WO2014103076A1 - Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法 - Google Patents

Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法 Download PDF

Info

Publication number
WO2014103076A1
WO2014103076A1 PCT/JP2012/084232 JP2012084232W WO2014103076A1 WO 2014103076 A1 WO2014103076 A1 WO 2014103076A1 JP 2012084232 W JP2012084232 W JP 2012084232W WO 2014103076 A1 WO2014103076 A1 WO 2014103076A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
catalyst
shift
gasification
gasification gas
Prior art date
Application number
PCT/JP2012/084232
Other languages
English (en)
French (fr)
Inventor
米村 将直
安武 聡信
藤井 秀治
耕次 東野
洲崎 誠
香織 吉田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP12891155.9A priority Critical patent/EP2939740B1/en
Priority to JP2014554051A priority patent/JP6025870B2/ja
Priority to CN201280074930.0A priority patent/CN104507570B/zh
Priority to US14/417,958 priority patent/US20150291898A1/en
Priority to AU2012397690A priority patent/AU2012397690B2/en
Priority to PCT/JP2012/084232 priority patent/WO2014103076A1/ja
Publication of WO2014103076A1 publication Critical patent/WO2014103076A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1856Phosphorus; Compounds thereof with iron group metals or platinum group metals with platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a CO shift catalyst that converts CO in gasification gas into CO 2 , a CO shift reaction apparatus, and a gasification gas purification method.
  • Patent Document 1 A coal gasification combined power generation system that generates power using this gasification gas has been proposed.
  • This coal gasification combined power generation (Integrated coal Gasification Combined Cycle: IGCC) is a combined power generation using a gas turbine and a steam turbine that converts coal into combustible gas in a high-temperature and high-pressure gasification furnace.
  • IGCC Integrated coal Gasification Combined Cycle
  • a Co—Mo / Al 2 O 3 catalyst is generally used as a CO shift catalyst.
  • a high temperature range eg, 350 ° C. or higher
  • an IGCC plant equipped with a CO 2 recovery facility is a power plant, and it is necessary to give consideration to the environment (reduction of CO 2 emissions) and to emphasize plant power generation efficiency.
  • extraction medium pressure steam from HRSG exhaust heat recovery boiler
  • HRSG exhaust heat recovery boiler
  • the steam addition ratio H 2 O / CO
  • the present invention provides a CO shift catalyst, a CO shift reaction apparatus, and a purification of gasification gas that can perform the CO shift reaction stably and efficiently without causing severe deterioration of the catalyst even when the amount of water vapor is small. It is an object to provide a method.
  • a first invention of the present invention for solving the above-described problem is a CO shift catalyst for reforming carbon monoxide (CO) in a gas, and is any one of molybdenum (Mo) and iron (Fe).
  • Mo molybdenum
  • Fe iron
  • the active ingredient having any one of nickel (Ni) and ruthenium (Ru) as an auxiliary component, and titanium (Ti), zirconium (Zr) and cerium (Ce) supporting this active component.
  • the CO shift catalyst is characterized in that any one kind or two or more kinds of oxides are used as a support, and the average pore diameter of the support is 300 mm or more.
  • the loading amount of the main component of the active ingredient is 0.1 to 25% by weight and the loading amount of the subcomponent is 0.01 to 10% by weight. It is in the characteristic CO shift catalyst.
  • the third invention is a CO shift reaction apparatus characterized by filling the reaction tower with the first or second CO shift catalyst.
  • the gasification gas after the CO shift reaction is further purified by a wet scrubber device, and then the gasification gas in the gasification gas is purified.
  • the CO shift catalyst according to the present invention increases the average pore diameter of the catalyst, and therefore, even when carbon (C) precipitation occurs, it has excellent durability and can maintain the CO shift reaction stably for a long period of time. There is an effect that can be.
  • FIG. 1 is a schematic view of a gasification gas purification system provided with a CO shift reaction apparatus filled with a CO shift catalyst according to the present embodiment.
  • FIG. 2 is a graph comparing the initial CO conversion rate (%) in the durability test with the test catalyst 2 and the CO conversion rate (%) after 100 hours.
  • FIG. 3 is a diagram illustrating an example of a coal gasification power plant.
  • FIG. 1 is a schematic view of a gasification gas purification system equipped with a CO shift reaction apparatus filled with a CO shift catalyst.
  • the gasification gas purification system 10 includes a gasification furnace 11 that gasifies coal that is fuel F, a filter 13 that removes soot and dust in the gasification gas 12 that is a generated gas, and a filter 13.
  • the gas purification device 15 having the regeneration superheater 16 on the regeneration tower 15B side, the first heat exchanger 17 and the second heat exchanger 18 that raise the temperature of the gasification gas 12, and the temperature is, for example, 300
  • symbol 21 illustrates water vapor
  • the coal as the fuel F is brought into contact with a gasifying agent such as air or oxygen, and is combusted and gasified to generate gasified gas 12.
  • the gasification gas 12 generated in the gasification furnace 11 is mainly composed of carbon monoxide (CO), hydrogen (H 2 ), and carbon dioxide (CO 2 ), but is contained in a small amount in the coal. It contains trace amounts of elements (for example, halogen compounds, heavy metals such as mercury (Hg)), unburned compounds during coal gasification (for example, polycyclic aromatics such as phenol and anthracene, cyan, ammonia, and the like).
  • the gasification gas 12 generated in the gasification furnace 11 is introduced from the gasification furnace 11 into the filter 13.
  • the gasified gas 12 introduced into the filter 13 removes soot and dust in the gasified gas 12.
  • a cyclone or an electrostatic precipitator (EP) may be used.
  • the gasification gas 12 is subjected to gas purification by the gas purification device 15, and then the temperature of the gasification gas 12 is raised by the first and second heat exchangers 17 and 18. ing.
  • the steam 21 is supplied by the steam supply device (steam supply means), it is introduced into the CO shift reaction device 20 having the CO shift catalyst 19.
  • This CO shift reaction device 20 reforms carbon monoxide (CO) in the gasification gas 12 and converts it into carbon dioxide (CO 2 ) under the CO shift catalyst 19.
