WO2014106514A1 - Fasermaterial, faserverbundbauteil, verwendung des fasermaterials und verfahren zu deren herstellung - Google Patents

Fasermaterial, faserverbundbauteil, verwendung des fasermaterials und verfahren zu deren herstellung Download PDF

Info

Publication number
WO2014106514A1
WO2014106514A1 PCT/EP2013/000008 EP2013000008W WO2014106514A1 WO 2014106514 A1 WO2014106514 A1 WO 2014106514A1 EP 2013000008 W EP2013000008 W EP 2013000008W WO 2014106514 A1 WO2014106514 A1 WO 2014106514A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
resin base
base material
adhesion promoter
resin
Prior art date
Application number
PCT/EP2013/000008
Other languages
English (en)
French (fr)
Inventor
Reinhold Laumeier
Michael Marré
Original Assignee
Heinrich Kuper Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heinrich Kuper Gmbh & Co. Kg filed Critical Heinrich Kuper Gmbh & Co. Kg
Priority to PCT/EP2013/000008 priority Critical patent/WO2014106514A1/de
Publication of WO2014106514A1 publication Critical patent/WO2014106514A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/105Coating or impregnating independently of the moulding or shaping step of reinforcement of definite length with a matrix in solid form, e.g. powder, fibre or sheet form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass

Definitions

  • Fiber material Fiber material, fiber composite component, use of the fiber material and
  • the present invention relates to a fibrous material, its use and a method for its production, as well as a fiber composite component and a method for its production.
  • Fiber composite materials and the fiber composite components that can be produced therefrom have gained considerable economic importance in the last decade. This is not only due to their excellent mechanical properties, but also at their, compared to conventional mineral materials, significantly reduced weight. This predestines fiber composite components for many applications, such as automotive engineering, aircraft construction or model making.
  • Fiber composites are prepared by from corresponding fibers semi-finished products, such as mats, fabrics, scrims, braids, knits and other forms are formed, which are then impregnated with a binder, usually a synthetic resin, and then the binder is solidified, so that a stable fiber-binder composite or fiber-resin composite results.
  • a binder usually a synthetic resin
  • Another disadvantage of the conventional method is that the binder does not penetrate uniformly into all the cavities of the semifinished fiber product due to the subsequent application of the binder to the semifinished product prepared from fibers, due to the low permeability of the semifinished fiber product. Even if, after the application of the binder, its distribution can be promoted by the action of pressure and temperature, areas of accumulated fibers in the finished fiber composite material lie next to low-fiber, ie, binder-rich areas. Due to this inhomogeneous arrangement of fibers and binders, weak points in the fiber composite component are caused, and their mechanical properties are reduced.
  • a fiber material according to the invention comprises at least one fiber, at least one adhesion promoter and at least one resin base material, wherein the adhesion promoter is arranged on the fiber and wherein the resin base material is at least partially, preferably completely, disposed on the adhesion promoter.
  • the core material of the fibrous material of the present invention is a fiber wherein any type of fiber may be used, for example, a natural fiber such as cellulose or hemp fiber, ceramic fiber such as silicon carbide fiber, mullite fiber or alumina fiber, synthetic fiber such as nylon fiber, or a glass fiber or carbon fiber.
  • the fiber can be used as a single fiber or as a fiber bundle.
  • a fiber bundle may consist of fibers of one type or of fibers of different types, wherein the fibers either loose and predominantly parallel or interconnected, for example, twisted together, may be arranged.
  • the number of fibers which is processed into the fiber material according to the invention is determined mainly by the type of fiber and the desired mechanical, chemical and physical properties of the fiber material.
  • a coupling agent in the context of the present invention is a compound which has a certain adhesion to both the fiber and the resin base material, that is to say initially adheres to the fiber and at the same time is capable of binding a resin base material.
  • the type of bonding of the adhesion promoter to the fiber as well as to the resin base material is not limited and includes a covalent bond, ion bonding, van der Waals bond, as well as conventional adhesive mechanisms common adhesives.
  • the chemical nature of the coupling agent is not limited as long as it provides sufficient bonding to the fiber and allows bonding of the resin base material.
  • the chemical composition of the adhesion promoter also depends on the type of fiber and the resin base material.
  • the bonding agent is preferably applied in liquid form to the fiber, so for example, either as Solution or as a dispersion before or is applied in a liquefied state. Due to the liquid state of aggregation, the amount of applied adhesion promoter can be well regulated.
  • Adhesion promoters which can be used according to the present invention are selected, for example, from the non-conclusive group of natural adhesion promoters such as celluloses, cellulose ethers or starch and polymeric adhesion promoters such as polybutenes, polyurethanes, polyacrylates, polyamides, polyimides, silicone compounds, silane compounds and mixtures thereof ,
  • the adhesion promoter is a thermoset or thermoplastic and particularly preferably a polyurethane, which is applied in the form of an aqueous or alcoholic dispersion and / or as a solid on the fiber.
  • Polyurethanes are well compatible with most common fiber materials, as well as most resin base stocks, and are very good at both.
  • the bonding agent thus serves to permanently bind the resin base material evenly to the fiber.
  • Any volatile constituents of the adhesion promoter are preferably removed before the application of the resin base material or during the further processing of the fiber material according to the invention.
  • the arrangement of the adhesion promoter on the fiber is not limited as long as a sufficient amount of adhesion promoter adheres to the fiber surface to uniformly bind the desired amount of the resin base material.
  • the adhesion promoter is applied to the fiber so that it forms a sheet-like layer and in particular a film around the fiber.
  • a resin base material is understood to be a compound which enables a permanent bonding of a plurality of fibers or fiber bundles to one another, and thus the production of a fiber composite component. It thus acts as a binder of both the fibers of a semifinished fiber product formed therefrom, and as a binder between a plurality of contacting semifinished fiber products, wherein the resin base material at least partially, and preferably completely disposed on the adhesion promoter, and thus already integrated component in the fiber material, which then to appropriate Fiber semi-finished products can be further processed.
  • the bonding agent adhesion promoter ensures a sufficient and uniform application of the resin base material to the fiber.
  • the resin base material binds principally, and preferably completely, to the adhesion promoter due to constructive interactions, but may also partially bind to the fiber material itself.
  • adhesion via the bonding agent coupling agent is preferred, since in this way a particularly uniform application density of the resin base material can be achieved, which later has a positive effect on the quality and in particular the mechanical properties of the semifinished fiber article and thus also of the fiber composite component, but without disadvantages. such as peeling off of primer and resin base material from the fiber during processing of the fibrous material of the present invention.
  • composition of the resin base material is not limited in detail.
  • such materials may be used as they are also suitable for this purpose in the prior art.
  • a non-exhaustive list of suitable resin base stocks includes thermoplastics, thermosets, oligomers, and polymers which, after application to the primed fiber, can be cured in a later step by activation to form a resin, thereby forming adjacent fibers or fiber bundles, as a majority Component of a semifinished fiber product, when producing a fiber composite component of the fiber material according to the invention, are bonded to each other.
  • the arrangement of the resin base material on the fiber or the adhesion promoter is not limited in detail.
  • the application device for example, a more or less dense or thick film of resin base material can be applied along the direction predetermined by the fiber, whereby the amount of resin base material in the fiber material according to the invention is controllable.
  • the resin base material can thus completely enclose the fiber and thus also the adhesion promoter, thus forming a kind of coating, but can only be applied on one side flat or even intermittently. It is essential that a sufficient amount of resin base material is applied, that is, an amount which, after activation of the resin base material, results in a permanently stable connection of the fibers and fiber bundles in the end product, the fiber composite component. However, the amount of resin base material should also not be too large to prevent the material from flowing off or crumbling away from the adhesion promoter, or even together with it.
  • the resin base material is already applied to the fiber or fiber bundles from fiber or fiber bundles before the semifinished fiber products are formed, since only in this way a homogeneous distribution of resin base material and therefore later a uniform bonding of fibers and fiber bundles in the fiber composite component without flaws, eg not impregnated with resin base material, or agglomerations only of resin.
  • the fiber material is characterized in that the fiber is a glass fiber or a carbon fiber.
  • Glass fibers and carbon fibers have the advantage of providing a particularly high mechanical stability, with relatively low weight.
  • glass fibers or carbon fibers can be coated particularly well with the primer and resin base material essential to the invention without being adversely affected. This means that the glass or carbon fibers, even after coating with adhesion promoter and resin base material, furthermore have very good stability and limited flexibility, so that they can be obtained by conventional methods
  • Semi-finished fiber can be further processed, for example, without breaking or buckling.
  • the resin base material contains at least one curable oligomer and / or at least one curable polymer.
  • Curable, and thus activatable for example, by curing or crosslinking agents and thus generally by chemical reaction (usually polyaddition or polycondensation) film-forming reaction, and thus crosslinking oligomers or polymers have opposite by increasing the temperature activatable, so only thermally softenable and re-hardening by cooling film-forming polymers,
  • thermoplastics the advantage that they are usually easier to apply due to lower viscosity and thus more precisely metered.
  • Suitable curable oligomers or polymers include acrylates, urethanes, polyurethanes.
  • the resin base material according to the invention contains an epoxy compound.
  • Epoxies that is, the not yet crosslinked to epoxy resin precursor of epoxy resins, have proven to be particularly easy with fibers in the context of the invention to be processed resin base materials, as they are easy to dose and with any appropriate activators, so hardeners or Vernetzem are strongly cross-linking. Epoxy compounds are further characterized by the advantage that they are also available in powder form. Powdered resin base materials can be applied to the primed fiber particularly easily and uniformly. Excess unbonded epoxy compound is also uncomplicated enough coated fiber removable, so that the applied layer thickness is easily adjustable.
  • the resin base material is powdery and in particular has an average particle size of 1 to 200 ⁇ , preferably from 30 to 140 ⁇ on.
  • the particle size is measured by means of a device from Malvern via Fraunhofer diffraction of a laser beam.
  • the physical state of the resin base material is not limited in detail. However, it has been found that a powdered resin base material is particularly durable stabilized on the primed fiber. This can be explained by the fact that the powder grains are not bonded to one another and therefore each individual grain adheres well to the surface of the adhesion promoter and possibly to the fiber itself.
  • the resin base material is therefore in the form of loose but to the bonding agent and possibly the fiber bound particles and not in the form of a film, so that the resulting fiber material has good flexibility, which simplifies the further processing into a semi-finished fiber, because the fiber material according to the invention due its good elasticity or flexibility can be wound well without tending to buckling or breaking.
  • the average particle size of the resin base material is 1 to 200 m, and more preferably 30 to 140 ⁇ . If the average particle size is greater than 140 ⁇ m and in particular greater than 200 ⁇ m, then the particles are so large that they hinder one another during the application and processing of the fiber material to form a semi-finished fiber product and tend to crumble.
  • the average particle size can be determined microscopically, with the largest diameter of the grains serving as a measuring point in the microscope for non-spherical grains.
  • a further advantageous embodiment of the present invention provides that in the fiber material according to the invention the weight ratio of fiber to adhesion promoter 1: 0.1 to 1: 1 and / or the weight ratio of fiber to resin base material 0.25: 1 to 0.5: 1 and / or the weight ratio of resin base material to adhesion promoter is 10: 1 to 1: 1.
  • the weight ratio of fiber to adhesion promoter is 1: 0.1 to 1: 1, it is ensured that a sufficient amount of adhesion promoter is present on the fiber in order to bind an intended amount of resin base material.
  • the weight ratio of fiber to resin base material is 0.25: 1 to 0.5: 1. This ensures that the proportion of resin base material is so high that the fiber as well as the adhesion promoter are sufficiently covered by resin base material, and later a stable bond between fibers and ultimately semi-finished fiber is provided, which contributes significantly to increase the mechanical stability of the fiber composite component to be produced.
  • the weight ratio of resin base material to adhesion promoter is preferably 10: 1 to 1: 1. If the ratio in the specified range, it is ensured that the entire proportion of resin base material can be permanently bonded to the primer. Smaller proportions are possible, but lead to insufficiently stable bonding of the fibers in the semifinished fiber product. Higher levels of resin base material, which exceed the above ratio, in turn lead to low-fiber locations in the semifinished fiber, which has a negative effect on the mechanical strength of the later fiber composite component.
  • the respective weight fractions of fiber, adhesion promoter and resin base material are after Remove all room temperature volatiles by weighing.
  • the fiber material according to the invention is particularly well suited for producing a fiber material sheet or a fiber material yarn or a fiber composite component of high quality.
  • a fibrous material sheet is a planar arrangement of the fibrous material according to the invention, such as a fiber mat, a fiberboard, a fiber fabric, a fiber fabric, a Fasergewirke, a Fasergestricke or the like.
  • the resin base material is not yet activated, so the fibers are in the fiber material-sheet still in loose form but, for example, interwoven, intertwined, knitted, knitted or the like before.
  • the resin base material surrounds the fibers together with adhesion promoter and is uniformly distributed in the fiber material sheet.
  • a fiber material thread in the sense of the invention designates a more or less aligned parallel arrangement of a plurality of fibers, wherein the fibers are optionally additionally joined together, for example by twisting or braiding.
  • the resin base material is not activated, so not yet networked, but only arranged on the respective fiber before.
  • a fiber composite component is an assembly of one or more fibrous material webs and / or fibrous filaments which are permanently bonded together by activating the resin base material and thereby forming a crosslinked or cured resin.
  • the resin base material is thus present in the form of a resin, ie it is crosslinked or cured, for example, whereby the resin binds the fibers of individual fiber material sheets and / or fiber material threads with one another, and also fiber material sheets and / or fiber material threads with one another, ie three-dimensionally. connects, so that a homogeneous fiber composite component without flaws of the resin or even air holes is obtained.
  • a fiber composite component which comprises at least one fiber, at least one adhesion promoter and at least one resin, wherein the adhesion promoter is arranged on the fiber and wherein the resin surrounds both the fiber and the adhesion promoter.
  • the fiber composite component according to the invention can be produced from the fiber material according to the invention by further processing the fiber material, for example by interweaving, laying or entangling it and thus by forming, for example, a fabric, knitted fabric or fabric and then activating the resin base material and converting it to a resin.
  • activating the resin base material it hardens or crosslinks and forms a resin, that is, a more or less complete film comprising the respective fibers of a fiber material sheet to be joined and / or a fiber material thread with each other and the fibers adjacent fiber material sheets and / or fiber material threads, linked together, so that a stable component without flaws or inhomogeneities arises.
  • the resin thus extends in a uniform arrangement through the entire fiber composite component and harbors the interconnected fiber composite fabrics and / or fiber composite filaments, as well as the fibers from which they are made, as matrix building blocks in it.
  • a bonding agent is further arranged on each fiber, which represents the link between the respective fiber on one side and the now crosslinked resin on the other side.
  • the resin surrounds at least partially and advantageously completely the respective fibers and the adhesion promoter thereon resulting in a very stable fiber composite, and thus to very good mechanical properties of the fiber composite component leads.
  • fabrics, scrims, knitted fabrics, knits and mixtures thereof can be stacked and laminated.
  • another resin may be applied to, for example, a fibrous material sheet or a fiber material yarn or an array of a plurality of fibrous material sheets or fiber material yarns increased mechanical stability of the resulting fiber composite component once again.
  • a fibrous material sheet or a fiber material yarn or an array of a plurality of fibrous material sheets or fiber material yarns increased mechanical stability of the resulting fiber composite component once again.
  • the advantageous properties, effects and embodiments which have already been described for the fiber material according to the invention are also applicable to the hollow-free fiber composite component according to the invention.
  • a method of making a fiber material containing at least one fiber the method comprising the steps of applying at least one adhesion promoter to at least one fiber and applying at least one resin base material such that at least a portion of the resin base material contacts the adhesion promoter is brought includes.
  • a fiber material can be produced, which can be processed by further processing and activation of the resin base material to a mechanically highly resilient fiber composite component.
  • the adhesion promoter or a mixture of suitable adhesion promoters is applied to at least one fiber, or else to a plurality of fibers of the same type, or a mixture of different fibers.
  • it can be applied to the fiber in a suitable manner and in a large area or intermittently, for example by spraying or brushing.
  • the fiber or bundle of fibers may be pulled through a bath containing the adhesion promoter of the invention.
  • the resin base material After adhesion of the coupling agent to the surface of the fiber, the resin base material is applied so that at least a part of this resin base material is brought into contact with the coupling agent. By this contacting a permanent bond between the bonding agent and the resin base material is produced, which persists even after completion of the fiber material or a fiber composite sheet or fiber composite yarn produced therefrom.
  • the resin base material preferably adheres to the primer with which it is contacted, but can also bond directly to the fiber when in contact with it. This depends on the nature and composition of both the fibers and the resin base material.
  • the resin base material binds to the adhesive on the surface of the fiber.
  • the inventive method is easy to implement without great equipment complexity, so that in a straightforward and therefore cost-effective manner a fiber material can be provided which is ideal for the production of fiber composite components, which have a high mechanical stability and are without internal cavities.
  • the advantageous properties, effects and embodiments described for the fiber material according to the invention and the fiber composite component according to the invention are also applicable to the method according to the invention for producing a fiber material.
  • the method further comprises the step of activating the adhesion promoter before the application of the resin base material.
  • the adhesion promoter By activating the adhesion promoter, the adhesion thereof to the fiber as well as to the resin base material to be applied is promoted. This promotes a stable bond in the fiber material to be produced, as well as a uniform application of the resin base material.
  • the method is characterized in that the bonding agent is liquid and / or the resin base material is applied in powder form.
  • a liquid application of the bonding agent promotes a uniform arrangement of the same on the fiber and thus contributes to the homogeneity of the fiber material.
  • Liquid application forms of the adhesion promoter include solutions or dispersions of an adhesive such as polyurethane dispersions or thermally liquefied adhesion promoters, for example from the group of thermoplastics, which have a particularly good adhesion to the fiber surface due to their viscous character and are particularly suitable for the same reason to bind resin base materials especially when they are powdery.
  • Powdery resin base materials have the advantage that they do not adversely affect the elasticity or flexibility of the fiber material after application to the fiber and bonding to the same and the adhesion promoter, so that the Fiber material remains windable and from this simple fiber composite fabrics and / or fiber composite yarns can be formed.
  • the adhesion promoter and / or the resin base material are applied by spraying.
  • atomizing is meant that a liquid or solids-containing compound is possibly allowed to escape by the addition of a gas by pressure from a nozzle, so that it expands when flowing out of the nozzle and forms a very finely dispersed mist, which is reflected at the intended application surface and stays there.
  • spraying a particularly uniform distribution of adhesion promoter and / or resin base material can be achieved, which promotes the homogeneity of the fiber material according to the invention and thus the mechanical stability thereof, as well as a fiber composite component thereof.
  • a method for producing a fiber composite component in which the above-described fiber material according to the invention or a fiber material produced as described above is processed and the resin base material is activated.
  • the processing in the context of this method according to the invention comprises the production of conventional semi-finished fiber products such as mats, fabrics, scrims, knitted fabrics, knitted fabrics, threads and the like.
  • the fiber material according to the invention can be cut, arranged and shaped in any desired manner. It is also essential to activate the resin base material, which so far has been arranged only on the fiber of the fiber material and is not connected to other resin base material-containing fibers, that is to say in particular crosslinked.
  • this forms a resin matrix connected over the entire assembly, in which the fiber material or the or several semi-finished fiber products are embedded, resulting in a stable fiber-resin composite.
  • the activation is advantageously carried out by the entry of energy, that is, for example, thermal energy or radiant energy.
  • energy that is, for example, thermal energy or radiant energy.
  • crosslinking, fusing or curing of the resin base material, and thus a conversion of the resin base material to a Resin for example, by inducing a chemical reaction.
  • a reaction may be a polymerization reaction, for example a polyaddition or polycondensation.
  • thermal activation may also include liquefying a resin base material which then passes and solidifies by subsequent cooling to a compact resin matrix.
  • a fiber composite component produced in this way is distinguished by excellent physical and mechanical properties and an associated high resistance and stability.
  • the advantageous properties, effects and embodiments described for the fiber material according to the invention, as well as the fiber composite component according to the invention and also for the method for producing a fiber material, are also applied to the method according to the invention for producing a fiber composite component.
  • This embodiment of the method according to the invention is particularly advantageous in the production of fiber composite components which are formed from one or more fiber layers in a resin matrix.
  • Under a clutch in the context of the invention is a predominantly isotropic arrangement of cut fiber materials understood, which is introduced into a corresponding mold.
  • the fact that the fibers are already homogeneously provided with a resin base material, the conventional, very difficult addition and distribution of a resin to form the fiber composite component is unnecessary.
  • this forms a stable, uniform fiber composite, and thus a fiber composite component of high quality and very good mechanical stability.
  • the ratio of the length of the fiber material to the diameter of the fiber material is less than 10 to 1. If the ratio is within the stated range, the fibers can be introduced into the mold particularly uniformly, ie, isotropically without hindering or agglomerating. If the above-mentioned ratio is greater than or equal to 10: 1, voids are increasingly formed between the cut fiber material. The closer the ratio approaches a 1: 1 ratio, the more uniform the distribution of the cut fiber material in the mold and the more stable and higher density the fiber composite component can be formed.
  • the core of the invention relates to a fiber material, in which already on the or the fibers or fiber bundles, a resin base material is arranged, which is at least partially fixed by means of an adhesion promoter on the fiber, wherein from the fiber material just corresponding semifinished products and in particular fiber material sheets and or fiber material filaments, which are then permanently bonded together by activation of the resin base material and reshaping it into a resin.
  • Figure 1 is a schematic sectional view of a fiber composite material according to the prior art
  • Figure 2 is a schematic, perspective, partially cut
  • FIG. 3 shows a schematic representation of a second fiber material according to the present invention
  • Figure 4 is a schematic, partially sectioned view of a
  • FIG. 5 shows a schematic representation of a fiber composite component according to the present invention
  • Figure 6 is a schematic representation of an apparatus for producing a fiber composite component according to the present invention.
  • Figure 1 shows a schematic representation of a fiber composite material 1 according to the prior art.
  • the fiber composite material 1 is shown in a sectional view, with fibers 2 embedded in a resin 3.
  • the fiber composite material 1 was produced by forming a fiber fabric, which was then impregnated with an epoxy resin 3 and compacted by means of a roller. Subsequently, the resin 3 was thermally cured. Due to the different permeability of the fiber fabric, the resin 3 did not penetrate fully after application in all the cavities of the fiber fabric, which was partially compensated by the compaction with the roller.
  • FIG. 2 shows a schematic representation of a first fiber material 10 according to the present invention.
  • a fiber 2 is surrounded by a film of a bonding agent 11, which in turn is surrounded by a film of a resin base material 12.
  • the fiber material 10 according to the invention was produced by, for example, drawing a glass fiber 2 or a fiber bundle of glass fibers 2 with 30 TEX through a bath with adhesion promoter 11.
  • the adhesion promoter 11 in this case is a 65% aqueous polyurethane dispersion.
  • the adhesive 2 provided with fiber 11 was then dried in a stream of air, whereby a polyurethane film on the surface of the fiber 2 was formed.
  • the weight ratio of fiber 2 to bonding agent 11 after drying of the adhesion promoter was 1: 0.5.
  • the provided with adhesive 11 fiber 2 was then heated by blowing about 40 ° C warm air to a temperature of about 40 ° C and thus activated, whereby the polyurethane film was also heated and thus slightly sticky.
  • the primed fiber 2 was then drawn through a bath of resin base material 12, a bath containing an epoxy compound and a curing agent which adhered to and also formed a film thereon. Any solvent residues were volatilized by blowing in warm air.
  • the weight ratio of fiber 2 to resin base material 12 was 0.3: 1, and the weight ratio of resin base material 12 to adhesion promoter 11 was 7: 1.
  • the fiber material 10 was stable and sufficiently flexible for the production of conventional semifinished fiber products.
  • FIG. 3 shows a schematic representation of a second fiber material 20 according to the present invention.
  • a fiber 2 is surrounded by droplets of a bonding agent 11.
  • the fiber 2 and also the droplets of the bonding agent 11 are further surrounded by particles of a powdery resin base material 12.
  • This fiber material 20 according to the invention was produced by, for example, spraying a 65% strength aqueous polyurethane dispersion onto a glass fiber 2 or onto a fiber bundle of glass fibers 2 with 30 TEX. By spraying, the water content of the polyurethane dispersion evaporated and the polyurethane precipitated in droplet form on the surface of the fiber 2.
  • the weight ratio of fiber 2 to adhesion promoter 11 was 1: 0.4 after evaporation of the volatile fraction of the polyurethane dispersion.
  • the provided with bonding agent 11 fiber 2 was then heated by means of warm air to about 40 ° C, whereby the polyurethane was activated.
  • an epoxy base material in powder form with an average particle size of 100 m in the air stream was sprayed on the Adhesive 11 sprayed on.
  • the resin base material 12 was precipitated in the form of fine particles on the polyurethane surface.
  • the weight ratio of fiber 2 to resin base material 12 was 0.4: 1, and the weight ratio of resin base material 12 to adhesion promoter 11 was 7.5: 1.
  • the fiber material 20 was stable and more elastic and flexible with respect to the fiber material 10.
  • FIG. 4 shows a schematic representation of a fibrous material sheet 30 according to the present invention.
  • the fibrous material sheet 30 is formed from interwoven fiber materials 10, as seen for example in FIG.
  • Such a fibrous material sheet 30 has, inter alia, at each contact point of the interwoven fiber materials 10, a resin base material 12, so that the fiber materials 10 can be very well connected by activating the resin base material 12 and forming it into a resin 13. This promotes the mechanical stability of the fiber composite component formed therefrom.
  • FIG. 5 shows a schematic representation of a fiber composite component 40 according to the present invention.
  • the fiber composite component 40 consists of three fiber materials 10 arranged in parallel, as can be seen, for example, in FIG.
  • the fiber composite component 40 three fibers 2 arranged in parallel, for example 25 TEX glass fibers, are surrounded by a film of a bonding agent 11.
  • the adhesion promoter is again a 65% aqueous polyurethane dispersion.
  • This arrangement is surrounded by a resin 13.
  • This resin 13 was formed by thermally activating an epoxy resin base material 12 applied to the primer 11 as seen in FIG. 2.
  • the thermal activation crosslinked the epoxy resin base material 12 to form a stable, crosslinked, and thus cured epoxy resin containing both the fibers 2 as well as the bonding agent 11 completely encloses and further also the individual fiber materials 10 stably interconnects.
  • FIG. 6 shows a schematic representation of an apparatus 50 for producing a fiber composite component according to the present invention.
  • This device 50 is a mold and comprises a mold base 51 and a mold top 52.
  • the device 50 is closed and comprises between the two mold sides 51 and 52 a cavity which is connected to a scrim 53 of cut fiber materials according to FIG. 1 or 2 as shown above , is filled.
  • the resin base material 12 located on the fiber material 10 of the pad 53 is activated and crosslinks the individual cut fiber materials 10 and forms a stable fiber composite component which is distinguished by excellent mechanical stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Es wird ein Fasermaterial (10, 20) beschrieben, das mindestens eine Faser (2), mindestens einen Haftvermittler (11) und mindestens ein Harzbasismaterial (12) umfasst, wobei der Haftvermittler (11) auf der Faser (2) angeordnet ist und wobei das Harzbasismaterial (12) mindestens teilweise, vorzugsweise vollständig, auf dem Haftvermittler (11) angeordnet ist.

Description

Fasermaterial, Faserverbundbauteil, Verwendung des Fasermaterials und
Verfahren zu deren Herstellung
Beschreibung
Die vorliegende Erfindung betrifft ein Fasermaterial, dessen Verwendung und ein Verfahren zu dessen Herstellung, sowie ein Faserverbundbauteil und ein Verfahren zu dessen Herstellung.
Faserverbundwerkstoffe und die daraus herstellbaren Faserverbundbauteile haben im letzten Jahrzehnt wirtschaftlich erheblich an Bedeutung gewonnen. Dies liegt nicht zuletzt an ihren hervorragenden mechanischen Eigenschaften, sondern gleichzeitig auch an ihrem, gerade gegenüber herkömmlichen mineralischen Werkstoffen, deutlich reduziertem Gewicht. Dies prädestiniert Faserverbundbauteile für viele Anwendungsbereiche, wie beispielsweise den Kraftfahrzeugbau, Flugzeugbau oder Modellbau. Üblicherweise werden Faserverbundwerkstoffe hergestellt, indem aus entsprechenden Fasern Halbzeuge, wie beispielsweise Matten, Gewebe, Gelege, Geflechte, Gestricke und andere Formen gebildet werden, die dann mit einem Bindemittel, meist einem Kunstharz, getränkt werden, und im Anschluss daran das Bindemittel verfestigt wird, so dass sich ein stabiler Faser-Bindemittel-Verbund bzw. Faser-Harz- Verbund ergibt. Dieses oder ähnliche bekannte Verfahren zur Herstellung von Faserverbundbauteilen sind sehr aufwendig und nur mittels hohem gerätetechnischen Aufwand zumindest teilweise automatisierbar. Ferner nachteilig an den herkömmlichen Verfahren ist, dass durch das nachträgliche Aufbringen des Bindemittels auf das aus Fasern vorbereitete Halbzeug, aufgrund der geringen Durchlässigkeit des Faserhalbzeugs, das Bindemittel nicht gleichmäßig in alle Hohlräume des Faserhalbzeugs penetriert. Selbst wenn nach der Applikation des Bindemittels dessen Verteilung durch Einwirkung von Druck und Temperatur gefördert werden kann, so liegen im fertigen Faserverbundwerkstoff Bereiche kumulierter Fasern neben faserarmen, also bindemittelreichen Bereichen. Durch diese inhomogene Anordnung von Fasern und Bindemittel sind Schwachstellen im Faserverbundbauteil bedingt, und ihre mechanischen Eigenschaften reduziert.
Es ist Aufgabe der Erfindung, ein Fasermaterial bereitzustellen, das sich einfach und kostengünstig herstellen und zu einem Faserverbundbauteil weiterverarbeiten lässt, und durch dessen Verwendung Inhomogenitäten in einem daraus gebildeten Faserverbundbauteil vermieden werden können. Ferner ist es Aufgabe der Erfindung, ein vereinfachtes und kostengünstiges Verfahren zur Herstellung eines solchen Fasermaterials und ein Faserverbundbauteil bereitzustellen, das sich durch eine homogene Struktur und dadurch sehr gute mechanische Eigenschaften auszeichnet. Ebenso ist es Aufgabe ein vereinfachtes und kostengünstiges Verfahren zur Herstellung des Faserverbundbauteils bereitzustellen.
Die Aufgaben werden gelöst durch ein Fasermaterial gemäß Anspruch 1, ein Faserverbundbauteil gemäß Anspruch 7, ein Verfahren zur Herstellung des Fasermaterials gemäß Anspruch 8, sowie ein Verfahren zur Herstellung des Faserverbundbauteils gemäß Anspruch 12. Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung.
Ein Fasermaterial im Sinne der Erfindung umfasst mindestens eine Faser, mindestens einen Haftvermittler und mindestens ein Harzbasismaterial, wobei der Haftvermittler auf der Faser angeordnet ist und wobei das Harzbasismaterial mindestens teilweise, vorzugsweise vollständig, auf dem Haftvermittler angeordnet ist. Das Kernmaterial des erfindungsgemäßen Fasermaterials ist demnach eine Faser, wobei jegliche Art von Faser verwendet werden kann, also beispielsweise eine Naturfaser, wie Cellulose- oder Hanffaser, keramische Faser wie Siliziumkarbidfaser, Mullitfaser oder Aluminiumoxidfaser, synthetische Faser wie Nylonfaser, oder eine Glasfaser oder Karbonfaser. Je nach Herstellung des Fasermaterials, kann die Faser als Einzelfaser verwendet werden oder aber als Faserbündel. Ein Faserbündel kann dabei aus Fasern einer Art oder aus Fasern unterschiedlicher Art bestehen, wobei die Fasern entweder lose und überwiegend parallel oder miteinander verbunden, beispielsweise miteinander verdrillt, angeordnet sein können. Die Anzahl an Fasern, die zu dem erfindungsgemäßen Fasermaterial verarbeitet wird, bestimmt sich hauptsächlich nach der Art der Faser und den gewünschten mechanischen, chemischen, sowie physikalischen Eigenschaften des Fasermaterials.
Ein Haftvermittler im Sinne der vorliegenden Erfindung ist eine Verbindung, die sowohl der Faser als auch dem Harzbasismaterial gegenüber eine gewisse Adhäsion aufweist, der also zunächst auf der Faser haftet und gleichzeitig in der Lage ist, ein Harzbasismaterial zu binden. Die Art der Bindung des Haftvermittlers an die Faser sowie auch an das Harzbasismaterial ist nicht beschränkt und umfasst eine kovalente Bindung, lonenbindung, van der Waals Bindung, sowie auch übliche Haftmechanismen gängiger Adhäsive. Auch die chemische Natur des Haftvermittlers ist nicht limitiert, solange sie eine ausreichende Bindefähigkeit an die Faser bereitstellt, sowie eine Bindung des Harzbasismaterials erlaubt. Damit richtet sich die chemische Zusammensetzung des Haftvermittlers auch nach der Art der Faser sowie des Harzbasismaterials. Der Haftvermittler wird vorzugsweise in flüssiger Form auf die Faser aufgebracht, liegt also beispielsweise entweder als Lösung oder als Dispersion vor oder wird in verflüssigtem Zustand appliziert. Durch den flüssigen Aggregatzustand kann die Menge an appliziertem Haftvermittler gut reguliert werden. Haftvermittler, die gemäß der vorliegenden Erfindung verwendet werden können, sind beispielsweise aus der nicht abschließenden Gruppe aus: natürlichen Haftvermittlern wie Cellulosen, Celluloseethern oder Stärke und polymeren Haftvermittlern wie Polybutenen, Polyurethanen, Polyacrylaten, Polyamiden, Polyimiden, Silikonverbindungen, Silanverbindungen und Gemischen daraus, ausgewählt. Vorzugsweise ist der Haftvermittler ein Duroplast oder Thermoplast und insbesondere bevorzugt ein Polyurethan, das in Form einer wässrigen oder alkoholischen Dispersion und/oder als Feststoff auf die Faser aufgebracht wird. Polyurethane sind mit den meisten gängigen Fasermaterialien, sowie mit den meisten Harzbasismaterialien, gut kompatibel und haften an beiden sehr gut.
Der Haftvermittler dient also dazu, das Harzbasismaterial dauerhaft gleichmäßig an die Faser zu binden. Etwaige flüchtige Bestandteile des Haftvermittlers werden vorzugsweise vor dem Aufbringen des Harzbasismaterials bzw. bei der Weiterverarbeitung des erfindungsgemäßen Fasermaterials entfernt. Die Anordnung des Haftvermittlers auf der Faser ist im Einzelnen nicht beschränkt, solange eine ausreichende Menge an Haftvermittler auf der Faseroberfläche anhaftet, um die gewünschte Menge an Harzbasismaterial gleichmäßig zu binden. Vorzugsweise wird der Haftvermittler so auf die Faser aufgebracht, dass er eine flächige Schicht und insbesondere einen Film um die Faser bildet.
Unter einem Harzbasismaterial im Sinne der Erfindung wird eine Verbindung verstanden, die eine dauerhafte Bindung von mehreren Fasern oder Faserbündeln aneinander, und damit die Herstellung eines Faserverbundbauteils, ermöglicht. Es fungiert somit als Bindemittel sowohl der Fasern eines daraus gebildeten Faserhalbzeugs, als auch als Bindemittel zwischen mehreren in Kontakt stehenden Faserhalbzeugen, wobei das Harzbasismaterial mindestens teilweise, und vorzugsweise vollständig auf dem Haftvermittler angeordnet, und damit bereits integrierter Bestandteil im Fasermaterial ist, das dann zu entsprechenden Faserhalbzeugen weiterverarbeitet werden kann. Durch das Bindeglied Haftvermittler wird eine ausreichende und gleichmäßige Applikation des Harzbasismaterials auf die Faser gewährleistet. Das Harzbasismaterial bindet aufgrund konstruktiver Wechselwirkungen vornehmlich, und vorzugsweise vollständig, an den Haftvermittler, kann aber auch teilweise an das Fasermaterial selbst binden. Eine Haftung über das Bindeglied Haftvermittler ist jedoch bevorzugt, da auf dieser Weise eine besonders gleichmäßige Applikationsdichte des Harzbasismaterials erzielt werden kann, was sich später positiv auf die Qualität und insbesondere die mechanischen Eigenschaften des Faserhalbzeugs und somit auch des Faserverbundbauteils, auswirkt, ohne aber Nachteile, wie beispielsweise ein Ablösen von Haftvermittler und Harzbasismaterial von der Faser, bei der Verarbeitung des erfindungsgemäßen Fasermaterials, zu zeigen.
Die Zusammensetzung des Harzbasismaterials ist im Einzelnen nicht beschränkt. Im Sinne der Erfindung können solche Materialien zur Anwendung kommen, wie sie auch im Stand der Technik für diesen Zweck geeignet sind. Eine nicht abschließende Liste an geeigneten Harzbasismaterialien umfasst Thermoplaste, Duroplaste, Oligomere und Polymere, die nach Applikation auf die mit Haftvermittler versehene Faser in einem späteren Schritt durch Aktivierung unter Bildung eines Harzes vernetzt bzw. ausgehärtet werden können, wodurch benachbarte Fasern oder Faserbündel, die zumeist Bestandteil eines Faserhalbzeugs sind, bei Herstellung eines Faserverbundbauteils aus dem erfindungsgemäßen Fasermaterial, aneinander gebunden werden.
Die Anordnung des Harzbasismaterials auf der Faser bzw. dem Haftvermittler ist im Einzelnen nicht beschränkt. Durch Wahl des Applikationsgerätes kann beispielsweise ein mehr oder weniger dichter oder dicker Film an Harzbasismaterial entlang der durch die Faser vorgegebenen Richtung appliziert werden, wodurch die Menge an Harzbasismaterial in dem erfindungsgemäßen Fasermaterial steuerbar ist.
Das Harzbasismaterial kann somit die Faser und damit auch den Haftvermittler vollständig umschließen, also eine Art Überzug bilden, kann aber auch nur einseitig flächig oder auch nur intermittierend aufgebracht sein. Wesentlich dabei ist, dass eine ausreichende Menge an Harzbasismaterial aufgebracht wird, also eine Menge, die nach Aktivierung des Harzbasismaterials eine dauerhaft stabile Verbindung der Fasern und Faserbündel im Endprodukt, dem Faserverbundbauteil, ergibt. Dabei soll die Menge an Harzbasismaterial aber auch nicht zu groß sein, um ein Abfließen oder Abbröckeln desselben von dem Haftvermittler, oder aber sogar mit diesem zusammen, zu vermeiden. Durch die Anordnung des Harzbasismaterials direkt auf der noch nicht zu einem Faserhalbzeug weiterverarbeiteten Faser, wird in jedem Fall eine Bildung von Fehlstellen, also nicht bindemittel- bzw. harzhaltigen Bereichen minimiert, und damit Inhomogenitäten vermieden, was die mechanischen Eigenschaften und die Stabilität des zu einem Faserverbundbauteil weiterverarbeiteten erfindungsgemäßen Fasermaterials maximiert.
Erfindungswesentlich ist also mit anderen Worten, dass das Harzbasismaterial bereits vor Formung der Faserhalbzeuge aus Fasern oder Faserbündeln auf die Faser oder Faserbündel aufgebracht wird, da nur so eine homogene Verteilung von Harzbasismaterial und daher später eine gleichmäßige Bindung von Fasern und Faserbündeln im Faserverbundbauteil ohne Fehlstellen, z.B. nicht mit Harzbasismaterial durchdrungenen Bereichen oder Agglomerationen nur von Harz, erreicht wird.
Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das Fasermaterial dadurch gekennzeichnet, dass die Faser eine Glasfaser oder eine Karbonfaser ist. Glasfasern und Karbonfasem haben den Vorteil eine besonders hohe mechanische Stabilität bereitzustellen, bei relativ geringem Eigengewicht. Zudem hat sich herausgestellt, dass Glasfasern bzw. Karbonfasern sich besonders gut mit dem erfindungswesentlichen Haftvermittler und Harzbasismaterial beschichten lassen, ohne dabei nachteilig in Mitleidenschaft gezogen zu werden. Dies bedeutet, dass die Glas- oder Karbonfasern selbst nach Beschichtung mit Haftvermittler und Harzbasismaterial weiterhin über eine sehr gute Stabilität und bedingte Flexibilität verfügen, so dass sie durch übliche Verfahren zu Faserhalbzeugen weiterverarbeitet werden können, ohne beispielsweise zu brechen oder zu knicken.
Gemäß einer weiteren vorteilhaften Ausführungsform der vorliegenden Erfindung enthält das Harzbasismaterial mindestens ein aushärtbares Oligomer und/oder mindestens ein aushärtbares Polymer. Aushärtbare, also beispielsweise durch Härter oder Vemetzer aktivierbare und demnach allgemein durch chemische Reaktion (meist Polyaddition oder Polykondensation) filmbildend reagierende, und damit vernetzende Oligomere oder Polymere haben gegenüber durch Erhöhung der Temperatur aktivierbaren, also lediglich thermisch erweichbaren und durch Abkühlung wieder erhärtenden filmbildenden Polymeren, wie Thermoplasten, den Vorteil, dass sie meist aufgrund niedrigerer Viskosität einfacher applizierbar und damit präziser dosierbar sind. Dies ist wichtig, um eine vorbestimmte Menge an Harzbasismaterial auf die mit Haftvermittler versehene Faser aufbringen zu können, die ausreichend ist, um eine stabile Bindung zwischen später zu Halbzeugen und weiter zu Faserverbundbauteilen weiterzuverarbeitenden Fasern zu erzielen, und gleichzeitig ein Abfließen oder Abbröckeln vom Applikationsort zu vermeiden. Zudem kann die Aushärt- bzw. Vernetzungsreaktion zeitlich und in ihrem Umfang, leichter gesteuert werden. Geeignete aushärtbare Oligomere oder Polymere umfassen Acrylate, Urethane, Polyurethane. Vorzugsweise enthält das erfindungsgemäße Harzbasismaterial eine Epoxidverbindung. Epoxide, also die noch nicht zu Epoxidharz vernetzte Vorstufe von Epoxidharzen, haben sich als besonders leicht mit Fasern im Sinne der Erfindung zu verarbeitende Harzbasismaterialien erwiesen, da sie gut zu dosieren sind und mit entsprechenden Aktivatoren, also Härtern oder Vernetzem beliebig stark vernetzend sind. Epoxidverbindungen zeichnen sich ferner durch den Vorteil aus, dass sie auch in Pulverform erhältlich sind. Pulverförmige Harzbasismaterialien können besonders leicht und gleichmäßig auf die mit Haftvermittler versehene Faser aufgetragen werden. Überschüssige, nicht gebundene Epoxidverbindung ist ferner unkompliziert von der ausreichend beschichteten Faser entfernbar, so dass die applizierte Schichtdicke gut einstellbar ist.
Gemäß einer weiteren vorteilhaften Ausführungsform ist das Harzbasismaterial pulverförmig und weist insbesondere eine durchschnittliche Partikelgröße von 1 bis 200 μηη, vorzugsweise von 30 bis 140 μηη, auf. Die Partikelgröße wird mittels eines Gerätes der Fa. Malvern via Fraunhofer-Beugung eines Laserstrahls gemessen. Der Aggregatzustand des Harzbasismaterials ist im Einzelnen nicht beschränkt. Jedoch hat sich gezeigt, dass ein pulverförmiges Harzbasismaterial besonders gut dauerhaft auf der mit Haftvermittler versehenen Faser stabilisierbar ist. Dies ist damit zu begründen, dass die Pulverkörner untereinander nicht gebunden sind und daher jedes einzelne Korn gut auf der Haftvermittleroberfläche und ggf. auf der Faser selbst, haftet. Das Harzbasismaterial liegt also in Form untereinander loser aber an den Haftvermittler und ggf. die Faser gebundener Partikel vor und nicht in Form eines Films, so dass das erhaltene Fasermaterial eine gute Flexibilität aufweist, was die Weiterverarbeitung zu einem Faserhalbzeug vereinfacht, weil das erfindungsgemäße Fasermaterial aufgrund seiner gewissen Elastizität bzw. Flexibilität gut gewunden werden kann, ohne zum Knicken oder Brechen zu tendiert. Dies ist insbesondere dann der Fall, wenn die durchschnittliche Partikelgröße des Harzbasismaterials 1 bis 200 m und insbesondere 30 bis 140 μηη beträgt. Ist die durchschnittliche Partikelgröße größer als 140 μιτι und insbesondere größer als 200 μιη, so sind die Partikel so groß, dass sie sich beim Aufbringen und Verarbeiten des Fasermaterials zu einem Faserhalbzeug sterisch behindern und zum Abbröckeln tendieren. Kleine Partikelgrößen von weniger als 30 μηι und insbesondere von weniger als 1 μπι ergeben oftmals keine ausreichende Schichtdicke des Harzbasismaterials, so dass später, nach Aktivierung des Harzbasismaterials bei Bildung des Faserverbundbauteils, lediglich eine reduzierte Stabilität zwischen den Fasern bzw. Faserbündeln der Faserhalbzeuge erzielt wird. Die durchschnittliche Partikelgröße kann dabei mikroskopisch bestimmt werden, wobei im Mikroskop bei nicht sphärischen Körnern jeweils der größte Durchmesser der Körner als Messpunkt dient. Eine weitere vorteilhafte Ausführungsform der vorliegenden Erfindung sieht vor, dass im erfindungsgemäßen Fasermaterial das Gewichtsverhältnis Faser zu Haftvermittler 1 :0,1 bis 1 :1 und/oder das Gewichtsverhältnis Faser zu Harzbasismaterial 0,25:1 bis 0,5:1 und/oder das Gewichtsverhältnis Harzbasismaterial zu Haftvermittler 10:1 bis 1:1 beträgt. Mit anderen Worten kommen beispielsweise beim Beschichten einer Glasfaser von etwa 34 TEX ca. 12 bis 14 TEX Haftvermittler hinzu. Liegt das Gewichtsverhältnis von Faser zu Haftvermittler bei 1 :0,1 bis 1 :1 , so ist gewährleistet, dass eine ausreichende Menge an Haftvermittler auf der Faser vorliegt, um eine vorgesehene Menge an Harzbasismaterial zu binden. Übersteigt der Anteil an Haftvermittler denjenigen der Faser, ist also das Gewichtsverhältnis von Faser zu Haftvermittler kleiner als 1:1, so kann sich dies negativ auf die Verarbeitbarkeit des Fasermaterials auswirken. Vorzugsweise ist das Gewichtsverhältnis Faser zu Harzbasismaterial 0,25:1 bis 0,5:1. Dies gewährleistet, dass der Anteil an Harzbasismaterial so hoch ist, dass die Faser wie auch der Haftvermittler ausreichend von Harzbasismaterial bedeckt werden, und später ein stabiler Verbund zwischen Fasern und letztendlich Faserhalbzeugen bereitgestellt wird, was maßgeblich zur Erhöhung der mechanischen Stabilität des herzustellenden Faserverbundbauteils beiträgt. Ein zu hoher Anteil an Harzbasismaterial im Vergleich zum Anteil der Fasern, also ein Gewichtsverhältnis von kleiner 0,25:1 ist jedoch nachteilig, da dann faserarme Stellen im später zu erzeugenden Faserhalbzeug entstehen können. Das Gewichtsverhältnis Harzbasismaterial zu Haftvermittler beträgt vorzugsweise 10:1 bis 1:1. Liegt das Verhältnis in dem angegebenen Bereich, so ist gewährleistet, dass der gesamte Anteil an Harzbasismaterial dauerhaft an den Haftvermittler gebunden werden kann. Kleinere Anteile sind zwar möglich, führen aber zu nicht ausreichend stabiler Bindung der Fasern im Faserhalbzeug. Höhere Anteile an Harzbasismaterial, die das o.g. Verhältnis übersteigen, führen wiederum zu faserarmen Stellen im Faserhalbzeug, was sich negativ auf die mechanische Belastbarkeit des späteren Faserverbundbauteils auswirkt. Die jeweiligen Gewichtsanteile an Faser, Haftvermittler und Harzbasismaterial werden nach Entfernen aller bei Raumtemperatur flüchtigen Bestandteile durch Auswiegen bestimmt.
Das erfindungsgemäße Fasermaterial ist aufgrund seiner Eigenschaften besonders gut zur Herstellung eines Fasermaterial-Flächengebildes oder eines Fasermaterial-Fadens oder eines Faserverbundbauteils von hoher Güte geeignet. Ein Fasermaterial-Flächengebilde ist eine flächige Anordnung des erfindungsgemäßen Fasermaterials, wie beispielsweise eine Fasermatte, eine Faserplatte, ein Fasergelege, ein Fasergewebe, ein Fasergewirke, ein Fasergestricke oder dergleichen. Hierin ist das Harzbasismaterial noch nicht aktiviert, die Fasern liegen in dem Fasermaterial-Flächengebilde also noch in loser Form aber beispielsweise verwoben, verflochten, gewirkt, gestrickt oder dergleichen, vor. Das Harzbasismaterial umgibt die Fasern samt Haftvermittler und ist in dem Fasermaterial-Flächengebilde gleichmäßig verteilt. Ähnlich verhält es sich mit dem erfindungsgemäßen Fasermaterial-Faden, wobei ein Fasermaterial- Faden im Sinne der Erfindung eine mehr oder weniger ausgerichtete Parallelanordnung von mehreren Fasern bezeichnet, wobei die Fasern ggf. zusätzlich beispielsweise durch Verdrillen oder Verflechten miteinander verbunden sind. Auch hier liegt das Harzbasismaterial noch nicht aktiviert, also noch nicht vernetzt, sondern lediglich auf der jeweiligen Faser angeordnet, vor. Ein Faserverbundbauteil ist dagegen eine Anordnung von einem oder mehreren Fasermaterial-Flächengebilden und/oder Fasermaterial-Fäden, die durch Aktivieren des Harzbasismaterials, und dadurch Bildung eines vernetzten oder ausgehärteten Harzes, dauerhaft miteinander verbunden sind. Das Harzbasismaterial liegt somit in Form eines Harzes vor, ist damit also beispielsweise vernetzt oder ausgehärtet, wobei das Harz die Fasern einzelner Fasermaterial-Flächengebilde und/oder Fasermaterial-Fäden untereinander, sowie Fasermaterial-Flächengebilde und/oder Fasermaterial-Fäden miteinander, also dreidimensional, verbindet, so dass ein homogenes Faserverbundbauteil ohne Fehlstellen des Harzes oder gar Luftlöchern erhalten wird. Weiter erfindungsgemäß wird ein Faserverbundbauteil beschrieben, das mindestens eine Faser, mindestens einen Haftvermittler und mindestens ein Harz umfasst, wobei der Haftvermittler auf der Faser angeordnet ist und wobei das Harz sowohl die Faser als auch den Haftvermittler umgibt. Das erfindungsgemäße Faserverbundbauteil kann aus dem erfindungsgemäßen Fasermaterial durch Weiterverarbeitung des Fasermaterials, beispielsweise durch Verweben, Legen oder Verstricken desselben und somit durch Bildung beispielsweise eines Geleges, Gewirkes, Gestrickes oder Gewebes und anschließende Aktivierung des Harzbasismaterials und Umwandlung desselben zu einem Harz, hergestellt werden. Durch das Aktivieren des Harzbasismaterials erhärtet bzw. vernetzt dieses und bildet ein Harz, also einen mehr oder weniger vollständigen Film, der die jeweiligen Fasern eines zu fügenden Fasermaterial-Flächengebildes und/oder eines Fasermaterial-Fadens untereinander als auch die Fasern benachbart angeordneter Fasermaterial-Flächengebilde und/oder Fasermaterial-Fäden, miteinander verknüpft, so dass ein stabiles Bauteil ohne Fehlstellen oder Inhomogenitäten entsteht. Das Harz zieht sich also in gleichförmiger Anordnung durch das gesamte Faserverbundbauteil und birgt die miteinander in Verbindung stehenden Faserverbund-Flächengebilde und/oder Faserverbund-Fäden, sowie die Fasern, aus denen dieselben hergestellt sind, als Matrixbausteine in sich. Dabei ist femer auf jeder Faser ein Haftvermittler angeordnet, der das Bindeglied zwischen der jeweiligen Faser auf der einen Seite und dem nun vernetzten Harz auf der anderen Seite, darstellt. Das Harz umgibt dabei zumindest teilweise und vorteilhafterweise vollständig die jeweiligen Fasern und den darauf befindlichen Haftvermittler was zu einem sehr stabilen Faserverbund, und damit zu sehr guten mechanischen Eigenschaften des Faserverbundbauteils, führt. Es sei femer angemerkt, dass erfindungsgemäß auch mehrere Gewebe, Gelege, Gewirke, Gestricke und Gemische daraus gestapelt und laminiert werden können. Zusätzlich zur Aktivierung des erfindungsgemäß verwendeten Harzbasismaterials kann auch ein weiteres Harz auf beispielsweise ein Fasermaterial-Flächengebilde oder einen Fasermaterial-Faden oder eine Anordnung mehrerer Fasermaterial- Flächengebilde oder Fasermaterial-Fäden aufgebracht werden, was die mechanische Stabilität des resultierenden Faserverbundbauteils noch einmal erhöht. Die vorteilhaften Eigenschaften, Effekte und Ausführungsformen, die bereits für das erfindungsgemäße Fasermaterial beschrieben wurden, finden auch Anwendung auf das erfindungsgemäße hohlraumfreie Faserverbundbauteil. Weiter erfindungsgemäß wird ein Verfahren zur Herstellung eines Fasermaterials, das mindestens eine Faser enthält, beschrieben, wobei das Verfahren die Schritte des Aufbringens mindestens eines Haftvermittlers auf mindestens eine Faser und Aufbringens mindestens eines Harzbasismaterials derart, dass zumindest ein Teil des Harzbasismaterials mit dem Haftvermittler in Kontakt gebracht wird, umfasst. Durch das Verfahren ist ein Fasermaterial herstellbar, das durch Weiterverarbeitung und Aktivierung des Harzbasismaterials zu einem mechanisch hoch belastbaren Faserverbundbauteil verarbeitet werden kann. Der Haftvermittler bzw. ein Gemisch aus geeigneten Haftvermittlern wird erfindungsgemäß auf mindestens eine Faser, oder auch auf mehrere Fasern gleicher Art, oder ein Gemisch unterschiedlicher Fasern, aufgebracht. Je nach Aggregatzustand und Zusammensetzung des Haftvermittlers kann dieser in geeigneter Weise und Menge flächig oder intermittierend auf die Faser aufgetragen, beispielsweise aufgesprüht oder aufgepinselt, werden. Auch kann die Faser oder ein Bündel aus Fasern durch ein Bad gezogen werden, das den erfindungsgemäßen Haftvermittler enthält. Nach Anhaften des Haftvermittlers an der Oberfläche der Faser, wird das Harzbasismaterial derart aufgebracht, dass zumindest ein Teil dieses Harzbasismaterials mit dem Haftvermittler in Kontakt gebracht wird. Durch dieses In-Kontakt-Bringen wird eine dauerhafte Bindung zwischen dem Haftvermittler und dem Harzbasismaterial erzeugt, die auch nach Fertigstellung des Fasermaterials bzw. eines daraus hergestellten Faserverbund-Flächengebildes oder Faserverbund-Fadens bestehen bleibt. Das Harzbasismaterial haftet vorzugsweise an dem Haftvermittler, mit dem es in Kontakt gebracht wird, kann aber auch direkt an die Faser binden, wenn es mit einer solchen in Berührung kommt. Dies ist abhängig von der Natur und Zusammensetzung sowohl der Fasern als auch des Harzbasismaterials. Vorzugsweise bindet das Harzbasismaterial an den auf der Oberfläche der Faser sitzenden Haftvermittler. Das erfindungsgemäße Verfahren ist einfach ohne großen gerätetechnischen Aufwand umsetzbar, so dass auf unkomplizierte und damit auch kostengünstige Weise ein Fasermaterial bereitgestellt werden kann, das sich hervorragend zur Herstellung von Faserverbundbauteilen eignet, die über eine hohe mechanische Stabilität verfügen und ohne innere Hohlräume sind. Die für das erfindungsgemäße Fasermaterial, sowie das erfindungsgemäße Faserverbundbauteil beschriebenen vorteilhaften Eigenschaften, Effekte und Ausführungsformen, finden auch Anwendung auf das erfindungsgemäße Verfahren zur Herstellung eines Fasermaterials.
Gemäß einer vorteilhaften Ausführungsform des Verfahrens zur Herstellung eines Fasermaterials umfasst das Verfahren femer den Schritt des Aktivierens des Haftvermittlers vor dem Aufbringen des Harzbasismaterials. Durch das Aktivieren des Haftvermittlers wird die Adhäsion desselben zur Faser, wie auch zu dem aufzubringenden Harzbasismaterial gefördert. Dies fördert einen stabilen Verbund in dem herzustellenden Fasermaterial, sowie eine gleichmäßige Applikation des Harzbasismaterials.
Gemäß einer weiteren vorteilhaften Ausführungsform des o.g. Verfahrens ist das Verfahren dadurch gekennzeichnet, dass der Haftvermittler flüssig und/oder das Harzbasismaterial pulverförmig aufgebracht werden. Eine flüssige Applikation des Haftvermittlers fördert eine gleichmäßige Anordnung desselben auf der Faser und trägt damit zur Homogenität des Fasermaterials bei. Flüssige Applikationsformen des Haftvermittlers umfassen Lösungen oder Dispersionen eines Adhäsivs wie beispielsweise Polyurethandispersionen oder aber thermisch verflüssigte Haftvermittler, beispielsweise aus der Gruppe der Thermoplaste, die aufgrund ihres zähflüssigen Charakters eine besonders gute Haftung auf der Faseroberfläche aufweisen und aus demselben Grund besonders gut geeignet sind Harzbasismaterialien zu binden, insbesondere wenn diese pulverförmig sind. Pulverförmige Harzbasismaterialien haben den Vorteil, dass sie nach Applikation auf die Faser und Bindung an dieselbe und den Haftvermittler die Elastizität bzw. Flexibilität des Fasermaterials nicht nachteilig beeinträchtigen, so dass das Fasermaterial windbar bleibt und hieraus einfach Faserverbund-Flächengebilde und/oder Faserverbund-Fäden gebildet werden können.
Besonders vorteilhaft werden der Haftvermittler und/oder das Harzbasismaterial durch Verdüsen aufgebracht. Unter Verdüsen wird verstanden, dass eine flüssige oder feststoffhaltige Verbindung ggf. unter Beimengung eines Gases durch Druck aus einer Düse entwichen lassen wird, so dass es beim Ausströmen aus der Düse expandiert und einen sehr fein verteilten Nebel bildet, der sich an der vorgesehenen Applikationsfläche niederschlägt und dort verbleibt. Durch das Verdüsen kann eine besonders gleichmäßige Verteilung von Haftvermittler und/oder Harzbasismaterial erzielt werden, was die Homogenität des erfindungsgemäßen Fasermaterials fördert und damit die mechanische Stabilität desselben, sowie eines Faserverbundbauteils daraus.
Weiter erfindungsgemäß wird auch ein Verfahren zur Herstellung eines Faserverbundbauteils beschrieben, bei dem das oben beschriebene erfindungsgemäße Fasermaterial oder aber ein wie oben beschrieben hergestelltes Fasermaterial verarbeitet und das Harzbasismaterial aktiviert wird. Das Verarbeiten im Sinne dieses erfindungsgemäßen Verfahrens umfasst das Herstellen üblicher Faserhalbzeuge wie beispielsweise Matten, Gewebe, Gelege, Gestricke, Gewirke, Fäden und dergleichen. Hierzu kann das erfindungsgemäße Fasermaterial in beliebiger Art und Weise geschnitten, angeordnet und in Form gebracht werden. Wesentlich ist auch das Aktivieren des Harzbasismaterials, das ja bis dato lediglich auf der Faser des Fasermaterials angeordnet und nicht mit weiteren harzbasismaterialhaltigen Fasern verbunden, also insbesondere vernetzt, ist. Durch das Aktivieren des Harzbasismaterials bildet dieses eine über die gesamte Anordnung verbundene Harzmatrix, in der das Fasermaterial bzw. das oder mehrere Faserhalbzeuge eingebettet sind, so dass sich ein stabiler Faser- Harz-Verbund ergibt. Das Aktivieren erfolgt vorteilhafterweise durch Eintrag von Energie, also beispielsweise thermischer Energie oder Strahlungsenergie. Durch den Energieeintrag wird ein Vernetzen, Verschmelzen oder Aushärten des Harzbasismaterials, und somit eine Umwandlung des Harzbasismaterials zu einem Harz, bedingt, beispielsweise durch Induzieren einer chemischen Reaktion. So eine Reaktion kann eine Polymerisationsreaktion, also beispielsweise eine Polyaddition oder Polykondensation sein. Darüber hinaus kann eine thermische Aktivierung auch das Verflüssigen eines Harzbasismaterials umfassen, das dann verläuft und durch anschließendes Abkühlen zu einer kompakten Harzmatrix erstarrt. Ein auf diese Weise hergestelltes Faserverbundbauteil zeichnet sich durch ausgezeichnete physikalische und mechanische Eigenschaften und eine damit verbundene hohe Resistenz und Stabilität aus. Die für das erfindungsgemäße Fasermaterial, sowie das erfindungsgemäße Faserverbundbauteil als auch für das Verfahren zur Herstellung eines Fasermaterials beschriebenen vorteilhaften Eigenschaften, Effekte und Ausführungsformen, finden auch Anwendung auf das erfindungsgemäße Verfahren zur Herstellung eines Faserverbundbauteils.
Das erfindungsgemäße Verfahren zur Herstellung eines Faserverbundbauteils ist vorteilhafterweise dadurch gekennzeichnet, dass es die folgenden Schritte umfasst:
Schneiden des Fasermaterials,
Einbringen des geschnittenen Fasermaterials in ein Formwerkzeug,
Schließen des Formwerkzeugs und
- Aktivieren des Harzbasismaterials durch Einbringen von Energie zur Herstellung des Faserverbundbauteils.
Diese Ausführungsform des erfindungsgemäßen Verfahrens ist besonders vorteilhaft bei der Herstellung von Faserverbundbauteilen, die aus einem oder mehreren Fasergelegen in einer Harzmatrix gebildet werden. Unter einem Gelege im Sinne der Erfindung wird dabei eine überwiegend isotrope Anordnung zugeschnittener Fasermaterialien verstanden, die in ein entsprechendes Formwerkzeug eingebracht wird. Dadurch, dass die Fasern bereits homogen mit einem Harzbasismaterial versehen sind, erübrigt sich die herkömmliche, sehr schwierige Zugabe und Verteilung eines Harzes zur Bildung des Faserverbundbauteils. Durch Aktivieren des auf den Fasern befindlichen Harzbasismaterials bildet dieses einen stabilen, gleichmäßigen Faserverbund, und damit ein Faserverbundbauteil von hoher Güte und sehr guter mechanischen Stabilität.
Gemäß einer weiteren vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung eines Faserverbundbauteils ist das Verhältnis Länge des Fasermaterials zu Durchmesser des Fasermaterials kleiner als 10 zu 1. Liegt das Verhältnis in dem angegebenen Bereich, so lassen sich die Fasern besonders gleichmäßig, also isotrop in das Formwerkzeug einbringen, ohne sich sterisch zu behindern oder aber zu agglomerieren. Ist das oben genannte Verhältnis größer oder gleich 10:1 , so bilden sich vermehrt Hohlräume zwischen dem geschnittenen Fasermaterial. Je näher sich das Verhältnis einem 1 :1 Verhältnis nähert, desto gleichmäßiger ist die Verteilung des geschnittenen Fasermaterials in dem Formwerkzeug und desto stabiler und von höherer Dichte kann das Faserverbundbauteil ausgebildet werden.
Zusammenfassend betrifft der Kern der Erfindung ein Fasermaterial, bei dem bereits auf der bzw. den Fasern oder Faserbündeln ein Harzbasismaterial angeordnet ist, welches zumindest teilweise mittels eines Haftvermittlers auf der Faser fixiert ist, wobei aus dem Fasermaterial einfach entsprechende Halbzeuge und insbesondere Fasermaterial-Flächengebilde und/oder Fasermaterial-Fäden, gebildet werden können, die dann durch Aktivierung des Harzbasismaterials und Umformung desselben zu einem Harz, dauerhaft aneinander gebunden werden.
Nachfolgend werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitende Zeichnung im Detail beschrieben. In der Zeichnung ist:
Figur 1 eine schematische Schnittdarstellung eines Faserverbundwerkstoffes gemäß dem Stand der Technik, Figur 2 eine schematische, perspektivische, teilweise geschnittene
Darstellung eines ersten Fasermaterials gemäß der vorliegenden Erfindung, Figur 3 eine schematische Darstellung eines zweiten Fasermaterials gemäß der vorliegenden Erfindung,
Figur 4 eine schematische, teilweise geschnittene Darstellung eines
Fasermaterial-Flächengebildes gemäß der vorliegenden Erfindung, Figur 5 eine schematische Darstellung eines Faserverbundbauteils gemäß der vorliegenden Erfindung und
Figur 6 eine schematische Darstellung einer Vorrichtung zur Herstellung eines Faserverbundbauteils gemäß der vorliegenden Erfindung.
Figur 1 zeigt eine schematische Darstellung eines Faserverbundwerkstoffes 1 gemäß dem Stand der Technik. Der Faserverbundwerkstoff 1 ist dabei in Schnittansicht gezeigt, wobei Fasern 2 in ein Harz 3 eingebettet sind. Der Faserverbundwerkstoff 1 wurde hergestellt, indem ein Fasergelege gebildet wurde, das dann mit einem Epoxidharz 3 getränkt und mittels einer Walze verdichtet wurde. Anschließend wurde das Harz 3 thermisch gehärtet. Aufgrund der unterschiedlichen Permeabilität des Fasergeleges drang das Harz 3 nach Applikation nicht vollständig in alle Hohlräume des Fasergeleges, was durch das Verdichten mit der Walze teilweise kompensiert wurde. Hierdurch entstanden jedoch agglomerierte Anordnungen von Fasem 2; die Fasern 2 wurden in dem Harz 3 nicht homogen verteilt, so dass zwischen einzelnen Faseragglomeraten harzreiche Bereiche und harzarme Bereiche und entsprechend faserreiche Bereiche und faserarme Bereiche gebildet wurden. Diese Inhomogenität führte zu reduzierter mechanischer Stabilität des Faserverbundwerkstoffes 1.
Figur 2 zeigt eine schematische Darstellung eines ersten Fasermaterials 10 gemäß der vorliegenden Erfindung. Hierbei ist eine Faser 2 von einem Film eines Haftvermittlers 11 umgeben, der wiederum von einem Film eines Harzbasismaterials 12 umgeben ist. Das erfindungsgemäße Fasermaterial 10 wurde hergestellt, indem beispielsweise eine Glasfaser 2 oder ein Faserbündel aus Glasfasern 2 mit 30 TEX durch ein Bad mit Haftvermittler 11 gezogen wurde. Der Haftvermittler 11 ist in diesem Fall eine 65 %ige wässrige Polyurethandispersion. Die mit Haftvermittler 11 versehene Faser 2 wurde dann in einem Luftstrom getrocknet, wodurch ein Polyurethanfilm auf der Oberfläche der Faser 2 gebildet wurde. Das Gewichtsverhältnis Faser 2 zu Haftvermittler 11 betrug nach Trocknung des Haftvermittlers 1:0,5. Die mit Haftvermittler 11 versehene Faser 2 wurde sodann mittels Einblasen von ca. 40 °C warmer Luft auf eine Temperatur von etwa 40 °C erwärmt und somit aktiviert, wodurch der Polyurethanfilm ebenfalls erwärmt und dadurch leicht klebrig wurde. Die mit Haftvermittler 11 versehene Faser 2 wurde dann durch ein Bad mit Harzbasismaterial 12 gezogen, einem Bad, das eine Epoxidverbindung und einen Härter enthielt, das an der aktivierten Haftvermittleroberfläche anhaftete und darauf ebenfalls einen Film bildete. Etwaige Lösemittelreste wurden durch Einblasen warmer Luft verflüchtigt. Das Gewichtsverhältnis Faser 2 zu Harzbasismaterial 12 betrug 0,3:1 und das Gewichtsverhältnis Harzbasismaterial 12 zu Haftvermittler 11 betrug 7:1. Das Fasermaterial 10 war stabil und ausreichend flexibel für die Herstellung üblicher Faserhalbzeuge.
Figur 3 zeigt eine schematische Darstellung eines zweiten Fasermaterials 20 gemäß der vorliegenden Erfindung. Hierbei ist eine Faser 2 von Tröpfchen eines Haftvermittlers 11 umgeben. Die Faser 2 und auch die Tröpfchen des Haftvermittlers 11 sind ferner von Partikeln eines pulverförmigen Harzbasismaterials 12 umgeben. Dieses erfindungsgemäße Fasermaterial 20 wurde hergestellt, indem beispielsweise auf eine Glasfaser 2 oder auf ein Faserbündel aus Glasfasern 2 mit 30 TEX eine 65 %ige wässrige Polyurethandispersion aufgesprüht wurde. Durch das Aufsprühen verdampfte der Wasseranteil der Polyurethandispersion und das Polyurethan schlug sich in Tröpfchenform auf der Oberfläche der Faser 2 nieder. Das Gewichtsverhältnis Faser 2 zu Haftvermittler 11 betrug nach Verdampfen des flüchtigen Anteils der Polyurethandispersion 1 :0,4. Die mit Haftvermittler 11 versehene Faser 2 wurde dann mittels warmer Luft auf ca. 40 °C temperiert, wodurch das Polyurethan aktiviert wurde. Sodann wurde ein Epoxidbasismaterial in Pulverform mit einer durchschnittlichen Partikelgröße von 100 m im Luftstrom verdüst und auf den Haftvermittler 11 aufgesprüht. Das Harzbasismaterial 12 schlug sich in Form feiner Partikel auf der Polyurethanoberfläche nieder. Das Gewichtsverhältnis Faser 2 zu Harzbasismaterial 12 betrug 0,4:1 und das Gewichtsverhältnis Harzbasismaterial 12 zu Haftvermittler 11 betrug 7,5:1. Das Fasermaterial 20 war stabil und gegenüber dem Fasermaterial 10 elastischer und flexibler.
Figur 4 zeigt eine schematische Darstellung eines Fasermaterial-Flächengebildes 30 gemäß der vorliegenden Erfindung. Das Fasermaterial-Flächengebildes 30 ist gebildet aus miteinander verwobenen Fasermaterialien 10, wie beispielsweise in Figur 2 zu sehen. Eine solches Fasermaterial-Flächengebilde 30 weist u.a. an jedem Berührungspunkt der miteinander verwobenen Fasermaterialien 10 ein Harzbasismaterial 12 auf, so dass die Fasermaterialien 10 durch Aktivierung des Harzbasismaterials 12 und Umformen desselben zu einem Harz 13 sehr gut miteinander verbunden werden können. Dies fördert die mechanische Stabilität des daraus gebildeten Faserverbundbauteils. Figur 5 zeigt eine schematische Darstellung eines Faserverbundbauteils 40 gemäß der vorliegenden Erfindung. Das Faserverbundbauteil 40 besteht aus drei parallel angeordneten Fasermaterialien 10, wie beispielsweise in Figur 2 zu sehen. In dem Faserverbundbauteil 40 sind drei parallel angeordnete Fasern 2, beispielsweise Glasfasern mit 25 TEX von einem Film eines Haftvermittlers 11 umgeben. Der Haftvermittler ist wiederum eine 65 %ige wässrige Polyurethandispersion. Diese Anordnung ist von einem Harz 13 umgeben. Dieses Harz 13 wurde erzeugt durch thermisches Aktivieren eines wie in Figur 2 zu sehenden auf den Haftvermittler 11 aufgebrachten Epoxid Harzbasismaterials 12. Durch das thermische Aktivieren wurde das Epoxid Harzbasismaterial 12 vernetzt und bildete ein stabiles, vernetztes und somit ausgehärtetes Epoxidharz, das sowohl die Fasern 2 als auch den Haftvermittler 11 komplett umschließt und ferner auch die einzelnen Fasermaterialien 10 stabil miteinander verbindet. Folglich sind die Fasern 2 vollkommen gleichförmig in der Harzmatrix 13 verteilt, ohne dass Fehlstellen, also beispielsweise faserarme Bereiche oder Bereiche überschüssigen Harzes 13 oder Hohlräume auftreten. Dies ist auf die gleichförmige Anordnung des Harzbasismaterials 12 auf der mit Haftvermittler 11 versehenen Faser 2 in dem noch nicht aktivierten, also noch nicht vernetzten Fasermaterial 10 zurückzuführen. Die mechanische Stabilität dieses Faserverbundbauteils 30 war sehr gut.
Figur 6 zeigt eine schematische Darstellung einer Vorrichtung 50 zur Herstellung eines Faserverbundbauteils gemäß der vorliegenden Erfindung. Diese Vorrichtung 50 ist ein Formwerkzeug und umfasst eine Formwerkzeugunterseite 51 und eine Formwerkzeugoberseite 52. Die Vorrichtung 50 ist geschlossen und umfasst zwischen den beiden Formwerkzeugseiten 51 und 52 eine Kavität, die mit einem Gelege 53 aus geschnittenen Fasermaterialien gemäß Figur 1 oder 2, wie oben dargestellt, gefüllt ist. Durch Temperieren der Vorrichtung 50 auf beispielsweise 70 °C wird das auf dem Fasermaterial 10 des Geleges 53 befindliche Harzbasismaterial 12 aktiviert und vernetzt die einzelnen geschnittenen Fasermaterialien 10 und bildet ein stabiles Faserverbundbauteil, das sich durch ausgezeichnete mechanische Stabilität auszeichnet.

Claims

Ansprüche
1. Fasermaterial umfassend mindestens eine Faser (2), mindestens einen Haftvermittler (11) und mindestens ein Harzbasismaterial (12), wobei der Haftvermittler (11) auf der Faser (2) angeordnet ist und wobei das
Harzbasismaterial (12) mindestens teilweise, vorzugsweise vollständig, auf dem Haftvermittler (11) angeordnet ist.
2. Fasermaterial nach Anspruch 1 , dadurch gekennzeichnet, dass die Faser (2) eine Glasfaser oder eine Karbonfaser ist.
3. Fasermaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Harzbasismaterial (12) mindestens ein aushärtbares Oligomer und/oder mindestens ein aushärtbares Polymer und vorzugsweise eine Epoxidverbindung, enthält.
4. Fasermaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Harzbasismaterial (12) pulverförmig ist und insbesondere eine durchschnittliche Partikelgröße von 1 bis 200 μηη, vorzugsweise von 30 bis 140 μιτι, aufweist.
5. Fasermaterial nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gewichtsverhältnis Faser (2) zu Haftvermittler (11) 1 :0,1 bis 1 :1 und/oder das Gewichtsverhältnis Faser (2) zu Harzbasismaterial (12) 0,25:1 bis 0,5:1 und/oder das Gewichtsverhältnis Harzbasismaterial (12) zu Haftvermittler (11) 10:1 bis 1 :1 beträgt.
6. Verwendung eines Fasermaterials (10, 20) nach einem der Ansprüche 1 bis 5 zur Herstellung eines Fasermaterial-Flächengebildes (30) oder eines Fasermaterial- Fadens oder eines Faserverbundbauteils (40).
7. Faserverbundbauteil umfassend mindestens eine Faser (2), mindestens einen Haftvermittler (1 1 ) und mindestens ein Harz ( 3), wobei der Haftvermittler (1 1 ) auf der Faser (2) angeordnet ist und wobei das Harz (13) sowohl die Faser (2) als auch den Haftvermittler (1 1 ) umgibt.
8. Verfahren zur Herstellung eines Fasermaterials enthaltend mindestens eine Faser (2), umfassend die Schritte:
- Aufbringen mindestens eines Haftvermittlers (1 1 ) auf mindestens eine Faser
(2) und
- Aufbringen mindestens eines Harzbasismaterials (12) derart, dass zumindest ein Teil des Harzbasismaterials (12) mit dem Haftvermittler (1 1) in Kontakt gebracht wird.
9. Verfahren nach Anspruch 8 ferner umfassend den Schritt des Aktivierens des Haftvermittlers (11) vor dem Aufbringen des Harzbasismaterials (12).
10. Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass der Haftvermittler (1 1 ) flüssig und/oder das Harzbasismaterial (12) pulverförmig aufgebracht werden.
1 1. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass der Haftvermittler (11 ) und/oder das Harzbasismaterial (12) mittels Verdüsen aufgebracht werden.
12. Verfahren zur Herstellung eines Faserverbundbauteils (40) durch Verarbeiten mindestens eines Fasermaterials (10, 20) nach einem der Ansprüche 1 bis 5 oder mindestens eines nach einem der Ansprüche 8 bis 11 hergestellten Fasermaterials (10, 20) und Aktivieren des Harzbasismaterials (12).
13. Verfahren nach Anspruch 12, umfassend die Schritte: - Schneiden des Fasermaterials (10, 20), Einbringen des geschnittenen Fasermaterials (10, 20) in ein Formwerkzeug (50),
Schließen des Formwerkzeugs (50) und
- Aktivieren des Harzbasismaterials (12) durch Einbringen von Energie zur Herstellung des Faserverbundbauteils (40).
Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Verhältnis Länge des Fasermaterials (10, 20) zum Durchmesser des Fasermaterials (10, 20) kleiner ist als 10 zu 1.
PCT/EP2013/000008 2013-01-03 2013-01-03 Fasermaterial, faserverbundbauteil, verwendung des fasermaterials und verfahren zu deren herstellung WO2014106514A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/000008 WO2014106514A1 (de) 2013-01-03 2013-01-03 Fasermaterial, faserverbundbauteil, verwendung des fasermaterials und verfahren zu deren herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/000008 WO2014106514A1 (de) 2013-01-03 2013-01-03 Fasermaterial, faserverbundbauteil, verwendung des fasermaterials und verfahren zu deren herstellung

Publications (1)

Publication Number Publication Date
WO2014106514A1 true WO2014106514A1 (de) 2014-07-10

Family

ID=47603581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/000008 WO2014106514A1 (de) 2013-01-03 2013-01-03 Fasermaterial, faserverbundbauteil, verwendung des fasermaterials und verfahren zu deren herstellung

Country Status (1)

Country Link
WO (1) WO2014106514A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3521229A1 (de) * 1985-06-13 1986-12-18 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von halbzeug aus faserverstaerkten kunststoffen
US5094883A (en) * 1989-04-17 1992-03-10 Georgia Tech Research Corporation Flexible multiply towpreg and method of production therefor
WO2006119752A2 (de) * 2005-05-12 2006-11-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum aufbringen von funktionszusatztoffen, insbesondere eines haftvermittlers auf einen faserstoff sowie verfahren zum herstellen eines faserverbundwerkstoffes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3521229A1 (de) * 1985-06-13 1986-12-18 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von halbzeug aus faserverstaerkten kunststoffen
US5094883A (en) * 1989-04-17 1992-03-10 Georgia Tech Research Corporation Flexible multiply towpreg and method of production therefor
WO2006119752A2 (de) * 2005-05-12 2006-11-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum aufbringen von funktionszusatztoffen, insbesondere eines haftvermittlers auf einen faserstoff sowie verfahren zum herstellen eines faserverbundwerkstoffes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Composites", 1 December 2001, ASM INTERNATIONAL, USA, ISBN: 978-0-87-170703-1, article LAWRENCE T. DRZAL: "Interface and interphases", pages: 169 - 179, XP055073481 *
CAMPBELL FLAKE C ED - CAMPBELL FLAKE C: "Manufacturing processes for advanced composites, Chapter 2 (Fibers and Reinforcements: The String That Provides the Strength)", 1 January 2004, MANUFACTURING PROCESSES FOR ADVANCED COMPOSITES, ELSEVIER ADVANCED TECHNOLOGY, OXFORD, GB, PAGE(S) 39 - 64, ISBN: 978-1-85617-415-2, XP002635050 *

Similar Documents

Publication Publication Date Title
EP1618252B1 (de) Faservliesmatte, verfahren zu dessen herstellung und faserverbundwerkstoff
EP2646226B1 (de) Unidirektionale faserbänder aufweisender faservorformling aus verstärkungsfaserbündeln und verbundwerkstoff-bauteil
DE60013018T2 (de) Gewebe und Verbundwirkstoff mit verbessertem Widerstand gegen das Zusammendrücken des Kerns für faserverstärkte Verbundwirkstoffe
EP1492666B1 (de) Verbundwerkstoff, verfahren zu seiner herstellung und seine verwendung
DE102011008909A1 (de) Verbundlaminate und Verfahren zur Herstellung derselben
DE102013227142B4 (de) Langzeitstabile Prepregs, deren Verwendung, Verfahren zu deren Herstellung und Faserverbundwerkstoff
EP2948499B1 (de) Imprägniertes verstärkungsfasergarn und dessen verwendung zur herstellung von verbundwerkstoffen
EP2742176A1 (de) Verfestigte faserbündel
DE102016007652A1 (de) Keramische Verbundwerkstoffe und Verfahren zu ihrer Herstellung
DE202013010599U1 (de) Sandwichstruktur mit einem Aerogel enthaltenden Kernwerkstoff
LU93317B1 (de) Kernkörper aus einem Kunststoffverbund und Verfahren zu seiner Herstellung
EP3081368A1 (de) Faser-kunststoff-verbundhalbzeug und verfahren zur herstellung
DE102006057603A1 (de) Verfahren und Vorrichtung zur Herstellung von harzbeschichteten und/oder harzgetränkten Fasergebilden, Fasergebilde und Sammlung von Fasergebilden und Verwendung von Fasergebilden
EP2089456A1 (de) Verfahren zur herstellung flammgeschützter faserverbundswerkstoffe oder prepregs
DE102015000947A1 (de) Verfahren zur Herstellung eines faserverstärkten Polymer-Formteils mit einer Mehrzahl an Verstärkungsfaserlagen und Vorformling eines solchen Polymer-Formteils
WO2014106514A1 (de) Fasermaterial, faserverbundbauteil, verwendung des fasermaterials und verfahren zu deren herstellung
DE112017000099T5 (de) Schalldämpfungsmaterial
EP1851038B1 (de) Verfahren zur herstellung von schichtstoffen nach dem harzinjektionsverfahren und verarbeitungshilfsmittel dafür
DE102012101075A1 (de) Bahnförmiges Halbzeug, nämlich Putztapete
DE3721664C2 (de)
DE102015003778B4 (de) Verfahren zur Herstellung von Prepregs aus Fasern und thermoplastischem Kunststoff
DE102014211021A1 (de) Imprägnierte Filtermaterialien und daraus hergestellte Filterelemente
EP1988068B1 (de) Verfahren zur herstellung von mit fasern verstärkten formkörpern
DE10237694A1 (de) Verfahren sowie Vorrichtung zum Herstellen von Formteilen
WO2013120644A1 (de) Filamente enthaltender faserverbundwerkstoff und herstellungsverfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13700973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13700973

Country of ref document: EP

Kind code of ref document: A1