WO2014107839A1 - 用于回传组网的装置 - Google Patents

用于回传组网的装置 Download PDF

Info

Publication number
WO2014107839A1
WO2014107839A1 PCT/CN2013/070210 CN2013070210W WO2014107839A1 WO 2014107839 A1 WO2014107839 A1 WO 2014107839A1 CN 2013070210 W CN2013070210 W CN 2013070210W WO 2014107839 A1 WO2014107839 A1 WO 2014107839A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
dial
plane
pointer
antenna
Prior art date
Application number
PCT/CN2013/070210
Other languages
English (en)
French (fr)
Inventor
蒲剑
岳勇
李宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380000063.0A priority Critical patent/CN103384940B/zh
Priority to PCT/CN2013/070210 priority patent/WO2014107839A1/zh
Publication of WO2014107839A1 publication Critical patent/WO2014107839A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the present invention relates to the field of communications and, more particularly, to an apparatus for backhauling a network. Background technique
  • the 3rd Generation Partnership Project proposes Long Term Evolution (LTE) technology to continuously improve Wireless network access capacity.
  • LTE Long Term Evolution
  • a small cell technology is proposed to improve access capacity and improve spectrum efficiency by deploying more base stations in hotspots.
  • small cells are usually deployed intensively. Generally, they are deployed along urban streets covering 50 ⁇ 300m, and 3 ⁇ 6m above the street level. Because of their outdoor deployment and in densely populated commercial areas, small cell and Backhaul devices are required to be small, low power, and camouflage. Due to the large deployment of small cells and the need to build in existing commercial areas, the construction of small cell backhaul networks through new laying of optical fibers is difficult, long-term, and costly. The most efficient and effective backhaul networking technology still uses wireless technology. . Currently, the backhaul networking technology of the millimeter wave 60 ⁇ 80 G frequency band is selected.
  • the backhaul networking requires at least 99.99% availability, and the Next Generation Mobil Network (“NGMN”) is recommended to be built into the ring to meet availability and backhaul capacity requirements.
  • NMMN Next Generation Mobil Network
  • the two ends of the link need to be powered on to perform field antenna swapping. Therefore, debugging and installation are difficult, and the network debugging period is long. Summary of the invention
  • the embodiment of the invention provides a device for backhauling the network, which can avoid the on-site antenna adjustment process.
  • an apparatus for backhauling a network comprising: a baseband unit 101; a first dial 102 located above the baseband unit 101; a first rotating shaft 103, the first rotating shaft 103 is perpendicular to the a plane of the first dial 102, the first rotating shaft 103 is rotatable relative to the baseband unit 101; a first panel antenna 104; a first millimeter wave front end unit 105, the first panel antenna 104 and the first millimeter wave front end Units 105 are coupled together and fixed to the first rotating shaft 103, the first The normal of the plane of the planar antenna 104 is perpendicular to the first rotating shaft 103.
  • the first pointer 106 is fixed to the first rotating shaft 103.
  • the first rotating shaft 103 rotates, the first planar antenna 104 is driven.
  • the first millimeter wave front end unit 105 and the first pointer 106 rotate, and the first pointer 106 indicates the direction angle of the first panel antenna 104 on the first dial 102.
  • the first pointer 106 is parallel or perpendicular to a normal to the plane of the first panel antenna 104.
  • the apparatus further includes: a second dial 112 located below the baseband unit 101, the second dial The plane of 112 is parallel to the plane of the first dial 102; the second shaft 113 is perpendicular to the plane of the second dial 112, and the second shaft 113 is rotatable relative to the baseband unit 101; a second panel antenna 114; a second millimeter wave front end unit 115, the second panel antenna 114 and the second millimeter wave front end unit 115 are coupled together and fixed on the second rotating shaft 113.
  • the second panel antenna 114 is planar.
  • the second axis 116 is fixed to the second rotating shaft 113.
  • the second rotating shaft 113 rotates, the second planar antenna 114 and the second millimeter wave are driven.
  • the front end unit 115 and the second pointer 116 rotate, and the second pointer 116 indicates the direction angle of the second panel antenna 114 on the second dial 112.
  • the second pointer 116 is parallel or perpendicular to the normal of the plane of the second panel antenna 114.
  • the apparatus further includes: a first radome 107 enclosing the first panel antenna 104 and the first millimeter The wave front end unit 105; the second radome 117 encloses the second panel antenna 114 and the second millimeter wave front end unit 115.
  • the device further includes: a bracket 121, the bracket 121 and The baseband unit 101 is connected.
  • the bracket 121 is a T-shaped bracket.
  • the T-shaped plane of the bracket 121 is parallel to the plane of the first dial 102.
  • the bracket 121 includes a first zero-degree indicator line 123 parallel to the zero-degree line on the first dial 102. Align the installation baselines during the backhaul networking.
  • the bracket 121 further includes a second zero degree indicator line 124, parallel to the zero degree line on the second dial 112, for aligning the mounting reference line when performing the backhaul networking.
  • the first zero degree indicator line 123 is parallel to the second zero degree indicator line 124.
  • the apparatus further includes: a mounting bracket 122, The device is mounted on a support rod.
  • the device for backhauling the network in the embodiment of the present invention by indicating the direction angle of the panel antenna on the dial, can rotate the direction angle of the antenna according to the pre-network survey design requirements during installation.
  • the value of the specified angle is used to implement the backhaul networking, so that the field antenna adjustment process can be avoided and the network construction efficiency can be improved.
  • 1 is a schematic structural diagram of an apparatus for backhauling a network according to an embodiment of the present invention.
  • 2 is a schematic block diagram of circuitry of an apparatus for backhauling a network in accordance with an embodiment of the present invention.
  • 3 is a schematic structural diagram of an apparatus for backhauling a network according to another embodiment of the present invention.
  • FIG. 4 is a partial enlarged view of the apparatus for backhauling networking of FIG. 3.
  • FIG. 5 is a schematic block diagram of circuitry of an apparatus for backhauling networking in accordance with another embodiment of the present invention.
  • Figure 6 is another partial enlarged view of the apparatus for backhauling network of Figure 3.
  • FIG. 7 is a schematic diagram of a planning and design of a backhaul networking according to an embodiment of the present invention.
  • FIG. 8 is a schematic illustration of a ground parallel line alignment tool in accordance with an embodiment of the present invention. detailed description
  • the technical solution of the embodiment of the present invention can be applied to various backhaul networking, for example, LTE small cell backhaul networking.
  • FIG. 1 is a schematic structural diagram of an apparatus for backhauling a network according to an embodiment of the present invention. As shown
  • the device includes:
  • the unit 101 rotates; the first panel antenna 104; the first millimeter wave front end unit 105, the first panel antenna 104 and the first millimeter wave front end unit 105 are coupled together and fixed on the first rotating shaft 103, the first flat panel
  • the normal of the plane of the antenna 104 is perpendicular to the first rotating shaft 103.
  • the first pointer 106 is fixed to the first rotating shaft 103. When the first rotating shaft 103 rotates, the first planar antenna 104 is driven.
  • the first millimeter wave front end unit 105 and the first pointer 106 rotate, and the first pointer 106 indicates the direction angle of the first panel antenna 104 on the first dial 102.
  • the pointer and the dial are used to indicate the direction angle of the panel antenna, so that the direction angle of the antenna of the device can be rotated to a predetermined angle value according to the network survey design requirement, so that it is not necessary to perform the installation after the device is installed.
  • the live antenna is reversed.
  • the means for backhauling the network employs a single antenna design. That is, the means for returning the network includes a baseband unit 101, a first dial 102, a first rotating shaft 103, a first panel antenna 104, a first millimeter wave front end unit 105, and a first pointer 106.
  • the first planar antenna 104 and the first millimeter wave front end unit 105 are fixed on the first rotating shaft 103.
  • the first rotating shaft 103 is rotatable relative to the baseband unit 101.
  • the first rotating shaft 103 is provided with a first pointer 106, and the first dial Above the baseband unit 101, for example, on the upper surface of the outer casing or structure of the baseband unit 101, embodiments of the present invention are not limited thereto, for example, in the case of having other support members above the baseband unit 101, the first moment The dial 102 can also be located on the upper surface of the support member.
  • the plane of the first panel antenna 104 is perpendicular to the plane of the first dial 102, and the first shaft 103 is perpendicular to the plane of the first dial 102.
  • the first shaft 103 drives the first The pointer 106 is rotated, and the direction angle of the first panel antenna 104 can be known by the angle indication of the first pointer 106 on the first dial 102.
  • the first pointer 106 is flat with the first panel antenna 104.
  • the normal of the face is parallel or perpendicular.
  • the angular relationship between the first pointer 106 and the normal of the plane of the first panel antenna 104 is not limited in the embodiment of the present invention, and other angle relationships are also included in the protection range of the present invention except for parallel or vertical.
  • first panel antenna 104 and the first millimeter wave front end unit 105 may be respectively fixed on the first rotating shaft 103, or the first millimeter wave front end unit 105 may be directly fixed on the first rotating shaft 103, and the first flat plate.
  • the antenna 104 is fixed to the first rotating shaft 103 by the first millimeter wave front end unit 105.
  • Figure 2 is a circuit block diagram of a device employing a single antenna design.
  • the baseband unit 101 (corresponding to the baseband processing and the intermediate frequency modulation part in FIG. 2) accesses the Ethernet service and the power supply and multiplexes and modulates the access service, and the modulated intermediate frequency signal is sent to the first millimeter wave front end unit. 105 (corresponding to the millimeter wave front end portion in Fig. 2).
  • the first millimeter wave front end unit 105 is connected to the baseband unit 101 through a through hole of a coaxial cable passing through the center of the first rotating shaft 103, and the baseband unit 101 is connected to the external power supply and Ethernet service through the connecting cable of the side wall. signal.
  • the device for the backhaul networking in the embodiment of the present invention by indicating the direction angle of the panel antenna on the dial, can rotate the direction angle of the antenna to a predetermined angle value according to the pre-network survey design requirements during installation.
  • the on-site antenna swapping process can be avoided, and the network construction efficiency is improved.
  • the device for backhauling the network adopts a dual antenna design, that is, the two-sided antenna is integrated in the device, so that the backhaul networking is implemented without installing two sets of devices back to back.
  • FIG. 3 is a schematic structural diagram of an apparatus for backhauling a network according to another embodiment of the present invention. 4 is a partial enlarged view of the apparatus for backhauling networking of FIG. 3.
  • the apparatus further includes: a second dial 112 located below the baseband unit 101, the plane of the second dial 112 being parallel to the plane of the first dial 102 a second rotating shaft 113, the second rotating shaft 113 is perpendicular to a plane of the second dial 112, the second rotating shaft 113 is rotatable relative to the baseband unit 101; a second panel antenna 114; a second millimeter wave front end unit 115, The second panel antenna 114 and the second millimeter wave front end unit 115 are coupled together and fixed on the second rotating shaft 113.
  • the normal of the plane of the second panel antenna 114 is perpendicular to the second rotating shaft 113.
  • the second pointer 116 The second pointer 116 is fixed on the second rotating shaft 113.
  • the second rotating shaft 113 rotates, the second planar antenna 114, the second millimeter wave front end unit 115 and the second pointer 116 are rotated.
  • Pointer 116 indicates the second on the second dial 112 The direction angle of the panel antenna 114.
  • the apparatus for backhauling the network includes a baseband unit 101, a first dial 102, a first rotating shaft 103, a first panel antenna 104, a first millimeter wave front end unit 105, The first pointer 106, the second dial 112, the second rotating shaft 113, the second panel antenna 114, the second millimeter wave front end unit 115, and the second pointer 116.
  • the first planar antenna 104 and the first millimeter wave front end unit 105 are fixed on the first rotating shaft 103, the first rotating shaft 103 is rotatable relative to the baseband unit 101, and the first rotating shaft 103 is provided with a first pointer 106, the first moment
  • the dial 102 is above the baseband unit 101.
  • the plane of the first panel antenna 104 is perpendicular to the plane of the first dial 102, and the first rotating shaft 103 is perpendicular to the plane of the first dial 102.
  • the first rotating shaft 103 drives the first
  • the pointer 106 is rotated, and the direction angle of the first panel antenna 104 can be known by the angle indication of the first pointer 106 on the first dial 102.
  • the second planar antenna 114 and the second millimeter wave front end unit 115 are fixed on the second rotating shaft 113.
  • the second rotating shaft 113 is rotatable relative to the baseband unit 101.
  • the second rotating shaft 113 is provided with a second pointer 116.
  • the second dial 112 is provided.
  • the second dial 112 may also be located on the lower surface of the support member.
  • the plane of the second dial 112 is parallel to the plane of the first dial 102.
  • the plane of the second panel antenna 114 is perpendicular to the plane of the second dial 112, and the second shaft 113 is perpendicular to the plane of the second dial 112.
  • the second shaft 113 drives the second pointer 116. Rotation, the direction angle of the second panel antenna 114 can be known by the angle indication of the second pointer 116 on the second dial 112.
  • the second pointer 116 is parallel or perpendicular to a normal of the plane of the second panel antenna 114.
  • the apparatus further includes: a first radome 107 enclosing the first planar antenna 104 and the first millimeter wave front end unit 105.
  • the first radome 107 is for protecting the first panel antenna 104 and the first millimeter wave front end unit 105.
  • the apparatus further includes: a second radome 117 enclosing the second planar antenna 114 and the second millimeter wave front end unit 115.
  • the second radome 117 is for protecting the second panel antenna 114 and the second millimeter wave front end unit 115.
  • the first radome 107 and the second radome 117 are cylindrical, that is, the entire device is an integrated cylindrical structure.
  • FIG. 5 is a circuit block diagram of an apparatus incorporating a two-sided antenna.
  • Baseband unit 101 (corresponding to FIG. 5 The baseband processing and the intermediate frequency modulation part) access the Ethernet service and the power supply and perform multiplexing and modulation processing on the access service, and the modulated two intermediate frequency signals are respectively sent to the first millimeter wave front end unit 105 and the second millimeter wave.
  • the front end unit 115 (corresponding to the two millimeter wave front end portions in Fig. 5).
  • the first millimeter wave front end unit 105 is connected to the baseband unit 101 through a through hole of a coaxial cable passing through the center of the first rotating shaft 103, and the second millimeter wave front end unit 115 passes through the coaxial cable through the center of the second rotating shaft 113.
  • the through hole is connected to the baseband unit 101, and the baseband unit 101 accesses the external power supply and Ethernet service signals through the connecting cable of the side wall.
  • the device for the backhaul networking in the embodiment of the present invention by indicating the direction angle of the panel antenna on the dial, can rotate the direction angle of the antenna to a predetermined angle value according to the pre-network survey design requirements during installation.
  • the on-site antenna reversal process can be avoided, and by integrating the two-sided antenna in the device, it is not necessary to install two sets of devices back to back, thereby improving the efficiency of network construction.
  • the device further includes: a bracket 121 connected to the baseband unit 101, and the bracket 121 is a T-shaped bracket.
  • the T-shaped plane of the bracket 121 is parallel to the plane of the first dial 102.
  • the bracket 121 is a T-shaped bracket, and the T-shaped plane of the bracket 121 is parallel to the plane of the first dial 102, so that the plane of the first dial 102 is parallel to the horizontal plane when the apparatus is mounted. It should be understood that the embodiment of the present invention does not limit the shape and structure of the bracket 121 as long as the plane of the first dial 102 is kept parallel to the horizontal plane when the apparatus is mounted, that is, the plane of the first panel antenna 104 is perpendicular to the horizontal plane.
  • the bracket 121 includes a first zero degree indicating line 123 parallel to the zero degree line on the first dial 102 for aligning the mounting reference line when performing the backhaul networking.
  • the installation reference line is used to determine the direction angles of the first panel antenna and the second panel antenna in the network survey design, and is used to determine the installation position of the backhaul device and the direction of the zero degree indicator line when installing the backhaul device (eg, installation reference Lines can be street parallel lines).
  • the bracket 121 further includes a second zero degree indicator line 124 that is parallel to the zero degree line on the second dial 112.
  • the first zero degree indicating line 123 is parallel to the second zero degree indicating line 124, and is used to align the mounting reference line when performing the backhaul networking.
  • a zero-degree indicator line is arranged on the bracket 121, which can clearly indicate the direction of the zero-degree direction angle, and is convenient for adjusting the direction angle of the antenna, and can adjust the installation direction of the device according to the direction of the zero-degree indicator line when installing the device, so as to facilitate the installation of the device to The exact location.
  • the device further includes: a mounting bracket 122, Used to mount the device on a support rod.
  • the structure and shape of the mounting bracket 122 are not limited in the embodiment of the present invention, as long as the plane of the first dial 102 is kept parallel to the horizontal plane when the apparatus is mounted, that is, the plane of the first panel antenna 104 is perpendicular to the horizontal plane.
  • the support bar can be a street light pole for easy site deployment.
  • LTE small cell sites such as sites 1 to 5, plus a macro station 1 (Macro 1) and a macro station 2
  • sites 1 to 5 are constructed as an LTE small cell backhaul access ring network, wherein, site 1, 3 and 5 are on the street side, and stations 2 and 4 are on the other side of the #f road.
  • Step 1 Design the location of the site deployment.
  • each small cell backhaul station is designed to be the same, so that the backhaul site antennas are on the same plane.
  • Parallel lines 1 and 2 are designed along the street, and the zero-degree direction angle of the antenna of the back-off station is aligned with the corresponding parallel line, so that the back-transmission network of each station is calculated according to the planning and transmission distance requirements of the location of the return-back station.
  • Antenna direction angle That is, calculate the position of the five backhaul stations deployed along the installation baseline (for example, street parallel lines), giving the calculated distance values for d 12 , d 23 , d 34 , d 45 and parallel lines 1 and 2
  • the distance between the locations of the backhaul sites deployed along the street is completed, and the design of the off-line network is completed, and the direction angle of the antennas of the devices for the backhaul networking of each station is obtained.
  • Step 2 Site survey.
  • the site uses the relevant measuring instruments and equipment to perform site coordinate testing.
  • the specific locations of stations 1 to 5 along the street parallel lines 1 and 2 that meet the design requirements are given.
  • the street parallel lines of the relevant stations measure the actual hanging height values of the devices at the site locations, that is, the installation coordinates of the devices for the backhaul networking at each site.
  • Step 3 Adjust the direction angle of the antenna.
  • Step 4 Align the parallel lines on site.
  • the level is placed flat on the plane of the T-bracket, and the fixed position of the T-bracket on the mounting bracket is adjusted.
  • the pitch angle of the device can be modified so that the plane of the dial is in a horizontal position, thereby realizing the antenna plane and The horizontal plane is vertical.
  • Step 5 Complete the establishment of the ring network.
  • the device for the backhaul networking of the embodiment of the present invention is installed and adjusted at a predetermined device height and at a predetermined antenna direction angle. After the above installation is completed, the power can be turned on, and there is no need to perform an antenna reconciliation operation for each station, and the deployment is scheduled to achieve rapid deployment.
  • the device for backhauling the network in the embodiment of the present invention can use the direction angle indication to rotate the antenna direction angle of the device to a predetermined angle value according to the network survey design requirement, and then install the device to the height required by the design.
  • the backhaul networking can be implemented, and the on-site antenna swapping process is not required, which can solve the problem of long working time and high installation cost for performing antenna pairing in the backhaul networking; by integrating two antennas in the device, the dotted line can be point-to-point Networking, realizing the rapid deployment of the backhaul ring network in urban hotspots, and solving the problem that the intermediate nodes of the ring network need to be back-to-back installed and the two devices are connected to each other to bring long engineering time and high cost.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种用于回传组网的装置。该装置包括:基带单元(101);位于基带单元(101)上面的第一刻度盘(102);第一转轴(103),垂直于第一刻度盘(102)的平面,可相对于基带单元(101)旋转;第一平板天线(104);第一毫米波前端单元(105),第一平板天线(104)和第一毫米波前端单元(105)连接在一起,固定于第一转轴(103)上,第一平板天线(104)平面的法线与第一转轴(103)垂直;第一指针(106),固定于第一转轴(103)上,第一转轴(103)旋转时,第一指针(106)在第一刻度盘(102)上指示第一平板天线(104)的方向角。本发明实施例的用于回传组网的装置,能够避免现场天线对调工序,提高建网效率。

Description

用于回传组网的装置 技术领域
本发明涉及通信领域, 并且更具体地, 涉及用于回传组网的装置。 背景技术
为满足日益增长的移动用户带宽需求, 第三代移动通信伙伴计划 (3rd Generation Partnership Project, 筒称为 "3GPP" )提出了长期演进( Long Term Evolution, 筒称为 "LTE" )技术以不断提升无线网络接入容量。 为满足城市 热点地区的大容量接入挑战, 提出了小小区( Small Cell )技术, 通过在热点 地区部署更多的基站从而提升接入容量、 提升频谱效率。
在热点 (Hot Spot ) 区域小小区通常部署比较密集, 一般沿城市街道进 行部署覆盖 50~300m范围, 在街道平面上方 3~6m的高度。 由于都是室外部 署而且在人员密集的商业地区, 要求小小区以及回传(Backhaul )设备都要 体积小、 功耗低、 具备外形伪装。 由于小小区部署量大且需要在已有商业区 建设, 通过新铺设光纤建设小小区回传网络工程施工难度大、 周期长、 成本 高, 最筒捷有效的回传组网技术还是使用无线技术。 当前选用的是毫米波 60 ~ 80 G频段的回传组网技术。 回传组网要求至少 99.99%的可用度, 下一 代移动网 ( Next Generation Mobil Network, 筒称为 "NGMN" )建议组建接 入环网, 满足可用度和回传容量需求。 然而, 现有技术中, 在建网部署时, 安装回传组网装置后需要链路两端通电进行现场天线对调, 因而调试安装困 难, 建网调试周期长。 发明内容
本发明实施例提供了一种用于回传组网的装置, 能够避免现场天线对调 工序。
第一方面, 提供了一种用于回传组网的装置, 包括: 基带单元 101 ; 位 于该基带单元 101上面的第一刻度盘 102; 第一转轴 103 , 该第一转轴 103 垂直于该第一刻度盘 102的平面, 该第一转轴 103可相对于该基带单元 101 旋转; 第一平板天线 104; 第一毫米波前端单元 105 , 该第一平板天线 104 和该第一毫米波前端单元 105连接在一起, 固定于该第一转轴 103上, 该第 一平板天线 104平面的法线与该第一转轴 103垂直; 第一指针 106, 该第一 指针 106固定于该第一转轴 103上, 该第一转轴 103旋转时, 带动该第一平 板天线 104、 该第一毫米波前端单元 105和该第一指针 106旋转, 该第一指 针 106在该第一刻度盘 102上指示该第一平板天线 104的方向角。
在第一种可能的实现方式中, 该第一指针 106与该第一平板天线 104平 面的法线平行或垂直。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实 现方式中, 该装置还包括: 位于该基带单元 101下面的第二刻度盘 112, 该 第二刻度盘 112的平面与该第一刻度盘 102的平面平行; 第二转轴 113, 该 第二转轴 113垂直于该第二刻度盘 112的平面, 该第二转轴 113可相对于该 基带单元 101旋转; 第二平板天线 114; 第二毫米波前端单元 115, 该第二 平板天线 114和该第二毫米波前端单元 115连接在一起, 固定于该第二转轴 113上, 该第二平板天线 114平面的法线与该第二转轴 113垂直; 第二指针 116, 该第二指针 116固定于该第二转轴 113上, 该第二转轴 113旋转时, 带动该第二平板天线 114、 该第二毫米波前端单元 115和该第二指针 116旋 转, 该第二指针 116在该第二刻度盘 112上指示该第二平板天线 114的方向 角。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 该第二指针 116与该第二平板天线 114平面的法线平行或垂直。
在第四种可能的实现方式中, 结合第一方面的第二种或第三种可能的实 现方式, 该装置还包括: 第一天线罩 107, 包裹该第一平板天线 104和该第 一毫米波前端单元 105; 第二天线罩 117, 包裹该第二平板天线 114和该第 二毫米波前端单元 115。
结合第一方面或第一方面的第一至四种可能的实现方式中的任一种可 能的实现方式, 在第五种可能的实现方式中, 该装置还包括: 支架 121 , 该 支架 121与该基带单元 101连接, 该支架 121为 T形支架, 该支架 121的 T 形平面与该第一刻度盘 102的平面平行。
结合第一方面的第五种可能的实现方式, 在第六种可能的实现方式中, 该支架 121包括第一零度指示线 123,与该第一刻度盘 102上的零度线平行, 用于在进行回传组网时对齐安装基准线。
结合第一方面的第六种可能的实现方式, 在第七种可能的实现方式中, 该支架 121还包括第二零度指示线 124, 与该第二刻度盘 112上的零度线平 行, 用于在进行回传组网时对齐安装基准线。
结合第一方面的第七种可能的实现方式, 在第八种可能的实现方式中, 该第一零度指示线 123与该第二零度指示线 124平行。
结合第一方面或第一方面的第一至八种可能的实现方式中的任一种可 能的实现方式, 在第九种可能的实现方式中, 该装置还包括: 安装架 122, 用于将该装置安装于支撑杆上。
基于上述技术方案, 本发明实施例的用于回传组网的装置, 通过指针在 刻度盘上指示平板天线的方向角, 可以在安装时根据预先的网络勘测设计要 求, 将天线的方向角旋转到规定角度值, 以实现回传组网, 从而能够避免现 场天线对调工序, 提高建网效率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明的实施例的用于回传组网的装置的示意性结构图。 图 2是根据本发明实施例的用于回传组网的装置的电路的示意性框图。 图 3 是根据本发明的另一实施例的用于回传组网的装置的示意性结构 图。
图 4是图 3的用于回传组网的装置的局部放大图。
图 5是根据本发明另一实施例的用于回传组网的装置的电路的示意性框 图。
图 6是图 3的用于回传组网的装置的另一局部放大图。
图 7是根据本发明实施例的回传组网规划设计示意图。
图 8是根据本发明实施例的地面平行线对准工具的示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
本发明实施例的技术方案可以应用于各种回传组网,例如 LTE小小区回 传组网。
图 1是根据本发明实施例的用于回传组网的装置的示意性结构图。如图
1 , 该装置包括:
基带单元 101; 位于该基带单元 101上面的第一刻度盘 102; 第一转轴 103, 该第一转轴 103垂直于该第一刻度盘 102的平面, 该第一转轴 103可 相对于该基带单元 101旋转; 第一平板天线 104; 第一毫米波前端单元 105, 该第一平板天线 104和该第一毫米波前端单元 105连接在一起, 固定于该第 一转轴 103上, 该第一平板天线 104平面的法线与该第一转轴 103垂直; 第 一指针 106, 该第一指针 106固定于该第一转轴 103上, 该第一转轴 103旋 转时, 带动该第一平板天线 104、 该第一毫米波前端单元 105和该第一指针 106旋转, 该第一指针 106在该第一刻度盘 102上指示该第一平板天线 104 的方向角。
在本发明实施例中, 采用指针和刻度盘指示平板天线的方向角, 这样可 以预先根据网络勘测设计要求, 将装置的天线的方向角旋转到规定角度值, 从而不需要在安装装置后再进行现场天线对调。
在第一个实施例中, 用于回传组网的装置采用单天线设计。 也就是说, 用于回传组网的装置包括基带单元 101、 第一刻度盘 102、 第一转轴 103、 第 一平板天线 104、 第一毫米波前端单元 105和第一指针 106。 第一平板天线 104和第一毫米波前端单元 105固定于第一转轴 103上, 第一转轴 103可相 对于基带单元 101旋转,第一转轴 103上设有第一指针 106,第一刻度盘 102 在基带单元 101上面, 例如, 位于基带单元 101的外壳或结构的上表面上, 本发明的实施例并不限于此, 例如, 在基带单元 101上方具有其它支撑部件 的情况下, 第一刻度盘 102还可以位于该支撑部件的上表面上。 第一平板天 线 104平面与第一刻度盘 102的平面垂直, 第一转轴 103与第一刻度盘 102 的平面垂直, 这样, 当旋转第一平板天线 104时, 第一转轴 103带动第一指 针 106旋转,通过第一指针 106在第一刻度盘 102上的角度指示就可以知道 第一平板天线 104的方向角。
在本发明实施例中, 可选地, 该第一指针 106与该第一平板天线 104平 面的法线平行或垂直。
应理解,本发明实施例对第一指针 106与第一平板天线 104平面的法线 的角度关系并不限定, 除了平行或垂直外, 其他角度关系也应在本发明的保 护范围之内。
还应理解, 第一平板天线 104和第一毫米波前端单元 105可以分别固定 于第一转轴 103上,也可以是第一毫米波前端单元 105直接固定在第一转轴 103上, 而第一平板天线 104通过第一毫米波前端单元 105固定在第一转轴 103上。
图 2是采用单天线设计的装置的电路框图。 基带单元 101 (对应图 2中 的基带处理和中频调制部分)接入以太网业务和和供电电源并对接入业务进 行复接和调制处理, 调制后的中频信号送到第一毫米波前端单元 105 (对应 图 2中的毫米波前端部分)。 在电路连接上, 第一毫米波前端单元 105通过 同轴电缆穿过第一转轴 103中心的通孔连接到基带单元 101 , 基带单元 101 通过侧壁的连接电缆接入外面的供电、 以太网业务信号。
本发明实施例的用于回传组网的装置,通过指针在刻度盘上指示平板天 线的方向角, 可以在安装时根据预先的网络勘测设计要求, 将天线的方向角 旋转到规定角度值, 以实现回传组网, 从而能够避免现场天线对调工序, 提 高建网效率。
在另一个实施例中, 用于回传组网的装置采用双天线设计, 即在装置中 集成两面天线, 从而不需要再背靠背安装两套装置而实现回传组网。 图 3是 根据本发明另一实施例的用于回传组网的装置的示意性结构图。 图 4是图 3 的用于回传组网的装置的局部放大图。
如图 3和图 4所示, 可选地, 该装置还包括: 位于该基带单元 101下面 的第二刻度盘 112, 该第二刻度盘 112的平面与该第一刻度盘 102的平面平 行; 第二转轴 113, 该第二转轴 113垂直于该第二刻度盘 112的平面, 该第 二转轴 113可相对于该基带单元 101旋转; 第二平板天线 114; 第二毫米波 前端单元 115, 该第二平板天线 114和该第二毫米波前端单元 115连接在一 起, 固定于该第二转轴 113上, 该第二平板天线 114平面的法线与该第二转 轴 113垂直; 第二指针 116, 该第二指针 116固定于该第二转轴 113上, 该 第二转轴 113旋转时,带动该第二平板天线 114、该第二毫米波前端单元 115 和该第二指针 116旋转, 该第二指针 116在该第二刻度盘 112上指示该第二 平板天线 114的方向角。
具体而言,在本发明实施例中,用于回传组网的装置包括基带单元 101、 第一刻度盘 102、 第一转轴 103、 第一平板天线 104、 第一毫米波前端单元 105、 第一指针 106、 第二刻度盘 112、 第二转轴 113、 第二平板天线 114、 第二毫米波前端单元 115和第二指针 116。 其中, 第一平板天线 104和第一 毫米波前端单元 105固定于第一转轴 103上, 第一转轴 103可相对于基带单 元 101旋转, 第一转轴 103上设有第一指针 106, 第一刻度盘 102在基带单 元 101上面。 第一平板天线 104平面与第一刻度盘 102的平面垂直, 第一转 轴 103与第一刻度盘 102的平面垂直, 这样, 当旋转第一平板天线 104时, 第一转轴 103带动第一指针 106旋转, 通过第一指针 106在第一刻度盘 102 上的角度指示就可以知道第一平板天线 104的方向角。 第二平板天线 114和 第二毫米波前端单元 115固定于第二转轴 113上, 第二转轴 113可相对于基 带单元 101旋转, 第二转轴 113上设有第二指针 116, 第二刻度盘 112在基 带单元 101下面, 例如, 位于基带单元 101的外壳或结构的下表面上, 本发 明的实施例并不限于此, 例如, 在基带单元 101下方具有其它支撑部件的情 况下, 第二刻度盘 112还可以位于该支撑部件的下表面上。 第二刻度盘 112 的平面与第一刻度盘 102的平面平行。 第二平板天线 114平面与第二刻度盘 112的平面垂直, 第二转轴 113与第二刻度盘 112的平面垂直, 这样, 当旋 转第二平板天线 114时, 第二转轴 113带动第二指针 116旋转, 通过第二指 针 116在第二刻度盘 112上的角度指示就可以知道第二平板天线 114的方向 角。
在本发明实施例中, 可选地, 该第二指针 116与该第二平板天线 114平 面的法线平行或垂直。
如图 3所示, 可选地, 该装置还包括: 第一天线罩 107, 包裹该第一平 板天线 104和该第一毫米波前端单元 105。 第一天线罩 107, 用于保护第一 平板天线 104以及第一毫米波前端单元 105。
如图 3所示, 可选地, 该装置还包括: 第二天线罩 117, 包裹该第二平 板天线 114和该第二毫米波前端单元 115。 第二天线罩 117, 用于保护第二 平板天线 114以及第二毫米波前端单元 115。 可选地, 第一天线罩 107和第 二天线罩 117为圓筒状, 也就是说, 整个装置为一体化圓筒形结构。
图 5是集成两面天线的装置的电路框图。 基带单元 101 (对应图 5中的 基带处理和中频调制部分)接入以太网业务和和供电电源并对接入业务进行 复接和调制处理, 调制后的两路中频信号分别送到第一毫米波前端单元 105 和第二毫米波前端单元 115 (对应图 5中的两个毫米波前端部分)。在电路连 接上, 第一毫米波前端单元 105通过同轴电缆穿过第一转轴 103中心的通孔 连接到基带单元 101 , 第二毫米波前端单元 115通过同轴电缆穿过第二转轴 113中心的通孔连接到基带单元 101 , 基带单元 101通过侧壁的连接电缆接 入外面的供电、 以太网业务信号。
本发明实施例的用于回传组网的装置,通过指针在刻度盘上指示平板天 线的方向角, 可以在安装时根据预先的网络勘测设计要求, 将天线的方向角 旋转到规定角度值, 能够避免现场天线对调工序, 并且, 通过在装置中集成 两面天线, 不需要再背靠背安装两套装置, 从而能够提高建网效率。
在本发明实施例中, 如图 3、 图 4和图 6所示, 可选地, 该装置还包括: 支架 121 ,该支架 121与该基带单元 101连接,该支架 121为 T形支架, 该支架 121的 T形平面与该第一刻度盘 102的平面平行。
支架 121采用 T形支架,且支架 121的 T形平面与第一刻度盘 102的平 面平行, 便于安装装置时使第一刻度盘 102的平面与水平面平行。 应理解, 本发明实施例并不限定支架 121的形状和结构, 只要在安装装置时使第一刻 度盘 102的平面与水平面保持平行,也就是第一平板天线 104平面与水平面 垂直即可。
如图 6所示, 可选地, 支架 121包括第一零度指示线 123, 与第一刻度 盘 102上的零度线平行, 用于在进行回传组网时对齐安装基准线。 安装基准 线用于在网络勘测设计确定第一平板天线和第二平板天线的方向角, 并且用 于在安装回传装置时确定回传装置的安装位置和零度指示线的方向 (例如, 安装基准线可以是街道平行线)。
如图 4所示, 可选地, 支架 121还包括第二零度指示线 124, 与第二刻 度盘 112上的零度线平行。 可选地, 第一零度指示线 123与第二零度指示线 124平行, 用于在进行回传组网时对齐安装基准线。
在支架 121上设置零度指示线, 能够清楚地指示零度方向角的方向, 便 于调整天线的方向角, 并且, 在安装装置时能够根据零度指示线的方向调整 装置的安装方向, 便于将装置安装到准确的位置。
在本发明实施例中, 如图 3所示, 可选地, 该装置还包括: 安装架 122, 用于将该装置安装于支撑杆上。
本发明实施例对安装架 122的结构和形状不限定, 只要在安装装置时使 第一刻度盘 102的平面与水平面保持平行,也就是第一平板天线 104平面与 水平面垂直即可。 支撑杆可以为路灯杆, 便于站点部署。
下面将结合具体的例子描述本发明实施例的用于回传组网的装置的安 装方法。应注意,这只是为了帮助本领域技术人员更好地理解本发明实施例, 而非限制本发明实施例的范围。
如图 7所示,假设多个 LTE小小区站点如站点 1~5 ,加上宏站 1( Macro 1 )、 宏站 2构建成一个 LTE 小小区回传接入环网, 其中, 站点 1、 3和 5位于街 道一侧, 站点 2和 4位于 #f道另一侧。
第一步: 站点部署的位置设计。
( 1 )根据小小区在街道的实际部署建设情况, 设计每个小小区回传站 点的高度都一样高, 使回传站点天线处在一个相同的平面上。
( 2 )平行线 1和 2沿街道设计, 回传站点天线的零度方向角与相应的 平行线对齐, 这样根据回传站点位置的规划和传输距离要求, 计算出每一个 站点回传组网的天线方向角。 也就是说, 计算出沿安装基准线(例如, 街道 平行线)部署的 5个回传站点位置, 给出 d12、 d23、 d34、 d45的计算距离值和 平行线 1和 2之间的距离, 完成沿街道部署的回传站点位置坐标设计, 完成 这种折线式组网规划设计,得到每一个站点的用于回传组网的装置的天线的 方向角。
第二步: 站点勘测。
按照前面的组网规划设计,现场使用相关的测量仪器设备进行站点坐标 测试, 按照设计的站点位置, 测量给出符合设计要求的沿街道平行线 1和 2 上的站点 1到 5的具体位置及相关站点的街道平行线, 测量出站点位置处装 置的实际挂高数值, 即得到每个站点的用于回传组网的装置的安装坐标。
第三步: 调整天线的方向角。
( 1 )打开装置的天线罩, 按照设计要求的天线的方向角, 旋转天线, 例如, 以 1度为步进, 按照方向角刻度盘读数, 将天线旋转到符合设计要求 的方向角度上, 然后锁紧转轴。
( 2 ) 重复(1 ), 调整另一面天线的方向角, 使达到符合站点设计要求 的天线的方向角, 并锁紧转轴。 ( 3 )将天线罩安装回装置中并固定好。
第四步: 现场对准平行线安装。
( 1 )将装置安装到规定的高度位置处。
( 2 )使用水平仪测量, 将水平仪平放到 T形支架平面上, 调整 T形支 架在安装架上的固定位置, 可以修改装置的俯仰角度, 使刻度盘平面位于水 平位置, 从而实现天线平面与水平面垂直。
( 3 )使用现场安装工具, 例如图 8所示的地面平行线对准工具, 将工 具两点固定在 T形支架的零度指示线上,这两点位置连线与两个天线零度方 向角平行。
( 4 )将工具两端的纺锤线放下, 与第二步时在站点地面上划出的街道 平行线对齐, 这样该站点安装的装置的零度方向角与设计的街道平行线就对 齐了。
第五步: 完成组建环网。
在现场各个站点位置处, 按照第三步、 第四步进行操作, 在设计规定的 装置高度、在规定的天线方向角上安装和调整好本发明实施例的用于回传组 网的装置。 在以上安装完成后, 即可开机通电, 不需要再对每个站点进行天 线对调操作, 筒化开局调测, 实现快速部署。
本发明实施例的用于回传组网的装置, 利用方向角指示, 可以根据网络 勘测设计要求, 安装时将装置的天线方向角旋转到规定角度值, 然后将装置 安装到设计要求的高度, 就可以实现回传组网, 不需要现场天线对调工序, 可以解决回传组网中进行天线对调带来工时长、 安装成本高的问题; 通过在 装置中集成两面天线, 可以折线式点到点组网, 实现城市热点地区回传环网 的快速部署,解决环网中间节点需要背靠背安装背两台设备组网带来工程安 装工时长、 成本高的问题。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。 所属领域的技术人员可以清楚地了解到, 为了描述的方便和筒洁, 上述 描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对 应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另外, 所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或 通信连接, 也可以是电的, 机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以是两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件 功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分, 或者该技术方 案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory )、 随机存取存储器 ( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到各种等效的修改或替换, 这些修改或替换都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。

Claims

权利要求
1. 一种用于回传组网的装置, 其特征在于, 包括:
基带单元 ( 101 );
位于所述基带单元( 101 )上面的第一刻度盘 ( 102 );
第一转轴 ( 103 ), 所述第一转轴( 103 )垂直于所述第一刻度盘 ( 102 ) 的平面, 所述第一转轴(103)可相对于所述基带单元(101)旋转;
第一平板天线( 104);
第一毫米波前端单元(105), 所述第一平板天线 (104)和所述第一毫 米波前端单元( 105 )连接在一起, 固定于所述第一转轴(103)上, 所述第 一平板天线( 104)平面的法线与所述第一转轴( 103)垂直;
第一指针(106), 所述第一指针(106)固定于所述第一转轴(103)上, 所述第一转轴 (103)旋转时, 带动所述第一平板天线 (104)、 所述第一毫 米波前端单元( 105 )和所述第一指针( 106 )旋转, 所述第一指针( 106 ) 在所述第一刻度盘 (102)上指示所述第一平板天线(104) 的方向角。
2. 根据权利要求 1所述的装置, 其特征在于, 所述第一指针(106)与 所述第一平板天线(104)平面的法线平行或垂直。
3. 根据权利要求 1或 2所述的装置, 其特征在于, 所述装置还包括: 位于所述基带单元(101) 下面的第二刻度盘(112), 所述第二刻度盘 (112) 的平面与所述第一刻度盘 ( 102) 的平面平行;
第二转轴 ( 113 ), 所述第二转轴( 113 )垂直于所述第二刻度盘 ( 112 ) 的平面, 所述第二转轴(113)可相对于所述基带单元(101)旋转;
第二平板天线(114);
第二毫米波前端单元(115), 所述第二平板天线 (114)和所述第二毫 米波前端单元(115)连接在一起, 固定于所述第二转轴(113)上, 所述第 二平板天线(114)平面的法线与所述第二转轴(113)垂直;
第二指针(116), 所述第二指针(116) 固定于所述第二转轴(113)上, 所述第二转轴 (113)旋转时, 带动所述第二平板天线 (114)、 所述第二毫 米波前端单元(115)和所述第二指针(116)旋转, 所述第二指针(116) 在所述第二刻度盘 (112)上指示所述第二平板天线 (114) 的方向角。
4. 根据权利要求 3所述的装置, 其特征在于, 所述第二指针(116)与 所述第二平板天线(114)平面的法线平行或垂直。
5. 根据权利要求 3或 4所述的装置, 其特征在于, 所述装置还包括: 第一天线罩 (107), 包裹所述第一平板天线(104)和所述第一毫米波 前端单元 ( 105 );
第二天线罩 (117), 包裹所述第二平板天线 (114)和所述第二毫米波 前端单元(115)。
6. 根据权利要求 1至 5中任一项所述的装置, 其特征在于, 所述装置 还包括:
支架( 121 ), 所述支架( 121 )与所述基带单元( 101 )连接, 所述支架 (121 )为 T形支架, 所述支架(121)的 T形平面与所述第一刻度盘(102) 的平面平行。
7. 根据权利要求 6所述的装置, 其特征在于, 所述支架(121) 包括第 一零度指示线 (123), 与所述第一刻度盘(102)上的零度线平行, 用于在 进行回传组网时对齐安装基准线。
8. 根据权利要求 7所述的装置, 其特征在于, 所述支架(121)还包括 第二零度指示线 (124), 与所述第二刻度盘(112)上的零度线平行, 用于 在进行回传组网时对齐安装基准线。
9.根据权利要求 8所述的装置,其特征在于,所述第一零度指示线( 123 ) 与所述第二零度指示线(124)平行。
10. 根据权利要求 1至 9中任一项所述的装置, 其特征在于, 所述装置 还包括:
安装架(122), 用于将所述装置安装于支撑杆上。
PCT/CN2013/070210 2013-01-08 2013-01-08 用于回传组网的装置 WO2014107839A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380000063.0A CN103384940B (zh) 2013-01-08 2013-01-08 用于回传组网的装置
PCT/CN2013/070210 WO2014107839A1 (zh) 2013-01-08 2013-01-08 用于回传组网的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/070210 WO2014107839A1 (zh) 2013-01-08 2013-01-08 用于回传组网的装置

Publications (1)

Publication Number Publication Date
WO2014107839A1 true WO2014107839A1 (zh) 2014-07-17

Family

ID=49492141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070210 WO2014107839A1 (zh) 2013-01-08 2013-01-08 用于回传组网的装置

Country Status (2)

Country Link
CN (1) CN103384940B (zh)
WO (1) WO2014107839A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104135294B (zh) * 2014-08-13 2016-08-24 中国科学院上海微系统与信息技术研究所 一种e波段无线传输信号产生设备
CN105656525B (zh) * 2014-11-12 2018-08-28 江苏中兴微通信息科技有限公司 一种多频多模超高速mimo无线通信方法及装置
CN105656524B (zh) * 2014-11-12 2018-08-28 江苏中兴微通信息科技有限公司 多频多模超高速mimo无线通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2636437Y (zh) * 2003-08-13 2004-08-25 孔建勇 立柱式数字卫星接收天线的对星定位装置
CN2687858Y (zh) * 2004-02-23 2005-03-23 大唐移动通信设备有限公司 一种用于天线安装的定向装置
CN101944648A (zh) * 2009-07-10 2011-01-12 华为技术有限公司 天线安装架

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2796144Y (zh) * 2005-03-29 2006-07-12 京信通信系统(广州)有限公司 基站板天线的安装支架
KR100807321B1 (ko) * 2005-12-13 2008-02-28 주식회사 케이엠더블유 이동통신 기지국용 가변 빔 제어 안테나
US20120154239A1 (en) * 2010-12-15 2012-06-21 Bridgewave Communications, Inc. Millimeter wave radio assembly with a compact antenna
CN102637942B (zh) * 2011-02-14 2013-12-11 江苏华灿电讯股份有限公司 一种移动通信基站天线水平方位角可调支架

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2636437Y (zh) * 2003-08-13 2004-08-25 孔建勇 立柱式数字卫星接收天线的对星定位装置
CN2687858Y (zh) * 2004-02-23 2005-03-23 大唐移动通信设备有限公司 一种用于天线安装的定向装置
CN101944648A (zh) * 2009-07-10 2011-01-12 华为技术有限公司 天线安装架

Also Published As

Publication number Publication date
CN103384940A (zh) 2013-11-06
CN103384940B (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
Mottola et al. Not all wireless sensor networks are created equal: A comparative study on tunnels
US8180339B2 (en) Method and apparatus for transferring network management information to wireless nodes
Linderman et al. Characterization of wireless smart sensor performance
JP6621837B2 (ja) 無線ネットワーク性能の分析
ES2614726T3 (es) Barrido en busca de dispositivos próximos en redes inalámbricas de área local
JP6568590B2 (ja) ワイヤレス信号源の位置決め
US7642961B1 (en) Remote control antenna positioning system
JP7539538B2 (ja) 無線ヘッドを分散するためのシステム及び方法
CN103888548A (zh) 蓝牙信标监控管理系统
JP2009544221A5 (zh)
US8350718B2 (en) Secure collector diagnostic portal activation
CN102740336B (zh) 无线接入网自主覆盖优化方法
WO2014107839A1 (zh) 用于回传组网的装置
JP2018525617A (ja) 高周波カメラシステム
Bansal et al. Deployment and evaluation of IEEE 802.11 based wireless mesh networks in campus environment
CN112350865B (zh) 一种基于Wi-Fi探针与宽带波通信技术的拓扑识别定位方法
CN208507961U (zh) 一种集束天线及铁路天线基站系统
JP2005160092A (ja) 無線分散基地局
CN105025512B (zh) 基站天馈监测方法和装置
Anderson et al. Challenges in deploying steerable wireless testbeds
KR101248764B1 (ko) 액세스 포인트 장치에서의 송신강도 설정 방법
Ran Design and Planning of University Campus Network
Mase et al. Electric vehicle-based ad-hoc networking for large-scale disasters design principles and prototype development
CN205356356U (zh) 一种无线设备测试系统
CN103648184A (zh) 一种plc通讯中的无线局域网架构技术

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871047

Country of ref document: EP

Kind code of ref document: A1