  • the CO shift catalyst 19 is a CO shift catalyst for reforming carbon monoxide (CO) in a gas, and has one of molybdenum (Mo) and iron (Fe) as a main component, An active component having any one of nickel (Ni) and ruthenium (Ru) as an auxiliary component, and a support of oxides of titanium (Ti), zirconium (Zr) and cerium (Ce) supporting the active component Thus, the average pore diameter of the carrier is increased.
  • the support is preferably an oxide of TiO 2 , ZrO 2 , or CeO 2 .
  • the supported amount of molybdenum (Mo) or iron (Fe) as the main component is 0.1 to 25% by weight, more preferably 7 to 20% by weight.
  • the supported amount of Ni) or ruthenium (Ru) is preferably 0.01 to 10% by weight, more preferably 2 to 10% by weight.
  • the average pore diameter is preferably 300 mm or more as shown in the test examples described later.
  • the firing temperature of the carrier is set to a high temperature of 500 ° C. to 550 ° C., preferably 600 ° C. or more, more preferably 700 ° C. or more for a predetermined time. ing.
  • the upper limit of the firing temperature is preferably 850 ° C. or lower at which the crystal structure of the carrier is converted from anatase type to rutile type.
  • the firing time is at least 1 hour, preferably 2 hours or more, more preferably 3 hours or more.
  • test catalyst 1 Titanium oxide (TiO 2 ("MC-90" trade name)) manufactured by Ishihara Sangyo Co., Ltd. was placed in a 100 g porcelain dish and dissolved in 150 ml of water with nickel nitrate hexahydrate (NN). Ammonium molybdate tetrahydrate (MA) was added so that 4% by weight of NiO and 14% by weight of MoO 3 were supported on the total amount of powder finally obtained, and then evaporated on a porcelain dish. Dry impregnation. The obtained powder was completely dried in a drier, and then calcined at 600 ° C.
  • the obtained powder catalyst was fixed with a 30-ton pressure molding machine, and then crushed and sieved so that the particle size was in the range of a predetermined particle size (for example, 2 to 4 mm) to obtain a test catalyst 1. It was.
  • test catalyst 2 Titanium oxide made by Ishihara Sangyo Co., Ltd. (TiO 2 (“MC-90” trade name)) in a 100 g porcelain dish and dissolved in 150 ml of water with nickel nitrate hexahydrate (NN) Ammonium molybdate tetrahydrate (MA) was added so that 4% by weight of NiO and 14% by weight of MoO 3 were supported on the total amount of powder finally obtained, and then evaporated on a porcelain dish. Dry impregnation. The obtained powder was completely dried in a drier, and then calcined at 700 ° C. for 3 hours (temperature increase rate: 100 ° C./h) to obtain a powder catalyst. The obtained catalyst powder was fixed with a 30-ton pressure molding machine, and then crushed and sieved so that the particle size was in a predetermined particle size range (for example, 2 to 4 mm) to obtain a test catalyst 2. It was.
  • test catalyst 3 Titanium oxide made by Ishihara Sangyo Co., Ltd. (TiO 2 (“MC-90” trade name)) in a 100 g porcelain dish and dissolved in 150 ml of water with nickel nitrate hexahydrate (NN) Ammonium molybdate tetrahydrate (MA) was added so that 4% by weight of NiO and 14% by weight of MoO 3 were supported on the total amount of powder finally obtained, and then evaporated on a porcelain dish. Dry impregnation. The obtained powder was completely dried in a drier and then calcined at 800 ° C. for 3 hours (temperature increase rate: 100 ° C./h) to obtain a powder catalyst. The obtained catalyst powder was fixed with a 30 ton pressure molding machine, and then crushed and sieved so that the particle size was in the range of a predetermined particle size (for example, 2 to 4 mm) to obtain a test catalyst 3. It was.
  • test catalyst 4 Titanium oxide (TiO 2 (“MC-90” trade name)) manufactured by Ishihara Sangyo Co., Ltd. was placed in a 100 g porcelain dish and dissolved in 150 ml of water with nickel nitrate hexahydrate (NN). Ammonium molybdate tetrahydrate (MA) was added so that 2% by weight of NiO and 7% by weight of MoO 3 were supported on the total amount of powder finally obtained, and then evaporated on a porcelain dish. Dry impregnation. The obtained powder was completely dried in a drier, and then calcined at 700 ° C. for 3 hours (temperature increase rate: 100 ° C./h) to obtain a powder catalyst. The obtained catalyst powder was fixed with a 30-ton pressure molding machine, and then crushed and sieved so that the particle size was in the range of a predetermined particle size (for example, 2 to 4 mm) to obtain a test catalyst 4. It was.
  • test catalyst 5 Titanium oxide (TiO 2 (“MC-90” trade name)) manufactured by Ishihara Sangyo Co., Ltd. was placed in a 100 g porcelain dish and dissolved in 150 ml of water with nickel nitrate hexahydrate (NN). Ammonium molybdate tetrahydrate (MA) was added so that 10% by weight of NiO and 20% by weight of MoO 3 were supported on the total amount of powder finally obtained, and then evaporated on a porcelain dish. Dry impregnation. The obtained powder was completely dried in a drier, and then calcined at 700 ° C. for 3 hours (temperature increase rate: 100 ° C./h) to obtain a powder catalyst. The obtained catalyst powder was fixed with a 30-ton pressure molding machine, and then crushed and sieved so that the particle size was in the range of a predetermined particle size (for example, 2 to 4 mm) to obtain a test catalyst 5. It was.
  • test catalyst 6 Production method of test catalyst 6
  • titanium oxide TiO 2 (“MC-90” product name)
  • MC-90 product name
  • nickel nitrate hexahydrate (NN) and ammonium molybdate tetrahydrate (MA) dissolved in 150 ml of water are finally added to the total amount of powder.
  • Ni and Mo were added so that 4% by weight of NiO and 14% by weight of MoO 3 were supported, and Ni and Mo were impregnated by evaporation to dryness.
  • a test catalyst 6 was obtained by firing.
  • the evaluation of the catalyst was performed as follows. In the evaluation test, 3.3 cc of the catalyst was filled in a tubular reaction tube having an inner diameter of 14 mm, and the catalytic activity was evaluated by a flow type microreactor apparatus. For comparison of the initial catalyst activity, the CO conversion rate of the gas flow rate change at the inlet and outlet of the catalyst layer was determined.
  • the initial and post-durability activity evaluation conditions were as follows.
  • the test was conducted under the following conditions.
  • CO conversion rate (%) (1 ⁇ (catalyst layer outlet CO gas flow rate (mol / hour)) / (catalyst layer inlet CO gas flow rate (mol / hour))) ⁇ 100 (I)
