JP6287502B2 - Low radiation window material - Google Patents
Low radiation window material Download PDFInfo
- Publication number
- JP6287502B2 JP6287502B2 JP2014076624A JP2014076624A JP6287502B2 JP 6287502 B2 JP6287502 B2 JP 6287502B2 JP 2014076624 A JP2014076624 A JP 2014076624A JP 2014076624 A JP2014076624 A JP 2014076624A JP 6287502 B2 JP6287502 B2 JP 6287502B2
- Authority
- JP
- Japan
- Prior art keywords
- transparent substrate
- film
- layer
- low
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005855 radiation Effects 0.000 title claims description 75
- 239000000463 material Substances 0.000 title claims description 45
- 239000010408 film Substances 0.000 claims description 164
- 239000000758 substrate Substances 0.000 claims description 138
- 229910052751 metal Inorganic materials 0.000 claims description 72
- 239000002184 metal Substances 0.000 claims description 72
- 238000002834 transmittance Methods 0.000 claims description 51
- 230000003287 optical effect Effects 0.000 claims description 36
- 238000010586 diagram Methods 0.000 claims description 16
- 239000012788 optical film Substances 0.000 claims description 11
- 230000001747 exhibiting effect Effects 0.000 claims description 7
- 238000010030 laminating Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 193
- 239000011521 glass Substances 0.000 description 84
- 239000007789 gas Substances 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000004313 glare Effects 0.000 description 10
- 239000005357 flat glass Substances 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 7
- 230000035699 permeability Effects 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 229910001316 Ag alloy Inorganic materials 0.000 description 5
- 229910006404 SnO 2 Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 230000001771 impaired effect Effects 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000005361 soda-lime glass Substances 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000005341 toughened glass Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910007717 ZnSnO Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000005340 laminated glass Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000001579 optical reflectometry Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910002064 alloy oxide Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000005328 architectural glass Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000013041 optical simulation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000007372 rollout process Methods 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Joining Of Glass To Other Materials (AREA)
- Securing Of Glass Panes Or The Like (AREA)
- Special Wing (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Glass (AREA)
Description
本発明は、遮熱性能を有する低放射膜が形成された低放射透明基板に関する。 The present invention relates to a low radiation transparent substrate on which a low radiation film having heat shielding performance is formed.
2枚のガラス基板の間に中空層を形成するように積層した複層ガラス等の窓材において、近年、冷暖房効率の向上を目的にガラス基板の中空層側に低放射性の積層膜を配設した、低放射ガラスを使用した窓材が普及しつつある。この低放射ガラスは、室内に可視光を取り入れ、窓ガラスに要求される採光性(透明性)を満たす一方で、前記の低放射膜が近赤外から赤外域の光を反射する遮熱性を有するため、太陽光による室内の温度上昇を抑制できる。また、室内から室外への熱の伝達を遮断するため、室内を保温、断熱する能力も高い。 In window materials such as double-glazed glass laminated so as to form a hollow layer between two glass substrates, a low-radiation laminated film has recently been placed on the hollow layer side of the glass substrate for the purpose of improving cooling and heating efficiency. In addition, window materials using low emission glass are becoming widespread. This low-emission glass incorporates visible light into the room and satisfies the daylighting (transparency) required for window glass, while the low-emission film has a heat-shielding property that reflects light in the near infrared to infrared range. Therefore, the indoor temperature rise by sunlight can be suppressed. Moreover, in order to interrupt | block the transmission of the heat | fever from the room | chamber interior, the capability to heat-insulate and insulate a room | chamber interior is also high.
建築用の窓材として、適度な採光性と遮熱性を有する低放射ガラスを用いたものが提案されている。低放射ガラスの採光性と遮熱性は相反する傾向にあり、遮熱性を高めると採光性が低下してしまうため、所望の性能に応じて採光性を重要視したタイプと遮熱性を重要視したタイプの2種類が検討されている。低放射ガラスは通常複層ガラスとして用いられるが、該低放射ガラスの採光性や遮熱性を簡易に評価する場合、低放射ガラス単板で測定した際の可視光透過率を採光性、日射透過率を遮熱性の評価基準としてそれぞれ用いることが可能である。 As a window material for construction, one using a low radiation glass having an appropriate lighting property and heat shielding property has been proposed. Daylighting and heat-shielding properties of low-radiation glass tend to contradict each other, and increasing the heat-shielding property decreases the daylighting properties. Therefore, emphasis was placed on the type that emphasized daylighting and the heat-shielding property depending on the desired performance. Two types are being considered. Low-emission glass is usually used as a multi-layer glass, but when the daylighting and heat-shielding properties of the low-emission glass are simply evaluated, the visible light transmittance when measured with a single sheet of low-emission glass is daylighting and solar transmission The rate can be used as an evaluation criterion for thermal insulation.
上記の採光性を重要視したタイプは、可視光透過率を70%以上としたものが多く、例えば本出願人は特許文献1において、Agを主成分とする金属層である第2層と第4層の幾何学厚さの総和が22〜29nm、第2層の幾何学厚さが第4層の幾何学厚さの0.3〜0.8倍であり、誘電体層である第1、3、5層の光学厚さの総和が220〜380nm、第3層の光学厚さが140〜200nm、第1層の光学厚さが第5層の光学厚さの0.4〜1.5倍として、近赤外域の反射率の向上がなされた窓用ガラス積層体を開示している。当該窓用ガラス積層体は、その実施例において可視光透過率が70%以上、日射透過率が33〜40%程度である。
Many of the types that place importance on the daylighting property have a visible light transmittance of 70% or more. For example, in the
また、例えばオフィスビル等は日光や隣接建築物からの反射光が眩しいため、グレア感(眩しさ)の低減を目的として、可視光透過率を上記の70%より低く抑えた窓材への需要もあり、このような窓材としては前述した遮熱性を重要視したタイプの低放射ガラスが使用される。遮熱性を重要視したタイプとしては、可視光透過率は70%未満で、日射透過率が40%以下となるような低放射ガラスを複層ガラスに組み込み、該複層ガラスの日射熱取得率が0.40以下を示す複層ガラスが検討されている。 In addition, for example, office buildings are dazzled by sunlight and the reflected light from adjacent buildings, so the demand for window materials with a visible light transmittance lower than 70% for the purpose of reducing glare. As such a window material, the above-mentioned low radiation glass with an emphasis on the heat shielding property is used. As a type that attaches importance to heat shielding properties, low radiation glass having a visible light transmittance of less than 70% and a solar radiation transmittance of 40% or less is incorporated in a double-glazed glass, and the solar heat acquisition rate of the double-glazed glass Has been studied.
例えば特許文献2には、透明板上に日射光をある程度吸収する吸収層を設け、その上層に前述したようなAgを主成分とする層と透明誘電体層とを含む積層膜を形成した日射遮蔽性透光板が開示されている。実施例において、当該日射遮蔽性透光板の単板での日射透過率は21〜35%以下であり、複層ガラスにした時の日射熱取得率は0.29〜0.40である。
For example, in
また、特許文献3には、透明ガラス板上の一方の板面に、該ガラス板側から順に、第1の誘電体膜、第1のAgを主成分とする膜、第2の誘電体膜、第2のAgを主成分とする膜及び第3の誘電体膜が積層形成されている日射遮蔽ガラスにおいて、第1及び第2のAgを主成分とする膜の膜厚の和が25〜35nmで、第1のAgを主成分とする膜の膜厚が第2のAgを主成分とする膜の膜厚の30%以上50%未満とする日射遮蔽ガラスが開示されている。実施例において、当該日射遮蔽ガラスの単板での日射透過率は27〜36%であり、複層ガラスにした時の日射熱取得率は0.31〜0.38である。
In
オフィスビル等の高層ビルディング用の窓ガラスとしては斜め下から見た時の外観が赤色や紫色でなく、中性色又は青色となる外観が好まれる。例えば、特許文献4には、透明基体上に3層の透明誘電体層と2層のAg層とが前記透明誘電体層間に前記Ag層が介在するように交互に積層されてなる積層体であって、前記透明基体側から順に第1のAg層、第2のAg層としたとき、前記第1のAg層に対する前記第2のAg層の物理的膜厚の比が1.05以上、かつ前記積層体の可視光透過率が50%以下である積層体が開示されている。
As a window glass for a high-rise building such as an office building, an appearance in which the appearance when viewed from obliquely below is not red or purple but neutral or blue is preferred. For example,
近年、建築用の窓材は省エネルギー化への要求が高まっており、優れた遮熱性を有する低放射ガラスが求められつつある。また、一方で建築用の窓材は、建物のデザイン性や美観にとって重要であり、特に高層ビルの窓ガラスは屋外の斜め下方から該窓材を人が見た時に、反射光のギラつきがなく反射色調が無彩色〜青色であるといった外観に及ぼす光学特性(以下、「外観品質」という)が良好である低放射ガラスへの要求は高い。 In recent years, the demand for energy saving is increasing for the window material for construction, and the low radiation glass which has the outstanding heat-shielding property is being calculated | required. On the other hand, architectural window materials are important for the design and aesthetics of buildings. Especially when window windows of high-rise buildings are viewed from an obliquely outdoor position, the reflected light glare. There is a high demand for low-emission glass having good optical characteristics (hereinafter referred to as “appearance quality”) on the appearance such that the reflection color tone is achromatic to blue.
低放射ガラスの遮熱性を向上させる為には一般的に低放射膜の金属層の厚みを増加させるが、一方で金属層の厚みが増加すると可視光反射率が高くなり、室内側への可視光透過率は低くなる。そのため、屋外から該低放射ガラスを見た時、反射光の反射色調の色味がより強く視認されることから外観品質が損なわれ易くなり、透明性も悪くなる。 In order to improve the heat shielding property of low emission glass, the thickness of the metal layer of the low emission film is generally increased. On the other hand, when the thickness of the metal layer is increased, the visible light reflectivity increases and the visible to the indoor side increases. The light transmittance is lowered. For this reason, when the low emission glass is viewed from the outside, the appearance of the reflected color tone of the reflected light is more strongly visually recognized, so that the appearance quality is easily deteriorated and the transparency is also deteriorated.
従って、本発明では、従来品にない外観品質を呈するとともに、透明性を損なうことなく、優れた遮熱性を有する窓材を得ることを目的とした。また、本発明は、日射が及ぼす外観品質が特に問題となるオフィスビル等のビルディング用として好まれる無彩色〜青色の反射色調を有する低放射窓材を得る事を目的とした。 Accordingly, an object of the present invention is to obtain a window material that exhibits an external appearance quality not found in conventional products and has excellent heat shielding properties without impairing transparency. Another object of the present invention is to obtain a low-emission window material having an achromatic to blue reflective color tone that is preferred for use in buildings such as office buildings where the appearance quality affected by solar radiation is particularly problematic.
本発明者らは、低放射膜についての研究開発を鋭意進めたところ、Ag2層系の低放射膜を使用して従来品にない外観品質を呈するとともに、透明性を損なうことなく、優れた遮熱性を有する窓材を実現することができ、この窓材は、反射色調が無彩色〜青色であり、環境上好ましい窓材を提供できることを見出した。 The present inventors diligently researched and developed a low-emission film. As a result, an Ag2 layer-type low-emission film is used to provide an appearance quality not found in conventional products, and without impairing transparency. It has been found that a window material having thermal properties can be realized, and the window material has an achromatic color to blue color, and can provide an environmentally preferable window material.
すなわち、本発明の第1の形態は、屋外と屋内とを隔てる窓材であって、該窓材は透明基板上に誘電体層とAgを主成分とする金属層とが、第1誘電体層、第1金属層、第2誘電体層、第2金属層、第3誘電体層の順で積層された積層体を有する低放射膜が形成され、屋外と透明基板面で接する低放射透明基板を有し、該積層体は、
第1誘電体層の光学膜厚が60〜110nm、
第1金属層の物理膜厚が7.0〜9.5nm、
第2誘電体層の光学膜厚が190〜250nm、
第2金属層の物理膜厚が16.5〜19.5nm、
第3誘電体層の光学膜厚が50〜100nm、
該第1及び第2金属層の物理膜厚の合計値が23.5〜29nm、
該第1、第3、及び第5誘電体層の光学膜厚の合計値が330〜430nmの範囲内となるものであり、
該低放射透明基板の光学特性は、
JIS R3106(1998)に準拠して算出した日射透過率が33%を超えず、
JIS R3106(1998)に準拠して算出した透明基板面の可視光反射率が28%を超えず、
屋外と接する屋外面の反射色調が、無彩色を呈するか、又はCIE L*a*b*色度座標図において((a*)2+(b*)2)1/2で表される彩度が20以下の青色の反射色調を呈することを特徴とする低放射窓材である。
In other words, a first aspect of the present invention is a window material that separates the outdoors from the indoors, and the window material includes a dielectric layer and a metal layer mainly composed of Ag on a transparent substrate. A low radiation film having a low radiation film having a laminate in which a layer, a first metal layer, a second dielectric layer, a second metal layer, and a third dielectric layer are laminated in this order, and in contact with the outdoors on a transparent substrate surface Having a substrate, the laminate is
The optical thickness of the first dielectric layer is 60 to 110 nm,
The physical thickness of the first metal layer is 7.0 to 9.5 nm,
The optical thickness of the second dielectric layer is 190 to 250 nm,
The physical film thickness of the second metal layer is 16.5 to 19.5 nm,
The optical thickness of the third dielectric layer is 50 to 100 nm,
The total physical film thickness of the first and second metal layers is 23.5 to 29 nm,
A total value of optical film thicknesses of the first, third and fifth dielectric layers is within a range of 330 to 430 nm;
The optical characteristics of the low emission transparent substrate are:
The solar transmittance calculated according to JIS R3106 (1998) does not exceed 33%,
The visible light reflectance of the transparent substrate surface calculated according to JIS R3106 (1998) does not exceed 28%,
The reflected color tone of the outdoor surface in contact with the outdoors exhibits an achromatic color, or the color represented by ((a *) 2 + (b *) 2 ) 1/2 in the CIE L * a * b * chromaticity coordinate diagram It is a low emission window material characterized by exhibiting a blue reflection color tone with a degree of 20 or less.
また、本発明の第2の形態は、屋外と屋内とを隔てる窓材であって、該窓材は透明基板上に誘電体層とAgを主成分とする金属層とが、第1誘電体層、第1金属層、第2誘電体層、第2金属層、第3誘電体層の順で積層された積層体を有する低放射膜が形成され、屋内と透明基板面で接する低放射透明基板を有し、該低放射透明基板と屋外との間に透明基板を有するものであり、該積層体は、
第1誘電体層の光学膜厚が60〜110nm、
第1金属層の物理膜厚が7.0〜9.5nm、
第2誘電体層の光学膜厚が190〜250nm、
第2金属層の物理膜厚が16.5〜19.5nm、
第3誘電体層の光学膜厚が50〜100nm、
該第1及び第2金属層の物理膜厚の合計値が23.5〜29nm、
該第1、第3、及び第5誘電体層の光学膜厚の合計値が330〜430nmの範囲内となるものであり、
該低放射透明基板の光学特性は、
JIS R3106(1998)に準拠して算出した日射透過率が33%を超えず、
JIS R3106(1998)に準拠して算出した膜面の可視光反射率が28%を超えず、
屋外と接する屋外面の反射色調が、無彩色を呈するか、又はCIE L*a*b*色度座標図において((a*)2+(b*)2)1/2で表される彩度が20以下の青色の反射色調を呈することを特徴とする低放射窓材である。
According to a second aspect of the present invention, there is provided a window material that separates the outdoors from the indoors, and the window material includes a dielectric layer and a metal layer containing Ag as a main component on a transparent substrate. A low radiation film having a laminated structure in which a layer, a first metal layer, a second dielectric layer, a second metal layer, and a third dielectric layer are laminated in this order is formed, and the low radiation transparent contact with the interior and the transparent substrate surface A substrate, and a transparent substrate between the low-emission transparent substrate and the outdoors, the laminate is
The optical thickness of the first dielectric layer is 60 to 110 nm,
The physical thickness of the first metal layer is 7.0 to 9.5 nm,
The optical thickness of the second dielectric layer is 190 to 250 nm,
The physical film thickness of the second metal layer is 16.5 to 19.5 nm,
The optical thickness of the third dielectric layer is 50 to 100 nm,
The total physical film thickness of the first and second metal layers is 23.5 to 29 nm,
A total value of optical film thicknesses of the first, third and fifth dielectric layers is within a range of 330 to 430 nm;
The optical characteristics of the low emission transparent substrate are:
The solar transmittance calculated according to JIS R3106 (1998) does not exceed 33%,
The visible light reflectance of the film surface calculated according to JIS R3106 (1998) does not exceed 28%,
The reflected color tone of the outdoor surface in contact with the outdoors exhibits an achromatic color, or the color represented by ((a *) 2 + (b *) 2 ) 1/2 in the CIE L * a * b * chromaticity coordinate diagram It is a low emission window material characterized by exhibiting a blue reflection color tone with a degree of 20 or less.
本発明は、低放射透明基板についてJIS R3106(1998)に準拠して算出した日射透過率が33%を超えないことを目的とした。前述したように、透明基板としてガラス板を用いた場合、該ガラス板は複層ガラスとして使用されることがあるが、通常、複層ガラスの遮熱性は日射熱取得率で評価される。しかし、複層ガラスの日射熱取得率は、ガラス板や中空層の厚み、中空層のガスの種類によって変化するため、ガラス板単板でも評価可能な遮熱性を表す数値として日射透過率を用いた。また、日射透過率を用いる場合、ガラス板以外の透明基板であっても評価可能である。ガラス板単板の日射透過率33%以下は、おおむね複層ガラスの日射熱取得率0.35以下に相当する。 The object of the present invention is to prevent the solar radiation transmittance calculated in accordance with JIS R3106 (1998) for a low radiation transparent substrate from exceeding 33%. As described above, when a glass plate is used as the transparent substrate, the glass plate may be used as a multi-layer glass, but usually the heat shielding property of the multi-layer glass is evaluated by a solar heat gain rate. However, since the solar heat gain of a multi-layer glass varies depending on the thickness of the glass plate and the hollow layer and the type of gas in the hollow layer, the solar transmittance is used as a numerical value representing the heat shielding property that can be evaluated even with a single glass plate. It was. Moreover, when using solar radiation transmittance, even if it is transparent substrates other than a glass plate, it can evaluate. A solar radiation transmittance of 33% or less for a single glass plate generally corresponds to a solar heat acquisition rate of 0.35 or less for a multilayer glass.
本発明においては、低放射透明基板の各光学・熱特性を自記分光光度計(日立製作所製、U−4000)及びフーリエ変換赤外反射分光光度計(パーキンエルマー製、Paragon1000)を用いて測定した。また、後述する反射色調についても、同様に自記分光光度計(日立製作所製、U−4000)を用いて測定を行った。 In the present invention, the optical and thermal characteristics of the low radiation transparent substrate were measured using a self-recording spectrophotometer (Hitachi, U-4000) and a Fourier transform infrared reflection spectrophotometer (Perkin Elmer, Paragon 1000). . Moreover, the reflection color tone described later was similarly measured using a self-recording spectrophotometer (manufactured by Hitachi, Ltd., U-4000).
本発明について、外観に及ぼす光学特性を言う「外観品質」とは、視認可能な反射光の色調とギラ付きの有無を指し、「外観品質が良好」とは、屋外から見た時に上記の反射光の色調が、目的とする無彩色〜青色の範囲内であり、かつ該反射光にギラつきが生じない事を指すものとする。 With regard to the present invention, “appearance quality”, which refers to optical characteristics that affect the appearance, refers to the color tone of reflected light that is visible and the presence or absence of glare, and “good appearance quality” refers to the above reflection when viewed from the outside. The color tone of light is within the target achromatic to blue range, and the reflected light is not glaring.
また、「無彩色」とは、屋外から見た時の反射色調が視認可能な赤、緑、黄、青等の色味を呈さない色調を指すものとする。また、CIE L*a*b*色度座標図において((a*)2+(b*)2)1/2で表される彩度は0に近い程上記の無彩色に近く、値が高くなるに従って色味が強い色を呈するようになる。建築用の窓ガラスとして用いる場合、色味が過度に強いと建物のデザイン性や美観を損なったり、視覚的な刺激が強くなったりすることがあり、色味の強い反射色調は避けられる傾向にある。従って、本発明では彩度を20以下とした。 In addition, the “achromatic color” refers to a color tone that does not exhibit a tint such as red, green, yellow, and blue, in which the reflected color tone when viewed from the outside is visible. Further, in the CIE L * a * b * chromaticity coordinate diagram, the saturation represented by ((a *) 2 + (b *) 2 ) 1/2 is closer to 0 and closer to the above achromatic color, and the value is The higher the color, the more intense the color. When used as a window glass for architecture, if the color is excessively strong, the design and aesthetics of the building may be impaired, and visual stimulation may become strong. is there. Accordingly, in the present invention, the saturation is set to 20 or less.
また、本発明はJIS R3106(1998)に準拠して算出した透明基板面、又は膜面の可視光反射率が28%を超えないことを目的とした。前述したように可視光の反射率が高いとギラつきにより外観品質を損ない易くなる為、可視光反射率は出来るだけ低くする事が好ましい。本発明の場合、該可視光反射率が28%を超えるとギラつきが強く視認される傾向にあることがわかった。 Another object of the present invention is to ensure that the visible light reflectance of the transparent substrate surface or film surface calculated in accordance with JIS R3106 (1998) does not exceed 28%. As described above, if the reflectance of visible light is high, the appearance quality is liable to be lost due to glare, so that the reflectance of visible light is preferably as low as possible. In the case of this invention, when this visible light reflectance exceeded 28%, it turned out that there exists a tendency for glare to be visually recognized strongly.
また、本発明の第1の形態は、屋外側から見た時の反射色調を無彩色〜青色とするために、JIS Z8729(2004)に準拠して算出した透明基板面の反射色調を、CIE L*a*b*色度座標図において、a*≧b*、a*が−10〜0及びb*が−20〜0の範囲内とするのが好ましい。上記の反射色調は0に近い程無彩色に近く、a*の値がマイナスに大きい程緑色の反射色調が、b*の値がマイナス方向に大きい程青色の反射色調がそれぞれ強く視認されるようになる。 Further, in the first embodiment of the present invention, the reflection color tone of the transparent substrate surface calculated in accordance with JIS Z8729 (2004) is used for the reflection color tone when viewed from the outdoor side to be achromatic to blue. In the L * a * b * chromaticity coordinate diagram, it is preferable that a * ≧ b *, a * is within a range of −10 to 0, and b * is within a range of −20 to 0. The reflection color tone is closer to an achromatic color as it is closer to 0, and the green reflection color tone is more visually recognized as the value of a * is negative, and the blue reflection color tone is stronger as the value of b * is larger in the negative direction. become.
また、本発明の第2の形態は、屋外側から見た時の反射色調を無彩色〜青色とするために、JIS Z8729(2004)に準拠して算出した膜面の反射色調が、CIE L*a*b*色度座標図において、a*が−5〜5及びb*が−10〜5の範囲内とすることが好ましい。当該第2の形態は該低放射透明基板と屋外との間に透明基板が介在するため、膜面の反射色調を直接測定した値と、窓材とした際に値とでは差異が生じる。単板における膜面の反射色調を上記の範囲内とすると、屋外から見た時の反射色調を無彩色〜青色とすることが可能である。 Further, in the second embodiment of the present invention, the reflection color tone of the film surface calculated in accordance with JIS Z8729 (2004) is CIE L so that the reflection color tone when viewed from the outdoor side is achromatic to blue. In the * a * b * chromaticity coordinate diagram, it is preferable that a * is in the range of -5 to 5 and b * is in the range of -10 to 5. In the second embodiment, since the transparent substrate is interposed between the low radiation transparent substrate and the outdoors, there is a difference between the value obtained by directly measuring the reflection color tone of the film surface and the value when the window material is used. When the reflection color tone of the film surface of the single plate is within the above range, the reflection color tone when viewed from the outside can be set to an achromatic color to a blue color.
前記金属層はAgを主成分とする層であり、Ag膜、又はAgを主成分とするAg合金膜であり、Ag合金としては、パラジウム、金、白金、ニッケル、銅などの金属をそれぞれ5質量%以下の範囲内で含んでいてもよい。ここで、「主成分」はAgを90質量%以上含むものを指す。 The metal layer is a layer containing Ag as a main component, and is an Ag film or an Ag alloy film containing Ag as a main component. As the Ag alloy, metals such as palladium, gold, platinum, nickel, and copper are each 5 It may be contained within the range of mass% or less. Here, the “main component” indicates that containing 90% by mass or more of Ag.
前記誘電体層は低放射膜の反射色調を調整し、特に金属層の上層の誘電体層は、該金属層の保護層の役割を果たす層であり、Zn、Sn、Al、Ti、Si、及びInからなる群から選ばれる少なくとも1つの金属を含む酸化物、窒化物、又は酸窒化物の透明な薄膜を用いる。 The dielectric layer adjusts the reflection color tone of the low-emission film. In particular, the upper dielectric layer of the metal layer serves as a protective layer for the metal layer, and includes Zn, Sn, Al, Ti, Si, And a transparent thin film of oxide, nitride, or oxynitride containing at least one metal selected from the group consisting of In and In.
前記金属層の物理膜厚は、以下の手順により見積もられた各層の成膜速度を、低放射膜を形成時に設定した基材搬送速度で除算することにより求めることが可能である。上記の各層の成膜速度(nm・mm/min)は、各層の単層膜を成膜した時の単層膜の厚さ(nm)と基材の搬送速度(mm/min)の積を算出することにより求められる。該単層膜の厚さは、成膜前にガラス基材上に油性ペンなどのマーキングを施し、成膜後にこれを除去し、単層膜が形成された箇所と、マーキングを除去した膜が形成されていない箇所との段差を、触針式段差計(Veeco社製、Dektak 150)を用いて測定した。 The physical film thickness of the metal layer can be obtained by dividing the film formation speed of each layer estimated by the following procedure by the base material conveyance speed set at the time of forming the low radiation film. The film formation speed (nm · mm / min) of each layer is the product of the thickness (nm) of the single-layer film and the substrate transport speed (mm / min) when the single-layer film of each layer is formed. It is obtained by calculating. The thickness of the single layer film is determined by marking the glass substrate with a marker such as an oil pen before film formation and removing the film after film formation. The level difference from the portion where it was not formed was measured using a stylus type level meter (Veeco, Dektak 150).
また、誘電体層の光学膜厚は、低放射膜作製時と同様の成膜条件で作製した単層膜の波長550nmにおける屈折率と膜厚との積から算出した値である。本発明における該屈折率は、単層膜の透過率と反射率とを前述した分光光度計(U−4000、日立製作所製)で測定し、得られた値から光学シミュレーション(Reflectance−transmittance法)によって算出した。 The optical film thickness of the dielectric layer is a value calculated from the product of the refractive index and the film thickness at a wavelength of 550 nm of a single layer film produced under the same film formation conditions as those for producing the low radiation film. In the present invention, the refractive index is obtained by measuring the transmittance and reflectance of a single layer film with the spectrophotometer (U-4000, manufactured by Hitachi, Ltd.), and from the obtained value, an optical simulation (Reflectance-transmittance method). Calculated by
本発明により、無彩色〜青色の反射色調を有し、従来品にない好ましい外観品質を呈するとともに、透明性を損なうことなく、優れた遮熱性を有する建築用の低放射窓材を得ることが可能となった。 According to the present invention, it is possible to obtain an architectural low radiation window material having an achromatic color to a blue reflection color tone, exhibiting a preferable appearance quality not found in conventional products, and having excellent heat shielding properties without impairing transparency. It has become possible.
よって、建物のデザイン性や美観にとって重要である低放射窓材としての選択肢を広げることができる。 Therefore, the choice as a low radiation window material important for the design and aesthetics of a building can be expanded.
1.第1の実施形態
本発明の第1の形態は、屋外と屋内とを隔てる窓材であって、該窓材は透明基板上に誘電体層とAgを主成分とする金属層とが、第1誘電体層、第1金属層、第2誘電体層、第2金属層、第3誘電体層の順で積層された積層体を有する低放射膜が形成され、屋外と透明基板面で接する低放射透明基板を有し、該積層体は、
第1誘電体層の光学膜厚が60〜110nm、
第1金属層の物理膜厚が7.0〜9.5nm、
第2誘電体層の光学膜厚が190〜250nm、
第2金属層の物理膜厚が16.5〜19.5nm、
第3誘電体層の光学膜厚が50〜100nm、
該第1及び第2金属層の物理膜厚の合計値が23.5〜29nm、
該第1、第3、及び第5誘電体層の光学膜厚の合計値が330〜430nmの範囲内となるものであり、
該低放射透明基板の光学特性は、
JIS R3106(1998)に準拠して算出した日射透過率が33%を超えず、
JIS R3106(1998)に準拠して算出した透明基板面の可視光反射率が28%を超えず、
屋外と接する屋外面の反射色調が、無彩色を呈するか、又はCIE L*a*b*色度座標図において((a*)2+(b*)2)1/2で表される彩度が20以下の青色の反射色調を呈することを特徴とする低放射窓材である。
1. First Embodiment A first embodiment of the present invention is a window material that separates the outdoors and indoors, and the window material includes a dielectric layer and a metal layer mainly composed of Ag on a transparent substrate. A low-emission film having a laminate in which a dielectric layer, a first metal layer, a second dielectric layer, a second metal layer, and a third dielectric layer are laminated in this order is formed and is in contact with the outdoors on the transparent substrate surface Having a low radiation transparent substrate, the laminate is
The optical thickness of the first dielectric layer is 60 to 110 nm,
The physical thickness of the first metal layer is 7.0 to 9.5 nm,
The optical thickness of the second dielectric layer is 190 to 250 nm,
The physical film thickness of the second metal layer is 16.5 to 19.5 nm,
The optical thickness of the third dielectric layer is 50 to 100 nm,
The total physical film thickness of the first and second metal layers is 23.5 to 29 nm,
A total value of optical film thicknesses of the first, third and fifth dielectric layers is within a range of 330 to 430 nm;
The optical characteristics of the low emission transparent substrate are:
The solar transmittance calculated according to JIS R3106 (1998) does not exceed 33%,
The visible light reflectance of the transparent substrate surface calculated according to JIS R3106 (1998) does not exceed 28%,
The reflected color tone of the outdoor surface in contact with the outdoors exhibits an achromatic color, or the color represented by ((a *) 2 + (b *) 2 ) 1/2 in the CIE L * a * b * chromaticity coordinate diagram It is a low emission window material characterized by exhibiting a blue reflection color tone with a degree of 20 or less.
本発明は、前述したようにJIS R3106(1998)に準拠して算出した日射透過率が33%を超えない低放射透明基板を有する。また、本発明は透明基板の厚みが3mmのとき、JIS R3106(1998)に準拠して算出した可視光透過率が70%未満となる。通常、日射透過率が低くなる程遮熱性が高くなるが、それに伴って可視光透過率も低下する。窓ガラス等の窓材に使用する際、遮熱性と適度な採光性とを両立させるために、好ましくは日射透過率を25〜29%としてもよい。また、可視光透過率を50〜65%とするのが好ましく、より好ましくは55〜65%としてもよい。 As described above, the present invention has a low radiation transparent substrate whose solar radiation transmittance calculated according to JIS R3106 (1998) does not exceed 33%. In the present invention, when the thickness of the transparent substrate is 3 mm, the visible light transmittance calculated in accordance with JIS R3106 (1998) is less than 70%. Usually, the lower the solar transmittance, the higher the heat shielding property, but the visible light transmittance also decreases accordingly. When used for a window material such as a window glass, the solar transmittance may be preferably 25 to 29% in order to achieve both heat shielding properties and appropriate daylighting. Further, the visible light transmittance is preferably 50 to 65%, and more preferably 55 to 65%.
