WO2014109082A1 - 上位基地局、下位基地局、および無線通信システム - Google Patents

上位基地局、下位基地局、および無線通信システム Download PDF

Info

Publication number
WO2014109082A1
WO2014109082A1 PCT/JP2013/068740 JP2013068740W WO2014109082A1 WO 2014109082 A1 WO2014109082 A1 WO 2014109082A1 JP 2013068740 W JP2013068740 W JP 2013068740W WO 2014109082 A1 WO2014109082 A1 WO 2014109082A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
communication
interface
control
lower base
Prior art date
Application number
PCT/JP2013/068740
Other languages
English (en)
French (fr)
Inventor
康史 森岡
奥村 幸彦
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to EP13870791.4A priority Critical patent/EP2945458A4/en
Priority to US14/759,253 priority patent/US9775052B2/en
Priority to CN201380070012.5A priority patent/CN104919890B/zh
Publication of WO2014109082A1 publication Critical patent/WO2014109082A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to an upper base station, a lower base station, and a wireless communication system.
  • an X2 interface is defined as an interface for connecting base stations (eNBs). Each base station communicates with other base stations via the X2 interface.
  • the X2 interface is defined to connect equal base stations.
  • the wireless communication system including the above base stations (eNB) further includes a new base station having a control function more limited than the control function of the base station (eNB).
  • the limited control function is, for example, a control function that cannot establish a wireless connection with the user apparatus by itself.
  • This new base station is a base station that should operate based on control from an upper base station (eNB).
  • eNB upper base station
  • an object of the present invention is to enable appropriate communication between nodes in a wireless communication system in which a hierarchical relationship (hierarchical relationship) exists between base stations.
  • the upper base station of the present invention is capable of wireless communication with the upper base station, the lower base station having a control function more limited than the control function of the upper base station, and each of the upper base station and the lower base station.
  • the upper base station in a wireless communication system comprising a user apparatus, an exchange station, and a gateway apparatus, the lower base station, an interface used for communication on the control plane with the user apparatus, and the exchange station.
  • the upper base station does not have any interface used for communication on the control plane, and the upper base station communicates the Uu-C interface used for communication on the control plane with the user apparatus and the lower base station.
  • X3 interface used for one or both of communication on the control plane and communication on the user plane, and a control protocol for the exchange. It has a S1-MME interface used for communication over over emissions, and a transceiver for performing transmission and reception of the lower base station via the X3 interface.
  • the transmission / reception unit transmits a lower-level base station control message for controlling the lower-level base station among the control messages transmitted from the switching center via the X3 interface. Relay to.
  • the transmission / reception unit transmits low-order user data for a user apparatus wirelessly connected to the low-order base station, out of user data transmitted from the gateway apparatus, via the X3 interface. Relay to the lower base station.
  • the transmission / reception unit transmits, to the Uu-C interface, a lower-level user control message for a user apparatus wirelessly connected to the lower-level base station among control messages transmitted from the switching center. Via the user device.
  • the X3 interface provides a guaranteed transmission of the control message via the X3 interface based on a stream control transfer protocol, established via the X3 interface, and the control message
  • Two communication identifiers for identifying bearers used for transmission of are set for the upper base station and the lower base station, respectively.
  • the upper base station includes a first bearer control unit that assigns a first communication identifier that is one of the two communication identifiers to the upper base station
  • the lower base station includes 2 A second bearer control unit that assigns a second communication identifier, which is another one of the two communication identifiers, to the lower base station, wherein the first bearer control unit assigns the first communication identifier via the X3 interface.
  • the second communication identifier transmitted to the lower base station and received from the second bearer control unit via the X3 interface is stored.
  • the X3 interface is configured by a wired connection. In another preferred aspect of the present invention, the X3 interface is configured by wireless connection.
  • the lower base station of the present invention is capable of wireless communication with the upper base station, the lower base station having a control function more limited than the control function of the upper base station, and each of the upper base station and the lower base station.
  • an X3 interface used for either or both of the communication on the user plane and the communication on the user plane, and the operation is controlled by a control message transmitted from the upper base station via the X3 interface.
  • the lower-level base station further includes an S1-U interface used for communication on the user plane with the gateway device.
  • the lower-level base station further includes an X2 interface used for communication on the control plane and the user plane with other lower-level base stations.
  • the lower base station does not have a function of selecting at least one of the plurality of gateway devices.
  • the lower base station has a base station selection unit that selects at least one of the plurality of upper base stations when setting up the X3 interface.
  • the X3 interface provides a guaranteed transmission of the control message via the X3 interface based on a stream control transfer protocol, established via the X3 interface, and the control message
  • Two communication identifiers for identifying bearers used for transmission of are set for the upper base station and the lower base station, respectively.
  • the upper base station includes a first bearer control unit that assigns a first communication identifier that is one of the two communication identifiers to the upper base station
  • the lower base station includes 2 A second bearer control unit that assigns a second communication identifier that is another one of the two communication identifiers to the lower base station, and the second bearer control unit assigns the second communication identifier via the X3 interface.
  • the first communication identifier transmitted to the upper base station and received from the first bearer control unit via the X3 interface is stored.
  • the wireless communication system of the present invention is capable of wireless communication with an upper base station, a lower base station having a control function more limited than a control function of the upper base station, and each of the upper base station and the lower base station.
  • a user equipment, a switching center, and a gateway device wherein the upper base station is a Uu-C interface used for communication on the control plane with the user equipment, and on the control plane with the lower base station.
  • An X3 interface used for one or both of communication and communication on the user plane, an S1-MME interface used for communication on the control plane with the switching center, and the lower base station via the X3 interface
  • the lower base station is used for communication on the control plane with the user equipment.
  • an upper base station and a lower base station that are in a vertical relationship are appropriately connected, and appropriate communication between nodes is realized.
  • FIG. 1 is a block diagram showing a wireless communication system according to an embodiment of the present invention. It is a figure which shows the control plane protocol structure (protocol stack) of X3 interface. It is a figure which shows the user plane protocol structure (protocol stack) of X3 interface. It is a figure which shows the example of the some bearer established in macro base station eNB and small base station PhNB. It is a block diagram which shows the structure of a user apparatus. It is a block diagram which shows the structure of a macro base station. It is a block diagram which shows the structure of a small base station. It is a block diagram which shows the structure of a switching center. It is a block diagram which shows the structure of a gateway apparatus.
  • FIG. 1 is a block diagram of a radio communication system CS according to an embodiment of the present invention.
  • the radio communication system CS includes a user apparatus UE, a macro base station eNB, small base stations PhNB (PhNB1, PhNB2), an exchange MME, and a gateway apparatus GW as elements (nodes).
  • a plurality of the above elements may exist in the radio communication system CS.
  • the network NW includes elements other than the user apparatus UE among the elements included in the above wireless communication system CS.
  • Each element in the radio communication system CS executes communication according to a predetermined access technology (Access Technology), for example, LTE / SAE (Long Term Evolution / System Architecture Evolution) included in the 3GPP standard (Third Generation Partnership Project).
  • access Technology for example, LTE / SAE (Long Term Evolution / System Architecture Evolution) included in the 3GPP standard (Third Generation Partnership Project).
  • LTE / SAE Long Term Evolution / System Architecture Evolution
  • 3GPP standard Third Generation Partnership Project
  • the user apparatus UE is User Equipment
  • the macro base station eNB is evolved Node B
  • the switching center MME is a Mobile Management Entity
  • the gateway apparatus GW is Packet-Data-Network / Serving Gateway.
  • the small base station PhNB is a base station that relies on the macro base station eNB for all or part of its control functions, and may be referred to as Phantom Node B (details will be described later).
  • the radio communication system CS is described as an example in which the radio communication system CS operates in accordance with LTE / SAE in principle.
  • the present invention is not intended to limit the technical scope of the present invention.
  • the present invention can be applied to other access technologies with necessary design changes.
  • the user apparatus UE can wirelessly communicate with the macro base station eNB and the small base station PhNB.
  • a method of radio communication between the user apparatus UE and each base station (eNB, PhNB) is arbitrary.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • wireless communication system which small base station PhNB uses can also be employ
  • the macro base station eNB is connected to the small base station PhNB, the exchange MME, and the gateway device GW.
  • the small base station PhNB (for example, PhNB1) is connected to another small base station PhNB (for example, PhNB2) and the gateway device GW in addition to the macro base station eNB.
  • the exchange MME is connected to the gateway device GW in addition to being connected to the macro base station eNB. Furthermore, the small base station PhNB and the exchange MME may be connected.