  • the durability (acceleration) test was performed under the following conditions.
  • the test was conducted under the following conditions.
  • Table 1 lists the composition of the catalyst and the test results.
  • the catalysts 1 to 6 according to this test example have a small decrease in CO conversion after a 100-hour endurance test and maintain a good CO shift reaction even when the amount of water vapor is low. It was confirmed. In all the catalysts, the deterioration rate of the CO conversion rate was as good as 85% to 95%, and there was no significant decrease.
  • the Mo—Ni-based catalysts of Test Catalysts 2 to 5 had good initial activity, and the decrease in CO conversion after the 100-hour durability test was extremely small.
  • Comparative Catalyst 2 was a high temperature treatment (850 ° C.), the crystal structure of the carrier was changed to the rutile type, and there was almost no catalytic activity.
  • FIG. 2 is a graph comparing the initial CO conversion rate (%) in the durability test with the test catalyst 2 and the CO conversion rate (%) after 100 hours.
  • test catalyst 2 has a large pore size (403 mm), so the initial CO conversion is smaller than comparative catalyst 1 (73.2%) (65%), but carbon deposition in the durability test. Even when there is NO, the CO conversion rate (%) after 100 hours is 61.3% compared with the result of the comparative catalyst 1 (54.9%), and the deterioration rate is small (94%). Met.
  • the CO shift catalyst according to this test has a large average pore diameter of the catalyst, so even when carbon (C) precipitation occurs, it has excellent durability and maintains the CO shift reaction stably for a long period of time. It turns out that you can.
  • FIG. 3 is a diagram illustrating an example of a coal gasification power plant.
  • the coal gasification power plant 50 includes a gasification furnace 11, a filter 13, a COS conversion device 51, a CO shift reaction device 20, and a gas purification device (H 2 S / CO 2 recovery device). ) 15 and a combined power generation facility 52.
  • the gasification furnace 11 is supplied with coal as the fuel F and air 54 from the gasification air compressor 53, and the coal is gasified in the gasification furnace 11 to obtain the gasification gas 12 as the product gas.
  • the air 54 is separated into nitrogen (N 2 ) and oxygen (O 2 ) by the air separation device 55, and N 2 and O 2 are appropriately supplied into the gasification furnace 11.
  • the coal gasification power plant 50 supplies the gasification gas 12 obtained in the gasification furnace 11 to the filter 13, removes the dust, and then supplies the gas to the COS converter 51, and converts the COS contained in the gasification gas 12 to H. 2 Convert to S.
  • the gasification gas 12 containing H 2 S is supplied to the CO shift reaction device 20 and the water vapor 21 is supplied into the CO shift reaction device 20, and the CO in the gasification gas 12 is converted into CO in the CO shift reaction device 20. causing a CO shift reaction to be converted to 2. Since the CO shift reaction apparatus 20 uses the CO shift catalyst according to the present invention, the reformed gas can be efficiently generated over a long period of time even if the amount of water vapor is greatly reduced as described above. it can.
  • H 2 S / CO 2 recovery unit is a gas purification unit 15, H 2 S / in the CO 2 recovery device for removing CO 2 and H 2 S in the reformed gas.
  • the purified gas 22 after being purified by the gas purifier 15 is supplied to the combined power generation facility 52.
  • the combined power generation facility 52 includes a gas turbine 61, a steam turbine 62, a generator 63, and an exhaust heat recovery boiler (HRSG: Heat Recovery Steam Generator) 64.
  • the combined power generation facility 52 supplies the purified gas 22 to the combustor 65 of the gas turbine 61 that is a power generation means. Further, the gas turbine 61 supplies the air 67 supplied to the compressor 66 to the combustor 65.
  • the gas turbine 61 combusts the purified gas 22 in the combustor 65 to generate a high-temperature and high-pressure combustion gas 68, and the combustion gas 68 drives the turbine 69.
  • the turbine 69 is connected to the generator 63, and the generator 63 generates electric power when the turbine 69 is driven. Since the exhaust gas 70 after driving the turbine 69 has a temperature of 500 to 600 ° C., it is sent to an exhaust heat recovery boiler (HRSG) 64 to recover thermal energy.
  • HRSG exhaust heat recovery boiler
  • steam 71 is generated by the thermal energy of the exhaust gas 70, and the steam turbine 62 is driven by the steam 71.
  • the steam 71 is discharged from the steam turbine 62, cooled by the heat exchanger 72, and then supplied to the exhaust heat recovery boiler 64. Further, the exhaust gas 73 whose thermal energy has been recovered by the exhaust heat recovery boiler 64 is released into the atmosphere via the chimney 74 after NOx and the like in the exhaust gas 73 are removed by a denitration device (not shown) or the like. .
  • the CO shift reaction can be performed stably over a period of time. Thereby, in CO shift reaction, since CO shift reaction can be continued stably with little steam, the amount of steam extracted from HRSG 64 can be reduced, and the energy efficiency of coal gasification power plant 50 is improved. Can be performed.
  • the CO shift reaction device 20 is limited to the case where it is installed between the COS conversion device 51 and the gas purification device (H 2 S / CO 2 recovery device) 15 (the front stage side of the H 2 S / CO 2 recovery device). However, it may be installed on the downstream side of the gas purification device (H 2 S / CO 2 recovery device) 15.
  • the purified gas 22 discharged from the gas purification device (H 2 S / CO 2 recovery device) 15 is used as a gas for the turbine has been described.
  • the purified gas 22 discharged from the gas purification device (H 2 S / CO 2 recovery device) 15 is used as a gas for the turbine.
  • it may be used as a raw material gas for synthesizing a chemical product such as methanol and ammonia.
  • the CO shift reaction apparatus 20 has been described with respect to the case where CO in the gasification gas 12 generated by gasifying the fuel F such as coal in the gasification furnace 11 is converted to CO 2 .
  • the present invention is not limited to this, and can be similarly applied to, for example, a CO shift reactor for converting CO-containing gas into CO 2 in a fuel cell or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)
  • Nanotechnology (AREA)

Abstract

 本発明のCOシフト触媒は、ガス中の一酸化炭素(CO)を改質するCOシフト触媒であって、モリブデン(Mo)又は鉄(Fe)のいずれか一種を主成分とすると共に、ニッケル(Ni)又はルテニウム(Ru)のいずれか一種を副成分とする活性成分と、この活性成分を担持するチタン(Ti)、ジルコニウム(Zr)及びセリウム(Ce)のいずれか一種又は二種以上の酸化物を担体としてなり、触媒製造焼成時の温度を600℃以上として、前記担体の平均細孔径を300Å以上としている。

Description

COシフト触媒、COシフト反応装置及びガス化ガスの精製方法
 本発明は、ガス化ガス中のCOをCO2に変換するCOシフト触媒、COシフト反応装置及びガス化ガスの精製方法に関する。
 石炭の有効利用は近年のエネルギー問題での切り札の一つとして注目されている。
 一方、石炭を付加価値の高いエネルギー媒体として、変換するためには石炭ガス化技術、ガス精製技術などの高度な技術が必要とされる。
 このガス化ガスを用いて発電する石炭ガス化複合発電システムが提案されている(特許文献1)。
 この石炭ガス化複合発電(Integrated coal Gasification Combined Cycle:IGCC)とは、石炭を高温高圧のガス化炉で可燃性ガスに転換し、そのガス化ガスを燃料としてガスタービンと蒸気タービンとによる複合発電を行うシステムをいう。
 例えば石炭ガス化ガス(生成ガス)中に存在する炭化水素化合物は、殆どが一酸化炭素(CO)であり、二酸化炭素(CO2)、炭化水素(CH4、CnHm)は数パーセントに過ぎない。この結果、CO2を回収するためには、生成ガス中に存在するCOをCO2に転換する必要があり、水蒸気(H2O)を添加しつつ、シフト触媒を用いて、下記反応によってCO2に転換することが提案されている(特許文献2)。
 CO+H2O⇔ CO2+H2+40.9kJ/mol  (発熱反応) ・・・(1)
 これまで、化学工業分野でのシフト反応に対する知見より、COシフト反応器入口での水蒸気添加割合(H2O/CO)を十分に高くすることにより、上記(1)の反応を進めた上で、希望するCO→CO2転換率を得ることができることとなる。
特開2004-331701号公報 特開2011-157486号公報
 ところで、例えばCOシフト触媒として、Co-Mo/Al23系触媒が一般的に用いられているが、高温域(例えば350℃以上)で活性を発動するため、C析出が懸念される。
 そこで、C析出への対策として、過剰の水蒸気量(水蒸気(H2O)/CO≧3)を添加する必要があった。
 一方、CO2回収設備を備えたIGCCプラントは発電プラントであり、環境(CO2排出量の低減)に配慮すると共に、プラント発電効率にも重点を置く必要がある。
 つまり、シフト反応器に供給しつつ水蒸気添加割合(H2O/CO)のための水蒸気添加源として、例えばHRSG(排熱回収ボイラ)よりの抽気中圧蒸気を用いているが、抽気水蒸気量を低減することが、プラント効率向上を図る上で重要な要素であるため、HRSG(排熱回収ボイラ)からの抽気水蒸気量をなるべく減らすことが、発電効率上昇の点から求められている。
 そこで、水蒸気の供給量を、水蒸気(H2O)/CO=3から水蒸気(H2O)/CO=1程度に大幅に低下した場合であっても、C析出への耐久性の向上を図ることができ、長期間に亙って安定してCOシフト変換が可能となるCOシフト触媒の出現が切望されている。
 本発明は、前記問題に鑑み、水蒸気量が少ない場合でも触媒劣化の程度が激しくなく、COシフト反応を安定して効率よく行うことができるCOシフト触媒、COシフト反応装置及びガス化ガスの精製方法を提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、ガス中の一酸化炭素(CO)を改質するCOシフト触媒であって、モリブデン(Mo)又は鉄(Fe)のいずれか一種を主成分とすると共に、ニッケル(Ni)又はルテニウム(Ru)のいずれか一種を副成分とする活性成分と、この活性成分を担持するチタン(Ti)、ジルコニウム(Zr)及びセリウム(Ce)のいずれか一種又は二種以上の酸化物を担体としてなり、且つ前記担体の平均細孔径が300Å以上であることを特徴とするCOシフト触媒にある。
 第2の発明は、第1の発明において、前記活性成分の主成分の担持量が0.1~25重量%であると共に、副成分の担持量が0.01~10重量%であることを特徴とするCOシフト触媒にある。
 第3の発明は、第1又は2のCOシフト触媒を反応塔内に充填してなることを特徴とするCOシフト反応装置にある。
 第4の発明は、ガス化炉で得られたガス化ガス中の煤塵をフィルタで除去した後、湿式スクラバ装置によりさらにCOシフト反応後のガス化ガスを浄化し、次いで、ガス化ガス中の二酸化炭素及び硫化水素を除去し、第1又は2のCOシフト触媒を用いて、ガス化ガス中のCOをCO2に変換するCOシフト反応させ、精製ガスを得ることを特徴とするガス化ガスの精製方法にある。
 本発明にかかるCOシフト触媒は、触媒の平均細孔径を大きくしているので、炭素(C)析出が発生する場合においても、耐久性に優れ、長期間安定してCOシフト反応を維持することができる、という効果を奏する。
図1は、本実施例に係るCOシフト触媒を充填したCOシフト反応装置を備えたガス化ガス精製システムの概略図である。 図2は、試験触媒2との耐久試験の初期CO転化率(%)と、100時間経過後のCO転化率(%)とを比較したグラフである。 図3は、石炭ガス化発電プラントの一例を示す図である。
 以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記実施例により本発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施例で開示した構成要素は適宜組み合わせることが可能である。
 本発明による実施例に係るCOシフト触媒及びそれを用いたCOシフト反応装置について、図面を参照して説明する。図1は、COシフト触媒を充填したCOシフト反応装置を備えたガス化ガス精製システムの概略図である。
 図1に示すように、ガス化ガス精製システム10は、燃料Fである石炭をガス化するガス化炉11と、生成ガスであるガス化ガス12中の煤塵を除去するフィルタ13と、フィルタ13を通過した後のガス化ガス12中のハロゲンを除去する湿式スクラバ装置14と、熱交換後のガス化ガス12中のCO2及びH2Sを吸収除去する吸収塔15Aと再生する再生塔15Bからなると共に再生塔15B側に再生過熱器16を備えたガス精製装置15と、ガス化ガス12の温度を上げる第1の熱交換器17及び第2の熱交換器18と、温度が例えば300℃に上昇されたガス化ガス12中のCOをCO2に変換して精製ガス22とするCOシフト触媒19を備えたCOシフト反応装置20と、を具備するものである。なお、図1中、符号21は水蒸気を図示する。
 ガス化炉11で、燃料Fである石炭を空気や酸素等のガス化剤と接触させ、燃焼・ガス化させることによってガス化ガス12が生成される。ガス化炉11で生成されるガス化ガス12は、一酸化炭素(CO)、水素(H)、二酸化炭素(CO)を主成分とするものであるが、石炭中に微量に含まれる元素(例えばハロゲン化合物、水銀(Hg)などの重金属)や、石炭ガス化の際の未燃化合物(たとえばフェノール、アントラセンなどの多環芳香族、シアン、アンモニアなど)等も微量に含有する。
 ガス化炉11で生じたガス化ガス12は、ガス化炉11からフィルタ13に導入される。フィルタ13に導入されたガス化ガス12は、ガス化ガス12中の煤塵が除去される。なお、フィルタ以外に、サイクロンや電気集塵装置(EP:Electrostatic Precipitator)等を用いるようにしてもよい。
 ガス化ガス12は、フィルタ13で煤塵が除去された後、ガス精製装置15によりガス精製が行われ、その後ガス化ガス12の温度を第1及び第2の熱交換器17、18により上昇させている。
 次いで、水蒸気21が水蒸気供給装置(水蒸気供給手段)により供給された後、COシフト触媒19を有するCOシフト反応装置20に導入される。このCOシフト反応装置20により、ガス化ガス12中の一酸化炭素(CO)を改質し、COシフト触媒19下で二酸化炭素(CO2)に変換するようにしている。
 本発明に係るCOシフト触媒19は、ガス中の一酸化炭素(CO)を改質するCOシフト触媒であって、モリブデン(Mo)又は鉄(Fe)のいずれか一種を主成分とすると共に、ニッケル(Ni)又はルテニウム(Ru)のいずれか一種を副成分とする活性成分と、この活性成分を担持するチタン(Ti)、ジルコニウム(Zr)及びセリウム(Ce)の酸化物の担体とから構成され、担体の平均細孔径を、大きなものとするものである。
 担体としては、TiO2、ZrO2、CeO2の酸化物であるのが好ましい。
 本発明では、担体の平均細孔孔を大きくしているので、本発明のCOシフト触媒を用いる場合、水蒸気量を低減(例えば(水蒸気(H2O)/CO=3から水蒸気(H2O)/CO=1程度に大幅に低下)させた場合であっても、細孔径が大きい孔に対して炭素(C)が析出しても、細孔径の全てを覆うこととならず、活性成分を覆うこととならないものとなる。この結果、長期間に亙って、低水蒸気量でCOシフト反応を進行させても、炭素析出はあるものの、細孔孔の全てが閉塞されるものではないので、COシフト反応効率の大幅な低下がなく、良好なCOシフト反応を進行させることが可能となる。
 ここで、主成分であるモリブデン(Mo)又は鉄(Fe)の担持量としては、0.1~25重量%、より好ましくは7~20重量%とするのがよく、副成分であるニッケル(Ni)又はルテニウム(Ru)の担持量としては、0.01~10重量%、より好ましくは2~10重量%が好ましい。
 平均細孔径は、後述の試験例に示すように、300Å以上とするのが好ましい。
 この平均細孔径を大きくするために、担体の焼成温度を通常の500℃から、550℃以上、好ましくは、600℃以上、より好ましくは、700℃以上の高温での焼成を所定時間行うようにしている。
 なお、焼成温度の上限としては、担体の結晶構造がアナターゼ型からルチル型に変換する850℃以下とするのが好ましい。
 また、焼成時間としては、少なくとも1時間以上、好ましくは2時間以上、より好ましくは3時間以上とするのがよい。
 このように、本発明に係るCOシフト触媒によれば、ガス化炉11でガス化したガス化ガス12中のCOをH2に変換する際に、水蒸気(H2O)/CO=3から水蒸気(H2O)/CO=1程度に大幅に低下した場合に、炭素の析出があっても、担体の細孔孔を所定以上に大きくしているので、C析出への耐久性の向上を図ることができ、長期間に亙って安定してCOシフト変換が可能となる。また、供給する水蒸気量を低減させることとなり、高効率なガス精製プロセスを提供することができる。
[試験例]
 以下、本発明の効果を示す試験例について説明する。
1)試験触媒1の製法
 石原産業製酸化チタン(TiO2(「MC-90」商品名))を100g磁製皿に入れ、150mlの水に溶かした硝酸ニッケル・6水和物(NN)とモリブデン酸アンモニウム・4水和物(MA)を、最終的に得られる全粉末量に対してNiOが4重量%、MoO3が14重量%担持されるように添加後、磁製皿上で蒸発乾固含浸した。そして、得られた粉末を乾燥器で完全に乾燥後、600℃で3時間(昇温速度100℃/h)焼成を施すことにより粉末触媒を得た。
 得られた粉末触媒を30tonの加圧成形器で粉末を固定化させた後、粒径が所定粒径(例えば2~4mm)の範囲となるように破砕後篩い分けして試験触媒1を得た。
2)試験触媒2の製法
 石原産業製酸化チタン(TiO2(「MC-90」商品名))を100g磁製皿に入れ、150mlの水に溶かした硝酸ニッケル・6水和物(NN)とモリブデン酸アンモニウム・4水和物(MA)を、最終的に得られる全粉末量に対してNiOが4重量%、MoO3が14重量%担持されるように添加後、磁製皿上で蒸発乾固含浸した。そして、得られた粉末を乾燥器で完全に乾燥後、700℃で3時間(昇温速度100℃/h)焼成を施すことにより粉末触媒を得た。
 得られた触媒粉末を30tonの加圧成形器で粉末を固定化させた後、粒径が所定粒径(例えば2~4mm)の範囲となるように破砕後篩い分けして試験触媒2を得た。
3)試験触媒3の製法
 石原産業製酸化チタン(TiO2(「MC-90」商品名))を100g磁製皿に入れ、150mlの水に溶かした硝酸ニッケル・6水和物(NN)とモリブデン酸アンモニウム・4水和物(MA)を、最終的に得られる全粉末量に対してNiOが4重量%、MoO3が14重量%担持されるように添加後、磁製皿上で蒸発乾固含浸した。そして、得られた粉末を乾燥器で完全に乾燥後、800℃で3時間(昇温速度100℃/h)焼成を施すことにより粉末触媒を得た。
 得られた触媒粉末を30tonの加圧成形器で粉末を固定化させた後、粒径が所定粒径(例えば2~4mm)の範囲となるように破砕後篩い分けして試験触媒3を得た。
4)試験触媒4の製法
 石原産業製酸化チタン(TiO2(「MC-90」商品名))を100g磁製皿に入れ、150mlの水に溶かした硝酸ニッケル・6水和物(NN)とモリブデン酸アンモニウム・4水和物(MA)を、最終的に得られる全粉末量に対してNiOが2重量%、MoO3が7重量%担持されるように添加後、磁製皿上で蒸発乾固含浸した。そして、得られた粉末を乾燥器で完全に乾燥後、700℃で3時間(昇温速度100℃/h)焼成を施すことにより粉末触媒を得た。
 得られた触媒粉末を30tonの加圧成形器で粉末を固定化させた後、粒径が所定粒径(例えば2~4mm)の範囲となるように破砕後篩い分けして試験触媒4を得た。
5)試験触媒5の製法
 石原産業製酸化チタン(TiO2(「MC-90」商品名))を100g磁製皿に入れ、150mlの水に溶かした硝酸ニッケル・6水和物(NN)とモリブデン酸アンモニウム・4水和物(MA)を、最終的に得られる全粉末量に対してNiOが10重量%、MoO3が20重量%担持されるように添加後、磁製皿上で蒸発乾固含浸した。そして、得られた粉末を乾燥器で完全に乾燥後、700℃で3時間(昇温速度100℃/h)焼成を施すことにより粉末触媒を得た。
 得られた触媒粉末を30tonの加圧成形器で粉末を固定化させた後、粒径が所定粒径(例えば2~4mm)の範囲となるように破砕後篩い分けして試験触媒5を得た。
6)試験触媒6の製法
 試験触媒2の製法において、含浸する前に酸化チタン(TiO2(「MC-90」商品名))を100g磁製皿に入れ、700℃で3時間(昇温速度100℃/h)焼成を施し、その後、150mlの水に溶かした硝酸ニッケル・6水和物(NN)とモリブデン酸アンモニウム・4水和物(MA)を、最終的に得られる全粉末量に対してNiOが4重量%、MoO3が14重量%担持されるように添加後、Ni及びMoを蒸発乾固法で含浸処理し、乾燥後、500℃で3時間(昇温速度100℃/h)焼成を施すことにより試験触媒6を得た。
7)比較触媒1の製法
 石原産業製酸化チタン(TiO2(「MC-90」商品名))を100g磁製皿に入れ、150mlの水に溶かした硝酸ニッケル・6水和物(NN)とモリブデン酸アンモニウム・4水和物(MA)を、最終的に得られる全粉末量に対してNiOが4重量%、MoO3が10重量%担持されるように添加後、磁製皿上で蒸発乾固含浸した。そして、得られた粉末を乾燥器で完全に乾燥後、500℃で3時間(昇温速度100℃/h)焼成を施すことにより粉末触媒を得た。
 得られた触媒粉末を30tonの加圧成形器で粉末を固定化させた後、粒径が所定粒径(例えば2~4mm)の範囲となるように破砕後篩い分けして比較触媒1を得た。
8)比較触媒2の製法
 石原産業製酸化チタン(TiO2(「MC-90」商品名))を100g磁製皿に入れ、150mlの水に溶かした硝酸ニッケル・6水和物(NN)とモリブデン酸アンモニウム・4水和物(MA)を、最終的に得られる全粉末量に対してNiOが4重量%、MoO3が14重量%担持されるように添加後、磁製皿上で蒸発乾固含浸した。そして、得られた粉末を乾燥器で完全に乾燥後、850℃で3時間(昇温速度100℃/h)焼成を施すことにより粉末触媒を得た。
 得られた触媒粉末を30tonの加圧成形器で粉末を固定化させた後、粒径が所定粒径(例えば2~4mm)の範囲となるように破砕後篩い分けして比較触媒2を得た。
 触媒の評価は下記のようにして行った。
 評価試験は、内径14mmの管型反応管に触媒を3.3cc充填し、流通式マイクロリアクタ装置により触媒活性を評価した。
 初期の触媒活性の比較は、触媒層入口、出口のガス流量変化のCO転化率を求めた。
 初期及び耐久後の活性評価条件は、以下の条件とした。
 ガス組成は、H2/CO/CO2=30/50/20モル%、H2S=700ppm、S/CO=1.0とし、0.9MPa、温度250℃、SV=6、000h-1の条件で試験した。
 CO転化率は下記式(I)による。
CO転化率(%)=(1-(触媒層出口COガス流速(mol/時間))/(触媒層入口COガス流速(mol/時間)))×100・・・(I)
 また、耐久(加速)試験は以下の条件とした。
 ガス組成は、H2/CO/CO2=30/50/20モル%、H2S=700ppm、S/CO=0.1とし、0.9MPa、温度450℃、SV=2、000h-1の条件で試験した。
 この触媒の組成の一覧及び試験の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本試験例に係る触媒1乃至6は、低水蒸気量であっても、100時間の耐久試験後のCO転化率の低下が少なく、COシフト反応が良好に維持されることが確認された。
 いずれの触媒もCO転化率の劣化割合は85%~95%と良好であり、大幅な低下はなかった。
 特に、試験触媒2~5のMo-Ni系触媒は初期活性も良好であり、100時間耐久試験後のCO転化率の低下は極めて小さいものであった。
 これに対し、比較例にかかる比較触媒1は、CO転化率が大幅に低下(劣化割合75%)した。なお、比較触媒2は、高温処理(850℃)であったので、担体の結晶構造がルチル型に変化しており、殆ど触媒活性は無かった。
 図2は、試験触媒2との耐久試験の初期CO転化率(%)と、100時間経過後のCO転化率(%)とを比較したグラフである。
 図2により明らかなように、試験触媒2は、細孔径が大きい(403Å)ので、初期のCO転化率は比較触媒1(73.2%)より小さい(65%)ものの、耐久試験で炭素析出があった場合においても、100時間経過後のCO転化率(%)は、比較触媒1の結果(54.9%)に較べて、61.3%とその劣化割合は小さい(94%)ものであった。
 よって、本試験にかかるCOシフト触媒は、触媒の平均細孔径を大きくしているので、炭素(C)析出が発生する場合においても、耐久性に優れ、長期間安定してCOシフト反応を維持できることが判明した。
<石炭ガス化発電プラント>
 本実施例に係るCOシフト反応装置20を備えた石炭ガス化発電プラントについて、図面を参照して説明する。図3は、石炭ガス化発電プラントの一例を示す図である。図3に示すように、石炭ガス化発電プラント50は、ガス化炉11と、フィルタ13と、COS変換装置51と、COシフト反応装置20と、ガス精製装置(HS/CO2回収装置)15と、複合発電設備52とを有する。
 ガス化炉11に、燃料Fである石炭と、ガス化空気圧縮機53からの空気54とを供給し、石炭をガス化炉11でガス化し、生成ガスであるガス化ガス12を得る。また、ガス化炉11には、空気54を空気分離装置55で窒素(N2)と酸素(O2)とに分離して、N2、O2を適宜ガス化炉11内に供給する。石炭ガス化発電プラント50は、ガス化炉11で得られたガス化ガス12をフィルタ13に供給し、除塵した後、COS変換装置51に供給し、ガス化ガス12中に含まれるCOSをH2Sに変換する。
 その後、H2Sを含むガス化ガス12をCOシフト反応装置20に供給すると共に水蒸気21をCOシフト反応装置20内に供給し、COシフト反応装置20内でガス化ガス12中のCOをCO2に変換するCOシフト反応を起こさせる。
 このCOシフト反応装置20では、本発明にかかるCOシフト触媒を用いているので、上述の通り水蒸気量を大幅に低減させても、改質ガスを長期間に亙って効率よく生成することができる。
 COシフト反応装置20でガス化ガス12中のCOをCO2に変換した後、得られた改質ガスをガス精製装置15であるHS/CO2回収装置に供給し、HS/CO2回収装置で改質ガス中のCO2及びHSを除去する。
 ガス精製装置15で精製処理された後の精製ガス22は、複合発電設備52に供給される。複合発電設備52は、ガスタービン61と、蒸気タービン62と、発電機63と、排熱回収ボイラ(HRSG:Heat Recovery Steam Generator)64とを有する。複合発電設備52は、精製ガス22を発電手段であるガスタービン61の燃焼器65に供給する。また、ガスタービン61は、圧縮機66に供給された空気67を燃焼器65に供給する。ガスタービン61は、精製ガス22を燃焼器65で燃焼して高温・高圧の燃焼ガス68を生成し、この燃焼ガス68によってタービン69を駆動する。タービン69は発電機63と連結されており、タービン69が駆動することによって発電機63が電力を発生する。タービン69を駆動した後の排ガス70は500~600℃の温度を持っているため、排熱回収ボイラ(HRSG:Heat Recovery Steam Generator)64へ送られて熱エネルギーが回収される。排熱回収ボイラ(HRSG)64では、排ガス70の熱エネルギーによって蒸気71が生成され、この蒸気71によって蒸気タービン62を駆動する。蒸気71は蒸気タービン62で使用された後、蒸気タービン62から排出され、熱交換器72で冷却された後、排熱回収ボイラ64に供給される。また、排熱回収ボイラ64で熱エネルギーを回収された排ガス73は、脱硝装置(図示せず)等で排ガス73中のNOx等が除去された後、煙突74を介して大気中へ放出される。
 このように、本実施例に係るCOシフト反応装置20を備えた石炭ガス化発電プラント50は、ガス化炉11でガス化されたガス化ガス12を、COシフト反応装置20において、水蒸気量を低減させた場合(水蒸気(H2O)/CO=1程度)でも、COシフト触媒の劣化を抑制しつつ、ガス化ガス12中に含まれるCOをCO2に変換して改質ガスを長期間に亙って安定してCOシフト反応を行うことができる。
 これにより、COシフト反応において、少ない水蒸気で安定してCOシフト反応を継続することができるので、HRSG64から抽気する水蒸気量を減らすことができ、石炭ガス化発電プラント50のエネルギー効率が向上した運転を行うことが可能となる。
 なお、COシフト反応装置20は、COS変換装置51とガス精製装置(HS/CO2回収装置)15との間(HS/CO2回収装置の前段側)に設置する場合に限定されるものではなく、ガス精製装置(HS/CO2回収装置)15の後流側に設置するようにしてもよい。
 また、本実施例では、ガス精製装置(HS/CO2回収装置)15から排出された精製ガス22をタービン用のガスとして用いた場合について説明したが、COシフト反応装置20ではガス化ガス12に大量に含まれるCOをCO2に変換するため、タービン用のガス以外に、例えばメタノール、アンモニアなどの化成品を合成する原料ガスとして用いてもよい。
 以上、本実施例に係るCOシフト反応装置20は、ガス化炉11で石炭などの燃料Fをガス化させることによって生成されたガス化ガス12中のCOをCO2に変換する場合について説明したが、本発明はこれに限定されるものではなく、例えば、燃料電池等でCOを含有するガスをCO2に変換するためのCOシフト反応装置等においても同様に適用することができる。
 10 ガス化ガス精製システム
 11 ガス化炉
 12 ガス化ガス
 13 フィルタ
 14 湿式スクラバ装置
 15A 吸収塔
 15B 再生塔
 15 ガス精製装置
 19 COシフト触媒
 20 COシフト反応装置
 21 水蒸気
 22 精製ガス

Claims (4)

  1.  ガス中の一酸化炭素(CO)を改質するCOシフト触媒であって、
     モリブデン(Mo)又は鉄(Fe)のいずれか一種を主成分とすると共に、
     ニッケル(Ni)又はルテニウム(Ru)のいずれか一種を副成分とする活性成分と、
     この活性成分を担持するチタン(Ti)、ジルコニウム(Zr)及びセリウム(Ce)の酸化物を担体としてなり、
     且つ、
     前記担体の平均細孔径が300Å以上であることを特徴とするCOシフト触媒。
  2.  請求項1において、
     前記活性成分の主成分の担持量が0.1~25重量%であると共に、副成分の担持量が0.01~10重量%であることを特徴とするCOシフト触媒。
  3.  請求項1又は2のCOシフト触媒を反応塔内に充填してなることを特徴とするCOシフト反応装置。
  4.  ガス化炉で得られたガス化ガス中の煤塵をフィルタで除去した後、
     湿式スクラバ装置によりさらにCOシフト反応後のガス化ガスを浄化し、
     次いで、ガス化ガス中の二酸化炭素及び硫化水素を除去し、
     請求項1又は2のCOシフト触媒を用いて、
     ガス化ガス中のCOをCO2に変換するCOシフト反応させ、精製ガスを得ることを特徴とするガス化ガスの精製方法。
PCT/JP2012/084232 2012-12-28 2012-12-28 Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法 WO2014103076A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12891155.9A EP2939740B1 (en) 2012-12-28 2012-12-28 Co shift catalyst, co shift reactor, and method for purifying gasification gas
JP2014554051A JP6025870B2 (ja) 2012-12-28 2012-12-28 Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法
CN201280074930.0A CN104507570B (zh) 2012-12-28 2012-12-28 Co转化催化剂、co转化反应装置及气化气的精制方法
US14/417,958 US20150291898A1 (en) 2012-12-28 2012-12-28 Co shift catalyst, co shift reactor, and method for purifying gasification gas
AU2012397690A AU2012397690B2 (en) 2012-12-28 2012-12-28 CO shift catalyst, CO shift reactor, and method for purifying gasification gas
PCT/JP2012/084232 WO2014103076A1 (ja) 2012-12-28 2012-12-28 Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/084232 WO2014103076A1 (ja) 2012-12-28 2012-12-28 Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法

Publications (1)

Publication Number Publication Date
WO2014103076A1 true WO2014103076A1 (ja) 2014-07-03

Family

ID=51020221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/084232 WO2014103076A1 (ja) 2012-12-28 2012-12-28 Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法

Country Status (6)

Country Link
US (1) US20150291898A1 (ja)
EP (1) EP2939740B1 (ja)
JP (1) JP6025870B2 (ja)
CN (1) CN104507570B (ja)
AU (1) AU2012397690B2 (ja)
WO (1) WO2014103076A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160032202A1 (en) * 2013-02-27 2016-02-04 Mitsubishi Heavy Industries, Ltd. Co shift catalyst, co shift reaction apparatus, and method for purifying gasified gas
US10774278B2 (en) 2013-02-27 2020-09-15 Mitsubishi Heavy Industries Engineering, Ltd. CO shift catalyst, CO shift reaction apparatus, and method for purifying gasified gas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130385A (ja) * 1973-04-06 1974-12-13
JPS5084490A (ja) * 1973-11-23 1975-07-08
JPH01223197A (ja) * 1988-01-13 1989-09-06 Comprimo Bv 一酸化炭素含有ガスから硫黄化合物を変換し除去するための方法
JP2004331701A (ja) 2003-04-30 2004-11-25 Clean Coal Power R & D Co Ltd 石炭ガス化プラント、および石炭ガス化方法並びに石炭ガス化発電プラント
JP2005521617A (ja) * 2002-03-28 2005-07-21 ユーティーシー フューエル セルズ,エルエルシー セリア基の混合金属酸化物構造、その作成方法および使用
JP2008104906A (ja) * 2006-10-23 2008-05-08 Catalysts & Chem Ind Co Ltd 一酸化炭素除去用触媒の製造方法
JP2011157486A (ja) 2010-02-01 2011-08-18 Mitsubishi Heavy Ind Ltd ガス化ガス精製システム
WO2011105501A1 (ja) * 2010-02-24 2011-09-01 三菱重工業株式会社 Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2575453B1 (fr) * 1984-12-28 1990-03-02 Pro Catalyse Procede de conversion du monoxyde de carbone par la vapeur d'eau a l'aide d'un catalyseur thioresistant
US6969505B2 (en) * 2002-08-15 2005-11-29 Velocys, Inc. Process for conducting an equilibrium limited chemical reaction in a single stage process channel
CA2510999A1 (en) * 2002-12-20 2004-07-15 Honda Giken Kogyo Kabushiki Kaisha Platinum and rhodium and/or iron containing catalyst formulations for hydrogen generation
US20070256360A1 (en) * 2006-05-08 2007-11-08 Alchemix Corporation Method for the gasification of moisture-containing hydrocarbon feedstocks
CN102378648B (zh) * 2009-04-10 2014-07-02 三菱重工业株式会社 Co变换催化剂、co变换反应装置及气化气体的精制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130385A (ja) * 1973-04-06 1974-12-13
JPS5084490A (ja) * 1973-11-23 1975-07-08
JPH01223197A (ja) * 1988-01-13 1989-09-06 Comprimo Bv 一酸化炭素含有ガスから硫黄化合物を変換し除去するための方法
JP2005521617A (ja) * 2002-03-28 2005-07-21 ユーティーシー フューエル セルズ,エルエルシー セリア基の混合金属酸化物構造、その作成方法および使用
JP2004331701A (ja) 2003-04-30 2004-11-25 Clean Coal Power R & D Co Ltd 石炭ガス化プラント、および石炭ガス化方法並びに石炭ガス化発電プラント
JP2008104906A (ja) * 2006-10-23 2008-05-08 Catalysts & Chem Ind Co Ltd 一酸化炭素除去用触媒の製造方法
JP2011157486A (ja) 2010-02-01 2011-08-18 Mitsubishi Heavy Ind Ltd ガス化ガス精製システム
WO2011105501A1 (ja) * 2010-02-24 2011-09-01 三菱重工業株式会社 Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2939740A4

Also Published As

Publication number Publication date
AU2012397690A1 (en) 2015-02-19
CN104507570B (zh) 2017-05-31
EP2939740A1 (en) 2015-11-04
EP2939740A4 (en) 2017-01-04
JPWO2014103076A1 (ja) 2017-01-12
CN104507570A (zh) 2015-04-08
US20150291898A1 (en) 2015-10-15
EP2939740B1 (en) 2024-04-10
AU2012397690B2 (en) 2016-04-21
JP6025870B2 (ja) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6005251B2 (ja) Coシフト触媒の製造方法及びガス化ガスの精製方法
JP5550715B2 (ja) Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法
JP5404774B2 (ja) Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法
WO2014103074A1 (ja) Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法
JP6025870B2 (ja) Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法
JP5968465B2 (ja) Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法
AU2009346342B2 (en) CO shift catalyst, method for producing the same, and CO shift reactor using CO shift catalyst
US10774278B2 (en) CO shift catalyst, CO shift reaction apparatus, and method for purifying gasified gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891155

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14417958

Country of ref document: US

Ref document number: 2012891155

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201500539

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2014554051

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012397690

Country of ref document: AU

Date of ref document: 20121228

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE