WO2014107941A1 - 微试样蠕变、蠕变疲劳试验系统及试验方法 - Google Patents

微试样蠕变、蠕变疲劳试验系统及试验方法 Download PDF

Info

Publication number
WO2014107941A1
WO2014107941A1 PCT/CN2013/075628 CN2013075628W WO2014107941A1 WO 2014107941 A1 WO2014107941 A1 WO 2014107941A1 CN 2013075628 W CN2013075628 W CN 2013075628W WO 2014107941 A1 WO2014107941 A1 WO 2014107941A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
support rod
creep
quartz tube
sample
Prior art date
Application number
PCT/CN2013/075628
Other languages
English (en)
French (fr)
Inventor
轩福贞
黄毓晖
郑益斌
涂善东
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Publication of WO2014107941A1 publication Critical patent/WO2014107941A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/54Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0071Creep
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means

Definitions

  • the invention relates to a micro-sample creep, creep fatigue test system and test method. Background technique
  • the material performance evaluation of in-service equipment is mainly non-destructive testing and micro-sample testing.
  • the current non-destructive testing technology mainly tests the defects of materials
  • the micro-sample test is mainly used for the mechanical properties of the materials.
  • GB/T2039-1997 Metal Tensile Creep and Durable Test Method” has a uniform standard for uniaxial tensile creep test, but the sample size is large and cannot meet the requirements for testing the sampling of in-service equipment.
  • the technical problem to be solved by the present invention is to overcome the defects of the prior art equipment that can not take into account the micro tensile specimen creep test and the microbending sample creep test, and provide a micro specimen creep and creep fatigue.
  • the present invention solves the above technical problems by the following technical solutions:
  • a micro-sample creep and creep fatigue test system characterized in that the micro-sample creep and creep fatigue test system comprises a host frame, a high temperature furnace, a servo motor loading device, a distance measuring device, a force measuring device , a cooling system, a clamping mechanism, a quartz tube, a gas supply device, a computer control system, and a data acquisition system, wherein
  • the mainframe frame includes a base, an upper beam, a middle beam and two uprights;
  • the servo motor loading device is disposed on the base of the main frame, the upper end of which passes through the middle beam, and cooperates with a guiding sleeve nested on the middle beam;
  • the force measuring device is connected to the servo motor loading device and disposed above the servo motor loading device;
  • the distance measuring device is fixed on the middle beam of the main frame, and the sensing head is sleeved between the force measuring device and the cooling system;
  • the cooling system is disposed above the force measuring device, and the cooling system is provided by the water tank to provide circulating water for cooling;
  • the clamping mechanism is disposed above the cooling system, and includes a lower support rod, a clamp kit, and an upper support rod, the clamp kit is disposed in the quartz tube, and the lower end of the upper support rod and the clamp kit thread Connected to and embedded in the upper end of the quartz tube, the upper end of the upper support rod is connected to a positioning mechanism disposed on the upper beam, and the upper end of the lower support rod is screwed to the clamp kit and embedded in The lower end of the quartz tube;
  • the fixture kit is a tensile clamp kit, a three-point bending fixture kit, a four-point bending fixture kit, or a small punching fixture kit;
  • the clamp kit is provided with a plurality of thermocouples connected to the temperature controller, wherein the temperature controller is used to adjust the temperature of the high temperature furnace;
  • the quartz tube is nested and connected to the high temperature furnace, and both ends thereof penetrate the high temperature furnace; the gas supply device transports gas through the inlet pipe to the clamping mechanism and the quartz tube Within the space.
  • the micro-sample comprises a micro-tensile sample and a micro-bend sample
  • the micro-bend sample comprises a micro three-point bending sample, a micro four-point bending sample and a micro punching sample, wherein The ends of the microtensile specimen are each provided with a shoulder.
  • the three-point bending fixture kit, the four-point bending fixture kit, and the small punching fixture kit are provided with at least one air hole, wherein
  • the tensile clamp kit includes two collets, each of the collets each including a front mold and a rear mold that are detachably coupled together, and the front mold and the rear mold are each provided with a micro sample.
  • a groove of the shoulder the two chucks are respectively screwed with the upper support rod and the lower support rod, and the design of the shoulder and the groove can avoid the stress generated by the clamp clamping, and the shoulder Also limited to the groove, not easy to slide and affect the measurement;
  • the three-point bending clamp kit includes a positioning sleeve provided with a positioning hole at the top, a base disposed under the positioning sleeve, and a single-head pressing rod having a pressing head, the cross-sectional size of the pressing head
  • the shape is the same as the size and shape of the positioning hole, the pressing head passes through the positioning hole, and is in contact with a micro sample placed on the base, and the base and the lower support rod are screwed, The single-head pressing rod and the upper support rod are screwed together;
  • the four-point bending fixture set includes a positioning sleeve provided with two positioning holes at the top, a base disposed under the positioning sleeve, and a double-headed pressing rod having two indenters, the cross-head of the indenter
  • the size of the cross section is the same as the size and shape of the positioning hole, the indenter passes through the positioning hole, and is in contact with a micro sample placed on the base, the base and the lower support rod Threaded connection, the double-headed pressure bar and the upper support rod are screwed;
  • the small punching jig kit includes a positioning sleeve provided with a positioning hole at the top, a base disposed under the positioning sleeve, a pressure ball and a single-head pressing rod having a pressing head, the pressure head
  • the cross-sectional shape and shape are the same as the size and shape of the positioning hole, the indenter passes through the positioning hole, and is in contact with the pressure ball placed on the micro-sample, the base and the lower support
  • the rod is threaded, and the single-head strut and the upper support rod are screwed.
  • the air supply device includes a gas cylinder or a steam generating system connected to the intake pipe, and the air inlet pipe is provided with a flow meter and a flow valve for controlling a gas flow, the steam generating system
  • the system includes a nitrogen gas cylinder, a water tank connected to the nitrogen gas cylinder, and a steam generating device connected to the water tank, and the steam generating device is further connected to the air inlet pipe.
  • water contains oxygen
  • the generated water vapor is not saturated. It is difficult to meet the test conditions during the test.
  • the steam generation system can discharge oxygen in the water to generate saturated water vapor, and the structure is simple and the effect is obvious.
  • the portion of the quartz tube exposed to the high temperature furnace is covered with a heat insulating material. Since the quartz tube is partially exposed outside the high temperature furnace and partially in the high temperature furnace, it is easy to cause different temperature differences in the gas in the quartz tube, so that the test does not meet the test conditions, and the test detects an error. The data has a great influence on the accuracy of the test, and the insulation material (generally asbestos) can keep the temperature of the gas in the quartz tube constant, ensuring the accuracy of the test.
  • the insulation material generally asbestos
  • the distance measuring device is a distance measuring sensor
  • the force measuring device is a load cell
  • the data collecting system is configured to record the distance measuring sensor and the load cell Measured data.
  • the servo motor loading device comprises a servo motor, a timing belt, a speed reducer and a drawbar, wherein the servo motor drives the reducer through a timing belt, and the reducer drives the pull rod to perform axial movement, and the computer control system is configured to set Creep loading conditions.
  • a micro tensile sample creep test method characterized in that it comprises:
  • Step 1 Insert the two ends of the micro-sample into the grooves of the back mold of the chuck, close the front mold, bolt the front mold and the rear mold, attach the thermocouple to the clamp, and separate the chuck.
  • the upper support rod and the lower support rod are screwed together;
  • Step 2 The quartz tube is sleeved on the lower support rod from top to bottom, so that the gas cannot leak from the bottom; the sealing cover is sleeved into the upper support rod to form a closed space between the quartz tube and the clamping mechanism;
  • Step 3 Connect the upper support rod to the support rod pin on the upper beam;
  • Step 4 Zero the force measuring device, fine-tune the servo motor loading device, remove the pre-stress generated during the installation process, zero the distance measuring device, and set the limit distance and the limit force value;
  • Step 5 Start the gas supply device, adjust the flow valve to make the gas enter the quartz tube at a constant flow rate; when supplying steam, exhaust the oxygen in the water with nitrogen, and send it to the steam generator to generate saturated water vapor and send it into the quartz tube. ; Step 6. Turn on the high temperature furnace and raise the temperature;
  • Step 7 Set a computer control system to determine the loading mode and load capacity of the servo motor loading device
  • Step 8 The force measuring device and the distance measuring device obtain test data and record through the data acquisition system.
  • the upper support rod is connected to the support rod pin on the upper beam, and the thermal insulation material is coated on the quartz tube exposed at the high temperature furnace. Since the quartz tube is partially exposed outside the high temperature furnace and partially in the high temperature furnace, it is easy to cause different temperature differences in the gas in the quartz tube, so that the test does not meet the test conditions, and the test detects an error.
  • the data has a great influence on the accuracy of the test, and the insulation material (generally asbestos) can keep the temperature of the gas in the quartz tube constant, ensuring the accuracy of the test.
  • step 7 is: loading the servo motor loading device with a constant load, or loading a triangular waveform, a sinusoidal waveform or a square waveform alternating load.
  • the test is applied with a constant load force.
  • most of the cases are alternating load forces.
  • various alternating load forces such as triangular waves, sine waves, and square waves, the actual situation can be effectively simulated.
  • a microbending specimen creep test method characterized in that it comprises:
  • Step 1 Insert the micro sample into the fixture of the clamping mechanism, place the positioning sleeve on the fixture, and attach the thermocouple to the fixture;
  • Step 2 The quartz tube is sleeved on the lower support rod from top to bottom, so that the gas cannot leak from the bottom; the upper support rod is loaded into the quartz tube from top to bottom, so that a closed space is formed between the quartz tube and the clamping mechanism. ;
  • Step 3 Rotating the upper support rod, so that the pressure rod is embedded in the positioning sleeve, and the upper support rod is fixed on the upper beam;
  • Step 4 Zero the force measuring device, fine-tune the servo motor loading device, and move the lower support rod upward until the sample contacts the pressure rod, stop the distance measuring device, set the limit distance and the limit force value.
  • Step 5 Start the gas supply device, adjust the flow valve to make the gas enter the quartz tube at a constant flow rate; when supplying steam, exhaust the oxygen in the water with nitrogen, and send it to the steam generator to produce saturated water vapor to be sent to the quartz. Inside the tube; Step 6. Turn on the high temperature furnace and raise the temperature;
  • Step 7 Set a computer control system to determine the loading mode and load capacity of the servo motor loading device
  • Step 8 The force measuring device and the distance measuring device obtain test data and record through the data acquisition system.
  • the upper support bar is rotated, and the upper support bar is fixed on the upper beam after the pressure bar is embedded in the positioning sleeve, and the thermal insulation material is coated on the quartz tube exposed at the high temperature furnace. Since the quartz tube is partially exposed outside the high temperature furnace and partially in the high temperature furnace, it is easy to cause different temperature differences in the gas in the quartz tube, so that the test does not meet the test conditions, and the test detects an error.
  • the data has a great influence on the accuracy of the test, and the insulation material (generally asbestos) can keep the temperature of the gas in the quartz tube constant, ensuring the accuracy of the test.
  • step 7 is: loading the servo motor loading device with a constant load, or loading a triangular waveform, a sinusoidal waveform or a square waveform alternating load.
  • the test is applied with a constant load force.
  • most of the cases are alternating load forces.
  • various alternating load forces such as triangular waves, sine waves, and square waves, the actual situation can be effectively simulated.
  • the positive progress of the invention is that: through the application of the invention, two tests of the micro-sample tensile creep test and the micro-sample bending creep test can be carried out in one system, which is beneficial to the researcher to promote the test and the test. . DRAWINGS
  • Fig. 2 is a schematic view showing the connection of a quartz tube and a high temperature furnace according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural view of a stretching jig set according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural view of a three-point bending clamp kit according to Embodiment 3 of the present invention.
  • FIG. 5 is a four-point bending clamp kit structure according to Embodiment 4 of the present invention. detailed description
  • the micro-sample creep and creep fatigue test system of the present invention includes a gas cylinder 1, a nitrogen bottle 2, a valve 3, a water tank 4, a pressure gauge 5, a flow meter 6, a safety valve 7, a switch 8 , steam generator 9, water pump 10, base 11, AC servo motor 12, column 13, distance measuring sensor 14, load cell 15, main frame 16, cooling system 17, quartz tube 18, high temperature furnace 19, upper beam 20, Locking device 21, pin 22, upper support rod 23, clamping mechanism 24, clamp assembly 25, lower support rod 26, air inlet 27, middle beam 28, cooling water 29, temperature controller 30, equipment controller 31, Emergency stop switch 32, computer 33.
  • the main frame 16 is composed of a base 11, an upper beam 20, a middle beam 28 and two columns 13; the lower end of the AC servo motor 12 is fixed on the base 11, and the upper end passes through the middle beam 28, and the AC servo motor 12 drives the speed reducer through the timing belt.
  • the reducer drives the lead screw
  • the lead screw nut drives the lower support rod 26 to move axially through the pull tube to perform loading
  • the lower support rod 26 is used for connecting the pull tube and the load cell 15
  • the upper end of the AC servo motor 12 passes through the middle beam 28, cooperate with the guide sleeve disposed in the middle beam 28 to ensure the coaxiality
  • the distance measuring sensor 14 and the load cell 15 are connected with the computer 33 to perform test data recording, the load cell 15 and the AC servo
  • the motor 12 is connected, directly above it, and the distance measuring sensor 14 is fixed on the middle beam 28
  • the cooling system 17 is placed above the load cell 15, and the cooling system 17 is cooled by the circulating water provided by the water tank to avoid the heat of the high temperature furnace 19.
  • the clamping mechanism 24 is placed above the cooling system 17, through the quartz tube 18, the upper end is fixed to the main
  • the pins 22 on the upper cross member 20 of the machine frame 16 are connected, and the clamping mechanism 24 includes a lower support bar 26, a clamp set 25 and an upper support bar 23.
  • the high temperature furnace 19 is a split vertical high temperature furnace. During the test, it can be rotated and sleeved outside the quartz tube 18, and the temperature is measured by a thermocouple placed on the fixture set 25 in the quartz tube 18. Thereafter, the temperature controller adjusts, the high temperature furnace 19 is connected to the temperature controller 30 by wires, the thermocouple is connected to the temperature controller 30, and the high temperature furnace 19 is fixed to the column 13 of the main frame 16.
  • the quartz tube 18 is sealed at both ends by a sealing sleeve 46, and the quartz tube 18 is exposed to the portion of the high temperature furnace 19. Asbestos coating prevents local temperature imbalance and makes the test inaccurate.
  • the test uses other gases
  • the nitrogen in the nitrogen cylinder 2 is passed into the water tank 4 to exhaust the oxygen in the deionized water, and is passed to the steam generator 9, and the generated steam is controlled by the flow valve to control the flow rate, and finally passed through the intake pipe through the quartz.
  • the relatively closed space formed by the tube is introduced from the bottom of the quartz tube 18 and discharged from the top to form a relatively stable steam environment for studying the high temperature mechanical properties in a steam environment.
  • the clamp kit 25 of the present embodiment includes a front mold 37 and a rear mold 35.
  • the front and rear molds are connected by a hexagon socket bolt 36, and the rear mold 35 is threadedly connected to the lower support rod 26 or the upper support rod 23, and is micro-stretched.
  • the sample 34 is placed in the groove of the back mold 35 and fixed by the shoulder of the micro-tensile sample 34;
  • the high-temperature furnace 19 is a split-type high-temperature furnace which can be rotated and sleeved outside the quartz tube 18 during the test.
  • the temperature is measured by a temperature controller by a thermocouple placed in the quartz tube 18 and attached to the fixture set 25, and the temperature controller is regulated by a temperature controller.
  • the high temperature furnace 19 is connected to the temperature controller 30 by a wire, and the thermocouple is connected to the temperature controller 30. 19 is fixed to the column 13 of the main frame 16.
  • Step 1 Insert the two ends of the micro-tensile sample 34 into the grooves of the back mold 35 of the chuck, close the front mold 37, and connect the front mold 37 and the rear mold 35 with the hexagon socket bolts 36 to connect the thermocouple. Attached to the fixture, threading the collet with the upper support rod and the lower support rod, respectively;
  • Step 2 The quartz tube is sleeved on the lower support rod from top to bottom, so that the gas cannot leak from the bottom; the sealing cover is sleeved into the upper support rod to form a closed space between the quartz tube and the clamping mechanism;
  • Step 3 connecting the upper support rod and the support rod pin on the upper beam, and coating the quartz tube on the high temperature furnace with the heat insulating material;
  • Step 4 Zero the force measuring device, fine-tune the servo motor loading device, remove the pre-stress generated during the installation process, zero the distance measuring device, and set the limit distance and the limit force value;
  • Step 5 Start the gas supply device, adjust the flow valve to make the gas enter the quartz tube at a constant flow rate; when supplying steam, exhaust the oxygen in the water with nitrogen, and send it to the steam generator to generate saturated water vapor and send it into the quartz tube. ; Step 6. Turn on the high temperature furnace and raise the temperature;
  • Step 7 Let the servo motor loading device load a constant or alternating load force
  • Step 8 The force measuring device and the distance measuring device obtain test data and record through the data acquisition system.
  • the clamp kit 25 of the present embodiment is a three-point bending fixture kit, which can realize a theoretical model of three-point bending, has high precision, and can fully contact with ambient gas, as shown in FIG. 4, including The positioning sleeve 41, the single-head pressing rod 40, and the base 38.
  • the upper support rod is embedded in the upper end of the quartz tube and is screwed to the single-head pressing rod 40;
  • the lower support rod is embedded in the lower end of the quartz tube, and is screwed to the base 38, two
  • two A cylindrical roller 39 is embedded in the base 38 to form two fulcrums of the sample.
  • the base 38 is partially hollowed out between the two cylindrical rollers 39 to facilitate deformation of the sample.
  • the microbend sample 42 is placed on a cylindrical roller 39, and the ends are embedded in a jig of about 0.5 mm, and the wax is fixed.
  • the base 38 is internally threaded and connected to the lower support rod.
  • the outer side of the single-head presser 40 is partially cut off to facilitate cooperation with the positioning sleeve 41.
  • the positioning sleeve 41 is sleeved on the base 38, and the middle portion is recessed to fit the base 38 and to a certain height.
  • the positioning sleeve 41 has a small circular opening on the side and an inlet pipe 43 for facilitating the contact of the ambient gas with the microbend sample 42.
  • the positioning sleeve 41 is provided with a rectangular small hole in the middle to position the single-head pressing rod 40.
  • the single-head pressing rod 40 has a pressing head, which can be in contact with the micro-bending sample 42 through the small hole to ensure the single-head pressing rod 40 and micro The perpendicularity of the sample 42
  • Step 1 Insert the microbend sample 42 into the fixture of the clamping mechanism, place the positioning sleeve 41 on the clamp, and attach the thermocouple to the clamp;
  • Step 2 The quartz tube is sleeved on the lower support rod from top to bottom, so that the gas cannot leak from the bottom; the upper support rod is loaded into the quartz tube from top to bottom, so that a closed space is formed between the quartz tube and the clamping mechanism. ;
  • Step 3 connecting the upper support rod and the support rod pin on the upper beam, and coating the quartz tube on the high temperature furnace with the heat insulating material;
  • Step 4 Zero the force measuring device, fine-tune the servo motor loading device, and move the lower support rod upward Move to the sample and stop when the pressure bar is in contact, zero the distance measuring device, set the limit distance and the limit force value;
  • Step 5 start the air supply device, adjust the flow valve to make the gas enter the quartz tube at a constant flow rate.
  • steam When steam is supplied, the oxygen in the water is exhausted by nitrogen, and is passed to a steam generator to generate saturated steam to be sent into the quartz tube;
  • Step 6 Turn on the high temperature furnace and raise the temperature
  • Step 7 Let the servo motor loading device load a constant or alternating load force
  • Step 8 The force measuring device and the distance measuring device obtain test data and record through the data acquisition system.
  • This embodiment is basically the same as Embodiment 3 except that the fixture set is a four-point bending fixture set, and the structure is as shown in FIG.
  • the four-point bending fixture kit enables a four-point bending theoretical model with high precision and full contact with ambient gases.
  • the structure is basically the same as that of the three-point bending clamp kit, except that the double-head pressing rod 44 and the positioning sleeve 45 have two rectangular small holes in the middle of the four-point bending positioning sleeve 45, and the double-head pressing rod 44 has two pressing heads. .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种微试样蠕变、蠕变疲劳试验系统及试验方法,所述微试样蠕变、蠕变疲劳试验系统包括主机框架、高温炉、伺服电机加载装置、测距装置、测力装置、冷却系统、夹装机构、石英管、供气装置、计算机控制系统及数据采集系统。通过应用该试验系统,可以在一套系统中进行微拉伸试样蠕变试验和微弯曲试验蠕变试验两种试验,利用研究人员进行试验和试验的推广。

Description

微试样蠕变、 蠕变疲劳试验系统及试验方法 技术领域
本发明涉及一种微试样蠕变、 蠕变疲劳试验系统及试验方法。 背景技术
在火电、核电、石化和炼油等高能耗行业中,为了实现节能减排的目标, 需要提高温度、 压强等技术参数来提高资源的利用率, 从而对相关高温部件 提出了更高的要求。如何保证相关设备在高温和恶劣环境中的安全稳定成为 重大的研究课题。 在高温环境下, 在役设备主要的破坏形式是蠕变和疲劳, 但是在一些特定的工况下, 如蒸汽、 含氧较高的气体环境中, 载荷作用与氧 化作用存在着一定的交互影响, 从而影响在役设备的使用寿命和安全运行。 因此, 需要充分了解在役设备的蠕变氧化、 疲劳 -蠕变氧化间的交互作用, 从而准确有效的进行寿命评估。
目前, 在役设备的材料性能评估主要是无损检测和微试样试验。 但现在 的无损检测技术主要检验材料的缺陷,对于材料的力学性能主要采用微试样 试验。 GB/T2039-1997 《金属拉伸蠕变及持久试验方法》对单轴拉伸蠕变试 验有统一标准,但试样尺寸较大,无法满足对在役设备取样进行试验的要求。 涂善东和凌祥等人的发明实现了三点弯、 四点弯等不同类型的微弯曲试样蠕 变试验,但是要进行微拉伸试样蠕变试验和微弯曲试样蠕变试验需要两个不 同的试验系统才能实现, 成本高昂, 不通用, 不利于研究人员进行试验和试 验的推广。 发明内容
本发明要解决的技术问题是为了克服现有技术设备无法兼顾微拉伸试 样蠕变试验和微弯曲试样蠕变试验的缺陷, 提供一种微试样蠕变、 蠕变疲劳 试验系统、 一种微拉伸试样蠕变试验方法和一种微弯曲试样蠕变试验方法。 本发明是通过下述技术方案来解决上述技术问题:
一种微试样蠕变、 蠕变疲劳试验系统, 其特点在于, 所述微试样蠕变、 蠕变疲劳试验系统包括主机框架、 高温炉、 伺服电机加载装置、 测距装置、 测力装置、 冷却系统、 夹装机构、 石英管、 供气装置、 计算机控制系统及数 据采集系统, 其中,
所述主机框架包括底座、 一上横梁、 一中横梁和两根立柱;
所述伺服电机加载装置设置在所述主机框架底座上, 其上端穿过所述中 横梁, 且与一嵌套在所述中横梁上的导向套配合;
所述测力装置与所述伺服电机加载装置连接,且设置于所述伺服电机加 载装置的上方;
所述测距装置固定在所述主机框架的中横梁上,其传感头套于所述测力 装置和冷却系统之间;
所述冷却系统设置于测力装置上方,所述冷却系统由水箱提供循环水进 行冷却;
所述夹装机构设置于所述冷却系统上方, 包括下支撑杆、 夹具套件、 以 及上支撑杆, 所述夹具套件置于所述石英管内, 所述上支撑杆的下端与所述 夹具套件螺紋连接、 且嵌在所述石英管上端, 所述上支撑杆的上端与一设置 于所述上横梁上的定位机构连接,所述下支撑杆的上端与所述夹具套件螺紋 连接、 且嵌在所述石英管下端;
所述夹具套件为拉伸夹具套件、 三点弯曲夹具套件、 四点弯曲夹具套件 或小冲孔夹具套件;
所述夹具套件上设置有若干与温度控制器连接的热电偶,所述温度控制 器用于调节所述高温炉的温度;
所述石英管与所述高温炉嵌套连接, 且其两端穿透于所述高温炉; 所述供气装置通过进气管将气体输送到由所述夹装机构和所述石英管 构成的空间内。 较佳地, 微试样包括微拉伸试样和微弯曲试样, 所述微弯曲试样包括微 三点弯试样、 微四点弯试样和微小冲孔试样, 其中, 所述微拉伸试样的两端 各设置有一凸肩。
较佳地, 所述三点弯曲夹具套件、 四点弯曲夹具套件和小冲孔夹具套件 上设置有至少一气孔, 其中,
所述拉伸夹具套件包括两个夹头, 每一所述夹头各包括可拆卸连接在一 起的一前模和一后模,所述前模和后模均设置有一用于容纳微试样凸肩的凹 槽, 所述两夹头分别与所述上支撑杆和所述下支撑杆螺紋连接, 通过凸肩和 凹槽搭配的设计可以避免采用夹具夹持时产生的应力, 而凸肩也限位在凹槽 里, 不易滑动从而影响测量;
所述三点弯曲夹具套件包括一顶部设置有一定位孔的定位套、一设置于 所述定位套下方的基座和一具有一个压头的单头压杆,所述压头的横截面的 大小形状与所述定位孔的大小形状相同, 所述压头穿过所述定位孔, 并与置 于所述基座上的微试样接触, 所述基座和所述下支撑杆螺紋连接, 所述单头 压杆和所述上支撑杆螺紋连接;
所述四点弯曲夹具套件包括一顶部设置有两个定位孔的定位套、一设置 于所述定位套下方的基座和一具有两个压头的双头压杆,所述压头的横截面 的大小形状与所述定位孔的大小形状相同, 所述压头穿过所述定位孔, 并与 置于所述基座上的微试样接触, 所述基座和所述下支撑杆螺紋连接, 所述双 头压杆和所述上支撑杆螺紋连接;
所述小冲孔夹具套件包括一顶部设置有一定位孔的定位套、一设置于所 述定位套下方的基座、 一压球和一具有一个压头的单头压杆, 所述压头的横 截面的大小形状与所述定位孔的大小形状相同, 所述压头穿过所述定位孔, 并与置于微试样上的所述压球接触, 所述基座和所述下支撑杆螺紋连接, 所 述单头压杆和所述上支撑杆螺紋连接。
较佳地, 所述供气装置包括一与所述进气管连接的气瓶或蒸汽发生系 统, 所进气管设置有流量计和用于控制气体流量的流量阀, 所述蒸汽发生系 统包括一氮气气瓶、一与所述氮气气瓶连接的水箱和一与所述水箱连接的蒸 汽发生装置, 所述蒸汽发生装置还与所述进气管连接。 一般的水中含有氧, 产生的水蒸汽不饱和, 试验时很难符合试验条件, 所述蒸汽发生系统可以排 掉水中的氧, 产生饱和水蒸汽, 同时结构简单, 效果明显。
较佳地, 所述石英管露出于所述高温炉的部分覆盖有保温材料。 由于所 述石英管有部分露出于所述高温炉外, 而有部分处于所述高温炉中, 容易使 所述石英管内的气体产生不同温差, 这样使得试验不符合试验条件, 试验测 出了错误的数据,对试验的准确性产生很大的影响,而通过所述保温材料(一 般为石棉), 可以保持所述石英管内的气体温度恒定, 确保了试验的准确性。
较佳地, 所述测距装置为测距传感器, 所述测力装置为测力传感器, 均 与计算机控制系统相连, 所述数据采集系统用于记录所述测距传感器、 所述 测力传感器测量的数据。
较佳地,所述伺服电机加载装置包括伺服电机、同步带、减速机和拉杆, 所述伺服电机通过同步带带动减速机, 减速机带动拉杆进行轴向运动, 所述 计算机控制系统用于设置蠕变加载条件。
一种微拉伸试样蠕变试验方法, 其特点在于, 包括:
步骤 1、 将微试样的两端分别嵌入夹头的后模的凹槽内, 合上前模, 将 前模和后模用螺栓连接, 将热电偶贴在夹具上, 将夹头分别与上支撑杆和下 支撑杆螺紋连接;
步骤 2、 将石英管从上往下套在下支撑杆上, 使气体不能从底部漏出; 将密封盖套入上支撑杆, 使石英管与夹装机构之间形成封闭的空间;
步骤 3、 将上支撑杆与上横梁上的支撑杆销钉连接;
步骤 4、 将测力装置调零, 微调伺服电机加载装置, 卸掉安装过程中产 生的预应力, 将测距装置调零, 设定限位距离和限位力值;
步骤 5、启动供气装置,调节流量阀使气体以恒定的流速进入石英管内; 当供应蒸汽时, 用氮气将水中的氧排尽, 通入蒸汽发生器, 产生饱和的水蒸 汽送入石英管内; 步骤 6、 开启高温炉, 升温;
步骤 7、 设置计算机控制系统, 确定伺服电机加载装置的加载方式和加 载力值;
步骤 8、测力装置和测距装置获得试验数据,并通过数据采集系统记录。 较佳地, 步骤 3为: 将上支撑杆与上横梁上的支撑杆销钉连接, 在石英 管露出于高温炉处包覆上保温材料。 由于所述石英管有部分露出于所述高温 炉外, 而有部分处于所述高温炉中, 容易使所述石英管内的气体产生不同温 差, 这样使得试验不符合试验条件, 试验测出了错误的数据, 对试验的准确 性产生很大的影响, 而通过所述保温材料 (一般为石棉), 可以保持所述石 英管内的气体温度恒定, 确保了试验的准确性。
较佳地, 步骤 7为: 让伺服电机加载装置加载恒定载荷, 或者加载三角 波形、 正弦波形或方波形交变载荷。 一般的试验施加的都为恒定载荷力, 而 现实里, 多数情况为交变载荷力, 通过施加三角波、 正弦波、 方波等多种交 变载荷力, 可以有效地模拟现实情况来进行试验。
一种微弯曲试样蠕变试验方法, 其特点在于, 包括:
步骤 1、 将微试样嵌入夹装机构的夹具内, 将定位套套在夹具上, 将热 电偶贴在夹具上;
步骤 2、 将石英管从上往下套在下支撑杆上, 使气体不能从底部漏出; 将上支撑杆从上往下装入石英管中, 使石英管与夹装机构之间形成封闭的空 间;
步骤 3、 旋转上支撑杆, 使压杆嵌入定位套后将上支撑杆固定在上横梁 上;
步骤 4、 将测力装置调零, 微调伺服电机加载装置, 使下支撑杆向上移 动至试样与压杆接触时停止,将测距装置调零,设定限位距离和和限位力值; 步骤 5、启动供气装置,调节流量阀使气体以恒定的流速进入石英管内; 当供应蒸汽时, 用氮气将水中的氧排尽, 通入蒸汽发生器, 产生饱和的水蒸 汽送入石英管内; 步骤 6、 开启高温炉, 升温;
步骤 7、 设置计算机控制系统, 确定伺服电机加载装置的加载方式和加 载力值;
步骤 8、测力装置和测距装置获得试验数据,并通过数据采集系统记录。 较佳地, 步骤 3为: 旋转上支撑杆, 使压杆嵌入定位套后将上支撑杆固 定在上横梁上, 在石英管露出于高温炉处包覆上保温材料。 由于所述石英管 有部分露出于所述高温炉外, 而有部分处于所述高温炉中, 容易使所述石英 管内的气体产生不同温差, 这样使得试验不符合试验条件, 试验测出了错误 的数据, 对试验的准确性产生很大的影响, 而通过所述保温材料(一般为石 棉), 可以保持所述石英管内的气体温度恒定, 确保了试验的准确性。
较佳地, 步骤 7为: 让伺服电机加载装置加载恒定载荷, 或者加载三角 波形、 正弦波形或方波形交变载荷。 一般的试验施加的都为恒定载荷力, 而 现实里, 多数情况为交变载荷力, 通过施加三角波、 正弦波、 方波等多种交 变载荷力, 可以有效地模拟现实情况来进行试验。
本发明中, 上述优选条件在符合本领域常识的基础上可任意组合, 即得 本发明的各较佳实施例。
本发明的积极进步效果在于: 通过本发明的应用, 可以在一套系统中进 行微试样拉伸蠕变试验和微试样弯曲蠕变试验两种试验, 利于研究人员进行 试验和试验的推广。 附图说明
图 1为本发明实施例 1的微试样蠕变、 蠕变疲劳试验系统^
图 2为本发明实施例 1的石英管和高温炉连接示意图。
图 3为本发明实施例 2的拉伸夹具套件结构示意图。
图 4为本发明实施例 3的三点弯曲夹具套件结构示意图。
图 5为本发明实施例 4的四点弯曲夹具套件结构 ^ 具体实施方式
下面举出较佳实施例, 并结合附图来更清楚完整地说明本发明。
实施例 1
如图 1所示, 本发明的微试样蠕变、 蠕变疲劳试验系统, 包括气瓶 1, 氮气瓶 2, 阀门 3, 水箱 4, 压力表 5, 流量表 6, 安全阀 7, 开关 8, 蒸汽发 生器 9, 水泵 10, 底座 11, 交流伺服电机 12, 立柱 13, 测距传感器 14, 测 力传感器 15, 主机框架 16, 冷却系统 17, 石英管 18, 高温炉 19, 上横梁 20, 锁紧装置 21, 销钉 22, 上支撑杆 23, 夹装机构 24, 夹具套件 25, 下支 撑杆 26, 进气口 27, 中横梁 28, 冷却水 29, 温度控制器 30, 设备控制器 31, 急停开关 32, 计算机 33。
主机框架 16由底座 11、 上横梁 20、 中横梁 28以及两根立柱 13构成; 交流伺服电机 12下端固定在底座 11上,上端穿过中横梁 28, 交流伺服电机 12通过同步带带动减速机,减速机带动丝杠,丝杠螺母通过拉管带动下支撑 杆 26做轴向运动, 从而实施加载, 下支撑杆 26用于连接拉管和测力传感器 15,交流伺服电机 12上端穿过中横梁 28, 与设置在中横梁 28内的导向套相 配合, 以此来保证同轴度; 测距传感器 14和测力传感器 15与计算机 33相 联, 进行试验数据记录, 测力传感器 15与交流伺服电机 12连接, 置于其正 上方, 测距传感器 14固定在中横梁 28上; 冷却系统 17置于测力传感器 15 上方, 冷却系统 17由水箱提供循环水进行冷却, 避免将高温炉 19的热量传 递到传感器而影响其精度; 夹装机构 24置于冷却系统 17上方, 穿过石英管 18, 上端与固定在主机框架 16的上横梁 20上的销钉 22连接, 夹装机构 24 包括下支撑杆 26、 夹具套件 25以及上支撑杆 23。
如图 2所示, 高温炉 19为对开立式高温炉, 试验时, 可转动并套在石 英管 18外, 其温度由置于石英管 18内贴在夹具套件 25上的热电偶测量温 度后由温度控制器进行调节, 高温炉 19与温度控制器 30用导线相连, 热电 偶与温度控制器 30相连, 高温炉 19固定在主机框架 16的立柱 13上。
石英管 18两端由密封套 46密封,石英管 18露出于高温炉 19的部位用 石棉包覆, 防止局部温度不平衡, 使得试验不精确。
当试验用到使用其他气体时, 开启气瓶 1, 将气体充入石英管 18中。 当使用水蒸汽时, 将氮气瓶 2中的氮气通入水箱 4中排尽去离子水中的氧, 通入蒸汽发生器 9, 产生的蒸汽通过流量阀控制流量, 最后通过进气管通入 由石英管构成的相对密闭的空间, 由石英管 18底部通入, 从顶端排出, 构 成一个相对稳定的蒸汽环境, 用于研究在蒸汽环境下的高温力学性能。
实施例 2
如图 3所示, 本实施例夹具套件 25包括前模 37和后模 35, 前后模由 内六角螺栓 36连接,后模 35通过螺紋与下支撑杆 26或者上支撑杆 23连接, 微拉伸试样 34置于后模 35的凹槽内, 依靠微拉伸试样 34的凸肩固定; 高 温炉 19为对开立式高温炉, 试验时, 可转动并套在石英管 18外, 其温度由 置于石英管 18内贴在夹具套件 25上的热电偶测量温度后由温度控制器进行 调节, 高温炉 19与温度控制器 30用导线相连, 热电偶与温度控制器 30相 连, 高温炉 19固定在主机框架 16的立柱 13上。
本实施例进行微拉伸试样试验的步骤如下:
步骤 1、 将微拉伸试样 34的两端分别嵌入夹头的后模 35的凹槽内, 合 上前模 37, 将前模 37和后模 35用内六角螺栓 36连接, 将热电偶贴在夹具 上, 将夹头分别与上支撑杆和下支撑杆螺紋连接;
步骤 2、 将石英管从上往下套在下支撑杆上, 使气体不能从底部漏出; 将密封盖套入上支撑杆, 使石英管与夹装机构之间形成封闭的空间;
步骤 3、 将上支撑杆与上横梁上的支撑杆销钉连接, 在石英管露出于高 温炉处包覆上保温材料;
步骤 4、 将测力装置调零, 微调伺服电机加载装置, 卸掉安装过程中产 生的预应力, 将测距装置调零, 设定限位距离和限位力值;
步骤 5、启动供气装置,调节流量阀使气体以恒定的流速进入石英管内; 当供应蒸汽时, 用氮气将水中的氧排尽, 通入蒸汽发生器, 产生饱和的水蒸 汽送入石英管内; 步骤 6、 开启高温炉, 升温;
步骤 7、 让伺服电机加载装置加载恒定或交变载荷力;
步骤 8、测力装置和测距装置获得试验数据,并通过数据采集系统记录。 实施例 3
如图 4所示为本实施例的夹具套件 25,夹具套件 25为三点弯曲夹具套 件, 能够实现三点弯曲的理论模型, 精度高, 能与环境气体充分接触, 如图 4所示, 包括定位套 41、 单头压杆 40、 基座 38。 其中, 所述上支撑杆嵌在 所述石英管上端、 与单头压杆 40通过螺紋连接; 所述下支撑杆嵌在所述石 英管下端、 与所述基座 38通过螺紋连接, 两根圆柱形滚子 39嵌在基座 38 上, 形成试样的两个支点, 基座 38在两根圆柱形滚子 39之间有部分挖空, 利于试样变形。 微弯曲试样 42 置于圆柱形滚子 39上, 两端嵌入夹具约 0.5mm, 滴蜡固定。 基座 38开有内螺紋, 与下支撑杆连接。 单头压杆 40外 侧有部分削去, 方便与定位套 41配合。 定位套 41套在基座 38上, 中间部 分内凹, 可与基座 38配合, 并留有一定高度。 定位套 41侧面有开小圆孔和 进气管 43连接, 便于环境气体与微弯曲试样 42接触。 定位套 41中间开有 长方形小孔, 对单头压杆 40进行定位, 单头压杆 40具有一个压头, 可以 穿过小孔与微弯曲试样 42接触, 保证单头压杆 40与微弯曲试样 42的垂直 度。
本实施例进行微三点弯曲蠕变试验的步骤如下:
步骤 1、 将微弯曲试样 42嵌入夹装机构的夹具内, 将定位套 41套在夹 具上, 将热电偶贴在夹具上;
步骤 2、 将石英管从上往下套在下支撑杆上, 使气体不能从底部漏出; 将上支撑杆从上往下装入石英管中, 使石英管与夹装机构之间形成封闭的空 间;
步骤 3、 将上支撑杆与上横梁上的支撑杆销钉连接, 在石英管露出于高 温炉处包覆上保温材料;
步骤 4、 将测力装置调零, 微调伺服电机加载装置, 使下支撑杆向上移 动至试样与压杆接触时停止,将测距装置调零,设定限位距离和和限位力值; 步骤 5、启动供气装置,调节流量阀使气体以恒定的流速进入石英管内; 当供应蒸汽时, 用氮气将水中的氧排尽, 通入蒸汽发生器, 产生饱和的水蒸 汽送入石英管内;
步骤 6、 开启高温炉, 升温;
步骤 7、 让伺服电机加载装置加载恒定或交变载荷力;
步骤 8、测力装置和测距装置获得试验数据, 并通过数据采集系统记录。 实施例 4
本实施例与实施例 3 基本相同, 不同之处仅在于, 所述夹具套件为四 点弯曲夹具套件,结构如图 5 所示。四点弯曲夹具套件能够实现四点弯曲的 理论模型, 精度高, 能与环境气体充分接触。 与三点弯曲夹具套件结构基本 相同,不同之处在于双头压杆 44和定位套 45, 四点弯曲的定位套 45中间开 有两个长方形小孔, 双头压杆 44有两个压头。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理 解, 这些仅是举例说明, 本发明的保护范围是由所附权利要求书限定的。 本 领域的技术人员在不背离本发明的原理和实质的前提下, 可以对这些实施方 式做出多种变更或修改, 但这些变更和修改均落入本发明的保护范围。

Claims

权利要求
1、 一种微试样蠕变、 蠕变疲劳试验系统, 其特征在于, 所述微试样蠕 变、 蠕变疲劳试验系统包括主机框架、 高温炉、 伺服电机加载装置、 测距装 置、 测力装置、 冷却系统、 夹装机构、 石英管、 供气装置、 计算机控制系统 及数据采集系统, 其中,
所述主机框架包括底座、 一上横梁、 一中横梁和两根立柱;
所述伺服电机加载装置设置在所述主机框架底座上, 其上端穿过所述中 横梁, 且与一嵌套在所述中横梁上的导向套配合;
所述测力装置与所述伺服电机加载装置连接,且设置于所述伺服电机加 载装置的上方;
所述测距装置固定在所述主机框架的中横梁上,其传感头套于所述测力 装置和冷却系统之间;
所述冷却系统设置于测力装置上方,所述冷却系统由水箱提供循环水进 行冷却;
所述夹装机构设置于所述冷却系统上方, 包括下支撑杆、 用于夹持微试 样的夹具套件、 以及上支撑杆, 所述夹具套件置于所述石英管内, 所述上支 撑杆的下端与所述夹具套件螺紋连接、 且嵌在所述石英管上端, 所述上支撑 杆的上端与一设置于所述上横梁上的定位机构连接,所述下支撑杆的上端与 所述夹具套件螺紋连接、 且嵌在所述石英管下端;
所述夹具套件为拉伸夹具套件、 三点弯曲夹具套件、 四点弯曲夹具套件 或小冲孔夹具套件;
所述夹具套件上设置有若干与温度控制器连接的热电偶,所述温度控制 器用于调节所述高温炉的温度;
所述石英管与所述高温炉嵌套连接, 且其两端穿透于所述高温炉; 所述供气装置通过进气管将气体输送到由所述夹装机构和所述石英管 构成的空间内。
2、 如权利要求 1所述的微试样蠕变、 蠕变疲劳试验系统, 其特征在于, 微试样包括微拉伸试样和微弯曲试样, 所述微弯曲试样包括微三点弯试样、 微四点弯试样和微小冲孔试样, 其中, 所述微拉伸试样的两端各设置有一凸 肩。
3、如权利要求 1 所述的微试样蠕变、蠕变疲劳试验系统, 其特征在于, 所述三点弯曲夹具套件、四点弯曲夹具套件和小冲孔夹具套件上设置有至少 一气孔, 其中,
所述拉伸夹具套件包括两个夹头, 每一所述夹头各包括可拆卸连接在一 起的一前模和一后模,所述前模和后模均设置有一用于容纳微试样凸肩的凹 槽, 所述两夹头分别与所述上支撑杆和所述下支撑杆螺紋连接;
所述三点弯曲夹具套件包括一顶部设置有一定位孔的定位套、一设置于 所述定位套下方的基座和一具有一个压头的单头压杆,所述压头的横截面的 大小形状与所述定位孔的大小形状相同, 所述压头穿过所述定位孔, 并与置 于所述基座上的微试样接触, 所述基座和所述下支撑杆螺紋连接, 所述单头 压杆和所述上支撑杆螺紋连接;
所述四点弯曲夹具套件包括一顶部设置有两个定位孔的定位套、一设置 于所述定位套下方的基座和一具有两个压头的双头压杆,所述压头的横截面 的大小形状与所述定位孔的大小形状相同, 所述压头穿过所述定位孔, 并与 置于所述基座上的微试样接触, 所述基座和所述下支撑杆螺紋连接, 所述双 头压杆和所述上支撑杆螺紋连接;
所述小冲孔夹具套件包括一顶部设置有一定位孔的定位套、一设置于所 述定位套下方的基座、 一压球和一具有一个压头的单头压杆, 所述压头的横 截面的大小形状与所述定位孔的大小形状相同, 所述压头穿过所述定位孔, 并与置于微试样上的所述压球接触, 所述基座和所述下支撑杆螺紋连接, 所 述单头压杆和所述上支撑杆螺紋连接。
4、如权利要求 1 所述的微试样蠕变、蠕变疲劳试验系统, 其特征在于, 所述供气装置包括一与所述进气管连接的气瓶或蒸汽发生系统,所进气管设 置有流量计和用于控制气体流量的流量阀,所述蒸汽发生系统包括一氮气气 瓶、 一与所述氮气气瓶连接的水箱和一与所述水箱连接的蒸汽发生装置, 所 述蒸汽发生装置还与所述进气管连接。
5、如权利要求 1 所述的微试样蠕变、蠕变疲劳试验系统, 其特征在于, 所述石英管露出于所述高温炉的部分覆盖有保温材料。
6、 如权利要求 1-5 任意一项所述的微试样蠕变、 蠕变疲劳试验系统, 其特征在于, 所述测距装置为测距传感器, 所述测力装置为测力传感器, 均 与计算机控制系统相连, 所述数据采集系统用于记录所述测距传感器、 所述 测力传感器测量的数据。
7、 如权利要求 1-5 任意一项所述的微试样蠕变、 蠕变疲劳试验系统, 其特征在于,所述伺服电机加载装置包括伺服电机、同步带、减速机和拉杆, 所述伺服电机通过同步带带动减速机, 减速机带动拉杆进行轴向运动, 所述 计算机控制系统用于设置蠕变、 蠕变疲劳加载条件。
8、 一种微拉伸试样蠕变、 蠕变疲劳试验方法, 其特征在于, 包括: 步骤 1、 将微试样的两端分别嵌入夹头的后模的凹槽内, 合上前模, 将 前模和后模用螺栓连接, 将热电偶贴在夹具上, 将夹头分别与上支撑杆和下 支撑杆螺紋连接;
步骤 2、 将石英管从上往下套在下支撑杆上, 使气体不能从底部漏出; 将密封盖套入上支撑杆, 使石英管与夹装机构之间形成封闭的空间;
步骤 3、 将上支撑杆与上横梁上的支撑杆销钉连接;
步骤 4、 将测力装置调零, 微调伺服电机加载装置, 卸掉安装过程中产 生的预应力, 将测距装置调零, 设定限位距离和限位力值;
步骤 5、启动供气装置,调节流量阀使气体以恒定的流速进入石英管内; 当供应蒸汽时, 用氮气将水中的氧排尽, 通入蒸汽发生器, 产生饱和的水蒸 汽送入石英管内;
步骤 6、 开启高温炉, 升温;
步骤 7、 设置计算机控制系统, 确定伺服电机加载装置的加载方式和加 载力值;
步骤 8、测力装置和测距装置获得试验数据,并通过数据采集系统记录。
9、如权利要求 8所述的微拉伸试样蠕变试验方法, 其特征在于, 步骤 3 为: 将上支撑杆与上横梁上的支撑杆销钉连接, 在石英管露出于高温炉处包 覆上保温材料。
10、 如权利要求 8所述的微拉伸试样蠕变试验方法, 其特征在于, 步骤 7为: 让伺服电机加载装置加载恒定载荷, 或者加载三角波形、 正弦波形或 方波形交变载荷。
11、 一种微弯曲试样蠕变试验方法, 其特征在于, 包括:
步骤 1、 将微试样嵌入夹装机构的夹具内, 将定位套套在夹具上, 将热 电偶贴在夹具上;
步骤 2、 将石英管从上往下套在下支撑杆上, 使气体不能从底部漏出; 将上支撑杆从上往下装入石英管中, 使石英管与夹装机构之间形成封闭的空 间;
步骤 3、 旋转上支撑杆, 使压杆嵌入定位套后将上支撑杆固定在上横梁 上;
步骤 4、 将测力装置调零, 微调伺服电机加载装置, 使下支撑杆向上移 动至试样与压杆接触时停止,将测距装置调零,设定限位距离和和限位力值; 步骤 5、启动供气装置,调节流量阀使气体以恒定的流速进入石英管内; 当供应蒸汽时, 用氮气将水中的氧排尽, 通入蒸汽发生器, 产生饱和的水蒸 汽送入石英管内;
步骤 6、 开启高温炉, 升温;
步骤 7、 设置计算机控制系统, 确定伺服电机加载装置的加载方式和加 载力值;
步骤 8、测力装置和测距装置获得试验数据, 并通过数据采集系统记录。
12、 如权利要求 11所述的微弯曲试样蠕变试验方法, 其特征在于, 步 骤 3为: 旋转上支撑杆, 使压杆嵌入定位套后将上支撑杆固定在上横梁上, 在石英管露出于高温炉处包覆上保温材料。
13、 如权利要求 11所述的微弯曲试样蠕变试验方法, 其特征在于, 步 骤 7为: 让伺服电机加载装置加载恒定载荷, 或者加载三角波形、 正弦波形 或方波形交变载荷。
PCT/CN2013/075628 2013-01-11 2013-05-15 微试样蠕变、蠕变疲劳试验系统及试验方法 WO2014107941A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310011759.5 2013-01-11
CN2013100117595A CN103105336A (zh) 2013-01-11 2013-01-11 微试样蠕变、蠕变疲劳试验系统及试验方法

Publications (1)

Publication Number Publication Date
WO2014107941A1 true WO2014107941A1 (zh) 2014-07-17

Family

ID=48313354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075628 WO2014107941A1 (zh) 2013-01-11 2013-05-15 微试样蠕变、蠕变疲劳试验系统及试验方法

Country Status (2)

Country Link
CN (1) CN103105336A (zh)
WO (1) WO2014107941A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259048A (zh) * 2015-11-02 2016-01-20 上海交通大学 用于板料三点弯曲性能测试的实时检测装置及方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364262B (zh) * 2013-07-06 2016-06-01 郑州大学 一种聚合物环境应力开裂实验组合装置
CN103884603A (zh) * 2014-04-02 2014-06-25 华东理工大学 蠕变-疲劳裂纹扩展试验装置及相应的测试方法
CN104034600A (zh) * 2014-05-20 2014-09-10 北京航空航天大学 一种极高温环境下的疲劳裂纹扩展试验测试系统
CN103984374B (zh) * 2014-05-21 2016-05-04 中国原子能科学研究院 一种用于小冲杆试验方法的高温系统
CN104535430B (zh) * 2014-12-29 2017-04-12 浙江工业大学 一种单加热筒多功能蠕变松弛试验机
CN104964887B (zh) * 2015-06-10 2017-08-25 合肥通用机械研究院 一种高温过热水蒸气环境蠕变疲劳试验装置
CN105043897B (zh) * 2015-08-10 2018-03-30 北京航空航天大学 一种单晶硅小尺寸试件高温蠕变性能四点弯测试系统及方法
CN105334112B (zh) * 2015-09-24 2018-07-06 合肥通用机械研究院有限公司 一种高温真空可充气环境下蠕变疲劳实验装置
CN105372146A (zh) * 2015-12-22 2016-03-02 上海锅炉厂有限公司 应力作用下材料的高温氧化性能测试装置及测量方法
CN106053250B (zh) * 2016-05-31 2020-04-10 航天材料及工艺研究所 测量材料超高温弯曲弹性模量及断裂应变的装置及方法
CN105973693B (zh) * 2016-07-07 2017-12-22 华东理工大学 一种氧分压可控的蠕变疲劳性能测试系统
CN106680121B (zh) * 2016-12-23 2019-08-20 西南交通大学 含温控机构的同步辐射原位成像疲劳试验机及其试验方法
CN106885664A (zh) * 2017-02-24 2017-06-23 长春机械科学研究院有限公司 适用于高温真空环境的弯曲挠度测试方法及装置
CN107063848B (zh) * 2017-05-11 2023-05-12 大连理工大学 高温管内四点弯曲加载装置及其加载方法
CN108931440A (zh) * 2017-05-27 2018-12-04 核工业西南物理研究院 一种小样品单轴拉伸蠕变测试用夹具
CN107900202B (zh) * 2017-12-21 2023-10-27 安徽省华夏机床制造有限公司 一种锥筒形工件专用冲孔装置及其使用方法
CN110879129B (zh) * 2019-11-05 2021-06-01 昆明理工大学 一种测试闭环压力系统中管道变形对液体流量影响的装置
CN110954411A (zh) * 2019-11-17 2020-04-03 宁波诺丁汉大学 一种新型小试样微拉伸试验装置及其测试方法
CN113588446A (zh) * 2021-08-10 2021-11-02 中机试验装备股份有限公司 一种拉伸蠕变试验装置
CN114002083A (zh) * 2021-12-06 2022-02-01 福州大学 金属橡胶构件高温静载蠕变试验机及其工作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078365A (ja) * 2004-09-10 2006-03-23 Momose Kikai Sekkei Kk 引張試験機
CN1837797A (zh) * 2006-04-14 2006-09-27 南京工业大学 小冲孔蠕变试验系统
CN102042939A (zh) * 2010-10-29 2011-05-04 华东理工大学 微试样蠕变试验系统及试验方法
KR101104629B1 (ko) * 2011-11-03 2012-01-12 (주)케이엠넷 시편의 물성특성평가를 위한 크리프 측정시스템
CN102519803A (zh) * 2011-12-30 2012-06-27 华东理工大学 一种多头微型试样蠕变试验装置及测试方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2092097U (zh) * 1991-06-10 1992-01-01 西南交通大学 材料机械性能的微型试验装置
JP2006078397A (ja) * 2004-09-10 2006-03-23 Momose Kikai Sekkei Kk 低高温強度試験機
CN2731438Y (zh) * 2004-10-12 2005-10-05 南京工业大学 微型试样高温蠕变性能试验装置
CN201277929Y (zh) * 2008-08-18 2009-07-22 武汉钢铁(集团)公司 圆形台阶试样拉伸夹具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078365A (ja) * 2004-09-10 2006-03-23 Momose Kikai Sekkei Kk 引張試験機
CN1837797A (zh) * 2006-04-14 2006-09-27 南京工业大学 小冲孔蠕变试验系统
CN102042939A (zh) * 2010-10-29 2011-05-04 华东理工大学 微试样蠕变试验系统及试验方法
KR101104629B1 (ko) * 2011-11-03 2012-01-12 (주)케이엠넷 시편의 물성특성평가를 위한 크리프 측정시스템
CN102519803A (zh) * 2011-12-30 2012-06-27 华东理工大学 一种多头微型试样蠕变试验装置及测试方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259048A (zh) * 2015-11-02 2016-01-20 上海交通大学 用于板料三点弯曲性能测试的实时检测装置及方法

Also Published As

Publication number Publication date
CN103105336A (zh) 2013-05-15

Similar Documents

Publication Publication Date Title
WO2014107941A1 (zh) 微试样蠕变、蠕变疲劳试验系统及试验方法
CN102519803B (zh) 一种多头微型试样蠕变试验装置及测试方法
CN102042939B (zh) 微试样蠕变试验系统及试验方法
CN104374661B (zh) 一种高温高压原位复合微动磨损试验装置
CN109520857B (zh) 高通量小试样蠕变及蠕变裂纹扩展试验装置及其使用方法
CN111504800B (zh) 一种多功能微试样测试系统、方法、石油化工及核电设备
CN203908882U (zh) 一种核用锆合金管材蠕变性能专用测量装置
CN101187612A (zh) 小冲杆蠕变测试装置
CN110954411A (zh) 一种新型小试样微拉伸试验装置及其测试方法
CN203811481U (zh) 一种恒应力蠕变试验机
CN103606387B (zh) 一种核燃料元件芯体去除装置
CN103776702A (zh) 一种腐蚀及高温环境下的低周疲劳试验装置及方法
CN105890979A (zh) 用于复合载荷材料力学性能测试的预紧式机械装夹机构
CN205719760U (zh) 用于复合载荷材料力学性能测试的预紧式机械装夹机构
CN112595575A (zh) 高温熔盐腐蚀环境中多种力学性能测试的试验装置及方法
CN107966362B (zh) 一种金属板状试样动态充氢拉伸应力腐蚀试验装置
CN107505213B (zh) 一种新型小冲杆试验装置及其试验方法
CN110333145B (zh) 微型试样高温胀形测试装置及测试方法
CN111948077A (zh) 一种高温高压复合微动磨损试验装置
WO2016155088A1 (zh) 一种立式缸套活塞环摩擦磨损试验装置
CN109556954A (zh) 测试零部件在不同交变应力作用下断裂特征的疲劳试验机
CN116519471B (zh) 一种铅铋环境下的原位双轴环境系统
CN113514356B (zh) 一种电站锅炉受热面管道硬度检测装置及检测方法
CN114323991A (zh) 一种高温铅铋环境蠕变疲劳试验装置
CN216669588U (zh) 金属橡胶构件高温静载蠕变试验机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870492

Country of ref document: EP

Kind code of ref document: A1