  • the gateway device GW is connected to each base station (eNB, PhNB) and the switching center MME, and is connected to the Internet IN which is an external network of the radio communication system CS. That is, the gateway device GW functions as a connection point (access point) with an external network.
  • the above connection is typically a wired connection, but all or part of the above connection may be a wireless connection.
  • FIG. 1 (2). Connection Configuration Between Nodes
  • a connection configuration between nodes in the radio communication system CS will be described with reference to FIG. 1 again.
  • a solid line indicates a path on a user plane (User Plane) used for transmission / reception of user signals (signals indicating user data such as voice signals and data signals), and a broken line indicates a control plane used for transmission / reception of control signals.
  • the route on (Control Plane) is shown.
  • the macro base station eNB transmits and receives control signals to and from the user apparatus UE using the Uu-C interface, transmits and receives control signals to and from the small base station PhNB using the X3 interface, and uses the S1-MME interface. Control signals are exchanged with the switching center MME. Further, the macro base station eNB transmits / receives a user signal to / from the user apparatus UE using the Uu-U interface and transmits / receives a user signal to / from the gateway apparatus GW using the S1-U interface.
  • the small base station PhNB (for example, PhNB1) transmits / receives control signals to / from the macro base station eNB using the X3 interface, and controls signals to other small base stations PhNB (for example, PhNB2) using the X2 interface. Send and receive. Further, the small base station PhNB (for example, PhNB1) transmits / receives a user signal to / from the user apparatus UE using the PhUu interface with respect to the user plane, and other small base stations PhNB (for example, PhNB2) and the user using the X2 interface Signals are transmitted and received, and user signals are transmitted and received with the gateway device GW using the S1-U interface. Note that the small base station PhNB does not have either a control plane interface used for communication with the user apparatus UE or a control plane interface used for communication with the switching center MME.
  • the existing interface adopts the protocol configuration of EPS (Evolved Packet System) defined in 3GPP.
  • EPS Evolved Packet System
  • FIG. 2 is a diagram showing a control plane protocol configuration (protocol stack) of the X3 interface.
  • the X3 interface has a layer structure including an L1 / L2 layer, an IP layer, an SCTP layer, and an X3-AP layer with respect to the control plane.
  • the macro base station eNB and the small base station PhNB are connected to each other in each layer of the X3 interface.
  • the L1 / L2 layer is a layer corresponding to the physical layer and the data link layer of the OSI reference model. For example, the Ethernet (registered trademark) protocol defined in IEEE 802.3 can be adopted.
  • the IP layer is an Internet protocol layer.
  • the SCTP layer is a stream control transfer protocol layer, and has a function of guaranteeing that the control message reaches the destination from the transmission source (reachability of the control message).
  • the X3-AP layer is a control signal protocol between the macro base station eNB and the small base station PhNB, and provides transmission and reception of various control signals.
  • the X3 interface is an interface having both a control plane interface (X3C) and a user plane interface (X3U), and is an interface that terminates in the macro base station eNB and the small base station PhNB. is there.
  • Bearer logical communication path
  • signals control signal, user signal
  • a bearer is a dynamic logical path established between nodes as needed.
  • the bearer can be established between nodes connected by wire or between nodes connected wirelessly.
  • the bearer established in the present embodiment will be exemplified without limitation.
  • An X3 signal transmission bearer X3-B is established between the macro base station eNB and the small base station PhNB.
  • An S1-U signal transmission bearer S1-UB is established between the macro base station eNB and the gateway device GW.
  • An S1-MME signal transmission bearer S1-MME-B is established between the macro base station eNB and the exchange MME.
  • a control radio bearer SRB is established between the macro base station eNB and the user apparatus UE. Multiple bearers may be established between the nodes.
  • FIG. 4 is a diagram illustrating an example of a plurality of bearers (X3 signal transmission bearer X3-B) established in the macro base station eNB and the small base station PhNB.
  • X3 signal transmission bearer X3-B three X3 signal transmission bearers X3-B are established.
  • the X3 signal transmission bearer X3-B can be identified by a communication identifier CI (Communication ID).
  • the communication identifier CI is set in each of two end points (macro base station eNB and small base station PhNB) for each X3 signal transmission bearer X3-B.
  • the top X3 signal transmission bearer X3-B1 is identified by the communication identifier CI-e1 on the macro base station eNB side and the communication identifier CI-P1 on the small base station PhNB side. The same applies to the other X3 signal transmission bearers X3-B2 and X3-B3.
  • FIG. 5 is a block diagram illustrating a configuration of the user device UE according to the present embodiment.
  • the user apparatus UE includes a radio communication unit 110, a storage unit 120, and a control unit 130. Illustrations of an output device that outputs audio, video, and the like, an input device that receives an instruction from a user, and the like are omitted for convenience.
  • the radio communication unit 110 is an element for executing radio communication with each base station (macro base station eNB, small base station PhNB), and receives a radio signal (radio wave) from a transmission / reception antenna and converts it into an electric signal.
  • the control unit 130 includes a receiving circuit and a transmitting circuit that converts electrical signals such as control signals and user signals into radio signals (radio waves) and transmits them.
  • the control unit 130 controls wireless communication with each base station (macro base station eNB, small base station PhNB).
  • the control unit 130 is a functional block realized when a CPU (Central Processing Unit) (not shown) in the user apparatus UE executes a computer program stored in the storage unit 120 and functions according to the computer program.
  • a CPU Central Processing Unit
  • FIG. 6 is a block diagram showing a configuration of the macro base station eNB according to the present embodiment.
  • the macro base station eNB includes a radio communication unit 210, a network communication unit 220, a storage unit 230, and a control unit 240.
  • the radio communication unit 210 is an element for executing radio communication with the user apparatus UE, and has the same configuration as the radio communication unit 110 of the user apparatus UE.
  • the network communication unit 220 is an element for performing communication with other nodes (such as the small base station PhNB, the switching center MME, and the gateway device GW) in the network NW. Send and receive.
  • the storage unit 230 stores information related to communication control, for example, the communication identifier CI-e of the own station (macro base station eNB) and the communication identifier CI-P of the small base station PhNB.
  • the control unit 240 includes a transmission / reception unit 242, a bearer control unit 244, and a node selection unit 246.
  • the transmission / reception unit 242 transmits / receives signals to / from other nodes via the above-described interface.
  • the bearer control unit 244 executes bearer control established for other nodes.
  • the node selection unit 246 selects a node (switching station MME, gateway device GW, etc.) to be connected. Details of operations of the transmission / reception unit 242, the bearer control unit 244, and the node selection unit 246 will be described later.
  • the above-described elements included in the control unit 240 and the control unit 240 are realized by a CPU (not shown) in the macro base station eNB executing a computer program stored in the storage unit 230 and functioning according to the computer program Function block.
  • FIG. 7 is a block diagram showing the configuration of the small base station PhNB according to this embodiment.
  • the small base station PhNB includes a wireless communication unit 310, a network communication unit 320, a storage unit 330, and a control unit 340.
  • the radio communication unit 310 is an element for executing radio communication with the user apparatus UE, and has the same configuration as the radio communication unit 210 of the macro base station eNB.
  • the network communication unit 320 is an element for performing communication with other nodes (macro base station eNB, other small base stations PhNB, gateway device GW, etc.) in the network NW, and communicates with other nodes in a wired or wireless manner. Send and receive electrical signals.
  • the storage unit 330 stores information related to communication control, for example, the communication identifier CI-P of the own station (small base station PhNB) and the communication identifier CI-e of the macro base station eNB.
  • the control unit 340 includes a transmission / reception unit 342, a bearer control unit 344, and a base station selection unit 346.
  • the transmission / reception unit 342 transmits / receives signals to / from other nodes via the above-described interface.
  • the bearer control unit 344 controls bearers established for other nodes.
  • the base station selection unit 346 selects a macro base station eNB to be connected. Details of operations of the transmission / reception unit 342, the bearer control unit 344, and the base station selection unit 346 will be described later.
  • the above-described elements included in the control unit 340 and the control unit 340 are realized by a CPU (not shown) in the small base station PhNB executing a computer program stored in the storage unit 330 and functioning according to the computer program. Function block.
  • FIG. 8 is a block diagram showing a configuration of the switching center MME according to the present embodiment.
  • the switching center MME includes a network communication unit 410 and a control unit 420.
  • the network communication unit 410 is an element for executing communication with other nodes (macro base station eNB, gateway device GW, etc.) in the network NW, and transmits / receives electrical signals to / from other nodes in a wired or wireless manner.
  • the control unit 420 transmits a control signal for each node (user apparatus UE, macro base station eNB, small base station PhNB, etc.) via the S1-MME interface.
  • the control unit 420 is a functional block realized by a CPU (not shown) in the switching center 400 executing a computer program stored in a storage unit (not shown) and functioning according to the computer program.
  • FIG. 9 is a block diagram showing a configuration of the gateway device GW according to the present embodiment.
  • the gateway device GW includes a network communication unit 510, an external network communication unit 520, and a control unit 530.
  • the network communication unit 510 is an element for performing communication with other nodes (macro base station eNB, small base station PhNB, switching center MME, etc.) in the network NW, and electric signals with other nodes wired or wirelessly Send and receive.
  • the external network communication unit 520 is an element for executing communication with the Internet IN, and executes protocol conversion of user signals as necessary.
