WO2014108052A1 - 隧道式双循环真空冶炼炉及其方法 - Google Patents

隧道式双循环真空冶炼炉及其方法 Download PDF

Info

Publication number
WO2014108052A1
WO2014108052A1 PCT/CN2014/070156 CN2014070156W WO2014108052A1 WO 2014108052 A1 WO2014108052 A1 WO 2014108052A1 CN 2014070156 W CN2014070156 W CN 2014070156W WO 2014108052 A1 WO2014108052 A1 WO 2014108052A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel
silicon
reaction chamber
melting furnace
vacuum
Prior art date
Application number
PCT/CN2014/070156
Other languages
English (en)
French (fr)
Inventor
李恒杰
Original Assignee
九洲资源控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 九洲资源控股集团有限公司 filed Critical 九洲资源控股集团有限公司
Priority to CA2856790A priority Critical patent/CA2856790A1/en
Publication of WO2014108052A1 publication Critical patent/WO2014108052A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/04Combinations of furnaces of kinds not covered by a single preceding main group arranged for associated working
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/04Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces of multiple-hearth type; of multiple-chamber type; Combinations of hearth-type furnaces

Definitions

  • the present invention relates to an apparatus for reducing magnesium and a method thereof, and mainly to a tunnel type double cycle vacuum smelting furnace and a method thereof.
  • the traditional method of producing magnesium metal is mainly the Pijiang method.
  • the method uses ferrosilicon as a reducing agent, and uses a horizontal furnace.
  • the furnace body is built on the ground by refractory bricks.
  • a plurality of reduction tanks are arranged transversely in the furnace, and the reduction tank is filled with pellets of reaction materials, with coal or Gas or oil is used as fuel, and the combustion heating adopts manual loading and unloading method to reduce the radiant heat of the outer tank reverberating furnace to heat the reduction tank first, and then the heat radiation is transmitted from the reduction tank to the reaction material pellets in the tank, and then the pellets are mutually relayed.
  • the heat transfer is a kind of peripheral heating.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a tunnel type double cycle vacuum smelting furnace and method therefor.
  • This tunnel type double cycle vacuum smelting furnace includes
  • a tunnel type vacuum reaction chamber having a reaction zone therein, an induction coil in the reaction zone, and a heat preservation zone around the reaction zone;
  • a molten silicon furnace A is connected to the side of the tunnel vacuum reaction chamber through the heat insulating pipe A, and has a refractory layer and a heat insulating layer therein, and an induction coil is arranged in the refractory layer, and the silicon liquid in the silicon melting furnace A is insulated. Tube A flows into the tunnel vacuum reaction chamber Reaction area
  • a molten silicon furnace B is connected to the other side of the tunnel vacuum reaction chamber through the heat insulating tube B, and has a refractory layer and a heat insulating layer therein, and an induction coil is arranged in the refractory layer, and the silicon liquid in the silicon melting furnace B is The heat insulating tube B flows into the reaction area of the tunnel vacuum reaction chamber;
  • a crystallizer comprising one or more disposed above the tunnel vacuum reaction chamber, the lower end of which is in communication with a reaction zone of the tunnel vacuum reaction chamber for collecting crystals;
  • a forging white powder and an inert gas blowing pipe are respectively connected to the heat insulating pipe A and the heat insulating pipe B, and the forged white powder in the pipe and the inert gas are reacted together with the silicon liquid into the tunnel vacuum reaction chamber;
  • a tiltable working platform is fixed with a tunnel vacuum reaction chamber, a silicon melting furnace A and a molten silicon furnace B, and a rotating shaft support is arranged on the bottom surface of the center of gravity, and a top cylinder A and a bottom cylinder are respectively arranged on the bottom surfaces thereof
  • the working platform is alternately inclined, and the silicon liquid in the molten silicon furnace A and the molten silicon furnace B is alternately circulated to complete the continuous reaction operation;
  • a water pump is connected to the crystallizer.
  • the tunnel vacuum reaction chamber is a steel casing, and the inner liner is provided with a refractory layer, a heat insulation layer and an induction coil.
  • the crystallizer comprises a cooling sleeve, and a conical crystal sleeve is arranged in the cooling sleeve, and a cooling water inlet, a cooling water outlet and a vacuuming port are respectively arranged on the cooling jacket, wherein the cooling water inlet water pump, the cooling water The water outlet is connected to the water tank, and the vacuum pump is connected to the vacuum pump, and the end cover is also sealed on the cooling sleeve port.
  • the upper edges of the molten silicon furnace A and the molten silicon furnace B are respectively provided with upper discharge ports.
  • the bottom surfaces of the molten silicon furnace A and the molten silicon furnace B are respectively provided with lower drain ports.
  • the heat insulating tube A and the heat insulating tube B are provided with an insulating layer.
  • the space height of the reaction zone of the tunnel vacuum reaction chamber is higher than the space of the silicon furnace A and the silicon furnace B
  • the method of implementing the invention is:
  • the silicon liquid in the silicon melting furnace A or the molten silicon furnace B flows into the tunnel vacuum reaction chamber through the heat insulating tube A or the heat insulating tube B; the forging white powder and the inert gas are blown into the blowing tube, and the forged white powder enters together with the inert gas and the silicon liquid.
  • the magnesium metal gas is attached to the tapered crystal sleeve and cooled to form a magnesium crystal body
  • the silicon liquid in the fused silica furnace A and the fused silica furnace B reaches equilibrium, the silicon liquid no longer flows, at this time, by alternately raising the top cylinder A and the top cylinder B, the silicon in the fused silica furnace A and the fused silica furnace B
  • the liquid is alternately circulated, and the continuous reaction and continuous formation of magnesium crystals can be realized by continuously blowing the forged white powder and the inert gas.
  • the invention has the beneficial effects: 1.
  • the tunnel type production mode can be adopted, the reaction chamber can be long, the number of reduction tanks is large, the continuous uninterrupted operation is realized, the heat utilization rate is improved, the production efficiency is improved, and the energy consumption is reduced.
  • Figure 1 is a front elevational view of the overall structure of the present invention.
  • Figure 2 is a plan view of Figure 1.
  • Figure 3 is a cross-sectional view taken along line B-B of Figure 2;
  • Figure 4 is a cross-sectional view taken along line C-C of Figure 2;
  • Figure 5 is a side view of Figure 1, showing the work platform, the top cylinder A, the top cylinder B and the pivot fulcrum.
  • Figure 6 is a perspective view of Figure 1 (excluding the work platform).
  • the reduction furnace mainly comprises a tunnel type vacuum reaction chamber 8, a silicon melting furnace (A) 2, a silicon melting furnace (B) 6, a crystallizer 4, a forged white powder and an inert gas blowing pipe 3, and a working platform 12.
  • the composition, the molten silicon furnace (A) 2 and the molten silicon furnace (B) 6 are connected to the tunnel vacuum reaction chamber 8 through the heat insulating tube (A) 11 and the heat insulating tube (B) 5, and the plurality of crystallizers 4 are installed in the tunnel.
  • the crystallizer 4 is provided with a cooling jacket 41 and a tapered crystal sleeve 42.
  • the crystallizer 4 is provided with a cooling water inlet 43 and is cooled.
  • the water outlet 45, the vacuum port 44, the cooling water inlet 43 are connected to the water pump (not shown), the cooling water outlet 45 is connected to the water tank (not shown), and the vacuum port 44 is connected to the vacuum pump (not shown) Draw), the whitening powder and the inert gas are respectively connected to the heat insulating tube (A) 11 and the heat insulating tube (B) 5 Injection pipe 3.
  • the tunnel type vacuum reaction chamber 8 is a steel casing, and has a reaction area 83 therein.
  • the reaction area 83 is lined with a refractory layer 82, and a heat insulating layer 81 is disposed on the periphery, and an induction coil is disposed between the refractory layer 82 and the heat insulating layer 81. twenty one.
  • the fused silica furnace (A) 2 and the fused silica furnace (B) 6 are provided with a refractory layer 82 and a heat insulating layer 81, and the refractory layer 82 is provided with an induction coil 21, a fused silica furnace (A) 2 and a fused silica furnace ( B) 6 is provided with an upper discharge slag port 22, a bottom surface is provided with a lower discharge slag port 23, an upper discharge slag port 22 for discharging scum, and a lower discharge slag port 23 for discharging heavy slag.
  • the heat insulating tube (A) 11 and the heat insulating tube (B) 5 are provided with an insulating layer 111 outside.
  • Tunnel vacuum reaction chamber 8 molten silicon furnace (A) 2
  • molten silicon furnace (B) 6 is equivalent to an intermediate frequency furnace.
  • the forged white powder reacts with the silicon liquid to form a magnesium metal gas, and the magnesium metal gas enters the crystallizer, and is cooled and crystallized into a magnesium crystal, and the silicon liquid enters the tunnel through the tunnel vacuum reaction chamber.
  • a fused silica furnace when the silicon liquid in the fused silica furnace A and the fused silica furnace B reaches equilibrium, the silicon liquid no longer flows.
  • the fused silica furnace A and the molten silicon The silicon liquid in the furnace B alternately circulates, and at the same time, the forging white powder and the inert gas are continuously blown, thereby achieving continuous reaction and continuously generating magnesium crystals.
  • a pressure relief valve 13 is installed on both sides of the top surface of the tunnel type vacuum reaction chamber. When the pressure in the tunnel vacuum reaction chamber exceeds 5 kg, the safety valve 13 is automatically opened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Silicon Compounds (AREA)
  • Furnace Details (AREA)

