WO2014104623A1 - 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극 - Google Patents

태양전지 전극 형성용 조성물 및 이로부터 제조된 전극 Download PDF

Info

Publication number
WO2014104623A1
WO2014104623A1 PCT/KR2013/011534 KR2013011534W WO2014104623A1 WO 2014104623 A1 WO2014104623 A1 WO 2014104623A1 KR 2013011534 W KR2013011534 W KR 2013011534W WO 2014104623 A1 WO2014104623 A1 WO 2014104623A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
composition
silver
glass frit
forming
Prior art date
Application number
PCT/KR2013/011534
Other languages
English (en)
French (fr)
Inventor
박상희
김태준
송헌규
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130152676A external-priority patent/KR101802546B1/ko
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to CN201380068324.2A priority Critical patent/CN104871254B/zh
Priority to US14/655,985 priority patent/US9911872B2/en
Publication of WO2014104623A1 publication Critical patent/WO2014104623A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/10Frit compositions, i.e. in a powdered or comminuted form containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a composition for forming a solar cell electrode and an electrode prepared therefrom.
  • Solar cells generate electrical energy using the photoelectric effect of pn junctions, which convert photons of sunlight into electricity.
  • front and rear electrodes are formed on the upper and lower surfaces of the semiconductor wafer or substrate on which the pn junction is formed.
  • the photovoltaic effect of the pn junction is induced by solar light incident on the semiconductor wafer, and electrons generated therefrom provide current flowing through the electrode to the outside.
  • the electrode of such a solar cell may be formed on the surface of a wafer by coating, patterning, and firing an electrode paste composition.
  • the thickness of the emitter is continuously thinned to increase the efficiency of the solar cell, it may cause a shunting phenomenon that may degrade the performance of the solar cell.
  • Increasing the area of the solar cell which can increase the contact resistance of the solar cell can reduce the efficiency of the solar cell.
  • Still another object of the present invention is to provide a composition for forming a solar cell electrode having an excellent conversion efficiency and a Fill Factor value.
  • Still another object of the present invention is to provide an electrode made of the composition for forming a solar cell electrode.
  • One aspect of the present invention is a composition for forming a solar cell electrode silver (Ag) powder; Glass frit containing from about 0.1 mol% to about 50 mol% silver element; And an organic vehicle; wherein the silver element may be derived from silver halide (Ag-X).
  • the composition comprises about 60% by weight to about 95% by weight of the silver (Ag) powder; From about 0.1 wt% to about 20 wt% of the glass frit; And about 1% to about 30% by weight of the organic vehicle.
  • the glass frit may contain about 0.5 mol3 ⁇ 4> to about 25 mol% of silver elements relative to the total number of moles of glass frit.
  • the glass frit may be formed from one or more metal oxides and silver halides (Ag-X).
  • the metal oxide is lead (Pb), bismuth (Bi), tellurium (Te), phosphorus (P), germanium (Ge), gallium (Ga), cerium (Ce), iron (Fe), lithium (Li), Silicon (Si), Zinc (Zn), Tungsten
  • X in the silver halide (Ag-X) may be a halogen element selected from iodine (1), fluorine (F), chlorine (C1) and bromine (Br).
  • the glass frit may have an average particle diameter (D50) of about 0.1 to about 10 /.
  • the composition may further include at least one additive selected from the group consisting of dispersants, thixotropic agents, plasticizers, viscosity stabilizers, antifoams, pigments, ultraviolet stabilizers, antioxidants and coupling agents.
  • Solar cell electrode which is another aspect of the present invention may be formed of the composition for forming a solar cell electrode.
  • the composition for forming a solar cell electrode of the present invention introduced silver halides into a glass frit to improve contact between the electrode and the wafer, and the solar cell electrode made of the composition minimizes contact resistance, contact resistivity, and series resistance to fill factor. And conversion efficiency is excellent.
  • FIG. 1 is a photograph taken with a scanning electron microscope (SEM) of a solar cell electrode manufactured using a glass frit according to an embodiment of the present invention.
  • SEM scanning electron microscope
  • FIG. 2 is a schematic view schematically showing the structure of a solar cell according to an embodiment of the present invention.
  • composition for solar cell electrode formation of this invention is silver powder (A); Glass frit containing silver element (B); And organic vehicles (C).
  • A silver powder
  • B Glass frit containing silver element
  • C organic vehicles
  • the composition for solar cell electrode formation of this invention uses silver (Ag) powder as electroconductive powder.
  • the silver powder may be a powder having a particle size of nano size or micro size, for example, a silver powder of several tens to hundreds of nanometers in size, silver powders of several tens of micrometers, and may have two or more different sizes. You may mix and use the silver powder which has.
  • the silver powder may have a spherical shape, a plate shape, or an amorphous shape.
  • the silver powder preferably has an average particle diameter (D50) of about Ol / rni to about 10 GPa, and more preferably about 0.5 mi to about.
  • the average particle diameter was measured using a 1064LD model manufactured by CILAS after dispersing the conductive powder in isopropyl alcohol (IPA) at 25 ° C. for 3 minutes with ultrasonic waves. Within this range, the contact resistance and the wire resistance can be lowered.
  • IPA isopropyl alcohol
  • Silver powder may comprise from about 60% to about 95% by weight relative to the total weight of the composition. Within this range, it is possible to prevent the conversion efficiency from being lowered due to the increase in resistance, and to prevent the pasting from becoming difficult due to the relative decrease in the amount of the organic vehicle. Preferably from about 70% to about 90% by weight.
  • the glass frit etches the anti-reflection film during the firing process of the composition for forming a solar cell electrode, generates silver crystal particles in the emitter region to melt the silver particles and lowers the resistance, and It improves the adhesion between the wafers and softens during sintering to induce an effect of lowering the firing temperature.
  • the glass frit of the present invention is formed from silver halides (Ag-X) and metal oxides.
  • the glass frit of the present invention may be prepared by mixing, melting and pulverizing silver halide (Ag-X) and a metal oxide having a melting point of 600 ° C. or lower, which is lower than that of silver (Ag).
  • the metal oxide may be one or more.
  • X may be iodine, fluorine, chlorine or bromine, preferably iodine.
  • the metal oxide is lead 0), bismuth (Bi), tellurium (Te), phosphorus (P), Germanium (Ge), Gallium (Ga), Cerium (Ce), Iron (Fe), Lithium (Li), Silicon (Si), Zinc (Zn), Tungsten 0, Magnesium (Mg), Cesium (Cs), Strontium ( Sr), Molybdenum (Mo), Titanium (Ti), Tin (Sn), Indium (In), Vanadium (V), Barium (Ba), Nickel (Ni), Copper (Cu), Sodium (Na), Potassium 00 It may include one or more selected from the group consisting of arsenic (As), cobalt (Co), zirconium (Zr), manganese (Mn) and aluminum (A1).
  • the glass frit may contain about 0.1 mol3 ⁇ 4> to about 50 mol% of silver elements relative to the total number of moles of glass frit, preferably about 0.5 mol% to about 25 mol%.
  • the content of the silver element may be immediately determined by an inductively coupled plasma-atomic emission spectrometer (ICP-0ES).
  • ICP-0ES inductively coupled plasma-atomic emission spectrometer
  • KP-0ES is a very small amount of sample. Since the sample preparation time can be shortened, errors due to sample preparation can be reduced, and the analysis sensitivity is excellent.
  • the inductively coupled plasma-atomic emission spectroscopy is a step of pre-treating a sample, preparing a standard solution, and measuring the content of silver (Ag) element concentration and content of the silver element in the glass frit Including the step of calculating the content of the silver element contained in the glass frit can be precisely measured.
  • the pretreatment of the sample may carbonize the sample by dissolving and heating the sample in an appropriate amount using an acid solution capable of dissolving silver (Ag), which is the metal to be analyzed, of the glass frit as the sample.
  • the acid solution may preferably be a sulfuric acid (3 ⁇ 4SO 4 ) solution.
  • the carbonized sample may be appropriately dilute to an analytical concentration range of the Ag element with a solvent such as distilled water or hydrogen peroxide (3 ⁇ 4).
  • the analytical concentration range may be used in a diluted state up to about 10,000 times in consideration of the element detection capability of the applied ICP-0ES device.
  • the pretreated sample may be calibrated with a standard solution, eg, silver (Ag) elemental standard solution (Ag + 1000 mg / L), as measured by ICP-0ES.
  • a standard solution eg, silver (Ag) elemental standard solution (Ag + 1000 mg / L), as measured by ICP-0ES.
  • a calibration curve was prepared by introducing the standard solution into an ICP-0ES measuring instrument by an external standard method. After measuring the silver (Ag) element concentration (ppm) of the sample pretreated with the ICP-0ES measuring device can be converted to calculate the content of the silver element in the glass frit.
  • silver crystals may be deposited on the glass frit in addition to the silver crystalline (Ag crystalline) formed by the conductive powder after firing.
  • the glass frit-like silver element derived from the silver halide serves as an insulator between the silver crystal and the wafer between the interfaces of the electrodes formed in the order of silver crystal-glass-wafer on the glass frit. It can impart conductivity to the glass and fill the isolated pores (p 0re ) or voids formed on the glass frit, thereby reducing the contact resistance and series resistance of the wafer-silver electrode.
  • FIG. 1 is a SEM photograph of a solar cell electrode manufactured using the glass frit of the present invention, wherein the spherical granules shown in FIG. 1 (a) are silver crystals deposited in glass, and the silver crystals are formed in the glass. Evenly distributed can improve conductivity between the silver electrode and the wafer.
  • the glass frit can be prepared from the metal oxides described above using conventional methods. For example, it is compatible with the composition of the metal oxide described above. Mixing can be accomplished using a ball mill or planetary mill 11. The mixed composition is melted at a temperature of 700 ° C. to 130 ° C. and quenched at 25 ° C. The resultant can be ground by a disk mill, planetary mill or the like to obtain a glass frit. have.
  • the glass frit may have an average particle diameter of about 0.1 / m to about 10 / m, and the glass frit may have a spherical shape or an irregular shape.
  • the glass frit may be included in an amount of about 0.1 wt% to about 20 wt%, preferably about 0.5 wt% to about 10 wt%, based on the total weight of the composition. When included in the above range, it is possible to ensure the pn junction stability under a variety of sheet resistance, to minimize the series resistance value, and finally to improve the efficiency of the solar cell.
  • the organic vehicle gives the composition viscosity and rheological properties suitable for printing through mechanical mixing with the inorganic components of the composition for forming a solar cell electrode.
  • the organic vehicle may be an organic vehicle that is commonly used in the composition for forming a solar cell electrode, and may include a conventional binder resin and a solvent.
  • a binder resin an acrylate-based or cellulose-based resin may be used, and ethyl cellulose is generally used.
  • the solvent for example, nucleic acid, toluene, ethyl cellosolve, cyclonuxanone, butylsenrosolve, butyl carbyl (diethylene glycol monobutyl ether), dibutyl carbyl (diethylene glycol dibutyl ether ), Butyl carbyl acetate (diethylene glycol monobutyl ether acetate), propylene glycol monomethyl ether, nuxylene glycol, terpineol, methyl ethyl ketone, benzyl alcohol, gamma butyrolactone or ethyl lactate alone Or it can mix and use 2 or more types.
  • the solvent for example, nucleic acid, toluene, ethyl cellosolve, cyclonuxanone, butylsenrosolve, butyl carbyl (diethylene glycol monobutyl ether), dibutyl carbyl (diethylene glyco
  • the organic vehicle may be included in about 1% by weight to about 30% by weight relative to the total weight of the composition for forming a solar cell electrode. It is possible to secure the adhesion strength and excellent printability in the above range. (D) additive
  • the composition for forming a solar cell electrode of the present invention may further include a conventional additive as necessary to improve the flow characteristics, process characteristics and stability in addition to the components described above.
  • the additives may be used alone or in combination of two or more of a dispersant, thixotropic agent, plasticizer, viscosity stabilizer, antifoaming agent, pigment, ultraviolet stabilizer, antioxidant, coupling agent and the like. They may be included in about 0.1% by weight to about 5% by weight relative to the total weight of the composition for forming a solar cell electrode, but the content may be changed as necessary.
  • Solar cell electrode and solar cell comprising same
  • Another aspect of the invention is formed from the composition for forming a solar cell electrode. It relates to an electrode and a solar cell comprising the same.
  • Figure 2 shows the structure of a solar cell according to an embodiment of the present invention.
  • a composition for forming an electrode is printed and baked on a wafer 100 or a substrate including a p layer (or n layer) 101 and an n layer (or p layer) 102 as an emitter.
  • the back electrode 210 and the front electrode 230 may be formed.
  • the electrode forming composition may be printed on the back side of the wafer and then dried at a temperature of about 200 ° C. to 400 ° C. for about 10 seconds to 90 seconds to perform a preliminary preparation step for the back electrode.
  • the composition for forming an electrode on the front surface of the wafer may be printed and dried to perform a preliminary preparation step for the front electrode.
  • a firing process may be performed at about 60 CTC to about 100 t :, preferably at about 750 ° C. to about 95 CTC, for about 30 seconds to about 180 seconds to form a front electrode and a rear electrode.
  • a firing process may be performed at about 60 CTC to about 100 t :, preferably at about 750 ° C. to about 95 CTC, for about 30 seconds to about 180 seconds to form a front electrode and a rear electrode.
  • Example 1-32 and comparative example 1-2 Preparation of glass frit: The glass frit of the Example and the comparative example was manufactured with the composition of Table 1 below. The content of the silver (Ag) element (unit: mol 3 ⁇ 4) contained in the glass frit prepared in Examples and Comparative Examples was measured by inductively coupled plasma-atomic emission spectroscopy (ICP-0ES). Representatively shown in 3.
  • Example 1 The content of the silver (Ag) element (unit: mol 3 ⁇ 4) contained in the glass frit prepared in Examples and Comparative Examples was measured by inductively coupled plasma-atomic emission spectroscopy (ICP-0ES). Representatively shown in 3.
  • ICP-0ES inductively coupled plasma-atomic emission spectroscopy
  • a composition for forming a solar cell electrode was prepared in the same manner as in Example 1, except that glass frits having the compositions of Tables 1 and 2 were used.
  • Sample pretreatment O.OOOlg with 0.5g of glass frit Weigh accurately to the unit. 5 ml of sulfuric acid (H 2 SO 4 ) was added to the beaker containing the sample, and the sample was completely carbonized by heating at 220 ° C. for 3 hours using a hot plate. Pretreatment was completed by adding hydrogen peroxide (3 ⁇ 40 2 ) until the beaker containing the carbonized sample became transparent.
  • H 2 SO 4 sulfuric acid
  • Standard Solution Silver (Ag) Elemental Standard Solution (Ag + 1000mg / L) for Elemental Measurements was prepared.
  • Mole% of silver element mole of silver element I Total mole of all elements
  • the composition for forming a solar cell electrode prepared in Examples and Comparative Examples
  • the surface of the crystalline mono wafer (Wafer) was printed by screen printing in a constant pattern, and dried using an infrared drying furnace.
  • the cell formed by the above process was calcined for 30 seconds to 210 seconds between 600 ° C and 900 ° C using a belt-type kiln, and the cell thus manufactured was contact resistance of the solar cell using a TLM Transfer Length Method (Measuring Equipment). (Rc) and contact resistivity (pc) were measured and shown in Tables 4 and 5 below. Series resistance, fiji factor and efficiency measurement method
  • the composition for forming a solar cell electrode prepared in Examples and Comparative Examples was printed by screen printing in a predetermined pattern on the entire surface of a crystalline mono wafer (Wafer), and dried using an infrared drying furnace. Then, the aluminum paste on the back of the wafer is printed on the back and dried in the same manner.
  • the cell formed by the above process was calcined for 30 seconds to 180 seconds in a temperature range of 400 ° C to 900 ° C using a belt-type kiln, and the cell thus manufactured is a solar cell efficiency measuring device (Pasan). Co., Ltd., CT-801) to measure the series resistance (Rs) Fill Factor (FF,) and the conversion efficiency (%) of the solar cell are shown in Table 4 and Table 5.
  • the electrode manufactured from the composition for forming a solar cell electrode using the glass frit of Examples 1 to 32 containing a silver halide (a silver element derived from Ag-Jo Compared with Comparative Examples 1 and 2, the contact resistance, contact resistivity and series resistance are lower, and the conversion efficiency and fill factor are lower. It can be confirmed that the value is excellent. Simple modifications and variations of the present invention can be easily made by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 은 (Ag) 분말; 은 원소를 약 0.1% 몰 내지 약 50 몰% 함유한 유리 프릿; 및 유기 비히클;을 포함하며, 상기 은 원소는 할로겐화 은 (Ag-X)으로부터 유래된 것을 특징으로 하는 태양전지 전극 형성용 조성물에 관한 것으로, 본 발명의 태양전지 전극 형성용 조성물은 유리 프릿에 할로겐화 은을 도입하여 전극과 웨이퍼와 접촉성을 개선하였으며, 상기 조성물로 제조된 태양전지 전극은 접촉저항, 접촉비저항, 및 직렬저항이 최소화되어 태양전지의 변환 효율을 높일 수 있다.

Description

【명세서】
【발명의 명칭】
태양전지 전극 형성용 조성물 및 이로부터 제조된 전극 【기술분야】
본 발명은 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극에 관한 것이다. 【배경기술】
태양전지는 태양광의 포톤 (photon)을 전기로 변환시키는 pn 접합의 광전 효과를 이용하여 전기 에너지를 발생시킨다. 태양전지는 pn 접합이 구성되는 반도체 웨이퍼 또는 기판 상ᅳ하면에 각각 전면 전극과 후면 전극이 형성되어 있다. 태양전지는 반도체 웨이퍼에 입사되는 태양광에 의해 pn 접합의 광전 효과가 유도되고, 이로부터 발생된 전자들이 전극을 통해 외부로 흐르는 전류를 제공한다. 이러한 태양전지의 전극은 전극용 페이스트 조성물의 도포, 패터닝 및 소성에 의해, 웨이퍼 표면에 형성될 수 있다.
최근 태양전지의 효율을 증가시키기 위해 에미터 (emitter)의 두께가 지속적으로 얇아짐에 따라, 태양전지의 성능을 저하시킬 수 있는 션팅 (shunting) 현상을 유발시킬 수 있으며, 변환 효율을 증가시키기 위해 태양전지의 면적을 점차 증가시키고 있는데, 이는 태양전지의 접촉저항을 높여 태양전지의 효율을 감소시킬 수 있다.
따라서, 웨이퍼와 접촉성올 향상하여 접촉저항 (RC)과 직렬저항 (RS)을 최소화시켜 변환 효율이 우수한 태양전지 전극을 제조할 수 있는 조성물의 개발이 시급히 요구되고 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 목적은 전극과 웨이퍼 표면의 접촉성이 우수한 태양전지 전극 형성용 조성물을 제공하기 위함이다. 본 발명의 다른 목적은 접촉저항, 접촉비저항 및 직렬저항을 최소화할 수 있는 태양전지 전극 형성용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 변환효율 및 Fill Factor 값이 우수한 태양전지 전극 형성용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 태양전지 전극 형성용 조성물로 제조된 전극을 제공하는 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다. 【기술적 해결방법】
본 발명의 일 관점인 태양전지 전극 형성용 조성물은 은 (Ag) 분말; 은 원소를 약 0.1 몰% 내지 약 50 몰% 함유한 유리 프릿; 및 유기 비히클;올 포함하며, 상기 은 원소는 할로겐화 은 (Ag-X)으로부터 유래된 것일 수 있다. 상기 조성물은 상기 은 (Ag) 분말 약 60 중량 % 내지 약 95 중량 ¾; 상기 유리 프릿 약 0.1 중량 % 내지 약 20 중량 %; 및 상기 유기 비히클 약 1 중량 % 내지 약 30 중량 %를 포함할 수 있다.
상기 유리 프릿은 유리 프릿 전체 몰수 대비 은 원소를 약 0.5 몰¾> 내지 약 25몰% 함유할 수 있다.
상기 유리 프릿은 1 종 이상의 금속산화물 및 할로겐화 은 (Ag-X)으로부터 형성될 수 있다.
상기 금속산화물은 납 (Pb), 비스무스 (Bi), 텔루륨 (Te), 인 (P), 게르마늄 (Ge), 갈륨 (Ga), 세륨 (Ce), 철 (Fe), 리튬 (Li), 규소 (Si), 아연 (Zn), 텅스텐 마그네슘 (Mg), 세슘 (Cs), 스트론튬 (Sr), 몰리브덴 (Mo), 티타늄 (Ti), 주석 (Sn), 인듐 (In), 바나듐 (V), 바륨 (Ba), 니켈 (Ni), 구리 (Cu 나트륨 (Na), 칼륨 00, 비소 (As), 코발트 (Co), 지르코늄 (Zr), 망간 (Mn) 및 알루미늄 (A1)의 산화물로 이루어진 군에서 선택된 1 종 이상의 금속산화물을 포함할 수 있다.
상기 할로겐화 은 (Ag-X) 중 X 는 요오드 (1), 플루오르 (F), 염소 (C1) 및 브롬 (Br) 중에서 선택된 할로겐 원소일 수 있다.
상기 유리 프릿은 평균입경 (D50)이 약 0.1 내지 약 10/ 일 수 있다. 상기 조성물은 분산제, 요변제, 가소제, 점도 안정화제, 소포제, 안료, 자외선 안정제, 산화방지제 및 커플링제로 이루어진 군으로부터 선택되는 첨가제를 1종 이상 더 포함할 수 있다.
본 발명의 다른 관점인 태양전지 전극은 상기 태양전지 전극 형성용 조성물로 형성될 수 있다. 【유리한 효과】
본 발명의 태양전지 전극 형성용 조성물은 할로겐화 은을 유리 프릿에 도입하여 전극과 웨이퍼와 접촉성을 개선하였으며, 상기 조성물로 제조된 태양전지 전극은 접촉저항, 접촉비저항 및 직렬저항이 최소화되어 Fill Factor 및 변환 효율이 우수하다.
【도면의 간단한 설명】 ᅳ
도 1 은 본 발명의 일 구체예에 따른 유리 프릿을 사용하여 제조된 태양전지 전극을 주사전자현미경 (SEM)으로 촬영한 사진이다.
도 2 는 본 발명의 일 구체예에 따른 태양전지의 구조를 간략히 도시한 개략도이다.
【발명의 실시를 위한 최선의 형태】 태양전지 전극 형성용조성물
본 발명의 태양전지 전극 형성용 조성물은 은 분말 (A); 은 원소를 함유한 유리 프릿 (B); 및 유기 비히클 (C)을 포함한다. 이하, 본 발명을 상세히 설명하면 다음과 같다.
(A) 은분말
본 발명의 태양전지 전극 형성용 조성물은 도전성 분말로서 은 (Ag) 분말을 사용한다. 상기 은 분말은 나노 사이즈 또는 마이크로 사이즈의 입경을 갖는 분말일 수 있는데, 예를 들어 수십 내지 수백 나노미터 크기의 은 분말, 수 내자 수십 마이크로미터의 은 분말일 수 있으며, 2이상의 서로 다른 사이즈를 갖는 은 분말을 흔합하여 사용할 수도 있다.
은 분말은 입자 형상이 구형, 판상, 무정형 형상을 가질 수 있다.
은 분말은 평균입경 (D50)은 바람직하게는 약 O.l/rni 내지 약 10卿이며, 더 바람직하게는 약 0.5mi 내지 약 이 될 수 있다. 상기 평균입경은 이소프로필알코을 (IPA)에 도전성 분말을 초음파로 25°C에서 3분 동안 분산시킨 후 CILAS社에서 제작한 1064LD 모델을 사용하여 측정된 것이다. 상기 범위 내에서, 접촉저항과 선 저항이 낮아지는 효과를 가질 수 있다.
은 분말은 조성물 전체 중량 대비 약 60 중량 % 내지 약 95 중량 %로 포함될 수 있다. 상기 범위에서, 저항의 증가로 변환 효율이 낮아지는 것을 막을 수 있고, 유기 비히클 양의 상대적인 감소로 페이스트화가 어려워지는 것을 막을 수 있다. 바람직하게는 약 70중량 % 내지 약 90중량 %로 포함될 수 있다.
(B) 은원소를 함유한유리 프릿
유리 프릿 (glass frit)은 태양전지 전극 형성용 조성물의 소성 공정 중 반사 방지막을 에칭 (etching)하고, 은 입자를 용융시켜 저항이 낮아질 수 있도록 에미터 영역에 은 결정 입자를 생성시키고, 전도성 분말과 웨이퍼 사이의 접착력을 향상시키고 소결시에 연화하여 소성 온도를 보다 낮추는 효과를 유도한다.
태양전지의 효율을 증가시키기 위하여 태양전자의 면적을 증가시키면 태양전지의 접촉저항이 높아질 수 있으므로 pn 접합 (pn junction)에 대한 피해를 최소화함과 동시에 직렬저항을 최소화시켜야 한다. 또한, 다양한 면저항의 웨이퍼의 증가에 따라 소성 온도가 변동폭이 커지므로 넓은 소성 온도에서도 열안정성을 층분히 확보될 수 있는 유리 프릿을 사용하는 것이 바람직하다.
본 발명의 유리 프릿은 할로겐화 은 (Ag— X) 및 금속산화물로부터 형성된 것이다. 구체적으로, 본 발명의 유리 프릿은 은 (Ag)보다 녹는점이 낮은 600°C 이하의 녹는점을 갖는 할로겐화 은 (Ag-X) 및 금속산화물을 흔합, 용융, 분쇄하여 제조될 수 있다. 상기 금속산화물은 1종 이상일 수 있다.
상기 할로겐화 은 (Ag-X)에서, X는 요오드, 플루오르, 염소 또는 브롬일 수 있으며, 바람직하게는 요오드일 수 있다.
상기 금속산화물은 납 0 ), 비스무스 (Bi), 텔루륨 (Te), 인 (P), 게르마늄 (Ge), 갈륨 (Ga), 세륨 (Ce), 철 (Fe), 리튬 (Li), 규소 (Si), 아연 (Zn), 텅스텐 0, 마그네슘 (Mg), 세슘 (Cs), 스트론튬 (Sr), 몰리브덴 (Mo), 티타늄 (Ti), 주석 (Sn), 인듐 (In), 바나듐 (V), 바륨 (Ba), 니켈 (Ni), 구리 (Cu), 나트륨 (Na), 칼륨 00, 비소 (As), 코발트 (Co), 지르코늄 (Zr), 망간 (Mn) 및 알루미늄 (A1)의 산화물로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
상기 유리 프릿은 유리 프릿 전체 몰수 대비 은 원소를 약 0.1 몰¾> 내지 약 50 몰% 함유할 수 있으며, 바람직하게는 약 0.5 몰% 내지 약 25 몰% 함유할 수 있다.
상기 은 원소의 함량은 유도결합플라즈마-원자방출분광법 (ICP-0ES; Inductively Coupled Plasma ― Optical Emission Spectrometer 의하여 즉정될 수 있다. 상기 유도결합플라즈마-원자방출분광법 (KP-0ES)은 매우 적은 양의 시료를 사용하므로 시료 준비 시간을 단축할 수 있고, 시료 전처리에 의한 오차를 줄일 수 있으며 분석 감도가 우수한 이점이 있다.
구체적으로, 상기 유도결합플라즈마-원자방출분광법 (ICP-0ES)는 시료를 전처리 하는 단계, 표준 용액을 준비하는 단계, 및 은 (Ag) 원소의 농도를 측정 및 환산하여 유리 프릿 내 은 원소의 함량을 산출하는 단계를 포함하여 유리 프릿 내 함유된 은 원소의 함량을 정밀하게 측정할 수 있다.
상기 시료를 전처리하는 단계는 시료인 유리 프릿의 분석 대상 금속인 은 (Ag)을 용해할 수 있는 산성용액을 이용하여 시료를 적당량 용해하고 가열하여 시료를 탄화시킬 수 있다. 상기 산성용액은 바람직하게는 황산 (¾S04) 용액을 사용할 수 있다.
상기 탄화된 시료는 증류수, 과산화수소 (¾ ) 등의 용매로 Ag 원소의 분석농도 범위까지 적당히 회석할 수 있다. 상기 분석농도 범위는 적용되는 ICP- 0ES 기기의 원소 검출능력을 고려하여 약 10,000배까지 희석된 상태로 사용할 수 있다.
상기 전처리된 시료는 ICP-0ES 기가로 측정시 표준 용액, 예를 들면, 원소 측정용 은 (Ag) 원소 표준용액 (Ag+ 1000mg/L)으로 교정 (calibrat ion)할 수 있다.
예로서, 상기 표준용액을 ICP-0ES 측정기기에 도입하여 외부 표준법 (external standard method)으로 검정곡선 (calibrat ion curve)을 작성한 후 상기 ICP-0ES 측정기기로 전처리된 시료의 은 (Ag) 원소 농도 (ppm)를 측정한 후 환산하여 유리 프릿 내 은 원소의 함량을 산출할 수 있다.
본 발명의 유리 프릿으로 제조된 태양전지 전극은 소성 후 도전성 분말에 의하여 형성되는 은 결정 (Ag crystalline)이외에 유리 프릿 상에서도 은 결정이 석출될 수 있다. 또한, 상기 할로겐화 은으로부터 유래된 유리 프릿상 은 원소는 유리 프릿 상에서 은 결정 -유리 (glass)-웨이퍼 (wafer) 순으로 형성된 전극의 계면 사이에서 은 결정과 웨이퍼 간의 인슬레이터 (insulator)로 작용하는 유리 (glass)에 전도성을 부여해주고, 유리 프릿 상에 형성된 고립된 포어 (p0re) 또는 보이드 (void)를 채워줄 수 있으므로 웨이퍼-은 전극의 접촉저항 및 시리즈 저항을 감소시킬 수 있다.
도 1은 본 발명의 유리 프릿을 이용하여 제조된 태양전지 전극을 SEM으로' 촬영한 사진으로 도 1 (a)에 나타난 구 형태의 입상이 유리 내에 석출된 은 결정이며, 상기 은 결정이 유리 내에 고르게 분포하여 은 전극과 웨이퍼 사이의 전도성을 향상시킬 수 있다.
상기 유리 프릿은 통상의 방법을 사용하여 상기 기술된 금속산화물로부터 제조할 수 있다. 예를 들면, 상기 기술된 금속산화물의 조성으로 흔합한다. 흔합은 볼 밀 (ball mill) 또는 플라네터리 밀 (planetary mi 11)을 사용하여 흔합할 수 있다. 흔합된 조성물을 700°C 내지 130( C의 조건에서 용융시키고, 25°C에서 뒌칭 (quenching)한다. 얻은 결과물을 디스크 밀 (disk mill), 플라네터리 밀 등에 의해 분쇄하여 유리 프릿을 얻을 수 있다.
상기 유리 프릿은 평균입경이 약 0.1/m 내지 약 10/m인 것이 사용될 수 있으며, 상기 유리 프릿의 형상은 구형이어도 부정형상이어도 무방하다.
상기 유리 프릿은 조성물 전체 중량 대비 약 0.1 중량 % 내지 약 20 중량 %, 바람직하게는 약 0.5 중량 % 내지 약 10 중량 %로 포함될 수 있다. 상기 범위로 포함시, 다양한 면저항 하에서 pn 접합 안정성을 확보할 수 있고 직렬저항 값을 최소화시킬 수 있으며, 종국적으로 태양전지의 효율을 개선할 수 있다.
(C) 유기 비히클
유기 비히클은 태양전지 전극 형성용 조성물의 무기성분과 기계적 흔합을 통하여 조성물에 인쇄에 적합한 점도 및 유변학적 특성을 부여한다. 상기 유기 비히클은 통상적으로 태양전지 전극 형성용 조성물에 사용되는 유기 비히클이 사용될 수 있고, 통상의 바인더 수지와 용매 등올 포함할 수 있다. 상기 바인더 수지로는 아크릴레이트계 또는 셀를로오스계 수지 등을 사용할 수 있으며 에틸 샐를로오스가 일반적으로 사용되는 수지이다. 그러나, 에틸 하이드록시에틸 셀를로오스, 니트로 셀를로오스, 에틸 셀를로오스와 페놀 수지의 흔합물, 알키드 수지, 페놀계 수지, 아크릴산 에스테르계 수지, 크실렌계 수지, 폴리부텐계 수지, 폴리에스테르계 수지, 요소계 수지, 멜라민계 수지, 초산비닐계 수지, 목재 로진 (rosin) 또는 알콜의 폴리메타크릴레이트 등을 사용할 수도 있다.
상기 용매로는 예를 들어, 핵산, 를루엔, 에틸셀로솔브, 시클로핵사논, 부틸센로솔브, 부틸 카비를 (디에틸렌 글리콜 모노부틸 에테르), 디부틸 카비를 (디에틸렌 글리콜 디부틸 에테르), 부틸 카비를 아세테이트 (디에틸렌 글리콜 모노부틸 에테르 아세테이트), 프로필렌 글리콜 모노메틸 에테르, 핵실렌 글리콜, 터핀올 (Terpineol), 메틸에틸케톤, 벤질알콜, 감마부티로락톤 또는 에틸락테이트 등을 단독 또는 2종 이상 흔합하여 사용할 수 있다.
상기 유기 비히클은 태양전지 전극 형성용 조성물 전체 중량 대비 약 1 중량 % 내지 약 30 중량 %로 포함될 수 있다. 상기 범위에서 층분한 접착강도와 우수한 인쇄성을 확보할 수 있다. (D) 첨가제
본 발명의 태양전지 전극 형성용 조성물은 상기에서 기술한 구성 요소 외에 유동 특성, 공정 특성 및 안정성을 향상시키기 위하여 필요에 따라 통상의 첨가제를 더 포함할 수 있다. 상기 첨가제는 분산제, 요변제, 가소제, 점도 안정화제, 소포제, 안료, 자외선 안정제, 산화방지제, 커플링제 등을 단독 또는 2종 이상 흔합하여 사용할 수 있다. 이들은 태양전지 전극 형성용 조성물 전체 중량 대비 약 0.1 중량 % 내지 약 5 중량 %로 포함될 수 있지만 필요에 따라 함량을 변경할 수 있다. 태양전지 전극및 이를포함하는 태양전지
본 발명의 다른 관점은 상기 태양전지 전극 형성용 조성물로부터.형성된 전극 및 이를 포함하는 태양전지에 관한 것이다. 도 2는 본 발명의 일 구체예에 따른 태양전지의 구조를 나타낸 것이다.
도 2를 참조하면, p층 (또는 n층) (101) 및 에미터로서의 n층 (또는 p층) (102)을 포함하는 웨이퍼 (100) 또는 기판 상에, 전극 형성용 조성물을 인쇄하고 소성하여 후면 전극 (210) 및 전면 전극 (230)을 형성할 수 있다. 예컨대, 전극 형성용 조성물을 웨이퍼의 후면에 인쇄 도포한 후, 대략 200 °C 내지 400°C 온도로 대략 10초 내지 90초 정도 건조하여 후면 전극을 위한 사전 준비 단계를 수행할 수 있다. 또한, 웨이퍼의 전면에 전극 형성용 조성물을 인쇄한 후 건조하여 전면 전극을 위한 사전 준비단계를 수행할 수 있다. 이후에, 약 60CTC 내지 약 lOOOt:, 바람직하게는 약 750°C 내지 약 95CTC에서 약 30초 내지 약 180초 소성하는 소성 과정을 수행하여 전면 전극 및 후면 전극을 형성할 수 있다. 이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
【발명의 실시를 위한 형태】 실시예 1-32및 비교예 1-2 유리 프릿의 제조: 하기 표 1 의 조성으로 실시예 및 비교예의 유리 프릿을 제조하였다. 실시예 및 비교예에서 제조된 유리 프릿이 함유한 은 (Ag) 원소의 함량 (단위 : 몰 ¾)을 유도결합플라즈마-원자방출분광법 (ICP-0ES)으로 측정하여 그 결과값 중 일부를 하기 표 3에 대표적으로 나타내었다. 실시예 1
유기 바인더로서 에틸셀를로오스 (Dow chemical company, STD4) 3.0 증량 %를 용매인 부틸 카비틀 (Butyl Carbitol) 6.5 중량 >에 60°C에서 층분히 용해한 후 평균입경이 2.0 인 구형의 은 분말 (Dowa Hightech CO. LTD, AG-4-8) 87.1 중량 %, 하기 표 1 의 조성으로 제조된 유리 프릿 2.9 중량 %, 첨가제로서 분산제 BYK102(BYK— chemie) 0.2 중량 % 및 요변제 Thixatrol ST (Element is co.)을 0.3 중량 % 투입하여 골고루 믹싱 후 3 를 흔련기로 흔합 분산시켜 태양전지 전극 형성용 조성물을 준비하였다. 실시예 2-32 및 비교예 1-2
하기 표 1 및 표 2 의 조성을 갖는 유리 프릿을 사용한 것을 제외하고는 실시예 1과 같은 방법으로 태양전지 전극 형성용 조성물을 준비하였다.
【표 1】
Figure imgf000011_0001
(단위 : 중량 %)
【표 2]
Figure imgf000012_0001
(단위 : 중량 %) 유도결합플라즈마-원자방출분광법 (ICP~0ES)을 이용한 유리 프릿 내 은 (Ag) 원소 함량의 측정
시료의 전처리: 분석 대상 시료인 유리 프릿 0.5g을 비커에 담고 O.OOOlg 단위까지 정확하게 칭량한다. 시료가 담겨진 비커에 황산 (H2S04) 5ml를 투입 후 열판 (hot plate)를 이용하여 220°C에서 3시간 동안 가열하여 시료를 완전히 탄화시켰다. 탄화된 시료가 담겨진 비커가 투명하게 될 때까지 과산화수소 (¾02)를 투입하여 전처리를 완료하였다.
표준용액의 준비: 원소 측정용 은 (Ag) 원소 표준용액 (Ag+ 1000mg/L)을 준비하였다.
은 (Ag) 원소 함량의 측정: 전처리가 완료된 시료가 담겨진 비커에 질산 (HN03)을 투입하여 5분간 가열 후 공넁하였다. 준비된 표준용액을 ICP-0ES 측정기기 (PerkinElmer社)에 도입하여 외부 표준법 (external standard method)으로 검정곡선 (calibration curve)을 작성한 후 상기 ICP-0ES 측정기기로 시료의 은 (Ag) 원소 농도 (ppm)를 측정한 후 환산하여 유리 프릿 내 은 원소의 함량올 산출하였다. ― 은 원소의 함량 (%) = 원소 농도 (ppm)XDilution Factor(DF)/10000 은 원소의 mole = 은 원소의 함량 / 은 원소의 분자량
은 원소의 mole % = 은 원소의 mole I 전체 원소의 mole 총합
【표 31
Figure imgf000013_0001
접촉저항및 접촉비저항의 측정방법
상기 실시예 및 비교예에서 준비된 태양전지 전극 형성용 조성물을 결정계 모노 웨이퍼 (Wafer) 전면에 일정한 패턴으로 스크린 프린팅 하여 인쇄하고, 적외선 건조로를 사용하여 건조시켰다. 상기 과정으로 형성된 Cell을 벨트형 소성로를 사용하여 600°C 내지 900°C 사이로 30초에서 210초간 소성을 행하였으며, 이렇게 제조 완료된 Cell은 TLM Transfer Length Method)측정장비를 사용하여 태양전지의 접촉저항 (Rc) 및 접촉비저항 (pc)을 측정하여 하기 표 4 및 표 5에 나타내었다. 직렬저항, Fiji Factor 및 Efficiency측정방법
상기 실시예 및 비교예에서 준비된 태양전지 전극 형성용 조성물을 결정계 모노 웨이퍼 (Wafer) 전면에 일정한 패턴으로 스크린 프린팅 하여 인쇄하고, 적외선 건조로를 사용하여 건조시켰다. 이후 웨이퍼의 후면에 알루미늄 페이스트를 후면 인쇄한 후 동일한 방법으로 건조하였다. 상기 과정으로 형성된 샐 (Cell)을 벨트형 소성로를 사용하여 400°C 내지 900°C의 온도 범위에서 30 초 내지 180 초 동안 소성하였으며, 이렇게 제조 완료된 셀 (Cell)은 태양전지효율 측정장비 (Pasan 社, CT-801)를 사용하여 태양전지의 직렬저항 (Rs) Fill Factor(FF, ) 및 변환효율 (%)을 측정하여 하기 표 4 및 표 5 에 나타내었다.
【표 4】
Figure imgf000015_0001
【표 5】
Figure imgf000016_0001
상기 표 4 및 표 5의 결과에서 확인할 수 있듯이, 할로겐화 은 (Ag- JO으로부터 유래된 은 원소를 함유한 실시예 1 내지 실시예 32의 유리 프릿을 사용한 태양전지 전극 형성용 조성물로 제조된 전극은 비교예 1 및 비교예 2에 비하여 접촉저항, 접촉비저항 및 직렬저항값이 낮고, 변환효율과 Fill Factor 값이 우수한 것을 확인할 수 있다. 본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims

【청구의 범위】
【청구항 1】
은 (Ag) 분말;
은 원소를 약 0.1몰% 내지 약 50몰¾» 함유한 유리 프릿; 및
유기 비히클;을 포함하며,
상기 은 원소는 할로겐화 은 (Ag-X)으로부터 유래된 것을 특징으로 하는 태양전지 전극 형성용 조성물.
【청구항 2】
제 1항에 있어서,
상기 은 (Ag) 분말 약 60중량 % 내지 약 95 중량
상기 유리 프릿 약 0.1중량 % 내지 약 20중량 %; 및
상기 유기 비히클 약 1 중량 % 내지 약 30 중량 %를 포함하는 것을 특징으로 하는 태양전지 전극 형성용 조성물.
【청구항 3】
제 1항에 있어서,
상기 유리 프릿은 유리 프릿 전체 몰수 대비 은 원소를 약 0.5 몰¾> 내지 약 25 몰% 함유한 것을 특징으로 하는 태양전지 전극 형성용 조성물.
【청구항 4]
제 1항에 있어서,
상기 유리 프릿은 1 종 이상의 금속산화물 및 할로겐화 은 (Ag-X)으로부터 형성된 것을 특징으로 하는 태양전지 전극 형성용 조성물.
【청구항 5]
제 4항에 있어서,
상기 금속산화물은 납 (Pb), 비스무스 (Bi), 텔루륨 (Te), 인 (P), 게르마늄 (Ge), 갈륨 (Ga), 세륨 (Ce), 철 (Fe), 리튬 (Li), 규소 (Si), 아연 (Zn), 텅스텐 마그네슘 (Mg), 세슘 (Cs), 스트론튬 (Sr), 몰리브덴 (Mo), 티타늄 (Ti), 주석 (Sn), 인듐 (In), 바나듐 (V), 바륨 (Ba), 니켈 (Ni), 구리 (Cu), 나트륨 (Na), 칼륨 00, 비소 (As), 코발트 (Co), 지르코늄 (Zr), 망간 (Mn) 및 알루미늄 (A1)의 산화물로 이루어진 군에서 선택된 1 종 이상의 금속산화물을 포함하는 것을 특징으로 하는 태양전지 전극 형성용 조성물.
【청구항 6】
제 1항에 있어서,
상기 할로겐화 은 (Ag-X) 중 X 는 요오드 (I), 플루오르 (F), 염소 (C1) 및 브롬 (Br) 중에서 선택된 할로겐 원소인 것을 특징으로 하는 태양전지 전극 형성용 조성물.
【청구항 7】
제 1 항에 있어서, 상기 유리 프릿은 평균입경 (D50)이 약 0.1 /itn 내지 약 10 인 것을 특징으로 하는 태양전지 전극 형성용 조성물.
【청구항 8]
제 1항에 있어서,
상기 조성물은 분산제, 요변제, 가소제, 점도 안정화제, 소포제, 안료, 자외선 안정제, 산화방지제 및 커플링제로 이루어진 군으로부터 선택되는 첨가제를 1 종 이상 더 포함하는 것을 특징으로 하는 태양전지 전극 형성용 조성물.
【청구항 9】
제 1 항 내지 제 8 항 중 어느 한 항의 태양전지 전극 형성용 조성물로 제조된 태양전지 전극.
PCT/KR2013/011534 2012-12-29 2013-12-12 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극 WO2014104623A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380068324.2A CN104871254B (zh) 2012-12-29 2013-12-12 形成太阳能电池电极用的组成物及使用其所制的电极
US14/655,985 US9911872B2 (en) 2012-12-29 2013-12-12 Composition for forming electrode of solar cell, and electrode manufactured using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0157695 2012-12-29
KR20120157695 2012-12-29
KR1020130152676A KR101802546B1 (ko) 2012-12-29 2013-12-09 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR10-2013-0152676 2013-12-09

Publications (1)

Publication Number Publication Date
WO2014104623A1 true WO2014104623A1 (ko) 2014-07-03

Family

ID=51021614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011534 WO2014104623A1 (ko) 2012-12-29 2013-12-12 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극

Country Status (1)

Country Link
WO (1) WO2014104623A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3040320A1 (en) * 2014-12-31 2016-07-06 Heraeus Precious Metals North America Conshohocken LLC Glass composition for electroconductive paste compositions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070138659A1 (en) * 2005-12-21 2007-06-21 Takuya Konno Paste for solar cell electrode, solar cell electrode manufacturing method, and solar cell
KR20100069699A (ko) * 2007-09-27 2010-06-24 가부시키가이샤 무라타 세이사쿠쇼 Ag 전극 페이스트, 태양전지 셀 및 그 제조방법
US20100244205A1 (en) * 2008-01-30 2010-09-30 Basf Se Glass Frits
KR20110069724A (ko) * 2009-12-17 2011-06-23 동우 화인켐 주식회사 태양전지 후면 전극용 은 페이스트 조성물
KR20110073597A (ko) * 2008-10-20 2011-06-29 코닝 인코포레이티드 드라이 유리계 프릿의 형성 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070138659A1 (en) * 2005-12-21 2007-06-21 Takuya Konno Paste for solar cell electrode, solar cell electrode manufacturing method, and solar cell
KR20100069699A (ko) * 2007-09-27 2010-06-24 가부시키가이샤 무라타 세이사쿠쇼 Ag 전극 페이스트, 태양전지 셀 및 그 제조방법
US20100244205A1 (en) * 2008-01-30 2010-09-30 Basf Se Glass Frits
KR20110073597A (ko) * 2008-10-20 2011-06-29 코닝 인코포레이티드 드라이 유리계 프릿의 형성 방법
KR20110069724A (ko) * 2009-12-17 2011-06-23 동우 화인켐 주식회사 태양전지 후면 전극용 은 페이스트 조성물

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3040320A1 (en) * 2014-12-31 2016-07-06 Heraeus Precious Metals North America Conshohocken LLC Glass composition for electroconductive paste compositions

Similar Documents

Publication Publication Date Title
KR101982412B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR101802546B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR101696968B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR102097805B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
TWI646557B (zh) 用於形成太陽能電池電極的組成物和使用其製備的太陽能電池電極
US9944802B2 (en) Composition for forming solar cell electrode and electrode produced from same
KR101731674B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
TWI612020B (zh) 太陽電池電極用組成物及使用其製作的電極
WO2014104623A1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
KR102052201B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
TWI648239B (zh) P型太陽能電池電極的組成物、由使用此組成物製備的電極以及使用此組成物製備的p型太陽能電池
KR101691694B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
US20190013421A1 (en) Composition for forming solar cell electrode and electrode prepared using the same
KR20180046808A (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
TW201618317A (zh) 包含在高片電阻晶圓上形成的電極的太陽能電池
TW201906797A (zh) 用於太陽能電池電極的組合物及使用所述組合物製作的電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867658

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14655985

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867658

Country of ref document: EP

Kind code of ref document: A1