  • the control unit 530 transmits and receives control signals to and from the exchange MME and relays user data between the network NW and the Internet IN.
  • the control unit 530 is a functional block realized by a CPU (not shown) in the gateway device GW executing a computer program stored in a storage unit (not shown) and functioning according to the computer program.
  • FIG. 10 is an explanatory diagram of relay of a control signal (control message) in the macro base station eNB (transmission / reception unit 242).
  • the transmission / reception unit 242 of the macro base station eNB transmits a control message transmitted from the switching center MME via the S1-MME interface (using the S1-MME signal transmission bearer S1-MME-B).
  • a control message (non-UE-associated signal) for controlling the small base station PhNB is relayed to the small base station PhNB via the X3 interface (using the X3 signal transmission bearer X3-B).
  • the above non-UE-associated signal is also referred to as a lower base station control message.
  • FIG. 11 is a flowchart of the relay operation of the control signal executed by the transmission / reception unit 242 of the macro base station eNB.
  • the transmission / reception unit 242 determines whether the control signal is a non-UE-associated signal or a UE-associated signal (S100).
  • the transmission / reception unit 242 converts the control signal to conform to the X3 interface protocol (X3-AP), and uses the X3 signal transmission bearer X3-B.
  • X3-AP X3 interface protocol
  • S110 Relay to the small base station PhNB
  • the operation of the small base station PhNB is controlled by the control signal.
  • the transmission / reception unit 242 converts the control signal so as to conform to the Uu-C interface protocol (RRC), and uses the control radio bearer SRB to transmit the user apparatus UE. (S120).
  • RRC Uu-C interface protocol
  • FIG. 12 is an explanatory diagram of relay of a user signal (user data) in the macro base station eNB (transmission / reception unit 242).
  • the transceiver unit 242 of the macro base station eNB transmits user data transmitted from the gateway apparatus GW via the S1-U interface (using the S1-U signal transmission bearer S1-UB).
  • user data lower user data
  • user data for the user apparatus UE wirelessly connected to the small base station PhNB is relayed to the small base station PhNB via the X3 interface (using the X3 signal transmission bearer X3-B).
  • user data (upper user data) for the user apparatus UE wirelessly connected to the macro base station eNB is directly transmitted to the user apparatus via the Uu-U interface (using the data radio bearer) by the transmission / reception unit 242. Send to UE.
  • FIG. 13 is a flowchart of the relay operation of the user signal executed by the transmission / reception unit 242 of the macro base station eNB.
  • the transmission / reception unit 242 receives the user signal from the gateway apparatus GW
  • the destination of the user signal is an interface (PhUu interface) between the small base station PhNB and the user apparatus UE, or the macro base station eNB and the user apparatus UE (Destination user apparatus UE is communicating via macro base station eNB (Uu-U interface), or communicating via small base station PhNB (PhUu interface)) (S200).
  • the transmission / reception unit 242 relays the user signal to the small base station PhNB using the X3 signal transmission bearer X3-B as illustrated (S210).
  • the transmission / reception unit 242 transmits the user signal directly to the user apparatus UE using the data radio bearer (S220).
  • the small base station PhNB can be controlled via the macro base station eNB. Moreover, the user signal transmission / reception through the small base station PhNB is enabled by the above-described user signal relay operation.
  • the control signal is directly transmitted from the macro base station eNB, while the user signal is transmitted via the small base station PhNB. That is, according to the above configuration and operation, communication on the control plane and communication on the user plane can be separated.
  • FIG. 14 is a sequence diagram of a node selection operation executed when an interface is set up.
  • the base station selection unit 346 of the small base station PhNB selects a macro base station eNB to be connected when setting up the X3 interface (S300). More specifically, prior to setting up the X3 interface, the base station selection unit 346 obtains information on the macro base station eNB (for example, information on the network topology, information on the geographical location of the macro base station eNB, etc.) from other nodes. get. Based on the acquired information, the base station selection unit 346 selects a macro base station eNB to be connected (X3 interface should be established).
  • the base station selection unit 346 may select a macro base station eNB that is close (preferably closest) on the network topology, or is geographically close (preferably, You may select the macro base station eNB which is the nearest.
  • the base station selection unit 346 may select one macro base station eNB or a plurality of macro base stations eNB. Then, the base station selection unit 346 executes X3 interface setup for the selected macro base station eNB (S310).
  • the node selection unit 246 of the selected macro base station eNB selects the exchange MME and the gateway device GW to be connected in order to set up the S1-MME interface and the S1-U interface. (S320).
  • the above selection operation is defined in the 3GPP standard (for example, 3GPP TS 36.300 V11.1.0 (2012-03)).
  • the node selection unit 246 executes setup of the S1-MME interface and the S1-U interface (S330).
  • the base station selection unit 346 of the small base station PhNB does not have a function (NAS Node Selection Function, NNSF) for selecting the exchange MME and the gateway device GW. .
  • NNSF NAS Node Selection Function
  • the small base station PhNB that does not have the function of selecting the exchange MME and the gateway device GW can communicate with the exchange MME and the gateway device GW via the macro base station eNB. .
  • the bearer for example, signal transmission bearer X3-B
  • the communication identifier CI is identified by the communication identifier CI at both ends.
  • allocation of the communication identifier CI will be described.
  • the bearer control unit 244 of the macro base station eNB When establishing the signal transmission bearer X3-B, the bearer control unit 244 of the macro base station eNB generates a communication identifier CI-e indicating the macro base station eNB for the signal transmission bearer X3-B to be established, It is assigned to one end point of the signal transmission bearer X3-B. Then, the bearer control unit 244 transmits the communication identifier CI-e to the small base station PhNB via the X3 interface. On the other hand, the bearer control unit 344 of the small base station PhNB generates a communication identifier CI-P indicating the small base station PhNB for the signal transmission bearer X3-B to be established, Assign to one endpoint. Then, the bearer control unit 344 transmits the communication identifier CI-P to the macro base station eNB via the X3 interface.
  • the bearer control unit 244 of the macro base station eNB receives the communication identifier CI-P of the signal transmission bearer X3-B received from the small base station PhNB and stores it in the storage unit 230.
  • the bearer control unit 344 of the small base station PhNB receives the communication identifier CI-e of the signal transmission bearer X3-B received from the macro base station eNB and stores it in the storage unit 330.
  • the macro base station eNB recognizes the communication identifier CI-P on the small base station PhNB side, and the small base station PhNB recognizes the communication identifier CI-e on the macro base station eNB side.
  • communication using the signal transmission bearer X3-B identified by the communication identifier CI-e and the communication identifier CI-P becomes possible.
  • the macro base station eNB and the small base station PhNB that are in a hierarchical relationship are appropriately connected, and appropriate communication between nodes is realized.
  • the macro base station eNB performs the relay operation in the control plane and the user plane, the radio communication system CS in which the control plane and the user plane are separated is realized.
  • the macro base station eNB and the small base station PhNB may be connected by wire or may be connected by radio. That is, the X3 interface (X3 signal transmission bearer X3-B) may be configured by wired connection or wireless connection.
  • the small base station PhNB includes the X2 interface.
  • the small base station PhNB may not include the X2 interface. That is, the small base station PhNB may or may not terminate the X2 interface.
  • the small base station PhNB includes the S1-U interface.
  • the small base station PhNB may not include the S1-U interface.
  • each base station eNB, PhNB
  • FIG. 15 shows an example of the cell configuration.
  • the macro base station eNB forms a macro cell C1 around it
  • the small base station PhNB forms a small cell C2 around it.
  • the antenna of each base station is schematically shown.
  • the plane in which the macro cell C1 is shown and the plane in which the small cell C2 are shown are drawn separately, but in reality, the macro cell C1 and the small cell C2 are superimposed on the same plane (the ground surface or the like). Can be done.
  • Cell C is a range in which radio waves from each base station effectively reach the user apparatus UE.
  • the user apparatus UE can perform radio communication with the base station corresponding to the cell C in which the user apparatus UE is located.
  • the small base station PhNB is smaller than the macro base station eNB and has a small radio transmission capability (average transmission power, maximum transmission power, etc.). Further, the frequency band (second frequency band, for example, 3.5 GHz band) used by the small base station PhNB for wireless communication is higher than the frequency band (first frequency band, for example, 2 GHz band) used by the macro base station eNB for wireless communication. High frequency and large propagation loss. Therefore, the small cell C2 has a smaller area than the macro cell C1. A configuration in which the area of the macro cell C1 is equal to the area of the small cell C2 can also be employed.
  • each function executed by the CPU in each element (user apparatus UE, macro base station eNB, small base station PhNB, switching center MME, gateway apparatus GW) in the radio communication system CS is executed by hardware instead of the CPU.
  • the program may be executed by a programmable logic device such as a field programmable gate array (FPGA) or a digital signal processor (DSP).
  • FPGA field programmable gate array
  • DSP digital signal processor
  • Network communication unit 520... External network communication unit, 530... Control unit, CI (CI-e, CI-P). Identifier, CS ... wireless communication system, IN ... internet, NW ... network, S1-MME-B ... S1-MME signal transmission bearer, S1-UB ... S1-U signal transmission bearer, SRB ... Control radio bearer, X3-B ... X3 signal transmission bearer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 上位基地局と、上位基地局の制御機能よりも限定的な制御機能を有する下位基地局と、上位基地局および下位基地局の各々と無線通信可能なユーザ装置と、交換局と、ゲートウェイ装置とが存在する。上位基地局は、制御プレーン上の通信に用いられる複数のインタフェースと、X3インタフェースを介して下位基地局との送受信を実行する送受信部とを有する。下位基地局は、ユーザプレーン上の通信に用いられるインタフェースと、上位基地局との通信に用いられるX3インタフェースとを備える。下位基地局は、上位基地局から送信される制御メッセージにより動作が制御される。