Abstract

一种隧道式双循环真空冶炼炉及其方法,其中炉包括:隧道式真空反应室,其内设有反应区域,在反应区域内设有感应线圈,在反应区域周围设有保温区域;熔硅炉A和B,连接在隧道式真空反应室两侧;多个结晶体,设置在隧道式真空反应室上面,用于收集结晶体;锻白粉与惰性气体喷吹管,其内的锻白粉与惰性气体随硅液进入隧道式真空反应室一起进行反应;作业平台,可交替倾斜,其上固定有隧道式真空反应室、熔硅炉A和B;真空泵和水泵,与结晶器连接。

Description

隧道式双循环真空冶炼炉及其方法
技术领域
本发明涉及还原镁的设备及其方法,主要是指一种隧道式双循环真空冶炼炉及其方 法。
背景技术
传统金属镁的生产方法主要是皮江法。 该方法采用硅铁为还原剂, 使用卧式炉, 炉 体由耐火砖搭砌在地面上, 在炉内横置分布有若干还原罐, 在还原罐内装填有反应物料 球团, 以煤或气或油为燃料, 燃烧加热采用人工装卸加料方式, 以还原罐外反射炉辐射 热先加热还原罐, 再由还原罐将热量辐射传递给罐内反应物料球团, 再由球团互相接力 式传递热量, 是一种外围式加热。
传统还原炉存在反应速率慢、能耗高、污染大、使用寿命短等问题, 而且极不安全, 点火时经常会发生爆燃或爆炸事故。
发明内容
本发明的目的是为了克服现有技术存在的缺陷,提供一种隧道式双循环真空冶炼炉 及其方法。
实现本发明炉的技术方案是: 这种隧道式双循环真空冶炼炉包括
一隧道式真空反应室, 其内设有反应区域, 在反应区域内设有感应线圈, 在反应区 域周围设有保温区域;
一熔硅炉 A,通过保温管 A连接在隧道式真空反应室一侧,其内设有耐火层和隔热 层, 在耐火层内设有感应线圈, 熔硅炉 A内的硅液经保温管 A流进隧道式真空反应室 的反应区域;
一熔硅炉 B, 通过保温管 B连接在隧道式真空反应室另一侧, 其内设有耐火层和隔 热层, 在耐火层内设有感应线圈, 熔硅炉 B 内的硅液经保温管 B流进隧道式真空反应 室的反应区域;
一结晶器, 包括一个或多个, 设置在隧道式真空反应室上面, 其下端与隧道式真空 反应室的反应区域相通, 用于收集结晶体;
一锻白粉与惰性气体喷吹管, 分别连接在保温管 A和保温管 B上, 该管内的锻白 粉与惰性气体随硅液进入隧道式真空反应室一起进行反应;
一可倾斜作业平台, 其上固定有隧道式真空反应室、熔硅炉 A和熔硅炉 B, 在其重 心点的底面设有转轴支座,在其两端底面分别设有顶缸 A和顶缸 B,在顶缸 A和顶缸 B 作用下, 作业平台交替倾斜, 实现熔硅炉 A和熔硅炉 B内的硅液交替循环流动, 完成 连续反应作业;
一真空泵, 与结晶器连接;
一水泵, 与结晶器连接。
该炉技术方案还包括:
所述隧道式真空反应室为钢质壳体, 其内衬依此设有耐火层和隔热层及感应线圈。 所述结晶器包括冷却套, 在冷却套内设有锥形结晶套, 在冷却套上分别设有冷却水 进水口、 冷却水出水口、 抽真空口, 其中冷却水进水口接水泵, 冷却水出水口接水箱, 抽真空口接真空泵, 在冷却套端口上还封盖有端盖。
所述熔硅炉 A和熔硅炉 B的上沿口分别设有上排渣口。
所述熔硅炉 A和熔硅炉 B的底面分别设有下排渣口。
所述保温管 A和保温管 B外设有保温层。
所述隧道式真空反应室的反应区域的空间高度高于熔硅炉 A和熔硅炉 B的空间高 实现本发明的方法是:
将融化的硅液倒入熔硅炉 A或熔硅炉 B内;
熔硅炉 A或熔硅炉 B内的硅液经保温管 A或保温管 B流进隧道式真空反应室; 向喷吹管吹入锻白粉与惰性气体,锻白粉与惰性气体与硅液一起进入隧道式真空反 应室;
加热隧道式真空反应室至温度 1260— 1900度并抽真空, 锻白粉与硅液反应生成金 属镁气体;
金属镁气体附着在锥形结晶套上, 经冷却形成镁结晶体;
当熔硅炉 A和熔硅炉 B内的硅液达到平衡时, 硅液不再流动, 这时通过交替升高 顶缸 A和顶缸 B, 熔硅炉 A和熔硅炉 B内的硅液就交替循环流动, 同时连续吹入锻白 粉与惰性气体, 就可实现连续反应、 连续生成镁结晶体。
本发明具有的有益效果: 1.采用隧道式生产方式, 反应室可以很长, 还原罐数量多, 实现了循环连续不间断作业, 提高了热能利用率, 提高了生产效率, 降低了能耗。 附图说明
图 1是本发明的整体结构主视图。
图 2是图 1的俯视图。
图 3是图 2的 B— B剖视图。
图 4是图 2的 C一 C剖视图。
图 5是图 1的侧视图, 表示作业平台、 顶缸 A、 顶缸 B和转轴支点。
图 6是图 1的立体图 (不包括作业平台)。
图中: 1顶缸 A、 2熔硅炉 A、 21感应线圈、 22上排渣口、 23下排渣口、 3锻白粉与惰 性气体喷吹管、 4结晶器、 41冷却套、 42锥形结晶套、 43冷却水进水口、 44抽真空口、 45冷却水出水口、 5保温管 B、 6熔硅炉 B、 7顶缸 B、 8隧道式真空反应罐、 81隔热层、 82耐火层、 83反应区域、 9转轴支座、 10转轴、 11保温管 A、 111保温层、 12作业平 台、 13安全阀。 具体实施方式
下面结合附图对本发明作进一步说明:
实施例: 镁还原炉
如图 1所示, 本还原炉主要由隧道式真空反应室 8、熔硅炉(A) 2、熔硅炉(B) 6、 结晶器 4、锻白粉与惰性气体喷吹管 3、作业平台 12组成, 熔硅炉(A) 2和熔硅炉(B) 6通过保温管 (A) 11和保温管 (B) 5连接在隧道式真空反应室 8两侧, 多个结晶器 4 安装在隧道式真空反应室 8上面, 隧道式真空反应室 8、 熔硅炉 (A) 2、 熔硅炉 (B ) 6 固定在作业平台 12上面, 作业平台 12底面重心位置设置有转轴支座 9, 作业平台 12 底面两端分别连接顶缸(A) 1和顶缸(B) 7, 结晶器 4内设有冷却套 41和锥形结晶套 42, 结晶器 4上设有冷却水进水口 43、 冷却水出水口 45、 抽真空口 44, 冷却水进水口 43接水泵(图中未画出), 冷却水出水口 45接水箱(图中未画出), 抽真空口 44接真空 泵 (图中未画出), 在保温管 (A) 11和保温管 (B) 5上分别连接有锻白粉与惰性气体 喷吹管 3。
隧道式真空反应室 8为钢质壳体, 其内设有反应区域 83, 反应区域 83衬有耐火层 82, 外围设有隔热层 81, 耐火层 82与隔热层 81之间是感应线圈 21。
熔硅炉 (A) 2和熔硅炉 (B) 6内设有耐火层 82和隔热层 81, 在耐火层 82内设有 感应线圈 21, 熔硅炉 (A) 2和熔硅炉 (B) 6的沿口设有上排渣口 22, 底面设有下排 渣口 23, 上排渣口 22用于排走浮渣, 下排渣口 23用于排走重渣。
保温管 (A) 11和保温管 (B ) 5外面设有保温层 111。
隧道式真空反应室 8、 熔硅炉 (A) 2、 熔硅炉 (B) 6相当于中频炉。
工作原理 将融化的温度在 1300度左右的按比例配制好的硅液倒入熔硅炉 A或熔硅炉 B内, 对硅液继续加热, 硅液通过保温管 A或保温管 B流进隧道式真空反应室, 在流经保温 管 A或保温管 B时, 经锻白粉与惰性气体喷吹管吹入锻白粉与惰性气体, 锻白粉与惰 性气体与硅液一起进入隧道式真空反应室, 隧道式真空反应室继续加热至 1600度左右, 并抽真空, 这时锻白粉与硅液反应生成金属镁气体, 金属镁气体进入结晶器, 经冷却结 晶成镁结晶体, 硅液经隧道式真空反应室进入另一个熔硅炉, 当熔硅炉 A和熔硅炉 B 内的硅液达到平衡时, 硅液不再流动, 这时通过交替升高顶缸 A和顶缸 B, 熔硅炉 A 和熔硅炉 B内的硅液就交替循环流动, 同时连续吹入锻白粉与惰性气体,就可实现连续 反应、 连续生成镁结晶体。 在隧道式真空反应室顶面两侧安装有压力安全阀 13,当隧道式真空反应室内压力超 过 5公斤时, 安全阀 13自动打开。

Claims

权 利 要 求
1、 一种隧道式双循环真空冶炼炉, 其特征是包括
一隧道式真空反应室, 其内设有反应区域, 在反应区域内设有感应线圈, 在反应区 域周围设有保温区域;
一熔硅炉 A,通过保温管 A连接在隧道式真空反应室一侧,其内设有耐火层和隔热 层, 在耐火层内设有感应线圈, 熔硅炉 A内的硅液经保温管 A流进隧道式真空反应室 的反应区域;
一熔硅炉 B, 通过保温管 B连接在隧道式真空反应室另一侧, 其内设有耐火层和隔 热层, 在耐火层内设有感应线圈, 熔硅炉 B 内的硅液经保温管 B流进隧道式真空反应 室的反应区域;
一结晶器, 包括一个或多个, 设置在隧道式真空反应室上面, 其下端与隧道式真空 反应室的反应区域相通, 用于收集结晶体;
一锻白粉与惰性气体喷吹管, 分别连接在保温管 A和保温管 B上, 该管内的锻白 粉与惰性气体随硅液进入隧道式真空反应室一起进行反应;
一可倾斜作业平台, 其上固定有隧道式真空反应室、熔硅炉 A和熔硅炉 B, 在其重 心点的底面设有转轴支座,在其两端底面分别设有顶缸 A和顶缸 B,在顶缸 A和顶缸 B 作用下, 作业平台交替倾斜, 实现熔硅炉 A和熔硅炉 B内的硅液交替循环流动, 完成 连续反应作业;
一真空泵, 与结晶器连接;
一水泵, 与结晶器连接。
2、 如权利要求 1所述的隧道式双循环真空冶炼炉, 其特征是所述隧道式真空反应 室为钢质壳体, 其内衬依此设有耐火层和隔热层及感应线圈。
3、 如权利要求 1所述的隧道式双循环真空冶炼炉, 其特征是所述结晶器包括冷却 套, 在冷却套内设有锥形结晶套, 在冷却套上分别设有冷却水进水口、 冷却水出水口、 抽真空口, 其中冷却水进水口接水泵, 冷却水出水口接水箱, 抽真空口接真空泵, 在冷 却套端口上还封盖有端盖。
4、 如权利要求 1所述的隧道式双循环真空冶炼炉, 其特征是所述熔硅炉 A和熔硅 炉 B的上沿口分别设有上排渣口; 熔硅炉 A和熔硅炉 B的底面分别设有下排渣口。
5、 如权利要求 1所述的隧道式双循环真空冶炼炉, 其特征是所述保温管 A和保温 管 B外设有保温层。
6、 如权利要求 1所述的隧道式双循环真空冶炼炉, 其特征是所述隧道式真空反应 室的反应区域的空间高度高于熔硅炉 A和熔硅炉 B的空间高度。
7、 如权利要求 1所述的隧道式双循环真空冶炼炉, 其特征是所述隧道式真空反应 室上设有安全阀。
8、 实现权利要求 1 的隧道式双循环真空冶炼炉的镁还原方法, 其特征是包括下列 步骤:
将融化的硅液倒入熔硅炉 A或熔硅炉 B内;
熔硅炉 A或熔硅炉 B内的硅液经保温管 A或保温管 B流进隧道式真空反应室; 向喷吹管吹入锻白粉与惰性气体,锻白粉与惰性气体与硅液一起进入隧道式真空反 应室;
加热隧道式真空反应室至温度 1260— 1900度并抽真空, 锻白粉与硅液反应生成金 属镁气体;
金属镁气体附着在锥形结晶套上, 经冷却形成镁结晶体;
当熔硅炉 A和熔硅炉 B内的硅液达到平衡时,硅液不再流动,这时通过交替升高顶 缸 A和顶缸 B, 熔硅炉 A和熔硅炉 B内的硅液就交替循环流动, 同时连续吹入锻白粉与 惰性气体, 就可实现连续反应、 连续生成镁结晶体。
PCT/CN2014/070156 2013-01-09 2014-01-06 隧道式双循环真空冶炼炉及其方法 WO2014108052A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2856790A CA2856790A1 (en) 2013-01-09 2014-01-06 Tunnel type dual-cycle vacuum smelting furnace and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310007230.6A CN102994779B (zh) 2013-01-09 2013-01-09 隧道式双循环真空冶炼炉及其方法
CN2013100072306 2013-01-09

Publications (1)

Publication Number Publication Date
WO2014108052A1 true WO2014108052A1 (zh) 2014-07-17

Family

ID=47923884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070156 WO2014108052A1 (zh) 2013-01-09 2014-01-06 隧道式双循环真空冶炼炉及其方法

Country Status (3)

Country Link
CN (1) CN102994779B (zh)
CA (1) CA2856790A1 (zh)
WO (1) WO2014108052A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101497A (zh) * 2017-06-19 2017-08-29 中南大学 一种高低温双体真空热压烧结炉
CN113369099A (zh) * 2020-03-09 2021-09-10 株洲弗拉德科技有限公司 一种隧道式真空连续浸渍生产系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994779B (zh) * 2013-01-09 2017-03-01 九洲资源控股集团有限公司 隧道式双循环真空冶炼炉及其方法
CN106966393B (zh) * 2017-04-18 2019-03-19 中国药科大学 一种立式碳酸钠法活性炭活化炉系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228675A (ja) * 1993-02-04 1994-08-16 Ngk Insulators Ltd 金属ベリリウムペブル製造用電極の製造方法
CN1317383A (zh) * 2001-03-22 2001-10-17 上海交通大学 镁合金专用水平连铸机
CN1345982A (zh) * 2000-09-29 2002-04-24 于洪喜 内热法炼镁生产工艺及设备
CN101708538A (zh) * 2009-11-16 2010-05-19 王仁辉 高性能镁合金型坯连铸生产线
CN102994779A (zh) * 2013-01-09 2013-03-27 九洲资源控股集团有限公司 隧道式双循环真空冶炼炉及其方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228675A (ja) * 1993-02-04 1994-08-16 Ngk Insulators Ltd 金属ベリリウムペブル製造用電極の製造方法
CN1345982A (zh) * 2000-09-29 2002-04-24 于洪喜 内热法炼镁生产工艺及设备
CN1317383A (zh) * 2001-03-22 2001-10-17 上海交通大学 镁合金专用水平连铸机
CN101708538A (zh) * 2009-11-16 2010-05-19 王仁辉 高性能镁合金型坯连铸生产线
CN102994779A (zh) * 2013-01-09 2013-03-27 九洲资源控股集团有限公司 隧道式双循环真空冶炼炉及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107101497A (zh) * 2017-06-19 2017-08-29 中南大学 一种高低温双体真空热压烧结炉
CN113369099A (zh) * 2020-03-09 2021-09-10 株洲弗拉德科技有限公司 一种隧道式真空连续浸渍生产系统

Also Published As

Publication number Publication date
CN102994779A (zh) 2013-03-27
CN102994779B (zh) 2017-03-01
CA2856790A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
CN201942729U (zh) 一种半连续真空感应加热镁还原炉
CN103147120B (zh) 一种高温合金的定向凝固装置
CN101748293B (zh) 镁合金纯净化熔炼设备
CN103215461B (zh) 一种用于生产海绵钛的15吨倒u型联合装置及生产工艺
CN101999005B (zh) 一种真空环流熔态硅热法炼镁的方法及其设备
WO2014108052A1 (zh) 隧道式双循环真空冶炼炉及其方法
CN106705649A (zh) 一种工业用真空冶炼炉
CN101706205A (zh) 压流式镁合金熔炼保温炉
CN102618732B (zh) 铝液连续多级精炼除气保持炉
CN103951162A (zh) 一种平板玻璃熔窑池壁易侵蚀部位冷却装置
CN209745007U (zh) 一种连续式铝合金集中熔化炉
WO2017193704A1 (zh) 冶金炉
CN105018740B (zh) 电磁感应加热熔融还原金属镁真空还原炉
CN110255510A (zh) 燃气加热合成锰系氮化物的方法
CN205927098U (zh) 一种钢包保温内衬结构
CN201575697U (zh) 压流式镁合金熔炼保温炉
CN203687585U (zh) 竖式连续铝熔炼炉
CN105716420A (zh) 一种用于制备新型铝材的搅拌式反应釜
CN107020356A (zh) 三流φ160mm紫铜/黄铜水平连续铸造机组
CN205897841U (zh) 一种废铜冶金熔炼炉
CN107243623A (zh) 一种带有真空层的钢包
CN201704354U (zh) 单管加热循环脱气装置
CN106643151A (zh) 熔锌保温炉
CN206160721U (zh) 一种用于连铸铜铝复合材料的密闭式铜熔化炉
CN206997760U (zh) 一种带有真空层的钢包

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2856790

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14737640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 15/09/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 14737640

Country of ref document: EP

Kind code of ref document: A1