WO2014103858A1 - 遺伝子検査装置、遺伝子検査方法及びプログラム - Google Patents

遺伝子検査装置、遺伝子検査方法及びプログラム Download PDF

Info

Publication number
WO2014103858A1
WO2014103858A1 PCT/JP2013/084040 JP2013084040W WO2014103858A1 WO 2014103858 A1 WO2014103858 A1 WO 2014103858A1 JP 2013084040 W JP2013084040 W JP 2013084040W WO 2014103858 A1 WO2014103858 A1 WO 2014103858A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
unit
nucleic acid
acid extraction
test
Prior art date
Application number
PCT/JP2013/084040
Other languages
English (en)
French (fr)
Inventor
耕史 前田
浩子 藤田
義之 庄司
伊名波 良仁
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US14/652,537 priority Critical patent/US9970951B2/en
Publication of WO2014103858A1 publication Critical patent/WO2014103858A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00693Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/026Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having blocks or racks of reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00326Analysers with modular structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00693Calibration
    • G01N2035/00702Curve-fitting; Parameter matching; Calibration constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • G01N2035/0094Scheduling optimisation; experiment design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N2035/0097Control arrangements for automatic analysers monitoring reactions as a function of time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0465Loading or unloading the conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence

Definitions

  • the present invention relates to a genetic test apparatus, a genetic test method, and a program.
  • Non-Patent Document 1 a genetic test apparatus (Cobas TaqMan Auto) that automatically executes a measurement process including nucleic acid extraction has been provided by Roche (see Non-Patent Document 1).
  • the inspector dispenses a sample (serum or plasma) into a dedicated sample container and places it in the apparatus, and instructs the apparatus to start the test, the presence or absence of viruses or the like in the sample is determined by real-time PCR ( Quantitative measurement is fully automated using the Polymerase (Chain Reaction) method.
  • Abbott also provides a fully automatic genetic testing device (m2000p) (see Non-Patent Document 2).
  • m2000p fully automatic genetic testing device
  • the apparatus executes from the nucleic acid extraction to the preparation of the measurement reaction solution fully automatically.
  • the measurement device performs quantitative measurement by the real-time PCR method.
  • Roche also provides a semi-automatic genetic test apparatus (Cobas® Amplicor) that does not include the extraction function shown in Non-Patent Document 1.
  • the apparatus performs a qualitative test by the PCR method when an inspector manually extracts a nucleic acid and mounts a purified nucleic acid sample on the apparatus.
  • the apparatus does not include an extraction function, it can accept a nucleic acid sample extracted manually, and thus can cope with a wide range of inspection items.
  • the conventional apparatus includes a genetic test apparatus (for example, EasyQ (BioMerue), ABI7500system (Life Technologies)) that does not include an extraction function and a preparation function and performs only measurement.
  • a genetic test apparatus for example, EasyQ (BioMerue), ABI7500system (Life Technologies)
  • This apparatus performs only real-time measurement when an inspector manually extracts a nucleic acid and prepares a reagent and a reaction liquid, and the inspector sets the adjusted measurement reaction liquid in the measuring apparatus.
  • this apparatus it is possible to cope with a wide variety of reagent preparation methods because the preparation of the reagent is manual, and various inspection items can be mounted.
  • the nucleic acid quantification method in the sample in the genetic test differs depending on the nucleic acid amplification method.
  • a standard sample having a plurality of concentration series with known concentrations hereinafter referred to as “standard sample series”
  • Ct value the measurement result of the standard sample
  • a calibration curve is prepared in advance, and when measuring an unknown concentration sample, the result of the measured Ct value is applied to the calibration curve to quantify the concentration.
  • the standard sample here was prepared with a standard sample (hereinafter referred to as “pre-extraction standard sample”) in which a nucleic acid retaining a target sequence was mixed with serum or plasma, and a purified (pseudo) viral nucleic acid at a predetermined concentration. It is a purified nucleic acid (hereinafter referred to as “purified standard sample”).
  • FIGS. 1-1 to 1-3 show the concept of the concentration measurement operation in each of the conventional devices described above.
  • 1-1 is a processing concept of a fully automatic inspection apparatus
  • FIG. 1-2 is a processing concept of a semi-automatic inspection apparatus
  • FIG. 1-3 is a processing concept of a measurement apparatus.
  • the sample set in the apparatus and the database prepared in the apparatus differ depending on the type of the inspection apparatus.
  • a method of measuring an amplification curve with time and using the amplification rise time as in the real time PCR method is general. That is, a plurality of samples with known concentrations are prepared as standard samples, and a calibration curve is prepared by measuring them in advance, and the sample concentration is determined by applying the amplification rise time of the test sample to the calibration curve.
  • the conventional fully automatic inspection apparatus all predetermined inspection operations automatically proceed after the sample is set.
  • a predetermined test operation may not be applied depending on the type and properties of the specimen sample. That is, the fully automatic inspection apparatus has a genetic test that can be handled and a genetic test that is not supported. If the sample is not compatible with the fully automatic testing apparatus, the examiner needs to use another genetic testing apparatus (other than the fully automatic testing apparatus).
  • the type of specimen is, for example, serum or plasma in the case of genetic testing for measuring blood virus concentration, and sputum in the case of testing for respiratory infection bacteria or the like.
  • Other specimen types include tissue and urine.
  • the examiner since even if the specimen type is serum or plasma, if the property is not compatible with a fully automatic testing device (for example, when viscosity is high and it is difficult to dispense a sample), the examiner must It is necessary to extract and measure using another genetic test apparatus. In this case, for example, even specimen samples obtained from the same patient are regularly measured using another genetic test apparatus, so that there is a problem that test results for the same item vary between the test apparatuses. is there. In particular, there is a problem in the compatibility of test results when using different test apparatuses depending on the difference in properties in the same patient.
  • the present invention provides a genetic test apparatus capable of accepting a corresponding sample from an arbitrary test process according to the type and properties of the specimen and automatically executing the subsequent test process for any sample.
  • the present invention includes a nucleic acid extraction unit, a sample preparation unit, a measurement unit, and a first conveyance mechanism that conveys a sample between the nucleic acid extraction unit, the sample adjustment unit, and the measurement unit.
  • a plurality of sample introduction units provided corresponding to at least two of the nucleic acid extraction unit, the sample preparation unit, and the measurement unit, and provided corresponding to the plurality of sample introduction units, and inspected from the sample introduction unit into the apparatus
  • a plurality of second transport mechanisms for transporting the sample for transporting the sample.
  • the figure which shows the processing concept of the conventional fully automatic inspection apparatus The figure which shows the processing concept of the conventional semi-automatic inspection apparatus.
  • inspection apparatus which concerns on an Example The figure explaining the example 2 of a structure of the genetic test apparatus which concerns on an Example.
  • genetic testing refers to (1) real-time PCR method, (2) constant temperature amplification method (LAMP method, NASBA method, TRC method), (3) Sanger method and other sequence analysis methods, and (4) expression analysis. And (5) methods that can detect sputum gene sequences, mutations, SNPs, nucleic acid modifications, and the like, and differences in test methods do not limit the invention proposed herein.
  • FIGS. 2-1 and 2-2 show a configuration example of the genetic test apparatus 200 according to the present embodiment.
  • the genetic test apparatus 200 encloses three test units of a nucleic acid extraction unit 201, a reagent / reaction solution preparation unit 202, and a measurement unit 203 corresponding to each test process, and a sample that can be received by each test unit.
  • a sample introduction unit for introducing a container to be introduced into the apparatus, and a transport mechanism 204 for transporting the container between the inspection units.
  • sample introduction unit corresponding to the nucleic acid extraction unit 201 is referred to as a specimen sample introduction unit 205
  • the sample introduction unit corresponding to the reagent / reaction solution preparation unit 202 is referred to as a nucleic acid sample introduction unit 206
  • a corresponding sample introduction unit is referred to as a reaction sample introduction unit 207. Note that only two of the three sample introduction units may have a sample introduction unit.
  • the nucleic acid extraction unit 201 includes a dispensing mechanism that dispenses a nucleic acid extraction reagent into a container that encloses a specimen sample, and the container in the unit.
  • a container transport mechanism for transporting the sample an extraction mechanism 2011 for extracting nucleic acid from the sample, and a sample sample introduction unit 205.
  • an integrated mechanism of the dispensing mechanism and the container transport mechanism is referred to as a dispensing / conveying mechanism 2012.
  • the extraction mechanism 2011 may have any configuration as long as the sample can be dissolved and the nucleic acid in the sample can be purified (extracted).
  • the extraction mechanism 2011 includes an apparatus for extracting nucleic acid by passing a specimen sample dissolved in a column packed with a filter-like nucleic acid binding carrier, for example.
  • the liquid passing method there are a method using a centrifuge and a method of pressurizing with a syringe.
  • Nucleic acid binding carriers include magnetic particles coated with silica and a method of collecting the magnetic particles with a magnet.
  • the container transport mechanism is a mechanism for transporting the sample container extracted with the nucleic acid in the nucleic acid extraction step within the same unit.
  • the container transport mechanism may be equipped with a function of transporting the container to the reagent / reaction liquid preparation unit 202 which is the next inspection unit.
  • the extraction mechanism 2011 may also serve as the transport function of the container transport mechanism.
  • an apparatus configuration that does not have a container transport mechanism is also conceivable.
  • the specimen sample introduction unit 205 has a mechanism capable of installing and introducing a container (for example, a blood collection tube) enclosing the specimen sample.
  • a container for example, a blood collection tube
  • FIG. 2-1 a configuration having two or more transport lanes for introducing a container in which a specimen sample is sealed into the apparatus may be used.
  • FIG. 2-1 shows the case where there are two transport lanes. In this case, the inspector can access the second transport lane while the apparatus is accessing the first transport lane.
  • the container in which the specimen sample is sealed is a blood collection tube, it is desirable that the specimen sample identifier (ID) can be recognized when the blood collection tube is introduced into each conveyance lane.
  • ID specimen sample identifier
  • the specimen sample introduction unit 205 may be a rotationally driven disk mechanism as shown in FIG.
  • conveyance lanes for drawing the sample rack 208 into the extraction mechanism 2011 are arranged radially around the rotation axis.
  • the examiner can introduce and replace the container in which the specimen sample is sealed into the apparatus.
  • the container enclosing the specimen is a blood collection tube, it is desirable that the specimen specimen identifier (ID) can be recognized when the sample rack 208 is introduced into the transport lane.
  • ID specimen specimen identifier
  • the specimen sample means a sample before nucleic acid extraction such as serum, plasma, urine, feces, sputum and the like.
  • the specimen sample introduced into the extraction mechanism 2011 may be arbitrary as long as the nucleic acid extraction unit 201 can automatically extract the nucleic acid.
  • the extraction reagent installed in the nucleic acid extraction unit 201 includes, for example, a lysis reagent that dissolves protein components, a binding reagent that precipitates nucleic acid and easily binds to the nucleic acid binding carrier, a cleaning reagent that cleans impurities bound to the binding carrier, and a nucleic acid
  • a set of elution reagents for eluting nucleic acids from a binding carrier is used.
  • Each reagent component varies, but the present invention may be any extraction reagent as long as nucleic acid extraction is possible in the nucleic acid extraction section.
  • the nucleic acid extraction unit 201 uses, as consumables, a dispensing chip for dispensing samples and reagents, a carrier for binding nucleic acids, a container for receiving samples, and the like. However, these may be configured optimally according to the extraction method.
  • Reagent / reaction solution preparation unit 202 includes a dispensing mechanism that dispenses a reagent into a container that encloses a nucleic acid sample, and a container that transports the container in the unit.
  • the transport mechanism, the reagent erection unit, the reaction solution preparation unit 2021, and the nucleic acid sample introduction unit 206 are configured.
  • an integrated mechanism of the dispensing mechanism and the container transport mechanism is referred to as a dispensing / conveying mechanism 2022.
  • the reaction solution preparation unit 2021 includes, for example, a mechanism for preparing a master mix from an installed reagent, a mechanism for preparing a nucleic acid sample and a master mix, an agitation mechanism according to the requirements of the mounted genetic test method, a capping mechanism, and a heating mechanism Etc. are arranged.
  • the reaction temperature is important at the time of enzyme addition for the execution of quantitative measurement, so the reaction solution preparation unit 2021 has a heating mechanism. Is done.
  • the temperature adjustment is performed after all reaction solutions are prepared, so the reaction solution preparation unit 2021 does not need to have a heating mechanism.
  • the reaction solution preparation unit 2021 may have any configuration as long as a reaction solution can be prepared from a nucleic acid sample.
  • the nucleic acid sample introduction unit 206 has a mechanism capable of erection and introduction of a container enclosing a nucleic acid sample.
  • a configuration having two or more transport lanes for introducing a container in which a nucleic acid sample is sealed into the apparatus may be used.
  • FIG. 2-1 shows the case where there are two transport lanes. In this case, the inspector can access the second transport lane while the apparatus is accessing the first transport lane. It is desirable that a barcode label is affixed to the container enclosing the nucleic acid sample, and the identifier (ID) of the nucleic acid sample can be recognized when the container is introduced into each transport lane.
  • the nucleic acid sample introduction unit 206 may also be a rotationally driven disk mechanism, similar to the sample sample introduction unit 205.
  • the nucleic acid sample means a nucleic acid manually extracted by an examiner, a nucleic acid purified by another nucleic acid automatic extraction device, a purified nucleic acid standard sample, and the like.
  • the nucleic acid sample introduced into the reaction solution preparation unit 2021 may be any sample as long as it is purified to nucleic acid and ready for analysis.
  • the reagent installed in the reagent / reaction solution preparation unit 202 is optional as long as it allows genetic testing of the sample extracted in the nucleic acid extraction unit 201 or the nucleic acid sample installed in the reagent / reaction solution preparation unit 202.
  • two or more kinds of test reagents can be installed so that different items can be inspected between the inspection of the nucleic acid sample carried in from the nucleic acid extraction unit 201 and the inspection of the nucleic acid sample introduced from the nucleic acid sample introduction unit 206.
  • the reagent / reaction solution preparation unit 202 uses, as consumables, a dispensing tip for dispensing a sample or a reagent, a reagent preparation container, a reaction container, or the like. However, these may be configured optimally according to each amplification method.
  • the measurement unit 203 includes a dispensing mechanism that dispenses a reagent into a container that encloses a nucleic acid sample, a container transport mechanism that transports the container in the unit, and a real-time fluorescence measurement mechanism. 2031, a data processing unit 2033 that processes fluorescence measurement data, and a reaction sample introduction unit 207.
  • a dispensing / conveying mechanism 2032 an integrated mechanism of the dispensing mechanism and the container transport mechanism is referred to as a dispensing / conveying mechanism 2032.
  • the real-time fluorescence measurement mechanism 2031 here preferably has a functional configuration that can accept reaction samples that are carried in at different timings. Note that the real-time fluorescence measurement mechanism 2031 is an example, and any detection mechanism can be used as long as the reaction sample can be measured.
  • FIG. 3-1 and 3-2 show the configuration of the real-time fluorescence measurement mechanism 2031 and its peripheral devices.
  • the difference between FIG. 3A and FIG. 3B is the device configuration of the real-time fluorescence measurement mechanism 2031.
  • the temperature control block 301 and the reaction vessel 302 have a one-to-one correspondence, and the temperature of the reaction vessel 302 is individually controlled.
  • the temperature control block 301 and the reaction vessels 302 correspond one-to-many, and the temperatures of the plurality of reaction vessels 302 are collectively controlled.
  • the reaction vessel 302 may be of any material and shape as long as it is a material that transmits the fluorescence wavelength and conducts the heat of the temperature control block 301.
  • a PCR tube not contaminated with DNase or RNase (Gleiner, Germany) a container having a porous reaction well, or the like can be used.
  • the temperature control block 301 is arranged along the outer periphery of the rotating disk 303.
  • the real-time fluorescence measurement mechanism 2031 detects the fluorescence from the reaction container 302 in real time by the fluorescence detector 304 while changing the temperature of the reaction container 302 installed in the temperature control block 301 in the range of 40 ° C. to 95 ° C.
  • the fluorescence detector 304 is fixedly disposed outside the turntable 303 and detects the fluorescence of the reaction vessel 302 that passes in front of the turntable 303 as the turntable 303 rotates.
  • Each temperature control block 301 can perform individual temperature control.
  • the temperature control block 301 may be installed on the outer periphery of the fixed disk instead of the rotating disk 303.
  • a mechanism for moving the fluorescence detector 304 along the outer periphery of the fixed disk may be employed.
  • the fluorescence detector 304 detects the fluorescence of the reaction vessel 302 installed in the temperature control block 301 that passes in front of the fluorescence detector 304.
  • a plurality of temperature control blocks 301 that collectively control the temperature of a plurality of reaction vessels 302 are arranged in parallel.
  • the fluorescence detector 304 is disposed below each temperature control block 301.
  • the arrangement position of the fluorescence detector 304 may be arranged at an optimum position according to the detection method.
  • the configuration of the real-time fluorescence measurement mechanism 2031 is various, but any method may be used as long as the temperature can be controlled.
  • any method may be used as long as the temperature can be controlled.
  • it is possible to use an air incubator system in which the temperature is controlled by changing the temperature of the air.
  • the temperature of the temperature control block 301 is controlled by the control unit 2034 in both the apparatus configuration shown in FIG. 3A and the apparatus configuration shown in FIG. 3B.
  • the output of the fluorescence detector 304 is processed by the data processing unit 2033.
  • the storage / calculation unit 2035 has a standard sample concentration information database for each inspection item.
  • concentration information on a set of standard samples used for a certain test item concentration information corresponding to the sample sample introduced from the sample sample introduction unit 205, and the nucleic acid sample introduced from the nucleic acid sample introduction unit 206) Corresponding concentration information and concentration information corresponding to the reaction sample introduced from the reaction sample introduction unit 207) are held.
  • the data processing unit 2033 selects concentration information to be referred according to the place where the sample is introduced, and calculates the concentration based on the selected concentration information and the detection result of the fluorescence detector 304.
  • the reaction sample introduction unit 207 has a configuration in which a container enclosing the reaction sample can be installed and introduced.
  • a configuration having two or more transport lanes for introducing a container enclosing a reaction sample into the apparatus may be used.
  • FIG. 2-1 shows the case where there are two transport lanes. In this case, the inspector can access the second transport lane while the apparatus is accessing the first transport lane.
  • a two-dimensional code label is affixed to the container in which the reaction sample is sealed, and it is preferable that the identifier (ID) of the reaction sample can be recognized when the container is introduced into each transport lane.
  • a reaction sample is a sample in which all materials necessary for the reaction, that is, reagents necessary for the reaction, nucleic acid sample, and the like are enclosed.
  • the reaction sample may be a reaction sample carried in from the reagent / reaction liquid adjustment unit 202 in the previous stage, or the reaction sample is introduced after the inspector manually prepares it using a microdispenser, a stirrer, a table centrifuge, etc.
  • the reaction sample carried in from the part 207 may be used.
  • the reaction sample is installed in a state of being enclosed in a container that can be installed in the temperature control block 301.
  • the system flow shown below is preferable.
  • the inspector specifies an identifier (ID) of the reaction sample.
  • the dispensing / conveying mechanism 2032 conveys the reaction container to the real-time fluorescence measuring mechanism 2031 and lays it on the temperature control block 301.
  • the fluorescence detection unit 304 detects a target nucleic acid by temperature control and a detection method suitable for the inspection method to be mounted.
  • FIGS. 4-1 to 4-4 show the flow of the test operation when the genetic test apparatus according to the present embodiment is used.
  • FIG. 4A is a processing flow executed when a specimen sample is introduced from the specimen sample introduction unit 205
  • FIG. 4B is executed when a nucleic acid sample is introduced from the nucleic acid sample introduction unit 206.
  • FIG. 4-3 is a processing flow executed when a reaction sample is introduced from the reaction sample introduction unit 207.
  • FIG. 4-4 is a sample corresponding to each of the specimen sample, the nucleic acid sample, and the reaction sample. It is a processing flow performed when introduced into the introduction unit.
  • each process associated with each process step or each part is already known, detailed description is omitted.
  • the genetic test apparatus when 8 specimen samples as a specimen sample group, 28 nucleic acid samples as a nucleic acid sample group, and 112 reaction samples as a reaction sample group are introduced into the apparatus, the genetic test apparatus according to the present embodiment Processing is started simultaneously for the first specimen sample in the group, the first sample in the nucleic acid sample group, and the first sample in the reaction sample.
  • the genetic testing device starts a nucleic acid extraction process (specimen sample dissolution process, nucleic acid binding process, washing process, nucleic acid elution process) by the nucleic acid extraction unit 201.
  • the genetic testing device starts a preparation process (reagent preparation process, reaction sample adjustment process) by the reagent / reaction solution preparation unit 202.
  • the genetic testing device starts a process of conveying the reaction sample to the real-time fluorescence measurement mechanism 2031 by the measurement unit 203.
  • the processing timing of various samples follows an optimum schedule determined in advance in the genetic testing device. More preferably, a schedule optimized according to the combination of inspection samples requested before the start of inspection is followed.
  • the one-time processing time when each process is simultaneously executed is defined as a unit time.
  • the unit time of the extraction process of the four specimen samples is 32 minutes
  • the unit time of the preparation process of the four nucleic acid samples is 8 minutes
  • the unit time of the measurement part transporting process of the four reaction samples is two minutes.
  • a total of 148 samples of 8 specimen samples, 28 nucleic acid samples, and 112 reaction samples are scheduled to be introduced into the real-time fluorescence measurement mechanism 2031 in 74 minutes.
  • the schedule here is calculated by a control device or a computer (not shown).
  • the schedule is calculated based on the processing unit of the extraction process.
  • the number of samples processed in the first scheduling cycle is expressed by the following calculation formula.
  • ⁇ (Number of specimen samples) Number of treatments in one unit time of nucleic acid extraction process
  • ⁇ (Number of nucleic acid samples) (Unit time of extraction process) / (Preparation process unit time)
  • ⁇ (Number of reaction samples) (Preparation process unit time) / (Conveyance process unit time)
  • FIGS. 5A and 5B a waiting time is generated due to the interruption of the processing result in the upstream process.
  • 5A is a scheduling cycle viewed from the viewpoint of the sample
  • FIG. 5B is a scheduling cycle viewed from the viewpoint of each part.
  • the nucleic acid sample of the reagent / reaction solution preparation unit 202 is extracted.
  • a reaction sample preparation process is executed, and simultaneously, a carry-in process of the prepared reaction sample to the detection mechanism (real-time fluorescence measurement mechanism 2031) is executed.
  • the genetic test apparatus temporarily stops the reaction sample transport process at the nucleic acid sample transport timing, and prepares the nucleic acid sample preparation process and the reaction sample transport process at the timing of the specimen sample preparation process and the transport process. Pause.
  • ⁇ (Number of specimen samples) Number of treatments per unit time of nucleic acid extraction process
  • ⁇ (Number of nucleic acid samples) ⁇ (Unit time of extraction process) / (Unit time of preparation process) ⁇ (Unit time of preparation process) ⁇ ⁇ (Preparation Number of processes per unit time of process)
  • ⁇ (Number of reaction samples) ⁇ (Preparation process unit time) / (Transfer process unit time) ⁇ (Transfer process unit time) ⁇ ⁇ (Number of processes in one unit time of the transport process)
  • the above-described 148 samples are carried into the measuring unit 203 in a total processing time of 74 minutes. be able to.
  • the scheduling cycle described above is an example.
  • the preparation processing unit time may be determined so as to be a fraction of the extraction processing unit time, and the conveyance processing unit time may be determined so as to be a fraction of the preparation processing unit time.
  • the preparation processing unit time may be determined to be an integral multiple of the conveyance processing unit time, and the extraction processing unit time may be determined to be an integral multiple of the preparation processing unit time.
  • the processing timing of each process of different test samples is completely matched (synchronized), and all of the genetic test equipment is set to have the maximum processing capacity for all test samples.
  • the scheduling is such that the mechanism can continue processing without interruption.
  • Figure 5-3 shows how to determine the scheduling cycle for each process determined from the standard process. Note that the control process or computer (not shown) also calculates the determination process of the reference process.
  • control device determines the sample having the largest number of requests and determines the reference process (501).
  • control device adjusts the unit time of the other two processes according to the determined reference process (502 to 504).
  • a scheduling cycle is determined according to the following rules (505).
  • sample processing from the extraction unit processing step or the sample processing from the preparation unit is performed once as the measurement unit transport processing step.
  • the genetic test apparatus (data processing unit 2033) according to the present embodiment quantifies the concentration value of each test sample (specimen sample, nucleic acid sample, reaction sample) based on the measured fluorescence intensity. At this time, the genetic test apparatus according to the present embodiment calculates a calibration curve corresponding to each sample from the standard sample, thereby performing accurate concentration value quantification regardless of the difference in the introduced test sample and consumption. To minimize the number of standard samples to be used.
  • FIG. 6A is a diagram conceptually showing that the genetic test apparatus according to the present embodiment can perform quantitative calculation using a single standard sample for samples having the same amplification target but different pretreatment methods.
  • the storage unit / calculation unit 2035 stores the relationship between the concentration value and the measured Ct value when each sample is introduced from a different process for each of four types of standard samples having different concentrations. ing.
  • standard sample concentration value A when introduced as a sample sample into a genetic test apparatus standard sample concentration value B when introduced as a nucleic acid sample into a genetic test apparatus, and introduced as a reaction sample into a genetic test apparatus
  • standard sample concentration value C and the actually measured Ct value are stored.
  • a table storing the relationship is referred to as a standard DB.
  • standard sample concentration values A, B, and C are stored in advance in the standard DB.
  • values that are determined in advance when the test reagent is provided are input.
  • Figure 6-2 shows the execution procedure for concentration measurement of each test sample including the standard DB creation process.
  • the analysis function is executed by the data processing unit 2033.
  • One series of standard samples is provided for one inspection item.
  • the standard sample concentration value is determined in advance using a genetic test apparatus used for the test.
  • the standard sample concentration value B for a nucleic acid sample is determined by extracting the standard sample using a nucleic acid extraction method recommended by the genetic testing device and using the genetic testing device.
  • the standard sample concentration value C for a reaction sample is determined by preparing a standard sample using a nucleic acid extraction method and a reaction sample preparation method recommended by the genetic testing device, and using the genetic testing device.
  • the inspector measures the standard sample of each concentration with the genetic testing device and calculates the standard sample Ct value prior to measurement of the test sample (601).
  • the measurement at this time does not need to be actually measured for all of the specimen sample, the nucleic acid sample, and the reaction sample, and may be inspected only from a predetermined sample introduction part.
  • the measured Ct value of the standard sample is determined and stored in the standard DB.
  • the data processing unit 2033 executes the measurement operation and the storage of the actually measured Ct value in the standard DB.
  • the test sample can be measured.
  • the data processing unit 2033 accesses the standard DB before starting the measurement of the specimen sample.
  • a calibration curve is prepared (602, 603). Specifically, the data processing unit 2033 reads the standard sample concentration values A1, A2, A3, and A4 for the specimen sample with reference to the standard DB, plots these on the X axis, and sets the corresponding Ct value. Plot on the Y axis.
  • the data processing unit 2033 draws two straight lines that pass through the corresponding plot points and are parallel to the X-axis and the Y-axis, and plots their intersections in the coordinate system. Thereafter, the data processing unit 2033 draws a straight line connecting the points plotted in these coordinate systems, and creates a calibration curve for the specimen sample.
  • the genetic test apparatus can simultaneously measure various test samples. Therefore, when the nucleic acid sample or the reaction sample is introduced from the corresponding sample introduction unit, the data processing unit 2033 also creates a calibration curve corresponding to these samples.
  • the data processing unit 2033 measures the Ct value for the reaction sample obtained for each test sample (604, 605). Thereafter, the data processing unit 2033 applies the measured Ct value to the standard DB, and determines the concentration value of the sample sample whose concentration is unknown (606).
  • the genetic testing apparatus can measure the concentration of different types of samples (analyte sample, nucleic acid sample, reaction sample) for one test item only by measuring one standard sample once in advance. Can be determined.
  • the test can be performed with one genetic test apparatus even if the types and properties of the specimen samples are different. For this reason, unlike the conventional apparatus, there is no influence of machine differences, and the reliability of inspection results and continuity between inspection times can be ensured. Moreover, in the genetic test apparatus according to the present embodiment, the amount of the standard sample used can be minimized, and the measurement cost can be reduced as compared with the conventional apparatus. In addition, in the case of the genetic testing apparatus according to the present embodiment, it is possible to simultaneously test different types of samples. Moreover, at that time, the maximum processing capacity can be realized by optimizing the measurement timing of each test sample.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be partly or entirely realized as, for example, an integrated circuit or other hardware.
  • Each of the above-described configurations, functions, and the like may be realized by the processor interpreting and executing a program that realizes each function. That is, it may be realized as software.
  • Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a storage device such as an SSD (Solid State Drive), or a storage medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for explanation, and do not represent all control lines and information lines necessary for the product. In practice, it can be considered that almost all components are connected to each other.
  • DESCRIPTION OF SYMBOLS 200 ... Gene test
  • inspection apparatus 201 ... Nucleic acid extraction part, 202 ... Reagent / reaction liquid preparation part, 203 ... Measuring part, 204 ... Conveyance mechanism, 205 ... Specimen sample introduction part, 206 ... Nucleic acid sample introduction part, 207 ... Reaction sample introduction Department.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Quality & Reliability (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 従来は、検体の種類や性状の違いにより専用の遺伝子検査装置が必要であった。そこで、遺伝子検査装置に、核酸抽出部と、試料調整部と、測定部と、核酸抽出部、試料調整部及び測定部の間で試料を搬送する第1の搬送機構と、核酸抽出部と試料調整部と測定部のうち少なくとも2つに対応して設けられる複数の試料導入部と、複数の試料導入部に対応して設けられ、前記試料導入部から装置内部に検査試料を搬入する複数の第2の搬送機構とを設ける。

Description

遺伝子検査装置、遺伝子検査方法及びプログラム
 本発明は、遺伝子検査装置、遺伝子検査方法及びプログラムに関する。
 従来、核酸抽出を含む測定工程を全自動で実行する遺伝子検査装置(Cobas TaqMan Auto)がRoche社より提供されている(非特許文献1参照)。当該装置は、検査者が専用の試料容器に試料(血清または血漿)を分注して装置にセットし、検査の開始を装置に指示すると、試料中におけるウイルス等の存在の有無をリアルタイムPCR(Polymerase Chain Reaction)法を用いて全自動で定量測定する。
 Abbott社からも全自動遺伝子検査装置(m2000p)が提供されている(非特許文献2参照)。当該装置は、検査者が採血管を装置にセットし、検査の開始を装置に指示すると、核酸抽出から測定反応液の調製までを全自動で実行する。次に、検査者が調整された測定反応液を専用の測定装置にセットし、定量の開始を測定装置に指示すると、当該測定装置はリアルタイムPCR法による定量測定を実行する。
 これらの装置は、全ての工程を全自動で実施可能なため、検査者の従事率を低減することができる。
 なお、Roche社からは、非特許文献1に示される抽出機能を含まない半自動遺伝子検査装置(Cobas Amplicor)も提供されている。当該装置は、検査者が用手で核酸を抽出し、精製された核酸試料を装置に架設すると、PCR法により定性検査を実行する。当該装置は抽出機能を含まないが、用手で抽出された核酸試料を受け入れることができるため、幅広い検査項目に対応できる。
 さらに、従来装置には、抽出機能と調製機能を含まず測定のみを実行する遺伝子検査装置(例えばEasyQ(BioMerue社)、ABI7500system(Life Technologies社))もある。当該装置は、検査者が用手で核酸抽出と試薬及び反応液の調製を行い、調整された測定反応液を検査者が測定装置にセットすると、リアルタイム測定のみを実行する。当該装置を用いる場合、試薬の調製が用手なため幅広い試薬調製方法に対応可能であり、様々な検査項目を搭載することができる。
 ところで、遺伝子検査における試料中の核酸定量法は、核酸増幅方法に応じて異なる。例えば核酸増幅方法としてリアルタイムPCR法を用いる場合、複数の濃度系列を持つ濃度が既知の標準試料(以下「標準試料系列」という)をリアルタイムPCR法により測定して標準試料の測定結果(Ct値)から検量線を予め作成し、未知濃度サンプルの測定時には測定Ct値の結果を検量線に当てはめて濃度を定量する。
 ここでの標準試料は、標的となる配列を保持した核酸を血清又は血漿に混合された標準試料(以下「抽出前標準試料」という)と、精製した(疑似)ウイルス核酸を所定濃度で用意した精製核酸(以下「精製標準試料」という)である。
 参考までに、図1-1~図1-3に、前述した各従来装置における濃度測定動作の概念を示す。図1-1は全自動検査装置の処理概念であり、図1-2は半自動検査装置の処理概念であり、図1-3は測定装置の処理概念である。図1-1~図1-3に示すように、装置にセットする試料や装置に用意されるデータベースは、検査装置の種類に応じて異なっていることが分かる。特に抽出方法が異なる検査では、抽出方法に応じて標準試料を個別に提供する必要がある。抽出方法が異なれば測定されるCt値も異なるため、抽出方法に応じた濃度系列を持つ標準試料系列が必要となるためである。また、核酸増幅法として恒温増幅法を用いる場合は、リアルタイムPCR法と同様に増幅曲線を経時的に測定し、増幅立ち上がり時間を利用する方法が一般的である。すなわち、標準試料として複数の濃度既知の試料を準備し、これを前もって測定することによって検量線を作製し、検査試料の増幅立ち上がり時間を検量線に当てはめて試料濃度を決定する。
JOURNAL OF CLINICAL MICROBIOLOGY, July 2005, p. 3504-3507 J Clin Virol. 2012 Oct;55(2):128-33. Epub 2012 Jul 24. J Clin Microbiol. 2012 Aug;50(8):2783-5. Epub 2012 May 23. Mol Cell Probes. 2010 Oct;24(5):315-20. Epub 2010 Apr 21.
 従来の全自動検査装置は、検体のセット後は、予め定められた全ての検査動作が自動的に進行する。ところが、検体試料の種類や性状によっては、予め定められた検査動作を適用できない場合がある。すなわち、全自動検査装置には、対応可能な遺伝子検査と非対応の遺伝子検査が存在する。検体が全自動検査装置に非対応の場合、検査者は、別の(全自動検査装置以外の)遺伝子検査装置を用いる必要がある。ここで、検体の種類とは、例えば血中ウイルス濃度を測定する遺伝子検査であれば血清、血漿であり、呼吸器系感染症の細菌等を検査する場合であれば喀痰である。また、他の検体種には組織や尿がある。
 例えば血清・血漿に対応した全自動遺伝子検査装置は存在するが、喀痰や組織に対応した全自動遺伝検査装置は少ない。このため、喀痰や組織を検体とする場合、検査者は、用手で核酸抽出し、別の遺伝子検査装置で検査を行う必要がある。
 なお、検体種が血清や血漿の場合でも、その性状が全自動検査装置で非対応の場合(例えば粘性が高く、試料の分注が困難な場合)には、検査者は、用手で核酸抽出して別の遺伝子検査装置を用いて測定する必要がある。この場合、例えば同じ患者から取得された検体試料であっても、定期的に別の遺伝検査装置を用いて測定を行うことになるため、同一項目についての検査結果が検査装置間でばらつく問題がある。特に、同一患者における性状の違いにより検査装置を使い分ける場合、検査結果の互換性に問題がある。
 さらに、複数種類の検査装置を使い分ける場合、核酸を定量する際に使用する標準試料を検査装置毎に用意する必要があり、標準試料の測定コストが大きくなる問題もある。
 そこで、本発明は、検体の種類や性状に応じた任意の検査工程から対応試料を受け入れ、いずれの試料についても後続する検査工程を自動実行できる遺伝子検査装置を提供する。
 前述の課題を解決するために、本発明は、核酸抽出部と、試料調整部と、測定部と、核酸抽出部、試料調整部及び測定部の間で試料を搬送する第1の搬送機構と、核酸抽出部と試料調整部と測定部のうち少なくとも2つに対応して設けられる複数の試料導入部と、複数の試料導入部に対応して設けられ、前記試料導入部から装置内部に検査試料を搬入する複数の第2の搬送機構とを有する。
 本発明によれば、検体の種類や性状の違いに関わらず、一つの遺伝子検査装置による遺伝子検査が可能となり、検査結果の互換性を確保することができる。上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
従来の全自動検査装置の処理概念を示す図。 従来の半自動検査装置の処理概念を示す図。 従来の測定装置の処理概念を示す図。 実施例に係る遺伝子検査装置の構成例1を説明する図。 実施例に係る遺伝子検査装置の構成例2を説明する図。 リアルタイム蛍光測定機構とその周辺装置の構成例1を説明する図。 リアルタイム蛍光測定機構とその周辺装置の構成例2を説明する図。 検体試料導入時に実行される検査処理を説明する図。 核酸試料導入時に実行される検査処理を説明する図。 反応試料導入時に実行される検査処理を説明する図。 検体試料、核酸試料、反応試料がそれぞれ対応する試料導入部に導入された場合に実行される検査処理を説明する図。 試料別処理フローにおけるスケジューリングサイクル例を説明する図。 処理部別のスケジューリングサイクル例を説明する図。 基準工程の決定処理手順を説明する図。 標準試料による濃度算出工程の概念図。 標準試料による濃度算出工程を説明する図。
 以下、図面に基づいて、本発明の実施の形態を説明する。なお、本発明の実施態様は、後述する形態例に限定されるものではなく、その技術思想の範囲において、種々の変形が可能である。以下の説明において、遺伝子検査とは、(1) リアルタイムPCR法、(2) 恒温増幅法(LAMP法、NASBA法、TRC法)、(3) サンガー法等の配列解析法、(4) 発現解析法、(5) 遺伝子の配列、変異、SNPs、核酸修飾等を検出可能な方法を含み、検査法の違いが本明細書で提案する発明を限定するものではない。
 (1)遺伝子検査装置の構成
 (1-1)全体構成
 以下の実施例では、一部の検体については全自動遺伝子検査の実行が可能であり、一部の検体については用手で抽出された核酸試料又は用手で調製された反応試料について半自動遺伝子検査の実行が可能な遺伝子検査装置について説明する。すなわち、検体の種類や性状によらず、その遺伝子検査を1台で対応可能な遺伝子検査装置について説明する。このため、実施例に係る遺伝子検査装置では、用手で抽出された核酸試料や用手で調製された反応試料を任意の検査工程から受け入れ可能な構成とする。換言すると、試料を受け入れた処理工程の違いによらず、後続の処理工程を同等に実行し、しかも導入された工程に応じた検査結果を得ることが可能な遺伝子検査装置について説明する。また、以下の実施例では、処理工程の異なる試料を同時(並列)処理するための制御機能(プログラム)を搭載する遺伝子検査装置についても説明する。
 図2-1及び図2-2に、本実施例に係る遺伝子検査装置200の構成例を示す。実施例に係る遺伝子検査装置200は、個々の検査工程に対応する核酸抽出部201、試薬・反応液調製部202、測定部203の3つの検査ユニットと、各検査ユニットで受け入れ可能な試料を封入する容器を装置内に導入するための試料導入部と、検査ユニット間で容器を搬送する搬送機構204とで構成される。本明細書では、核酸抽出部201に対応する試料導入部を検体試料導入部205と呼び、試薬・反応液調製部202に対応する試料導入部を核酸試料導入部206と呼び、測定部203に対応する試料導入部を反応試料導入部207と呼ぶ。なお、これら3つの試料導入部のうち任意の2つについてのみ試料導入部を有する構成でも構わない。
 (1-2)各部の構成
 (1-2-1)核酸抽出部の構成
 核酸抽出部201は、検体試料を封入する容器に核酸抽出試薬を分注する分注機構と、当該容器をユニット内で搬送する容器搬送機構と、検体試料から核酸を抽出する抽出機構2011と、検体試料導入部205とから構成される。以下、分注機構と容器搬送機構の一体機構を分注・搬送機構2012という。
 抽出機構2011は、検体試料を溶解して検体試料中の核酸を精製(抽出)可能であればいかなる構成でもよい。抽出機構2011には、例えば核酸結合担体をフィルタ状に詰めたカラムに溶解した検体試料を通液し、核酸を抽出する装置がある。通液方式には、遠心機を用いる方式、シリンジで加圧する方式がある。核酸結合担体には、シリカをコーティングした磁性粒子と当該磁性粒子を磁石で集磁する方式等がある。
 容器搬送機構は、核酸抽出工程において核酸抽出した試料容器を同じユニット内で搬送する機構である。ただし、容器搬送機構に、次段の検査ユニットである試薬・反応液調製部202に容器を搬送する機能を搭載してもよい。なお、抽出試料を液体で搬送する場合には、容器搬送機構の搬送機能を抽出機構2011が兼用しても良い。このように、容器搬送機構を有しない装置構成も考えられる。
 検体試料導入部205は、検体試料を封入した容器(例えば採血管)を架設及び導入できる機構を有している。例えば図2-1に示すように、検体試料を封入した容器を装置に導入するための搬送レーンを2つ以上有する構成でも良い。図2-1は、搬送レーンが2つの場合を表している。この場合、装置が第1の搬送レーンにアクセスしている間にも、検査者は第2の搬送レーンにアクセスすることができる。なお、検体試料を封入した容器が採血管の場合、各搬送レーンに採血管を導入する際に検体試料の識別子(ID)を認識できることが望ましい。
 これに代え、検体試料導入部205は、図2-2に示すような回転駆動式の円盤機構でも良い。この場合、円盤機構には、サンプルラック208を抽出機構2011に引き込む搬送レーンを回転軸の周りに放射状に配置する。この装置構成の場合、装置による抽出処理中でも、検査者は検体試料を封入した容器の装置への導入と交換を行うことができる。検体試料を封入した容器が採血管の場合、搬送レーンにサンプルラック208を導入するときに検体試料の識別子(ID)を認識できることが望ましい。
 本明細書において、検体試料とは、血清、血漿、尿、糞便、喀痰等の核酸抽出前の試料を意味する。抽出機構2011に導入する検体試料は、核酸抽出部201において自動的に核酸を抽出可能であれば任意で良い。
 核酸抽出部201に架設する抽出試薬は、例えば蛋白成分を溶解する溶解試薬、核酸を析出して核酸結合担体に結合し易くする結合試薬、結合担体に結合した夾雑物を洗浄する洗浄試薬、核酸結合担体から核酸を溶離する溶離試薬がセットになったものが一般的である。各試薬成分は様々であるが、本発明は核酸抽出部において核酸抽出可能であればいかなる抽出試薬でもよい。
 核酸抽出部201では、消耗品として、試料や試薬を分注する分注チップ、核酸を結合する担体、試料を受ける容器等を使用する。もっとも、これらは抽出方式に応じて最適な構成とすればよい。
 (1-2-2)試薬・反応液調製部の構成
 試薬・反応液調製部202は、核酸試料を封入する容器に試薬を分注する分注機構と、当該容器をユニット内で搬送する容器搬送機構と、試薬架設部と、反応液調製部2021と、核酸試料導入部206とから構成される。以下、分注機構と容器搬送機構の一体機構を分注・搬送機構2022という。
 反応液調製部2021には、例えば架設された試薬からマスターミックスを調製する機構、核酸試料とマスターミックスを調製する機構、搭載する遺伝子検査方式の要求事項に応じた撹拌機構、閉栓機構、加熱機構等が配置される。
 例えば装置に搭載された遺伝子検査方式がNASBA法とTRC法の場合、定量測定の実行には、酵素添加時に反応温度であることが重要であるため、反応液調製部2021には加熱機構が配置される。
 また例えば装置に搭載された遺伝子検査方式がリアルタイムPCR法の場合、全ての反応液調製後に温度調製を実行するため、反応液調製部2021に加温機構を具備する必要はない。この場合、反応液調製部2021は、核酸試料から反応液を調製可能であればいかなる構成でもよい。
 核酸試料導入部206は、核酸試料を封入した容器を架設及び導入できる機構を有している。例えば図2-1に示すように、核酸試料を封入した容器を装置に導入するための搬送レーンを2つ以上有する構成でも良い。図2-1は、搬送レーンが2つの場合を表している。この場合、装置が第1の搬送レーンにアクセスしている間にも、検査者は第2の搬送レーンにアクセスすることができる。なお、核酸試料を封入した容器にはバーコードラベルが貼付されており、各搬送レーンに容器を導入する際に核酸試料の識別子(ID)を認識できることが望ましい。なお、核酸試料導入部206も、検体試料導入部205と同様に回転駆動式の円盤機構でも良い。
 本明細書において、核酸試料とは、検査者が用手で抽出した核酸、他の核酸自動抽出装置で精製した核酸、精製済の核酸標準試料等を意味する。反応液調製部2021に導入する核酸試料は、核酸に精製され、分析に供する状態の試料であれば任意で良い。
 試薬・反応液調製部202に架設する試薬は、核酸抽出部201において抽出された試料、又は、試薬・反応液調製部202に架設された核酸試料の遺伝子検査が可能であれば任意である。好ましくは、核酸抽出部201から搬入された核酸試料に対する検査と核酸試料導入部206から導入された核酸試料に対する検査とで異なる項目の検査が可能なように、2種類以上の検査試薬を架設できることが望ましい。より好ましくは、後述の測定部203における柔軟性の高い運用が可能なように6種類以上の試薬を架設できることが望ましい。
 試薬・反応液調製部202では、消耗品として、試料や試薬を分注する分注チップ、試薬調製容器、反応容器等を使用する。もっとも、これらは各増幅方法に応じて最適な構成とすればよい。
 (1-2-3)測定部の構成
 測定部203は、核酸試料を封入する容器に試薬を分注する分注機構と、当該容器をユニット内で搬送する容器搬送機構と、リアルタイム蛍光測定機構2031と、蛍光測定データを処理するデータ処理部2033と、反応試料導入部207とから構成される。以下、分注機構と容器搬送機構の一体機構を分注・搬送機構2032という。ここでのリアルタイム蛍光測定機構2031は、異なるタイミングで搬入される反応試料を受け入れ可能な機能構成を有することが望ましい。なお、リアルタイム蛍光測定機構2031は一例であり、反応試料を測定可能であれば任意の検出機構を用いることができる。
 図3-1及び図3-2に、リアルタイム蛍光測定機構2031とその周辺装置の構成を示す。因みに、図3-1と図3-2の違いは、リアルタイム蛍光測定機構2031の装置構成である。図3-1に示す装置構成では、温度制御ブロック301と反応容器302が1対1に対応しており、反応容器302の温度が個別に制御される。図3-2に示す装置構成では、温度制御ブロック301と反応容器302が1対多に対応しており、複数の反応容器302の温度が一括に制御される。
 反応容器302は、蛍光波長を透過し、温度制御ブロック301の熱を伝導する材質であれば任意の材質・形状でよい。反応容器302には、例えばDNase、RNaseが混入していないPCRチューブ(グライナー社、ドイツ)、多孔構造の反応ウェルを有する容器等を用いることができる。
 図3-1に示すリアルタイム蛍光測定機構2031の場合、温度制御ブロック301は回転盤303の外周に沿って配置される。リアルタイム蛍光測定機構2031は、温度制御ブロック301に架設された反応容器302の温度を40℃から95℃の範囲で変化させながら反応容器302からの蛍光を蛍光検出器304でリアルタイムに検出する。蛍光検出器304は、回転盤303の外側に固定的に配置されており、回転盤303の回転に伴ってその前方を通過する反応容器302の蛍光を検出する。なお、温度制御ブロック301は、それぞれ個別の温度制御が可能である。
 もっとも、温度制御ブロック301を回転円盤303に代えて固定円盤の外周に設置しても良い。この場合には、蛍光検出器304を固定円盤の外周に沿って移動させる機構を採用すれば良い。この場合には、蛍光検出器304は、その前方を通過する温度制御ブロック301に架設された反応容器302の蛍光を検出する。
 図3-2に示すリアルタイム蛍光測定機構2031の場合、複数の反応容器302を一括に温度制御する温度制御ブロック301が複数並列に配置されている。因みに、この構成の場合、蛍光検出器304は、各温度制御ブロック301の下部に配置される。なお、蛍光検出器304の配置位置は検出方法に応じて最適な位置に配置すれば良い。
 前述のように、リアルタイム蛍光測定機構2031の構成は様々であるが、温度制御については、どのような方法であれ温度制御可能であればよい。例えば、空気の温度を変えて温度制御するエアーインキュベーター方式を用いることも可能である。
 なお、図3-1に示す装置構成の場合も図3-2に示す装置構成の場合も、温度制御ブロック301の温度は制御部2034により制御される。また、蛍光検出器304の出力はデータ処理部2033で処理される。記憶部・演算部2035は、検査項目毎に標準試料の濃度情報データベースを有している。濃度情報データベースには、ある検査項目で使用する1組の標準試料に対する濃度情報(検体試料導入部205から導入された検体試料に対応する濃度情報、核酸試料導入部206から導入された核酸試料に対応する濃度情報、反応試料導入部207から導入された反応試料に対応する濃度情報)を保持する。データ処理部2033は、試料を導入した場所に応じて参照する濃度情報を選択し、選択した濃度情報と蛍光検出器304の検出結果に基づいて濃度を算出する。
 反応試料導入部207は、反応試料を封入した容器を架設及び導入できる構成を有している。例えば図2-1に示すように、反応試料を封入した容器を装置に導入するための搬送レーンを2つ以上有する構成でも良い。図2-1は、搬送レーンが2つの場合を表している。この場合、装置が第1の搬送レーンにアクセスしている間にも、検査者は第2の搬送レーンにアクセスすることができる。なお、反応試料を封入した容器には2次元コードラベルが貼付されており、各搬送レーンに容器を導入する際に反応試料の識別子(ID)を認識できることが望ましい。
 本明細書において、反応試料とは、反応に必要な材料、つまり、反応に必要な試薬、核酸試料等が全て封入された試料である。反応試料は、前段の試薬・反応液調整部202から搬入された反応試料でも良いし、検査者が微量分注器、撹拌器、卓上遠心機等を用いて用手で調製した後に反応試料導入部207より搬入された反応試料でも良い。もっとも、反応試料は、温度制御ブロック301に架設可能な容器に封入された状態で架設される。
 なお、用手で用意された反応試料を測定部203に導入する場合には、以下に示すシステムフローが好ましい。まず、測定部203への反応試料の導入時、検査者は、反応試料の識別子(ID)を特定する。この後、分注・搬送機構2032が反応容器をリアルタイム蛍光測定機構2031に搬送し、温調制御ブロック301に架設する。蛍光検出部304は、搭載する検査法に適した温度制御と検出法により標的とする核酸を検出する。
 (1-3)処理動作
 ここでは、実施例に係る遺伝子検査装置が実行する処理フロー(ユーザの処理フローとシステム側の処理フロー)について説明する。以下では、リアルタイムPCR法により核酸を測定する場合について、実施例に係る遺伝子検査装置が検体種や性状に左右されることなく遺伝子検査を実行できることを説明する。
 図4-1~図4-4に、本実施例に係る遺伝子検査装置を用いる場合の検査動作の流れを示す。図4-1は、検体試料が検体試料導入部205から導入される場合に実行される処理フローであり、図4-2は核酸試料が核酸試料導入部206から導入される場合に実行される処理フローであり、図4-3は反応試料が反応試料導入部207から導入される場合に実行される処理フローであり、図4-4は検体試料と核酸試料と反応試料がそれぞれ対応する試料導入部に導入される場合に実行される処理フローである。なお、各処理工程又は各部に対応付けた個々の処理自体は既知であるので、詳細な説明については省略する。
 以下では、本実施例に係る遺伝子検査装置の全ての試料導入部に対応する試料(検体試料、核酸試料、反応試料)が同時に導入された場合を例に処理動作の具体例を説明する。なお、本実施例に係る遺伝子検査装置では、任意の処理部に試料を導入できるため、導入位置の異なる他の試料との間で処理スケジュールの調整が必要となる。遺伝子検査装置は、試料の導入位置の違いによらず、検査が依頼された順番に、試料群毎に対する処理を同時開始する。
 例えば検体試料群として8個の検体試料、核酸試料群として28個の核酸試料、反応試料群として112個の反応試料が装置に導入された場合、本実施例に係る遺伝子検査装置は、検体試料群のうち依頼が1番目の検体試料、核酸試料群のうち依頼が1番目の試料、反応試料のうち依頼が1番目の試料について処理を同時に開始する。
 検体試料群について、遺伝子検査装置は、核酸抽出部201による核酸抽出工程(検体試料溶解工程、核酸結合工程、洗浄工程、核酸溶出工程)を開始する。核酸試料について、遺伝子検査装置は、試薬・反応液調製部202による調製工程(試薬調製工程、反応試料調整工程)を開始する。反応試料群について、遺伝子検査装置は、測定部203による反応試料のリアルタイム蛍光測定機構2031への搬送処理を開始する。この際における各種試料の処理タイミングは、遺伝子検査装置において予め決定された最適なスケジュールに従う。より好ましくは、検査開始前に依頼された検査試料の組合せに応じて最適化されたスケジュールに従う。
 以下では、最適なスケジュールを具体例に基づいて説明する。以下の説明では、各工程を同時実行する場合における1回処理時間を単位時間と定義する。このとき、4検体試料の抽出工程の単位時間が32分、4核酸試料の調製工程の単位時間が8分、4反応試料の測定部搬送工程の単位時間が2分であるとする。この場合、74分間で8検体試料、28核酸試料、112反応試料の総数148試料がリアルタイム蛍光測定機構2031に導入されるようにスケジューリングされる。ここでのスケジュールは、不図示の制御装置又は計算機が算出する。なお、スケジュールは、抽出工程の処理単位を基準に算出される。
 前述の例の場合、1回目のスケジューリングサイクルにおける各試料の処理数は、下記の計算式で示される。
・(検体試料数)=核酸抽出工程の1単位時間での処理数
・(核酸試料数)=(抽出工程単位時間)/(調製工程単位時間)×(調製工程の1単位時間での処理数)
・(反応試料数)=(調製工程単位時間)/(搬送工程単位時間)×(搬送工程の1単位時間での処理数)
 2回目以降のスケジューリングサイクルでは、図5-1及び図5-2に示されるように、上流の工程における処理結果の割り込みによる待ち時間が発生する。なお、図5-1は試料の観点から見たスケジューリングサイクルであり、図5-2は各部の観点から見たスケジューリングサイクルである。
 図5-1及び図5-2に示すように、本実施例に係る遺伝子検査装置では、核酸抽出部201による検体試料の核酸抽出と並行して、試薬・反応液調製部202による核酸試料の反応試料調製処理が実行され、これと同時に調製された反応試料の検出機構(リアルタイム蛍光測定機構2031)への搬入処理が実行される。
 なお、本実施例に係る遺伝子検査装置は、核酸試料の搬送タイミングにおいて反応試料の搬送処理を一時停止し、検体試料の調製処理及び搬送処理のタイミングにおいて核酸試料の調製処理及び反応試料の搬送処理を一時停止する。
 2回目以降のスケジューリングサイクルにおける各試料の処理数は、下記の計算式で示される。
・(検体試料数)=核酸抽出工程の1単位時間での処理数
・(核酸試料数)={(抽出工程単位時間)/(調製工程単位時間)-(調製工程単位時間)}×(調製工程の1単位時間での処理数)
・(反応試料数)={(調製工程単位時間)/(搬送工程単位時間)-(搬送工程単位時間)}×(搬送工程の1単位時間での処理数)
 当該スケジューリングサイクルの繰り返しにより、本実施例に係る遺伝子検査装置においては、先に示した148試料(8検体試料、28核酸試料、112反応試料)を総処理時間74分で測定部203に搬入することができる。
 なお、言うまでも無く、前述したスケジューリングサイクルは一例である。例えば調製処理単位時間を、抽出処理単位時間の整数分の1になるように決定すると共に、搬送処理単位時間を調製処理単位時間の整数分の1になるように決定しても良い。また、調製処理単位時間を搬送処理単位時間の整数倍になるように決定すると共に、抽出処理単位時間を調製処理単位時間の整数倍になるように決定しても良い。
 このように各単位時間を決定することにより、異なる検査試料の各工程の処理タイミングは完全に一致(同期)し、全検査試料に対して最大の処理能力となるように遺伝子検査装置の全ての機構が間断なく処理し続けることが可能なスケジューリングとなる。
 なお、依頼される検体試料が多い場合には抽出処理単位時間を基準とする方式を採用し、反応試料が多い場合には搬送処理単時間を基準とする方式を採用すれば、依頼された検査試料に応じた最大の処理能力を達成することができる。また、核酸試料が最も多い場合には核酸試料の調製処理単位時間を基準として、抽出処理単位時間と搬送処理単位時間を決定すれば、依頼された検査試料に応じた最大の処理能力を発揮できる。
 図5-3に、基準工程の決定から決定された各工程に応じたスケジューリングサイクルの決定方法を示す。なお、基準工程の決定処理も不図示の制御装置又は計算機が算出する。
 まず、制御装置は、依頼数が最も多い試料を判定し、基準工程を決定する(501)。次に、制御装置は、決定された基準工程に応じて他の2つの工程の単位時間を調節する(502~504)。各工程の単位時間が決定されると、以下のルールに従ってスケジューリングサイクルを決定する(505)。
・抽出処理工程の1回に調製部処理工程のM-1回を割り当てる。
・調製部処理工程の1回に測定部搬送処理工程のN-1回を割り当てる。
・調製部処理工程で「-1」した1回を抽出処理工程からの試料処理に割り当てる。
・測定部搬送処理工程とした1回を抽出部処理工程からの試料処理又は調製部からの試料処理とする。
 (1-4)標準試料による濃度算出工程
 最後に、検出試料の濃度測定に必要な標準試料の濃度算出工程を説明する。本実施例に係る遺伝子検査装置(データ処理部2033)は、測定された蛍光強度に基づいて各検査試料(検体試料、核酸試料、反応試料)の濃度値を定量する。この際、本実施例に係る遺伝子検査装置は、標準試料から各試料に応じた検量線を算出することにより、導入された検査試料の違いによらない正確な濃度値の定量の実行と、消費される標準試料の最少化を実現する。
 図6-1及び図6-2に、本実施例に係る遺伝子検査装置による定量検査の概念を示す。図6-1は、本実施例に係る遺伝子検査装置は、増幅対象は同じでも前処理方法が異なる試料に対して1つの標準試料を用いて定量演算できることをイメージ的に表した図である。本実施例の場合、記憶部・演算部2035内には、濃度の異なる4種類の標準試料のそれぞれについて、各試料を異なる工程から導入した場合における濃度値と実測Ct値との関係が格納されている。
 具体的には、検体試料として遺伝子検査装置に導入された場合の標準試料濃度値A、核酸試料として遺伝子検査装置に導入された場合の標準試料濃度値B、反応試料として遺伝子検査装置に導入された場合の標準試料濃度値Cと、実測Ct値とが格納されている。以下、当該関係を格納したテーブルを標準DBという。これらの値のうち標準試料濃度値A、B及びCは予め標準DB内に格納されている。標準試料濃度値A、B及びCは、検査試薬の提供時に予め決定された値が入力される。
 図6-2に、標準DBの作成工程を含む各検査試料の濃度測定の実行手順を示す。本実施例の場合、当該解析機能は、データ処理部2033が実行するものとする。なお、1つの検査項目については1系列の標準試料が提供される。また、標準試料濃度値は、検査に使用する遺伝子検査装置を用いて事前に決定することが望ましい。例えば核酸試料についての標準試料濃度値Bは、標準試料を遺伝子検査装置が推奨する核酸抽出法を用いて抽出し、当該遺伝子検査装置を用いて決定する。また例えば反応試料についての標準試料濃度値Cは、標準試料を遺伝子検査装置が推奨する核酸抽出法と反応試料調製方法を用いて調製し、当該遺伝子検査装置を用いて決定する。
 このような標準DBが存在する場合において、検査者は、検査試料の測定に先立って、各濃度の標準試料を遺伝子検査装置で測定して標準試料Ct値を算出する(601)。この際の測定は、検体試料、核酸試料、反応試料の全てで実測する必要はなく、所定の試料導入部からのみ検査されればよい。この測定により、標準試料の実測Ct値が決定され、標準DBに記憶される。なお、測定動作と実測Ct値の標準DBへの格納は、例えばデータ処理部2033が実行する。
 以上により検査試料の測定が可能な状態となる。例えば検査者が検体試料を検査対象とする場合(検体試料が検体試料導入部205に導入された場合)、データ処理部2033は、検体試料の測定開始前に、標準DBにアクセスして検体試料用の検量線を作製する(602、603)。具体的には、データ処理部2033は、標準DBを参照して検体試料用の標準試料濃度値A1、A2、A3、A4を読み出し、これらをX軸上にプロットすると共に、対応するCt値をY軸上にプロットする。次に、データ処理部2033は、対応するプロット点を通りX軸とY軸に平行である2本の直線を引き、それらの交点を座標系にプロットする。その後、データ処理部2033は、これら座標系にプロットした点を結ぶ直線を引き、検体試料用の検量線を作製する。
 なお、前述したように、本実施例に係る遺伝子検査装置は、同時に、各種検査試料の測定を実行することができる。従って、データ処理部2033は、核酸試料や反応試料が対応する試料導入部から導入された場合には、これらの試料に対応する検量線も作製する。
 検量線の作製が終了すると、データ処理部2033は、各検査試料について得られた反応試料についてCt値を測定する(604、605)。この後、データ処理部2033は、測定されたCt値を標準DBに当てはめ、濃度が未知の検体試料の濃度値を決定する(606)。
 このように、本実施例に係る遺伝子検査装置は、1つの標準試料を事前に1回測定するだけで、1つの検査項目について種類の異なる試料(検体試料、核酸試料、反応試料)の濃度を決定することができる。
 (まとめ)
 以上の通り、本実施例に係る遺伝子検査装置によれば、検体試料の種類・性状が異なったとしても、1つの遺伝子検査装置で検査を行うことができる。このため、従来装置のように機差の影響がなく、検査結果の信頼性と検査回間の継続性を担保できる。また、本実施例に係る遺伝子検査装置では、標準試料の使用量を最少化でき、従来装置に比して測定コストを小さくすることができる。また、本実施例に係る遺伝子検査装置の場合には、種類の異なる試料の検査を同時並行的に実行できる。しかも、その際、各検査試料の測定タイミングを最適化して最大処理能力を実現することができる。
 (他の実施例)
 なお、本発明は上述した実施例に限定されるものでなく、様々な変形例を含んでいる。例えば上述した実施例は、本発明を分かりやすく説明するために、一部の実施例について詳細に説明したものであり、必ずしも説明した全ての構成を備える必要は無い。また、ある実施例の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成を追加、削除又は置換することも可能である。
 また、上述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路その他のハードウェアとして実現しても良い。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することにより実現しても良い。すなわち、ソフトウェアとして実現しても良い。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリやハードディスク、SSD(Solid State Drive)等の記憶装置、ICカード、SDカード、DVD等の記憶媒体に格納することができる。
 また、制御線や情報線は、説明上必要と考えられるものを示すものであり、製品上必要な全ての制御線や情報線を表すものでない。実際にはほとんど全ての構成が相互に接続されていると考えて良い。
 200…遺伝子検査装置、201…核酸抽出部、202…試薬・反応液調製部、203…測定部、204…搬送機構、205…検体試料導入部、206…核酸試料導入部、207…反応試料導入部。

Claims (15)

  1.  核酸抽出部と、
     試料調整部と、
     測定部と、
     前記核酸抽出部、前記試料調整部及び前記測定部の間で試料を搬送する第1の搬送機構と、
     前記核酸抽出部と前記試料調整部と前記測定部のうち少なくとも2つに対応して設けられる複数の試料導入部と、
     前記複数の試料導入部に対応して設けられ、前記試料導入部から装置内部に検査試料を搬入する複数の第2の搬送機構と
     を有する遺伝子検査装置。
  2.  請求項1に記載の遺伝子検査装置において、
     前記複数の試料導入部は、前記核酸抽出部と前記試料調整部について設けられる
     ことを特徴とする遺伝子検査装置。
  3.  請求項1に記載の遺伝子検査装置において、
     前記核酸抽出部、前記試料調整部及び前記測定部の間における処理スケジュールを決定する決定部を更に有し、当該決定部は前記核酸抽出部における処理単位時間を、前記試料調製部の調製処理単位時間の整数倍に設定する
     ことを特徴とする遺伝子検査装置。
  4.  請求項1に記載の遺伝子検査装置において、
     前記核酸抽出部、前記試料調整部及び前記測定部の間における処理スケジュールを決定する決定部を更に有し、当該決定部は前記試料調整部における処理単位時間を、前記第1の搬送機構の搬送処理単位時間の整数倍に設定する
     ことを特徴とする遺伝子検査装置。
  5.  請求項1に記載の遺伝子検査装置において、
     前記核酸抽出部、前記試料調整部及び前記測定部の間における処理スケジュールを決定する決定部を更に有し、
     当該決定部は、前記核酸抽出部、前記試料調整部及び前記測定部のうち外部から導入された検査試料数が最も多い処理部の処理単位時間を基準に他の処理部に関する処理単位時間を決定する
     ことを特徴とする遺伝子検査装置。
  6.  請求項1に記載の遺伝子検査装置において、
     検査項目毎に、前記核酸抽出部に標準試料を導入した場合の濃度情報、前記試料調整部に前記標準試料を導入した場合の濃度情報、前記測定部に前記標準試料を導入した場合の濃度情報を保持する濃度情報データベースと、
     前記検査試料を導入した場所に応じ、前記濃度情報データベースから参照する濃度情報を自動的に選択し、選択された濃度情報に基づいて前記検査試料の濃度値を算出するデータ処理部と
     を有することを特徴とする遺伝子検査装置。
  7.  請求項6に記載の遺伝子検査装置において、
     前記データ処理部は、前記検査試料に応じて前記濃度情報データベースから読み出した前記濃度情報に基づいて検量線を作製し、作製された検量線に基づいて前記検査試料の濃度値を算出する
     ことを特徴とする遺伝子検査装置。
  8.  請求項1に記載の遺伝子検査装置において、
     前記複数の第2の搬送機構の少なくとも1つは2つ以上の搬送レーンを有する
     ことを特徴とする遺伝子検査装置。
  9.  核酸抽出部と、試料調整部と、測定部と、核酸抽出部、試料調整部及び測定部の間で試料を搬送する第1の搬送機構と、核酸抽出部と試料調整部と測定部のうち少なくとも2つに対応して設けられる複数の試料導入部と、複数の試料導入部に対応して設けられ、前記試料導入部から装置内部に検査試料を搬入する複数の第2の搬送機構とを有する遺伝子検査装置における遺伝子検査方法において、
     前記複数の試料導入部のそれぞれについて、各処理部に対応した検査試料の導入を受付ける処理と、
     前記検査試料の受付後、前記核酸抽出部と前記試料調整部と前記測定部に対応する処理工程を同時に開始させる処理と
     を有することを特徴とする遺伝子検査方法。
  10.  請求項9に記載の遺伝子検査方法において、
     前記核酸抽出部における処理単位時間を、前記試料調製部の調製処理単位時間の整数倍に設定する処理を更に有する
     ことを特徴とする遺伝子検査方法。
  11.  請求項9に記載の遺伝子検査方法において、
     前記試料調整部における処理単位時間を、前記第1の搬送機構の搬送処理単位時間の整数倍に設定する処理を更に有する
     ことを特徴とする遺伝子検査方法。
  12.  請求項9に記載の遺伝子検査方法において、
     前記核酸抽出部、前記試料調整部及び前記測定部のうち外部から導入された検査試料数が最も多い処理部の処理単位時間を基準に他の処理部に関する処理単位時間を決定する処理を更に有する
     ことを特徴とする遺伝子検査方法。
  13.  請求項9に記載の遺伝子検査方法において、
     検査項目毎に、前記核酸抽出部に標準試料を導入した場合の濃度情報、前記試料調整部に前記標準試料を導入した場合の濃度情報、前記測定部に前記標準試料を導入した場合の濃度情報を保持する濃度情報データベースから参照する濃度情報を、前記検査試料を導入した場所に応じて選択する工程と、
     選択した濃度情報に基づいて前記検査試料の濃度値を算出する処理と
     を更に有することを特徴とする遺伝子検査方法。
  14.  請求項13に記載の遺伝子検査方法において、
     前記濃度値を算出する処理は、検査試料に応じて前記濃度情報データベースから読み出した前記濃度情報に基づいて検量線を作製し、作製された検量線に基づいて前記検査試料の濃度値を算出する
     ことを特徴とする遺伝子検査方法。
  15.  核酸抽出部と、試料調整部と、測定部と、核酸抽出部、試料調整部及び測定部の間で試料を搬送する第1の搬送機構と、核酸抽出部と試料調整部と測定部のうち少なくとも2つに対応して設けられる複数の試料導入部と、複数の試料導入部に対応して設けられ、前記試料導入部から装置内部に検査試料を搬入する複数の第2の搬送機構とを有する遺伝子検査装置に搭載されるコンピュータに、
     前記複数の試料導入部のそれぞれについて、各処理部に対応した検査試料の導入を受付ける処理と、
     前記検査試料の受付後、前記核酸抽出部と前記試料調整部と前記測定部に対応する処理工程を同時に開始させる処理と
     を実行させるプログラム。
PCT/JP2013/084040 2012-12-28 2013-12-19 遺伝子検査装置、遺伝子検査方法及びプログラム WO2014103858A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/652,537 US9970951B2 (en) 2012-12-28 2013-12-19 Genetic testing device, genetic testing method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-286469 2012-12-28
JP2012286469A JP6087138B2 (ja) 2012-12-28 2012-12-28 遺伝子検査装置、遺伝子検査方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2014103858A1 true WO2014103858A1 (ja) 2014-07-03

Family

ID=51020945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084040 WO2014103858A1 (ja) 2012-12-28 2013-12-19 遺伝子検査装置、遺伝子検査方法及びプログラム

Country Status (3)

Country Link
US (1) US9970951B2 (ja)
JP (1) JP6087138B2 (ja)
WO (1) WO2014103858A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110928765A (zh) * 2019-10-11 2020-03-27 京东数字科技控股有限公司 一种链路测试方法及装置
CN114736790A (zh) * 2022-04-08 2022-07-12 吉林大学 提取装置、核酸提取系统及其控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105181984B (zh) * 2015-09-29 2017-03-01 北京泱深生物信息技术有限公司 智能标本反应分析装置
JP7450336B2 (ja) * 2016-03-15 2024-03-15 アボット モレキュラー インク. マルチアッセイ処理及び分析の方法ならびにシステム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278810A (ja) * 2007-05-11 2008-11-20 Sony Corp リアルタイムpcr装置
JP2009254260A (ja) * 2008-04-15 2009-11-05 Sony Corp 反応処理装置
JP2010508813A (ja) * 2006-11-03 2010-03-25 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッド ポリメラーゼ連鎖反応試験のためのランダムアクセスシステムおよび方法
WO2012011379A1 (ja) * 2010-07-21 2012-01-26 株式会社日立ハイテクノロジーズ 試料の核酸増幅検出方法及び装置
JP2012026987A (ja) * 2010-07-28 2012-02-09 Hitachi High-Technologies Corp 核酸分析装置
JP2012075413A (ja) * 2010-10-05 2012-04-19 Hitachi High-Technologies Corp 核酸検査装置及び容器搬送方法
WO2012063736A1 (ja) * 2010-11-10 2012-05-18 株式会社日立ハイテクノロジーズ 遺伝子検査方法及び検査装置
JP2012100549A (ja) * 2010-11-08 2012-05-31 Hitachi High-Technologies Corp 核酸分析装置
WO2012176596A1 (ja) * 2011-06-24 2012-12-27 株式会社日立ハイテクノロジーズ 核酸増幅装置及び核酸分析装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2384309B8 (en) * 2000-10-13 2016-03-02 Irm Llc High throughput processing system and method of using
US9075030B2 (en) * 2008-05-22 2015-07-07 Hitachi High-Technologies Corporation Automatic analyzer
WO2012063647A1 (ja) 2010-11-08 2012-05-18 株式会社日立ハイテクノロジーズ 反応プレートアセンブリ、反応プレート及び核酸分析装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508813A (ja) * 2006-11-03 2010-03-25 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッド ポリメラーゼ連鎖反応試験のためのランダムアクセスシステムおよび方法
JP2008278810A (ja) * 2007-05-11 2008-11-20 Sony Corp リアルタイムpcr装置
JP2009254260A (ja) * 2008-04-15 2009-11-05 Sony Corp 反応処理装置
WO2012011379A1 (ja) * 2010-07-21 2012-01-26 株式会社日立ハイテクノロジーズ 試料の核酸増幅検出方法及び装置
JP2012026987A (ja) * 2010-07-28 2012-02-09 Hitachi High-Technologies Corp 核酸分析装置
JP2012075413A (ja) * 2010-10-05 2012-04-19 Hitachi High-Technologies Corp 核酸検査装置及び容器搬送方法
JP2012100549A (ja) * 2010-11-08 2012-05-31 Hitachi High-Technologies Corp 核酸分析装置
WO2012063736A1 (ja) * 2010-11-10 2012-05-18 株式会社日立ハイテクノロジーズ 遺伝子検査方法及び検査装置
WO2012176596A1 (ja) * 2011-06-24 2012-12-27 株式会社日立ハイテクノロジーズ 核酸増幅装置及び核酸分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANG M. ET AL.: "Validation for clinical use of a novel HIV-2 plasma RNA viral load assay using the Abbott m2000 platform", JOURNAL OF CLINICAL VIROLOGY, vol. 55, October 2012 (2012-10-01), pages 128 - 133 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110928765A (zh) * 2019-10-11 2020-03-27 京东数字科技控股有限公司 一种链路测试方法及装置
CN114736790A (zh) * 2022-04-08 2022-07-12 吉林大学 提取装置、核酸提取系统及其控制方法

Also Published As

Publication number Publication date
JP6087138B2 (ja) 2017-03-01
US9970951B2 (en) 2018-05-15
US20150346228A1 (en) 2015-12-03
JP2014128201A (ja) 2014-07-10

Similar Documents

Publication Publication Date Title
JP5372418B2 (ja) 核酸分析装置,自動分析装置、及び分析方法
CA2658533C (en) Device for processing samples
US10458998B2 (en) Device for processing samples
JP5638806B2 (ja) ポリメラーゼ連鎖反応試験のためのランダムアクセスシステムおよび方法
JP6087138B2 (ja) 遺伝子検査装置、遺伝子検査方法及びプログラム
EP3640646A1 (en) Method of operating an analytical laboratory
JP2022106827A (ja) マルチアッセイ処理及び分析の方法ならびにシステム
US8175810B2 (en) Sample processing apparatus and sample processing method
JP2023018035A (ja) 検体容器の搬送方法
US9593367B2 (en) Genetic test system
KR20220024766A (ko) 대변 샘플 처리 시스템 및 방법
Mak et al. Evaluation of automated antigen detection test for detection of SARS-CoV-2
JP6184806B2 (ja) 自動化処理モジュール内でチップを廃棄する自動化される方法および処理モジュールを備える処理システム
Khare et al. Comparison of a transplant multiplex viral panel on the ICEPlex system with real-time PCR for detection of cytomegalovirus, Epstein-Barr virus, and BK virus in clinical specimens
WO2009154211A1 (ja) 自動分析装置
US20170246636A1 (en) Point-of-care biomarker assay apparatus arranged for measuring a presence or concentration of a biomarker in a sample
Mukae et al. Development of RNA/DNA automated extraction and purification device for infectious disease diagnosis
JP6824059B2 (ja) 自動分析機の動作方法
CN103031300B (zh) 一种从重组蛋白制品中提取残留dna的磁珠法
CN117736862A (zh) 用于核酸检测的高通量自动化前处理方法及系统
CN112111559A (zh) 一种抗体药物宿主dna残留q-pcr检测法
JP2009294230A (ja) 自動分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14652537

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867154

Country of ref document: EP

Kind code of ref document: A1