Description

上位基地局、下位基地局、および無線通信システム
 本発明は、上位基地局、下位基地局、および無線通信システムに関する。
 3GPP(Third Generation Partnership Project)規格に従う様々な無線通信システムが活用されている。3GPP規格のうちLTE/SAE(Long Term Evolution / System Architecture Evolution)規格に従う無線通信システムにおいては、基地局(eNB)同士を接続するインタフェースとして、X2インタフェースが規定されている。各基地局は、X2インタフェースを介して他の基地局と通信を行う。X2インタフェースは、対等な基地局同士を接続するように規定されている。
3GPP TS 36.300 V11.1.0 (2012-03), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 11), X2 Interface (Clause 20)
 以上の基地局(eNB)を備える無線通信システムが、さらに、基地局(eNB)の制御機能よりも限定的な制御機能を有する新たな基地局を備えることを想定する。限定的な制御機能とは、例えば、単独ではユーザ装置との無線接続を確立できない制御機能である。この新たな基地局は、上位の基地局(eNB)からの制御に基づいて動作すべき基地局である。前述の通り、X2インタフェースは対等な基地局同士を接続するものであるから、制御機能が限定的な新たな基地局は、X2インタフェースを介して上位の基地局(eNB)と接続することが困難である。
 以上の事情を考慮して、本発明は、基地局間に上下関係(階層関係)が存在する無線通信システムにおいて、ノード間の適切な通信を可能にすることを目的とする。
 本発明の上位基地局は、上位基地局と、前記上位基地局の制御機能よりも限定的な制御機能を有する下位基地局と、前記上位基地局および前記下位基地局の各々と無線通信可能なユーザ装置と、交換局と、ゲートウェイ装置とを備える無線通信システムにおける前記上位基地局であり、前記下位基地局は、前記ユーザ装置との制御プレーン上の通信に用いられるインタフェースと、前記交換局との制御プレーン上の通信に用いられるインタフェースとのいずれをも有さず、前記上位基地局は、前記ユーザ装置との制御プレーン上の通信に用いられるUu-Cインタフェースと、前記下位基地局との、制御プレーン上の通信およびユーザプレーン上の通信のいずれか一方または双方に用いられるX3インタフェースと、前記交換局との制御プレーン上の通信に用いられるS1-MMEインタフェースと、前記X3インタフェースを介して前記下位基地局との送受信を実行する送受信部とを有する。
 本発明の好適な態様において、前記送受信部は、前記交換局から送信される制御メッセージのうち、前記下位基地局を制御する下位基地局制御メッセージを、前記X3インタフェースを介して、前記下位基地局に中継する。
 本発明の好適な態様において、前記送受信部は、前記ゲートウェイ装置から送信されるユーザデータのうち、前記下位基地局と無線接続しているユーザ装置に対する下位ユーザデータを、前記X3インタフェースを介して、前記下位基地局に中継する。
 本発明の好適な態様において、前記送受信部は、前記交換局から送信される制御メッセージのうち、前記下位基地局と無線接続しているユーザ装置に対する下位ユーザ制御メッセージを、前記Uu-Cインタフェースを介して、前記ユーザ装置に直接的に送信する。
 本発明の好適な態様において、前記X3インタフェースは、ストリーム制御転送プロトコルに基づいて、当該X3インタフェースを介する前記制御メッセージの保証された送信を提供し、前記X3インタフェースを介して確立され、前記制御メッセージの送信に用いられるベアラを識別する2つの通信識別子が、前記上位基地局および前記下位基地局に対してそれぞれ設定される。
 本発明の好適な態様において、前記上位基地局は、2つの前記通信識別子の1つである第1通信識別子を当該上位基地局に割り当てる第1ベアラ制御部を備え、前記下位基地局は、2つの前記通信識別子の他の1つである第2通信識別子を当該下位基地局に割り当てる第2ベアラ制御部を備え、前記第1ベアラ制御部は、前記X3インタフェースを介して前記第1通信識別子を前記下位基地局に送信し、前記第2ベアラ制御部から前記X3インタフェースを介して受信した前記第2通信識別子を記憶する。
 本発明の好適な態様において、前記X3インタフェースは、有線接続により構成される。また、本発明の別の好適な態様において、前記X3インタフェースは、無線接続により構成される。
 本発明の下位基地局は、上位基地局と、前記上位基地局の制御機能よりも限定的な制御機能を有する下位基地局と、前記上位基地局および前記下位基地局の各々と無線通信可能なユーザ装置と、交換局と、ゲートウェイ装置とを備える無線通信システムにおける前記下位基地局であり、前記ユーザ装置とのユーザプレーン上の通信に用いられるPhUuインタフェースと、前記上位基地局との、制御プレーン上の通信およびユーザプレーン上の通信のいずれか一方または双方に用いられるX3インタフェースとを備え、前記X3インタフェースを介して前記上位基地局から送信される制御メッセージにより動作が制御される。
 本発明の好適な態様において、下位基地局は、さらに、前記ゲートウェイ装置とのユーザプレーン上の通信に用いられるS1-Uインタフェースを備える。
 本発明の好適な態様において、下位基地局は、さらに、他の下位基地局との制御プレーン上およびユーザプレーン上の通信に用いられるX2インタフェースを備える。
 本発明の好適な態様において、下位基地局は、複数の前記交換局から少なくとも1つを選択する機能を有さない。
 本発明の好適な態様において、下位基地局は、複数の前記ゲートウェイ装置から少なくとも1つを選択する機能を有さない。
 本発明の好適な態様において、下位基地局は、前記X3インタフェースをセットアップする際に、複数の前記上位基地局から少なくとも1つを選択する基地局選択部を有する。
 本発明の好適な態様において、前記X3インタフェースは、ストリーム制御転送プロトコルに基づいて、当該X3インタフェースを介する前記制御メッセージの保証された送信を提供し、前記X3インタフェースを介して確立され、前記制御メッセージの送信に用いられるベアラを識別する2つの通信識別子が、前記上位基地局および前記下位基地局に対してそれぞれ設定される。
 本発明の好適な態様において、前記上位基地局は、2つの前記通信識別子の1つである第1通信識別子を当該上位基地局に割り当てる第1ベアラ制御部を備え、前記下位基地局は、2つの前記通信識別子の他の1つである第2通信識別子を当該下位基地局に割り当てる第2ベアラ制御部を備え、前記第2ベアラ制御部は、前記X3インタフェースを介して前記第2通信識別子を前記上位基地局に送信し、前記第1ベアラ制御部から前記X3インタフェースを介して受信した前記第1通信識別子を記憶する。
 本発明の好適な態様において、前記X3インタフェースは、有線接続により構成される。本発明の別の好適な態様において、前記X3インタフェースは、無線接続により構成される。
 本発明の無線通信システムは、上位基地局と、前記上位基地局の制御機能よりも限定的な制御機能を有する下位基地局と、前記上位基地局および前記下位基地局の各々と無線通信可能なユーザ装置と、交換局と、ゲートウェイ装置とを備え、前記上位基地局は、前記ユーザ装置との制御プレーン上の通信に用いられるUu-Cインタフェースと、前記下位基地局との、制御プレーン上の通信およびユーザプレーン上の通信のいずれか一方または双方に用いられるX3インタフェースと、前記交換局との制御プレーン上の通信に用いられるS1-MMEインタフェースと、前記X3インタフェースを介して前記下位基地局との送受信を実行する送受信部とを有し、前記下位基地局は、前記ユーザ装置との制御プレーン上の通信に用いられるインタフェースと、前記交換局との制御プレーン上の通信に用いられるインタフェースとのいずれをも有さず、かつ、前記ユーザ装置とのユーザプレーン上の通信に用いられるPhUuインタフェースと、前記上位基地局との、制御プレーン上の通信およびユーザプレーン上の通信のいずれか一方または双方に用いられるX3インタフェースとを備え、前記上位基地局から送信される制御メッセージにより動作が制御される。
 本発明によれば、上下関係(階層関係)にある上位基地局と下位基地局とが適切に接続され、ノード間の適切な通信が実現される。
本発明の実施形態に係る無線通信システムを示すブロック図である。 X3インタフェースの制御プレーンプロトコル構成(プロトコルスタック)を示す図である。 X3インタフェースのユーザプレーンプロトコル構成(プロトコルスタック)を示す図である。 マクロ基地局eNBとスモール基地局PhNBとに確立された複数のベアラの例を示す図である。 ユーザ装置の構成を示すブロック図である。 マクロ基地局の構成を示すブロック図である。 スモール基地局の構成を示すブロック図である。 交換局の構成を示すブロック図である。 ゲートウェイ装置の構成を示すブロック図である。 マクロ基地局における制御信号(制御メッセージ)の中継の説明図である。 マクロ基地局が実行する制御信号の中継動作のフローチャートである。 マクロ基地局におけるユーザ信号(ユーザデータ)の中継の説明図である。 マクロ基地局が実行するユーザ信号の中継動作のフローチャートである。 ノード選択動作のシークエンス図である。 マクロ基地局が形成するマクロセルおよびスモール基地局が形成するスモールセルの構成例を示す図である。
1(1). 無線通信システムの構成
 図1は、本発明の実施形態に係る無線通信システムCSのブロック図である。無線通信システムCSは、ユーザ装置UEと、マクロ基地局eNBと、スモール基地局PhNB(PhNB1,PhNB2)と、交換局MMEと、ゲートウェイ装置GWとを要素(ノード)として備える。以上の各要素は、無線通信システムCS内にそれぞれ複数存在し得る。また、ネットワークNWは、以上の無線通信システムCSが備える要素のうち、ユーザ装置UE以外の要素を備える。
 無線通信システムCS内の各要素は、所定のアクセス技術(Access Technology)、例えば3GPP規格(Third Generation Partnership Project)に含まれるLTE/SAE(Long Term Evolution / System Architecture Evolution)に従って通信を実行する。3GPP規格に規定された用語に従うと、ユーザ装置UEはUser Equipmentであり、マクロ基地局eNBはevolved Node Bであり、交換局MMEはMobile Management Entityであり、ゲートウェイ装置GWはPacket-Data-Network/Serving Gatewayである。スモール基地局PhNBは、その制御機能の全部又は一部をマクロ基地局eNBに依存する基地局であり、Phantom Node Bと称される場合がある(詳細は後述される)。
 本実施形態では、無線通信システムCSが、原則としてLTE/SAEに従って動作する形態を例示して説明するが、本発明の技術的範囲を限定する趣旨ではない。本発明は、必要な設計上の変更を施した上で、他のアクセス技術にも適用可能である。
 ユーザ装置UEは、マクロ基地局eNBおよびスモール基地局PhNBと無線通信することが可能である。ユーザ装置UEと各基地局(eNB,PhNB)との無線通信の方式は任意である。例えば、下りリンクではOFDMA(Orthogonal Frequency Division Multiple Access)が採用され得、上りリンクではSC-FDMA(Single-Carrier Frequency Division Multiple Access)が採用され得る。また、マクロ基地局eNBが用いる無線通信の方式と、スモール基地局PhNBが用いる無線通信の方式が異なる構成も採用可能である。
 マクロ基地局eNBは、スモール基地局PhNB、交換局MME、およびゲートウェイ装置GWと接続される。スモール基地局PhNB(例えば、PhNB1)は、マクロ基地局eNBの他、他のスモール基地局PhNB(例えば、PhNB2)、およびゲートウェイ装置GWと接続される。交換局MMEは、マクロ基地局eNBと接続される他、ゲートウェイ装置GWと接続される。なお、さらに、スモール基地局PhNBと交換局MMEとが接続されてもよい。ゲートウェイ装置GWは、各基地局(eNB,PhNB)および交換局MMEと接続される他、無線通信システムCSの外部ネットワークであるインターネットINに接続される。すなわち、ゲートウェイ装置GWは、外部ネットワークとの接続点(アクセスポイント)として機能する。以上の接続は典型的には有線接続であるが、以上の接続の全部または一部が無線接続であってもよい。
1(2). ノード間の接続構成
 図1を再度参照して、無線通信システムCS内のノード間の接続構成を説明する。図1において、実線がユーザ信号(音声信号、データ信号等のユーザデータを示す信号)の送受信に用いられるユーザプレーン(User Plane)上の経路を示し、破線が制御信号の送受信に用いられる制御プレーン(Control Plane)上の経路を示す。
 マクロ基地局eNBは、制御プレーンに関して、Uu-Cインタフェースを用いてユーザ装置UEと制御信号を送受信し、X3インタフェースを用いてスモール基地局PhNBと制御信号を送受信し、S1-MMEインタフェースを用いて交換局MMEと制御信号を送受信する。また、マクロ基地局eNBは、ユーザプレーンに関して、Uu-Uインタフェースを用いてユーザ装置UEとユーザ信号を送受信し、S1-Uインタフェースを用いてゲートウェイ装置GWとユーザ信号を送受信する。
 スモール基地局PhNB(例えば、PhNB1)は、制御プレーンに関して、X3インタフェースを用いてマクロ基地局eNBと制御信号を送受信し、X2インタフェースを用いて他のスモール基地局PhNB(例えば、PhNB2)と制御信号を送受信する。また、スモール基地局PhNB(例えば、PhNB1)は、ユーザプレーンに関して、PhUuインタフェースを用いてユーザ装置UEとユーザ信号を送受信し、X2インタフェースを用いて他のスモール基地局PhNB(例えば、PhNB2)とユーザ信号を送受信し、S1-Uインタフェースを用いてゲートウェイ装置GWとユーザ信号を送受信する。なお、スモール基地局PhNBは、ユーザ装置UEとの通信に用いられる制御プレーンのインタフェースと、交換局MMEとの通信に用いられる制御プレーンのインタフェースとのいずれをも有さない。
 なお、ユーザプレーンに関して、X3インタフェースを用いてマクロ基地局eNBとスモール基地局PhNBとが互いにユーザ信号を送受信してもよい。以上の場合、スモール基地局PhNBとゲートウェイ装置GWとが接続されていなくても、マクロ基地局eNBを経由することで、スモール基地局PhNBとゲートウェイ装置GWとがユーザ信号の送受信を実行できる。X3インタフェースは、制御プレーン上の通信およびユーザプレーン上の通信のいずれか一方または双方に用い得るインタフェースである。
 以上のインタフェースのうち、既存のインタフェース(X2インタフェース、S1-Uインタフェース等)においては、3GPPに規定されるEPS(Evolved Packet System)のプロトコル構成が採用される。
 図2は、X3インタフェースの制御プレーンプロトコル構成(プロトコルスタック)を示す図である。X3インタフェースは、制御プレーンに関して、L1/L2層、IP層、SCTP層、およびX3-AP層を含む層構造を有する。マクロ基地局eNBとスモール基地局PhNBとは、X3インタフェースが有する各層において相互に接続される。L1/L2層はOSI参照モデルの物理層およびデータリンク層に相当する層であり、例えば、IEEE 802.3に規定されるEthernet(登録商標)(イーサネット(登録商標))プロトコルが採用され得る。IP層はインターネットプロトコル層である。SCTP層はストリーム制御転送プロトコル層であり、制御メッセージが送信元から送信先に到達すること(制御メッセージの到達性)を保証する機能を有する。X3-AP層はマクロ基地局eNBとスモール基地局PhNBとの間の制御信号プロトコルであり、種々の制御信号の送受信を提供する。
 図3は、X3インタフェースのユーザプレーンプロトコル構成(プロトコルスタック)を示す図である。X3インタフェースは、ユーザプレーンに関して、L1/L2層、IP層、UDP層、およびGTP層を含む層構造を有する。L1/L2層およびIP層は上述と同様である。UDP層はユーザデータグラム層であり、メッセージが送信先に到達したか否かをチェックせずにメッセージの送信を実行するプロトコルである。GTP層はGPRS(General Packet Radio Service)トンネリングプロトコル層であり、マクロ基地局eNBとスモール基地局PhNBとの間のユーザデータの送受信を提供する。
 以上から理解されるように、X3インタフェースは、制御プレーンのインタフェース(X3C)およびユーザプレーンのインタフェース(X3U)の双方を有するインタフェースであり、マクロ基地局eNBおよびスモール基地局PhNBにて終端するインタフェースである。
1(3). ベアラ(論理的な通信経路)
 無線通信システムCS内において、論理的な通信経路であるベアラ(Bearer)を介して信号(制御信号、ユーザ信号)が送受信される。ベアラは、必要に応じてノード間に確立される動的な論理経路である。ベアラは、有線接続されるノード間においても、無線接続されるノード間においても確立され得る。以下、本実施形態において確立されるベアラを非限定的に例示する。マクロ基地局eNBとスモール基地局PhNBとにX3信号伝送ベアラX3-Bが確立される。マクロ基地局eNBとゲートウェイ装置GWとにS1-U信号伝送ベアラS1-U-Bが確立される。マクロ基地局eNBと交換局MMEとにS1-MME信号伝送ベアラS1-MME-Bが確立される。マクロ基地局eNBとユーザ装置UEとに制御無線ベアラSRBが確立される。ノード間に複数のベアラが確立されてもよい。
 図4は、マクロ基地局eNBとスモール基地局PhNBとに確立された複数のベアラ(X3信号伝送ベアラX3-B)の例を示す図である。図4では、3つのX3信号伝送ベアラX3-Bが確立されている。X3信号伝送ベアラX3-Bは、通信識別子CI(Communication Identifier)によって識別され得る。図示の通り、通信識別子CIは、X3信号伝送ベアラX3-Bごとに、2つの端点(マクロ基地局eNBおよびスモール基地局PhNB)の各々に設定される。例えば、一番上のX3信号伝送ベアラX3-B1は、マクロ基地局eNB側の通信識別子CI-e1およびスモール基地局PhNB側の通信識別子CI-P1によって識別される。他のX3信号伝送ベアラX3-B2,X3-B3についても同様である。
1(4). 各要素の構成
1(4)-1. ユーザ装置の構成
 図5は、本実施形態に係るユーザ装置UEの構成を示すブロック図である。ユーザ装置UEは、無線通信部110と記憶部120と制御部130とを備える。音声・映像等を出力する出力装置およびユーザからの指示を受け付ける入力装置等の図示は便宜的に省略されている。無線通信部110は、各基地局(マクロ基地局eNB、スモール基地局PhNB)と無線通信を実行するための要素であり、送受信アンテナと、無線信号(電波)を受信して電気信号に変換する受信回路と、制御信号、ユーザ信号等の電気信号を無線信号(電波)に変換して送信する送信回路とを含む。制御部130は、各基地局(マクロ基地局eNB、スモール基地局PhNB)との無線通信を制御する。制御部130は、ユーザ装置UE内の不図示のCPU(Central Processing Unit)が、記憶部120に記憶されたコンピュータプログラムを実行し、そのコンピュータプログラムに従って機能することにより実現される機能ブロックである。
1(4)-2. マクロ基地局の構成
 図6は、本実施形態に係るマクロ基地局eNBの構成を示すブロック図である。マクロ基地局eNBは、無線通信部210とネットワーク通信部220と記憶部230と制御部240とを備える。無線通信部210は、ユーザ装置UEと無線通信を実行するための要素であり、ユーザ装置UEの無線通信部110と同様の構成を有する。ネットワーク通信部220は、ネットワークNW内の他のノード(スモール基地局PhNB、交換局MME、ゲートウェイ装置GW等)と通信を実行するための要素であり、有線または無線で他のノードと電気信号を送受信する。記憶部230は、通信制御に関する情報、例えば自局(マクロ基地局eNB)の通信識別子CI-eおよびスモール基地局PhNBの通信識別子CI-Pを記憶する。
 制御部240は、送受信部242とベアラ制御部244とノード選択部246とを備える。送受信部242は、前述のインタフェースを介して他のノードと信号を送受信する。ベアラ制御部244は、他ノードに対して確立されるベアラの制御を実行する。ノード選択部246は、接続すべきノード(交換局MME、ゲートウェイ装置GW等)を選択する。送受信部242、ベアラ制御部244、およびノード選択部246の動作の詳細は後述される。制御部240および制御部240に含まれる以上の各要素は、マクロ基地局eNB内の不図示のCPUが、記憶部230に記憶されたコンピュータプログラムを実行し、そのコンピュータプログラムに従って機能することにより実現される機能ブロックである。
1(4)-3. スモール基地局の構成
 図7は、本実施形態に係るスモール基地局PhNBの構成を示すブロック図である。スモール基地局PhNBは、無線通信部310とネットワーク通信部320と記憶部330と制御部340とを備える。無線通信部310は、ユーザ装置UEと無線通信を実行するための要素であり、マクロ基地局eNBの無線通信部210と同様の構成を有する。ネットワーク通信部320は、ネットワークNW内の他のノード(マクロ基地局eNB、他のスモール基地局PhNB、ゲートウェイ装置GW等)と通信を実行するための要素であり、有線または無線で他のノードと電気信号を送受信する。記憶部330は、通信制御に関する情報、例えば自局(スモール基地局PhNB)の通信識別子CI-Pおよびマクロ基地局eNBの通信識別子CI-eを記憶する。
 制御部340は、送受信部342とベアラ制御部344と基地局選択部346とを備える。送受信部342は、前述のインタフェースを介して他のノードと信号を送受信する。ベアラ制御部344は、他ノードに対して確立されるベアラの制御を実行する。基地局選択部346は、接続すべきマクロ基地局eNBを選択する。送受信部342、ベアラ制御部344、および基地局選択部346の動作の詳細は後述される。制御部340および制御部340に含まれる以上の各要素は、スモール基地局PhNB内の不図示のCPUが、記憶部330に記憶されたコンピュータプログラムを実行し、そのコンピュータプログラムに従って機能することにより実現される機能ブロックである。
1(4)-4. 交換局の構成
 図8は、本実施形態に係る交換局MMEの構成を示すブロック図である。交換局MMEは、ネットワーク通信部410と制御部420とを備える。ネットワーク通信部410は、ネットワークNW内の他のノード(マクロ基地局eNB、ゲートウェイ装置GW等)と通信を実行するための要素であり、有線または無線で他のノードと電気信号を送受信する。制御部420は、S1-MMEインタフェースを介して各ノード(ユーザ装置UE、マクロ基地局eNB、スモール基地局PhNB等)に対する制御信号を送信する。制御部420は、交換局400内の不図示のCPUが、不図示の記憶部に記憶されたコンピュータプログラムを実行し、そのコンピュータプログラムに従って機能することにより実現される機能ブロックである。
1(4)-5. ゲートウェイ装置の構成
 図9は、本実施形態に係るゲートウェイ装置GWの構成を示すブロック図である。ゲートウェイ装置GWは、ネットワーク通信部510と外部ネットワーク通信部520と制御部530とを備える。ネットワーク通信部510は、ネットワークNW内の他のノード(マクロ基地局eNB、スモール基地局PhNB、交換局MME等)と通信を実行するための要素であり、有線または無線で他のノードと電気信号を送受信する。外部ネットワーク通信部520は、インターネットINと通信を実行するための要素であり、必要に応じてユーザ信号のプロトコル変換を実行する。制御部530は、交換局MMEと制御信号の送受信を実行するとともに、ネットワークNWとインターネットINとの間でユーザデータを中継する。制御部530は、ゲートウェイ装置GW内の不図示のCPUが、不図示の記憶部に記憶されたコンピュータプログラムを実行し、そのコンピュータプログラムに従って機能することにより実現される機能ブロックである。
1(5). マクロ基地局における信号の中継
 図10は、マクロ基地局eNB(送受信部242)における制御信号(制御メッセージ)の中継の説明図である。図10に示されるように、マクロ基地局eNBの送受信部242は、S1-MMEインタフェースを介して(S1-MME信号伝送ベアラS1-MME-Bを用いて)交換局MMEから送信される制御メッセージのうち、スモール基地局PhNBを制御する制御メッセージ(non-UE-associated信号)を、X3インタフェースを介して(X3信号伝送ベアラX3-Bを用いて)スモール基地局PhNBに中継する。以上のnon-UE-associated信号は、下位基地局制御メッセージとも称呼される。
 また、送受信部242は、S1-MMEインタフェースを介して(S1-MME信号伝送ベアラS1-MME-Bを用いて)交換局MMEから送信される制御メッセージのうち、スモール基地局PhNBと無線接続しているユーザ装置UEに対する制御メッセージ(UE-associated信号)を、Uu-Cインタフェースを介して(制御無線ベアラSRBを用いて)そのユーザ装置UEに直接的に送信する。以上のUE-associated信号は、下位ユーザ制御メッセージとも称呼される。
 図11は、マクロ基地局eNBの送受信部242が実行する制御信号の中継動作のフローチャートである。送受信部242は、交換局MMEから制御信号を受信すると、その制御信号がnon-UE-associated信号であるかUE-associated信号であるかを判定する(S100)。制御信号がnon-UE-associated信号である場合、送受信部242は、その制御信号をX3インタフェース用のプロトコル(X3-AP)に適合するように変換し、X3信号伝送ベアラX3-Bを用いてスモール基地局PhNBに中継する(S110)。スモール基地局PhNBは、その制御信号により動作が制御される。他方、制御信号がUE-associated信号である場合、送受信部242は、その制御信号をUu-Cインタフェース用のプロトコル(RRC)に適合するように変換し、制御無線ベアラSRBを用いてユーザ装置UEに送信する(S120)。
 図12は、マクロ基地局eNB(送受信部242)におけるユーザ信号(ユーザデータ)の中継の説明図である。図12に示されるように、マクロ基地局eNBの送受信部242は、S1-Uインタフェースを介して(S1-U信号伝送ベアラS1-U-Bを用いて)ゲートウェイ装置GWから送信されるユーザデータのうち、スモール基地局PhNBと無線接続しているユーザ装置UEに対するユーザデータ(下位ユーザデータ)を、X3インタフェースを介して(X3信号伝送ベアラX3-Bを用いて)スモール基地局PhNBに中継する。なお、マクロ基地局eNBに無線接続しているユーザ装置UEに対するユーザデータ(上位ユーザデータ)は、送受信部242が、Uu-Uインタフェースを介して(データ無線ベアラを用いて)直接的にユーザ装置UEに送信する。
 図13は、マクロ基地局eNBの送受信部242が実行するユーザ信号の中継動作のフローチャートである。送受信部242は、ゲートウェイ装置GWからユーザ信号を受信すると、そのユーザ信号の宛先が、スモール基地局PhNBとユーザ装置UEとのインタフェース(PhUuインタフェース)であるか、マクロ基地局eNBとユーザ装置UEとのインタフェース(Uu-Uインタフェース)であるか(宛先のユーザ装置UEが、マクロ基地局eNB(Uu-Uインタフェース)経由で通信しているのか、スモール基地局PhNB(PhUuインタフェース)経由で通信しているのか)を判定する(S200)。宛先がPhUuインタフェースである場合、送受信部242は、図示の通り、X3信号伝送ベアラX3-Bを用いてそのユーザ信号をスモール基地局PhNBに中継する(S210)。他方、宛先がUu-Uインタフェースである場合、送受信部242は、データ無線ベアラを用いてそのユーザ信号を直接的にユーザ装置UEに送信する(S220)。
 以上の制御信号中継動作により、マクロ基地局eNBを介したスモール基地局PhNBの制御が可能になる。また、以上のユーザ信号中継動作により、スモール基地局PhNBを介したユーザ信号の送受信が可能になる。
 特に、スモール基地局PhNBに無線接続しているユーザ装置UEについて、制御信号がマクロ基地局eNBから直接的に送信される一方、ユーザ信号がスモール基地局PhNBを経由して送信される。すなわち、以上の構成および動作によれば、制御プレーンの通信とユーザプレーンの通信とが分離可能である。
1(6). ノード選択動作
 図14は、インタフェースがセットアップされる際に実行されるノード選択動作のシークエンス図である。スモール基地局PhNBの基地局選択部346は、X3インタフェースをセットアップする際に、接続すべきマクロ基地局eNBを選択する(S300)。より具体的には、基地局選択部346は、X3インタフェースのセットアップに先立ち、マクロ基地局eNBに関する情報(例えば、ネットワークトポロジに関する情報、マクロ基地局eNBの地理的位置に関する情報等)を他ノードから取得する。基地局選択部346は、取得した情報に基づいて、接続すべき(X3インタフェースを確立すべき)マクロ基地局eNBを選択する。以上の選択において、基地局選択部346は、ネットワークトポロジ上で近接する(好適には、最も近傍にある)マクロ基地局eNBを選択してもよいし、地理的に近接する(好適には、最も近傍にある)マクロ基地局eNBを選択してもよい。基地局選択部346は、1つのマクロ基地局eNBを選択してもよいし、複数のマクロ基地局eNBを選択してもよい。そして、基地局選択部346は、選択されたマクロ基地局eNBに対し、X3インタフェースのセットアップを実行する(S310)。
 X3インタフェースのセットアップが完了すると、選択されたマクロ基地局eNBのノード選択部246は、S1-MMEインタフェースおよびS1-Uインタフェースをセットアップするために、接続すべき交換局MMEおよびゲートウェイ装置GWを選択する(S320)。以上の選択動作は、3GPP規格(例えば、3GPP TS 36.300 V11.1.0 (2012-03))に規定されている。そして、ノード選択部246は、S1-MMEインタフェースおよびS1-Uインタフェースのセットアップを実行する(S330)。なお、スモール基地局PhNBの基地局選択部346は、マクロ基地局eNBのノード選択部246とは異なり、交換局MMEおよびゲートウェイ装置GWを選択する機能(NAS Node Selection Function,NNSF)を有さない。
 以上のノード選択動作により、交換局MMEおよびゲートウェイ装置GWを選択する機能を有さないスモール基地局PhNBが、マクロ基地局eNBを介して交換局MMEおよびゲートウェイ装置GWと通信することが可能となる。
1(7). 通信識別子の割当て
 図4を参照して前述したように、本実施形態のベアラ(例えば、信号伝送ベアラX3-B)は、両端の通信識別子CIによって識別される。以下、通信識別子CIの割当てについて説明する。
 信号伝送ベアラX3-Bの確立の際、マクロ基地局eNBのベアラ制御部244は、確立すべき信号伝送ベアラX3-Bについて、そのマクロ基地局eNBを示す通信識別子CI-eを生成して、その信号伝送ベアラX3-Bの1つの端点に割り当てる。そして、ベアラ制御部244は、X3インタフェースを介して通信識別子CI-eをスモール基地局PhNBに送信する。他方、スモール基地局PhNBのベアラ制御部344は、確立すべき信号伝送ベアラX3-Bについて、そのスモール基地局PhNBを示す通信識別子CI-Pを生成して、その信号伝送ベアラX3-Bのもう1つの端点に割り当てる。そして、ベアラ制御部344は、X3インタフェースを介して通信識別子CI-Pをマクロ基地局eNBに送信する。
 マクロ基地局eNBのベアラ制御部244は、スモール基地局PhNBから受信した信号伝送ベアラX3-Bの通信識別子CI-Pを受信して記憶部230に記憶する。他方、スモール基地局PhNBのベアラ制御部344は、マクロ基地局eNBから受信した信号伝送ベアラX3-Bの通信識別子CI-eを受信して記憶部330に記憶する。
 以上の識別子割当て動作により、マクロ基地局eNBがスモール基地局PhNB側の通信識別子CI-Pを認識するとともに、スモール基地局PhNBがマクロ基地局eNB側の通信識別子CI-eを認識する。結果として、通信識別子CI-eおよび通信識別子CI-Pにより識別される信号伝送ベアラX3-Bを用いた通信が可能となる。
1(8). 本実施形態の効果
 以上に説明した実施形態によれば、上下関係(階層関係)にあるマクロ基地局eNBとスモール基地局PhNBとが適切に接続され、ノード間の適切な通信が実現される。また、マクロ基地局eNBが制御プレーンおよびユーザプレーンにおける中継動作を実行するので、制御プレーンとユーザプレーンとを分離した無線通信システムCSが実現される。
2. 変形例
 以上の実施形態は多様に変形される。具体的な変形の態様を以下に例示する。以上の実施の形態および以下の例示から任意に選択された2以上の態様は、相互に矛盾しない限り適宜に併合され得る。
2(1). 変形例1
 マクロ基地局eNBとスモール基地局PhNBとは、有線により接続されてもよいし、無線により接続されてもよい。すなわち、X3インタフェース(X3信号伝送ベアラX3-B)は、有線接続により構成されてもよいし、無線接続により構成されてもよい。
2(2). 変形例2
 以上の実施形態では、スモール基地局PhNBがX2インタフェースを備える。しかし、スモール基地局PhNBがX2インタフェースを備えなくてもよい。すなわち、スモール基地局PhNBは、X2インタフェースを終端してもよいし、終端しなくてもよい。
2(3). 変形例3
 以上の実施形態では、スモール基地局PhNBがS1-Uインタフェースを備える。しかし、スモール基地局PhNBがS1-Uインタフェースを備えなくてもよい。
2(4). 変形例4
 各基地局(eNB,PhNB)が形成するセルの構成は任意である。図15に、セル構成の一例を示す。マクロ基地局eNBはその周囲にマクロセルC1を形成し、スモール基地局PhNBはその周囲にスモールセルC2を形成する。各セルCの中に各基地局のアンテナが模式的に示されている。作図の便宜上、マクロセルC1が示される平面とスモールセルC2が示される平面とが別個に描かれているが、実際には、同一の平面(地表等)上にマクロセルC1とスモールセルC2とが重畳され得る。セルCは、各基地局からの電波がユーザ装置UEに有効に到達する範囲である。したがって、ユーザ装置UEは、在圏するセルCに対応する基地局と無線通信を実行可能である。スモール基地局PhNBは、マクロ基地局eNBと比較して小規模であり無線送信能力(平均送信電力、最大送信電力等)が小さい。また、スモール基地局PhNBが無線通信に用いる周波数帯域(第2周波数帯域、例えば3.5GHz帯)は、マクロ基地局eNBが無線通信に用いる周波数帯域(第1周波数帯域、例えば2GHz帯)よりも周波数が高く、伝搬損失が大きい。したがって、スモールセルC2はマクロセルC1よりも面積が小さい。なお、マクロセルC1の面積とスモールセルC2の面積とが同等である構成も採用可能である。
2(5). 変形例5
 ユーザ装置UEは、各基地局(マクロ基地局eNB、スモール基地局PhNB)と無線通信が可能な任意の装置である。ユーザ装置UEは、例えば、フィーチャーフォンまたはスマートフォン等の携帯電話端末でもよく、デスクトップ型パーソナルコンピュータでもよく、ノート型パーソナルコンピュータでもよく、UMPC(Ultra-Mobile Personal Computer)でもよく、携帯用ゲーム機でもよく、その他の無線端末でもよい。
2(6). 変形例6
 無線通信システムCS内の各要素(ユーザ装置UE、マクロ基地局eNB、スモール基地局PhNB、交換局MME、ゲートウェイ装置GW)においてCPUが実行する各機能は、CPUの代わりに、ハードウェアで実行してもよいし、例えばFPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)等のプログラマブルロジックデバイスで実行してもよい。
 UE……ユーザ装置、110……無線通信部、120……記憶部、130……制御部、eNB……マクロ基地局、210……無線通信部、220……ネットワーク通信部、230……記憶部、240……制御部、242……送受信部、244……ベアラ制御部、246……ノード選択部、PhNB……スモール基地局、310……無線通信部、320……ネットワーク通信部、330……記憶部、340……制御部、342……送受信部、344……ベアラ制御部、346……基地局選択部、MME……交換局、400……交換局、410……ネットワーク通信部、420……制御部、GW……ゲートウェイ装置、510……ネットワーク通信部、520……外部ネットワーク通信部、530……制御部、CI(CI-e,CI-P)……通信識別子、CS……無線通信システム、IN……インターネット、NW……ネットワーク、S1-MME-B……S1-MME信号伝送ベアラ、S1-U-B……S1-U信号伝送ベアラ、SRB……制御無線ベアラ、X3-B……X3信号伝送ベアラ。
 

Claims (19)

  1.  上位基地局と、
     前記上位基地局の制御機能よりも限定的な制御機能を有する下位基地局と、
     前記上位基地局および前記下位基地局の各々と無線通信可能なユーザ装置と、
     交換局と、
     ゲートウェイ装置と
     を備える無線通信システムにおける前記上位基地局であり、
     前記下位基地局は、
     前記ユーザ装置との制御プレーン上の通信に用いられるインタフェースと、前記交換局との制御プレーン上の通信に用いられるインタフェースとのいずれをも有さず、
     前記上位基地局は、
     前記ユーザ装置との制御プレーン上の通信に用いられるUu-Cインタフェースと、
     前記下位基地局との、制御プレーン上の通信およびユーザプレーン上の通信のいずれか一方または双方に用いられるX3インタフェースと、
     前記交換局との制御プレーン上の通信に用いられるS1-MMEインタフェースと、
     前記X3インタフェースを介して前記下位基地局との送受信を実行する送受信部とを有する
     上位基地局。
  2.  前記送受信部は、
     前記交換局から送信される制御メッセージのうち、前記下位基地局を制御する下位基地局制御メッセージを、前記X3インタフェースを介して、前記下位基地局に中継する
     請求項1の上位基地局。
  3.  前記送受信部は、
     前記ゲートウェイ装置から送信されるユーザデータのうち、前記下位基地局と無線接続しているユーザ装置に対する下位ユーザデータを、前記X3インタフェースを介して、前記下位基地局に中継する
     請求項1の上位基地局。
  4.  前記送受信部は、
     前記交換局から送信される制御メッセージのうち、前記下位基地局と無線接続しているユーザ装置に対する下位ユーザ制御メッセージを、前記Uu-Cインタフェースを介して、前記ユーザ装置に直接的に送信する
     請求項1の上位基地局。
  5.  前記X3インタフェースは、ストリーム制御転送プロトコルに基づいて、当該X3インタフェースを介する前記制御メッセージの保証された送信を提供し、
     前記X3インタフェースを介して確立され、前記制御メッセージの送信に用いられるベアラを識別する2つの通信識別子が、前記上位基地局および前記下位基地局に対してそれぞれ設定される
     請求項1の上位基地局。
  6.  前記上位基地局は、2つの前記通信識別子の1つである第1通信識別子を当該上位基地局に割り当てる第1ベアラ制御部を備え、
     前記下位基地局は、2つの前記通信識別子の他の1つである第2通信識別子を当該下位基地局に割り当てる第2ベアラ制御部を備え、
     前記第1ベアラ制御部は、
     前記X3インタフェースを介して前記第1通信識別子を前記下位基地局に送信し、前記第2ベアラ制御部から前記X3インタフェースを介して受信した前記第2通信識別子を記憶する
     請求項5の上位基地局。
  7.  前記X3インタフェースは、有線接続により構成される
     請求項1の上位基地局。
  8.  前記X3インタフェースは、無線接続により構成される
     請求項1の上位基地局。
  9.  上位基地局と、
     前記上位基地局の制御機能よりも限定的な制御機能を有する下位基地局と、
     前記上位基地局および前記下位基地局の各々と無線通信可能なユーザ装置と、
     交換局と、
     ゲートウェイ装置と
     を備える無線通信システムにおける前記下位基地局であり、
     前記ユーザ装置とのユーザプレーン上の通信に用いられるPhUuインタフェースと、
     前記上位基地局との、制御プレーン上の通信およびユーザプレーン上の通信のいずれか一方または双方に用いられるX3インタフェースとを備え、
     前記X3インタフェースを介して前記上位基地局から送信される制御メッセージにより動作が制御される
     下位基地局。
  10.  さらに、前記ゲートウェイ装置とのユーザプレーン上の通信に用いられるS1-Uインタフェースを備える
     請求項9の下位基地局。
  11.  さらに、他の下位基地局との制御プレーン上およびユーザプレーン上の通信に用いられるX2インタフェースを備える
     請求項9の下位基地局。
  12.  複数の前記交換局から少なくとも1つを選択する機能を有さない
     請求項9の下位基地局。
  13.  複数の前記ゲートウェイ装置から少なくとも1つを選択する機能を有さない
     請求項9の下位基地局。
  14.  前記X3インタフェースをセットアップする際に、複数の前記上位基地局から少なくとも1つを選択する基地局選択部を有する
     請求項9の下位基地局。
  15.  前記X3インタフェースは、ストリーム制御転送プロトコルに基づいて、当該X3インタフェースを介する前記制御メッセージの保証された送信を提供し、
     前記X3インタフェースを介して確立され、前記制御メッセージの送信に用いられるベアラを識別する2つの通信識別子が、前記上位基地局および前記下位基地局に対してそれぞれ設定される
     請求項9の下位基地局。
  16.  前記上位基地局は、2つの前記通信識別子の1つである第1通信識別子を当該上位基地局に割り当てる第1ベアラ制御部を備え、
     前記下位基地局は、2つの前記通信識別子の他の1つである第2通信識別子を当該下位基地局に割り当てる第2ベアラ制御部を備え、
     前記第2ベアラ制御部は、
     前記X3インタフェースを介して前記第2通信識別子を前記上位基地局に送信し、前記第1ベアラ制御部から前記X3インタフェースを介して受信した前記第1通信識別子を記憶する
     請求項15の下位基地局。
  17.  前記X3インタフェースは、有線接続により構成される
     請求項9の下位基地局。
  18.  前記X3インタフェースは、無線接続により構成される
     請求項9の下位基地局。
  19.  上位基地局と、
     前記上位基地局の制御機能よりも限定的な制御機能を有する下位基地局と、
     前記上位基地局および前記下位基地局の各々と無線通信可能なユーザ装置と、
     交換局と、
     ゲートウェイ装置とを備え、
     前記上位基地局は、
     前記ユーザ装置との制御プレーン上の通信に用いられるUu-Cインタフェースと、
     前記下位基地局との、制御プレーン上の通信およびユーザプレーン上の通信のいずれか一方または双方に用いられるX3インタフェースと、
     前記交換局との制御プレーン上の通信に用いられるS1-MMEインタフェースと、
     前記X3インタフェースを介して前記下位基地局との送受信を実行する送受信部とを有し、
     前記下位基地局は、
     前記ユーザ装置との制御プレーン上の通信に用いられるインタフェースと、前記交換局との制御プレーン上の通信に用いられるインタフェースとのいずれをも有さず、かつ、
     前記ユーザ装置とのユーザプレーン上の通信に用いられるPhUuインタフェースと、
     前記上位基地局との、制御プレーン上の通信およびユーザプレーン上の通信のいずれか一方または双方に用いられるX3インタフェースとを備え、
     前記上位基地局から送信される制御メッセージにより動作が制御される
     無線通信システム。
     
PCT/JP2013/068740 2013-01-09 2013-07-09 上位基地局、下位基地局、および無線通信システム WO2014109082A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13870791.4A EP2945458A4 (en) 2013-01-09 2013-07-09 HOST BASE STATION, LOWER BASE STATION, AND WIRELESS COMMUNICATION SYSTEM
US14/759,253 US9775052B2 (en) 2013-01-09 2013-07-09 Superordinate base station, subordinate base station, and radio communication system
CN201380070012.5A CN104919890B (zh) 2013-01-09 2013-07-09 上位基站、下位基站及无线通信系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013001813A JP5878134B2 (ja) 2013-01-09 2013-01-09 上位基地局、下位基地局、および無線通信システム
JP2013-001813 2013-01-09

Publications (1)

Publication Number Publication Date
WO2014109082A1 true WO2014109082A1 (ja) 2014-07-17

Family

ID=51166749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068740 WO2014109082A1 (ja) 2013-01-09 2013-07-09 上位基地局、下位基地局、および無線通信システム

Country Status (5)

Country Link
US (1) US9775052B2 (ja)
EP (1) EP2945458A4 (ja)
JP (1) JP5878134B2 (ja)
CN (1) CN104919890B (ja)
WO (1) WO2014109082A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107251601A (zh) * 2015-04-17 2017-10-13 联发科技(新加坡)私人有限公司 用于异构网络多连接的方法以及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105766052B9 (zh) 2014-10-23 2020-05-19 华为技术有限公司 接口建立方法及装置
CN107454677B (zh) * 2016-05-31 2021-07-16 上海诺基亚贝尔股份有限公司 通信方法、用户设备和基站
JP6632768B2 (ja) * 2017-06-27 2020-01-22 三菱電機株式会社 下位無線基地局、上位無線基地局および無線基地局システム
CN110278618B (zh) * 2018-03-13 2021-06-18 大唐移动通信设备有限公司 一种数据处理方法和系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5039592B2 (ja) * 2008-02-06 2012-10-03 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び移動通信システム
US8942192B2 (en) * 2009-09-15 2015-01-27 Qualcomm Incorporated Methods and apparatus for subframe interlacing in heterogeneous networks
DE112010004294T5 (de) * 2009-11-06 2013-01-03 Sumitomo Electric Industries, Ltd. Kommunikationssystem; Kompaktbasisstation und Kommunikationsverfahren
EP2549800A4 (en) * 2010-03-17 2015-07-08 Fujitsu Ltd WIRELESS COMMUNICATION SYSTEM, COMMUNICATION CONTROL PROCEDURE, BASIC STATION AND MOBILE TERMINAL
CN101883365B (zh) * 2010-06-28 2012-11-07 华为技术有限公司 一种控制用户设备的方法和装置
CN102469557B (zh) * 2010-11-15 2014-08-13 华为技术有限公司 接入基站方法、基站和用户设备
JP5758351B2 (ja) 2012-06-22 2015-08-05 株式会社Nttドコモ 無線通信システム
JP5758354B2 (ja) * 2012-07-04 2015-08-05 株式会社Nttドコモ 無線通信システム
EP3220685B1 (en) * 2012-08-02 2020-05-27 Telefonaktiebolaget LM Ericsson (publ) Base stations and methods for handling over a sub-set of bearers to enable multiple connectivity of a terminal towards several base stations
US9750069B2 (en) * 2012-10-05 2017-08-29 Nec Corporation Radio communication system, base station, mobile station, communication control method, and computer readable medium
DE112012006984B4 (de) * 2012-10-08 2023-09-14 Avago Technologies International Sales Pte. Ltd. Verfahren und Vorrichtung zur Verwaltung von Dualverbindungserrichtung
JP2014096664A (ja) 2012-11-08 2014-05-22 Ntt Docomo Inc 無線通信システムおよび通信制御方法
US9173147B2 (en) * 2013-01-18 2015-10-27 Blackberry Limited Communicating data using a local wireless access network node

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN", 3GPP TS 36.300, March 2012 (2012-03-01)
3GPP TR 36.806 V9.0.0, March 2010 (2010-03-01), pages 16 - 18, XP050402561 *
3GPP TS 23.002 V12.1.0, December 2012 (2012-12-01), pages 48 - 52, XP050691030 *
NTT DOCOMO, INC.: "Requirements,Candidate Solutions & Technology Roadmap for LTE Rel-12 Onward", 3GPP WORKSHOP ON RELEASE 12 AND ONWARDS RWS-120010, XP050655098 *
See also references of EP2945458A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107251601A (zh) * 2015-04-17 2017-10-13 联发科技(新加坡)私人有限公司 用于异构网络多连接的方法以及装置
EP3228112A4 (en) * 2015-04-17 2018-06-27 MediaTek Singapore Pte Ltd. Methods and apparatus for multiple connectivity in heterogeneous network
US10771985B2 (en) 2015-04-17 2020-09-08 Hfi Innovation Inc. Methods and apparatus for multiple connectivity in heterogeneous network
CN107251601B (zh) * 2015-04-17 2021-07-20 寰发股份有限公司 用于异构网络多连接的方法以及装置

Also Published As

Publication number Publication date
CN104919890B (zh) 2019-03-15
US20150358832A1 (en) 2015-12-10
US9775052B2 (en) 2017-09-26
JP5878134B2 (ja) 2016-03-08
JP2014135595A (ja) 2014-07-24
EP2945458A1 (en) 2015-11-18
CN104919890A (zh) 2015-09-16
EP2945458A4 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
US9843966B2 (en) Radio communication system
US10342061B2 (en) Radio communication system and control method
US20150312810A1 (en) Radio communication system and communication control method
JP5770139B2 (ja) 無線通信システム、サービングゲートウェイ、ネットワークおよび論理経路確立方法
US9775180B2 (en) Radio communication system
US9344922B2 (en) Radio communication system and base station
JP5878134B2 (ja) 上位基地局、下位基地局、および無線通信システム
WO2014073301A1 (ja) 無線通信システムおよび通信制御方法
JP2014007500A5 (ja)
US20180063761A1 (en) Wireless communications system, wireless communications apparatus, and handover control method
WO2020067361A1 (ja) システム、制御プレーン機器、ユーザプレーン機器、及びプログラム
US10149194B2 (en) Method, apparatus, and system for establishing bearer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14759253

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013870791

Country of ref document: EP