体層16は、1.9~2.1の屈折率および35~48nmの幾何学的厚さを有する。なお、本発明における屈折率は、波長550nmにおける屈折率を意味する。 The first dielectric layer 13 has a refractive index of 1.9 to 2.1 and a geometric thickness of 20 to 30 nm. The silver layer 14 is mainly composed of silver and has a geometric thickness of 11 to 18 nm. The light absorption layer 15 has a geometric thickness of 1 to 6 nm. The second dielectric layer 16 has a refractive index of 1.9 to 2.1 and a geometric thickness of 35 to 48 nm. In addition, the refractive index in this invention means the refractive index in wavelength 550nm.
 積層体10は、非熱処理品と熱処理品とに大別される。ここで、非熱処理品は、単に積層膜12が成膜されて最終的な形態である完成品となるものであり、成膜後に強化または曲げのための熱処理が行われていない。熱処理品は、積層膜12の成膜後に強化または曲げのための熱処理が行われて最終的な形態である完成品となる。積層体10は、非熱処理品または熱処理品のいずれでもよい。 The laminate 10 is roughly divided into a non-heat treated product and a heat treated product. Here, the non-heat-treated product is simply a laminated film 12 formed into a final product in the final form, and no heat treatment for strengthening or bending is performed after the film formation. The heat-treated product is subjected to a heat treatment for strengthening or bending after the formation of the laminated film 12 to be a final product in a final form. The laminate 10 may be either a non-heat treated product or a heat treated product.
 上記幾何学的厚さは、いずれも完成品でのものであり、非熱処理品の場合には積層膜12の成膜後のものであり、熱処理品の場合には積層膜12の成膜後に行われる強化または曲げのための熱処理後のものである。以下、厚さは、特に断らない限り幾何学的厚さとする。 The above geometric thicknesses are all in the finished product. In the case of a non-heat-treated product, the geometric thickness is after the formation of the laminated film 12, and in the case of a heat-treated product, after the formation of the laminated film 12. After heat treatment for strengthening or bending performed. Hereinafter, the thickness is assumed to be a geometric thickness unless otherwise specified.
 透明基板11は、特に限定されず、例えば、建築物用の窓ガラス、通常使用されるフロ-トガラス、またはロ-ルアウト法によって製造されるソーダ石灰ガラス等の無機質の透明性を有するガラス板を使用できる。ガラス板には、クリアガラス、高透過ガラス等の無色のもの、熱線吸収ガラス等の緑等に着色されたものも使用できる。可視光透過率を考慮すると、この中で、クリアガラス、高透過ガラス等の無色ガラスが好ましい。また、風冷強化ガラス、化学強化ガラス等の各種強化ガラスも使用できる。さらには、ホウケイ酸塩ガラス、低膨張ガラス、ゼロ膨張ガラス、低膨張結晶化ガラス、ゼロ膨張結晶化ガラス等の各種ガラスを用いることができる。透明基板11の厚さは、必ずしも限定されないが、例えば0.5~20mmが好ましい。 The transparent substrate 11 is not particularly limited. For example, a glass plate having an inorganic transparency such as a window glass for buildings, a commonly used float glass, or a soda-lime glass manufactured by a roll-out method is used. Can be used. As the glass plate, colorless ones such as clear glass and high transmission glass and green ones such as heat ray absorbing glass can be used. In consideration of visible light transmittance, colorless glass such as clear glass and high transmittance glass is preferable among them. Various tempered glasses such as air-cooled tempered glass and chemically tempered glass can also be used. Furthermore, various glasses such as borosilicate glass, low expansion glass, zero expansion glass, low expansion crystallized glass, and zero expansion crystallized glass can be used. The thickness of the transparent substrate 11 is not necessarily limited, but is preferably 0.5 to 20 mm, for example.
 第1の誘電体層13は、光干渉効果によって可視域での反射率等を調整して、積層体10の光学特性を所望の特性とするために設けられる。第1の誘電体層13は、1.9~2.1の屈折率を有する。このような屈折率とすることで、光干渉効果によって可視域での反射率等を調整して、積層体10の光学特性を所望の特性にできる。 The first dielectric layer 13 is provided in order to adjust the reflectance in the visible range and the like by the optical interference effect so that the optical characteristics of the laminate 10 become desired characteristics. The first dielectric layer 13 has a refractive index of 1.9 to 2.1. By setting it as such a refractive index, the reflectance etc. in a visible region are adjusted with a light interference effect, and the optical characteristic of the laminated body 10 can be made into a desired characteristic.
 第1の誘電体層13は、20~30nmの厚さを有する。第1の誘電体層13の厚さを上記範囲内にすることで、光干渉効果によって可視域での反射率等を調整して、積層体10の光学特性を所望の特性にできる。第1の誘電体層13の厚さは、21nm以上が好ましく、22nm以上がより好ましく、23nm以上がさらに好ましい。また、第1の誘電体層13の厚さは、29nm以下が好ましく、28nm以下がより好ましく、27nm以下がさらに好ましい。 The first dielectric layer 13 has a thickness of 20 to 30 nm. By setting the thickness of the first dielectric layer 13 within the above range, the optical characteristics of the stacked body 10 can be adjusted to desired characteristics by adjusting the reflectance in the visible range by the optical interference effect. The thickness of the first dielectric layer 13 is preferably 21 nm or more, more preferably 22 nm or more, and further preferably 23 nm or more. The thickness of the first dielectric layer 13 is preferably 29 nm or less, more preferably 28 nm or less, and even more preferably 27 nm or less.
 第1の誘電体層13の構成材料は、上記屈折率を有する誘電体であれば特に制限されず、各種の酸化物および窒化物が挙げられる。酸化物としては、亜鉛、スズ、ニオブ、およびチタンから選ばれる少なくとも1種の元素の酸化物を主成分とするものが挙げられる。また、窒化物としては、ケイ素およびアルミニウムから選ばれる少なくとも1種の元素の窒化物を主成分とするものが挙げられる。 The constituent material of the first dielectric layer 13 is not particularly limited as long as it is a dielectric having the above refractive index, and includes various oxides and nitrides. Examples of the oxide include an oxide mainly composed of an oxide of at least one element selected from zinc, tin, niobium, and titanium. Examples of the nitride include those containing as a main component a nitride of at least one element selected from silicon and aluminum.
 酸化物としては、特に、アルミニウム亜鉛酸化物、スズ亜鉛酸化物が好ましい。アルミニウム亜鉛酸化物としては、亜鉛とアルミニウムとの合計量に対するアルミニウムの割合が1~10原子%であるものが好ましく、3~7原子%であるものがより好ましい。スズ亜鉛酸化物としては、亜鉛とスズとの合計量に対するスズの割合が10~80質量%であるものが好ましく、20~80質量%であるものがより好ましい。 As the oxide, aluminum zinc oxide and tin zinc oxide are particularly preferable. The aluminum zinc oxide preferably has an aluminum ratio of 1 to 10 atomic%, more preferably 3 to 7 atomic%, based on the total amount of zinc and aluminum. The tin zinc oxide is preferably one in which the ratio of tin to the total amount of zinc and tin is 10 to 80% by mass, and more preferably 20 to 80% by mass.
 なお、第1の誘電体層13は、必ずしも1種の誘電体層からなる単層構造に限られず、図示しないが2種以上の誘電体層が積層された積層構造であってもよい。積層構造の場合、個々の誘電体層の屈折率は、必ずしも同一である必要はなく、1.9~2.1の屈折率の範囲内であれば異なっていてもよい。 Note that the first dielectric layer 13 is not necessarily limited to a single-layer structure composed of one kind of dielectric layer, but may be a laminated structure in which two or more kinds of dielectric layers are laminated, although not shown. In the case of a laminated structure, the refractive indexes of the individual dielectric layers are not necessarily the same, and may be different as long as they are within the refractive index range of 1.9 to 2.1.
 単層構造の場合、アルミニウム亜鉛酸化物が好ましい。アルミニウム亜鉛酸化物としては、亜鉛とアルミニウムとの合計量に対するアルミニウムの割合が1~10原子%であるものが好ましく、3~7原子%であるものがより好ましい。アルミニウム亜鉛酸化物とすることで、その上に銀層14を形成した場合に銀層14の結晶性を向上できる。 In the case of a single layer structure, aluminum zinc oxide is preferred. The aluminum zinc oxide preferably has an aluminum ratio of 1 to 10 atomic%, more preferably 3 to 7 atomic%, based on the total amount of zinc and aluminum. By using aluminum zinc oxide, the crystallinity of the silver layer 14 can be improved when the silver layer 14 is formed thereon.
 積層構造の場合、銀層14に最も近い位置に配置される層は、アルミニウム亜鉛酸化物が好ましい。このアルミニウム亜鉛酸化物としては、亜鉛とアルミニウムとの合計量に対するアルミニウムの割合が1~10原子%であるものが好ましく、3~7原子%であるものがより好ましい。銀層14に最も近い位置に配置される層をアルミニウム亜鉛酸化物とすることで、その上に銀層14を形成した場合に銀層14の結晶性を効果的に向上できる。この場合、アルミニウム亜鉛酸化物の厚さは、1nm以上が好ましく、3nm以上がより好ましい。 In the case of a laminated structure, the layer disposed at the position closest to the silver layer 14 is preferably aluminum zinc oxide. The aluminum zinc oxide preferably has an aluminum ratio of 1 to 10 atomic%, more preferably 3 to 7 atomic%, based on the total amount of zinc and aluminum. By using aluminum zinc oxide as the layer disposed closest to the silver layer 14, the crystallinity of the silver layer 14 can be effectively improved when the silver layer 14 is formed thereon. In this case, the thickness of the aluminum zinc oxide is preferably 1 nm or more, and more preferably 3 nm or more.
 また、積層構造の場合、銀層14に最も近い位置に配置される層以外の層については、必ずしも限定されないが、スズ亜鉛酸化物が好ましい。このスズ亜鉛酸化物としては、亜鉛とスズとの合計量に対するスズの割合が10~90質量%であるものが好ましく、20~80質量%であるものがより好ましい。 Further, in the case of a laminated structure, the layers other than the layer disposed at the position closest to the silver layer 14 are not necessarily limited, but tin zinc oxide is preferable. The tin zinc oxide preferably has a tin ratio of 10 to 90% by mass and more preferably 20 to 80% by mass with respect to the total amount of zinc and tin.
 銀層14は、銀を主成分とするものであればよく、例えば、銀のみ、またはパラジウム等の金属を含有する銀合金からなる。銀合金の場合、銀と銀以外の金属元素との合計量に対する銀以外の金属の割合は、遮熱性およびコストの面から10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。銀層14は、基本的に銀のみからなることが好ましい。 The silver layer 14 only needs to be composed mainly of silver, and is made of, for example, silver alone or a silver alloy containing a metal such as palladium. In the case of a silver alloy, the ratio of the metal other than silver to the total amount of silver and a metal element other than silver is preferably 10% by mass or less, more preferably 5% by mass or less, more preferably 3% by mass in terms of heat shielding properties and cost. The following is more preferable. It is preferable that the silver layer 14 consists essentially of silver.