また、本発明はJIS R3106(1998)に準拠して算出した透明基板面の可視光反射率が28%を超えない低放射透明基板である。可視光反射率が高くなるとギラつきにより外観品質を損ない易くなる為、可視光反射率は出来るだけ低くする事が好ましい。 Moreover, this invention is a low radiation | emission transparent substrate whose visible light reflectance of the transparent substrate surface computed based on JISR3106 (1998) does not exceed 28%. When the visible light reflectance is increased, the appearance quality is liable to be deteriorated due to glare. Therefore, the visible light reflectance is preferably as low as possible.
また、本発明は屋外と接する屋外面が無彩色〜青色の反射色調を呈するものであり、該反射色調は((a*)2+(b*)2)1/2で表される彩度が20以下となる。該彩度が20を超えると反射色調の色味が強くなり、建物のデザイン性や美観を損なうことがある。また、当該実施形態は特に青色の反射色調を得るのに好適であり、好ましくは彩度が10以上、20以下としてもよい。 In the present invention, the outdoor surface in contact with the outdoors exhibits an achromatic to blue reflected color tone, and the reflected color tone is represented by ((a *) 2 + (b *) 2 ) 1/2. Is 20 or less. When the saturation exceeds 20, the color tone of the reflected color becomes strong, and the design and aesthetics of the building may be impaired. The embodiment is particularly suitable for obtaining a blue reflected color tone, and the saturation may be 10 or more and 20 or less.
本発明はJIS Z8729(2004)に準拠して算出した透明基板面の反射色調が、CIE L*a*b*色度座標図において、a*≧b*、a*が−10〜0及びb*が−20〜0の範囲内であるのが好ましい。この時、外観品質を損なうとされる反射色調としては赤色や黄色が挙げられる。反射色調の赤味が強くなる場合はa*が5以上、反射色調の黄味が強くなる場合はb*が5以上である。a*及びb*が共に0付近の場合は無彩色に近いが、特にa*は、a*が2付近で薄く赤味を呈するようになり、外観品質を損ないやすい。また、a*が−10未満になると反射色調の緑味を強く呈するようになり、一方でb*が−20未満になると青味を強く呈するようになる。より良好な外観品質を得るために、好ましくはa*>b*、及びb*が−18〜−2の範囲内としてもよい。 In the present invention, the reflection color tone of the transparent substrate surface calculated in accordance with JIS Z8729 (2004) is a * ≧ b *, a * is −10 to 0 and b in the CIE L * a * b * chromaticity coordinate diagram. * Is preferably in the range of -20 to 0. At this time, red and yellow are mentioned as the reflection color tone which is supposed to impair the appearance quality. When the reflection color tone becomes reddish, a * is 5 or more, and when the reflection color tone becomes yellowish, b * is 5 or more. When both a * and b * are near 0, the color is close to achromatic, but in particular, a * is light reddish when a * is near 2, and the appearance quality is likely to be impaired. Further, when a * is less than −10, the green color of the reflected color tone is strongly exhibited. On the other hand, when b * is less than −20, blue color is strongly exhibited. In order to obtain better appearance quality, a *> b * and b * may preferably be within a range of −18 to −2.
通常、低放射膜はキズ等の物理的な損傷を防ぐ為に、該低放射膜を屋外に直接曝露しないように配置される。本発明のようにAgを主成分とする層を有する低放射膜を用いる場合、Agは大気中の水分や塩素等を起因とする欠陥を生じ易い事から、該低放射膜が大気と接触しないように施工したり、保護層等でコーティングするのが望ましい。例えば、図1の(a)に示したような低放射透明基板を単板での使用、図1の(b)に示したような複層ガラス、又は合わせガラス等が挙げられる。 Usually, in order to prevent physical damage such as scratches, the low emission film is arranged so as not to directly expose the low emission film to the outdoors. When using a low emission film having a layer mainly composed of Ag as in the present invention, Ag is liable to cause defects due to moisture, chlorine, etc. in the atmosphere, so the low emission film does not contact the atmosphere. It is desirable to apply the coating or coat with a protective layer. For example, the low radiation transparent substrate as shown in FIG. 1 (a) can be used as a single plate, the multilayer glass as shown in FIG. 1 (b), or laminated glass.
低放射透明基板1は屋外側に配置され、該低放射透明基板1の透明基板面が屋外と接する。当該実施形態の場合、反射色調の調整が行い易い。また、図1(b)のように複層ガラスに組み込む場合は、入射光が中空層4まで入射しないため、より遮熱効果を高めることが可能である。
The low radiation
本発明は、屋外側から、前記低放射透明基板、中空層、及び透明基板がこの順で配置され、該低放射透明基板の透明基板面が屋外と接することが好ましい。 In the present invention, it is preferable that the low radiation transparent substrate, the hollow layer, and the transparent substrate are arranged in this order from the outdoor side, and the transparent substrate surface of the low radiation transparent substrate is in contact with the outdoors.
透明基板は熱、光、キズ等への耐久性が良好な材質であれば特に限定されるものではない。特にガラス基板を用いるのが好適であるが、その他透明樹脂板等を使用してもよい。 The transparent substrate is not particularly limited as long as it is a material having good durability against heat, light, scratches and the like. In particular, a glass substrate is preferably used, but other transparent resin plates and the like may be used.
前記ガラス基板は特に限定されるものではないが、例えば、通常使用されているフロ−ト板ガラス、又はロ−ルアウト法で製造されたソーダ石灰ガラス等無機質の透明なガラス板を使用できる。当該ガラス基板には、無アルカリガラス、高透過ガラス等が挙げられる。また、ガラス基板の形状を特に限定するものではなく、平板ガラス、曲げ板ガラス、風冷強化ガラス、及び化学強化ガラス等の各種強化ガラス、網入りガラスも使用できる。また、ホウケイ酸塩ガラス、低膨張ガラス、ゼロ膨張ガラス、低膨張結晶化ガラス、ゼロ膨張結晶化ガラス等の各種ガラス基材を用いることが可能である。 The glass substrate is not particularly limited, and for example, a commonly used float plate glass or an inorganic transparent glass plate such as soda lime glass produced by a roll-out method can be used. Examples of the glass substrate include alkali-free glass and highly transmissive glass. The shape of the glass substrate is not particularly limited, and various tempered glasses such as flat glass, bent plate glass, air-cooled tempered glass, and chemically tempered glass, and netted glass can also be used. Various glass substrates such as borosilicate glass, low expansion glass, zero expansion glass, low expansion crystallized glass, and zero expansion crystallized glass can be used.
上記のガラス基板の他に挙げられる透明基板としては、例えばポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエーテルサルホン樹脂、ポリカーボネート樹脂、ポリ塩化ビニール樹脂等が挙げられる。 Examples of the transparent substrate other than the glass substrate include polyethylene terephthalate resin, polyethylene naphthalate resin, polyethersulfone resin, polycarbonate resin, and polyvinyl chloride resin.
透明基板の厚みは特に限定するものではないが、一般的に建築用ガラスとして使用される3〜19mmとしてもよい。また、可視光透過率や日射透過率は基板の厚みの影響を受けることがあり、該基板が厚くなる程透過率が低下する傾向にある。例えば、上記の建築用ガラスとして使用される3mmのガラス基板と6mmのガラス基板とを比較すると、3mmのガラス基板の方が可視光透過率が0.5〜1.5%程度高くなる。 Although the thickness of a transparent substrate is not specifically limited, It is good also as 3-19 mm generally used as architectural glass. Visible light transmittance and solar radiation transmittance may be affected by the thickness of the substrate, and the transmittance tends to decrease as the substrate becomes thicker. For example, when a 3 mm glass substrate and a 6 mm glass substrate used as the building glass are compared, the 3 mm glass substrate has a higher visible light transmittance of about 0.5 to 1.5%.
本発明の低放射膜は、透明基板と前記積層体との間に、基板との密着性を向上させることを目的とした膜や層等を含んでもよい。また、該積層体を保護する事と目的として、該積層体上に耐湿性や耐摩耗性、耐候性等を向上させる膜や層を含んでもよい。 The low emission film of the present invention may include a film, a layer, or the like for the purpose of improving adhesion to the substrate between the transparent substrate and the laminate. In addition, for the purpose of protecting the laminated body, a film or a layer for improving moisture resistance, abrasion resistance, weather resistance, or the like may be included on the laminated body.
前記誘電体層は低放射膜の反射色調などを調整する層であり、Zn、Sn、Al、Ti、Si、及びInからなる群から選ばれる少なくとも1つの金属を含む酸化物、窒化物、又は酸窒化物の透明な薄膜が好適に用いられる。該誘電体層は上記の反射色調を調整する以外にも、透明基材と金属層との密着性の向上、低放射膜の化学的耐久性の向上、等を目的として、ZnO、SnO2、ZnSnO3、Si3N4及びTiO2を用いるのが好ましい。ZnO、SnO2、ZnSnO3及びTiO2はそれぞれ酸化物膜でも、任意の第三成分を含有する合金酸化物膜であってもよい。また、Si3N4は窒化物膜でも、任意の第三成分を含有する合金窒化物膜であってもよい。 The dielectric layer is a layer for adjusting the reflection color tone of the low radiation film, and is an oxide, nitride, or at least one metal selected from the group consisting of Zn, Sn, Al, Ti, Si, and In, or A transparent thin film of oxynitride is preferably used. For the purpose of improving the adhesion between the transparent substrate and the metal layer, improving the chemical durability of the low-emission film, etc. in addition to adjusting the reflection color tone, the dielectric layer is made of ZnO, SnO 2 , ZnSnO 3 , Si 3 N 4 and TiO 2 are preferably used. Each of ZnO, SnO 2 , ZnSnO 3 and TiO 2 may be an oxide film or an alloy oxide film containing an arbitrary third component. Si 3 N 4 may be a nitride film or an alloy nitride film containing an optional third component.
前記第1誘電体層は透明基板と第1金属層との密着性を向上させ、第2誘電体層、及び第3誘電体層と相互に作用し合い反射色調や日射透過率を調整する層で、光学膜厚は60〜110nmである。60nm未満では透明基板面の可視光反射率が高くなる傾向にあり、また、110nmを超えると透明基板面の反射色調が赤味を帯びやすくなったり、目的とする色調の範囲から外れたりすることがある。下限値について好ましくは70nm以上、より好ましくは75nm以上としてもよい。また、上限値について好ましくは100nm以下、より好ましくは90nm以下としてもよい。 The first dielectric layer improves the adhesion between the transparent substrate and the first metal layer and interacts with the second dielectric layer and the third dielectric layer to adjust the reflection color tone and the solar transmittance. The optical film thickness is 60 to 110 nm. If it is less than 60 nm, the visible light reflectivity of the transparent substrate surface tends to be high, and if it exceeds 110 nm, the reflected color tone of the transparent substrate surface tends to be reddish or out of the target color tone range. There is. The lower limit is preferably 70 nm or more, more preferably 75 nm or more. Further, the upper limit is preferably 100 nm or less, more preferably 90 nm or less.
前記第2誘電体層は、反射色調及び日射透過率に大きく影響を及ぼす層であり、光学膜厚は190〜250nmである。190nm未満では透明基板面の反射色調が無色〜青色ではなくなる、又は赤味を帯び易くなり、また、250nmを超えると透明基板面の可視光反射率が高くなる。下限値について好ましくは200nm以上、より好ましくは205nm以上としてもよい。また、上限値について好ましくは240nm以下、より好ましくは230nm以下としてもよい。 The second dielectric layer is a layer that greatly affects the reflection color tone and solar transmittance, and has an optical film thickness of 190 to 250 nm. If it is less than 190 nm, the reflection color tone of the transparent substrate surface is not colorless to blue, or tends to be reddish, and if it exceeds 250 nm, the visible light reflectance of the transparent substrate surface increases. The lower limit is preferably 200 nm or more, and more preferably 205 nm or more. Further, the upper limit is preferably 240 nm or less, more preferably 230 nm or less.
前記第3誘電体層は、第1誘電体層及び第2誘電体層と相互に作用し合い反射色調や日射透過率を調整する層であり、光学膜厚は50〜100nmである。50nm未満では透明基板面の可視光反射率が高くなり、また、100nmを超えると透明基板面の反射色調が目的とする範囲から外れる、又は赤味を帯び易くなる。また、好ましくは60nm以上、75nm以下としてもよい。 The third dielectric layer is a layer that interacts with the first dielectric layer and the second dielectric layer to adjust reflection color tone and solar transmittance, and has an optical film thickness of 50 to 100 nm. If the thickness is less than 50 nm, the visible light reflectance of the transparent substrate surface becomes high, and if it exceeds 100 nm, the reflection color tone of the transparent substrate surface is out of the target range or tends to be reddish. Moreover, it is good also as 60 nm or more and 75 nm or less preferably.
また、上記の各誘電体層は、総厚みが前述した範囲内になるのであれば、複数の誘電体膜が積層した積層膜であってもよい。特に前記第3誘電体層は外気に最も近い層であることから、光学特性を損なわない範囲で複数の膜を使用し、耐湿性や耐久性を向上させてもよい。 Each of the dielectric layers may be a laminated film in which a plurality of dielectric films are laminated as long as the total thickness is within the above-described range. In particular, since the third dielectric layer is the layer closest to the outside air, a plurality of films may be used within a range not impairing the optical characteristics, thereby improving the moisture resistance and durability.
すなわち、前記第3誘電体層は、誘電体膜を2以上積層したものであり、該誘電体膜の光学膜厚の合計値が50〜100nmであることが好ましい。この時、最上層に用いる誘電体膜としては、SnO2、TiO2、Si3N4等が耐湿性に優れているため好適である。 That is, the third dielectric layer is a laminate of two or more dielectric films, and the total optical film thickness of the dielectric films is preferably 50 to 100 nm. At this time, SnO 2 , TiO 2 , Si 3 N 4 or the like is suitable as the dielectric film used for the uppermost layer because it has excellent moisture resistance.
また、本発明の低放射膜において、前記第1、第2、及び第3誘電体層の厚みの合計値は、330〜430nmの範囲内となる。該第1、第2、及び第3誘電体層は相互に作用し合い反射色調や日射透過率を調整しているため、該誘電体層の厚みの合計値の変化に対する挙動は複雑となる。330nm未満、又は430nmを超えると、透明基板面の可視光反射率が高くなる、又は反射色調が無色〜青色の範囲から外れる。また、好ましくは340nm以上、420nm以下としてもよい。 In the low radiation film of the present invention, the total thickness of the first, second, and third dielectric layers is in the range of 330 to 430 nm. Since the first, second, and third dielectric layers interact with each other to adjust the reflection color tone and the solar radiation transmittance, the behavior with respect to the change in the total thickness of the dielectric layers becomes complicated. If it is less than 330 nm or exceeds 430 nm, the visible light reflectance of the transparent substrate surface becomes high, or the reflection color tone deviates from the range of colorless to blue. Moreover, it is good also as 340 nm or more and 420 nm or less preferably.
前記金属層は、Agを主成分とする層であり、Ag膜、又はAgを主成分とするAg合金膜であり、Ag合金としては、パラジウム、金、白金、ニッケル、銅などの金属をそれぞれ5質量%以下の範囲内で含んでいてもよい。ここで、「主成分」はAgを90質量%以上含むものを指す。 The metal layer is a layer containing Ag as a main component, and is an Ag film or an Ag alloy film containing Ag as a main component. As the Ag alloy, metals such as palladium, gold, platinum, nickel and copper are used. It may be contained within a range of 5% by mass or less. Here, the “main component” indicates that containing 90% by mass or more of Ag.
本発明は、第1金属層と第2金属層の物理膜厚の合計値が23.5〜29nmの低放射膜を用いる。23.5nm未満だと遮熱性が不十分になることがある。また、一般的に金属層は厚みが増加すると遮熱性が向上するが、それに伴って可視光の反射率が高くなり、可視光の透過率が低くなる。そのため透過色調や反射色調の色味がより強く視認されることから、外観上の色調の調整が厳密になり易い傾向にある。本発明では金属層の合計厚みを特許文献1に示される従来の窓用ガラス積層体程度の下限を22nm以上とし、上限を29nm以下としても日射透過率が33%を超えず、好ましい反射色調が得られた。第1金属層と第2金属層の物理膜厚の合計値は、好ましくは下限値を24nm以上、上限値を29nm未満としてもよい。
In the present invention, a low emission film having a total physical film thickness of 23.5 to 29 nm of the first metal layer and the second metal layer is used. If it is less than 23.5 nm, the heat shielding property may be insufficient. In general, when the thickness of the metal layer is increased, the heat shielding property is improved. However, the visible light reflectance is increased and the visible light transmittance is decreased accordingly. For this reason, since the color tone of the transmitted color tone and the reflected color tone is more visually recognized, the adjustment of the color tone on the appearance tends to be strict. In the present invention, the solar radiation transmittance does not exceed 33% even if the lower limit of the total thickness of the metal layer is about 22 nm or more and the upper limit is 29 nm or less as shown in
本発明は、前記第1金属層の物理膜厚が7.0〜9.5nm、前記第2金属層の物理膜厚が16.5〜19.5nmである。第1金属層の物理膜厚が7nm未満の場合、反射色調が赤色を呈しやすくなり、9.5nmを超える場合は、反射色調が緑味を帯びたり、反射色調の彩度が過度に高くなったり色味が強くなり易くなる。また、第2金属層の物理膜厚が16.5nm未満の場合は、遮熱性が不十分となる傾向があり、19.5nmを超える場合は、遮熱性に優れるものの、可視光透過率が低くなり、また、可視光反射率が高くなる傾向がある。 In the present invention, the physical thickness of the first metal layer is 7.0 to 9.5 nm, and the physical thickness of the second metal layer is 16.5 to 19.5 nm. When the physical film thickness of the first metal layer is less than 7 nm, the reflected color tone tends to be red. When it exceeds 9.5 nm, the reflected color tone is tinged with green or the saturation of the reflected color tone is excessively high. It becomes easy to become strong. Moreover, when the physical film thickness of the second metal layer is less than 16.5 nm, the heat shielding property tends to be insufficient. When it exceeds 19.5 nm, the heat shielding property is excellent, but the visible light transmittance is low. In addition, the visible light reflectance tends to be high.
また、上記の第1金属層及び第2金属層は、その製造過程で該金属層のAgが劣化するのを防ぐことを目的として、それぞれの層上に犠牲層を形成するのが好ましい。該犠牲層は、第2誘電体層及び第3誘電体層を酸化ガスや窒化ガス等の反応性ガスが存在する雰囲気下で形成する場合、該反応性ガスからAgを保護することが可能である。該犠牲層としては、Zn、Sn、Ti、Al、NiCr、Cr、Zn合金、及びSn合金等が好ましい。また、該犠牲層は第2誘電体層及び第3誘電体層を形成する際、反応性ガスによって酸化や窒化され透明となるものを用いると、可視光透過率を必要以上に損なわずに済むため好適である。該犠牲層は成膜中に下層の金属層が劣化や変性するのを防止できればよいので、物理膜厚は1nm以上、好ましくは2nm以上とするのがよい。また、4nmを超える場合は反応性ガスによる酸化や窒化が不十分となり易い。 Moreover, it is preferable that a sacrificial layer is formed on each of the first metal layer and the second metal layer in order to prevent the Ag of the metal layer from deteriorating during the manufacturing process. The sacrificial layer can protect Ag from the reactive gas when the second dielectric layer and the third dielectric layer are formed in an atmosphere in which a reactive gas such as an oxidizing gas or a nitriding gas is present. is there. As the sacrificial layer, Zn, Sn, Ti, Al, NiCr, Cr, Zn alloy, Sn alloy and the like are preferable. In addition, when the second dielectric layer and the third dielectric layer are formed as the sacrificial layer, if the sacrificial layer is made transparent by being oxidized or nitrided by a reactive gas, the visible light transmittance is not impaired more than necessary. Therefore, it is preferable. Since the sacrificial layer only needs to prevent the lower metal layer from being deteriorated or denatured during film formation, the physical film thickness should be 1 nm or more, preferably 2 nm or more. On the other hand, when the thickness exceeds 4 nm, oxidation or nitridation with a reactive gas tends to be insufficient.
2.第2の実施形態
本発明の第2の形態は、屋外と屋内とを隔てる窓材であって、該窓材は透明基板上に誘電体層とAgを主成分とする金属層とが、第1誘電体層、第1金属層、第2誘電体層、第2金属層、第3誘電体層の順で積層された積層体を有する低放射膜が形成され、屋内と透明基板面で接する低放射透明基板を有し、該低放射透明基板と屋外との間に透明基板を有するものであり、該積層体は、
第1誘電体層の光学膜厚が60〜110nm、
第1金属層の物理膜厚が7.0〜9.5nm、
第2誘電体層の光学膜厚が190〜250nm、
第2金属層の物理膜厚が16.5〜19.5nm、
第3誘電体層の光学膜厚が50〜100nm、
該第1及び第2金属層の物理膜厚の合計値が23.5〜29nm、
該第1、第3、及び第5誘電体層の光学膜厚の合計値が330〜430nmの範囲内となるものであり、
該低放射透明基板の光学特性は、
JIS R3106(1998)に準拠して算出した日射透過率が33%を超えず、
JIS R3106(1998)に準拠して算出した膜面の可視光反射率が28%を超えず、
屋外と接する屋外面の反射色調が、無彩色を呈するか、又はCIE L*a*b*色度座標図において((a*)2+(b*)2)1/2で表される彩度が20以下の青色の反射色調を呈することを特徴とする低放射窓材である。
2. Second Embodiment A second embodiment of the present invention is a window material that separates the outdoors and indoors, and the window material includes a dielectric layer and a metal layer mainly composed of Ag on a transparent substrate. A low-emission film having a laminate in which a dielectric layer, a first metal layer, a second dielectric layer, a second metal layer, and a third dielectric layer are laminated in this order is formed, and is in contact with the indoor surface on the transparent substrate surface It has a low emission transparent substrate, and has a transparent substrate between the low emission transparent substrate and the outdoors, the laminate is
The optical thickness of the first dielectric layer is 60 to 110 nm,
The physical thickness of the first metal layer is 7.0 to 9.5 nm,
The optical thickness of the second dielectric layer is 190 to 250 nm,
The physical film thickness of the second metal layer is 16.5 to 19.5 nm,
The optical thickness of the third dielectric layer is 50 to 100 nm,
The total physical film thickness of the first and second metal layers is 23.5 to 29 nm,
A total value of optical film thicknesses of the first, third and fifth dielectric layers is within a range of 330 to 430 nm;
The optical characteristics of the low emission transparent substrate are:
The solar transmittance calculated according to JIS R3106 (1998) does not exceed 33%,
The visible light reflectance of the film surface calculated according to JIS R3106 (1998) does not exceed 28%,
The reflected color tone of the outdoor surface in contact with the outdoors exhibits an achromatic color, or the color represented by ((a *) 2 + (b *) 2 ) 1/2 in the CIE L * a * b * chromaticity coordinate diagram It is a low emission window material characterized by exhibiting a blue reflection color tone with a degree of 20 or less.
第2の実施形態については、前述した第1の実施形態と異なる点について以下記載する。 Regarding the second embodiment, differences from the first embodiment described above will be described below.
第2の実施形態は低放射膜の膜面が屋外に対向する。一方で、前述したように低放射膜を屋外の大気と接触させると低放射膜を損傷する可能性が高いため、当該実施形態では、屋外と該低放射膜との間に透明基板を介在させる。 In the second embodiment, the film surface of the low radiation film faces the outdoors. On the other hand, as described above, there is a high possibility of damaging the low-emission film when the low-emission film is brought into contact with the outdoor atmosphere. In this embodiment, a transparent substrate is interposed between the outdoor and the low-emission film. .
また、本発明はJIS R3106(1998)に準拠して算出した膜面の可視光反射率が28%を超えない低放射透明基板である。可視光反射率が高くなるとギラつきにより外観品質を損ない易くなる為、可視光反射率は出来るだけ低くする事が好ましい。 Moreover, this invention is a low radiation | emission transparent substrate whose visible light reflectance of the film surface computed based on JISR3106 (1998) does not exceed 28%. When the visible light reflectance is increased, the appearance quality is liable to be deteriorated due to glare. Therefore, the visible light reflectance is preferably as low as possible.
また、本発明は屋外と接する屋外面が無彩色〜青色の反射色調を呈するものである。当該実施形態は特に無彩色、又は無彩色が僅かに青味を帯びた色の反射色調を得るのに好適であり、好ましくは膜面の反射色調の彩度が10以下としてもよい。 In the present invention, the outdoor surface in contact with the outdoors exhibits an achromatic to blue reflection color tone. The embodiment is particularly suitable for obtaining a reflection color tone of an achromatic color or a color in which the achromatic color is slightly bluish. Preferably, the saturation of the reflection color tone of the film surface may be 10 or less.
例えば図2のように複層ガラスとして実施する場合、低放射透明基板1は屋内側に配置され、該低放射透明基板1の低放射膜2が中空層4と接する。膜面の反射光は中空層4及び透明基板3を透過するため、該膜面を直接測定した時の反射色調と、屋外で実際に測定される反射色調とは異なった反射色調となる。膜面側からの反射色調が、CIE L*a*b*色度座標図において、a*が−5〜5及びb*が−10〜5の範囲内であるとき、外観品質が良好となる。好ましくはa*が−5〜2及びb*が−7〜5としてもよい。
For example, when implemented as a double-glazed glass as shown in FIG. 2, the low radiation
すなわち本発明は、屋外側から、透明基板、中空層、及び前記低放射透明基板がこの順で配置され、該低放射透明基板の膜面が該中空層と接することが好ましい。 That is, in the present invention, it is preferable that the transparent substrate, the hollow layer, and the low emission transparent substrate are arranged in this order from the outdoor side, and the film surface of the low emission transparent substrate is in contact with the hollow layer.
また、低放射透明基板は、JIS Z8729(2004)に準拠して算出した透明基板面の反射色調が、CIE L*a*b*色度座標図において、a*≧b*、a*が−10〜0及びb*が−20〜0の範囲内、及び膜面の反射色調が、a*が−5〜5及びb*が−10〜5の範囲内であると、前記第1の実施形態でも第2の実施形態でも使用可能な為好ましい。 The low emission transparent substrate has a reflection color tone calculated on the basis of JIS Z8729 (2004), and a * ≧ b * and a * are − in the CIE L * a * b * chromaticity coordinate diagram. In the first embodiment, 10 to 0 and b * are in the range of −20 to 0, and the reflection color tone of the film surface is in the range of a * of −5 to 5 and b * of −10 to 5 This is preferable because it can be used in both the form and the second embodiment.
3.低放射透明基板の製造方法
本発明の低放射透明基板はスパッタリング法、電子ビーム蒸着法やイオンプレーティング法等で形成されることが好ましいが、生産性、均一性を確保しやすいという点でスパッタリング法が適している。
3. Low-emission transparent substrate production method The low-emission transparent substrate of the present invention is preferably formed by sputtering, electron beam vapor deposition, ion plating, etc., but sputtering is advantageous in that it is easy to ensure productivity and uniformity. The law is suitable.
スパッタリング法による低放射膜の形成は、各層の材料となるスパッタリングターゲットが設置された装置内を、透明基板を搬送させながら行う。この時、装置内に設けられている膜形成を行う真空チャンバー内にはスパッタリング時に用いるガスが導入されており、ターゲットに負の電位を印加することにより装置内にプラズマを発生させてスパッタリングを行う。 The formation of the low radiation film by the sputtering method is performed while the transparent substrate is transported in the apparatus in which the sputtering target as the material of each layer is installed. At this time, a gas used for sputtering is introduced into a vacuum chamber for film formation provided in the apparatus, and a negative potential is applied to the target to generate plasma in the apparatus to perform sputtering. .
また、所望の膜厚を得る方法はスパッタリング装置の形式によって異なるため特に限定しないが、ターゲットへの投入電力や導入ガス条件の調整により、成膜速度を変化させることで膜厚を制御する方法や、基板の搬送速度を調整することで膜厚を制御する方法などが広く用いられている。 In addition, a method for obtaining a desired film thickness is not particularly limited because it varies depending on the type of the sputtering apparatus, but a method for controlling the film thickness by changing the film formation rate by adjusting the power input to the target or the introduction gas condition, A method of controlling the film thickness by adjusting the substrate conveyance speed is widely used.
前記誘電体層を形成する場合、使用するターゲットはセラミックターゲット、金属ターゲット、どちらを用いても構わない。いずれにおいても使用するガス条件は特に限定するものでなく、Arガス、O2ガス、及びN2ガスから目的とする膜に従ってガス種、混合比を適宜決めれば良い。また、真空チャンバーに導入するガスとして、Arガス、O2ガス、N2ガス以外の任意の第3成分を含んでも良い。 When forming the dielectric layer, the target used may be either a ceramic target or a metal target. In any case, the gas conditions to be used are not particularly limited, and the gas type and mixing ratio may be appropriately determined from Ar gas, O 2 gas, and N 2 gas according to the target film. Further, as the gas to be introduced into the vacuum chamber, Ar gas, O 2 gas, may include any third component other than N 2 gas.
Agを主成分とする金属層を形成する場合、使用するターゲットにはAgターゲット又はAg合金ターゲットを用いる。この時導入するガスにはArガスを用いるのが好ましいが、Ag膜の光学特性を損なわない程度であれば異なる種類のガスを混合してもよい。 In the case of forming a metal layer mainly composed of Ag, an Ag target or an Ag alloy target is used as a target to be used. Ar gas is preferably used as the gas introduced at this time, but different types of gases may be mixed as long as the optical properties of the Ag film are not impaired.
プラズマ発生源には直流電源、交流電源、及び交流と直流を重畳した電源等、いずれも用いられるが、誘電体の層を形成する際に異常放電が生じやすい場合は、交流電源又は直流電源にパルスを印加した電源を用いるのが好ましい。 The plasma generation source may be a DC power supply, an AC power supply, or a power supply in which AC and DC are superimposed, but if abnormal discharge is likely to occur when forming a dielectric layer, use an AC power supply or a DC power supply. It is preferable to use a power supply to which a pulse is applied.
また本発明は、図1の(a)に示したように低放射透明基板を単板で使用してもよいが、図1の(b)、及び図2に示したように複層ガラスとして使用すると低放射膜を保護することが可能であるため好ましい。複層ガラスとして用いる場合、低放射透明基板1の低放射膜2が形成された面を他の透明基板3と中空層4を形成するように所定間隔を隔て対向させ、周辺部をスペーサー5やシール材6で封止する。該中空層4はAr、He、Ne、Kr、Xe等の不活性ガス、乾燥空気、N2等が封入されるものであり、通常は乾燥空気を用いるが、より断熱性能や遮音性能を向上させることを目的としてArガスやNeガスなどを用いてもよい。
In the present invention, a low emission transparent substrate may be used as a single plate as shown in FIG. 1 (a), but as a multilayer glass as shown in FIG. 1 (b) and FIG. It is preferable to use it because it is possible to protect the low emission film. When used as a multi-layer glass, the surface of the low emission
前記スペーサー4は内部に乾燥剤を有し、少なくとも2枚のガラス基材間にブチルゴムやシリコーン等のシール材6を介して固定されるものであり、軽量なアルミ材や樹脂材が用いられる。当該スペーサー4、低放射透明基板1、及び透明基板3で囲まれた部分が中空層4であり、該中空層4の厚みや封入する気体の種類によって、複層ガラスの断熱性を変化させることが可能である。
The
1.低放射膜の作製
以下に本発明の実施例及び比較例を示す。実施例1〜7、比較例1〜12の各誘電体層及び各金属層の膜厚を表1に記載した。実施例及び比較例は、いずれも厚み3mmのソーダライムガラス上に、マグネトロンスパッタリング装置を用いて成膜を行った。各層はガラス基板の搬送速度を調整する事により所望の膜厚を得た。また、上記の搬送速度は予め単層膜を形成し、膜の種類ごとに算出した速度を使用した。なお、いずれの実施例及び比較例においても第1金属層及び第2金属層の上に犠牲層を形成し(表1に記載せず)、基板及び膜は非加熱とし、成膜時にスパッタリングに由来して基板温度が上昇する場合を除いて、特に基板及び膜の加熱は行わなかった。
1. Production of Low Emission Film Examples and comparative examples of the present invention are shown below. Table 1 shows the film thicknesses of the dielectric layers and the metal layers of Examples 1 to 7 and Comparative Examples 1 to 12. In both Examples and Comparative Examples, a film was formed on soda lime glass having a thickness of 3 mm using a magnetron sputtering apparatus. Each layer obtained a desired film thickness by adjusting the conveyance speed of the glass substrate. Moreover, the said conveyance speed used the speed | rate calculated for every kind of film | membrane previously forming the single layer film | membrane. In any of the examples and comparative examples, a sacrificial layer is formed on the first metal layer and the second metal layer (not shown in Table 1), the substrate and the film are not heated, and sputtering is performed during film formation. Except for the case where the substrate temperature rises due to the origin, the substrate and the film were not heated.
実施例1〜7、及び比較例1〜12
まず、ガラス基板を基材ホルダーに保持させ、各真空チャンバー内に所望のターゲットを設置した。該ターゲットは裏側にマグネットが配置されている。次に、真空チャンバー内を真空ポンプによって排気した。
Examples 1-7 and Comparative Examples 1-12
First, a glass substrate was held on a base material holder, and a desired target was placed in each vacuum chamber. The target has a magnet disposed on the back side. Next, the inside of the vacuum chamber was evacuated by a vacuum pump.
次に、第1の誘電体層をガラス基板上に成膜した。ターゲットにはAlが2wt%添加されたZn(以下ZnAlと記載することもある)ターゲットを用い、ZnAlターゲットへ電源ケーブルを通じでDC電源より1000Wの電力を投入した。この時、真空ポンプを連続的に稼動させながら、真空チャンバー内に酸素ガスを60sccmで導入し、圧力を0.3Paになるよう調節した。以上よりZnAlO膜を得た。 Next, a first dielectric layer was formed on the glass substrate. A Zn target to which 2 wt% Al was added (hereinafter also referred to as “ZnAl”) was used as the target, and power of 1000 W was supplied from the DC power source to the ZnAl target through a power cable. At this time, while continuously operating the vacuum pump, oxygen gas was introduced into the vacuum chamber at 60 sccm and the pressure was adjusted to 0.3 Pa. Thus, a ZnAlO film was obtained.
次に、ZnAlO膜の上に第1金属層としてAg膜を成膜した。ターゲットにAgターゲット、真空チャンバー内の雰囲気ガスはアルゴンガスを45sccmで導入し、圧力は0.5Paに調節した。また、DC電源より投入する電力は360Wとした。以上よりAg膜を得た。 Next, an Ag film was formed as a first metal layer on the ZnAlO film. The target was an Ag target, and the atmosphere gas in the vacuum chamber was introduced with argon gas at 45 sccm, and the pressure was adjusted to 0.5 Pa. The power supplied from the DC power source was 360 W. As described above, an Ag film was obtained.
次に、Ag膜の上に第1犠牲層を成膜した。ターゲットにAlが4wt%添加されたZnAlターゲット、真空チャンバー内の雰囲気ガスはアルゴンガスを100sccmで導入し、圧力は0.7Paに調節した。また、DC電源より投入する電力は120Wとした。以上より物理膜厚が2nmのZnAl膜を得た。 Next, a first sacrificial layer was formed on the Ag film. A ZnAl target in which 4 wt% of Al was added to the target, and the atmosphere gas in the vacuum chamber was introduced with argon gas at 100 sccm, and the pressure was adjusted to 0.7 Pa. The power input from the DC power source was 120W. As described above, a ZnAl film having a physical film thickness of 2 nm was obtained.
次に、犠牲層の上に第2誘電体層としてZnAlO膜を成膜した。所望の膜厚を得る為に搬送速度を調整した他は、成膜条件を第1誘電体層と同様とした。 Next, a ZnAlO film was formed as a second dielectric layer on the sacrificial layer. The film forming conditions were the same as those of the first dielectric layer except that the conveyance speed was adjusted to obtain a desired film thickness.
次に、ZnAlO膜の上に第2金属層としてAg膜を成膜した。所望の膜厚を得る為に搬送速度を調整した他は、成膜状件を第1金属層と同様とした。 Next, an Ag film was formed as a second metal layer on the ZnAlO film. The film forming conditions were the same as those of the first metal layer except that the conveyance speed was adjusted to obtain a desired film thickness.
次に、Ag膜の上に第2犠牲層としてZnAl膜を成膜した。ZnAl膜の物理膜厚が2.5nmになるように成膜し、その他の成膜条件は第1犠牲層と同様とした。 Next, a ZnAl film was formed as a second sacrificial layer on the Ag film. The ZnAl film was deposited so that the physical film thickness was 2.5 nm, and other deposition conditions were the same as those for the first sacrificial layer.
次に、犠牲層の上に第3誘電体層としてZnAlO膜を成膜した。所望の膜厚を得る為に搬送速度を調整した他は、成膜条件を第1誘電体層と同様とした。以上により、ガラス基板上に低放射膜を形成し低放射透明基板を得た。 Next, a ZnAlO film was formed as a third dielectric layer on the sacrificial layer. The film forming conditions were the same as those of the first dielectric layer except that the conveyance speed was adjusted to obtain a desired film thickness. As described above, a low radiation film was formed on the glass substrate to obtain a low radiation transparent substrate.
次に、同じく第3誘電体層としてZnAlO膜の上に、SnO2膜を成膜した。ターゲットにはSnターゲットを用い、Snターゲットへ電源ケーブルを通じでDC電源より1000Wの電力を投入した。この時、真空ポンプを連続的に稼動させながら、真空チャンバー内に酸素ガスを60sccmで導入し、圧力を0.3Paになるよう調節した。以上よりSnO2膜を得た。 Next, a SnO 2 film was formed as a third dielectric layer on the ZnAlO film. An Sn target was used as the target, and power of 1000 W was supplied from the DC power source to the Sn target through a power cable. At this time, while continuously operating the vacuum pump, oxygen gas was introduced into the vacuum chamber at 60 sccm and the pressure was adjusted to 0.3 Pa. Thus, a SnO 2 film was obtained.
2.低放射透明基板について光学特性の評価
上記の実施例及び比較例で得られた低放射透明基板の光学特性を、自記分光光度計(日立製作所製、U−4000)を用いて測定した。可視光透過率、可視光反射率、及び日射透過率をJIS R3106(1998)に準拠して算出した。また、低放射透明基板の膜面及びガラス板面の反射色調をJIS Z8729(2004)に準拠して算出した。得られた結果について表2、図3及び図4に示した。
2. Evaluation of optical characteristics of low emission transparent substrate The optical characteristics of the low emission transparent substrates obtained in the above-mentioned Examples and Comparative Examples were measured using a self-recording spectrophotometer (Hitachi, U-4000). Visible light transmittance, visible light reflectance, and solar radiation transmittance were calculated according to JIS R3106 (1998). Moreover, the reflection color tone of the film | membrane surface of a low radiation | emission transparent substrate and a glass plate surface was computed based on JISZ8729 (2004). The obtained results are shown in Table 2, FIG. 3 and FIG.
表2、図3及び図4より、実施例1〜実施例7は日射透過率が26.2〜28.7%、ガラス面の可視光反射率が22.0〜27.4%の範囲内であり、ガラス面から見た時、ギラつきの生じない低放射透明基板であることがわかった。また、膜面の可視光反射率が21.3〜26.5%の範囲内となり、膜面から見た時、ギラつきの生じない低放射透明基板であることがわかった。また、実施例1〜7は可視光透過率が55.8〜60.6%の範囲内であり、従来の高遮熱タイプの低放射ガラスと同程度の可視光透過率を示していた。 From Table 2, FIG. 3 and FIG. 4, Examples 1 to 7 have a solar transmittance of 26.2 to 28.7%, and a visible light reflectance of 22.0 to 27.4% on the glass surface. When viewed from the glass surface, it was found to be a low radiation transparent substrate with no glare. Further, the visible light reflectance of the film surface was in the range of 21.3% to 26.5%, and it was found that the film was a low radiation transparent substrate that did not cause glare when viewed from the film surface. Moreover, Examples 1-7 had the visible light transmittance | permeability in the range of 55.8-60.6%, and had shown the visible light transmittance | permeability comparable as the conventional high heat-shielding type low radiation glass.
また、実施例1〜7はガラス面の反射色調がいずれも青色であり、a*は−7.7〜−3.1、b*は−19.2〜−8.9の範囲内であり、彩度は11.8〜19.6の範囲内となった。また、膜面の反射色調は、a*が−3.7〜1.2、b*が−8.1〜3.3の範囲内となり、膜面の反射色調は無彩色に近いものだった。 In Examples 1 to 7, the reflection color tone of the glass surface is blue, a * is in the range of −7.7 to −3.1, and b * is in the range of −19.2 to −8.9. The saturation was in the range of 11.8 to 19.6. Moreover, the reflection color tone of the film surface was in the range of -3.7 to 1.2 and b * was within the range of -8.1 to 3.3, and the reflection color tone of the film surface was close to an achromatic color. .
比較例1〜10は、いずれもガラス面の反射色調が赤色や黄色、緑色、色味の強い青色を呈しており、本発明としては適さないものであった。また、比較例11は日射透過率が高く、遮熱性が要求特性を満たさないものであった。また、比較例1、4、5、8、12はガラス面の可視光反射率が28%を超え、ギラつきを生じるものであった。また、比較例4、5、8、12は膜面の可視光反射率が28%を超え、膜面の反射においてもギラつきを生じるものであった。 In each of Comparative Examples 1 to 10, the reflection color tone of the glass surface was red, yellow, green, or blue with a strong tint, which was not suitable for the present invention. Moreover, the comparative example 11 had high solar radiation transmittance | permeability, and heat insulation did not satisfy | fill a required characteristic. Further, in Comparative Examples 1, 4, 5, 8, and 12, the visible light reflectance of the glass surface exceeded 28%, resulting in glare. Further, in Comparative Examples 4, 5, 8, and 12, the visible light reflectance of the film surface exceeded 28%, and the reflection on the film surface was glaring.
3.複層ガラスについて光学特性の評価
実施例1の低放射透明基板と、厚み3mmのソーダライムガラス板とを用いて複層ガラスを作成し、該複層ガラスの屋外面側から可視光の反射色調を測定した。作成した複層ガラスは屋外側に低放射透明基板を設置し、中空層を6mmとし、低放射膜が該中空層と接するようにした。測定は前述した低放射透明基板を単板で測定した際と同様の方法で行った。
3. Evaluation of optical properties of multilayer glass A multilayer glass is prepared using the low radiation transparent substrate of Example 1 and a 3 mm thick soda lime glass plate, and the reflection color tone of visible light from the outdoor surface side of the multilayer glass. Was measured. The produced multilayer glass was provided with a low radiation transparent substrate on the outdoor side, the hollow layer was 6 mm, and the low radiation film was in contact with the hollow layer. The measurement was performed in the same manner as when the low-emission transparent substrate was measured with a single plate.
実施例1の低放射透明基板を複層ガラスとした時、日射透過率は24.5%、可視光透過率は53.8%となった。また、屋外面側の可視光反射色調はa*が−6.1、b*が−12.9、彩度が14.3となり、目的とする青色を呈するものであった。 When the low radiation transparent substrate of Example 1 was a double-layer glass, the solar radiation transmittance was 24.5% and the visible light transmittance was 53.8%. The visible light reflection color tone on the outdoor surface side was a-6.1, b * was -12.9, the saturation was 14.3, and the target blue color was exhibited.
次に、実施例1の低放射透明基板と、厚み3mmのソーダライムガラス板とを用いて複層ガラスを作成し、該複層ガラスの屋外面側から可視光の反射色調を測定した。作成した複層ガラスは屋内側に低放射透明基板を設置し、中空層を6mmとし、低放射膜が該中空層と接するようにした。測定は前述した低放射透明基板を単板で測定した際と同様の方法で行った。 Next, a multi-layer glass was prepared using the low radiation transparent substrate of Example 1 and a 3 mm thick soda lime glass plate, and the reflection color tone of visible light was measured from the outdoor surface side of the multi-layer glass. The produced multilayer glass was provided with a low radiation transparent substrate on the indoor side, the hollow layer was 6 mm, and the low radiation film was in contact with the hollow layer. The measurement was performed in the same manner as when the low-emission transparent substrate was measured with a single plate.
実施例1の日射透過率は24.5%、可視光透過率は53.8%となった。また、屋外面側の可視光反射色調はa*が−1.5、b*が−3.3、彩度が3.6となり、無彩色に近い青色を呈するものであった。 The solar radiation transmittance of Example 1 was 24.5%, and the visible light transmittance was 53.8%. Further, the visible light reflection color tone on the outdoor surface side was a-1.5, b--3.3, saturation 3.6, and a near-achromatic blue color.
1 低放射透明基板
2 低放射膜
3 透明基板
4 中空層
5 スペーサー
6 シール材
DESCRIPTION OF
Claims (6)
第1誘電体層の光学膜厚が60〜110nm、
第1金属層の物理膜厚が7.0〜9.5nm、
第2誘電体層の光学膜厚が190〜250nm、
第2金属層の物理膜厚が16.5〜19.5nm、
第3誘電体層の光学膜厚が50〜100nm、
該第1及び第2金属層の物理膜厚の合計値が23.5〜29nm、
該第1、第3、及び第5誘電体層の光学膜厚の合計値が330〜430nmの範囲内となるものであり、
該低放射透明基板の光学特性は、
JIS R3106(1998)に準拠して算出した日射透過率が33%を超えず、
JIS R3106(1998)に準拠して算出した透明基板面の可視光反射率が28%を超えず、
屋外と接する屋外面の反射色調が、無彩色を呈するか、又はCIE L*a*b*色度座標図において((a*)2+(b*)2)1/2で表される彩度が20以下の青色の反射色調を呈することを特徴とする低放射窓材。 A window material for separating an outdoor and an indoor, wherein the window material includes a dielectric layer and a metal layer mainly composed of Ag on a transparent substrate, a first dielectric layer, a first metal layer, and a second dielectric. A low radiation film having a laminate in which a layer, a second metal layer, and a third dielectric layer are laminated in this order, and has a low radiation transparent substrate in contact with the outdoors on the transparent substrate surface,
The optical thickness of the first dielectric layer is 60 to 110 nm,
The physical thickness of the first metal layer is 7.0 to 9.5 nm,
The optical thickness of the second dielectric layer is 190 to 250 nm,
The physical film thickness of the second metal layer is 16.5 to 19.5 nm,
The optical thickness of the third dielectric layer is 50 to 100 nm,
The total physical film thickness of the first and second metal layers is 23.5 to 29 nm,
A total value of optical film thicknesses of the first, third and fifth dielectric layers is within a range of 330 to 430 nm;
The optical characteristics of the low emission transparent substrate are:
The solar transmittance calculated according to JIS R3106 (1998) does not exceed 33%,
The visible light reflectance of the transparent substrate surface calculated according to JIS R3106 (1998) does not exceed 28%,
The reflected color tone of the outdoor surface in contact with the outdoors exhibits an achromatic color, or the color represented by ((a *) 2 + (b *) 2 ) 1/2 in the CIE L * a * b * chromaticity coordinate diagram A low emission window material characterized by exhibiting a blue reflected color tone having a degree of 20 or less.
第1誘電体層の光学膜厚が60〜110nm、
第1金属層の物理膜厚が7.0〜9.5nm、
第2誘電体層の光学膜厚が190〜250nm、
第2金属層の物理膜厚が16.5〜19.5nm、
第3誘電体層の光学膜厚が50〜100nm、
該第1及び第2金属層の物理膜厚の合計値が23.5〜29nm、
該第1、第3、及び第5誘電体層の光学膜厚の合計値が330〜430nmの範囲内となるものであり、
該低放射透明基板の光学特性は、
JIS R3106(1998)に準拠して算出した日射透過率が33%を超えず、
JIS R3106(1998)に準拠して算出した膜面の可視光反射率が28%を超えず、
屋外と接する屋外面の反射色調が、無彩色を呈するか、又はCIE L*a*b*色度座標図において((a*)2+(b*)2)1/2で表される彩度が20以下の青色の反射色調を呈することを特徴とする低放射窓材。 A window material for separating an outdoor and an indoor, wherein the window material includes a dielectric layer and a metal layer mainly composed of Ag on a transparent substrate, a first dielectric layer, a first metal layer, and a second dielectric. A low-emission film having a low-emission film having a laminate formed by sequentially laminating a layer, a second metal layer, and a third dielectric layer, and having a low-emission transparent substrate that is in contact with the interior and the transparent substrate surface; It has a transparent substrate between outdoors and the laminate is
The optical thickness of the first dielectric layer is 60 to 110 nm,
The physical thickness of the first metal layer is 7.0 to 9.5 nm,
The optical thickness of the second dielectric layer is 190 to 250 nm,
The physical film thickness of the second metal layer is 16.5 to 19.5 nm,
The optical thickness of the third dielectric layer is 50 to 100 nm,
The total physical film thickness of the first and second metal layers is 23.5 to 29 nm,
A total value of optical film thicknesses of the first, third and fifth dielectric layers is within a range of 330 to 430 nm;
The optical characteristics of the low emission transparent substrate are:
The solar transmittance calculated according to JIS R3106 (1998) does not exceed 33%,
The visible light reflectance of the film surface calculated according to JIS R3106 (1998) does not exceed 28%,
The reflected color tone of the outdoor surface in contact with the outdoors exhibits an achromatic color, or the color represented by ((a *) 2 + (b *) 2 ) 1/2 in the CIE L * a * b * chromaticity coordinate diagram A low emission window material characterized by exhibiting a blue reflected color tone having a degree of 20 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014076624A JP6287502B2 (en) | 2014-04-03 | 2014-04-03 | Low radiation window material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014076624A JP6287502B2 (en) | 2014-04-03 | 2014-04-03 | Low radiation window material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015196630A JP2015196630A (en) | 2015-11-09 |
JP6287502B2 true JP6287502B2 (en) | 2018-03-07 |
Family
ID=54546572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014076624A Active JP6287502B2 (en) | 2014-04-03 | 2014-04-03 | Low radiation window material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6287502B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109403808A (en) * | 2018-12-06 | 2019-03-01 | 南京睿爻新材料科技有限公司 | A kind of intelligent glass system of high-efficient single direction photo-thermal transmitting |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3335599B2 (en) * | 1991-12-26 | 2002-10-21 | 旭硝子株式会社 | Heat shielding film |
JPH11228185A (en) * | 1998-02-06 | 1999-08-24 | Nippon Sheet Glass Co Ltd | Solar radiation shielding transparent plate and solar radiation shielding laminated transparent plate using same |
CN100379699C (en) * | 2002-05-03 | 2008-04-09 | Ppg工业俄亥俄公司 | Coated article for use in an insulation glazing unit and the insulation glazing unit containing a coated pane |
JP5463686B2 (en) * | 2009-02-26 | 2014-04-09 | セントラル硝子株式会社 | Glass laminate for windows |
US8940399B2 (en) * | 2012-10-04 | 2015-01-27 | Guardian Industries Corp. | Coated article with low-E coating having low visible transmission |
GB2518899A (en) * | 2013-10-07 | 2015-04-08 | Pilkington Group Ltd | Heat treatable coated glass pane |
-
2014
- 2014-04-03 JP JP2014076624A patent/JP6287502B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015196630A (en) | 2015-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5972359B2 (en) | Transparent glass substrate with continuous layer coating | |
JP5336739B2 (en) | Window glass with anti-reflection and thermal insulation properties | |
TWI289139B (en) | Reflective, solar control coated glass article | |
JP3902676B2 (en) | Transparent substrate with a thin film stack acting on sunlight and / or infrared | |
EP3560700A1 (en) | Low-emissivity coating for a glass substrate | |
JP6459373B2 (en) | Transparent substrate with laminated film and method for producing the same | |
US10196852B2 (en) | Substrate equipped with a multilayer comprising a partial metal film, glazing unit, use and process | |
KR20160004280A (en) | Substrate provided with a stack having thermal properties | |
WO2014109368A1 (en) | Optical multilayer film, laminated body, and double-glazed glass | |
EP3004014A2 (en) | Low-emissivity and anti-solar glazing | |
US10221093B2 (en) | Substrate equipped with a multilayer comprising partial metal films, glazing unit, use and process | |
JP6024369B2 (en) | Glass laminate for windows | |
JP6767661B2 (en) | Gray tones low emissivity glass | |
JPWO2014185420A1 (en) | Protective film, reflective member, and method of manufacturing protective film | |
JP2020510591A (en) | Coated article having a LOW-E coating with a doped silver IR reflective layer | |
JP2007191384A (en) | Low emissivity glass | |
JP2024105441A (en) | Coated glass plate | |
JP6601419B2 (en) | Glass plate with laminated film and multilayer glass | |
JP2017132666A (en) | Gray color tone radiation glass, and method for producing the gray color tone radiation glass | |
JP6703267B2 (en) | Gray tone low emissivity glass | |
JP2006117482A (en) | Heat ray shielding glass and heat ray shielding double-glazed glass | |
JP6287502B2 (en) | Low radiation window material | |
US10202305B2 (en) | Substrate equipped with a multilayer comprising a partial metal film, glazing unit, use and process | |
JP2008222507A (en) | Multiple glass | |
JP2014124815A (en) | Low-radiation film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170725 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6287502 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |