WO2014103943A1 - ハイブリッド亜鉛電池 - Google Patents

ハイブリッド亜鉛電池 Download PDF

Info

Publication number
WO2014103943A1
WO2014103943A1 PCT/JP2013/084290 JP2013084290W WO2014103943A1 WO 2014103943 A1 WO2014103943 A1 WO 2014103943A1 JP 2013084290 W JP2013084290 W JP 2013084290W WO 2014103943 A1 WO2014103943 A1 WO 2014103943A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
electrode
oxygen
negative electrode
battery
Prior art date
Application number
PCT/JP2013/084290
Other languages
English (en)
French (fr)
Inventor
杉政 昌俊
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2014103943A1 publication Critical patent/WO2014103943A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a hybrid zinc battery.
  • the three-electrode zinc-air battery can be expected to suppress the corrosion of the air electrode during charging, but the energy obtained by discharging is less than the energy used for charging (charge / discharge efficiency is low) and the output characteristics are low. Issues remain.
  • An object of the present invention is to provide a hybrid zinc battery having a novel configuration with a large capacity and excellent output characteristics.
  • the gist of the present invention is as follows.
  • the present invention uses an electrode material having a function of performing a charge reaction of a zinc-air battery and a function of a negative electrode containing zinc and a positive electrode for forming a secondary battery as an oxygen generating electrode of a three-electrode type zinc-air battery.
  • a hybrid zinc battery in which two types of secondary batteries are combined is used.
  • the hybrid zinc battery of the present invention includes a negative electrode made of zinc or a zinc alloy, an oxygen reduction electrode disposed on one surface side of the negative electrode via a first partition, and the other of the negative electrode.
  • An oxygen generating electrode disposed on the surface side via a second partition, an aqueous electrolyte containing zinc ions, and a housing for housing the negative electrode, oxygen reducing electrode, oxygen generating electrode, partition, and aqueous electrolyte
  • the oxygen generating electrode is nickel, iron, or any alloy thereof.
  • the schematic diagram of the hybrid zinc battery which concerns on 1st Embodiment of this invention The schematic diagram of the hybrid zinc battery which concerns on 2nd Embodiment of this invention.
  • the schematic diagram of the hybrid zinc battery which concerns on 3rd Embodiment of this invention The schematic diagram of the hybrid zinc battery which concerns on 3rd Embodiment of this invention.
  • FIG. 1 is a diagram schematically showing the configuration of the hybrid zinc battery according to the first embodiment of the present invention.
  • the hybrid zinc battery of the present embodiment includes a charge / discharge cell unit, an oxygen pipe 8, an oxygen pressure adjusting valve 9, and an oxygen chamber 7.
  • the charge / discharge cell part is composed of a zinc negative electrode 1, an oxygen reduction electrode 2, an oxygen generation electrode 3, an aqueous electrolyte 5 and a partition wall 6, and a housing 4 for housing them.
  • the oxygen reduction electrode 2 is disposed on one surface side of the zinc negative electrode 1 via the partition wall 6a, and the oxygen generation electrode 3 is disposed on the other surface side of the zinc negative electrode 1 via the partition wall 6b.
  • the zinc negative electrode 1 and the oxygen generating electrode 3 are connected to a power source 10, and the zinc negative electrode 1 and the oxygen reducing electrode 2 and the zinc negative electrode 1 and the oxygen generating electrode 3 are connected to output terminals 11 and 12, respectively.
  • the oxygen generation electrode 3 has a function as a positive electrode for forming a secondary battery with the zinc negative electrode 1 as well as a function of performing a charging reaction of the zinc-air battery. For this reason, in the hybrid zinc battery of this embodiment, the positive electrode is only the oxygen generating electrode 3 during charging, but both the oxygen reducing electrode 2 and the oxygen generating electrode 3 can be used as positive electrodes during discharging.
  • the negative electrode active material in the air battery, zinc, aluminum, magnesium, iron, lead, lithium, and the like have been proposed as the negative electrode active material, but it can be charged and discharged with an aqueous electrolyte, and the overvoltage of water electrolysis is high.
  • Zinc is most preferable as a material having a high energy density. Since an aqueous electrolyte can be applied, there are advantages that safety is improved and handling and transportation are facilitated.
  • the zinc negative electrode 1 used in the present embodiment is made of zinc or a zinc alloy, and preferably has a high specific surface area.
  • the high specific surface area shape examples include a shape of a porous body, a mesh, a punching metal, an expanded metal, a non-woven fabric, a shape roughened by high specific surface area plating, machining, or the like.
  • the zinc negative electrode 1 is good also as a structure which formed zinc or zinc alloy in the surface of support base materials, such as copper, aluminum, and iron.
  • the oxygen reduction electrode 2 platinum, silver, palladium, rhodium, iron, nickel, cobalt, iridium oxide, ruthenium oxide, manganese dioxide, nitrogen-containing carbon, a phthalocyanine complex, or the like, which is a catalyst having oxygen reduction activity, is used. Can do. From the viewpoint of equipment cost, it is preferable to use a composite material of nickel, manganese dioxide, cobalt, and carbon. Since the oxygen reduction electrode 2 has a low density of gaseous oxygen, the oxygen reduction electrode 2 preferably has an area of about 10 to 1000 times the apparent surface area. Therefore, it is preferable that a conductive carrier such as carbon black or metal powder having a high specific surface area carrying the catalyst is bound with a binder. In addition, if the catalyst surface is covered with the aqueous electrolyte 5, contact with oxygen is hindered and the reactivity is lowered. Therefore, the surface of the oxygen reduction electrode 2 is preferably made water-repellent.
  • the oxygen generating electrode 3 is preferably a material having a low oxygen overvoltage in the electrolytic reaction of water and a high corrosion resistance. Furthermore, the electrode material which has a function as an electrode which forms the zinc negative electrode 2 and a secondary battery is used. Specific examples of such an electrode material include nickel and iron. Nickel and iron may be alloys. Among these, nickel or a nickel alloy, which has been put into practical use as a positive electrode material for charge / discharge reaction of a battery and has a low oxygen generation overvoltage, is most preferable. In order to improve the reaction area as with the zinc negative electrode 1, it is preferable to have a shape with a high specific surface area.
  • the aqueous electrolyte 5 contains zinc ions, and any one of potassium hydroxide, sodium hydroxide and lithium hydroxide is used as an electrolyte.
  • the concentration of zinc ions is preferably a saturated concentration.
  • the supply source of zinc ions is not particularly limited, and examples thereof include a method of adding a zinc compound such as zinc oxide and zinc sulfate to the aqueous electrolyte. Moreover, the method of making it melt
  • the aqueous electrolyte 5 is filled in the housing 4 so as to exist at least on the surfaces of the zinc negative electrode 1 and the oxygen generating electrode 3.
  • an anion exchange membrane is used for the partition wall 6a, and a porous membrane or a porous ion exchange membrane is used for the partition wall 6b.
  • Negative electrode 1 Zn 2+ + 2e ⁇ Zn (Formula 1)
  • Oxygen generation electrode 3 4OH ⁇ ⁇ O 2 + 2H 2 O + 4e (Formula 2) (Charging reaction of zinc-nickel battery)
  • Negative electrode 1 Zn + 2OH ⁇ ⁇ Zn (OH) 2 + 2e (Formula 3)
  • Oxygen generation electrode 3 NiOOH + 2H 2 O + e ⁇ Ni (OH) 2 + OH ⁇ (Formula 4)
  • the oxygen reduction electrode 2 and the oxygen generation electrode 3 are provided, and the air electrode is charged and discharged by a three-electrode type air battery composed of different electrodes, so that Deterioration is suppressed.
  • two charge reactions of the charge reaction of a zinc oxygen battery and the charge reaction of a zinc nickel battery occur.
  • the charge / discharge efficiency of the zinc-nickel battery is significantly higher than the charge / discharge efficiency of the zinc-oxygen battery. Therefore, the charge / discharge efficiency of the entire hybrid zinc battery can be improved as compared with the zinc-air battery alone.
  • the zinc-nickel battery has a feature that discharge with high output is possible although the discharge capacity is inferior to that of the zinc-air battery.
  • the current density during discharge is from 0.1 mA / cm 2 to 50 mA / cm 2
  • zinc is deposited at the zinc negative electrode and oxygen is generated at the oxygen generating electrode during charging, and zinc is dissolved and oxygen reduced at the zinc negative electrode during discharging.
  • the current density during discharge is from 50 mA / cm 2 to 1 A / cm 2
  • zinc is deposited at the zinc negative electrode and nickel hydroxide is formed at the oxygen generating electrode, and zinc is discharged during discharge.
  • the terminal is switched depending on the current density so as to utilize a charge / discharge reaction in which zinc is dissolved at the negative electrode and decomposition of nickel hydroxide proceeds at the oxygen generating electrode.
  • the hybrid zinc battery of the present embodiment has the oxygen generating electrode 3 as the third electrode and is used as the positive electrode for the charging reaction of the air battery and has a high current density with the zinc negative electrode 1. It is characterized by being used as a compatible battery.
  • the hybrid zinc battery of this embodiment is provided with the following characteristics. As shown in Equations 2 and 6, the oxygen generation electrode 3 generates the same amount of oxygen as consumed by the oxygen reduction electrode 2. Therefore, in the hybrid zinc battery of the present embodiment, an oxygen pipe 8 for supplying oxygen generated by the charging reaction of the oxygen generating electrode 3 to the oxygen chamber 7 of the oxygen reducing electrode 2 is provided, and oxygen circulates in the battery. It is said. Charging and discharging can be repeated by filling the oxygen chamber 7 with oxygen in advance at the time of battery production or the like. In a conventional air battery that discharges by supplying external air to the oxygen reduction electrode, the air contains only about 20% of the oxygen required for the discharge reaction, so that the reaction efficiency can be increased. It was difficult.
  • FIG. 2 shows a schematic diagram of a hybrid zinc battery according to a second embodiment of the present invention.
  • the power supply, power wiring, and terminals are omitted for simplification of the drawing.
  • the connection configuration of the power supply, power wiring, and terminals is the same as in FIG.
  • the amount of electricity per unit volume of metallic zinc is 5.84 Ah / cm 2 , which corresponds to, for example, about 100 cm 3 in an electrolytic solution in which 1 mol / L of zinc ions are dissolved.
  • the aqueous electrolyte 5 having a volume of several tens to several hundreds of times is required to store large electric power in the zinc negative electrode. Since it is difficult to hold this inside the storage battery, when a large amount of electricity needs to be stored, the aqueous electrolyte is stored in the external aqueous electrolyte tank 21 as in this embodiment, and the zinc negative electrode is supplied by the liquid feed pump 23. 1 is preferably circulated and fed.
  • FIG. 1 In the aqueous electrolyte tank 21, metallic zinc or a zinc compound may be stored together with the aqueous electrolyte 5 containing zinc ions.
  • the power storage amount is limited by the total volume of the zinc negative electrode 1, but by storing the metallic zinc or zinc compound in the aqueous electrolyte tank 21 in a colloidal state, Power storage can be determined by tank size.
  • the aqueous electrolyte 5 fed from the aqueous electrolyte tank 21 is preferably injected in the vicinity of the zinc negative electrode 1. It has been reported in the literature that zinc changes its electrode shape due to dissolution precipitation or short-circuits due to dendritic growth during deposition. Therefore, zinc deposition can be controlled by circulating zinc electrolyte and always supplying zinc ions.
  • the oxygen chamber 7 is integrated in the casing 4 of the charge / discharge cell unit.
  • An oxygen tank 22 may be provided.
  • FIG. 3 shows a schematic diagram of a hybrid zinc battery according to a second embodiment of the present invention.
  • the power supply, power wiring, and terminals are omitted as in FIG.
  • the connection configuration of the power supply, power wiring, and terminals is the same as in FIG.
  • the hybrid zinc battery of this embodiment is characterized in that a heat exchanger 24 is installed between the external tank and the power storage device with respect to the hybrid zinc battery shown in FIG.
  • the slow generation of oxygen and the progress of reduction are one of the factors for suppressing the performance of the air battery.
  • each reaction can be accelerated
  • the heat exchanger 24 in a pipe for sending the aqueous electrolyte from the aqueous electrolyte tank 21 to the charge / discharge cell unit as in this embodiment, and heating the aqueous electrolyte with the heat exchanger 24, It is preferable to increase the reaction temperature during charging and discharging of the zinc-air battery.
  • the heat source of the heat exchanger 24 for heating the aqueous electrolyte since the use efficiency of electric power is reduced if an electric heater is used, for example, exhaust heat of an external device such as a generator or factory exhaust heat, or It is preferable to use a heat source derived from renewable energy such as solar heat or geothermal heat.
  • Example 1 A hybrid zinc battery having the configuration shown in FIG. 1 was prepared and evaluated for characteristics.
  • the zinc negative electrode 1 was a copper expanded metal plated with zinc
  • the oxygen reducing electrode 2 was a thin film electrode formed of carbon black carrying cobalt with a binder
  • the oxygen generating electrode 3 was a nickel expanded metal. These electrode areas were all 9 cm 2 .
  • the aqueous electrolyte 5 an aqueous potassium hydroxide solution in which zinc sulfate was dissolved was used.
  • an ion exchange membrane was used for the partition wall 6a, and a porous polyethylene thin film was used for the partition wall 6b.
  • the aqueous electrolyte was built in the case, and the oxygen chamber was integrated inside the case. Oxygen generated by the charging reaction by the resin tube as the oxygen pipe 8 was stored in the oxygen chamber.
  • the open circuit voltage was measured to find that the zinc negative electrode 1 and the oxygen generating electrode 3 were 1.57 V, the zinc negative electrode and oxygen A voltage of 1.44 V was detected between the reducing electrodes, and it was confirmed that charging was possible. Further, when the current density was measured by connecting the terminal 11 to a load, it was confirmed that a current of 100 mA / cm 2 was applied in the zinc-nickel system of the zinc negative electrode and the oxygen generating electrode.
  • Example 2 A hybrid zinc battery having the configuration shown in FIG. 2 was prepared and evaluated for characteristics. The same zinc negative electrode 1 and oxygen generating electrode 3 as in Example 1 were used.
  • the oxygen reduction electrode 2 was a thin film electrode in which carbon black carrying platinum was formed into a film with a binder. The electrode area, aqueous electrolyte composition, and partition walls were the same as in Example 1. The aqueous electrolyte was built in the external aqueous electrolyte tank 21 and the oxygen chamber was integrated inside the casing.
  • the open circuit voltage was measured to find 1.55 V for the zinc negative electrode and the oxygen generating electrode, and the zinc negative electrode and the oxygen reducing electrode. In the meantime, a voltage of 1.54 V was detected, and it was confirmed that charging was possible. Further, when the current density was measured by connecting the terminal 11 to a load, it was confirmed that a current of 100 mA / cm 2 was applied in the zinc-nickel system of the zinc negative electrode and the oxygen generating electrode.
  • Example 3 A hybrid zinc battery having the configuration shown in FIG. 3 was prepared and evaluated for characteristics.
  • Example 2 is the same as Example 2 except that a heat exchanger 24 is provided between the hybrid zinc battery and the external tank.
  • Example 3 the effect of heating the aqueous electrolyte was verified.
  • the aqueous electrolyte was heated by a heat exchanger and controlled so that the temperature inside the casing was 120 ° C. At this time, the internal pressure was 1.25 atm.
  • the oxygen generation voltage was evaluated, it was confirmed that the oxygen generation voltage of the oxygen generation electrode 3 could be reduced by 0.3 V compared to Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Hybrid Cells (AREA)

Abstract

 本発明は、充放電効率、出力特性に優れた新規な構成のハイブリッド亜鉛電池を提供することを目的とする。本発明のハイブリッド亜鉛電池は、亜鉛又は亜鉛合金からなる負極1と、前記負極1の一方の面側に第1の隔壁6aを介して配置される酸素還元極2と、前記負極1の他方の面側に第2の隔壁6bを介して配置される酸素発生極3と、亜鉛イオンを含む水溶液系電解質5と、前記負極1、酸素還元極2、酸素発生極3、隔壁および水溶液系電解質5を収容する筐体4とを備え、前記酸素発生極3がニッケル、鉄またはいずれかの合金であることを特徴とする。

Description

ハイブリッド亜鉛電池
 本発明はハイブリッド亜鉛電池に関する。
 蓄電池としては、鉛蓄電池、リチウムイオン二次電池、NAS電池、レドックスフロー電池等の様々な種類の電池が開発されており、家庭用、発電所用、事業所用などの貯蔵規模や瞬停対策、系統向け電力平準化、ロードレベリング(夜間電力利用)などの用途によって、それぞれに適した装置構成、電気容量のシステムが提案されている。これらの蓄電池の中で正極活物質に大気中の酸素を使用する亜鉛空気電池は重量エネルギー密度が非常に高く、理論容量が1000Wh/kgと大きいことから、次世代の二次電池として注目されている。しかしながら、亜鉛空気電池は充放電効率が低く、電流密度が小さいこと、充電時の空気極の腐食、CO2による電解液の劣化等の課題があり、実用化には至っていない。
 亜鉛空気電池の充電池の正極の腐食の課題に対しては、従来、特許文献1等に記載のように酸素発生(充電)と酸素還元(放電)を異なる電極で行う三電極方式の空気電池が提案されている。
特開2006-93022号公報
 三電極方式の亜鉛空気電池により、充電時の空気極の腐食抑制は期待できるが、充電で用いたエネルギーに対して放電で得られるエネルギーが少ない(充放電効率が低い)、出力特性が低いといった課題が残っている。
 本発明は、大容量でかつ、出力特性に優れた新規な構成のハイブリッド亜鉛電池を提供することを目的とする。
 上記課題を解決するため、本発明の要旨は以下である。
 本発明は三電極方式の亜鉛空気電池の酸素発生極として、亜鉛空気電池の充電反応を行う機能とともに、亜鉛を含む負極と二次電池を形成する正極としての機能を有する電極材料を使用することで、2種類の二次電池を組み合わせたハイブリッド亜鉛電池としたことを特徴とする。
 具体的には、本発明のハイブリッド亜鉛電池は、亜鉛又は亜鉛合金からなる負極と、前記負極の一方の面側に第1の隔壁を介して配置される酸素還元極と、前記負極の他方の面側に第2の隔壁を介して配置される酸素発生極と、亜鉛イオンを含む水溶液系電解質と、前記負極、酸素還元極、酸素発生極、隔壁および水溶液系電解質を収容する筐体とを備え、前記酸素発生極がニッケル、鉄またはいずれかの合金であることを特徴とする。
 本発明によれば、大容量でかつ、出力特性に優れた新規な構成のハイブリッド亜鉛電池を提供することができる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
本発明の第1実施形態に係るハイブリッド亜鉛電池の模式図。 本発明の第2実施形態に係るハイブリッド亜鉛電池の模式図。 本発明の第3実施形態に係るハイブリッド亜鉛電池の模式図。
 以下、図面を適宜参照しながら、本実施形態に係るハイブリッド亜鉛電池を説明する。
[1.第1実施形態]
 図1は、本発明の第1実施形態に係るハイブリッド亜鉛電池の構成を模式的に表す図である。本実施形態のハイブリッド亜鉛電池は、充放電セル部、酸素配管8、酸素圧調整弁9および酸素室7を備えている。充放電セル部は、亜鉛負極1、酸素還元極2、酸素発生極3、水溶液系電解質5および隔壁6と、これらを収容する筐体4で構成される。亜鉛負極1の一方の面側に隔壁6aを介して酸素還元極2が配置され、亜鉛負極1の他方の面側に隔壁6bを介して酸素発生極3が配置された構成となっている。亜鉛負極1と酸素発生極3は電源10と接続されており、亜鉛負極1と酸素還元極2および亜鉛負極1と酸素発生極3はそれぞれ出力端子11、12に接続されている。酸素発生極3は、亜鉛空気電池の充電反応を行う機能とともに、亜鉛負極1と二次電池を形成する正極としての機能も有している。このため、本実施形態のハイブリッド亜鉛電池では、充電時は正極が酸素発生極3のみであるが、放電時には酸素還元極2と酸素発生極3の双方を正極として利用することが出来る。
 以下に本実施形態のハイブリッド亜鉛電池の各構成について説明する。
 まず、空気電池では負極の活物質としては、亜鉛、アルミニウム、マグネシウム、鉄、鉛、リチウムなどが提案されているが、水溶液系電解質で充放電が可能で、水の電気分解の過電圧が高く、エネルギー密度が高い材料として亜鉛が最も好ましい。水溶液系電解質を適用できることにより安全性が向上し、取り扱い性や運搬などが容易となる利点がある。本実施形態で用いる亜鉛負極1は亜鉛または亜鉛合金から構成され、高比表面積の形状とすることが好ましい。高比表面積形状としては、例えば、多孔体、メッシュ、パンチングメタル、エキスパンドメタル、不織布などの形状や、高比表面積めっきや機械加工等により表面粗化した形状等が挙げられる。また、亜鉛負極1は、銅、アルミニウム、鉄などの支持基材の表面に亜鉛または亜鉛合金を形成した構成としても良い。
 酸素還元極2には、酸素還元活性を有する触媒である白金、銀、パラジウム、ロジウム、鉄、ニッケル、コバルト、酸化イリジウム、酸化ルテニウム、二酸化マンガン、窒素含有カーボン、及び、フタロシアニン錯体などを用いることができる。設備コストの観点から、ニッケル、二酸化マンガン、コバルト、炭素の複合材料を用いることが好ましい。酸素還元極2は気体状の酸素が低密度であるため、見かけの表面積の10~1000倍程度の面積があることが好ましい。そこで、上記触媒を担持した高比表面積のカーボンブラックや金属粉末などの導電性担体をバインダで結着した構成とすることが好ましい。なお、触媒表面が水溶液系電解質5で覆われてしまうと酸素との接触が妨げられ、反応性の低下を招くため、酸素還元極2の表面は撥水性にすることが好ましい。
 酸素発生極3は水の電解反応における酸素発生過電圧が低く、耐食性の高い材料であることが好ましい。さらに、亜鉛負極2と二次電池を形成する電極としての機能を有する電極材料を用いる。このような電極材料としては、具体的にはニッケル、鉄が挙げられる。ニッケル、鉄は合金であってもよい。なかでも電池の充放電反応の正極材料として実用化されており、低い酸素発生過電圧を有するニッケルまたはニッケル合金が最も好ましい。亜鉛負極1と同様に反応面積を向上させるために、高比表面積の形状とすることが好ましい。
 水溶液系電解質5には、亜鉛イオンが含まれており、電解質として水酸化カリウム、水酸化充ナトリウム、水酸化リチウムのいずれか単独もしくは混合して利用する。亜鉛イオンの濃度は飽和濃度が好ましい。亜鉛イオンの供給源は特に制限はなく、酸化亜鉛、硫酸亜鉛などの亜鉛化合物を水溶液系電解質に添加する手法が挙げられる。また、亜鉛負極1を設置した後に水溶液系電解質に溶解させる方法でもよい。水溶液系電解質5は少なくとも亜鉛負極1と酸素発生極3の表面に存在するように筐体4内に充填されている。
 充電時には水溶液系電解質中の亜鉛イオンが亜鉛負極1に析出し、酸素発生極3で酸素が発生する。発生した酸素は酸素配管8を通じて酸素室7に移動する。一方、放電時には、空気電池反応系では亜鉛負極1で亜鉛が溶解し、酸素還元極3で酸素が還元される。酸素発生極3にニッケルを用いた場合、亜鉛-ニッケル電池を形成することが出来るため、放電時に亜鉛負極1で亜鉛が溶解し、酸素発生極3では水酸化ニッケルの脱水素が進行する反応を利用することが出来る。
 また、隔壁6aにはアニオン交換膜が用いられ、隔壁6bには多孔質膜あるいは多孔質のイオン交換膜が用いられる。
 酸素発生極3にニッケルを用いた場合の本実施形態のハイブリッド亜鉛電池の電池反応の例を以下に説明する。充電時には、負極1と酸素発生極3の間で式1、2に示した亜鉛酸素電池の充電反応と式3、4に示した亜鉛ニッケル電池の充電反応が行われる。
(亜鉛空気電池の充電反応)
 負極1   :Zn2++2e → Zn     ・・・(式1)
 酸素発生極3:4OH- → O2+2H2O+4e ・・・(式2)
(亜鉛ニッケル電池の充電反応)
 負極1   :Zn+2OH- → Zn(OH)2+2e     ・・・(式3)
 酸素発生極3:NiOOH+2H2O+e → Ni(OH)2+OH- ・・・(式4)
 一方、放電時には負極1と酸素還元極2を負荷に接続すると式5、6に示した亜鉛酸素電池の放電反応が行われる。
(亜鉛空気電池の放電反応)
 負極1   :Zn → Zn2++2e   ・・・(式5)
 酸素還元極2:O2+2H2O+4e → 4OH- ・・・(式6)
 また、負極1と酸素発生極3を負荷に接続すると式7、8に示した亜鉛酸素電池の放電反応が行われる。
(亜鉛ニッケル電池の放電反応)
 負極1   :Zn+4OH- → Zn(OH)4 2-+2e     ・・・(式7)
 酸素発生極3:Ni(OH)2+OH- → NiOOH+2H2O+e ・・・(式8)
 本実施形態のハイブリッド亜鉛電池では、酸素還元極2及び酸素発生極3を設け、空気電池の充電と放電を異なる電極で構成した3電極式の空気電池とすることによって、充電時における空気極の劣化が抑制される。また、充電時には亜鉛酸素電池の充電反応と亜鉛ニッケル電池の充電反応の2つの充電反応が起こる。亜鉛ニッケル電池の充放電効率は、亜鉛酸素電池の充放電効率に比べて大幅に効率が高い。そのため、ハイブリッド亜鉛電池全体としての充放電効率は、亜鉛空気電池単独よりも改善することが可能となる。さらに、亜鉛ニッケル電池は亜鉛空気電池と比較して放電容量は劣るが、高出力の放電が可能という特徴を有する。従来の空気電池では、高い出力が要求される場合には単位発電セルを複数個接続しなければならず、電池のコンパクト化は困難であった。これに対して、本実施形態のハイブリッド亜鉛電池では、亜鉛負極1と酸素発生極3で構成される亜鉛ニッケル電池から放電して電力を供給することで高出力の電力が要求される場合にも対応が可能となる。また、低出力で長時間の電力供給の要求される場合には、亜鉛負極1と酸素還元極2で構成される亜鉛空気電池から放電して電力を供給することで対応が可能となる。この場合、放電時の電流密度に応じて出力端子を切替えるように制御することが好ましい。例えば、放電時の電流密度が0.1mA/cm2から50mA/cm2までは充電時には亜鉛負極で亜鉛の析出、酸素発生極で酸素発生を行い、放電時には亜鉛負極で亜鉛の溶解、酸素還元極で酸素の還元を行うようにし、放電時の電流密度が50mA/cm2から1A/cm2までは充電には亜鉛負極で亜鉛の析出と酸素発生極で水酸化ニッケルの形成、放電時には亜鉛負極で亜鉛の溶解、酸素発生極で水酸化ニッケルの分解が進行する充放電反応を利用するように、電流密度によって端子を切り替える。
 このように、本実施形態のハイブリッド亜鉛電池は、第3の電極として酸素発生極3を有し、空気電池の充電反応用の正極として活用するとともに、亜鉛負極1との間で高電流密度に対応可能な電池として利用することを特徴としている。
 また、本実施形態のハイブリッド亜鉛電池は以下の特徴を備える。式2,6に示したように、酸素発生極3では酸素還元極2で消費された酸素と同量の酸素が発生する。そこで、本実施形態のハイブリッド亜鉛電池では、酸素発生極3の充電反応で発生した酸素を酸素還元極2の酸素室7に供給するための酸素配管8を設け、電池内で酸素が循環する構成としている。電池作製時等に酸素室7に予め酸素を充填しておくことで充放電を繰り返し行うことができる。従来の外部の空気を酸素還元極に供給して放電するタイプの空気電池では、空気中には放電反応に必要な酸素が20%程度しか含まれていないことから、反応効率を高くすることは困難であった。これに対して、本実施形態では酸素還元極に高濃度の酸素を供給できることから放電効率を向上することができる。また、外部の空気を酸素極に供給する場合には空気中に含まれる二酸化炭素が電解液と反応し、炭酸塩が電解液中に析出することにより特性が劣化するという課題がある。本実施形態のように高濃度の酸素を供給する構成により、二酸化炭素による劣化も防止することができる。ここで、酸素配管8には圧力調整弁9を設置することが好ましい。その理由は、酸素発生極3で発生した酸素が酸素室に移動するためには、圧力差が必要となるためである。そこで、所定の圧力に達するまで酸素発生極3で発生した酸素が筐体4の内部に留まるように圧力調整弁9で制御する。酸素室7が常圧の場合、それを上回る程度の圧力差があれば酸素室7に酸素が移動するが、反応性を向上するために高圧化して供給するようにしてもよい。ただし、10気圧を上回ると高圧ガス法の規制対象となるため、酸素室の圧力は10気圧以下とするのが好ましい。
[2.第2実施形態]
 図2に本発明の第2実施形態に係るハイブリッド亜鉛電池の模式図を示す。なお、図2では図面の簡潔化のため電源、電力配線および端子を省略した。電源、電力配線および端子の接続構成は図1と同様である。
 本実施形態のハイブリッド亜鉛電池では、充放電セル部の外部に水溶液系電解質タンク21と、水溶液系電解質タンク21と筐体4を接続する配管25と、配管25に設けられ水溶液系電解質タンク21内の水溶液系電解質を充放電セル部に送液する送液ポンプ23と、酸素配管8に接続された酸素タンク22を設けたことを特徴とする。
 金属の亜鉛の単位体積あたりの電気量は5.84Ah/cm2であり、これは例えば1mol/Lの亜鉛イオンが溶解している電解液で約100cm3にあたる。亜鉛イオンの溶解度にも依存するが、亜鉛負極で大電力を貯蔵するには数十倍から数百倍の体積の水溶液系電解質5が必要となる。これを蓄電池内部に保持することは困難なため、大電力の貯蔵が必要な場合には本実施形態のように外部の水溶液系電解質タンク21に水溶液系電解質を貯蔵し送液ポンプ23で亜鉛負極1に循環供給することが好ましい。これにより、充放電セル部のサイズを変更しなくても水溶液系電解質タンク21のサイズを変えることで大容量の電力貯蔵が可能になる。水溶液系電解質タンク21の内部には、亜鉛イオンを含む水溶液系電解質5とともに金属亜鉛もしくは亜鉛化合物を貯蔵してもよい。金属亜鉛が亜鉛負極1にしか存在しない場合、電力貯蔵量は亜鉛負極1の総体積で制限されるが、金属亜鉛または亜鉛化合物をコロイドなどの状態で水溶液系電解質タンク21に貯蔵することで、電力貯蔵量をタンクサイズで決定することができる。
 水溶液系電解質タンク21から送液される水溶液系電解質5は亜鉛負極1の近傍に注入することが望ましい。亜鉛は溶解析出によって電極形状が変化する、もしくは析出時にデンドライド成長して短絡することがこれまでに文献報告されている。そこで電解液を循環させて常に亜鉛イオンを供給することで亜鉛の析出を制御することができる。
 また、第1実施形態のハイブリッド亜鉛電池では酸素室7を充放電セル部の筐体4内に一体化した構成としたが、図2に示した本実施形態のように筐体の外に酸素を貯蔵する酸素タンク22を設けてもよい。これにより、充放電セル部のサイズを大きくせずに亜鉛空気電池の容量を大きくすることができる。
 本実施形態では、筐体4の外部に水溶液系電解質タンク21と酸素タンク22を設けて、亜鉛空気電池の負極活物質である亜鉛と正極活物質である酸素の量を増やしたことにより、大容量の蓄電池を実現できる。
[3.第3実施形態]
 図3に本発明の第2実施形態に係るハイブリッド亜鉛電池の模式図を示す。図2と同様に電源、電力配線および端子は省略した。電源、電力配線および端子の接続構成は図1と同様である。
 本実施形態のハイブリッド亜鉛電池では、図2に示したハイブリッド亜鉛電池に対して外部タンクと蓄電装置の間に熱交換器24を設置したことを特徴とする。亜鉛空気電池では、酸素の発生及び還元の進行が遅いことが空気電池性能の抑制の要因の1つとなっている。これに対して、充電時及び亜鉛空気電池の放電時の反応温度を上昇させることでそれぞれの反応を促進することができる。そこで、本実施形態のように水溶液系電解質タンク21から水溶液系電解質を充放電セル部に送液する配管に熱交換器24を設置し、熱交換器24で水溶液系電解質を加熱することによって、充電時及び亜鉛空気電池の放電時の反応温度を上げることが好ましい。水溶液系電解質を加熱するための熱交換器24の熱源については、電気ヒーターを利用したのでは電力の利用効率が低下するため、例えば、発電機や工場排熱など外部機器の排熱、あるいは、太陽熱や地熱などの再生可能エネルギー由来の熱源を利用することが好ましい。
 なお、高温では亜鉛負極1における亜鉛の自然溶解が促進されるため、充電時及び亜鉛空気電池の放電時は蓄電池の温度を高く保ち、亜鉛ニッケル電池の放電時および電池反応を行わない時には蓄電池の温度が低くなるように熱交換器24での熱交換量を制御することが望ましい。また、電池反応を行わない時には蓄電池から水溶液系電解質5を除去するようにしてもよい。
(実施例1)
 図1の構成のハイブリッド亜鉛電池を作製し、特性評価を行った。亜鉛負極1には亜鉛をめっきした銅のエキスパンドメタル、酸素還元極2にはコバルトを担持したカーボンブラックをバインダで成膜した薄膜電極、酸素発生極3にはニッケルのエキスパンドメタルを使用した。これらの電極面積はすべて9cm2とした。水溶液系電解質5には硫酸亜鉛を溶解した水酸化カリウム水溶液を使用した。また、隔壁6aにはイオン交換膜、隔壁6bには多孔質ポリエチレン薄膜を使用した。水溶液系電解質は筐体に内蔵し、酸素室は筐体内部に一体化した。酸素配管8である樹脂チューブにより充電反応で発生した酸素は酸素室に貯蔵した。
 亜鉛負極1と酸素発生極3を電源に接続して1.9Vで10分間充電を行った後、開回路電圧を計測したところ亜鉛負極1と酸素発生極3では1.57V、亜鉛負極と酸素還元極の間では1.44Vの電圧が検出され、それぞれ充電できていることが確認できた。また、端子11を負荷に接続して電流密度を測定したところ、亜鉛負極と酸素発生極の亜鉛-ニッケル系で100mA/cm2の通電を確認できた。また、端子12を負荷に接続して電流密度を測定したところ、亜鉛負極と酸素還元極の亜鉛-空気系で10mA/cm2の通電を確認できた。
(実施例2)
 図2の構成のハイブリッド亜鉛電池を作製し、特性評価を行った。亜鉛負極1と酸素発生極3は実施例1と同様のものを用いた。酸素還元極2には白金を担持したカーボンブラックをバインダで成膜した薄膜電極を使用した。電極面積、水溶液系電解質組成、隔壁は実施例1と同様とした。水溶液系電解質は外部の水溶液系電解質タンク21に内蔵し、酸素室は筐体内部に一体化した。
 亜鉛負極1と酸素発生極3を電源に接続して1.9Vで10分間充電を行った後、開回路電圧を計測したところ亜鉛負極と酸素発生極では1.55V、亜鉛負極と酸素還元極の間では1.54Vの電圧を検出し、それぞれ充電できていることが確認できた。また、端子11を負荷に接続して電流密度を測定したところ、亜鉛負極と酸素発生極の亜鉛-ニッケル系で100mA/cm2の通電を確認できた。また、端子12を負荷に接続して電流密度を測定したところ、亜鉛負極と酸素還元極の亜鉛-空気系で10mA/cm2の通電を確認できた。
(実施例3)
 図3の構成のハイブリッド亜鉛電池を作製し、特性評価を行った。ハイブリッド亜鉛電池と外部タンクの間に熱交換器24を設けた以外は実施例2と同様である。
 実施例3では、水溶液系電解質の加熱による効果を検証した。熱交換器によって水溶液系電解質を加熱して筐体内部の温度が120℃となるように制御した。この際、内部圧力は1.25気圧とした。酸素の発生電圧を評価したところ、実施例2と比較して酸素発生極3の酸素の発生電圧を0.3V低減できることが確認できた。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
 1 亜鉛負極
 2 酸素還元極
 3 酸素発生極
 4 筐体
 5 水溶液系電解質
 6a,6b 隔壁
 7 酸素室
 8 配線
 9 圧力調整弁
 10 電源
 11,12 出力端子
 21 水溶液系電解質タンク
 22 酸素タンク
 23 送液ポンプ
 24 熱交換器

Claims (7)

  1.  亜鉛又は亜鉛合金からなる負極と、
     前記負極の一方の面側に第1の隔壁を介して配置される酸素還元極と、
     前記負極の他方の面側に第2の隔壁を介して配置される酸素発生極と、
     亜鉛イオンを含む水溶液系電解質と、
     前記負極、酸素還元極、酸素発生極、隔壁および水溶液系電解質を収容する筐体と、を備え、
     前記酸素発生極がニッケル、鉄またはいずれかの合金であることを特徴とするハイブリッド亜鉛電池。
  2.  請求項1において、前記酸素発生極で発生する酸素を前記酸素還元極に供給するための第1の配管を備えることを特徴とするハイブリッド亜鉛電池。
  3.  請求項2において、前記第1の配管に圧力調整弁を有することを特徴とするハイブリッド亜鉛電池。
  4.  請求項1において、電力を入力する充電端子が前記負極と前記酸素発生極に接続され、電力を出力する放電端子が前記負極と前記酸素発生極および前記負極と前記酸素還元極のそれぞれに接続されていることを特徴とするハイブリッド亜鉛電池。
  5.  請求項1において、前記水溶液系電解質を貯蔵する水溶液系電解質タンクと、前記水溶液系電解質タンク及び前記筐体と接続され、水溶液系電解質が流通する第2の配管と、前記第2の配管に設置された送液ポンプを有することを特徴とするハイブリッド亜鉛電池。
  6.  請求項5において、前記水溶液系電解質タンクの内部に金属亜鉛または亜鉛化合物が貯蔵されていることを特徴とするハイブリッド亜鉛電池。
  7.  請求項6において、前記第2の配管に水溶液系電解質を加熱するための熱交換器を有することを特徴とするハイブリッド亜鉛電池。
PCT/JP2013/084290 2012-12-26 2013-12-20 ハイブリッド亜鉛電池 WO2014103943A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-281948 2012-12-26
JP2012281948A JP2014127289A (ja) 2012-12-26 2012-12-26 ハイブリッド亜鉛電池

Publications (1)

Publication Number Publication Date
WO2014103943A1 true WO2014103943A1 (ja) 2014-07-03

Family

ID=51021027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084290 WO2014103943A1 (ja) 2012-12-26 2013-12-20 ハイブリッド亜鉛電池

Country Status (2)

Country Link
JP (1) JP2014127289A (ja)
WO (1) WO2014103943A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098292A (zh) * 2015-07-28 2015-11-25 清华大学 一种水平式三电极电化学可充的锌空气电池
CN114156572A (zh) * 2021-10-20 2022-03-08 清华大学深圳国际研究生院 一种无锌负极锌空气电池
US11296374B2 (en) 2017-02-03 2022-04-05 Sharp Kabushiki Kaisha Metal-air battery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070671B2 (ja) * 2014-10-09 2017-02-01 トヨタ自動車株式会社 空気電池
EP3266061A4 (en) * 2015-03-04 2018-12-05 Zhongwei Chen Tri-electrode zinc-air battery with flowing electrolyte
JP6560025B2 (ja) * 2015-05-20 2019-08-14 株式会社日本触媒 空気金属電池
BR112019000713B1 (pt) 2016-07-22 2023-04-25 Nantenergy, Inc Célula eletroquímica e método de conservar umidade dentro de uma célula eletroquímica
JP6759364B2 (ja) * 2016-12-27 2020-09-23 シャープ株式会社 電槽及びこれを備えた金属空気電池
US11394035B2 (en) 2017-04-06 2022-07-19 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
WO2019133702A1 (en) 2017-12-29 2019-07-04 Staq Energy, Inc. Long life sealed alkaline secondary batteries
EP3815167A4 (en) 2018-06-29 2022-03-16 Form Energy, Inc. ELECTROCHEMICAL CELL BASED ON AQUEOUS POLYSULFIDE
EP3830888A4 (en) 2018-07-27 2022-06-08 Form Energy, Inc. NEGATIVE ELECTRODES FOR ELECTROCHEMICAL CELLS
US11949129B2 (en) 2019-10-04 2024-04-02 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
CN114843528B (zh) * 2022-06-02 2024-01-26 何金立 金属燃料电池去极化方法、三电极金属燃料电池及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827235A (ja) * 1971-08-13 1973-04-10
JPS5115126A (ja) * 1974-07-27 1976-02-06 Kogyo Gijutsuin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827235A (ja) * 1971-08-13 1973-04-10
JPS5115126A (ja) * 1974-07-27 1976-02-06 Kogyo Gijutsuin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098292A (zh) * 2015-07-28 2015-11-25 清华大学 一种水平式三电极电化学可充的锌空气电池
US11296374B2 (en) 2017-02-03 2022-04-05 Sharp Kabushiki Kaisha Metal-air battery
CN114156572A (zh) * 2021-10-20 2022-03-08 清华大学深圳国际研究生院 一种无锌负极锌空气电池
CN114156572B (zh) * 2021-10-20 2024-01-02 清华大学深圳国际研究生院 一种无锌负极锌空气电池

Also Published As

Publication number Publication date
JP2014127289A (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
WO2014103943A1 (ja) ハイブリッド亜鉛電池
KR102641151B1 (ko) 대규모 에너지 저장을 위한 금속 수소 배터리
US7482081B2 (en) Battery system with in-situ and on-time continuous regeneration of the electrodes
US9590262B2 (en) Reversible fuel cell and reversible fuel cell system
Wang et al. A high-capacity dual-electrolyte aluminum/air electrochemical cell
JP6089188B2 (ja) 第3電極を備えた水素製造装置および水素製造方法
JP2016535408A (ja) 新規フロー電池およびその使用
JP2016520982A (ja) 電気化学反応において動作可能なカソード、ならびに関連するセル、装置、および方法
CN101299476A (zh) 一种锌镍静态单液流电池
JP2017020053A (ja) 水電気分解装置およびそれを用いたエネルギー貯蔵・供給システム
JP6135024B1 (ja) 燃料電池
JP6060335B2 (ja) 第3電極を備えたリバーシブル燃料電池
JP6288655B2 (ja) リバーシブル燃料電池蓄電池
EP2869383B1 (en) Large-capacity power storage device
US20120133323A1 (en) Non-diffusion liquid energy storage device
JP6856293B1 (ja) リバーシブル燃料電池
Asmare et al. Recent advances in electrically rechargeable transition metal-based-air batteries for electric mobility
JP2012248529A (ja) ハイブリッド水素燃料電池
EP3089244B1 (en) Aluminium-manganese oxide electrochemical cell
Wang et al. Research and development of metal-air fuel cells
CN104584280A (zh) 碱性蓄电池用正极活性物质、含有该正极活性物质的碱性蓄电池用正极、碱性蓄电池以及镍氢蓄电池
JP2011233371A (ja) レドックスフロー電池
JP6894649B1 (ja) 燃料電池の充電状態維持装置
Dell Aqueous electrolyte batteries
JP6692218B2 (ja) 電力貯蔵デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869086

Country of ref document: EP

Kind code of ref document: A1