 銀層14は、11~18nmの厚さを有する。銀層14の厚さを11nm以上の比較的厚めとすることで、赤外域の透過率を低下させて遮熱性を良好にできる。また、銀層14の厚さを18nm以下とすることで、積層体10の光学特性を所望の特性にできる。銀層14の厚さは、12nm以上が好ましく、13nm以上がより好ましく、14nm以上がさらに好ましい。 The silver layer 14 has a thickness of 11 to 18 nm. By making the thickness of the silver layer 14 relatively large, 11 nm or more, the transmittance in the infrared region is lowered, and the heat shielding property can be improved. Moreover, the optical characteristic of the laminated body 10 can be made into a desired characteristic by the thickness of the silver layer 14 being 18 nm or less. The thickness of the silver layer 14 is preferably 12 nm or more, more preferably 13 nm or more, and further preferably 14 nm or more.
 光吸収層15は、可視光領域に吸収を有するものであり、可視光の吸収により可視光透過率を低減させて、遮熱性を向上させるとともに、積層体10の光学特性を所望の特性とする。光吸収層15の厚さは、1~6nmである。光吸収層15の厚さを1nm以上とすることで、可視光の吸収により可視光透過率を効果的に低減させることができる。また、光吸収層15の厚さを6nm以下とすることで、可視光の過度な吸収を抑制し、積層体10の光学特性を所望の特性にできる。光吸収層15の厚さは、5nm以下が好ましい。 The light absorption layer 15 has absorption in the visible light region, reduces visible light transmittance by absorption of visible light, improves thermal insulation, and makes the optical characteristics of the laminate 10 desired characteristics. . The thickness of the light absorption layer 15 is 1 to 6 nm. By setting the thickness of the light absorption layer 15 to 1 nm or more, the visible light transmittance can be effectively reduced by absorbing visible light. Further, by setting the thickness of the light absorption layer 15 to 6 nm or less, excessive absorption of visible light can be suppressed, and the optical characteristics of the laminate 10 can be set to desired characteristics. The thickness of the light absorption layer 15 is preferably 5 nm or less.
 光吸収層15の構成材料は、可視光領域に吸収を有するものであれば特に制限されない。光吸収層15の構成材料としては、可視光領域に吸収を有する金属または窒化物が挙げられる。 The constituent material of the light absorption layer 15 is not particularly limited as long as it has absorption in the visible light region. Examples of the constituent material of the light absorption layer 15 include metals or nitrides having absorption in the visible light region.
 金属としては、例えば、チタン、ジルコニウム、ハフニウム、ニオブ、ニッケル、クロム等の金属、およびこれらの金属の少なくとも1種を含む合金が挙げられる。合金としては、例えば、チタンジルコニウム合金、チタンハフニウム合金、ニッケルクロム合金、ニッケルアルミニウム合金、ニッケル鉄合金等が挙げられる。これらの中でも、チタンを主成分とする合金が好ましく、チタンを90質量%以上含む合金が好ましく、チタンのみがさらに好ましい。 Examples of the metal include metals such as titanium, zirconium, hafnium, niobium, nickel, and chromium, and alloys containing at least one of these metals. Examples of the alloy include a titanium zirconium alloy, a titanium hafnium alloy, a nickel chromium alloy, a nickel aluminum alloy, and a nickel iron alloy. Among these, an alloy mainly containing titanium is preferable, an alloy containing 90% by mass or more of titanium is preferable, and only titanium is more preferable.
 窒化物としては、例えば、ケイ素、アルミニウム、およびクロムから選ばれる少なくとも1種の元素の窒化物が挙げられる。窒化物としては、ストイキオメトリーから金属側に寄っているものでもよく、例えば、ケイ素窒化物(SiNx(x=0.1~1.33))、アルミニウム窒化物(AlNx(x=0.1~1.0))、クロム窒化物(CrNx(x=0.1~1.0))等が挙げられる。 Examples of the nitride include a nitride of at least one element selected from silicon, aluminum, and chromium. The nitride may be one closer to the metal side from stoichiometry, for example, silicon nitride (SiNx (x = 0.1 to 1.33)), aluminum nitride (AlNx (x = 0.1) To 1.0)), chromium nitride (CrNx (x = 0.1 to 1.0)) and the like.
 非熱処理品の場合、光吸収層15は、上記金属からなる金属層を有することが好ましく、金属層のみからなることがより好ましい。一方、熱処理品の場合、光吸収層15は、上記窒化物からなる窒化物層を有することが好ましい。窒化物層を有することで、熱処理時等における銀層14とその上層との反応を抑制して、遮熱性を良好にできるとともに、所望の光学特性にできる。光吸収層15は、窒化物層および金属層をともに有してもよい。窒化物層および金属層を有する場合、銀層14側から順に窒化物層および金属層を有することが好ましい。このような配置とすることで、熱処理時等における銀層14と金属層との反応を抑制して、遮熱性を良好にできるとともに、所望の光学特性にできる。 In the case of a non-heat-treated product, the light absorption layer 15 preferably has a metal layer made of the above metal, and more preferably only a metal layer. On the other hand, in the case of a heat-treated product, the light absorption layer 15 preferably has a nitride layer made of the nitride. By having the nitride layer, the reaction between the silver layer 14 and the upper layer thereof during heat treatment or the like can be suppressed, the heat shielding property can be improved, and desired optical characteristics can be obtained. The light absorption layer 15 may have both a nitride layer and a metal layer. When it has a nitride layer and a metal layer, it is preferable to have a nitride layer and a metal layer in order from the silver layer 14 side. By adopting such an arrangement, the reaction between the silver layer 14 and the metal layer at the time of heat treatment or the like can be suppressed, the heat shielding property can be improved, and desired optical characteristics can be obtained.
 第2の誘電体層16は、光干渉効果によって可視域での反射率等を調整して、積層体10の光学特性を所望の特性とするために設けられる。第2の誘電体層16は、1.9~2.1の屈折率を有する。このような屈折率とすることで、光干渉効果によって可視域での反射率等を調整して、積層体10の光学特性を所望の特性にできる。 The second dielectric layer 16 is provided in order to adjust the reflectance in the visible range by the optical interference effect and to make the optical characteristics of the laminate 10 desired characteristics. The second dielectric layer 16 has a refractive index of 1.9 to 2.1. By setting it as such a refractive index, the reflectance etc. in a visible region are adjusted with a light interference effect, and the optical characteristic of the laminated body 10 can be made into a desired characteristic.
 第2の誘電体層16は、成膜時に誘電体として成膜されるもの(当初からの誘電体の層)から主として構成される。なお、第2の誘電体層16は、必ずしも当初からの誘電体の層に限定されない。すなわち、第2の誘電体層16には、当初からの誘電体の層に加えて、完成品となったときに誘電体となっており、かつ当初からの誘電体の層に対して連続的に配置されているものが含まれる。 The second dielectric layer 16 is mainly composed of a dielectric film formed from the beginning (dielectric layer from the beginning). The second dielectric layer 16 is not necessarily limited to the original dielectric layer. That is, the second dielectric layer 16 is a dielectric when it is finished, in addition to the original dielectric layer, and is continuous with the original dielectric layer. Is included.
 このような誘電体としては、例えば、当初からの誘電体の層の成膜以前に、その下層に位置する下地層として設けられたバリア膜として機能する金属膜であって、その後の当初からの誘電体の層の成膜時に酸化されて誘電体となったものであって、屈折率が1.9~2.1のものが挙げられる。 Such a dielectric is, for example, a metal film functioning as a barrier film provided as a base layer positioned under the dielectric layer before the initial formation of the dielectric layer. Examples are those that are oxidized when the dielectric layer is formed into a dielectric, and have a refractive index of 1.9 to 2.1.
 また、例えば、積層体10の最表面に形成される保護膜の接着性を向上させるために、その下層に位置する下地層として設けられた接着膜であって、その後の保護膜の成膜時に酸化されて誘電体となったものであって、屈折率が1.9~2.1のものが挙げられる。 Further, for example, in order to improve the adhesiveness of the protective film formed on the outermost surface of the laminate 10, an adhesive film provided as a base layer located under the protective film, and when the protective film is subsequently formed An oxide that has been oxidized into a dielectric and has a refractive index of 1.9 to 2.1 can be used.
 このようにバリア膜または接着膜等として成膜されたものについても、完成品となったときに屈折率が1.9~2.1の誘電体となっており、かつ当初からの誘電体の層に対して誘電体として連続的に配置されていれば、第2の誘電体層16に含まれる。すなわち、第2の誘電体層16の厚さに含まれる。 The film formed as a barrier film or an adhesive film as described above is also a dielectric having a refractive index of 1.9 to 2.1 when it is a finished product, If it is continuously disposed as a dielectric relative to the layer, it is included in the second dielectric layer 16. That is, it is included in the thickness of the second dielectric layer 16.
 第2の誘電体層16は、35~48nmの厚さを有する。第2の誘電体層16の厚さを上記範囲内にすることで、光干渉効果によって可視域での反射率等を調整して、積層体10の光学特性を所望の特性にできる。第2の誘電体層16の厚さは、37nm以上が好ましく、38nm以上がより好ましく、39nm以上がさらに好ましい。また、第2の誘電体層16の厚さは、47nm以下が好ましい。 The second dielectric layer 16 has a thickness of 35 to 48 nm. By setting the thickness of the second dielectric layer 16 within the above range, it is possible to adjust the reflectance in the visible range by the optical interference effect, and to make the optical characteristics of the stacked body 10 desired characteristics. The thickness of the second dielectric layer 16 is preferably 37 nm or more, more preferably 38 nm or more, and further preferably 39 nm or more. The thickness of the second dielectric layer 16 is preferably 47 nm or less.
 第2の誘電体層16の構成材料は、上記屈折率を有する誘電体であれば特に制限されず、各種の酸化物および窒化物が挙げられる。酸化物としては、亜鉛、スズ、ニオブ、およびチタンから選ばれる少なくとも1種の元素の酸化物を主成分とするものが挙げられる。また、窒化物としては、ケイ素およびアルミニウムから選ばれる少なくとも1種の元素の窒化物を主成分とするものが挙げられる。 The constituent material of the second dielectric layer 16 is not particularly limited as long as it is a dielectric having the above-described refractive index, and various oxides and nitrides can be used. Examples of the oxide include an oxide mainly composed of an oxide of at least one element selected from zinc, tin, niobium, and titanium. Examples of the nitride include those containing as a main component a nitride of at least one element selected from silicon and aluminum.
 第2の誘電体層16のうち、当初から誘電体である部分の構成材料は、酸化物が好ましく、特に、アルミニウム亜鉛酸化物、スズ亜鉛酸化物が好ましい。アルミニウム亜鉛酸化物としては、亜鉛とアルミニウムとの合計量に対するアルミニウムの割合が1~10原子%であるものが好ましく、3~7原子%であるものがより好ましい。スズ亜鉛酸化物としては、亜鉛とスズとの合計量に対するスズの割合が10~90質量%であるものが好ましく、20~80質量%であるものがより好ましい。 The constituent material of the second dielectric layer 16 that is a dielectric from the beginning is preferably an oxide, and particularly preferably aluminum zinc oxide or tin zinc oxide. The aluminum zinc oxide preferably has an aluminum ratio of 1 to 10 atomic%, more preferably 3 to 7 atomic%, based on the total amount of zinc and aluminum. The tin zinc oxide preferably has a tin ratio of 10 to 90% by mass, more preferably 20 to 80% by mass with respect to the total amount of zinc and tin.
 なお、上記した当初から誘電体である部分は、必ずしも1種の誘電体層からなる単層構造に限られず、図示しないが2種以上の誘電体層が積層された積層構造であってもよい。積層構造の場合、個々の誘電体層の屈折率は、必ずしも同一である必要はなく、1.9~2.1の屈折率の範囲内にあれば異なっていてもよい。 The portion that has been a dielectric material from the beginning is not necessarily limited to a single-layer structure composed of one kind of dielectric layer, but may be a laminated structure in which two or more kinds of dielectric layers are laminated, although not shown. . In the case of a laminated structure, the refractive indexes of the individual dielectric layers are not necessarily the same, and may be different as long as they are within the refractive index range of 1.9 to 2.1.
 単層構造の場合、アルミニウム亜鉛酸化物、またはスズ亜鉛酸化物が好ましい。アルミニウム亜鉛酸化物としては、亜鉛とアルミニウムとの合計量に対するアルミニウムの割合が1~10原子%であるものが好ましく、3~7原子%であるものがより好ましい。 In the case of a single layer structure, aluminum zinc oxide or tin zinc oxide is preferable. The aluminum zinc oxide preferably has an aluminum ratio of 1 to 10 atomic%, more preferably 3 to 7 atomic%, based on the total amount of zinc and aluminum.
 積層構造の場合、アルミニウム亜鉛酸化物と、スズ亜鉛酸化物とを併用することが好ましい。この場合、積層順序は必ずしも限定されず、透明基板11側から順に、アルミニウム亜鉛酸化物およびスズ亜鉛酸化物の順でもよいし、スズ亜鉛酸化物およびアルミニウム亜鉛酸化物の順でもよい。これらの中で、アルミニウム亜鉛酸化物およびスズ亜鉛酸化物の順がより好ましい。 In the case of a laminated structure, it is preferable to use aluminum zinc oxide and tin zinc oxide in combination. In this case, the stacking order is not necessarily limited, and may be the order of aluminum zinc oxide and tin zinc oxide in order from the transparent substrate 11 side, or the order of tin zinc oxide and aluminum zinc oxide. Among these, the order of aluminum zinc oxide and tin zinc oxide is more preferable.
 第2の誘電体層16の光吸収層15側には、バリア膜として機能する金属膜の酸化により形成された金属酸化物層が配置されることが好ましい。金属酸化物の金属としては、チタン、ジルコニウム、ハフニウム、ニオブ、ニッケル、クロム等の金属、およびこれらの金属の少なくとも1種を含む合金が挙げられる。合金としては、例えば、チタンジルコニウム合金、チタンハフニウム合金、ニッケルクロム合金、ニッケルアルミニウム合金、ニッケル鉄合金等が挙げられる。金属酸化物層の厚さは、通常1~3nm程度である。 It is preferable that a metal oxide layer formed by oxidation of a metal film functioning as a barrier film is disposed on the light absorption layer 15 side of the second dielectric layer 16. Examples of the metal oxide include metals such as titanium, zirconium, hafnium, niobium, nickel, and chromium, and alloys containing at least one of these metals. Examples of the alloy include a titanium zirconium alloy, a titanium hafnium alloy, a nickel chromium alloy, a nickel aluminum alloy, and a nickel iron alloy. The thickness of the metal oxide layer is usually about 1 to 3 nm.
 図2は、積層体10の第1の構成例を示すものである。
 第1の構成例は、非熱処理品の好適な構成例である。
FIG. 2 shows a first configuration example of the laminate 10.
The first configuration example is a preferable configuration example of the non-heat treated product.
 非熱処理品の場合、光吸収層15は金属層151を有することが好ましい。金属酸化物層17は、バリア膜として機能する金属膜の酸化により形成されるものであり、屈折率が1.9~2.1の範囲であれば、第2の誘電体層16に含まれ、屈折率が1.9~2.1の範囲外であれば、第2の誘電体層16には含まれない。金属酸化物層17は、金属層151に含まれる金属と同一の金属の酸化物からなることが好ましい。 In the case of a non-heat treated product, the light absorption layer 15 preferably has a metal layer 151. The metal oxide layer 17 is formed by oxidation of a metal film that functions as a barrier film. If the refractive index is in the range of 1.9 to 2.1, the metal oxide layer 17 is included in the second dielectric layer 16. If the refractive index is outside the range of 1.9 to 2.1, it is not included in the second dielectric layer 16. The metal oxide layer 17 is preferably made of an oxide of the same metal as that contained in the metal layer 151.
 このような光吸収層15(金属層151)、金属酸化物層17、および第2の誘電体層16は、銀層14上に比較的厚めに金属膜を成膜した後、この金属膜上に第2の誘電体層16を成膜することで形成できる。すなわち、第2の誘電体層16の成膜時、金属膜のうち第2の誘電体層16側の一部を酸化させて金属酸化物層17を形成でき、また金属膜のうち銀層14側の残部を酸化させずに残すことで金属層151を形成できる。この場合、金属膜は、金属層151の形成に利用されるとともに、第2の誘電体層16を成膜するときの銀層14の酸化を抑制するバリア膜として利用される。このような構成により、銀層14の酸化を抑制しつつ光吸収層15(金属層151)を形成でき、生産性を良好にできる。 The light absorbing layer 15 (metal layer 151), the metal oxide layer 17, and the second dielectric layer 16 are formed on the metal layer after a relatively thick metal film is formed on the silver layer 14. In addition, the second dielectric layer 16 can be formed. That is, when the second dielectric layer 16 is formed, a part of the metal film on the second dielectric layer 16 side can be oxidized to form the metal oxide layer 17, and the silver layer 14 of the metal film can be formed. The metal layer 151 can be formed by leaving the remaining portion on the side without being oxidized. In this case, the metal film is used for forming the metal layer 151 and also used as a barrier film for suppressing oxidation of the silver layer 14 when the second dielectric layer 16 is formed. With such a configuration, the light absorption layer 15 (metal layer 151) can be formed while suppressing the oxidation of the silver layer 14, and the productivity can be improved.
 金属層151の厚さは、1~6nmである。金属層151の厚さは、5nm以下がより好ましく、4nm以下がさらに好ましく、3nm以下が特に好ましい。金属層151の構成材料は、例えば、チタン、ジルコニウム、ハフニウム、ニオブ、ニッケル、クロム等の金属、およびこれらの金属の少なくとも1種を含む合金が挙げられる。合金としては、例えば、チタンジルコニウム合金、チタンハフニウム合金、ニッケルクロム合金、ニッケルアルミニウム合金、ニッケル鉄合金等が挙げられる。これらの中でも、チタンを主成分とする合金が好ましく、チタンを90質量%以上含む合金がより好ましく、チタンのみがさらに好ましい。 The thickness of the metal layer 151 is 1 to 6 nm. The thickness of the metal layer 151 is more preferably 5 nm or less, further preferably 4 nm or less, and particularly preferably 3 nm or less. Examples of the constituent material of the metal layer 151 include metals such as titanium, zirconium, hafnium, niobium, nickel, and chromium, and alloys containing at least one of these metals. Examples of the alloy include a titanium zirconium alloy, a titanium hafnium alloy, a nickel chromium alloy, a nickel aluminum alloy, and a nickel iron alloy. Among these, an alloy mainly containing titanium is preferable, an alloy containing 90% by mass or more of titanium is more preferable, and only titanium is more preferable.
 金属酸化物層17は、金属層151に含まれる金属と同一の金属の酸化物からなることが好ましい。金属酸化物層17は、例えば、第2の誘電体層16の成膜時、金属層151となる金属膜の一部が酸化されて形成される。金属酸化物層17の厚さは、通常1~3nm程度である。 The metal oxide layer 17 is preferably made of the same metal oxide as the metal contained in the metal layer 151. The metal oxide layer 17 is formed, for example, by oxidizing a part of the metal film that becomes the metal layer 151 when the second dielectric layer 16 is formed. The thickness of the metal oxide layer 17 is usually about 1 to 3 nm.
 第2の誘電体層16上には、必要に応じて、例えば、第2の誘電体層16側から順に、接着層18、および保護層19が設けられる。 On the second dielectric layer 16, for example, an adhesive layer 18 and a protective layer 19 are provided in this order from the second dielectric layer 16 side as necessary.
 接着層18は、第2の誘電体層16と保護層19との接着性を向上させるために必要に応じて設けられる。接着層18の構成材料は、第2の誘電体層16と保護層19との接着性を向上できれば特に制限されないが、1.9~2.5の屈折率を有する窒化物または誘電体が好ましく、特にチタンの酸化物が好ましい。接着層18は、例えば、窒化物膜として成膜された後、保護層19の成膜時に酸化されて酸化物膜となったものがある。窒化物膜の構成材料には、ストイキオメトリーから金属側に寄っているものが含まれる。このような材料としては、TiNx(x=0.1~1.0)が挙げられる。 The adhesive layer 18 is provided as necessary to improve the adhesiveness between the second dielectric layer 16 and the protective layer 19. The constituent material of the adhesive layer 18 is not particularly limited as long as the adhesion between the second dielectric layer 16 and the protective layer 19 can be improved, but a nitride or a dielectric having a refractive index of 1.9 to 2.5 is preferable. In particular, an oxide of titanium is preferable. For example, the adhesive layer 18 may be formed as a nitride film and then oxidized into an oxide film when the protective layer 19 is formed. The constituent material of the nitride film includes a material that is closer to the metal side from stoichiometry. An example of such a material is TiNx (x = 0.1 to 1.0).
 接着層18を設ける場合、0.5nm以上の厚さが好ましい。0.5nm以上の厚さとすることで、第2の誘電体層16と保護層19との接着性を効果的に向上できる。接着層18の厚さは、通常、5nmもあれば十分である。 When providing the adhesive layer 18, a thickness of 0.5 nm or more is preferable. By setting the thickness to 0.5 nm or more, the adhesion between the second dielectric layer 16 and the protective layer 19 can be effectively improved. The thickness of the adhesive layer 18 is usually sufficient if it is 5 nm.
 保護層19は、表面の耐擦傷性を向上できれば特に制限されないが、1.9~2.4の屈折率を有する誘電体が好ましい。保護層19の構成材料は、耐擦傷性の観点から、ジルコニウムチタン酸化物膜が好適に用いられる。 The protective layer 19 is not particularly limited as long as it can improve the scratch resistance of the surface, but a dielectric having a refractive index of 1.9 to 2.4 is preferable. The constituent material of the protective layer 19 is preferably a zirconium titanium oxide film from the viewpoint of scratch resistance.
 保護層19の厚さは、1nm以上が好ましい。保護層19の厚さを1nm以上とすることで、耐擦傷性を効果的に向上させることができる。保護層19の厚さは、2nm以上がより好ましい。また、保護層19の厚さは、可視光透過率の過度な低下を抑制する観点から、10nm以下が好ましく、7nm以下がより好ましく、5nm以下がさらに好ましい。 The thickness of the protective layer 19 is preferably 1 nm or more. By setting the thickness of the protective layer 19 to 1 nm or more, the scratch resistance can be effectively improved. The thickness of the protective layer 19 is more preferably 2 nm or more. Further, the thickness of the protective layer 19 is preferably 10 nm or less, more preferably 7 nm or less, and even more preferably 5 nm or less from the viewpoint of suppressing an excessive decrease in visible light transmittance.
 なお、接着層18は、完成品となったときに1.9~2.1の屈折率を有する誘電体となっている場合、第2の誘電体層16の一部と見なされる。また、接着層18が1.9~2.1の屈折率を有する誘電体となっており、かつ保護層19が1.9~2.1の屈折率を有する誘電体となっている場合、保護層19についても第2の誘電体層16の一部と見なされる。 The adhesive layer 18 is regarded as a part of the second dielectric layer 16 when it is a dielectric having a refractive index of 1.9 to 2.1 when it is a finished product. Further, when the adhesive layer 18 is a dielectric having a refractive index of 1.9 to 2.1 and the protective layer 19 is a dielectric having a refractive index of 1.9 to 2.1, The protective layer 19 is also regarded as a part of the second dielectric layer 16.
 図3は、積層体10の第2の構成例を示すものである。
 第2の構成例は、熱処理品の好適な構成例である。
FIG. 3 shows a second configuration example of the laminate 10.
The second configuration example is a preferable configuration example of the heat-treated product.
 熱処理品の場合、光吸収層15は窒化物層152を有することが好ましい。また、窒化物層152側から順に、金属酸化物層17、および第2の誘電体層16を有することが好ましい。ここで、金属酸化物層17は、バリア膜として機能する金属膜の酸化により形成されるものである。 In the case of a heat-treated product, the light absorption layer 15 preferably has a nitride layer 152. Moreover, it is preferable to have the metal oxide layer 17 and the 2nd dielectric material layer 16 in order from the nitride layer 152 side. Here, the metal oxide layer 17 is formed by oxidation of a metal film that functions as a barrier film.
 このような光吸収層15(窒化物層152)、金属酸化物層17および第2の誘電体層16は、銀層14上に窒化物層152を成膜し、この窒化物層152上に金属膜を成膜し、この金属膜上に第2の誘電体層16を成膜することで形成できる。すなわち、第2の誘電体層16の成膜時、金属膜を酸化させて金属酸化物層17を形成できる。この場合、金属膜は、第2の誘電体層16を成膜するときの銀層14の酸化を抑制するバリア膜として機能する。また、窒化物層152は、熱処理時等における銀層14とその上層との反応を抑制し、かつ光学特性として吸収を維持する機能を有する。このような構成により、銀層14の酸化を抑制しつつ光吸収層15(窒化物層152)を形成でき、生産性が良好となる。 The light absorption layer 15 (nitride layer 152), the metal oxide layer 17 and the second dielectric layer 16 are formed by forming a nitride layer 152 on the silver layer 14 and forming the nitride layer 152 on the nitride layer 152. It can be formed by forming a metal film and forming the second dielectric layer 16 on the metal film. That is, when the second dielectric layer 16 is formed, the metal film can be oxidized to form the metal oxide layer 17. In this case, the metal film functions as a barrier film that suppresses oxidation of the silver layer 14 when the second dielectric layer 16 is formed. The nitride layer 152 has a function of suppressing the reaction between the silver layer 14 and the upper layer thereof during heat treatment or the like and maintaining absorption as an optical property. With such a configuration, the light absorption layer 15 (nitride layer 152) can be formed while suppressing the oxidation of the silver layer 14, and the productivity is improved.
 窒化物層152の厚さは、可視光の吸収を補助して可視光透過率を効果的に低減するとともに、銀層14の変質の抑制等の観点から、1nm以上が好ましく、1.5nm以上がより好ましい。 The thickness of the nitride layer 152 is preferably 1 nm or more from the viewpoint of effectively reducing the visible light transmittance by assisting the absorption of visible light and suppressing deterioration of the silver layer 14, and 1.5 nm or more. Is more preferable.
 窒化物層152の構成材料としては、例えば、ケイ素、アルミニウム、およびクロムから選ばれる少なくとも1種の元素の窒化物が挙げられる。窒化物としては、ストイキオメトリーから金属側に寄っているものでもよく、例えば、ケイ素窒化物(SiNx(x=0.1~1.33))、アルミニウム窒化物(AlNx(x=0.1~1.0))、クロム窒化物(CrNx(x=0.1~1.0))等が挙げられる。 Examples of the constituent material of the nitride layer 152 include a nitride of at least one element selected from silicon, aluminum, and chromium. The nitride may be one closer to the metal side from stoichiometry, for example, silicon nitride (SiNx (x = 0.1 to 1.33)), aluminum nitride (AlNx (x = 0.1) To 1.0)), chromium nitride (CrNx (x = 0.1 to 1.0)) and the like.
 金属酸化物層17は、第2の誘電体層16の成膜時、バリア膜として機能する金属膜の酸化により形成される。金属膜は、可視光領域に吸収を有する金属からなることが好ましい。金属としては、チタン、ジルコニウム、ハフニウム、ニオブ、ニッケル、クロム等の金属、およびこれらの金属の少なくとも1種を含む合金が挙げられる。合金としては、例えば、チタンジルコニウム合金、チタンハフニウム合金、ニッケルクロム合金、ニッケルアルミニウム合金、ニッケル鉄合金等が挙げられる。金属酸化物層17の厚さは、通常1~3nm程度である。 The metal oxide layer 17 is formed by oxidation of a metal film that functions as a barrier film when the second dielectric layer 16 is formed. The metal film is preferably made of a metal having absorption in the visible light region. Examples of the metal include metals such as titanium, zirconium, hafnium, niobium, nickel, chromium, and alloys containing at least one of these metals. Examples of the alloy include a titanium zirconium alloy, a titanium hafnium alloy, a nickel chromium alloy, a nickel aluminum alloy, and a nickel iron alloy. The thickness of the metal oxide layer 17 is usually about 1 to 3 nm.
 第2の誘電体層16上には、必要に応じて、例えば、第2の誘電体層16側から順に、接着層18、および保護層(図示せず)が設けられる。 On the second dielectric layer 16, for example, an adhesive layer 18 and a protective layer (not shown) are provided in this order from the second dielectric layer 16 side as necessary.
 接着層18は、第2の誘電体層16と保護層との接着性を向上させるために必要に応じて設けられる。接着層18の構成材料は、第2の誘電体層16と保護層との接着性を向上できれば特に制限されないが、1.9~2.5の屈折率を有する窒化物または誘電体が好ましく、特にチタンの酸化物が好ましい。接着層18は、例えば、窒化物膜として成膜された後、保護層の成膜時に酸化されて酸化物膜となる。窒化物膜の構成材料には、ストイキオメトリーから金属側に寄っているものが含まれる。このような材料としては、TiNx(x=0.1~1.0)が挙げられる。 The adhesive layer 18 is provided as necessary in order to improve the adhesion between the second dielectric layer 16 and the protective layer. The constituent material of the adhesive layer 18 is not particularly limited as long as the adhesion between the second dielectric layer 16 and the protective layer can be improved, but a nitride or dielectric having a refractive index of 1.9 to 2.5 is preferable. In particular, an oxide of titanium is preferable. The adhesive layer 18 is formed as a nitride film, for example, and then oxidized when forming the protective layer to become an oxide film. The constituent material of the nitride film includes a material that is closer to the metal side from stoichiometry. An example of such a material is TiNx (x = 0.1 to 1.0).
 接着層18を設ける場合、0.5nm以上の厚さが好ましい。0.5nm以上の厚さとすることで、第2の誘電体層16と保護層との接着性を効果的に向上できる。接着層18の厚さは、通常、5nmもあれば十分である。 When providing the adhesive layer 18, a thickness of 0.5 nm or more is preferable. By setting the thickness to 0.5 nm or more, the adhesiveness between the second dielectric layer 16 and the protective layer can be effectively improved. The thickness of the adhesive layer 18 is usually sufficient if it is 5 nm.
 熱処理品の場合、保護層は、強化または曲げのための熱処理を行ったときに消失し、完成品には存在しないものでもよい。このような保護層としては、例えば、炭素を主成分とする炭素膜が挙げられる。保護層の厚さは、1nm以上が好ましい。保護層の厚さを1nm以上とすることで、耐擦傷性を効果的に向上させることができる。保護層の厚さは、2nm以上がより好ましい。また、保護層の厚さは、10nm以下が好ましく、7nm以下がより好ましく、5nm以下がさらに好ましい。なお、熱処理品についても、第1の構成例と同様の保護層を設けることもできる。 In the case of a heat-treated product, the protective layer may disappear when a heat treatment for strengthening or bending is performed, and may not exist in the finished product. An example of such a protective layer is a carbon film containing carbon as a main component. The thickness of the protective layer is preferably 1 nm or more. By setting the thickness of the protective layer to 1 nm or more, the scratch resistance can be effectively improved. The thickness of the protective layer is more preferably 2 nm or more. Further, the thickness of the protective layer is preferably 10 nm or less, more preferably 7 nm or less, and further preferably 5 nm or less. For the heat-treated product, a protective layer similar to that in the first configuration example can be provided.
 なお、接着層18は、完成品となったときに1.9~2.1の屈折率を有する誘電体となっていれば、第2の誘電体層16の一部と見なされる。また、保護層がある場合、接着層18が1.9~2.1の屈折率を有する誘電体となっており、かつ保護層が1.9~2.1の屈折率を有する誘電体となっている場合、保護層についても第2の誘電体層16の一部と見なされる。 The adhesive layer 18 is regarded as a part of the second dielectric layer 16 if it is a dielectric having a refractive index of 1.9 to 2.1 when it is a finished product. When there is a protective layer, the adhesive layer 18 is a dielectric having a refractive index of 1.9 to 2.1, and the protective layer is a dielectric having a refractive index of 1.9 to 2.1. The protective layer is also considered part of the second dielectric layer 16.
 図4は、積層体10の第3の構成例を示すものである。
 第3の構成例は、熱処理品の他の好適な構成例である。
FIG. 4 shows a third configuration example of the laminate 10.
The third configuration example is another preferable configuration example of the heat-treated product.
 熱処理品の場合、第2の構成例における窒化物層152と金属酸化物層17との間に、さらに光吸収層15として金属層151を設けることができる。この場合、金属酸化物層17は、金属層151に含まれる金属と同一の金属の酸化物からなることが好ましい。なお、第2の誘電体層16、接着層18、および保護層の構成は、第2の構成例と基本的に同様の構成にできる。 In the case of a heat-treated product, a metal layer 151 can be further provided as the light absorption layer 15 between the nitride layer 152 and the metal oxide layer 17 in the second configuration example. In this case, the metal oxide layer 17 is preferably made of an oxide of the same metal as that contained in the metal layer 151. The configurations of the second dielectric layer 16, the adhesive layer 18, and the protective layer can be basically the same as those of the second configuration example.
 このような、光吸収層15(窒化物層152および金属層151)、金属酸化物層17、および第2の誘電体層16は、銀層14上に窒化物層152を成膜し、この窒化物層152上に構成例2の場合よりも厚めに金属膜を成膜し、この金属膜上に第2の誘電体層16を成膜することで形成できる。すなわち、第2の誘電体層16の成膜時、金属膜のうち第2の誘電体層16側の一部を酸化させて金属酸化物層17を形成でき、また金属膜のうち銀層14側の残部を酸化させずに残すことで金属層151を形成できる。この場合、金属膜は、光吸収層15としての金属層151の形成に利用されるとともに、第2の誘電体層16を成膜するときの銀層14の酸化を抑制するバリア膜として利用される。このような構成により、銀層14の酸化を抑制しつつ光吸収層15(金属層151および窒化物層152)を形成でき、生産性を良好にできる。 The light absorption layer 15 (the nitride layer 152 and the metal layer 151), the metal oxide layer 17, and the second dielectric layer 16 are formed by forming the nitride layer 152 on the silver layer 14, The metal layer can be formed on the nitride layer 152 so as to be thicker than that in the configuration example 2, and the second dielectric layer 16 can be formed on the metal film. That is, when the second dielectric layer 16 is formed, a part of the metal film on the second dielectric layer 16 side can be oxidized to form the metal oxide layer 17, and the silver layer 14 of the metal film can be formed. The metal layer 151 can be formed by leaving the remaining portion on the side without being oxidized. In this case, the metal film is used for forming the metal layer 151 as the light absorption layer 15 and also used as a barrier film for suppressing oxidation of the silver layer 14 when forming the second dielectric layer 16. The With such a configuration, the light absorption layer 15 (the metal layer 151 and the nitride layer 152) can be formed while suppressing the oxidation of the silver layer 14, and the productivity can be improved.
 金属層151の厚さは、特に制限されず、光吸収層15の厚さが全体として6nm以下となるように、窒化物層152の厚さに応じて適宜決定することが好ましい。なお、金属層151の構成材料は、構成例1の金属層151の構成材料、または構成例2の金属膜の構成材料と同様の構成材料とできる。 The thickness of the metal layer 151 is not particularly limited, and is preferably determined as appropriate according to the thickness of the nitride layer 152 so that the thickness of the light absorption layer 15 is 6 nm or less as a whole. The constituent material of the metal layer 151 can be the same constituent material as the constituent material of the metal layer 151 of the configuration example 1 or the constituent material of the metal film of the configuration example 2.
 積層体10は、以下の光学特性を有することが好ましい。なお、本発明の光学特性は、光源として「C光源2度視野」にて測定して得られる。ここで、積層体10が熱処理品の場合、熱処理後のものについて以下の光学特性を有することが好ましい。 The laminate 10 preferably has the following optical characteristics. The optical characteristics of the present invention can be obtained by measuring with a “C light source 2 ° visual field” as a light source. Here, when the laminated body 10 is a heat-treated product, the post-heat-treated product preferably has the following optical characteristics.
 日射熱取得率(Solar Heat Gain Coefficient:SHGC)は、0.37~0.43が好ましい。日射熱取得率は、太陽光による熱をどの程度遮断するかの尺度である。すなわち、日射熱取得率(SHGC)は、複層ガラスや単板ガラスにおいて、室外側から入射したエネルギーに対する、室内側へ放出されたエネルギーの割合である。日射熱取得率は、0から1の間の数値で表される。日射熱取得率が小さいほど、透過する太陽熱が少なくなる。実施形態の積層体10では、銀層14が1層のみであっても、銀層14を比較的厚くするとともに、光吸収層15を設けることで、日射熱取得率を小さくできる。ここで、日射熱取得率(SHGC)は、National Fenestration Rating Councilにより用いられている指標である。 The solar heat gain coefficient (SHGC) is preferably 0.37 to 0.43. Solar heat gain is a measure of how much heat from sunlight is blocked. That is, the solar heat gain rate (SHGC) is the ratio of the energy released to the indoor side with respect to the energy incident from the outdoor side in the multi-layer glass or single plate glass. The solar heat acquisition rate is represented by a numerical value between 0 and 1. The smaller the solar heat gain rate, the less solar heat is transmitted. In the laminated body 10 of the embodiment, even if the silver layer 14 is only one layer, the solar heat acquisition rate can be reduced by making the silver layer 14 relatively thick and providing the light absorption layer 15. Here, the solar heat gain rate (SHGC) is an index used by National Fenestration Rating Council.
 なお、日射取得率(SHGC)は、積層体10と対向基板との間に中空層を有する複層ガラスについて求められる。積層体10の透明基板11および対向基板はガラス板が好ましく、中空層は空気層が好ましい。ここで、積層体10は室外側となるように、かつ積層膜12が中空層側となるように配置される。透明基板11および対向基板の厚さは、3~6mm程度が好ましく、中空層の厚さは、6~18mm程度が好ましい。 In addition, a solar radiation acquisition rate (SHGC) is calculated | required about the multilayer glass which has a hollow layer between the laminated body 10 and an opposing board | substrate. The transparent substrate 11 and the counter substrate of the laminate 10 are preferably glass plates, and the hollow layer is preferably an air layer. Here, the laminated body 10 is disposed so as to be on the outdoor side, and the laminated film 12 is disposed on the hollow layer side. The thickness of the transparent substrate 11 and the counter substrate is preferably about 3 to 6 mm, and the thickness of the hollow layer is preferably about 6 to 18 mm.
 可視光透過率(T)は66~72%が好ましく、透明基板11側(以下、単に基板側と記す)の可視光反射率(Rv1)は20~25%が好ましく、積層膜12側(以下、単に膜側と記す)の可視光反射率(Rv2)は13~20%が好ましい。基板側の可視光反射率(Rv1)と膜側の可視光反射率(Rv2)との反射率差(Rv1-Rv2)は、3.5%以上が好ましく、4.0%以上がより好ましい。可視光透過率(T)、可視光反射率(R)は、いずれもJIS R3106:1998に規定されるものである。 The visible light transmittance (T v ) is preferably 66 to 72%, and the visible light reflectance (R v1 ) on the transparent substrate 11 side (hereinafter simply referred to as the substrate side) is preferably 20 to 25%, and the laminated film 12 side The visible light reflectance (R v2 ) (hereinafter referred to simply as “film side”) is preferably 13 to 20%. The reflectance difference (R v1 −R v2 ) between the visible light reflectance (R v1 ) on the substrate side and the visible light reflectance (R v2 ) on the film side is preferably 3.5% or more, and is preferably 4.0% or more. Is more preferable. The visible light transmittance (T v ) and the visible light reflectance (R v ) are both defined in JIS R3106: 1998.
 さらに、積層体10の透過光および反射光は、以下の色調を有することが好ましい。すなわち、L***表色系において、透過光は、a*が-4~-1、b*が3~8であることが好ましい。また、基板側の反射光は、a*が-4~1、b*が-13~-8であることが好ましい。膜側の反射光は、a*が-1~7、b*が-20~-11であることが好ましい。 Furthermore, the transmitted light and reflected light of the laminate 10 preferably have the following color tone. That is, in the L * a * b * color system, the transmitted light preferably has a * of −4 to −1 and b * of 3 to 8. The reflected light on the substrate side preferably has a * of −4 to 1 and b * of −13 to −8. The reflected light on the film side preferably has a * of -1 to 7 and b * of -20 to -11.
 建築物用のガラス板には、冷房効率等の観点から日射熱取得率が低いことが求められるとともに、意匠性の観点から透過光および反射光の色調が重要となる。実施形態の積層体10は、日射熱取得率が低く、所定の光学特性を有することから、建築物用のガラス板に好適に用いられ、特に高層建築物用のガラス板、具体的には窓ガラス等の用途に好適に用いられる。 A glass plate for a building is required to have a low solar heat acquisition rate from the viewpoint of cooling efficiency and the like, and the colors of transmitted light and reflected light are important from the viewpoint of design. Since the laminated body 10 of the embodiment has a low solar heat acquisition rate and has predetermined optical characteristics, it is preferably used for a glass plate for buildings, particularly a glass plate for high-rise buildings, specifically a window. It is suitably used for applications such as glass.
 以下、積層体10の製造方法について説明する。
 図2に示す非熱処理品の場合、透明基板11上に、第1の誘電体層13となる誘電体膜、銀層14となる銀膜、金属層151および金属酸化物層17となる金属膜、第2の誘電体層16となる誘電体膜、必要に応じて、接着層18となる接着膜、保護層19となる保護膜を順次成膜して製造できる。
Hereinafter, the manufacturing method of the laminated body 10 is demonstrated.
In the case of the non-heat treated product shown in FIG. 2, a dielectric film that becomes the first dielectric layer 13, a silver film that becomes the silver layer 14, a metal film that becomes the metal layer 151 and the metal oxide layer 17 on the transparent substrate 11. In addition, a dielectric film to be the second dielectric layer 16, an adhesive film to be the adhesive layer 18, and a protective film to be the protective layer 19, if necessary, can be sequentially formed.
 成膜方法は、特に制限されないが、スパッタリング法が好適に用いられる。スパッタリング法は、金属ターゲットを使用するDCスパッタリング、金属および非金属ターゲットを使用するACおよびRFスパッタリングが挙げられる。全ての場合において、マグネトロン・スパッタリングを用いることができる。スパッタリングは、必要に応じて、不活性ガス中で、または反応性ガス中で実施される。各膜の成膜は、例えば以下のようにして行う。 The film forming method is not particularly limited, but a sputtering method is preferably used. Sputtering methods include DC sputtering using a metal target, AC and RF sputtering using metal and non-metal targets. In all cases, magnetron sputtering can be used. Sputtering is performed in an inert gas or in a reactive gas as required. Each film is formed as follows, for example.
 第1の誘電体層13となる誘電体膜は、例えば、スパッタターゲットとして該誘電体膜に含まれる金属からなる金属ターゲットを用いて、アルゴンと酸素とを含む酸化性雰囲気下での反応性スパッタリングにより成膜する。 The dielectric film to be the first dielectric layer 13 is, for example, reactive sputtering in an oxidizing atmosphere containing argon and oxygen using a metal target made of metal contained in the dielectric film as a sputtering target. The film is formed by
 銀層14となる銀膜は、例えば、スパッタターゲットとして銀を主成分とする銀ターゲットを用いて、酸素を含まないアルゴンのみからなる非酸化性雰囲気下でのスパッタリングにより成膜する。 The silver film to be the silver layer 14 is formed by sputtering in a non-oxidizing atmosphere consisting only of argon containing no oxygen, for example, using a silver target containing silver as a main component as a sputtering target.
 金属層151および金属酸化物層17となる金属膜は、例えば、スパッタターゲットとして該金属膜に含まれる金属からなる金属ターゲットを用い、酸素を含まないアルゴンのみからなる非酸化性雰囲気下でのスパッタリングにより成膜する。 For the metal film to be the metal layer 151 and the metal oxide layer 17, for example, a metal target made of metal contained in the metal film is used as a sputtering target, and sputtering is performed in a non-oxidizing atmosphere made only of argon not containing oxygen. The film is formed by
 なお、金属膜は、第2の誘電体層16となる誘電体膜の成膜時に一部が酸化されて金属酸化物層17となり、残部が酸化されずに金属層151となる。従って、金属膜は、金属層151の厚さよりも厚めに成膜することが好ましい。通常、金属膜のうち酸化されて金属酸化物層17となる厚さは、1~3nm程度である。従って、金属膜の厚さは、金属層151の厚さよりも、1nm以上厚いことが好ましい。 The metal film is partly oxidized to form the metal oxide layer 17 when the dielectric film to be the second dielectric layer 16 is formed, and the remaining part is not oxidized to the metal layer 151. Therefore, the metal film is preferably formed thicker than the metal layer 151. Usually, the thickness of the metal film oxidized to become the metal oxide layer 17 is about 1 to 3 nm. Therefore, the thickness of the metal film is preferably 1 nm or more thicker than the thickness of the metal layer 151.
 第2の誘電体層16となる誘電体膜は、例えば、スパッタターゲットとして該電体膜に含まれる金属からなる金属ターゲットを用いて、アルゴンと酸素とを含む酸化性雰囲気下でスパッタリングを行って成膜する。なお、この成膜時に、上記したように、金属膜の一部が酸化されて金属酸化物層17となり、残部が酸化されずに金属層151となる。 The dielectric film to be the second dielectric layer 16 is, for example, sputtered in an oxidizing atmosphere containing argon and oxygen using a metal target made of metal contained in the electric film as a sputtering target. Form a film. During the film formation, as described above, a part of the metal film is oxidized to become the metal oxide layer 17, and the remaining part is not oxidized to become the metal layer 151.
 接着層18となる接着膜は、例えば、スパッタターゲットとしてチタン等の金属ターゲットを用いて、アルゴンと窒素とを含む雰囲気下でスパッタリングを行って成膜する。保護層19となる保護膜は、例えば、スパッタターゲットとしてチタン等の金属ターゲットを用いて、アルゴンと酸素とを含む酸化性雰囲気下でスパッタリングを行って成膜する。 The adhesive film to be the adhesive layer 18 is formed, for example, by sputtering in an atmosphere containing argon and nitrogen using a metal target such as titanium as a sputtering target. The protective film to be the protective layer 19 is formed, for example, by performing sputtering in an oxidizing atmosphere containing argon and oxygen using a metal target such as titanium as a sputtering target.
 図3、4に示す熱処理品の場合、透明基板11上に、第1の誘電体層13となる誘電体膜、銀層14となる銀膜、窒化物層152となる窒化物膜、金属層151および金属酸化物層17となる金属膜、第2の誘電体層16となる誘電体膜を順次成膜した後、さらに強化または曲げのための熱処理を行って製造できる。必要に応じて、第2の誘電体層16上に、接着層18となる接着膜、保護層19となる保護膜が順次成膜される。熱処理は、例えば、空気中、650~750℃で1~10分間行うことが好ましい。なお、非熱処理品と同様の膜については、基本的に非熱処理品と同様に成膜できる。 3 and 4, on the transparent substrate 11, a dielectric film to be the first dielectric layer 13, a silver film to be the silver layer 14, a nitride film to be the nitride layer 152, a metal layer 151, a metal film to be the metal oxide layer 17, and a dielectric film to be the second dielectric layer 16 are sequentially formed, and then heat treatment for strengthening or bending can be performed. If necessary, an adhesive film to be the adhesive layer 18 and a protective film to be the protective layer 19 are sequentially formed on the second dielectric layer 16. The heat treatment is preferably performed, for example, in air at 650 to 750 ° C. for 1 to 10 minutes. In addition, about the film | membrane similar to a non-heat-treated product, it can form into a film fundamentally similarly to a non-heat-treated product.
 図3に示すような金属層151を有しないものの場合、金属膜の厚さは、第2の誘電体層16となる誘電体膜の成膜時に全てが酸化される厚さとする。一方、図4に示すような金属層151を有するものの場合、金属膜の厚さは、第2の誘電体層16となる誘電体膜の成膜時に全てが酸化されないような厚さとする。 In the case where the metal layer 151 as shown in FIG. 3 is not provided, the thickness of the metal film is such that all of the metal film is oxidized when the dielectric film to be the second dielectric layer 16 is formed. On the other hand, in the case of the one having the metal layer 151 as shown in FIG. 4, the thickness of the metal film is set so that all of the metal film is not oxidized during the formation of the dielectric film to be the second dielectric layer 16.
 また、窒化物層152となる窒化物膜は、例えば、スパッタターゲットとして該窒化物膜に含まれる金属からなる金属ターゲットを用いて、アルゴンと窒素とを含む雰囲気下でのスパッタリングにより成膜する。 Further, the nitride film to be the nitride layer 152 is formed by sputtering in an atmosphere containing argon and nitrogen, for example, using a metal target made of metal contained in the nitride film as a sputtering target.
 保護層19となる保護膜は、例えば、スパッタターゲットとして炭素ターゲットを用いて非酸化性雰囲気下でのスパッタリングにより成膜する。なお、保護膜として炭素膜を形成した場合、その後の強化または曲げのための熱処理により消失する。 The protective film serving as the protective layer 19 is formed by sputtering in a non-oxidizing atmosphere using, for example, a carbon target as a sputtering target. When a carbon film is formed as a protective film, it disappears by a subsequent heat treatment for strengthening or bending.
 図5は、複層ガラスの一実施形態を示したものである。
 複層ガラス20は、例えば、積層体10と対向基板21とがスペーサ22を介して所定の間隔となるように配置される。積層体10とスペーサ22との間、対向基板21とスペーサ22との間は、それぞれ1次シール材23によりシールされる。また、積層体10と対向基板21との間の周縁部は、2次シール材24によりシールされる。スペーサ22の内部には、貫通孔25を通して中空層26内の結露を抑制するための乾燥剤27が配置される。また、中空層26には、空気またはアルゴンガス等が封入される。通常、積層体10は、対向基板21に対して室外側に配置される。また、積層体10は、中空層26側が積層膜12側となるように配置される。
FIG. 5 shows one embodiment of the double glazing.
For example, the multilayer glass 20 is disposed so that the laminate 10 and the counter substrate 21 are spaced apart from each other with a spacer 22 interposed therebetween. A primary sealant 23 seals between the laminate 10 and the spacer 22 and between the counter substrate 21 and the spacer 22. Further, the peripheral edge between the laminated body 10 and the counter substrate 21 is sealed by the secondary sealing material 24. A desiccant 27 for suppressing condensation in the hollow layer 26 through the through hole 25 is disposed inside the spacer 22. The hollow layer 26 is filled with air or argon gas. Usually, the laminate 10 is disposed on the outdoor side with respect to the counter substrate 21. Moreover, the laminated body 10 is arrange | positioned so that the hollow layer 26 side may become the laminated film 12 side.
 以上、本発明の実施形態について説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定しない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。例えば、積層体は、建築物用に好適であるが、必ずしも建築物用に限られず、適用可能な限度において自動車等の車両用に用いることもできる。また、積層膜の構成についても、上記構成に制限されず、必要に応じて、かつ本発明の目的に反しない限度において他の層を有することができる。 As mentioned above, although embodiment of this invention was described, these embodiment is shown as an example and does not limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. For example, although a laminated body is suitable for buildings, it is not necessarily limited to buildings, and can be used for vehicles such as automobiles as far as applicable. Further, the configuration of the laminated film is not limited to the above-described configuration, and other layers can be included as necessary and within the limits not departing from the object of the present invention.
 以下、実施例を参照して詳細に説明する。
 なお、本発明は、これらの実施例によって何ら限定されない。
Hereinafter, a detailed description will be given with reference to examples.
In addition, this invention is not limited at all by these Examples.
(実施例1)
 表1に示す膜構成でスパッタリング法により成膜を行って、図2に示す構成を有する積層体(非熱処理品)を製造した。なお、表1に示す構成および厚さは、各膜の成膜時の構成および厚さであり、最終的な形態における構成および厚さとは必ずしも一致しない。
(Example 1)
Film formation was performed by the sputtering method with the film configuration shown in Table 1, and a laminate (non-heat-treated product) having the configuration shown in FIG. 2 was manufactured. Note that the configurations and thicknesses shown in Table 1 are the configurations and thicknesses when the respective films are formed, and do not necessarily match the configurations and thicknesses in the final form.
 表中、誘電体膜(1)は第1の誘電体層13となり、銀膜は銀層14となり、金属膜は一部が酸化により金属酸化物層17となり、残部が酸化されずに金属層151となり、誘電体膜(2)は第2の誘電体層16となり、接着膜は酸化により接着層18となり、保護膜は保護層19となる。なお、本実施例の場合、金属酸化物層17、接着層18、および保護層19は、いずれも屈折率が1.9~2.1の範囲外となることから、第2の誘電体層16には含まれない。 In the table, the dielectric film (1) is the first dielectric layer 13, the silver film is the silver layer 14, the metal film is partly oxidized to become the metal oxide layer 17, and the remainder is not oxidized and is a metal layer. 151, the dielectric film (2) becomes the second dielectric layer 16, the adhesive film becomes the adhesive layer 18 by oxidation, and the protective film becomes the protective layer 19. In the case of this example, the metal oxide layer 17, the adhesive layer 18, and the protective layer 19 all have a refractive index outside the range of 1.9 to 2.1. Therefore, the second dielectric layer 16 is not included.
 スパッタ装置は、スパッタ室に各膜を形成するためのターゲットが装着されたインライン型スパッタ装置を使用した。このインライン型スパッタ装置に洗浄した厚さ3mmのソーダライムガラス板を導入し、ロードロック室において、真空度が2×10-6Torr以下になるまで真空排気した。引き続いて、ガラス板をスパッタ室に導入し、表1に示す膜構成で順次成膜した。 As the sputtering apparatus, an in-line type sputtering apparatus equipped with a target for forming each film in the sputtering chamber was used. A 3 mm thick soda lime glass plate was introduced into this in-line type sputtering apparatus, and evacuated in the load lock chamber until the degree of vacuum was 2 × 10 −6 Torr or less. Subsequently, a glass plate was introduced into the sputtering chamber, and films were sequentially formed with the film configurations shown in Table 1.
 すなわち、誘電体膜(1)としてスズ亜鉛酸化物膜(スズと亜鉛との合計量に対するスズの割合が50質量%であるもの)およびアルミニウム亜鉛酸化物膜(アルミニウムと亜鉛との合計量に対するアルミニウムの割合が5.0原子%であるもの)、銀膜、金属膜としてチタン膜、誘電体膜(2)としてアルミニウム亜鉛酸化物膜(アルミニウムと亜鉛との合計量に対するアルミニウムの割合が5.0原子%であるもの)およびスズ亜鉛酸化物膜(スズと亜鉛との合計量に対するスズの割合が50質量%であるもの)、接着膜としてチタン窒化物膜(TiNx(x=1.0))、ならびに保護膜としてジルコニウムチタン酸化物膜(ジルコニウム酸化物とチタン酸化物との合計量に対するチタン酸化物の割合が45質量%であるもの)を順次成膜して、積層体を製造した。 That is, as the dielectric film (1), a tin-zinc oxide film (a ratio of tin to 50% by mass with respect to the total amount of tin and zinc) and an aluminum zinc oxide film (aluminum with respect to the total amount of aluminum and zinc) Is a silver film, a titanium film as the metal film, and an aluminum zinc oxide film as the dielectric film (2) (the ratio of aluminum to the total amount of aluminum and zinc is 5.0). And tin-zinc oxide film (the ratio of tin to 50% by mass with respect to the total amount of tin and zinc), titanium nitride film (TiNx (x = 1.0)) as an adhesive film As a protective film, a zirconium titanium oxide film (the ratio of titanium oxide to the total amount of zirconium oxide and titanium oxide is 45% by mass) It was deposited, to produce a laminate.
 なお、スズ亜鉛酸化物膜は、亜鉛スズ合金ターゲット(亜鉛とスズとの合計量に対するスズの割合が50質量%であるもの)を用いて、導入ガスをアルゴン(Ar)と酸素(O)の混合ガスとし(アルゴンと酸素のガス圧の比(PAr/PO2)が10/9)、パワー密度を3.6W/cmとして成膜を行った。 The tin-zinc oxide film uses a zinc-tin alloy target (the ratio of tin to 50% by mass with respect to the total amount of zinc and tin) and introduces argon (Ar) and oxygen (O 2 ). (The ratio of the gas pressure of argon and oxygen (P Ar / PO 2 ) was 10/9), and the power density was 3.6 W / cm 2 .
 アルミニウム亜鉛酸化物膜は、亜鉛およびアルミニウムの合金ターゲット(亜鉛とアルミニウムとの合計量に対するアルミニウムの割合が5.0原子%であるもの)を用いて、導入ガスをアルゴン(Ar)と酸素(O)の混合ガスとし(アルゴンと酸素のガス圧の比(PAr/PO2)が10/9)、パワー密度を3.6W/cmとして成膜を行った。 The aluminum zinc oxide film uses an alloy target of zinc and aluminum (a ratio of aluminum with respect to the total amount of zinc and aluminum is 5.0 atomic%) and introduces argon (Ar) and oxygen (O 2 ) (the ratio of the gas pressure of argon and oxygen (P Ar / P O2 ) is 10/9), and the power density was 3.6 W / cm 2 .
 銀膜は、銀ターゲットを用い、導入ガスをAr100%、パワー密度を1.4W/cmとして成膜を行った。 The silver film was formed using a silver target with an introduction gas of Ar 100% and a power density of 1.4 W / cm 2 .
 チタン膜は、チタンターゲットを用いて、導入ガスをAr100%、パワー密度を0.7W/cmとして成膜を行った。 The titanium film was formed using a titanium target with an introduction gas of Ar 100% and a power density of 0.7 W / cm 2 .
 チタン窒化物膜は、チタンターゲットを用いて、導入ガスをアルゴン(Ar)と酸素(O)の混合ガスとし(アルゴンと酸素のガス圧の比(PAr/PO2)が70/30)、パワー密度を3.6W/cmとして成膜を行った。 The titanium nitride film uses a titanium target, and the introduced gas is a mixed gas of argon (Ar) and oxygen (O 2 ) (the ratio of the gas pressure of argon and oxygen (P Ar / P O2 ) is 70/30). The film was formed with a power density of 3.6 W / cm 2 .
 ジルコニウムチタン酸化物膜は、ジルコニウムおよびチタンの合金ターゲット(ジルコニウムとチタンとの合計量に対するチタンの割合が45質量%であるもの)を用いて、導入ガスをアルゴン(Ar)と酸素(O)の混合ガスとし(アルゴンと酸素のガス圧の比(PAr/PO2)が10/9)、パワー密度を3.6W/cmとして成膜を行った。 The zirconium-titanium oxide film uses an alloy target of zirconium and titanium (the ratio of titanium to the total amount of zirconium and titanium is 45% by mass), and the introduced gas is argon (Ar) and oxygen (O 2 ). (The ratio of the gas pressure of argon and oxygen (P Ar / PO 2 ) was 10/9), and the power density was 3.6 W / cm 2 .
(実施例2)
 表1に示すように、チタン窒化物膜を設けないこと以外は、実施例1と同様にして積層体(非熱処理品)を製造した。
(Example 2)
As shown in Table 1, a laminate (non-heat treated product) was manufactured in the same manner as in Example 1 except that no titanium nitride film was provided.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例3)
 表2に示す膜構成でスパッタリング法による成膜および熱処理を行って、図4に示すような光吸収層15として金属層151と窒化物層152とを有する積層体(熱処理品)を製造した。なお、熱処理は、空気中、730℃、6分間の条件で行った。
(Example 3)
Film formation and heat treatment were performed by the sputtering method with the film configuration shown in Table 2, and a laminate (heat treatment product) having the metal layer 151 and the nitride layer 152 as the light absorption layer 15 as shown in FIG. 4 was manufactured. The heat treatment was performed in air at 730 ° C. for 6 minutes.
 表中、誘電体膜(1)は第1の誘電体層13となり、銀膜は銀層14となり、窒化物膜は窒化物層152となり、金属膜は一部が酸化により金属酸化物層17となり、残部が酸化されずに光吸収層15の金属層151となり、誘電体膜(2)は第2の誘電体層16となり、接着膜は酸化により接着層18となる。保護膜は、保護層として成膜されるが、その後の熱処理により消失する。 In the table, the dielectric film (1) is the first dielectric layer 13, the silver film is the silver layer 14, the nitride film is the nitride layer 152, and the metal film is partially oxidized to form the metal oxide layer 17 The remainder is not oxidized and becomes the metal layer 151 of the light absorption layer 15, the dielectric film (2) becomes the second dielectric layer 16, and the adhesive film becomes the adhesive layer 18 by oxidation. The protective film is formed as a protective layer, but disappears by the subsequent heat treatment.
 なお、窒化物膜(CrNx(x=1.0))は、Crターゲットを用いて、導入ガスをアルゴン(Ar)と酸素(O)の混合ガスとし(アルゴンと酸素のガス圧の比(PAr/PO2)が80/20)、パワー密度を1.4W/cmとして成膜を行った。また、保護膜は、炭素ターゲットを用いて、導入ガスをAr100%、パワー密度を2.1W/cmとして成膜を行った。その他の層については、実施例1と同様の条件で形成した。 Note that the nitride film (CrNx (x = 1.0)) uses a Cr target, and the introduced gas is a mixed gas of argon (Ar) and oxygen (O 2 ) (ratio of gas pressure between argon and oxygen ( The film was formed with P Ar / PO 2 ) of 80/20) and a power density of 1.4 W / cm 2 . The protective film was formed by using a carbon target with an introduction gas of Ar 100% and a power density of 2.1 W / cm 2 . Other layers were formed under the same conditions as in Example 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 次に、実施例1~3の積層体(試料数5)について、可視光透過率(T)、基板側の可視光反射率(Rv1)および膜側の可視光反射率(Rv2)を求めた。また、図5に示すような複層ガラスとしたときの日射熱取得率(SHGC)を求めた。可視光透過率(T)、可視光反射率(Rv1、Rv2)、日射熱取得率(SHGC)の結果を表3に示す。 Next, with respect to the laminates (sample number 5) of Examples 1 to 3, the visible light transmittance (T v ), the visible light reflectance (R v1 ) on the substrate side, and the visible light reflectance (R v2 ) on the film side Asked. Moreover, the solar heat gain rate (SHGC) when it was set as the multilayer glass as shown in FIG. 5 was calculated | required. Table 3 shows the results of the visible light transmittance (T v ), the visible light reflectance (R v1 , R v2 ), and the solar heat gain rate (SHGC).
 また、実施例1~3の積層体(試料数5)について、透過光および反射光(基板側および膜側)のCIE-Lab表色法におけるaを求めた。結果を図6~11に示す。 For the laminates of Examples 1 to 3 (number of samples: 5), the a * b * in the CIE-Lab colorimetric method of transmitted light and reflected light (substrate side and film side) was determined. The results are shown in FIGS.
 なお、可視光透過率(T)、可視光反射率(R)は、日立U-4100分光光度計を用いて波長300~2500nmにおいて可視光透過率を測定し、JIS R3106:1998の規定に準じて求めた。 The visible light transmittance (T v ) and the visible light reflectance (R v ) were measured by measuring the visible light transmittance at a wavelength of 300 to 2500 nm using a Hitachi U-4100 spectrophotometer, and specified in JIS R3106: 1998. Calculated according to
 透過光および反射光は、L表色系におけるaおよびbをJIS Z 8722に基づいて測定し、JIS Z 8729に準じて算出した。 The transmitted light and reflected light were calculated in accordance with JIS Z 8729 by measuring a * and b * in the L * a * b * color system based on JIS Z 8722.
 日射熱取得率(SHGC)は、図5に示すように、積層膜12の透明基板11をガラス板(厚さ6mm)とし、対向基板21をガラス板(厚さ6mm)とし、これらの間の中空層26を空気層(厚さ12mm)とした複層ガラス20について求めた。 As shown in FIG. 5, the solar heat acquisition rate (SHGC) is a glass plate (thickness 6 mm) for the transparent substrate 11 of the laminated film 12, and a glass plate (thickness 6 mm) for the counter substrate 21. It calculated | required about the multilayer glass 20 which used the hollow layer 26 as the air layer (thickness 12mm).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3および図6~11から明らかなように、所定の積層構造を有する実施例1~3の積層体は、可視光透過率(T)が66~72%、基板側の可視光反射率(Rv1)が20~25%、膜側の可視光反射率(Rv2)が13~20%、反射率差(Rv1-Rv2)が3.5%以上、透過光のa*が-4~-1かつb*が3~8、基板側の反射光のa*が-4~1かつb*が-13~-8、膜側の反射光のa*が-1~7かつb*が-20~-13、日射取得率(SHGC)が0.37~0.43を満たす。また、実施例1~3の積層体は、生産性も良好となる。 As is apparent from Table 3 and FIGS. 6 to 11, the laminates of Examples 1 to 3 having a predetermined laminate structure have a visible light transmittance (T v ) of 66 to 72% and a visible light reflectance on the substrate side. (R v1 ) is 20 to 25%, visible light reflectance (R v2 ) on the film side is 13 to 20%, reflectance difference (R v1 −R v2 ) is 3.5% or more, and a * of transmitted light is -4 to -1 and b * are 3 to 8, a * of the reflected light on the substrate side is -4 to 1 and b * is -13 to -8, and a * of the reflected light on the film side is -1 to 7 and b * satisfies −20 to −13, and the solar radiation acquisition rate (SHGC) satisfies 0.37 to 0.43. In addition, the laminates of Examples 1 to 3 have good productivity.
(比較例1)
 表4に示すように、誘電体膜(1)(2)、金属膜の厚さを変更して、実施例1と同様にして積層体(非熱処理品)を製造した。
(Comparative Example 1)
As shown in Table 4, a laminate (non-heat treated product) was manufactured in the same manner as in Example 1 by changing the thicknesses of the dielectric films (1) and (2) and the metal film.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(比較例2)
 表5に示すように、誘電体膜(1)(2)、金属膜の厚さを変更して、実施例3と同様にして積層体(熱処理品)を製造した。
(Comparative Example 2)
As shown in Table 5, laminates (heat-treated products) were manufactured in the same manner as in Example 3 by changing the thicknesses of the dielectric films (1) and (2) and the metal film.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
上記に述べた方法で、可視光透過率(T)、可視光反射率(Rv1、Rv2)、透過光および反射光の色調(a)、日射熱取得率(SHGC)を求めた。結果を表6、7に示す。 By the method described above, the visible light transmittance (T v ), the visible light reflectance (R v1 , R v2 ), the color tone of transmitted and reflected light (a * b * ), and the solar heat gain (SHGC) Asked. The results are shown in Tables 6 and 7.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 なお、各膜の成膜直後の厚さと全ての膜の成膜後の厚さ(以下、全膜成膜後の厚さと記す)との関係は、以下に示す通りである。誘電体膜(1)、(2)、銀膜、および保護膜(ジルコニウムチタン酸化物および炭素)の全膜成膜後の厚さは、いずれも各膜の成膜直後の厚さと同様である。金属膜(チタン)の全膜成膜後の厚さは、他の膜の成膜時に酸化されて増加することから、成膜直後の厚さの2倍程度となる。接着膜の全膜成膜後の厚さは、他の膜の成膜時に酸化されて増加することから、成膜直後の1.5倍未満の厚さとなる。 The relationship between the thickness immediately after the formation of each film and the thickness after the formation of all the films (hereinafter referred to as the thickness after the formation of all films) is as shown below. The thicknesses of the dielectric films (1), (2), the silver film, and the protective film (zirconium titanium oxide and carbon) after film formation are all the same as the thickness immediately after the film formation. . The thickness of the entire metal film (titanium) after film formation is oxidized and increased during the film formation of other films, and is therefore about twice the thickness immediately after film formation. The thickness of the adhesive film after the entire film is formed is oxidized and increased at the time of forming other films, so that the thickness is less than 1.5 times that immediately after the film formation.
 また、各膜の成膜直後の厚さと熱処理後の厚さとの関係は、以下に示す通りである。誘電体膜(1)、(2)、銀膜、および保護膜(ジルコニウムチタン酸化物)の熱処理後の厚さは、いずれも成膜直後の厚さと同様である。金属膜(チタン)の熱処理後の厚さは、熱処理時に酸化されて増加することから、成膜直後の厚さの2倍程度となる。接着膜の熱処理後の厚さは、熱処理時に酸化されて増加することから、成膜直後の1.5倍未満の厚さとなる。保護膜(炭素)は、熱処理時の酸化により無くなる。 Further, the relationship between the thickness immediately after the film formation and the thickness after the heat treatment is as shown below. The thicknesses of the dielectric films (1), (2), the silver film, and the protective film (zirconium titanium oxide) after the heat treatment are all the same as the thickness immediately after the film formation. Since the thickness of the metal film (titanium) after the heat treatment is oxidized and increased during the heat treatment, it is about twice the thickness immediately after the film formation. Since the thickness of the adhesive film after the heat treatment is increased by oxidation during the heat treatment, the thickness is less than 1.5 times that immediately after the film formation. The protective film (carbon) disappears due to oxidation during heat treatment.
 10…積層体、11…透明基板、12…積層膜、13…第1の誘電体層、14…銀層、15…光吸収層、16…第2の誘電体層、17…金属酸化物層、18…接着層、19…保護層、20…複層ガラス、21…対向基板、22…スペーサ、23…1次シール材、24…2次シール材、25…貫通孔、26…中空層、27…乾燥剤、151…金属層、152…窒化物層。 DESCRIPTION OF SYMBOLS 10 ... Laminated body, 11 ... Transparent substrate, 12 ... Laminated film, 13 ... 1st dielectric layer, 14 ... Silver layer, 15 ... Light absorption layer, 16 ... 2nd dielectric layer, 17 ... Metal oxide layer 18 ... Adhesive layer, 19 ... Protective layer, 20 ... Multi-layer glass, 21 ... Counter substrate, 22 ... Spacer, 23 ... Primary sealing material, 24 ... Secondary sealing material, 25 ... Through hole, 26 ... Hollow layer, 27 ... Desiccant, 151 ... Metal layer, 152 ... Nitride layer.

Claims (11)

  1.  透明基板と、前記透明基板上に設けられた積層膜とを有し、
     前記積層膜は、前記透明基板側から順に、1.9~2.1の屈折率および20~30nmの幾何学的厚さを有する第1の誘電体層、銀を主成分とし11~18nmの幾何学的厚さを有する銀層、1~6nmの幾何学的厚さを有する光吸収層、および1.9~2.1の屈折率および35~48nmの幾何学的厚さを有する第2の誘電体層を有する積層体。
    A transparent substrate, and a laminated film provided on the transparent substrate,
    The laminated film includes, in order from the transparent substrate side, a first dielectric layer having a refractive index of 1.9 to 2.1 and a geometric thickness of 20 to 30 nm. A silver layer having a geometric thickness, a light absorbing layer having a geometric thickness of 1 to 6 nm, and a second having a refractive index of 1.9 to 2.1 and a geometric thickness of 35 to 48 nm A laminate having a dielectric layer.
  2.  前記光吸収層は、金属層を有する請求項1記載の積層体。 The laminate according to claim 1, wherein the light absorption layer has a metal layer.
  3.  前記光吸収層は、金属窒化物層を有する請求項1記載の積層体。 The laminate according to claim 1, wherein the light absorption layer has a metal nitride layer.
  4.  前記光吸収層は、前記銀層側から順に金属窒化物層および金属層を有する請求項1記載の積層体。 The laminate according to claim 1, wherein the light absorption layer has a metal nitride layer and a metal layer in order from the silver layer side.
  5.  前記金属窒化物層は、クロム窒化物からなる請求項3または4記載の積層体。 The laminate according to claim 3 or 4, wherein the metal nitride layer is made of chromium nitride.
  6.  前記金属層は、チタンを主成分とする請求項4または5記載の積層体。 The laminate according to claim 4 or 5, wherein the metal layer is mainly composed of titanium.
  7.  前記積層体は、可視光透過率(T)が66~72%、前記透明基板側の可視光反射率(Rv1)が20~25%、前記積層膜側の可視光反射率(Rv2)が13~20%である請求項1乃至6のいずれか1項記載の積層体。 The laminated body has a visible light transmittance (T v ) of 66 to 72%, a visible light reflectance (R v1 ) on the transparent substrate side of 20 to 25%, and a visible light reflectance (R v2 ) on the laminated film side. 7. The laminate according to any one of claims 1 to 6, wherein the content is 13 to 20%.
  8.  前記透明基板側の可視光反射率(Rv1)と前記積層膜側の可視光反射率(Rv2)との反射率差(Rv1-Rv2)が3.5%以上である
    請求項1乃至7のいずれか1項記載の積層体。
    The reflectance difference (R v1 -R v2 ) between the visible light reflectance (R v1 ) on the transparent substrate side and the visible light reflectance (R v2 ) on the laminated film side is 3.5% or more. The laminated body of any one of thru | or 7.
  9.  前記積層体は、L表色系において、透過光のaが-4~-1かつbが3~8、前記透明基板側の反射光のaが-4~1かつbが-13~-8、前記積層膜側の反射光のaが-1~7かつbが-20~-11である
    請求項1乃至8のいずれか1項記載の積層体。
    The laminate, L * a * b * in the color system, a transmitted light a * -4 to -1 and b * 3-8, wherein the a * -4-reflected light of the transparent substrate 1 The laminate according to any one of claims 1 to 8, wherein b * is -13 to -8, a * of the reflected light on the laminated film side is -1 to 7, and b * is -20 to -11. .
  10.  請求項1乃至9のいずれか1項記載の積層体と、
     前記積層体の前記積層膜側に対向して配置された対向基板と
    を有する複層ガラス。
    The laminate according to any one of claims 1 to 9,
    A multi-layer glass having a counter substrate disposed to face the laminated film side of the laminated body.
  11.  前記複層ガラスは日射熱取得率が0.37~0.43である
     請求項10記載の複層ガラス。
    The multilayer glass according to claim 10, wherein the multilayer glass has a solar heat gain rate of 0.37 to 0.43.
PCT/JP2014/050248 2013-01-11 2014-01-09 Laminated body and multi-layered glass WO2014109369A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013003503 2013-01-11
JP2013-003503 2013-01-11

Publications (1)

Publication Number Publication Date
WO2014109369A1 true WO2014109369A1 (en) 2014-07-17

Family

ID=51167016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050248 WO2014109369A1 (en) 2013-01-11 2014-01-09 Laminated body and multi-layered glass

Country Status (1)

Country Link
WO (1) WO2014109369A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179908A1 (en) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 Method for manufacturing glass panel unit and method for manufacturing glass window
WO2019167900A1 (en) * 2018-02-28 2019-09-06 Tdk株式会社 Transparent conductor, light control body and transparent heat generation body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104758A (en) * 2001-09-27 2003-04-09 Nippon Sheet Glass Co Ltd Heat ray shielding glass and double grazing using the same
JP2004217432A (en) * 2003-01-09 2004-08-05 Asahi Glass Co Ltd Laminate and structure
JP2006503724A (en) * 2002-08-01 2006-02-02 サン−ゴバン グラス フランス Multi-layer system capable of applying prestress for partition glass
JP2012513323A (en) * 2008-12-22 2012-06-14 サン−ゴバン グラス フランス Substrate with a multilayer coating having thermal properties and an absorbent layer
WO2012115111A1 (en) * 2011-02-21 2012-08-30 旭硝子株式会社 Laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104758A (en) * 2001-09-27 2003-04-09 Nippon Sheet Glass Co Ltd Heat ray shielding glass and double grazing using the same
JP2006503724A (en) * 2002-08-01 2006-02-02 サン−ゴバン グラス フランス Multi-layer system capable of applying prestress for partition glass
JP2004217432A (en) * 2003-01-09 2004-08-05 Asahi Glass Co Ltd Laminate and structure
JP2012513323A (en) * 2008-12-22 2012-06-14 サン−ゴバン グラス フランス Substrate with a multilayer coating having thermal properties and an absorbent layer
WO2012115111A1 (en) * 2011-02-21 2012-08-30 旭硝子株式会社 Laminate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179908A1 (en) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 Method for manufacturing glass panel unit and method for manufacturing glass window
JPWO2018179908A1 (en) * 2017-03-31 2020-01-23 パナソニックIpマネジメント株式会社 Method for manufacturing glass panel unit and method for manufacturing glass window
WO2019167900A1 (en) * 2018-02-28 2019-09-06 Tdk株式会社 Transparent conductor, light control body and transparent heat generation body
JPWO2019167900A1 (en) * 2018-02-28 2021-03-11 Tdk株式会社 Transparent conductor, dimming element and transparent heating element
JP7024852B2 (en) 2018-02-28 2022-02-24 Tdk株式会社 Transparent conductor, dimming element and transparent heating element

Similar Documents

Publication Publication Date Title
JP6090322B2 (en) Laminate
JP4763569B2 (en) High-infrared reflective coating, thin film coating deposition method and related technology
JP6034360B2 (en) Transparent substrate having multilayer thin film
JP5846203B2 (en) Low emissivity laminate and double glazing
WO2014109368A1 (en) Optical multilayer film, laminated body, and double-glazed glass
KR101950527B1 (en) Insulating multiple glazing including two low-emissivity stacks
JP4108771B2 (en) Flat glass products that use multiple glass sheets
JP4602498B2 (en) Transparent substrate with thin film laminate
JPH07149545A (en) Transparent base material provided with thin film laminate acting to sunlight and/or infrared ray
WO2012115111A1 (en) Laminate
JP6024369B2 (en) Glass laminate for windows
JP6767661B2 (en) Gray tones low emissivity glass
JP6601419B2 (en) Glass plate with laminated film and multilayer glass
JP2007070146A (en) Low emissive multilayered glass
JPH08104547A (en) Heat insulating glass
WO2018051638A1 (en) Sunlight shielding member
JP5463686B2 (en) Glass laminate for windows
WO2014109369A1 (en) Laminated body and multi-layered glass
JP2018002564A (en) Gray color tone low radiation glass
JP2017132666A (en) Gray color tone radiation glass, and method for producing the gray color tone radiation glass
JP2008222507A (en) Multiple glass
JP2019182684A (en) Low radiation glass
JP2007197237A (en) Low-radiation double glazing
JP2004217432A (en) Laminate and structure
JP6287502B2 (en) Low radiation window material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14737662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14737662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP